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ABSTRACT

The principles of static and dynamic similitude were applied to typical
complex structural components for the purpose of examining the application
of modeling techniques to sonic fatigue predictions. Modeled specimens of
curved panels, honeycomb sandwich flat panels, and honeycomb sandwich cant-
ilever beams have been tested. The tests were conducted on full scale, 5/8,
and 3/8 size models. The tests and analyses demonstrated that scale reduct-
ions of linear panel dimensions, and other size factors necessary in the
fabrication of models, may be separately considered in maintaining the est-
ablished similitude relationships. Both random spectra and discrete fre-
quency acoustic excitation are considered.

Correlation of available data from other sources has established a frequen -
cy parameter defining the effects of radius of curvature along one side of
a curved panel. This frequency parameter converts to a stress reduction
factor that has been verified experimentally in many modes. Although the
section modulus for honeycomb sandwich panels need not be comtrolled by the
scaling factors, the generation of response modes is significantly related
to the aspect ratios of surface dimensions. This panel aspect ratio effect
can yield a dominant excitation of higher complexity modes at low stresses
and impose difficulties in fatigue duration tests. Experimental data are
used to identify these complexities and differences between modes without
introducing consideration of coupling effects.

Stress correlation is the critical parameter in modeling for acoustic fat-
igue. True models with exact geometric scaling in all elements are not
necessary. Adequate modeling is obtained by maintaining the same aspect
ratio and modes for the specimen and model. The frequency and stress then
vary at predetermined magnitudes with a functional relationship to damping,
amplitude, and cross-section (thickness) geometric parameters. Non-linear
effects are dependent on excitation levels. In general, a prerequisite to
sonic fatigue tests is a knowledge of the non-linearity induced by damping
and amplitude for each specimen. The experimental data confirms tle ap-
plication of bagsic procedures formulated by Miles, Palmgren, and Miner which
minimize the requirement for random excitation in tke use of modeling tech-
niques for sonic fatigue predictions.
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1. INTRODUCTION

On the question of fatigue failures in structural components of aero-
space vehicles, there is little doubt that a major contribution comes from
acoustically induced vibrations. In recent years, considerable research work
has been oriented towards a better definition of the acoustical loading that
these components should be designed to sustain, and towards a more critical
analysis of the vibratory responses induced by the acoustical loading.
Progress and advancement to meet newer challenges in the technology of
acoustically induced fatigue of structure is dependent upon an optimum
achievement in both these undertakings. Like all engineering accomplishments
of the past, however, analytical results must be subjected to proof tests
before acceptance. As vehicles become more and more complex and loading
requirements are more and more severe; the performance of these tests would
incur a great deal of engineering effort and expense. This situation has
drawvn attention to the potentiel use of models, as specifically in the
current program, for studying a technique by which acoustically induced
fatigue strength can be predicted.

In a technological sense, models have been used and are used in
almost any engineering task. In the determination of physical properties
of newer or more exotic materials, sample specimens of any shape or form
are fabricated and tested. These are essentially models; for example, in
the case of the tensile strength of a round bolt or a rectangular pin, one
would simply refer to the unit strength of a modeled specimen in the same
loading environment and determine the desired strength from the cross-
sectional area of the bolt or pin. The area is, therefore, the essential
modeling parameter. Because a tensile specimen is usually round, it can be
considered as a true model of the bolt and a distorted model of the
rectangular pin. If an additional consideration is required in this case
to detemine fatipue strength, the question of loading conditions will
naturally arise. Similitudes are extended to the case of fatigue only if
the stress reversals or variations are compatible in magnitudes. For the
bolt and pin, possible differences in the most likely stress concentrations
of model (test specimen) and the bolt or pin must be considered and eval-
uated. For the purpose of this program satisfactory fatigue properties
commonly expressed in the form of S-N curves for the specimen material
are assumed available for loading conditions representative of those imposed;
the intrinsic variation in an S-N curve is not an investigation obJjective.

Specifically, therefore, a premise is established that under identical
environments, the behavior of a specimen and its models are alike. Indeed,
the designation of a "specimen" or a "model" is merely symbolic. The know-
ledge that is being sought in modeling studies for sonic fatigue is no more
exclusive than in other cases. The response of a given elastic assemblage
must be ascertained under given conditions that are common to both specimens
and models, which incidentally need not be restricted to true models only.
The program is one of defining the parameters relevant to both response and
loading.



The purpose of this study is to demonstrate through analysis and
experimentation that some basic relationships remain applicable in modeling
complex structures for acoustic fatigue analyses. For providing infommation
on the more pertinent simulation requirements of desirable structural
components, two structural assemblages in the form of honeycomb sandwiched
panels and curved plates were chosen for study. Neither of these
structural unit types have been completely delineated in its physical
properties - only those considered of major importance were defined in the
study. The objective is to extend the parameters as defined in this study
towards a prediction of the fatigue strength of each unit in an acoustical
environment,



2 DYNAMIC MODELING REQUIREMENT AND PARAMETERS
2.1 Background

Dynamic similitude through the use of models as a method of solving
many engineering problems has long been recognized. In fatigue investiga-
tions of structural components exposed to random excitations, acoustically
or otherwise induced, the application as reported in Reference 1 will of
course be anticipated. The advocated reduction of a prototype specimen
in all its linear dimensions by the same scale factor i.e., into "true"
models, however, poses severe limitations that must be overcome. The
theoretical background on the use of "adequate” models, not exactly
scaled, is provided in Reference 2.

Generally speaking, the use of models is predicated upon the premise
that in dynamic stress similitude, a structure is correctly modeled if its
stress under a given dynamic load can be predicted from the measured stress
in the model. Thus in true models, the same stress is merely duplicated.
Insofar as fatigue strength is concerned, the equivalent knowledge (S-N
curves) applies. For the same life-cycle duration, the product of
frequency and time is a constant. Since the frequency is inversely propor-
tional to the true model geometric scale, the duration on a time basis
becomes directly related to scale factors. However, quite frequently
geometric variations and changes in response modes require that differences
in resultant stresses must be taken into account in fatigue considerations.
Available data from Reference 1 and other sources have been, therefore,
re-examined in this direction whereby some of the reported discrepancies
may be resolved.

22 Fatigue Data Correlation
2.2.1 Stress Variations between Modeled Specimens

Some typical examples of stress variations are found in the data of
Reference 1 and reproduced here in Figures la and 1b. Spectrum analyses of
strain gage signals from similar locations are indicated as 53, SQ’ and S
of Figure 1 for 1/3 and 1/6 scaled models of a ribbed square plate excitea
by random noise of appropriately scaled acoustic powers. To reproduce the
game stress in both cases, all corresponding spectra should follow the
same shape after a downward shift in frequencies at a scaled ratio of 2 for
the smaller model (frequency scaling for the 1/2 :1 geometric scaling). The
power spectrum difference should then be +3dB (=10 log 2) for the larger
model. In the data shown, this difference is +6dB for the maximum stress
indicated.

2.2.2 Mode Frequency Variations between Modeled Specimens and
Fatigue Correlation

By comparing the shapes shown in Figures la and 1b, it is also
observed from the spectrum differences at location S, that the square
element within the ribs responded differently between models This may
serve to explain the increased stress in the 1/3-model plate. The relation-
ship between excitation powers was separately determined to have been
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properly applied between all specimens (See Ref. 1). If the increase in
maximum stress is taken into account, it is very likely that the reduced
fatigue time of the 1/3-model plate would fit an acceptable S-N curve or
could be corrected to show a constant "N" for the same "S" as in the other
specimens. In this respect, it must be mentioned that locations S, and S3
are essentially the same insofar as plate vibrations are concemned.
Failures induced by transverse bending could occur along either side. For
this reason the spectra at So and S; are compared as respective maxima.
The mode frequencies observed at 165 and 500 cps, not being precisely an
inverse ratio of geometricscale factors provide a necessary correction factor
in converting fatigue cycles to the indicated duration time. Because the
stress is the criterion in fatigue, such a correction is always necessary
when a time duration is used.

2.2.3 Fatigue Time Corrected

The average S-N curves for aluminum,when plotted on log-log scales,
exhibit a nearly uniform slope beyond 10[l cycles without significant
variations between material classifications or stress concentration factor
changes. On this basis, for a stress difference corresponding to +3dB
(= 20 log stress ratio) or 1.4 times higher stress, the number of cycles
affected is approximately 10 times. Thus the observed durations of the
higher stress at 155 cps should be multiplied by 10 if the frequency had
been correct at the modeled stress for the 1/3—model. Based on 65 cps
for the full size panel mode of Reference 1, the 1/3-model frequency
should be 195 cps. To correct for the frequency differences, the actual
time observed at 165 cps is to be shortened by a ratio of 165/195 making
a total correction of 8.5 times.

Examination of the details of the 1/6-scaled specimens (Design I
of Reference 1) reveals that a reduced corner radius at the advocated
scaling law would very likely incur an increased stress concentration
factor. Based on the given full scale reference, the observed fatigue
duration of the 1/6-scale specimens should be adjusted by a ratio of
1.5 for stress concentration differences. Concurrently the time correla-
tion required is based on the observed response at 500 cps (Fig. 1b)
divided by the scaled frequency of 6 x 65. The total correction factor
is 1.52(:% % 1.5) which is applicable in an interpretation of fatigue

time T between true models at scale factors N'. The corrected failure
time result for the Reference 1 specimens is shown in Fig. 2. A linear
relationship is clearly indicated which verifies the theoretical result
that duration time is directly proportional to geometric scale factors.
The range in data scatter which is represented by either the vertical or
horizontal spread between the two lines, is attributed partly to damping
coefficient variations, currently undetermined in extent, and partly to
normal scatter in fatigue data.
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2.3 Similarity of Restricted Temperature Effect and Some
Nonlinear Characteristics of a Soft Spring Variety

In Figure 46 of Reference 3 an extensive change was reported in the
resonance frequency accompanying a temperature change of only a few
degrees Fahrenheit in a clamped beam specimen. This temperature change was
limited, however, to the beam itself through localized heating in such a



manner that the main clamping fixture remained essentially free of a thermal
strain. This must be considered as a unique case in variance withsteady state
operational environments where both the clamping and the clamped generally
assumed same temperatures. Only & slight drift in frequency was usually
observed unless the difference in thermal expansions was extremely great.

A large change in resonance frequency of the order reported must be
attributed to the induced compressive stress. As the temperature of the
beam was increased, the natural extension in its physical length caused it
to exert an axial force on the clamping fixture. This action is the same
as a compressive force applied axially on the beam. Before the Euler's
load is reached, at which point the beam buckles as a column, the

effect of such an induced compressive force is to reduce the tensile stress
of bending in response to an applied transverse load. It is, therefore,
feasible and relatively straightforward to calculate the ratio of the
change in tensile stresses due to temperature changes as if a static
compressive load was applied. A dynamic similarity of this restricted
temperature effect is also found in a cylinder under torsional vibrations.
For any particular mode, an elementary block or column mey be considered

as an elastic unit Dbetween nodal axes, subjected to axial compression

and lateral bending at the same time. This was discussed in Reference L
based on data extracted from Reference 5. The two cases are plotted in
Figure 3 to compare the temperature effect and torsional vibration
characteristics. The advantage in using logarithmic scales is evidenced

in the fact that differences in readings are reflected merely in scales

and that a geometric similarity is revealed in the curves. Thus, the
general result is defined in the sloping lines which are parallel with a
common slope of 12 dB per octave. As the compressive load is increased,
the maximum vibratory stress increases for decreasing frequencies character-
istic of nonlinear soft springs. It appears, therefore, unwarranted to
emphasize merely the effect of restricted temperature changes on a vibrating
unit without a complete investigation. It is interesting, however, to
observe that if a temperature differential exists between the clamping
fixture and the vibrating unit, a frequency shift is inevitable. Conse-
quently in normal test set-ups, clamped boundaries must be released between
tests to relieve residual axial forces and to minimize the expected
frequency drift.

5.4 Sinusoidal versus Random Excitation in Response & Fatigue Tests

A useful correlation of the fatigue damage sustainable by an elastic
unit resnondine in a single mode under random loading has been mathematically
determined by Miles (Reference ©).Miles'theory was based in terms of the same
damage that would be cumulated if a given random stress expressed by its
s spectrum or power spectral density, had been replaced by an equivalent
sinusoidal power spectrum whose level is raised @/e (e = 2.72) times, or
10 log /e decibels. Supporting date may be found in Reference 7 from
which Figure I is reproduced, a(=7 for aluminum) being the indicated slope
of a log S-log N curve. It is readily observable that both the random and
constant amplitude fatigue curves exhibited the same general slope and
were spaced apart to a degree in accordance with Miles' deductions.
Accordingly for the equal damage condition represented by any ordinate
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Figure 4. Typical Fatigue Data (From Ref 7)

in Figure 4, the observed sinusoida. stress level exceeds the random stress
by 3 to 4 dB versus the calculated difference of 10 log a/e which is

“ dB. The use of Miner's cumulative damage index, Reference 8, in this
analysis by Miles can be considered as quantitatively substantiated.

In achieving a satisfactory correlation of damages between a random
and a sinusoidal stress, it becomes quite evident that under laboratory
conditions either method may be used in obtaining relevant fatigue data.
However, it must be emphas.ized that the solution by Miles is predicated
upon an idealized solution >, a single mode in linear response.

The use of random forces in peneral implies large forcing amplitudes and
almost necessarily induces nonlinear response in the resultant stress
unless the specified spectrum is very moderate in level. Frequently, many
mode components contribute to the same demage. Due to the difference in
modes, the maximum stress may not be the damage stress rertaining to a
particular mode. For example, a clamped beam would have its maximum bend-
ing and demage stress at the clamped ends in the first mode. The
maximum stress in a 3rd mode would rrobably be located elsewhere while the
contribution nf the third mode to the ultimate damage at the ends war a
much lesser stress. To assure the maximum stress in the modes of importance
(generally the low order modes), the separation of modes is necessary.

For this purpose, the use of sinusoidal forces, either acoustically or

mechanically applied, becomes most suitable.



2.5 Modeling Parameters Extended to Complex Configurations

The evaluation of previous results introduced in the foregoing
discussiondemonstrates# that for fatigue considerations, particularly between
scaled models, it is important to secure a basic knowledge of the stresses
induced in each specimen. For simple structures in rectangular sections,
the geometric similarity achieved in true models results in equal static
stress being generated in all cases under equal forcing powers or loeding
pressures. The expression of fatigue (S-N solutions) at any one stress
level transformed into a relationship between model scale factors N' and a
time duration T (See Fig. 2) is a particular solution and should not be
extended to complex structures without necessary qualifications. For this
program, & honeycomb sandwich structure and a curved panel will be used to
illustrate the qualification procedures.

2.5.1 Modeling Parameters in Honeycomb Sandwich Panels

The geometrical representation of a honeycomb sandwich section is
given in Figure 5kc, Appendix A.

25511 Stress Parameters

The bases for stress correlation are represented by equation A2 and
A3 glven in Appendix A, yielding the following relationship for the same
stress conditions being modeled,

M_d ] ) [ M d ]
- 1
2le/Ce) 1y 3 | puil Scale \efee) 14 Model -

where Il-l/d is the section modulus, is the maximum static bending
moment, and c/c, is the damping coefficlent ratio. A more useful form
of this same equation is given in Appendix A as Eq. A3a which expresses
M, in terms of the maximm forcing pressure intensity p and the ratio

1/2 c/c, %8 an amplification factor (A.R.). Thus, the equation of the
modeled stress O is

2
pa 4 (A.R.
g = A (3 J (h)
B 6 A K°
with gp a/g =My where (A/6) is the moment coefficient and a is the
relevant length factor; and Ak< = I,_, vhere A is the sectional area of
tle plate and k is its radius of gyration.

Note that for uniformly distributed loading intensity on rectangular plates,
for which all linear dimensions are identically scaled, the above relation-
ship is automatically maintained. This was designated in Reference 1 as &
scaling law, where the damping coefficients were considered as being the
same. For honeycomb sandwich sections, numerical values of I,_; and d are
subjected to other practical considerations such as the thickness t of the
face sheets and the depth ¢ of the core used. The result is that as the
static bending moment M, is exactly proportional to the square of the

size factor, the ratio of I, ;/d is not. It is, therefore, necessary to
consider eac. parameter separately including the damping coefficient ratio
as an additional variable. For fatigue considerations, it is convenient
(but not necessary) to keep the lumped ratios in the above relationship at
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some given level. This can be accomplished by adjusting the loading
conditions after c/c., I;_; and d are jetermined for the full scale unit
and its modeled specimen. The necessity of scaling every linear dimension
is hereby removed.

2.5.1.2 Frequency Parameters

The required parameters in a frequency correlation between modeled
specimens are given in the following equation which is a modified version
of Equation A6 introduced in Appendix A.

£ T ~J12k [ _weight of face aheets]1/2

r 22 total section weight (2)
where f,. is the resonance frequency in cps, C is a constant dependent on
panel shape (b x a) or aspect ratio (b/a) and constraint conditions, k is
the radius of gyration due to the face sheets, and the bracketed weight
correction is due to the core weight adding inertial forces during vibra=tion
(the bending stiffness being provided by only the face sheets). The values
of the constant C are given in References 9, 10, 11, 12 and shown in Fig.

5. It is evident that only identical modes may be considered if the above
equation is applied to modeled specimens. For the modeled plates of Reference
1, the frequency is inversely proportional to the scale factor. For honey-
comb sandwich sections, the weight correction cannot be held constant in
view of the requirements set forth upon the values of I;_; and d for stress
parameters discussed in the preceding section. It is, therefore, necessary
to consider the frequency of the mode to be investigated in each case and
avoid a general correlation of fatigue time to scale ratios.

2.6 Selection of Honeycomb Sandwich Panels and Model Dimensions
2.6.1 Scale Ratios and Number of Specimens

While the selection of scale ratios is entirely arbitrary, practical
considerations as to the minimum size that can be conveniently handled in
experimental investigations usually impose an upper limit in scale
reductions. In order to fulfill the programmed requirement of using two
model sizes, these vere esteblished at 5/8 and 3/8, full size being 1.

Three specimens were provided in each size. As indicated in Section 2.5,
parametric requirements in comparative stress and frequency changes
between models dictate specific ratios indicated in Sections 2.5.1.1 and
2.5.1.2. The given scale ratios are, therefore, nominal sizes only and
not to be used in calculations.

2.6.2 Panel Sizes and Aspect Ratio

The largest size w.-based upon the size of the fixtures available
which established the full scale panel dimension at 41 x 28 inches with an
aspect ratio of 1.46. At an overall section height of one inch, prelimi-
nary design calculations indicate that a reasonable fatigue strength could
be expected if the face sheets were 0.012 inch in thickness. The section
modulus I, 1/d is a routine calculation.

As indicated in Section 2.5.1.1, it is not necessary to change the

section modulus in precise proportion to the square of the scale ratios.
The choice of modeled specimen dimensions is in fact quite large. How-

11
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1.0 1.5 2.0 2.5 3.0 5

Boundary Conditions

1, All Sides Clamped 6. Three Sides Supported,

2. All Sides Simply Supported Long Side Clamped

3. Two Adjacent Sides Clamped 7. Two Long Sides Clamped,
Other Sides Supported Opp. Short Sides Support

4, Three Sides Clamped, Short 8. Two Short Sides Clamped,
Side Supported Opp. Long Sides Support

5. Three Sides Supported, 9. Three Sides Clamped,
Short Side Clamped Long Side Supported

Figure 5. Frequency Constants for Rectangular Plates
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ever, some convenient starting point can be realized by making the
respective core depth at 5/8" and 3/8" for the present models. The same con-
venience cannot be extended in scaling face sheet thickness without incurring
excessive fabrication costs. Accordingly for the S/B-aize specimen,
0.012" face sheetswere used again and 0.010" for the 3/8-size models. The
overall panel dimensions were respectively 23-3/8 x 16-1/4 and 14-1/4 x

9-3/4 (unchanged after an original full size panel of 38 x 26 was modified
to 41 x 28). A summary of these dimensions is shown in Table 1.

2.6.3 Bending Rigidity and Core Selections

As indicated in Appendix A, optimum achievement of complete bending
rigidity in the face sheets 1s dependent on the provision of adequate
core strength in resistance to the shear force V which is approximately a
linear function of specimen size. An analysis on the strength of hexagonal
honeycombs and core selections is given in Appendix B. The requirement can
be simply stated that the density of core required is directly proportional
to scale sizes. The lightest honeycomb densitywas, therefore, determined
by the 3/8-size panel dimensions for which the shear stress safety dictated
a density requirement of 6 1bs/ft3. For full size and 5/8-size specimens,
the cores used (as supplied) are the nearest proportionate in densities
required. Other geometric characteristics are given in Table 1.

13
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=0 Selection of Models for Curved Plates

The stiffening effect in curved plates is a highly complex phenomenon.
A definition of this stiffening effect was one of the test objectives to be
obtained before a proper fatigue correlation could be attempted through
model tests. The selection of specimen sizes was, therefore, based on true
models where all linear dimensions were scaled arbitrarily at these ratios:
1, 5/8 and 3/8. The net dimensions of each size are shown in Table II.
The plates were rolled to the correct radii before mounting and clamped
on all sides. It is assumed that such a specimen panel simulates very
closely a curved plate element within a structural component unit con-

fined in undistorted boundaries. Three specimens were fabricated in each
case.

TABLE II CURVED PANEL SPECIMEN DIMENSIONS, 2024 ALUMINUM

Nominal Thickness Plate Size, inch R, Radius of
Specimen of Plate Net, between clamps Curvature on
Size inch b X a side a, inch
Full 0.064 33 x el 36

5/8 0.0L40 21 x 15 22-1/2
3/8 0.024 13 x 9 13-1/2
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3. EXPERIMENTAL OBSERVATIONS IN HONEYCOMB SANDWICH MODELING

3.1 Weight Analysis of Specimen Samples

In order to determine the weight correction required in the frequency
equation, Bq. 2 (Section 2.5.1.2), an accurate weight analysis is needed in
each case. For this purpose a beam section was carefully weighed after
curing and compared to the total weight of separate elements and adhesive
materials used. The actual weight, reduced to a unit area basis becomes
a significant loading factor in subsequent vibratory tests.

3.1.1 I1lustrative Example

Full-size Honeycomb Sandwich Section; Beam size 1.5" width x 12"
span (= 18 8q. in. in flat surface area)

2 Face Sheets, 0.012 thick each, weight = 0.0432 1b.
Core (density as supplied, 17.1 1b/ft3), weight = 0.1775 1b.
Bonding Adhesives FM-1000, weight = 0.0150 1b.

Calculated Total Weight = 0.2357 1b, or
107 grems

Measured Total Weight = 105 grams

The agreement is satisfactory. The unit weight of 0.0131 1b/in? per g
(=0.2357/18) compares very favorably with other honeycomb sandwich
constructions on record even though a heavy core is used here.

3.1.2 Frequency Correction Factors

From the weight analysis illustrated above, the frequency correction
factor may be readily calculated. For the full size section, the correctiom
is JJ0.0432/0.2357 = 0.428, This correction factor has been taken as
applicable to all beam or plate configurations of this scale (full size).
Table III summarizes similar results for all specimens tested.

TABLE III  FREQUENCY CORRECTION FACTORS

Weight of Face Sheets | Frequency

v, Tota% Weight Total Weight Correction

Scale 1b/in“ per g = Ratio = o Ratio
Full Size = 1 .0131 0.183 0.428
5/8 .00841 0.285 0.534
3/8 .00413 0.485 0.696
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3.2 Verification of Frequency Correction Factor - Use of Cantilever
Beams

Referring again to the frequency equation (Eq. 2, Sectiom 2.5.1.2), it
is observed that the calculated frequency corrections of Table III can be
verified experimentally if a simple configuration such as a cantilever beam
is used for vhich the wvalue of the lumped constant C is obtainable from
many sources (References O and 13). However, two spans Vvere employed in
each of the three section sizes for sadded walidity in test results. With
three samples in each case, & good average is derived from a total of 18
beams. It is unnecessary to relate the modeling ratios to the spams which
were chosen merely to change the respomse frequenciss.

3.2.1 Cantilever Beam Tests

The clamped end of a cantilever beam vWas mounted on the table of an
electro-mechanical vibrator vhose frequemcy cam be accurately comtrolled
with its input force to the beam momitored by sa accelerometer. A struin
gage attached to the beam provided a direct readiang of the dymamic
stress, correctable to a maximm stress by the ratio (squared) of the span
to the distance betwosn the strain gage emd the free emd. The test arrange-
ment is shown in Figure 6. Two methods are available to determine the
resonance frequency which in this case would be the first mode. The vibra-
tory frequency of the input force required to sustain a saximum respomse, or
to keep the phase angle betweea these vectors at 90° would be ome resomamce
indication. The second method is to pluck the beam gemtly and observe with
an oscilloscope the timed frequency trauces of the decaying strain gage sigmal.

g8 -READING Stress -READING
O OSCILLOSCOPE Q
| STRAIN GAGE CIRCUIT
FREQUENCY
COUNTER Awan—l

O ACCELEROMETE I J_

Figure 6. Test Arrangement for Cantilever Beams
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3.2.2 Test Results

The results are given in Table IV. On the strength of the agreement
between the observed frequencies and the calculated values, a complete
verification of the deduced frequency correction factors is achieved. That
the calculated frequencies are slightly lower than observed is a natural
result of excluding core contribution in the moment of inertia. The
differences are barely detectable and do justify the simplified approach.
However, it is significant that the differences should occur in the direction
cited and not reversed. In the latter case, the beam deformation deviates
from pure bending depicted by Figure 54b and approaches the conditions of
Figure S5ia in Appendix A. This was observed in the case of longer spans
with increased dynamic shear forces. As the shear stress exceeded a marginal
1imit, beam sections began to deviate from the idealized coplanar condition
with a reduction in its true moment of inertia and to show a decrease In
resonance frequency. The frequency test offers, therefore, a method to
determine the maximum safe span which in full-sized sections, appears to be
16" cantilever. The same shear force is generated at longer spans in other
end conditions. For all plate sizes selected, this shear force will be found
to be well within the respective safe limit.



TABLE IV

RESONANCE FREQUENCY OF CANTILEVIL BEAMS

. Damping oefficient
Cantilever ,
Beams Resonance l'requency, cps o
N | ” Observed -
gection span Calcu- by from decay Group
size in. leted |pyxoitation curve bean Average
95.3 35.3 0.007%
16 2.9 9.2 6.2 0.0064 0.,00€ 2
}-‘u_ll %ul ,31.0 0.00'.«2
Size 38.2 38.2 0.0115
ol W) 40.9 40 X 0.011¢
41.% 0.8 X
12% 1A59.6 164,77 169.0 0.00k.2 0. 00L2
130.0 133, 0.005
12 131! 135.0 135.. 0.00€5 0.00%0
127.0 128.6 0.00°0
;’8
TSk T5:6 0.00%94
16 T3. 76.8 76.8 0.0027 .+00 .
7548 T6. 0.0089
10 149, 152.8 152.6 0.004& 000
. /Q 150.8 151.8 0.0066
3/% =
TE.3 77.8 0.0085
14 76.2 7.8 7.6 0.0080 0.0081
76.3 76l 0.007.1
*Cut rom 24" beams
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3.3 Extension of Cantilever Beam Tests to Damping Correlations -
A Size Factor

In ascertaining the resonance frequency by the second method discussed
in the preceding section, the decay trace provides a conveniently concurrent
basis for the calculation of the lumped system damping coefficient ratio,
c/ce. The results indicate that there is a significant variation between
sizes. The simple assumption of unchanged damping coefficient ratios in
dynamic modeling appears to be faulty and the lumped parameter represented
in Equation 1 (Section 2.5.1.1) is, therefore, preferred at equalized dynamic
stress. 'nisrequires thet the damping coefficient ratio associated with each
specimen, full-size or scaled models, be accurately determined before a lumped
parameter is applied in fatigue tests. The following analysis correlates
damping changes to model sizes or scales.

3.3.1 System Damping

A comprehensive and illustrative study on system damping by Kerr and
Lazan is availeble in Reference 14 from which some necessary data were re-
introduced here. The results using cantilever beams will be applied to
clamped beams and plates, to illustrate the adaptability to panels of
somewhat complicated sections.

Figure 7, replotted from Reference 1L, shows the results of system
demping D in terms of work done per cycle (in.lb/cycle) plotted against the
maximm bending stress. Relevant mathematical equations for the damping
work 1n a lumped but equivalent system are given in Reference 15 and are
written below.

Ox
A
D = PR gt = xPy

0

ox

Wy av =

5 N 2 (&)
AloO, D = 5 ¢ {R} dt e wx . ‘.’max wr

Where P mpms:nts the input force applied at the clamped end,
Yo the amplitude of P, & sinusoidal function
wy the resonance frequency,
¢ the damping coefficient
Y the amplitude at any section, and

Ymax the maximum amplitude at the free end,
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On the assumption that the maximum amplitude, or deflection, hes a linear
relationship to the maximum bending stress, it becomes evident that Equation
4 may be represented by a straight linewith a slope of 2 as plotted in Figure
7. The data, therefore, indicate that (1) significant points A, B, and C
may be located where the specified linear relationship between deflection
and stress begins to weaken, and (2) below these points the damping coefficient
¢ is constant but assumes increasing values as A, B, or C is exceeded.
Furthermore, in replacing the amplitude (¥pa,) by stress (Opax), & modifica-
tion is introduced equivalent to dividing the abscissa dimensionally by h/E?.
Thus the thickness difference is effectively removed from consideration,
resulting in a single curve in each case with a common parameter c. This
dimensional change is also reflected in the ordinate scale. Thus by
comparing the damping work at points A, B, and C it will be found that the
readings become exactly in inverse proportions to Eh, a condition that is
also indicated in Equation A5 Appendix A, where ( A /)" is a constant in a
particular mode for a given beam or plate configuration. A normalization
process is, therefore, feasible if the relative abscissa locations at A, B,
and C could also be rationalized. This may be directly accomplished in a
dimensional analysis of the critical damping coefficient c. which, as
expressed in Reference 15 and many other textbooks, is:

cc = 2 Ek'l‘" (r')

where k, the spring constant, carries the unit of force/displacement for a
lumped elastic system of total weight W. Inasmuch as transverse deflection
due to bending only is considered, the characteristic dimension of k is
essentially y [ EI/w f oT EI/ yp3. Because ¢ and ¢, must have the same
dimensions and disregarding common constants for the beams concerned, the
parameter c governing the 7bscisaa. positions of A, B, or C in Figure ”
varies therefore as ( § )*3/2 which the observed data satisfactorily confirmed.
For higher stresses such as at point I shown in Figure 7, the increased
damping coefficient c; can be referred to the dotted extension of the linear
base line through point "B" and calculated by proportionate increment in D
as indicated in the figure. A more significant indication is found in the
fact that upon normalization, all data points presented in Figure | merge
into one curve as shown in Figure 8. Moreover, additional data given by
Kerr and Lazan in the same reference for an assortment of beam section: nf
sandwich construction obeyed the same normalized curve shown in Figure <,
differing only in scales and specific readings. The general shape is
therefore accepted in subsequent analysis and extension of linear conditions
will be shown as dotted lines for consistency. From the combined location
of points such as A, B, or C, a correlation of damping for different sections
and effective spans is obtained.

3.3.2 Damping Correlation Tests
In order to apply the Kerr-Lazan curve to current test results, a
change in scale expressions is necessary. While retaining the stress

expression in psi, but changing the system damping to force input in unit
of g's (which is a variable standard to be defined by the system weight
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per g in each beam) it must be realized that essentially the system damping
is being recorded on a unit-displacement basis because the work done is a
product of force and displacement. Consequently, the stress correlation
in current tests to locate points such as A or B must be reckoned after
correction to the same basis of unit displacement. Representative test
results as recorded are given in Figure 10 for cantilever beams in the -/8
size honeycomb sandwich sections at 12" and 16" spans, correlation noints
are designated as A and B, damping coefficients ratios having been
established in decay traces at 0.0056 and 0.0094 respectively.

Observe that following the changes of ¢ introduced in 3.3.1, the
damping coefficient ratios 0.0056:0.0094 should be in the same
proportion as (12:16)*3/2. A close agreement is obtained numerically.
For stress correlation of points A and B, it is necessary to convert the
respective readings at 4700 and 9000 psi to & unit displacement basis.

The cross-sections being the same, the comparative ratio becomes +/00:
(9000) (12/16)% or 4700:2860 which is also in reasonable agreement numerically
with (12:16)-3/2. For input correlation, the original factor of %4 is
now effectively cancelled, leaving a direct comparison of total input force
which is proportional to the span and actual damping coefficient ratio, or
(£)(c/ee). Thus for the experimental input readings 0.55 and 1.2 in
Figure 10, the ratio 0.59:1.2 is found to be quite close to (12)(0.00-¢):
(16)(0.0094). In cantilever beam tests, therefore, a reliable method is
evailable to correlate damping coefficient ratios to size changes.

3.b Extension of Cantilever Beam Tests to Fatigue Life Observation

3.4.1 Distinctions in Failure Location and Correlation to Somic
Fatigue Strength

Besides verifying the frequency correction factors discussed in
Section 3.2, a clear indication is found in the results observed that (1)
adequate core rigidity prevailed in all sandwich specimens fabricated and
(2) in confining ultimate failures to the face sheets, a uniform tensile
stress was obtained corresponding to the material strength with an appropriate

stress concentration factor Ky. Without exception, not only were the
tensile fractures confined to the locations of maximum bending moment

at or within, the clamped section as shown in Figure 11, but the failure
stress averaged consistently 30,000 psi (peak) within a range of approx-
imately 20%. Although a failure becomes noticeable only after a time
duration has accumulated in the tests, it is the short term fatigue which
compares very well with the sonic fatigue strength shown in Figure L4 for
simple aluminum plates such as a face sheet. Therefore, insofar as the
strength is concerned, there is little difference as a result of the
nature of the loading imposed on the material. The stress, as lumped in

Equation 1 is indeed the criterion - providing adequate core strength is
provided so that failure occurs in the face sheet and not in the core.
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CANTILEVER SPAN ~«—-|——— CLAMPED END

— CLAMPED END

Figure 11. Face Sheet Fracture in Honeycomb Section
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3.4,2 Illustrated Cases of Inadequate Core Stength in Sandwich
Structures

In addition to the stress criterion of the previous paragraph, a
frequency significance of providing adequate core strength in sandwich
structures can also be experimentally proven. A honeycomb sandwich beam
of the following proportion with a light core was used, Figure 12.

Face Sheet, aluminum; thickness 0.020"

Core, aluminum; density % 1b/£t3

Total Weight; .006 1b/in

Cantilever Span 10.5"; Arrangement shown in Figure 12a

The calculated resonance frequency is 222 cps based on a correction
factor of 0.834. The inadequacy of core strength is reflected in the
actual resonance observed at 191.5 cps, and also in the final failure con-
ditions shown in Figure 13. Similar failures of a brazed steel honeycomb
panel also with a light core, subjected to high intensity acoustical loading,
are shown in Figure 14 for comparison. Indeed a modeling of failures between
dissimilar structures is demonstrated. The significance indicated is
that inadequacy in core rigidity is not permissible in sound sandwich
structures.

3.4,3 Significant Differences in Honeycomb Sandwich Failures

In the case illustrated in the preceding section, based on the peak
loading observed immediately before the fallure was initiated, the calculated
maximum bending stress in the face sheets is 8740 psi. The potential strength
is not, therefore, fully utilized. More significant, however, is the fact
that the ultimate load was not sustainable as it continued to decrease sharply
before a failure could be identified as such. The decrease in load is attrib-
uted to a rapid deterioration of damping for which a change from 0.0096 to
0.0078 was observed well in advance of any indication of the impending
failure. The nature of a core failure appears to be inherently catastrophic.

In contrast to the above, by confining failures to the face sheet in a
sound design, more bending resistance must be temporarily carried by the
core for increased system damping. This is indicated in Figure 15 for a
current beam specimen where the top curve is a normal decay trace and the
lower curve is derived from the same strain gage after the occurrence of a
failure. There is a slight change in frequency but the damping coefficient
ratio is raised many times over from 0.0079 to 0.12. Although such an
increment cannot be reckoned as a general rule, the fact remains that a face
sheet failure will not become catastrophic and allows ample time for inspection
and repair. A design standard based on full utilization of face sheet
strength seems to be the proper approach. In actual applications, investiga-
tion of core strength should be conducted for each of its two lateral axes.
In this report, transverse bending along the ribbon direction only has heen
investigated.
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~—END INSERT
USED AS
SPACER

FRACTURES IN MIDSECTION
OF CORE EXTENDING OVER
ENTIRE WIDTH OF BEAM

VIEW AFTER REMOVAL OF END INSERT

Figure 13. Core Failure In Honeycomb Section
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(A) NORMAL DECAY TRACE, - CANTILEVER BEAM
76.3 cps, c/c, =0.0079

(B) DECAY TRACE FROM SAME SOURCE AFTER FACE
SHEET FRACTURE
67.2 cps, c¢/ce =0.120

Figure 15. Sample Excursion Traces
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3.5 Crack Propagation and Resonance Frequency in Fatigue Failure

The consistency in the behavior of all eighteen cantilever beams is
summarized in Figure 16 where the frequency change of each beam is plotted
versus the input levels. The frequency change is expressed on a percemtage
basis of the normal beam frequency. In the resultant curve there seems to
be a significant point vhere the crack in a face sheet may be, in fact,
initiated. As the crack propagates beyond this point, the change in resonance
frequency occurs at a different rate. This point is designated in Figure 16
as the knee, a mere 1 to 1-1/2 percentage below the normal resomance. It
is noteworthy that a recosmendation of the same percentage change in
frequency as a safe limit is contaimed in Reference 14 based on different test
procedures. Of primary importance is the indication in Figure 16 that a
fatigue failure is completed within an intensity range of imput forces equiva-
lent to a level change of 5 dB only, reckoned from the initial crmck at the
‘inee' in the failure history curve to an ultimate realization of the accomp-
1ished fracture. Therefore, it appears quite necessary to rely om cantilever
beam tests to establish an accurate reference of the fatigue strength.
Furthermore, the composite failure history curve also sustains the uniformity
in damping correlation obtained by merging all response poinis such as AY,
‘B', 'C', Figure 7, at one location as indicated in Figures 8 or 9.

Similar to the established damping criterion, the input force oE a unit
displacement basis is normalized upon the displacement parameter w /1
modified by (c/ce)L fue to the dynsmic axplification involved. The Jjoint
parsmeter becomes wil/ua (c/c,) as mumerically illustrated in Table V. In
Figure 16, proper scales of the input levels apply to respective sections at
indicated cantilever spens. Table V shows the calculated scale ratios
required for corresponding failure curves to merge together. The data were
actually fitted at slightly different ratios prior to the above deduction.
For beams of the same sections w and A will be common. By substituting

by its proportionate quantity (c/c.)? introduced in Section 3.3.1, the input
parameter is reducible to (/) (c/c.) presented in Section 3.3.2. Figure 16
includes data from beams other than the indicated spens but corrected by
the required parsmetric ratio, c/c.'s as tabulated in Table IV.

3.6 Nonlinear Respomse
3.6.1 Similarity of Cantilever Beams to Other Elastic Units

On the question of nonlinear response in an elastic plate element sub-
jected to transverse bending variations, theoretical analysis is referred to
References 15, 16, 17, and 18 and to References 19, 20, and 21 for experi-
mental investigations. The presence of an induced axial force is generally
attributed to be the basic cause of nonlinearity. In a cantilever beam such
a force does not appear to exist because one end is always free while the
other end only is constrained. Nevertheless, it can be shown that there
are induced stresses of varying magnitudes at different beam sections which
influence the bending stresses snd promote a nonlinear relationship to
changes in transverse loading intensities. As sketched in Figure 12b for

3k



sweag J9Ad[TjUR) Ul danyred andijeq pue aduey) Adusnbaig ‘91 aandrg

. e PO 23 ‘LINN ALISNIQ HAMOJ
4 _ Ll | T 1 | =1
- B k) : oﬁ - or- 8P NI TIATT JALLVTIY
11070 s 7 ——— L _ X S - -
MK
NVdS 'NI 21 $8p1 ¢ Z : c n.v.ﬂ cG 1 SOILVYH =
1$800 0 — [-————]—T—— — o_ﬁ r— 1 g1vos
.l.l_
NV dS HEATTILNYO "NIOT o g . o1 -
7 ‘NI/d7T €1%00 0~ ey T [ T _ I T ]
A0 SV AT HOIMANYS B

HINOJDAINOH d0d4 LINN-3
NI THAHIT LNdNI ol

—1G6
/ =
E ——
. w
Q
g
= —
AONVYH JINTIVA &
=
%
¢ Sl . : — 001
L] 4‘
AONIANDIHA

JAZI'TVINHON

35



36

[=°< i9°e 2°g 4-00°0] o0eo°0 | £61°0 ot |£t+00°0 g/t
36°1 18°T 1 9<00°0] =20°0 | &T1£°0 21 | 148000 8/s
ouaI3FaY 00°T 1'ec £900°0| 39:0°0 | 9617°0 9T |S69610°0 i
g
(91°314) pajeT mTo._” = 23/ *ut ‘ug ‘ut ur/qr
- - O+
pantasqo | oY | Yo/ W/ » v A 7/ A az1g
Ja9aunJded
OT2®Y 9ATFB[3Y padum siaqaurexsd quduy uot3oas

CYvAg JHATTIINVE NI AWISSTWVd INANT A J1dVL




the cantilever beam section dx, weight dW, at instantaneous amplitude y, the
dynamic forces acting on the rigid body system may be represented by vectors
T, and Tp, the resultants of uniform sectional stresses, and vectors Y and R
e inertial vectors for converting the system to a static balance such that
vectorially Tp + Ty + R= Y. It is observed that T, is always greater than
T, and becomes a maximum at the clamped end. The induced stress modifies
the bending displacement y and causes a nonlinear change in bending stress
much in the same manner as an induced stress at constant magnitude (under =
given load) influences nonlinear response of beams and plates. Due to the
varying nature of T,, vhich is proportional in magnitude to the displacement
y, the characteristic elastic shape in cantilever beams remsins, however,
unaffected dynamically and a constant resonance frequency is maintained.

3.6.2 Experimental Data for a Clamped Clamped Beam, Demping
Characteristics

In contrast to a cantilever beam, the dynamic elastic shape will be
greatly modified in a clamped clamped beam if the axial tensile stress induced
by forces similar to T, approaches a magnitude that can no longer be neglected
in comparison to the vi‘bmto:y bending stress. An example of such a case
can be found in Reference 20 from which the pertinent date are replotted in
Figure 17 on the same scales as Figure 9 for direct comparison of the
observed nonlinear changes attributable to variations in the damping
coefficient ¢. The increase in damping can also be investigated from the two
factors defining the damping work done. Representing the displacement factor,
the bending deflection coefficient ®, is given in Reference 22 as & varisble
dependent of u, & complex function of the induced axial tensile stress.
Representing the forcing intensity, an equivalent bending stress coefficient

may be used. Both coefficients are plotted in Figure 18e and equal to
unity in linear cases when u = 0. As nonlinearity becomes more pronounced,
the coefficients ¥, and ¢, assume divergent values. Because the damping
work can also be expressed as the force per unit displacement, in the ratio
of coefficients 4’2 over ¢,, a change in damping coefficient c is inherently
indicated which is given in Figure 18b. 1In the nonlinear response of Figure
17, the fumction u reaches a probasble high of 6. From Figure 18, this would
correspond to a doubling of coefficient c or c/cc for a reduction of 6 dB in
dynamic amplification ratio. In addition to a change in damping, there i =719
a simultaneous change in elastic shape and a resultant increase in resonance
frequency in nonlinear response which must be taken into further consideration.

3.6.3 Resonance Frequency and Amplified Amplitude or Maximum
Dynamic Stress Variations

In Section 3.3.1, Equation 3 mey be interpreted as an expression of
constancy in the ratio D/yo for a given inmput force P regardless of
response nonlinearity in the amplified amplitude ypgx. By multiplying both
sideg of Eguation 4 by W,, an expression of damping power is obtained, Cwpoc
TCYmax wpc, Rearranging and extracting D/y,, . s a related constant if c
is unchanged,
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Figure 17, Flexural Response to Acoustical Forces on Beams
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2
Pwr °° Yoax “r (6)

it is, therefore, observed that for a given damping coefficient c, the input
power is proportional to ymax “’ra- In such a fictitious nonlinear response
a* frequency w, the input power will be P'w which must be equal to Fw or
yw2 vhere w 1s the nonlinear resonance frequency, P' the nonlinear input
force and y the maximm nonlinear response amplitude. The generalized
solution is therefore -

yw2 = Constant, or
cw? = Constant where ¢ is the maximum dynamic stress.

A graphical representation of the above equality is given in Figure 1
(from Reference 19) where O, is an amplitude or stress corresponding to Ymax,
and 0',, the nonlinear mpl?tude or stress corresponding to y at frequency w,
The line joining Og and O'y will be dictated by the numericel relationshin
yw? that requires a 4 to 1 amplitude change or -12 dB when w = 2wy, In
conjunction with such necessary amplitude change, an apparent change in
spring constant is indicated for which a familiar modification in the foreing
function attributed to Duffing is -

P=ay+ by3, where a and b are two constants.

#ith this modification, Chu and Herrmann (Reference 23) calculated the
frequency changes which can be plotted as the accented curve in Pigure 1,
P varying sinusoidally. Sound pressure levels corresponding to P may be
indicated along the ordinate scale at wy.

The increase in damping coefficient ratio presented in Section 3.¢.2
must now be incorporated. An illustrative example is provided in Figure 20,
utilizing data from Reference 20. The necessary correction is resolved as
the tabulated change in damping obtained from a reduction of amplification
ratio or a relative decrease in dB of sound pressure levels for constant
damping along the 12 dB per octave rule indicated above. These differences
may be compared with the expected reductions in amplification ratios, con-
verted to relative levels in dB in figure 18b.

3.6.4 Sinusoidal Versus Random Excitation Tests
In Figure 19, the amplitude at the point 0'f drops very sharply to the
T

linear resonance curve that peaked at point Og- the frequency is then
reduced from w to 2 , a sudden increase of amplitude to point 0, will be
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Figure 19. Typical Nonlinear Characteristics in Hard Springs
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Figure 20 Damping Factor in Nonlinear Response
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observed. This is discussed in Referemce 17 and attributed to phase angle
changes in Referemce 19. For random excitation and respomse, the frequency

Q) becomes the more significant because the net dsmping pover, represented
by the integrated area under the resonance curves, excludes the area between

Q and w. A separate curve for random excitatiom can be formed, after an
sppropriate mumber of points like Or have been obtained first in sinusoidal
excitation tests. Inasmuch as the basic nomlinear forcing function repre-
sented by Equation 6 in the preceding sectiom is generally applicable without
restrictive conditions, the resultant random frequency curve shown in Figure
21 may be employed under all conditions such as illustrated for the best fit
with date points from Referemce 1. The use of sinusoidal excitatiom is
recommended as an essential step by virtue of a defimitive indication in the
locations of frequencies Q2 .

3.6.5 Nonlinear Effect Due to Deficiency in Core Strength

As indicated in Equation A6 of Appendix A, the frequency of a
beam or plate element of honeycomb sandwich construction can be evaluated
on the basis of complete adequacy in core rigidity, subject only to a
weight correction factor demonstrated in Section 3.2 and verified in the
tabulated results of Table IV, Section 3.2.2. In the case of marginal
rigidity at a shear stress that is still within the strength of the core,
the expectation is a degradation in resonance frequency as shown by the
three beams in the full size sections at 24" cantilever span. While the
change in frequency is barely detectable, the extent of nonlinearity in
amplitude or stress response to load changes 1s much more severe. This
offers another reason for the advisability of testing with sinusoidal
excitation forces. For these beams, the results are shown in Figure 22,
plotted in the same manner as Figure 10. The correlation point B is calcu-
lated as before (Section 3.3.1) in addition to a reference check point S.
Through these two points the linear response line (dotted) passes. The
accented solid line, transferred from an established curve would represent
the anticipated primary response curve if the core rigidity remained
adequate. The actual response in this case involves, therefore, secondary
nonlinearity. The area between these curves indicates the effect due to
core deficiency. In comparison, the observed stress response for beams at
16" span in the same sections passes through the calculated linear check
points and the correlation point A without any indication of secondary
nonlinearity. As a further proof, a 12" -span was cut from the outside
end of each of two 24"-beams. The observed frequencies of these shortened
halves reverted to slightly above the theoretical frequencies. See Table IV.
By reducing the dynamic shear force, the shear stress is held within
a safe 1limit and perfect adequacy in cere rigidity is again maintained.
Incidentally, the test also shows that the damage was localized to the
clamped area and did not extend to the free ends where the shear forces were
less.
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3.7 Honeycomb Sandwich Panel Tests
3.7.1 Full size specimens, 41" x 28" plate dimensions
3.7.1.1 Calculated Frequencies

The calculated resonance frequency on the basis of Equation 2, Sectiom
2.5.1.2 is shown in Figure 23 for various modes defined by mode musbers m
for the longer side b, n for the shorter side a and the boumndary conditioms
C for clamped, and S for supported edges. Thus 1,18 would be the expected
first mode. In practice, supported edges are not physically achieved
unless accompenied by a slight yield in the clamping plates in wvhich case
the effective dimensions extend to bolt hole centerlines. Figure 23 shovs
the clamped mode frequencies in solid lines, supported mode at clamped
dimensions in dotted lines and extended dimensions (+2 inches to both b and
a) in broken lines. Mode number's m are plotted as ordinates for all fre-
quency curves at parameters n for each of the boumdary conditions specified.
The theoretical resonance frequencies of Fig. 23 were defined from the data
of Fig. 5 using the techniques of Appendix A of Reference 33.

3.7.1.2 Test Arrangement

The test arrangement is shown in Figure 24 for the specimen moumted
on one side of a duct through which acoustical forces at controlled inten-
sities are propagated. The input sound pressure level was sensed with
three microphones speced apart at less than 1/4 of the minimm acoustical
wave-length when sinusoidal signals were being used. If a truly progressive
wave is generated, identical sound pressure levels should be indicated. Imn
general, this condition is likely umobtainable and significant changes in
sound levels are expected because of reflected waves at the duct terminatiom.
Due to the fact that the pressure trough would be quite sharp, its effect om
pressure distribution upon the specimen surface may be neglected. For the
effective pressures acting as if uniformly distributed on the specimen, the
highest reading of the three microphones was therefore used. When specimen
vibrations contain higher harmonics resulting in significant distortions
in sound waves as indicated by the microphones, the corrected harmonic
amplitude at the excitation frequency indicates the true effective pressures.

The strain gage circuit was the same as used in cantilever beam tests,
and gage locations in accordance with the designations of Figure 2ha. Read-
ings were directly recorded as bending stresses in psi s or peak.

When the acoustical excitation is by random signal, the three micro-
phone outputs are more or less even. Any one signal, microphome or strain
gage, may be selected to feed into a spectrum analyzer for a continuous
record and to feed into a probability density analyzer for indications
pertaining to amplitude distributionms.
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MICROPHONES
NO. 1

(A) FLAT PANEL, CLAMPED
ON ALL SIDES

(B) CURVED PANEL, CLAMPED
ON ALL SIDES

Figure 24. General Test Arrangement

3.7.1.3 Modes Observed

The following analysis will indicate that the modes observed in each
specimen are neither simple modes defined in singular combinations of m, n
nor restrained in one of the classical boundary conditions. However,
multiple numbers in both m and n were identified for many modes existing
simultaneously at harmonically related frequencies. Thus the application
of Fourier's series in the analysis becomes completely relevant. While
the combined constraint can be created through the elastic properties of
the supporting elements, the harmonic relationship of the frequencies is

L8



greatly influenced by the overall aspect ratio of the original panel. The
choice of a ratio so close to {2 was unfortunate. The significance of |2
as an aspect ratio is given in Appendix C. The unfortunate result (from
a test viewpoint) of the many harmonic modes obtainable is that it becomes
virtually impossible to excite single pure modes. However, the subsequent
stress analysis shows that for such a panel aspect ratio a significant
reduction in stress is realized. This of itself could be of substantial
benefit in structural design. Unfortumately, this indication of potential
benefits accruable from panel aspect ratio of |2 was obtained at the
expense of relinquishing fatigue date for these panels. If an aspect
ratio of 1.8 had been used, the interaction of these harmonically related
modes would have been extensively reduced and the first mode response
would have been enhanced.

Examples of mode analysis are given in Figure 25 and 26 for full-size
specimens. Figure 25 shows the observed waveforms at 385 cps at an
acoustical excitation level of 138 dB re 0.0002 ubar, analyzed into two
predominant amplitudes at frequencies of 385 cps and 770 cps. Each of
which can be further divided into component modes, - 1,25 or 2,1C at 385 cps
and 3,25 or L4,1S at 770 cps. Figure 26 shows the waveforms at L70 cps at
the same excitation level, analyzed into three predominant amplitudes at
frequencies of 470 cps, 940 cps and 1410 cps. The component modes are
2,2S and 2.5,1C at LT70 cps, 2,35 and 3,2C at 940 cps, and 5,2C at 1410 cps.
Observed frequencies falling between the theoretical values of m, n modes
in Figure 23 were assigned the fractional m value corresponding to their m,
n location on the figure (e.r. 2.5,1C). Note that to be sustained, these
modes require a higher order m, n mode with m an integer for excitation
(e.g. the 5,2C mode at 1410 cps excites the 2.5,1C mode at 470 cps). In
these multiple numbers for either m, n or both occuring at the same
frequencies, phase angles would be constantly but regularly varying as
displayed in the oscilloscope pictures in both figures. A summary of all
modes detected in this manner is tabulated in Table VI from the two panels
tested. Inasmuch as the calculated frequencies curves are verified, the
third panel was not needed in mndel analysis.

3.7.1.4 Damping Coefficient Ratio and Frame Vibrations

The multiplicity in the number of modes excited at any one instant
gives considerable complexity in the decay trace. This complexity
does not permit a simple and accurate indication of the damping
coefficient ratio. The mode multiplicity is further complicated by
the frame vibrations which appeared to be in resonance at about 128 cps,
investigated through a separate strain gage attached thereto (see
Section 3.7.2.3). No coupling effect between the frame system and the
panel system was observed, however, in spite of the fact that at an excita-
tion frequency of 128 cps, the first panel mode with supported edges was
excited in coexistence with the first clamped mode at the second harmonic
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order of excitation. It is to be recalled that as a second order excita-
tion, the latter mode is self-excited and extracts no damping power from

the input energy (see Reference 15). The energy summation of all modes
must, therefore, be identical to the damping energy in whichever fundamental
mode [l,lS or l,lC] exists individually without complications. Because
of the displacement reduction in 1,1C mode, the damping coefficient c (but
not necessarily the coefficient ratio to critical c/c. ) becomes larger in the
1,15 mode.

Representative oscilloscope displays of frame vibrations, occurring
at the same time as panel vibrations in complicated modes, are shown in
Figure 27. By extracting an imaginary decay trace appropriate to the frame
frequency as shown at the top of Figure 27 and superimposing the same over
the original traces, not only are the multiple peanel modes easily
revealed, some phase reversals required in the frame trace can also be
observed. These reversals do not occur when the frame drives the model
panels at second or higher harmonic orders (see Section 3.7.2.3). It
appears, therefore, that the frame and panel are essentially two separate
elastic systems in simultaneous resonance without interference or amplitude
reinforcement. Both amplitudes are 90° in phase to the common forcing
vector whose energy is shared by the two systems. If the respective phase
angles are 90° and 270°, then the amplitudes are merely opposed or reversed
without upsetting the input energy distribution. The conclusion is that a
sub-gtructure need not be specifically designed to have a drastically
different resonance mode. The mounting of an electronic package or black
box at the area of maximum amplitude is, however, a different problem where
the input to the black box itself may become excessively large.

3.7.2 5/8-Size Specimens, 23.75" x 16.25 Plate Dimensions
3.7.2.1 Calculated Frequencies

The calculated resonance frequencies are given in Figure 28 in identical
manner as described in Section 3.7.1.1. Because the specimens are modeled
in the same aspect ratio these curves teke the same forms &8 Figure 23
except for numerical chenges in frequencies . In extending the boundaries
to bolt-hole centerlines for supported conditions, 2 inches are added for
each side, modifying the aspect ratio differently to result in a slightly
altered frequency curve shown in broken lines.

3.7.2.2 Test Arrangement
The test arrangement is identical to that given in Section 3.7.1.2.
3.7.2.3 Modes Observed

The modes observed are identified through the waveforms of strain gage
signals displayed on an oscilloscope and analyzed into component modes
pertaining to each harmonic order. An example is shown in Figure 29. Like
the full-sized specimens, each order is again a combined mode. Table VII
lists all modes so recognized which are represented by the data points from
two panels plotted onto Figure 28, the calculated frequency curves. The
third specimen was not tested.
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. Decay Signals From a Honeycomb Sandwich Panel
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HONEYCOMB SANDWICH PANEL NO. 2, "5/8" SIZE

EXCITATION LEVEL 150 dB
at 528 cps

STRAIN GAGES
No. 4

NO. 4

NO. 1

NO. 1
ANALYSIS: HARMONIC 1ST ATH 5TH
FREQUENCY 528 2112 2640 cps
1,1C 4,1C 3,35

I

( (HHREE

MODES 318 OB 2,35 OR 54y 28

( z ——RalH
OBSERVATION GAGE READING COMBINED MODE IN ALL CASES

PHASE OSCILLATIONS DUE TO
VARIATIONS IN MODE NUMBERS

Figure 29. Sample Response Waveform and Analysis From a
Honeycomb Sandwich Panel
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By comparing Tables VI and VII together, it is noted that the same
modes are duplicated or successfully modeled. For example, the combination
of 1,1S and 1,1C mode in the full-sized specimens is also observed in the
5/8-8ize specimens in spite of the fact that in the latter panels frame
vibrations were excited by the acoustical forces, exciting in turn these
same panel modes of higher harmonic orders. The presence of frame vibrations
is indicated by a separate strain gage attached to a frame member whose
signal is shown in Figure 30. The lower curve shows the predominant frame
frequency, idealized into the artificial trace at the top of the figure,
which reveals the true panel modes at the 2nd and 4th harmonics when it is
superimposed onto the panel trace. It proves to be difficult, however, to
extract appropriate decay curves for damping coefficient ratio calculation.

A further significance derived from Tables VI and VII is seen in the
mode parsmeter product m * n for supported component modes. This will be
discussed in a subsequent section (5.3)

3:T«3 3/8-Size Specimens, 14.25 x 9.75
3.7.3.1 Test Arrangement

In view of the size reduction, it became expedient to use a different
mounting which closely simulated fully clamped boundary conditions. The
size of the opening, or the frame size, exposing the panel to acoustical
forces was slightly larger than the honeycombed section, extending the true
panel size to 14.25" x 11'. The test arrangement is sketched in Figure 31,
employing acoustical forces generated through electro-dynamic speakers.

3.7.3.2 Calculated Frequency & Damping Coefficient

The frequency is calculated on the same basis as before, e.g., 1,1C
mode at 1000 cps. The observed decay curve is shown in Figure 32, obtained
when the electrical input to the speaker was instantaneously removed. The
observed frequency is 990 cps and the decay rate corresponds to a damping
coefficient ratio c/c, of 0.015. The slight modulation is probably caused
by the heavy frame structure which is smoothed out and averaged for damping
calculation.

At this frequency range, it would be difficult to subject this panel
to the same acoustical environment as the larger panels. Because the
frequency correlation has been obtained and very little increment in stress
could be realized in this arrangement, further tests with 3/8 panels were
not conducted.

3.7.4 Mode and Response Correlation between Models

Apart from the general indications in Tables VI and VII that similar
modes were indeed obtained in the modeling experiments, detailed considera-
tions in fatigue analysis requires specific correlation in the respective
stresses and in the respective modes generated. Therefore, for each
combination mode, the stress component due to each individual mode must be
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16 ELECTRO-DYNAMIC
SPEAKERS
9 ;

2 STRAIN GAGES USED
— :

CO + PSI .
b Y

2 MICROPHONE
STATIONS

Figure 31, Test Arrangement for ‘“3/8’’ Size Honeycomb
Sandwich Panel Models

FREQ. = 990 cps
c/ce =0.015

Figure 32. Decay Signal From a Modeled Honeycomb
Sandwich Panel at ¢‘3/8”’ Size

60



ascertained in order to differentiate between the cumulative damage in each
case. The basic considerations as indicated by Equation 2 (Section 2.5.1.2)
for frequency correlation and Equation 1 (Section 2.5.1.1) for stress
correlation will be applied in the following cases.

3.7.4.1 Combined Mode: 1,1C and 2,1S

Full-Size Panel 5/8-Size Model
Tested at 142 dB, 227 cps Tested at 150 dB, 528 cps
Freq. Equation-
_:_é_m
Modeling Requirement: t:‘““_‘l = common constant for each

component
(W.R. = weight ratio)

Modeling Parameters

kl = 0.496 inch k2 = 0.319 inch

&, = 28 inch a, = 16.25 inch
JWRL = 0.430 VR, = 0.53

£, = 227 cps observed f2 = 528 cps observed

£
Caloulated frequency ratio, 2. 0:319 (0.534) (28)° 2.37
r, (16.25)2(0.198](0.530)

Observed frequency ratio, % = 2.32

These ratios hold true for all other modes at higher harmonic orders.
Observe that the weight ratio factors cannot be retained at a fixed magni-
tude. Whereas the frequency ratio ceases to follow inversely as the apparent
geometric scale factor of 8 to 5 in this case, the inclusion of the weight
ratio correction is clearly indicated as a necessary modeling parameter.

Stress Analysis, full-size panel Stress Analysis, 5/8 size model
142 dB 150 dB

Center of Plate, Sinusoidal response, | Center of Plate = 3300 psi, mms

™ms = 1100 psi
1st order response = 3100 psi
Linear Conversion to 150 dB, = 2760 psi
(best sine wave fit from pigure 29)

B p 8%d (A.R.
Stress Equation: o = :E : a;‘_,“ R.) (Modeling Basis; See Appendix A)
k
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Modeling Relationship: B = common constant

p = common pressure intensity
A= common area, as fabricated
Modeling Parameters
d, = 0.502 inch @ = 0.324 inch
ky = 0.496 kp = 0.319
a, =28 a, = 16.25
(AR); = yet unknown (AR), = yet unknown
9 = 2760 % = 3100
Assume (AR)2 = (e/ech

(A-R)l (C/Cc)e as

3/2
28 _
= ( '25 ) el 2«26

ag

2 2
B _ (16.25)°(0.324) (2.26) (.496)°
Calculated stress ratio = 7 = 315 5 55 = 1.18

Observed stress ratio = 2%00 s el .2

= (”‘_l‘j/d from cantilever tests

]

Note that if the model stress was left uncorrected into a sinusoidal wave,
the observed stress ratio would be 1.20. In any event, the deviation from
full agreement is within 5% which is only 1/2 dB off. Therefore, either
reading may be used for subsequent analysis into its component stress due
to vibratory excursions in either 1,1C mode or 2,15 mode at the same fre-
quency. The locations of the strain gages permit response observation in
n-modes only which, in this case, are stronger than corresponding m-modes
of the same order along the other principal axis. If a single m,1C mode
prevailed, the edge stress should be almost twice the stress at the center.
As this is not so observed, a simultaneous mode m,1S must also be in exis-
tence where the stress would be zero at the edge and high at the center;
hence tlie necessity of the following analysis as illustrated.

Thus the given conditions, observed with a model specimen, are:
Excitation Frequency and Intensity: 528 cps at 150dB or 0.13 psi peak

Center Stress: 3100 psi rms in combined 1,1C and 2,1S mode
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Edge Stress: 1350 psi mms, responding to 1,1C only, zero in 2,1S mode

Let 7, represent the edge stress due to a component load intensity p,
at 528 cps, and (AR), be the resonance amplification factor at a
damping coefficient ratio (c/c.),-

with B/6 = 0.0726, (from Reference 2L ; See Appendix A)
a = 16.25 in., the clamped span
A = 0.024 1in?
k = 0.319 in.
a = 0.325 in.
Then % = 1350 x 1.414 = 1910 psi peak

1910)(0.024) (0.319)(0.31
0.0726)(16.25)(16.25)(0.325

Possible answers are paired below:

And p, (AR), = = 0.752 + psi peak

1,1C MODE - Response & Amplification Ratio

(AR),| 100 & 60 50 w30 20

Pe 0.00752 0.0094 0.0125 0.015 0.0188 0.025 0.0376

At the same time, the center stress could be determined by changing 5/6
from 0.0726 to 0.0349 for a component magnitude of 650 psi rms, leaving a
difference of 2450 psi rms as the other component in m,1S mode.

Let 0g represent the center stress due to component load intensity pg

at 528 cps, and (AR), be the resonance amplification factor at damping
coefficient ratio (c?cc)s'

Then 9, = 2450 x 1.414 = 3460 pei peak; B/6 = 0.0506 (From Ref. 22;

- See Appendix A)
Based on a = ie— = 12.9 in.

60)(0.024)(0.319)(0.
And pg (AR)g = . =—5115.9)00.325) ™ 3.11 + psi peak
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Possible answers are paired below:

2,15 MODE - Response & Amplification Ratio

(AR) 100 80 60 50 Lo 30 20

Pg 0.0311 0.0388 0.0519 0.0620 0.0778 0.104 0.155

Though these component modes are considered in different boundaries,
the actions are necessarily simultaneous. For this reason a uniform ampli-
fication retio prevails in addition to the known condition Pg + Po= D =
0.130. It appears, therefore, that the following combination is the only
solution applicable to the conditions at 150 dB.

]

p 0.025 psi, (c/c,) = 0.015

c

pg = 0.104 psi, (c/c,) = 0.015

While it appears that the demping coefficient ratio in a supported system
should be much lower than that in a clamped plate, the observation is made
that in this case the supported constraints can be realized only at the
expense of elastic deformation in the form of twisted clamping plates or
distorted frames, resulting in additional damping work required and a
relatively higher lumped coefficient ratio. By considering this clamped
plate in 5/8 size to have the same damping ratio as a 3/8 size specimen
(Section 3.7.3.2), a slight error of little significeance is probably incurred.

3.7.4.2 Simple Mode, 2,15 Predominating
Apart ‘rom the combined mode discussed above, there are many other modes
of higher complexities but inducing much lower stresses. Agreement in
modeling paremeters is nevertheless obtained as illustrated below.
Observed data corresponding to 140 dB excitation levels are as follows:
Full Size Panel 5/8 Size Model
Specimen #1 at 185 cps Excited by frame vibrations at

the 4th harmonic order of direct
excitation frequency.

Specimen #1 at 125 cps, 4th

Center stress = 270 psi
Edge stress = 170 psi

hamonic = 500 cps for partial
Specimen #2 st 195 cpe resonance only and low amplitude
Center stress = 350 psi center stress = 4O psi
Edge stress = 110 psi Specimen #2 at 133 cps, Lth

harmonic = 532 eps for full
resonance center stress = 430 psi
edge stress = 60 psi
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The difference between this mode and the previous mode is the relative
weakness in 1,1C mode and the enrichment in many other modes at still higher
orders. For simplification, idealization to a simple 2,1S mode may be made
by transferring and adding the observed edge stress, which would have been
zero, to the center for the meximm plate stress. The full size panel
average of 450 psi ms as compared to 490 psi in modeling relationship follows
very much the same ratio as 2760 to 3100 in the previous illustration. How-
ever, important significance is indicated in the frequency changes and the
stress magnitude attained.

In the modeled specimens, this mode was generated in self-excited
vibrations for no energy loss with the mode frequency remaining the same as
before. The slight frequency variation (528 to 532) is of an experimental
nature or due to differential temperature changes. The input energy at a
different frequency was largely consumed in frame vibrations so that by
extrapolation to the previously illustrated level at 150 dB the indicated
stress at 1550 psi was well below the directly excited response. In the
full-sized panel, the mode frequency was 227 cps, where in combination with
1,1C mode, the energy absorbed by the edge constraints was partially
compensated between the two modes resulting in lowered damping work necessary.
However, as a directly excited and predominantly 2,1S mode, the additional
force required to overcome damping is available only at a reduced frequency.
The observed reduction to 185 or 195 cps is expected from the generalized
relationship Pw = constant and the average at 84% of the theoretical mode
(227 cps) is compatible with other results under similar environment. (See
Section 5.1 and Fig. 50).

It is interesting to note that the idealized center stress for any
m,1S mode can be obtained from any combined m,1C mode by adding together
the component stress readings at the center and at the edge for a given
excitation level. This condition was indeed supported by the results of
such a summation in the data obtained. As one component appears to improve
nonlinearly with soft spring characteristics, the other component must vary
with hard spring characteristics in order to maintain the sum at an appro-
priate level. The equalivent total response remained in fact linearly de-
pendent on the excitation pressures applied.

3.7.4.3 Simple Mode, 3,1C Predominating

This mode at 550-600 cps is observed with full-size specimens sub-
harmonically generated as a second order within an excitation frequency
range of 263 to 286 cps. The modeled panels in the same mode would be at
1500 cps, too high to be excited as a dominating component. All observed
stress readings at the center gages are in agreement and indicating 240 to
250 psi at 140 dB. The average edge stress of LOO psi serves to substantiate
the clamped boundaries on the basis that the aspect ratio of the middle
element in this 3,1C mode would be in excess of 2.5, and the bending stress
coefficients for the center and edge locations would approach one to two as
the readings so indicated. To calculate these stresses, due to a s®lf-
excited mode, a determination of the effective forcing intensity is required
in addition to a still unikmown damping coefficient. However, by assuming
that the maximum displacement y is related through the factor y w2 = constant
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(see Section 3.6.3) the amplitude of the self-excited mode at twice the
frequency at full power may be reckoned at 1/4 as large, i.e, the equivalent
intensity p' equals 1/4 p. Using a bending stress coefficient of 0.73 from
Appendix A corresponding to b/a =~ 2.5 for the center element in this

case, the stress equation is:

_ (0.73)(12.4) (12.4) (. 505) (AR)p _
0 = B IGR] = 400 (1.414)

with p = 0.041 psi at 140 dB, p' = 0.010; the amplification ratio (AR) is
35.% which appears to be within the proper range as estimated in the combined
mode illustrated elsewhere. It is demonstrated that in higher modes, the
stress is aiways so significantly reduced that its damage contribution

becomes increasingly less and less.
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b, EXPERIMENTAL OBSERVATIONS IN CURVED PLATE MODELING
L.1 An Investigation of Boundary Conditions and Resonance Response
To analyze the vibratory motions of a curved plate such as ABCD shown

in Fig. 33 as a representative element in a fuselage section (see Ref. 26)
a ring section may be used in the same analogy as a beam is to a flat plate.

SECTION 1-1

SHOWING i NUMBER OF ==

COMPLETE WAVES PER
CIRCUMFERENCE, AND /=mR/;

Figure 33. Outline of Cylinder (Fuselage Section)
Vibration in a Breathing Mode

For ring modes, the resonance frequency equation as given in Reference 15 is

J—_ ji 1(1 ;21 - (7)

If the number 1 of complete waves per circumferential length is large, it is
permissible to simulate ring segments as stiffened flat beams either in
l/z-wave lengths or full-wave lengths with respective end conditions as
specified in Table VIII. The observation is that the stiffening effect
prevailing at increased modal frequencies may also be expressed asan increased
moment of inertia or as ashortened effective span. To account for the
boundary conditions of a complete plate, additional stiffening due to axial
constraint must be added. For the observation of dynamic effect between
two axially adjacent elements , a preliminary test was undertaken with a two-
panel configuration to determine the extent of possible interactionms.
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4.,1.1 Curved Plate in Two-Panel Configuration

The center clamp was one inch wide and solidly clamped on both sides
of the specimen plates. The aspect ratio of each element as a divided
half of the full plate was maintained at b/a = 1.525 with b = 24.5, 15.25,
and 9.15 in. respectively for the scaled models arbitrarily selected as
full-size, 5/8, and 3/8 sizes. As one-half of the plate, or one element
panel, was lightly but sharply struck once, strain gage signals from
corresponding locations in each half were displayed simultaneously on an
oscilloscope to show the characteristic waveforms. The samples given in
Figs. 34 and 35 are for full-size and 5/8 size specimens respectively.
The indicated frequencies of 271 and 446 cps are found to be within 3%
of the expected scale ratio at 5 to 8. The use of 3/8-models wvas termin-
ated because the frequency would be too high and stress level too low for
meaningful fatigue tests,

Besides indicating the stiffening effect, the real significance lies
in the modulation between the two elements or in the transfer of dynamic
energies between the two panels having nearly equal but not identical
modal frequencies. The true decay rate follows the envelope shown in
each figure ylelding a damping coefficient ratio of 0.0016 for the full-
size specimens and 0.0017 for the 5/8-models. In spite of the extremely
low damping, the observed stress in each case under the maximum acoustical
forces available was not high enough to warrant continued tests in this
configuration. However, within the frame work of the discussion of fre-
quencies and length factors in Paragraph 5.1, the results do indicate a
consistency in damping ratios which in conjunction with high frequencies
point to the fact that for the curved elastic element, the length factor
is significantly reduced (because of the high frequencies) and approaches
simply supported boundaries (because of the low and uniform damping).
Furthermore, in the transfer of energy between the two halves, a modifi-
cation in fatigue contribution appears to be taking place due to the
indicated manner of stress variations. These may possibly be additive
to the Rayleigh distribution that was the basis of fatigue cummulation
used in the Miles-Miner (References 6 and 8) theories. In order to
attain test objectives directly, the center clamp was, therefore, re-
moved resulting in enlarged test specimens at the dimensions given in
Table II (Section 2.7). After this change was made, the two original
balves of the 5/8 scale plate vibrated in phase as shown in Fig. 36, modu-
lated jointly at a frequency equal to that expected of a flat plate. The
enlarged full size plate on the other hand, was excited in a higher mode
such that the two previously divided halves remained out of phase. In this
case, however, the energy transfer previously evident with the center
clamped installed was clearly not shown in Fig. 37. The modulation was
common to both halves and was again due to the flat plate mode.
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NATURAL FREQUENCY AT 271 CPS

SIGNALS FROM
STRAIN GAGES | |
I \
NO. 1-—=
s TRANSFER OF
| __:' B \ ENERGIES
senepetiel
NG ]l o '-:\.""" t. 1 THE
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10 MSEC “""'I “"" “FULL-SIZE’’ CURVED PLATE

SPECIMEN IN 2-PANEL CONFIGURATION,
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SAME SIGNAL . ] '
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Figure 34. Decay Signals From a Curved Panel
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CURVED PANEL, "5/8'" SIZE IN 2-PANEL CONFIGURATION

FREQUENCY = 446 cps
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GAGES Nrrddt
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|l KN
. A - TRANSFER OF
--w ENERGY
NO. 2
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| TWO PANEL
CONFIGURATION
,. ‘:l - - | b J
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Figure 35. Decay Signals From a Curved Panel
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GAGES

,.1 |<- 90 MILLISEC
STRAIN
1 { )
¢

jji DECAY ENVE LOPE FOR
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MODULATION
FREQUENCY = 47 cps

111111

-k M“Mﬁ[ﬂl.lm.umum”
%h L i

FREQUENCY = 249 cps

“5/8’ SIZE CURVED PLATE IN
ONE PANEL CONFIGURATION
(CENTER DIVIDER REMOVED)

Figure 36. Decay Signals from a Curved Panel

4.1.2 Curved Plate In l-Panel Configuration, Test Arrangement

The curved plates now measure 33 x 2L4.4 x .04O inches in full size
with a 36" radius on the 24.4" side, 21 x 15.25 x .024, and R = 22.5" in
5/8-size, and 13 x 9.15 x 0.024, R = 13.5 in 3/8 size. Observe that the
aspect ratios vary slightly which must be accounted for in all frequency
correlations. The test arrangement was essentially the same as for flat
platesuwith the exception that more strain gages were used as indicated in
Filg. 24b.

T2
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“FULL-SIZE’’ CURVED PLATE
SPECIMEN, CENTER DIVIDER
CLAMP REMOVED

Figure 27. Decay Signals from a Curved Panel
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4,1.3 Frequency Correlation in Curved Plate Modeling

The observed frequencies of the curved plates in each size are sum-
marized in Tables IX and X together with line sketches of the vibrating
elementgindicnted by node lines)in each configuration. From these results,
the stiffening effect of curvature is calculated in terms of the ratioc of
its frequency to that of a flat plate of the same linear dimensions with
equal mode numbers m and n. Significant agreement is obtained in the
stiffening effect so defined as well as in frequency dependency on size
factors. It is, therefore, indicated that modeling of stiffening effect
of curvature has evidently been achieved. In the higher modes, addi-
tional comparison of current results from full-size plates with data
extracted from Reference 27 is shown in Figure 38, using the product of
mode numbers as a lumped argument. It appears from Figure 38 that a key
is being obtained in reducing the nonlinear characteristics of stiffness
in curved plates to a function of the subtended angle which is shown to
be the control parameter identifying each curve. To obtain frequency
modeling of curved plates, the subtended angle of the curvature is, there-
fore, maintained constant. As in the case of flat plates, either true or
adequate models may be used in other linear dimensions.

The same stiffening effect of curvature is also illustrated in the
curves of Figure 39. In this case the separation distance or ratio between
the calculated flat plate frequencies (determined as for Figure 23) for the
plate geometric data of Table IX and appropriate curved plate data for the
same mode numbers represents the stiffening effect. It is noted that when
the flat plate curve for n = 1 is displaced to the right at the designated
ratio of first mode stiffening as defined in Table IX so that the 1, 1
point coincides with the observed curved plate 1, 1 frequency, the trans-
posed curve (dotted line-Figure 39) intercepts the accented lines for
curved plates. Thus at the point marked F, a common condition exists
where the mode could be either 2,1 or 2,3 (See Section 4.3.2) depending
on the prevailing stiffening effect over an unstiffened condition at Fy
or F3. No modes m,n lying above and to the right of this transposed flat
plate n = 1 curve could be defined on the curved plates.
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TABLE IX FUNDAMENTAL MODES IN CURVED PLATES

Nominal Scale Rati
1 5/8 3/8
Item
Dimension's, inch
Plate Thickness 0.06k 0.040 0.02k
Long side, b 33.0 21.0 13.0
Short side, a 2k.5 15.5 9.3
Radius, R 36.0 22.5 13.5
Aspect Ratio b/a 1.347 1.355 1.397
Calculated flat =
plate in clamped| (29.2) (45.3) (74.5)
% edges
~ | Observed Modula-
0 0
§ tion Rate (beat 3 ? T
g frequencies on curved plate)
Qv
g-!
’E Curved Plate 153/154 2k9 L26
'E 258
260
v
8
f feni fec
Stiffening Effect 5.11 5.12 5.50
= Freq. Ratio
Flat Plate at Maintain same outside
curved Plate dimensions.
- Increase thickness h to hg, -
g Frequency
for I 2 _n 3
E _I__e_ = (Freq. Ra.tio) = lla
) he n3
a
s
S | Curved Plate at Approximation only:
- Consider flat plate to have
Apparent Flat 1,3 mode and determine a3,
.g s * distance between displacgmnt
Plate Sizes nodes.
"é_ * Actual curved element will be
(5] bounded by stress nodes at
_”/334 distance ag. ae < 83, for a
slightly higher frequency.
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TABLE X HIGH ORDER MODES OBSERVED IN CURVED PLATES (FULL SIZE)

Frequencies

Mode Designation Flat Curved
Plate Plate Ratio
cps cps

m, n

156 260 1.67

182 280 1.54

229 338 1.48
278 388 1.40
Lo5 540 1.3k
L65 580 1.2k
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h.2 Damping Analysis in Modeled Plates

Damping coefficient ratios are derived from decay curves as shown
in Figure 40 for a full-sized panel and in Figure 41 for a 5/8-model plate.
In the tebulated results given in lable XI, a general agreement in first
mode damping coefficients is indicated not only between plates of the same
size but also between model sizes. The observation is, therefore, that all
control length factors which determine the frequencies as well as damping
are effectively simply supported (See Section L.1.1).

TABLE XI DAMPING CHARACTERISTICS IN CURVED PLATES

Mode
Iyl 2,3 3,3
Frenuenc ) F
q ' ¢/e., requency S Frequency
Specimens cps . cps o cps
No. 1 (152) S 260 --- 282
Full
No. 2 153 0.0062 258 - 281
Size
No. 3 1.5k 0.0068 260 0.002 286
No. 1 249 0.0055 X 480
Note:
5/8 | No. 2 258 0.0060 X 480  2hg
Size B2~ T§§
No. 2 260 0.0064 X
not
tested
No. 1 L26 0.0030 X
3/8 | No. 2 X X X
Size
No. 3 X X X
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CURVED PANEL, FULL SIZE; NO. 2
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STRAIN GAGE NO. 2

Figure 40. Decay Signals From a Curved Panel
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STRAIN GAGES NO. 1 "5/8" SIZE CURVED PANEL

NO. 3

,ﬁ .
T
\ l‘l"“"‘!""u‘ '1 . : MODULATION

""5/8" SIZE CURVED PANEL
NO. 2

LY, FREQUENCY = 260 cps

INDICATION OF CROSS-
MODE MODULATION

Figure 41. Decay Signals From a Curved Panel
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To determine the damping coefficient at a higher mode is an endeavor
that has not been extensively covered elsewhere. The effort being presented
below appears to yleld a reasonsble result but limited to only one higher
mode. The procedure is shown in Figure 42. The initial step, Figure L2a,
is to ascertain the decay envelope (dotted) for the first mode at 154 cps.
If repeated blows of identical intensity are applied, then the same decay
envelope could be transferred to Figure Lob or 42c¢ at the appropriate time
scales as noted, adjusting amplitude scales for a best fit for variances
in forcing intensities. The decay envelope at the next significant mode,
apparently 260 cps in this case may then be extracted from the outside
traces which varied within +10% of each other for an average c/c, of 0.002.
Compared to the damping coefficient of 0.006 at the fundamental mode, this
implies a shortened control length in a numerical relationship that is
compatible to the correlation determined for cantilever beams (section
3.3.1). However, the stiffening effect is different which accounts for the
relatively low frequency in the higher mode.

4.3 Stress Correlation Between Models

4,3.1 First Mode Response

The observed date for the fundamental mode are shown in Figure 43 in
the form of stress variations at various sound pressure levels for which sep-
arate scales are provided for each panel size in order to show the curves in
the same figure. A significant difference exists between the respective ratio
of the stresses at the edge and at the center. A change in mode shape had
occurred which could be attributed to the curvature size. For the apparently
different behavior in the modeled plates, additional data must be obtained in
an extended dissertation. The following analysis can be based, however, on
the center stresses which were the dominant readings in all specimens tested.

In the modal analysis of Table IX it has been shown that the curvature
effect is to reise the first mode resonance of a reference flat plate of the
same dimensions by a particular stiffening ratio. A simple approach in
stress analysis is to calculate the maximum bending stresses in the flat
plate and convert it to curved plate stress by considering the same stiffen-
ing effect as a corresponding change in the moment of inertia,-stiffened as
it were and raised in magnitude by the square of the frequency ratio.

For example, under a static peak pressure p, the equation of bending
stress in an unstiffened plate is:

s¢ = gp (a/h)?,

and for the stiffened or curved plate,

S = Bp (a/n)? ’Ié = Bp (a./h)2 (Frequency Ra'l‘.io)'2
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STRAIN GAGE NO. 1| FULL-SIZE CURVED PANEL
NO. 3

FREQUENCY = 154 cps
c/cc = .0068

o B ’
TN TR
PR A A oo oo e o=
LAY

3;1

AVERAGE c/cg = .002
FOR 260 cps MODE
(DECAY AMPLITUDE
EXCLUDING 154 cps
ENVELOPE)

STRAIN GAGE NO. 2

Figure 42. Decay Sizrnals From a Curved Panel
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The peak dynamic stress.io which equation (A3) in Appendix A also
applies, is simply this same (static) bending stress multiplied by an
amplification ratio and becomes a modeling criterion., Thus at 120 4B,

p = 0.0042 psi peak for the fundamental mode, the moment coefficeint at
the location and orientation of the relevant strain gage is 0.0349
(See Appendix A) and the bending stress coefficient is 0.21 (= 6 X 0.0349).

Full-Size Panel 5/8-Size Model
B = 0.21 B = 0.21
a = 24,5 inches . a = 15.5 inches
h = 0.064 inch h = 0.040 inch
¢/ce = 0.0065 | c/ce = 0.006
|
Frequency Ratio = 5.1 i Frequency Ratio = 5.4

Calculated Stress = 495 psi Calculated Stress = 455 psi

Observed Stress = 450 psi ’ Observed Stress - 450 psi

The agreement confirms the large reduction of bending stress in a
curved plate due to the stiffening effect. At a sinusoidal excitation
level of 150 dB, a maximum stress of 10,000 psi is indicated which would be
far short of reaching fatigue within a reasonable test period.

4.,3.2 Response in a Higher Mode, Full-Sized Panel Only

In the following illustration, it is intended to demonstrate that a
calculated stress is in ready agreement with an observed value if the
stiffening effect is predetermined. The fatigue expectancy can then
be simply reckoned on the basis of known material properties expressed
in constant amplitude S-N curves.

The observed data in the next higher mode at 260 cps for the full size
plate are given in Fig. L4, The mode may be designated either as 2,3 or
2,1 depending on the strength of the principal stress. Referring to Fig.
39, the 2,1 mode would be reckoned along the dotted line curve drawn for
the stiffened flat plate as a complete unit. If the elements between node
lines are considered individually, the controlling length factor becomes b/2
which is now the shorter dimension. Referred to an unstiffened flat plate, the
same mode may also be the 2,3 mode stiffened to the accented solid line for the
curved plate. In the latter case, there are two displacement nodes within the
outside edges and the middle strip may be singularly considered as a flat
plate element stiffened to a lesser degree at a parametric mode number m.:n
of 6 formulated in Table X and in Fig. 38. The control length becomes
merely a fraction of a.

The stress analysis follows, - c/cc = 0.002 (See Fig. 42 for full-

sized specimens only, in 2,3 mode- where the central portion vibrating as an
element measures very nearly 7" long on the shorter dimension.)
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BENDING STRESS FULL-SIZED
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Figure 44, Vibratory Stress in Curved Plates
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U

Sp= gD (a/h)?; - B= .73 a = T displacement node distance
2q
(between the infiexion noints of a ~lamped beam)
The tactor 0.55 for determining the inflexion point distance is obtained lrom
Reference 13. The effective aspect ratio for this mode component is
2L.5/3.0 or larger than 6. The bending stress coefficient as listed in
Appendix A is 0.73. Stiffening ratio = 1.67 (from Table X)

7 x .% = 3.9 stress node distance

At 120 dB sound pressure level,
S, = (0.73)(0.0042)(3.9/0.064)2(1/1.67)2(1/0.004) = 1020 psi peak

Against this value, the observed readings from two specimen panels
were 1350 and 760 psi averaging 1055. The analyticel value is, therefore,
reasonable.

On the ‘other hand, if the mode was 2,1 the calculated maximum stress
would be: - at a stiffening ratio of 5.1 (from Table IX) in frequencies
and an approximate stress coefficient A= 0.57 which is averaged from
the nearest end conditions listed in Appendix A.

5 = (0.57)(.0042)(16.5/0.064)2(1/5.1)%(1/.013) = 40 psi

Against this, the observed reading from the third specimen was only
160 psi. This is in fact expected because the maximum stress location in
this case would be at the center of the short side and not at the actual
gage location. Using appropriate coefficients from Reference 24 or 25, the
corrected bending stress at the center of the short side should be close to
three times the observed value at the center of the long side. The resu)ting
stress at 480 psi would then compare very favorably with the calculated
result.

The observation can now be made that in curved plates, an additionai
degree of freedom is avallable in the stiffening effect. In the above
illustration, the 2, mode dominated in two specimens and 2,1 mode dominated
in a third. Due to the reduced stiffening, the maximum stress in the 2,3 mode
is higher than inthe 2,1 mode as data so indicated. However, as excitation
forces are increased at higher sound pressure levels, the plates would tend
to be stiffer by virtue of inherent hard-spring characteristics; and mode
2,3 improves to 2,1 but the stress either decreases by comparison or changes
nonlinearly. Under this condition no fatigue due to bending stress can occur
within a reasonably long test period.

4.3.3 Changes in Still Higher Modes

Two of the higher modes were observed at 283 and 338 cps for the full-
sized specimens with composite curves shown in Figs. L5 and 46. The results
indicate that as excitation pressures are raised, the maximum stress
increases nonlinearly in a general sense as both the mode complexity and
the stiffening effect vary simultaneously. Thus one mode may appear to be
more linear than another without necessarily having a nonlinear spring rate
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BENDING STRESS
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Figure 45, Vibratory Stress in Curved Plates
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Figure 46. Vibratory Stress in Curved Plates
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in either. By superposing Figures 45 and 46 for these two modes over
Figure L4 for another mode, it is observed that the peak amplitudes appeared
to be approaching a common limit at about 155dB. The implication is
that at high acoustical intensities, many modes exist at the same time, with
amplitudes limited in each component mode and apparent nonlinearities
attributable to the presen~e of many modes. The possible potential for

mode improvement (i.e., altering the primary response mode) with

increased stiffening effect giving reduced stress is found in ohe of the
three specimens tested as shown in Figure 46 at 141 dB. In changing from
4,3 to 4,1 mode, the principal component was sub-harmonically excited in

the form of low amplitude modulations carrying highly enriched harmonics

at 4,3 mode frequencies. Indeed in many other modes, frequent up and

down changes in response amplitudes were of this nature.

One other example of such mode improvement is provided in the wave-form
analyses given in Fig. 47 for a full-sized specimen. Depending on the
specific strain gage signal of reference, many concurrent mode components
can be identified. Fig. 4Ta shows a good resonance condition at 156 dB for
a nominal 5,3 mode at 386 cps, with some second harmonic component at 772
cps but little modulation at 193 cps as a subharmonic. However, at 141 dB
in Fig. 4Tb, considerable noise is generated at 194 cps due to the un-
stiffened flat plate response in the 4,1 mode. Insignificant strain in-
dications are shown at 194 cps. Returning to 156 dB again, Fig. 47c shows
the enriched harmonics of 193 cps, identifiable as a subharmonic of no
less than five different modes existing simultaneously in the response.

4.4 Response to Random Excitation

With a specimen retained in the test fixture, discrete frequency excita-
tion was replaced by random signals of limited bandwidth. The spectrum
analysis of this signal is shown at the top of Figure 48a which indicates
that the bandwidth extended essentially from 60 cpes to 500 cps with a
moderate amount of extraneous high frequency noise presumedly caused by
the accompanying airflow. The amplitude distribution in terms of rms
sound pressures was ascertained by means of a probability density analyzer
in conjunction with an X-Y recorder. The result shown in Figure 49 con-
firms the normal distribution assumed in the theoretical analysis by Miles
and many others whose solutions were introduced in Section 2. The spec-
trum analyses of all five strain gages in use are shown in Figures 48a and
48b recorded through 1/3-octave band filters.

Significant indications in support of the analyses presented in
References 6 and 19 may be obtained from these random response data. For
the condition of equivalent rms stress, the deduced requirement is that a
sinusoidal excitation level should be in excess of the random spectrum
level by AdBl, expressed as

AdB, = 2 + 10 log Af, where Af = (c/cc)(Qf ) for each resonance mode
at frequency fr

The observed results based on the maximum stress are given in Table XII,

along with the calculated results obtained from ‘he above expression for
the two modes indicated.
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Microphone Signal
156dB At 386 cps
-/ Curved Plate

YA Response = 5, 3 Mode

Strain Gage No. 5
Showing 2nd Harmonic at 772 cps
For 10, 3 Mode Component

Microphone Signal
141dB At 388 cps

Curved Plate Response = 5, 3 Mode
- But Generating Noise At 194 cps

Strain Gage No. 3
Showing Weak Modulation At 194
cps, - A Flat Plate 3, 3 Mode

()

e Microphone Signal
156dB At 386 cps

Curved Plate Response = 5, 3 Mode

Strain Gage No, 1
Mode Complexities

Flat Plate 3, 3 Mode At 193 cps
Curved Plate 5, 5 Mode At 579 cps

(Coupled Into 5, 3 Mode With

Phase Oscillations)

Curved Plate 10, 3 Mode At 772 cps
(c) ' Curved Plate 10, 9 Mode At 1544 cps

Figure 47. Characteristics of Response Waveforms
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RECORDED ANALYSIS IN 1/3 OCTAVE BANDS CURVED PLATE, FULL SIZE NO. 3
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RECORDED ANALYSIS IN 1/3 OCTAVE BANDS CURVED PLATE, FULL SIZE NO. 3
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TABLE XII RANDOM - SINUSOIDAL EQUIVALENCE

SINUSOIDAL EXCITATION for

RANDOM EXCTTATION SAME tms STRESS RESPONSE

EPEC- | STRESS| SOUND | EXCESS oven MODE
1/3 Oct] BAND | mgruM | READ- |PRESSURE| RANDOM
BAND | LEVFL | ;pver | TnG | LEVEL |SPECTRWM, |FREQUENCY
AdB,
e B dB + psi dB cps
Obs. [Cal.
140/180 | 1kl 125 780 129 L 5 154
224 /280 | 139 | 120 | 440 121 - 08 260

The agreement in AdB, obtained here, is within 1@B. However, larger
variatione are not intolerable. The calculation of spectrum levels in
random analysis in the first place incurs uniform averaging in the band-
width concerned and is not generally a precise indication. Secondly, a
permissible variation in the damping coefficient ratio can easily absorb
this difference. At higher modes, the second factor alone becomes
increasingly large numerically.

Insofar as random fatigue is concerned, it has already been indicated
(Section 2.4 and Fig. 4) that the sinusoidal equivalent stress level, or
sound pressure level must be in excess of an equivalent level for equal
stress by AdB_ (= 10 log a/e) if failure time is to be reproduced. AdB,
can be added %o MB]_ for fatigue considerations.

Another significance cannot be allowed to pass unnoticed. In
Figures 48a and 48b considerable amplitude changes occur in the strain
gege indications within the 140/180 cps band. The implication is that
the fundamental mode at 154 cps in this case has a tendency to disappear
or not be excited. This is advanced as an explanation of why this
particular mode was overlooked in one out of three specimens tested.

In any event the stress analyses here readily establish that the expected
stress in a fundamental mode of curved plates may not be produced. At the
same time the maximum stress occurring im any one of many higher modes

is very much lower than the first mode stress. The frequency and stress
magnitude depend on which of the higher modes deminated the response
amplitude. Unless the thickness of the modeled plates of this program
were further reduced, a fatigue duration test would not be Justified.
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5 DISCUSSION
5.1 Vibratory Modes and Stress Response Related to Fatigue

While the experimental results presented in Sections 3 and 4 indi-
cated satisfactory correlation in the parameters governing the response of
the specimens tested, either as individual elastic units or as modeled
components, the attainment of long term fatigue remains dependent on the
magnitude of the stress induced by the acoustical forces applied. In this
respect, the proven strength obtained in a shorter duration, even though at
a mechanically recreated cyclic stress, also correlated with existing data
of acoustically induced fatigue for the same plate material in simple
geometric configurations. The problem is reduced to defining the vibra-
tory modes prevailing in whatever configuration is being investigated whereby
the induced stress can be predicted for known fatigue expectancy. From the
test results obtained significant factors in the purely geometrical dimensions
have been found which greatly modified the modes obtainable in an acoustical
environment and accounted for the stress reductions observed. For this
discussion, the basic equations of motion in a linear response may be utilized.

Considering a vibratory particle in any beam configuration
restricted to one degree of freedom, in equation AL, Appendix A,

L 2
st R .

dxc kI o
the implied condition is a simple bending phenomenon. Insofar as the deflec-
tion y 1s linearly related to the forcing intensity p . the frequency
solution of @ is independent on the amplitude of y - In most cases,the
acoustically applied pressure , p is essentially uniform over the entire
configuration whose linear dimensions are significantly less than the wave
length of the acoustical forces at mode frequency w ., A convenient
constant A is given in Reference 13 from which w can be calculated;
thus:

2
J\h = o
r EL
and )\rl = a constant for a given configuration and boundary conditions,

vhere [ is a significant length factor. For e uniform plate of rectan 51‘
configuration, the frequency frinthem,n mode is reduced to f. = Ch ﬁui
where C  is the dimensionalized constant given in Fig. 5, for unity modes

m and n. For simply supported square or rectangular plates ,C is unchanged
whenever m = n. The resulting mode frequencies are shown in Fig. 50 with
substantiating date from Reference 28. Some energy loss to the supporting
frame due to friction is indicated in the slight reduction in frequency,
This f'requency reduction becomes progressively negligible in higher modes.In a
log-log plot, the idealized relationship for no energy loss follows the cal-
culated line and is unaffected if the mode number m is converted to a normal-
ized length factor A, inverted in the figure for convenience to indicate
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A =a/m. The equality is, therefore, transformed to 2> W, = constant. A

second change in the 10Ear1thnic scale given at the r&ght-hand side trans-
forms the readings to A* and converts the product A 2 into another
constant. The relationship is synonymous to ywz = constant, vhere y,
the dynamic amplitude, is made to be pmportiom.lrto the fourth power of a
length factor. This fact in a linear response at a constant damping co-
efficient ratio c/c, (See 3.6.3) demonstrates the amplitude reduction in
higher modes, wvhere the length factor being a function of the modal
distances decreases for increasing mode orders. For other plate config-
urations, the initial decrease from a fundamental mode is even more ravid
at lower modes but approaches the illustrated conditions as limiting cases,
,18'0 23’ 28’ “d 390

Failure to generate response in the fundamental modes, for vhatever
causes there may be, invariably results in greatly decreased stress responses.
The basis of fatigue similitude at a uniform stress required to correlate
scale ratio to duration change becomes quite difficult to realize unless
each and all the higher modes can be completely defined. In the honeycomb
sandwich panels, the higher modes were so closely related harmonically to
the fundamental mode due to the aspect ratio selected that high mode
responses became the more dominating. In curved plates, the stiffening
effect in the higher modes is much less than the fundamental mode. And at
the curvature selected, the generation of a truly fundamental mode is over-
shadowed by the relative ease in the formation of higher modes. In this
regard, the observation is made that a constancy in yw2 is equivalent to
uniform 32 units in power spectral densities as well as in total power.

The most likely mode combination is predicated upon an equal energy distri-
bution wvhen randomly excited. Thus, from the strain gage responses of
Figs. 48a and 48b, a more or less uniform stress in each mode is obtainable
vhen the pressure spectra are equalized at the same level as illustrated at
125 dB in Table XIII.
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TABLE XIII RANDOM RESPONSE AT EQUALIZED FORCING SPECTRA

1/3 Octave Lqunlized
Spectrum Stress Response Response per Mode
Band
Level Mod
8 ms
cp - orry Reference ;:: Fre guency
140/180 125 780 Table XII| 780 154
\
260
2211»/2&3 % By limear =
cxtrl?- 870 286
lation
280/355 1240 — 8% 558
Table XI
355/450 830 830 395
450/560 v 8% | 830 540
Lol Determination of Dampin. Coefficient and Size Factor

A decay curve for damping coefficient calculation is found to he very
effective and convenient to use. The validity and accuracy of the result
depend only on the linearity between displacement and stress obtainable
at low amplitudes regardless of the manner of excitation. Thus strain gages
may be at any location and all decay signals may be averaged for better
results. Fig. 51 is given here to facilitate calculation. From the correla-
tion of damping coefficients with the span of the beam a size factor can be
determined, indicating a scaling law that the damping coefficient ratio
decreases as the model size is decreased. For flat panels, therefore,
fatigue data on smaller models must be modified by damping characteristics,
known beforehand or determined as part of the test. For curved plates.
however, if the dominant modes occur in simply supported elements, no appre-
ciable change in damping coefficient needs to be considered.

5.3 Mode Numbers m, n and Parameter Product m-n
From all available information and the data collected in this program,
a lumped argument in the form of the product of mode numbers m and n emerges

as a very useful reference parameter. It appears warranted to continue this
investigation in other cases involving model changes for further substantiation.
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Figure 51, Damping Coefficient Calculation
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In the frame supported plate of Fig. 50, the elastic energy can be
expressed in terms of a frequency ratio based on the calculated resonance
frequency corresponding to a given mode defined by m and n. It will be found
that for equal parameter product m n, this ratio remains sensibly comstant
and approaches unity for no energy loss at higher modes. If knife edge
supports are used, such as in Reference 3, the energy loss is reducible to a
minimum and is negligible in all modes.

When the conditions at the supporting edges are complicated as in
practical structures where deformations in many ways prevail, the response
mode is predominated by the components in simply supported constrainment.
The results in Tables VI and VII can thus be compared in isolated m,n S
modes to reveal a better modeling correlation in parameter products rather

than in the complicated compositions pertaining to each mode. For example,
the response of the full size specimen at the second harmonic of the excitat-
ion frequency (2 x 216 cps) is predominantly a 3,1S mode as indicated in
Table VI and Fig. 23. For the modeled specimen, though excitable at the

same forcing frequency, the comparable response should occur at a frequency
2.37 times (see p.6l) higher, or corresponding to a harmonic order of 4.7 in
this case, The closest indication was provided at the 4th and Sth order (of
216 cps) in Table VII as a 1.5,25 and 3,1S modes respectively. The same
lumped argument of 3 is obtained. It is therefore, indicated that as the
modes become more complicated, there will be many other combinations that can
share the same argument, rendering it imperative in modeling studies to ana-
lyze each mode completely and to define the elastic response in detail. It
must be added that no coupling effect in excessive amplitude change has been
observed in this test series.

By extending the use of the mode number product as a parameter defining
the stiffening effect in curved plates, the result given in Fig. 38 appears
to offer a highly useful guide in the delineation of the potential for
altering the response mode by curvature. It would be desirasble, however,
to secure additional data to substantiate the indicated relationship by
varying the parameter dimensions that were held constant in this rather
limited test program.

5.4 Application of Beam Test Results to Panels

In view of the fact that the first mode response in all test panels was
unobtainable because of the Joint influence of the prevailing aspect ratio
and edge conditions, a calculated comparison between the beams in honeycomb
sections and the anticipated panel strength is presented as follows which
can also be applied to curved plates. On the basis that the proven fatigue
strength at approximetely 10,000 cycles is 30,000 psi in the face sheets,

a randem spectrum level in the acoustical environment can be readily estab-
lished to meet a service requirement as defined by a given life duration.

Example: Equivalent fatigus duration = 10° cycles with these imown
parameters:
Panel Size 28" x 41 x 1" Honeycomb; all edges clamped
Radius of gyration = 0.496 in. Area of Face Sheets =
0.024 in2, d = 0.505 inch
Frequency Correction Factor = ,/0.183 = 0.43 based on Table
Damping Coefficient = 0.01 III

considered here as typical (see Table IV)
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Calculations: Let sinusoidal pressure at f,. be P 2L)
Max. Bending Moment = 0.073 p 32,5/6 =0.073 (Reference
Max. Bending Stress = 0.073 P & (d) (A.R.), from p.61
I

Reduce the fatigue strength of 30,000 psi at 10™ cycles to 5700 psi
at 109 cycles by extrapolation of S-N curve shown in Fig. 52 as the bending
gtress limit and solve for

P = 0.0233 psi peak or 135 dB which is expected to be within
the linear response range.

Calaulated Hode frégusncy = Sol=2) (160 212 0:43) . 250 cps (Fig. 23)

AdBy = 2 + 10 log (0.01) (500) = 9 for equal stress
AdBp = L (average log log S-N curves) for equal damage

Random spectrum level = 135 = (9 + 4) = 122 dB at 250 cps

The proof required is to secure a maximum stress reading of 5700 pei at 135
dB in this mode. If it is extended nonlinearly to 15,000 psi at 150 4B, it
may be used as a test level to secure an accelerated fatigue life at 200,000
cycles. At 250 cps, this takes 13.3 minutes. If the test stress is set at
10,000 psi, the fatigue duration will be 133 minutes. If a higher mode
prevails instead, the stress will be greatly reduced. A much extended test
is required which is not considered to be within the originally programmed
scope for defining applicable modeling techniques.
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6. CONCLUSIONS AND RECOMMENDATIONS

Stress correlation is the critical parameter in modeling
for acoustic fatigue. True models with exact geometric scaling in
all elements are not necessary for achieving the required stress
correlation. Adequate models are obtained by maintaining the same
aspect ratio and modes for the specimen and models. For curved plates
the necessity of maintaining identical modes between specimen and
model requires that the radius of curvature must be scaled in the same
ratio as the linear dimensions defining the aspect ratio. The
frequency and stress of adequate models then vary at predetermined
magnitudes with a functional relationship to damping, amplitude, and
cross-section (thickness) geometric and material parameters.
Nonlinear effects are dependent on excitation levels and may be
present in both specimen and model or may appear to be different
between the specimen and models. These nonlinearities are amenable
to resolution. In general, a prerequisite to sonic fatigue tests is a
knowledge of the nonlinearity induced by damping and amplitude for each
specimen. Data of this type are obtainable from non-destructive
vibration tests. The experimental data confirms the application of
basic procedures formulated by Miles, Palmgren, and Miner. The
requirement for random excitation in the use of modeling techniques
for sonic fatigue prediction is thus minimized.

6.1 Honeycomb Sandwich Construction - Preliminary Tests and
Modeling Procedures

6.1.1 Configuration Integrity Test

The structural integrity of all honeycomb sandwich
sections should be determined by obtaining specimen failure with
mechanical vibratory tests. The use of cantilever beam specimens in
a minimum of two span lengths suffices for this requirement. The
reasons for the requirement are: (1) To ascertain that failures are
confined to tensile (bending) fractures in face sheets, and (2) to
compare the maximum available low life-cycle strength in complete
stress reversals (R = -1) with an applicable S-N curve.

6.1.2 Damping Coefficient Ratios
In testing the configuration integrity, the damping
coefficient ratios should be obtained as a function of amplitude prior

to the determination of fatigue strength. These ratios, suitably
corrected for span changes, are required for Panel modeling parameters.

6.1.3 Modeling Procedures

The modeling parameter in frequency is based on the equation

fm,n-C k o X

m,n Wiare

m,n
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f. is the frequency of full-size or model panel at mode numbers
m and n in dimensions b and a respectively, cps

n & frequency constant common to all panels at the given mode
4 m,n, in-lb-sec system
k, the radius of gyration of the section, inch

weight of face sheets
Total section weight @ o0d

X, a weight factor equal to
& n the short dimension (in b x a) inch

The only restricted constant is cm for which the aspect
ratio of the specimen and model panels must be kept the same and with
the panel edges identically constrained. All other variables may be
chosen in suitable proportions.

The modeling parameter of dynamic flexural stress is based on the
equation: 5
a P aﬁ J(AR)  Ba a (A.R.)
max= 1%} 5 = 1 > where
h GAk
Omax is the maximum reversible bending stress in a fundamental mode
defined in length factor am n;

d, distance of extreme fiber to neutral layer of honeycomb section
whose total face sheet area per unit width is A at radius of ryra
tion k,

h, the thickness of an equivalent rectangular section;

(A.R.), an amplification ratio = E—F%E— at damping coefficient
ratio c/cc; and ite

B, & maximum bending moment coefficient appropriate to the mode
defined by ey n- (Ref. 24 and 25)

By examining these two parametric equations jointly, it can be seen
that if all dimensional factors are in proportion to scale ratios in true
modeling and the weight correction is neglected, the frequencies would be
raised in a scaled (down) model for the same stress if the amplification
ratio remained the same. Because the last condition is generally not ob-
tainable, it is unnecessary to use true models. In adequate modeling, by
maintaining the same aspect ratio, the frequency and stress in each mode
of the specimen and the models are allowed to vary at predetermined mag-
nitudes. These modeling parameters are applicable to isotropic panels by
correct interpretation of the terms k, X and A. For a constant gage
panel, the sectional width is given a unity value: Thus, A o< h; koch;
and Ak2 oc h3, where h is the panel thickness. X is of course unity.

The modeling parameter between sinusoidal and random environment is
based on the Miles' solution and depends on the conditions specified below:
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(a) For equal rms stress observation - The equivalent sinusoidal pressure
level is 4 above the spectrum level at mode frequency f. in
random excitation. This level change in decibels is given by the
equation 4dB;, =2 + 10 log Af where Af = 2((:/cc)1t‘r

(b) For equal fatigue or damage stress in mode f. - The equivalent sinusoidal
pressure level is AdB, + d4dB, above the spectrum level at mode
frequency f,, in random excitation. The level change in A4dB, is

given by the equation 4dB, = 10 log(®%e| where e = 2.72 and
o is average slope in a conventional S-N curve on log-log sceles,
i.e.

- log (Life Cycle Ratio) .- log ny -1og ny with 8;>s, and ny>n .

log (Stress Ratio) 2 log s] - 1og 8o
If more than one mode is involved, then the damages due to all

relevant modes are cumulated together in accordance with Palmgren-Miner

Rule. However all modes which are not contributory to the stress at a

particular location must be excluded. In this respect, it is evident

that different damages will result due to: (1) variations in the model ~tres:

response and (2) variations in the composition of a random environment.

The model response jis best determinable by sinusoidal excitation tests

and can be verified foras many excitation levels as desired. A specific

level is then selected for fatigue test. The lifetime durations between

models can be readily compared with an acceptable S-N curve.

The nonlinearity parameters are dependent on the specific excitation
levels under consideration. In general, a prerequisite knowledge is
required for each specimen or model on the extent of the nonlinearity in-
curred and on the frequency range of respective "jump phenomena" (best
obtainable with sinusoidal excitation forces), before a long range
fatigue relationship can be established. Data of this program indicate that
a well designed honeycomb sandwich structure based on the tensile strength of
the face sheet is predominantly a vibrating body with linear characteristics.
Unless the core is deficient in shear strength or rigidity, nonlinear
response is probably negligible even in random considerations. However,
with undersized cores the failures would be catastrophic in nature; a
contingency that has been ruled out of the current applicationms.

6.2 Curved Plate Configuration - Modeling Procedures
6.2.1 Definition and Limitation

The curved plate is defined here as a stiffened rectangular flat
plate unit element with linear dimensions a x b and bent to a radius R
in one direction only. Although a lumped argument was introduced involving
the product of mode numbers m and n that appeared to correlate well with
date from this program and one other source, potential independent and/or
interrelated effects of thickness to radius, thickness to length, length
to width, and width to radius ratios have not been specifically considered.
The following procedures are applicable within these limitations.
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6.2.2 Aspect Ratio and Radius of Curvature

The modeling requirement is that both the linear dimensions
defining the aspect ratio and the radius of curvature are to be scaled in
the same ratio, i.e., a, b, and R are the essential modeling dimensions.
The subtended central angle for the curvature is the same in all cases.

6.2.3 Frequency Parameter and Stiffening Effect

For each mode the stiffening effect of curvature is the same. The
stiffening effect is defined as the ratio of the frequency of the curved
configuration to that of an unstiffened flat plate. The variation in the
stiffening effect with mode numbers appears to follow the relationship
indicated in Figure 38, for which a lumped argument is introduced as the
product of mode numbers m and n for the two sides. Frequencies of
the referenced flat plate, unstiffened, are calculated for each mode
desired on the same basis as illustrated in Section 4. The plate thick-
ness h is, therefore, a parameter dimension and need not be necessarily
scaled. Because of the stiffening effect of curvature, it would usually
be desirable to scale down the thickness parameter more than by the
scaled model reduction in order to maintain important model frequencies
within a desirable frequency range for the tests. Observe that in this
varied degree of stiffening effect, the fundamental and higher modes are
no longer harmonically related as in unstiffened flat plates, even for
an aspect ratio of 1.4 as demonstrated in Section 3.

6.2.4 Equivalent Flat Plate and Stress Parameter

An equivalent flat plate designates an imaginary flat plate of
the same linear dimensions but with an increased moment of inertia such
that its mode frequency is the same as the curved plate. The increase
in moment of inertia is, therefore, proportional to the square of the
frequency ratio which reflects & corresponding decrease in bending
stress in the equivalent flat plate or the curved plate.

6.2.5 Fatigue Consideration Versus Instability

If a comparison is made between the decrease in bending stress in
curved plates and acceptable S-N curves, it would be realized that the
accrued increase in fatigue life would be more than adeguate on a
time basis to offset the increase in mode frequency. This is illustrated
in Figure 53 for the worst condition in which the slope of the given
S-N (log-log) curve is much steeper than most materials within an
average fatigue duration range. For a curved plate, moderately stiffened
by curvature so that the mode frequency is doubled, the reduced stress
would be only 25% of the original value. The fatigue extension in life
cycles is 1000 times at the same frequency or 500 times in time-duration
based on the calculated strength of the unstiffened flat plate. In
other words to maintain the same fatigue strength on a stress basis. it
would be permissible to allow a 2/3 decrease in the true section modulus
in the curved plate. In reducing the rigidity so drastically it is
suggested that this would come very likely under an instability
criterion which was not investigated in this program.
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6.3 Recommendations for Additional Tests

In fatigue under a random environment, acoustically or otherwise
induced, the question appears to be a definition of the environment
itself rather than on the mechanics of failure. Data presented in this
report are in satisfactory support of the application of Miles, Palmgren-
Miner cumulative fatigue hypothesis. In this respect, the use of power
spectral densities or spectrum levels in dB per cps is recommended for
the definition of acoustical environment in lieu of octave band levels.
This definition is also applicable to stress response which is more specific
than the overall reading usually taken. Concurrently, it is emphasized
that nonlinear response is better revealed with sinusoidal excitation
tests than with random signals. A recommendation is also made that the
concept of using models for sonic fatigue predictions be extended to
establish modeling parameters for anisotropic panels, e.g. corrugation
stiffened, or stiffened single faced panels.

6.3.1 Curved Plates

The application of a method using acoustical excitation to resolve
the question of increased stiffening in curved plates has been demonstrated.
In order to consolidate the findings illustrated in Figure 38, where the
stiffness parameter is the subtended angle of curvature, it is recommended
that investigations be conducted on at least three more parametric changes
to supplement the existing curves. Academically, if the specimens include
one plate configuration at a subtended angle of 180°, with axial ends free,
the result obtainable by this method should be in agreement with several
published treatiseson incomplete circular rings where the minimum subtended
angle is usually 7 , e.g., References 29 and 30. In this connection, it
must be noted that the subtended angle, held constant in this program,
might be a complex function in itself of other characteristic ratios such
as thickness to radius, thickness to length, or thickness to width.

The latter two ratios may be compounded in turn by the aspect ratio.

6.3.2 Flat Plates

In order to resolve the question of the influence of aspect ratio
on plate modes, particularly in the reduced stress at 1.4 aspect ratio,
it 1s recommended that further verification be obtained by extending
the investigation to cover a wider range in aspect ratios. A suggested
range for aspect ratio would be from 1.1 to 2.5. Better control of edge
restraint and uniformity of specimens and models could be obtained by
using flat plates (aluminum 2024) on supported edges. It is anticipated
that higher modes could then be generated separately for a better
evaluation of damping characteristics.
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APPENDIX A

BASIC BEAM THEORIES APPLIED IN ANALYZING HONEYCOMB SANDWICH CONFIGURATIONS

1. Bending Rigidity and Stress

The extreme cases in which a honeycomb sandwich construction deflects
in resistance to transverse loads only are sketched in Figures Ska and S5kib.
Sections of width dx along the longitudinal length are shown as isolated
elestic units in exaggerated proportions under the action of external
shear forces V, the bending moments being deleted for clarity. In Fig. 5ha,
the two face sheets deflect individually but essentially in the same
flexural mode. Both compressive and tensile stresses in bending are 2
induced in each face sheet for a total bending moment resistance of 2EI¢ %ﬁz.
In Fig. 54b, the face sheets bend as a unit with plane sections remaining
plane at all times. It is, therefore, clear that in the latter case, a
simple bending phenomenon in face sheets is depicted for a registive moment
Mo = EI; 3 d2y/d2x where 1-1 represents the neutral axis of the entire
section. For a honeycomb sandwich section as dimensioned in Fig. She the
moment of inertig I,_, of the face sheets is given in the equation

b t3 c t,°
A 2[ = t {2 g { ]

- 2 (;f +bt{c/2 + t/e}e) (A1)

The first term in the bracket, being much smaller then the 2nd temm is
usually neglected. In other words, the bending rigidity in a honeycomb
section rests predominantly in EI;.; and is a maximum when adequate strength
is built into the core enabling an element such as 1234 to maintain the
coplanar requirement of the face sheet sections. When this condition is
fulfilled, the static bending stress % 1s given by the following equation
and distributed in the manner shown in Fig. 5id.

M, d
I

ag
(1) =

1l (A2)

In the above equation, the static bending moment M, 1s frequently expressed
in the form My = B'p &2 where p is a uniformly distributed pressure, a is
the shorter span of a rectangular plate a x b; and B is the moment
coefficient as given in References 22 and 24. A condensed listing is

shown below for clarity because of the motational variations involved.

The coefficients employed elsewhere in this report are accented.
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Figure 54. Simple Bending Configurations
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Bending Moment Coefﬁc_ie_n_t.__ﬂ_'___ o o
Simply Supported Edges All Edges Clamped
(From Ref. 22) (From Ref. 2L)
b/a Mx Max. My Max. Mx Max My Max.
of cente
center of “‘;,*f.‘;, center of pl:teo .
| edge ® edge a
| : el O [ T = *o
1.0 0.0479 0.0479 0.0513
1.2 0.0616 0.0501 0.0639| 0.0299| 0.0554 | 0.0228
1.4 0.0753 0.0506 @ 0.0726! 0.0349 | 0.0568 | 0.0212 |
1.6 0.0862 0.0493 0.0780 | 0.0381| 0.05T1 | 0.0193
1.8 0.0948 0.0479 0.0812| 0.0401| 0.0571 | 0.0174
2.0 0.1017 0.0L46k 0.0829
® 0.1250 0.0375

From the substitution of g'p a2 for My in equation (A2), it is observed
that the bending stress 0, is linearly proportional to the pressure
intensity p. In dynamic loading the spectral pressure intensity q varies
sinusoidally as in the expression q = p cosw t at a maximum value equal to
P. The maximum dynamic bending stress is readily obtainable from this equa-
tion by considering the maximum amplitudes as derived from a lumped mass

system o
’ o= —2—, °or ¢ =q (A.R,) (a3)
2 c/eq

where c/c, represents a damping coefficient ratio and (A.R.) stands for
the amplification ratio ( =1/2 c¢/c.).

The maximum dynamic flexural stress is simply the amplified maximum
static bending stress 0, . A direct expression of the latter in the
form Op=8p 82/n2 is freocuently used for a uniform plate of
thickness b, B now becoming a stress coefficient having a value of
6 B' . The values of stress coefficient B also depend on the aspect
ratios and end constraints. In Reference 25 many curves can be found
delineating its values in specific cases. A condensed listing is given
below with accented values indicating those that were used in this report.

Max. Bending Stress Coefficient 8
Simply Supported,| Clamped on One Edge

b/a All Edges ' Simply Supported on Remarks
_— 3 Edges
1 0.29 0.50 Readings off curves
| from Ref. 25.
1.4 0.47* 0.67* *Average 0.57 used in
test example, p. 87
2 0.61 0.72
3 0.71 0.73
6 0.73 | Extrapolated reading.
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Careful distincti'.on has to be exercised in employing the coefficients of
bending moment B° from References 22 and 24 and of bending stress §8
from Reference 25.

An additional variation is found useful in the substitution of A k°
for the moment of inertia term I;.; where A is the sectional area whose

radius of gyration is k. The general expression of the maximum dynamic
flexural stress is therefore

o = AP 823(A.R,)
6 A X2 (A3a)

for a bending fiber at distance d to the neutral axis.

2. Shear Rigidity and Resonance Frequencies

In the application of equations Al and A2, the prerequisite condition
is emphasized that there must be adequate core strength in shear to sustain
the bending rigidity in the sandwich structure as being bounded by undis-
torted plane sections. In order to verify the extent to which this condition
is fulfilled, the resonance frequency solution to the general equation
governing elastic vibrations is utilized. If the observed resonance
frequency agrees with a calculated theoretical value, then adequete shear
rigidity prevails.

The general equation (Refs 13, 15, 18)
d.hy whA )
BT =7 +? g, ¢ 0 (AkL)
dx
indicates that the second term represents a vector due to the inertial force
at the beam section dx which must, therefore, include the weight of the r‘ore

carried. In other words, the effective density w is no longer the density
of the face sheeis only. To the solution

INEY EI g
2
i wA.eh (AS)

derived in Reference 13, a cor%ection term must be addeg as follows:

L
(A£) E1g (face sheet weight)
“ = - lh (total weight)

(A6)

where (N\.[) is a nown constent for the given configuration.
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APPENDIX B
A RE-APPRAISAL OF HONEYCOMB CONSTRUCTION AND ITS

STRENGTH CONTRIBUTION IN SANDWICH CONFIGURATIONS

INTRODUCTION

In this report, the hypothesis has been used that in sandwiched
honeycomb structures, core failures would be considered catastrophic for
the reason that structural integrity is considerably impaired whereas
face sheet failures may be detectable, arrested, or otherwise repaired
without the loss of a structural component. The design of the sandwich
is, therefore, based on the conception that ultimate failures are confined
to face sheets. To insure that adequate strength is built into the core
which is usually hidden from view and practically bars nommal inspection,
this analysis is presented as an aid to core selections. For illustrative
purposes, aluminum cores will be used and are composed of hexagonal cells
with the width across flats in the direction WW defined as the cell size,
comer directions designated TT. The depth of the core is along the
direction of the flute, L. Valuable test data from References 3] and
32 are used in this analysis.

L Compressive Strength along Axis L and Totel Shear Force of Bending

Typicel test data from Reference 31 are shown in Fig. 55 with an
inset indicating core geometry as defined in the introduction. The cell
size was given as 3/8", wall thickness 0.003". The maximum load on a
compressive block of 2.01 x 1.98 was given at 1410 1bs. This load will be
compared in the following calculation with Euler's column load, considering
the effective walls per cell as two columms at right angles.

1.
1.7321

No. of effective cells 3.98/0.122 = 32.6

Cell Area = (0.375)° = 0.122 in.2

Meximum load per cell = 1410/32.6 = 43.3 1bs. (observed data)

Euler's load per cell P = n 2 EI/E2 where (= core depth = 5.62"
n=1
6 2
E = (10)(10)° 1bs/in.
I = (0.003)(0.375)3/12 in*
The calculated P, is 41.5 1bs. on the basis that the structural
integrity of the stronger column for which the moment of inertia I is used,

provides the limiting strength. The agreement is good but is by no means
coincidental. Reduced t{o normel core depths (for example A = [ = ."), tas
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permissible compressive load or strength will be greatly increased and
generally exceeds the applied load. The total shear force V (Fig. 12) in
the bending of a beam or plate is a local compressive force on the cells.
Because of this high strength, it ceases to be a design criterion.

D Shear Strength in the Ridbbon Direction and Shear Stress in Bending

Some of the test results obtained in a direct application of shearing
forces onto core specimens from Reference 32 are plotted in Fig. 56 with the
test arrengement indicated in the inset. These data delineate a shear
strength that is (i) directly proportional to the foil thickness, and (ii)
inversely proportional to the cell size. At the same time, 1t may be
identified with the core density scale at the right. A significant but
not much heralded fact is indicated in the strength of the bond between
the core and face sheets' which proves to be stronger than the core at all
times.

If an entire core is considered, the action of the applied forces P
(See Fig. 56) is of course a shear, but the shear is exerted on the two
bonding surfaces between the core as a unit and the face plates. Insofar
as the core element or a cell section is concermed, forces P may be considered
also as compressive load in planes TW transmitted through the cell walls.
For each cell, therefore, there is a Euler's load limit determined by the
stronger wall column beyond which initial failure will be exhibited in the
weaker colum. It is, therefore, not a shearing stress in its true sense
but is conventionally so expressed due to the direction only. The dependency
of this strength upon the sizes is illustrated in the following application
of the Euler's equation.

n »° EI Ii

Po m =—5—= on Py o€ where I, is the moment of inertia
) Z; of either equivalent element TT
or WW and tl is its length,
subscript 1 is 1 or 2 for either
TT or WW.

For the same cell size, ﬂi (or 8,) is constant.

v Sc3 , Oor S t3

Since Ii -
12 12

and g, >> t, t being the foil thickness;

P, increases linearly as t and is larger than P,;

P2 increases as t.3; - ylelding

Po/P; at a relative rate of change proportional to 2,

The true strength P,, therefore, varies also as t.e.
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The apperent unit strength (= e/A = tE{t) accordingly increases linearly as
t in agreement with date indication (i) above. If the thickness is kept
constant, P, increases linearly as 8, but P, is inversely proportional to
8. The apparent strength in this case is %he Joint product divided by the
area change (oc Sc) which results in a strength change proportional to Sc'1
as per indication (ii) observed.

In these established strength characteristics, a basis is provided in
selecting appropriate cores that can be made stronger than the bending
strength of the face sheets. For a given design criteria where the maximum
shear stress is also known, a core can be selected to meet any degree of
overstrength desired. On the basis of available test results, it appears
that these strengths as given in Fig. 56 for static shear may also be
considered as safe dynamic shear limits.
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APPENDIX C

SIGNIFICANCE OF PANEL ASPECT RATIO IN THE GENERATION OF MODE RESPONSE

The bending frenuency of uniform rectangular flat plate, simply
supported at the sides, is given by

2
D n® n
e ﬂe\j—;-— [? & —2], where

a

Wpm,nis the frequency of the m,n mode

D 1is the plate flexural rigidity

P 1is the plate mass per unit area

a,b are plate dimensions - aspect ratio AR=Db/a, b > a

m,n are integers denoting mode number or the number of half-waves,
in b,a directions respectively,

The ratio of mode frequency wm,n to the fundamental mode frequency Ul’lia

w
m,r/
e

Substituting b = a R

. -1
um»n/c.i . _ I}Re a2 o wf [ARE " 1]
, -
For a panel aspect ratio of 2, __“im,n 2n- + 12
“ 1 3
For another ratio, e.g. R=2, Y a lmz - 112 ; the comparison is
tabulated as follows: “"J.,l 5
3y
Mode Number Node wm,n / w Aspect Ratio between
Pattern 1,1 Node Lines
n n A =Jé A = 2 A = J-é A = 2
| :'j
1 2 : 2 8/5 V2 1
2 1 . 3 17/5 2 2 4
g B . L L 'E 2
¥ 3 [ ld l 11/3 | 13/5 32 3/2
5 | L | g | 6 b 2 y2 2
S I —_— 17/3 | 5 | 3/2v@ 4/3
& b Tt ol 8 | 3 E 2
3 | 3 EESIE 9 V2 2
O
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For all simply supported plates, mode freaquencies for m = n are
integer multiples of the fundamental with 4 being the lowest multiple (from
m=n=2). However, in aspect ratio VY2 plates, there are lower modes with
frequencies at integer multiples of 2 and 3, which facilitate the formetion
of modes in the two harmonic series of 1-2-4-8 and 1-3-6-9 etca. in sharp
contrast to the reduced number of modes in the harmonic series of 1-4-5-9
with R = 2.

The presence of four modes at frequencies 1,2,3, and 4 times the
fundamental led to the ready excitation of all modes in the tests reported
with discrete frequency excitation or with an applied "haystack" shaped
spectrum peaking near the excited mode (e.g.spectrum shape of -6dB per octave
below peak and -6 dB per octave above peak). With the applied energy
being absorbed by a large number of modes rather than concentrated in the
fundamental mode, it was found that the stress levels were dominated by
the higher complexity modes and were so low as to preclude obtaining
fatigue fallures in a reasonable time with the maximum sound pressure
level available (168 dB overall).

Although the mode analysis is based on a simply supported plate,
the same reasoning applies to the actual system for two reasons. At an
aspect ratio of V2 the first mode (1,1C) in fully clamped boundaries has
practically the same frequency as the simply supported 2,2 mode (2,2S).
Secondly, in any physical condition, some degree of edgewise rotation
approaching pinned or simply supported restraint does exist. All
modes were accordingly identified as clamped (m,nC) or simply supported
(m,nS) in the results presented.
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