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ABSTRACT

The principles of static and dynamic similitude were applied tD typical
complex structural components for the purpose of examining the application
of modeling techniques to sonic fatigue predictions. Modeled specimens of
curved panels, honeycomb sandwich flat panels, and honeycomb sandwich cant-
ilever beams have been tested. The tests were conducted on full scale, 5/8,
and 3/8 size models. The tests and analyses demonstrated that scale reduct-
ions of linear panel dimensions, and other size factors necessary in the
fabrication of models, may be separately considered in maintaining the est-
ablished similitude relationships. Both random spectra and discrete fre-
quency acoustic excitation are considered.

Correlation of available data from other sources has established a freqaen-
cy parameter defining the effects of radius of curvature along one side of
a curved panel. This frequency parameter converts to a stress reduction
factor that has been verified experimentally in many modes. Although the
section modulus for honeycomb sandwich panels need not be controlled by the
scaling factors, the generation of response modes is significantly related
to the aspect ratios of surface dimensions. This panel aspect ratio effect
can yield a dominant excitation of higher complexity modes at lob stresses
and impose difficulties in fatigue duration tests. Experimental data are
used to identify these complexities and differences between modes without
introducing consideration of coupling effects.

Stress correlation is the critical parameter in modeling for acoustic fat-
igue. True models with exact geometric scaling in all elements are not
necessary. Adequate modeling is obtained by maintaining the same aspect
ratio and modes for the specimen and model. The frequency and stress then
vary at predetermined magnitudes with a functional relationship to damping,
amplitude, and cross-section (thickness) geometric parameters. Non-linear
effects are dependent on excitation levels. In general, a prerequisite to
sonic fatigue tests is a knowledge of the non-linearity induced by damping
and amplitude for each specimen. The experimental data confirms tUs ap-
plication of basic procedures formulated by Miles, Palmgren, and Miner which
minimize the requirement for random excitatioA in tbe use of modeling tech-
niques for sonic fatigue predictions.
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A.R. amplification ratio
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1. INTRODUCTION

On the question of fatigue failures in structura]l components of aero-
space vehicles, there is little doubt that a major contribution comes from
acoustically induced vibrations. In recent years, considerable research work
has been oriented towards a better definition of the acoustical loading that
these components should be designed to sustain, and towards a more critical
analysis of the vibratory responses induced by the acoustical loading.
Progress and advancement to meet newer challenges in the technology of
acoustically induced fatigue of structure is dependent upon an optimum
achievement in both these undertakings. Like all engineering accomplishments
of the past, however, analytical results must be subjected to proof tests
before acceptance. As vehicles become more and more complex and loading
requirements are more and more severe; the performance of these tests would
incur a great deal of engineering effort and expense. This situation has
drawn attention to the potential use of models, as specifically in the
current program, for studying a technique by which acoustically induced
fatigue strength can be predicted.

In a technological sense, models have been used and are used in
almost any engineering task. In the determination of physical properties
of newer or more exotic materials, sample specimens of any shape or form
are fabricated and tested. These are essentially models; for example, in
the case of the tensile strength of a round bolt or a rectangular pin, one
would simply refer to the unit strength of a modeled specimen in the same
loading environment and determine the desired strength from the cross-
sectional area of the bolt or pin. The area is, therefore, the essential
modeling parameter. Because a tensile specimen is usually round, it can be
considered as a true model of the bolt and a distorted model of the
rectangular pin. If an additional consideration is required in this case
to determine fatigue strength, the question of loading conditions will
naturally arise. Similitudes are extended to the case of fatigue only if
the stress reversals or variations are compatible in magnitudes. For the
bolt and pin, possible differences in the most likely stress concentrations
of model (test specimen) and the bolt or pin must be considered and eval-
uated. For the purpose of this program satisfactory fatigue properties
commonly expressed in the form of S-N curves for the specimen material
are assumed available for loading conditions representative of those imposed;
the intrinsic variation in an S-N curve is not an investigation objective.

Specifically, therefore, a premise is established that under identical
environments, the behavior of a specimen and its models are alike. Indeed,
the designation of a "specimen" or a "model" is merely symbolic. The know-
ledge that is being sought in modeling studies for sonic fatigue is no more
exclusive than in other cases. The response of a given elastic assemblage
must be ascertained under given conditions that are comn to both specimens
and models, which incidentally need not be restricted to true models only.
The program is one of defining the parameters relevant to both response and
loading.
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The purpose of this study is to demonstrate through analysis and
experimentation that some basic relationships remain applicable in modeling
complex structures for acoustic fatigue analyses. For providing information
on the more pertinent simulation requirements of desirable structural
components, two structural assemblages in the form of honeycomb sandwiched
panels and curved plates were chosen for study. Neither of these
structural unit types have been completely delineated in its physical
properties - only those considered of major importance were defined in the
study. The objective is to extend the parameters as defined in this study
towards a prediction of the fatigue strength of each unit in an acoustical
environment.

2



2. DYNAMIC NDDELING REQUIREMENT AND PARAMETERS

2.1 Background

Dynamic similitude through the use of models as a method of solving
many engineering problems has long been recognized. In fatigue investiga-
tions of structural components exposed to random excitations, acoustically
or otherwise induced, the application as reported in Reference 1 will of
course be anticipated. The advocated reduction of a prototype specimen
in all its linear dimensions by the same scale factor i.e., into "true"
models, however, poses severe limitations that must be overcome. The
theoretical background on the use of "adequate" models, not exactly
scaled, is provided in Reference 2.

Generally speaking, the use of models is predicated upon the premise
that in dynamic stress similitude, a structure is correctly modeled if its
stress under a given dynamic load can be predicted from the measured stress
in the model. Thus in true models, the same stress is merely duplicated.
Insofar as fatigue strength is concerned, the equivalent knowledge (S-N
curves) applies. For the sene life-cycle duration, the product of
frequency and time is a constant. Since the frequency is inversely propor-
tional to the true model geometric scale, the duration on a time basis
becomes directly related to scale factors. However, quite frequently
geometric variations and changes in response modes require that differences
in resultant stresses must be taken into account in fatigue considerations.
Available data from Reference I and other sources have been, therefore,
re-examined in this direction whereby some of the reported discrepancies
may be resolved.

2.2 Fatigue Data Correlation

2.2.1 Stress Variations between Modeled Specimens

Some typical examples of stress variations are found in the data of
Reference 1 and reproduced here in Figures la and lb. Spectrum analyses of
strain gage signals from similar locations are indicated as Sl, S2. and S
of Figure 1 for 1/3 and 1/6 scaled models of a ribbed square plate excited
by random noise of appropriately scaled acoustic powers. To reproduce the
same stress in both cases, all corresponding spectra should follow the
same shape after a downward shift in frequencies at a scaled ratio of 2 for
the smaller model (frequency scaling for the 1/2 :1 geometric scaling). The
power spectrum difference should then be +3dB (=10 log 2) for the larger
model. In the data shown, this difference is +6dB for the maximum stress
indicated.

2.2.2 Mode Frequency Variations between Modeled Specimens and
Fatigue Correlation

By comparing the shapes shown in Figures la and lb, it is also
observed from the spectrum differences at location S1 that the square
element within the ribs responded differently between models. This may

serve to explain the increased stress in the 1/3-model plate. The relation-
ship between excitation powers was separately determined to have been

3
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properly applied between all specimens (See Ref. 1). If the increase in
maximum stress is taken into account, it is very likely that the reduced
fatigue time of the 1/3-model plate would fit an acceptable S-N curve or
could be corrected to show a constant "N" for the same "S" as in the other
specimens. In this respect, it must be mentioned that locations S2 and S3
are essentially the same insofar as plate vibrations are concerned.
Failures induced by transverse bending could occur along either side. For
this reason the spectra at S2 and S are compared as respective maxima.
The mode frequencies observed at 16P and 500 cps, not being precisely an
inverse ratio of geometric scale factors provide a necessary correction factor
in converting fatigue cycles to the indicated duration time. Because the
stress is the criterion in fatigue, such a correction is always necessary
when a time duration is used.

2.2.3 Fatigue Time Corrected

The average S-N curves for aluminum when plotted on log-log scales,
exhibit a nearly uniform slope beyond lO cycles without significant
variations between material classifications or stress concentration factor
changes. On this basis, for a stress difference corresponding to +3dB
(= 20 log stress ratio) or 1.4 times higher stress, the number of cycles
affected is approximately 10 times. Thus the observed durations of the
higher stress at 165 cps should be multiplied by 10 if the frequency had
been correct at the modeled stress for the 1/3-model. Based on 65 cps
for the full size panel mode of Reference 1, the 1/3-model frequency
should be 195 cps. To correct for the frequency differences, the actual
time observed at 165 cps is to be shortened by a ratio of 165/195 making
a total correction of 8.5 times.

Examination of the details of the 1/6-scaled specimens (Design I
of Reference 1) reveals that a reduced corner radius at the advocated
scaling law would very likely incur an increased stress concentration
factor. Based on the given full scale reference, the observed fatigue
duration of the 1/6-scale specimens should be adjusted by a ratio of
1.5 for stress concentration differences. Concurrently the time correla-
tion required is based on the observed response at 500 cps (Fig. lb)
divided by the scaled frequency of 6 x 65. The total correction factor
is 1.9e(Z5 x 1.5) which is applicable in an interpretation of fatigue

time T between true models at scale factors N'. The corrected failure
time result for the Reference 1 specimens is shown in Fig. 2. A linear
relationship is clearly indicated which verifies the theoretical result
that duration time is directly proportional to geometric scale factors.
The range in data scatter which is represented by either the vertical or
horizontal spread between the two lines, is attributed partly to damping
coefficient variations, currently undetermined in extent, and partly to
normal scatter in fatigue data.

5
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2.3 Similarity of Restricted Temperature Effect and Some
Nonlinear Characteristics of a Soft Spring Variety

In Figure 46 of Reference 3 an extensive change was reported in the
resonance frequency accompanying a temperature change of only a few
degrees Fahrenheit in a clamped beam specimen. This temperature change was
limited, however, to the beam itself through localized heating in such a
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manner that the main clamping fixture remained essentially free of a thermal

strain. This must be considered as a unique case in variance with steady state
operational environments where both the clamping and the clamped generally
assumed same temperatures. Only a slight drift in frequency was usually
observed unless the difference in thermal expansions was extremely great.
A large change in resonance frequency of the order reported must be
attributed to the induced compressive stress. As the temperature of the
beam was increased, the natural extension in its physical length caused it
to exert an axial force on the clamping fixture. This action is the same
as a compressive force applied axially on the beam. Before the Euler's
load is reached, at which point the beam buckles as a column, the
effect of such an induced compressive force is to reduce the tensile stress
of bending in response to an applied transverse load. It is, therefore,
feasible and relatively straightforward to calculate the ratio of the
change in tensile stresses due to temperature changes as if a static
compressive load was applied. A dynamic similarity of this restricted
temperature effect is also found in a cylinder under torsional vibrations.
For any particular mode, an elementary block or column may be considered
as an elastic unit between nodal axes, subjected to axial compression
and lateral bending at the same time. This was discussed in Reference h
based on data extracted from Reference 5. The two cases are plotted in
Figure 3 to compare the temperature effect and torsional vibration
characteristics. The advantage in using logarithmic scales is evidenced
in the fact that differences in readings are reflected merely in scales
and that a geometric similarity is revealed in the curves. Thus, the
general result is defined in the sloping lines which are parallel with a
common slope of 12 dB per octave. As the compressive load is increased,
the maximum vibratory stress increases for decreasing frequencies character-
istic of nonlinear soft springs. It appears, therefore, unwarranted to
emphasize merely the effect of restricted temperature changes on a vibrating
unit without a complete investigation. It is interesting, however, to
observe that if a temperature differential exists between the clamping
fixture and the vibrating unit, a frequency shift is inevitable. Conse-
quently in normal test set-ups, clamped boundaries must be released between
tests to relieve residual axial forces and to minimize the expected
frequency drift.

2.4 Sinusoidal versus Random Excitation in Response & Fatigue Tests

A useful correlation of the fatigue damage sustainable by an elastic
unit responding in a sinýle mode under random loading has been mathematically
determined by Miles (Reference p). Miles' theory was based in terms of the same
damage that would be cumulated if a given random stress expressed by its
rms spectrum or power spectral density, had been replaced by an equivalent
sinusoidal power spectrum whose level is raised a/e (e = 2.72) times, or

10 log a/e decibels. Supporting data may be found in Reference 7 from
which Figure 4 is reproduced, a(=7 for aluminum) being the indicated slope

of a log S-log N curve. It is readily observable that both the random and
constant amplitude fatigue curves exhibited the same general slope and
were spaced apart to a degree in accordance with Miles' deductions.
Accordingly for the equal damage condition represented by any ordinate

7
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Figure 4. Typical Fatigue Data (From Ref 7)

in Figure 4, the observed sinusoidal stress level exceeds the random stress
by 3 to 4 dB versus the calculated difference of 10 log a/e which is
4 dB. The use of Miner's cumulative damage index, Reference 8, in this
analysis by Miles can be considered as quantitatively substantiated.

In achieving a satisfactory correlation of damages between a random
and a sinusoidal stress, it becomes quite evident that under laboratory
conditions either method may be used in obtaining relevant fatigue data.
However, it must be emphasized that the solution by Miles .is predicated
upon an idealized solution ), a single mode in linear response.
The use of random forces in general implies large forcing amplitudes and
almost necessarily induces nonlinear response in the resultant stress
unless the specified spectrum is very moderate in level. Frequently, many
mode components contribute to the same damage. Due to the difference in
modes, the maximum stress may not be the damage stress pertaining to a
particular mode. For example, a clamped beam would have its maximum bend-
ing and damage stress at the clamped ends in the first mode. The
maximum stress in a 3rd mode would probably be located elsewhere while the
contribution of the third mode to the ultimate damage at the ends was a
much lesser stress. Po assure the maximum stress in the modes of importance
(generally the low order modes), the separation of modes is necessary.
For this purpose, the use of sinusoidal forces, either acoustically or
mechanically applied, becomes most suitable.
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2.5 Modeling Parameters Extended to Complex Configurations

The evaluation of previous results introduced in the foregoing
diacussiondemonstrate# that for fatigue considerations, particularly between
scaled models, it is important to secure a basic knowledge of the stresses
induced in each specimen. For simple structures in rectangular sections,
the geometric similarity achieved in true models results in equal static
stress being generated in all cases under equal forcing powers or loading
pressures. The expression of fatigue (S-i solutions) at any one stress
level transformed into a relationship between model scale factors N' and a
time duration T (See Fig. 2) is a particular solution and should not be
extended to complex structures without necessary qualifications. For this
program, a honeycomb sandwich structure and a curved panel will be used to
illustrate the qualification procedures.

2.5.1 Modeling Parameters in Honeycomb Sandwich Panels

The geometrical representation of a honeycomb sandwich section is
given in Figure 54 c, Appendix A.

2.5.1.1 Stress Parameters

The bases for stress correlation are represented by equation A2 and
A3 given in Appendix A, yielding the following relationship for the same
stress conditions being modeled,

2(C/cc) 1-l 1Full Scale 2(c/cc) I 1 . 1  Model (1)

where I1-l/d is the section modulus, M. is the maxinum static bending
moment, and c/cc is the damping coefficient ratio. A more useful form
of this same equation is given in Appendix A as Eq. A3a which expresses
go in terms of the maxium forcing pressure intensity p and the ratio

1/2 c/cc as an amplification factor (A.R.). Thus, the equation of the

modeled stress a is
pp a2 a (A.R.) (la)

6 A k•'

with p a2 /6 = MO where (B/2  is the momnt coefficient and a is the
relevant length factor; and Ak = I. where A is the sectional area of
tbo plate and k is its radius of gyration.
Note that for uniformly distributed loading intensity on rectangular plates,
for which all linear dimensions are identically scaled, the above relation-
ship is automatically maintained. This was designated in Reference 1 as a
scaling law, where the damping coefficients were considered as being the
same. For honeycomb sandwich seotions, numerical values of I,-1 and d are
subjected to other practical considerations such as the thickness t of the
face sheets and the depth c of the core used. The result is that as the
static bending moment Mo is exactly proportional to the square of the
size factor, the ratio of IIi/d is not. It is, therefore, necessary to
consider eac', parameter separately, including the damping coefficient ratio
as an additional variable. For fatigue considerations, it is convenient
(but not necessary) to keep the lumped ratios in the above relationship at
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some given level. This can be accomplished by adjusting the loading
conditions after C/Cc, I,-, and d are determined for the full scale unit
and its modeled specimen. The necessity of scaling every linear dimension
is hereby removed.

2.5.1.2 Frequency Parameters

The required parameters in a frequency correlation between modeled
specimens are given in the following equation which is a modified version
of Equation A6 introduced in Appendix A.

fr [ weight of face sheets (2)

a2  total section weight I
where fr is the resonance frequency in cps, C is a constant dependent on
panel shape (b x a) or aspect ratio (b/a) and constraint conditions, k is
the radius of gyration due to the face sheets, and the bracketed weight
correction is due to the core weight adding inertial forces during vibration
(the bending stiffness being provided by only the face sheets). The values
of the constant C are given in References 9, 10, 11, 12 and shown in Fig.
5. It is evident that only identical modes may be considered if the above
equation is applied to modeled specimens. For the modeled plates of Reference
1, the frequency is inversely proportional to the scale factor. For honey-
comb sandwich sections, the weight correction cannot be held constant in
view of the requirements set forth upon the values of I,-, and d for stress
parameters discussed in the preceding section. It is, therefore, necessary
to consider the frequency of the mode to be investigated in each case and
avoid a general correlation of fatigue time to scale ratios.

2.6 Selection of Honeycomb Sandwich Panels and Model Dimensions

2.6.1 Scale Ratios and Number of Specimens

While the selection of scale ratios is entirely arbitrary, practical
considerations as to the minimum size that can be conveniently handled in
experimental investigations usually impose an upper limit in scale

reductions. In order to fulfill the programmed requirement of using two
model sizes, these were established at 5/8 and 3/8, full size being 1.
Three specimens were provided in each size. As indicated in Section 2.5,
parametric requirements in comparative stress and frequency cha.nges
between models dictate specific ratios indicated in Sections 2.5.1.1 and
2.5.1.2. The given scale ratios are, therefore, nominal sizes only and
not to be used in calculations.

2.6.2 Panel Sizes and Aspect Ratio

The largest size wuAsbased upon the size of the fixtures available
which established the full scale panel dimension at 41 x 28 inches with an
aspect ratio of 1.46. At an overall section height of one inch, prelimi-
nary design calculations indicate that a reasonable fatigue strength could
be expected if the face sheets were 0.012 inch in thickness. The section
modulus ll-i/d is a routine calculation.

As indicated in Section 2.5.1.1, it is not necessary to change the
section modulus in precise proportion to the square of the scale ratios.
The choice of modeled specimen dimensions is in fact quite large. How-

11
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Figure 5. Frequency Constants for Rectangular Plates
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ever, some convenient starting point can be realized by making the
respective core depth at 5/8" and 3/8" for the present models. The same con-
venience cannot be extended in scaling face sheet thickness without incurring
excessive fabrication costs. Accordingly for the 5/8-size specimen,
0.012" face sheetswere used again and 0.010" for the 3/8-size models. The
overall panel dimensions were respectively 23-3/8 x 16-1/4 and 14-1/4 x
9-3/4 (unchanged after an original full size panel of 38 x 26 was modified
to 41 x 28). A smry of these dimensions is shown in Table 1.

2.6.3 Bending Rigidity and Core Selections

As indicated in Appendix A, optimum achievement of complete bending
rigidity in the face sheets is dependent on the provision of adequate
core strength in resistance to the shear force V which is approximately a
linear function of specimen size. An analysis on the strength of hexagonal
honeycombs and core selections is given in Appendix B. The requirement can
be simply stated that the density of core required is directly proportional
to scale sizes. The lightest honeycomb densitywas, therefore, determined
by the 3/8-size panel dimensions for which the shear stress safety dictated
a density requirement of 6 lbs/ft3 . For full size and 5/8-size specimens,
the cores used (as supplied) are the nearest proportionate in densities
required. Other geometric characteristics are given in Table 1.

13
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2.7 Selection of Models for Curved Plates

The stiffening effect in curved plates is a highly complex phenomenon.
A definition of this stiffenin effect was one of the test objectives to be
obtained before a proper fatigue correlation could be attempted through
model tests. The selection of specimen sizes was, therefore, based on true
models where ali linear dimensions were scaled arbitrarily at these ratios:
1, 5/8 and 3/8. The net dimensions of each size are shown in Table I3.
The plates were rolled to the correct radii before mounting and clamped
on all sides. It is assmed that such a specimen panel simulates very
closely a curved plate element within a structural component unit con-
fined in undistorted boundaries. Three specimens were fabricated in each
case.

TABLE II CURVED PANEL SPECim DnISIONS, 2024 ALutM

Nominal Thickness Plate Size, inch R, Radius of
Specimen of Plate Net, between clamps Curvature on
Size inch b x a side a, inch

Full 0.064 33 x 24 36

5/8 o.o4o 21 x 15 22-1/2

3/8 0.024 13 x 9 13-1/2

15



3. MrsIMU AL OBSURVATIONS IN HO COWM SAMNIYC• DMDELIJN

3.1 Weight Analysis of Specimen Samples

In order to determine the veight correction required in the frequency
equation, Eq. 2 (Section 2.5.1.2), an accurate veight analysis is needed in
each case. For this purpose a beam section was carefully veighed after
curing and compared to the total weight of separate elements and adhesive
materials used. The actual weigbt, reduced to a unit area basis, becs
a significant loading factor in subsequent vibratory tests.

3.1.1 Illustrative Example

Full-size Honeycomb Sandwich Section; Beam size 1.5" width x 12"
span (- 18 sq. in. in flat surface area)

2 Face Sheets, 0.012 thick each, weight = 0.0132 lb.

Core (density as supplied, 17.1 lb/ft 3 ), weight = 0.1775 lb.

Bonding Adhesives FM-bOO0, weight a 0.0150 lb.

Calculated Total Weight . 0.2357 1b, or
107 grams

Measured Total Weight a 105 gzams

The agreement is satisfactory. The unit weight of 0.0131 lb/in2 per g
(-0.2357/18) compares very favorably with other homeycomb sandwich
constructions on record even though a heavy core is used here.

3.1.2 Frequency Correction Factors

From the weight analysis illustrated above, the frequency correction
factor ma be readily calculated. For the full size section, the correction
is 0.0432•0.2357 - 0.428. This correction factor has been taken as
applicable to all beam or plate configurations of this scale (full size).
Table III sumrizes similar results for all specimens tested.

TABLE III FREMUUCY C0ORECTIO FACTORS

Weight of Face Sheets Frequency
Vi, Total Weight Total Weight Correction

Scale lb/in2 per g = Ratio - r!Ratio

Full Size = 1 .0131 0.183 0.428

5/8 .00841 0.285 0.534

3/8 .0=413 0.485 o.696

17



3.2 Verification of Frequency Correction Factor - Use of Cantilever
De-m

Referring again to the freqwency equation (Eq. 2, Section 2.5.1.2), It
is observed that the calculated frequency corrections of Table MI can be
verified experimentally if a simple configuration such as a cantilever berwn
is used for vhich the value of the lumpd constant C is obtainable from
may sources (References 9 and 13). However., tvo speas vere empoyed In
each of the three section sizes ftr added validity in test results. With
three sagles in each case, a good average in derived from a total of 18
beams. It is aimcesaary to relate the modeling ratios toeth spos *biah
were chosen merely to change the response freqwencies.

3.2.1 Cantilever Iems Tests

The clamped end of a cantilever bem as mounted on the table of an
electro-wechaaical vibrator whose frequency cam be accurately controlled
with its input florce to the beima monitored by an accelerometer. A strain
gage attached to the bern provided a direct reading of the fammic:
stress,, correctable to a amzimun stress by the ratio (squared) of the span.
to the distance betwen the strain VW d the tree mi. The test arIvms-
mient is shown in FIgure 6. Two ustbods are available to detemnsn the
resonance frequency which, in this case would be the first nods. The vibra-
tory frequency of the input florce required to sustain a inz1mm respimmes, or
to beep the phase angle betweem the"e vectors at 900 vould be aem resiminin
indication. The second. mstbo& is to pluck the bernw gently and observe with
an oscilloscope the timed frequency traces of the decasyng strain pog sismal.

g -READING Stress-READING

C O U N T E A C C E LC 
O RET

ROMETU

0- CM

Figure 6. Test Arrangement for Cantl~ever Beams
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3.2.2 Test Results

The results are given in Table IV. On the strength of the agreement
between the observed frequencies and the calculated values, a complete
verification of the deduced frequency correction factors is achieved. That
the calculated frequencies are slightly lower than observed is a natural
result of excluding core contribution in the moment of inertia. The
differences are barely detectable and do Justify the simplified approach.
However, it is significant that the differences should occur in the direction
cited and not reversed. In the latter case, the bean deformation deviates
from pure bending depicted by Figure 54b and approaches the conditions of
Figure 54a in Appendix A. This was observed in the case of longer spans
with increased dynamic shear forces. As the shear stress exceeded a marginal
limit, beam sections began to deviate from the idealized coplanar condition
with a reduction in its true moment of inertia and to show a decrease in
resonance frequency. The frequency test offers, therefore, a method to
determine the maximum safe span which in full-sized sections, appears to be

16" cantilever. The same shear force is generated at longer spans in other

end conditions. For all plate sizes selected, this shear force will be found
to be well within the respective safe limit.
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TABLU IV RESONANCE FREQUENCY OF CANITILMVE% BEAMS

Cantilever Dampintl ;oe'ffi clent

Beams Resonance Frequency, cps ciCc

Observed
Sýection !3pan Calcu- by from decay G roAeup

5Aze in. fated Excitation curve

95-3 '* . 3 0.0o7'ý

?2. 6.2 46.2 o. 0064 o.006)

ill __9190. i.0 0.005-2

Size 38.2 38.2 0.0118)

4)+. 4.0.8 x

12* 16rt6 164.7 169.0 0.0041: 0.uL)2

130.0 l31. 0.00%
12 131. • 135.0 135.; 0.006( 0.00 " 6

'/8 127.0 1-28.6 0.00"10

75.4 7F .6 0.0094

73. 76.8 76.8 0.0097 oo0
75.8 76.,' 0.o08 _ _

151.2 1C1i.6 0.0058

10 149. 152.8 152.& 0.0048 0.00 .a .
___/______150.8 i•1.8 0.0066 ______

76.3 77.8 0.0090
14 76.3 77.8 77.6 o.ooAO 0.o08]

76.3 76.4 0.007. 1

*Ciit from 24" beams
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3.3 Extension of Cantilever Beam Tests to Damping Correlations -
A Size Factor

In ascertaining the resonance frequency by the second method discussed
in the preceding section, the decay trace provides a conveniently concurrent
basis for the calculation of the lumped system damping coefficient ratio,
c/cc. The results indicate that there is a significant variation between
sizes. The simple assumption of unchanged damping coefficient ratios in
dynamic modeling appears to be faulty and the lumped parameter represented
in Equation 1 (Section 2.5.1.1) is, therefore, preferred at equalized dynamic
stress. 11nisrequires that the damping coefficient ratio associated with each
specimen, full-size or scaled models, be accurately determined before a lumped
parameter is applied in fatigue tests. The following analysis correlates
damping changes to model sizes or scales.

3.3.1 System Damping

A comprehensive and illustrative study on system damping by Kerr and
Lazan is available in Reference 14 from which some necessary data were re-
introduced here. The results using cantilever beams will be applied to
clamped beams and plates, to illustrate the adaptability to panels of
somewhat complicated sections.

Figure 7, replotted from Reference 14, shows the results of system
damping D in terms of work done per cycle (in.lb/cycle) plotted against the
maximum bending stress. Relevant mathematical equations for the damping
work in a lumped but equivalent system are given in Reference 15 and are
written below. 2w

D P clY dt P y. (3)
dt

0

Where P represents the input force applied at the clamped end,

yo the amplitude of P, a sinusoidal function

Wr the resonance frequency,

c the damping coefficient

y the amplitude at any section, and

Ymax the maximum amplitude at the free end.
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On the assumption that the maximum amplitude, or deflection, has a linear
relationship to the maximum bending stress, it becomes evident that Equation
4 may be represented by a straight line with a slope of 2 as plotted in Figure
7. The data, therefore, indicate that (1) significant points A, B, and C
may be located where the specified linear relationship between deflection
and stress begins to weaken, and (2) below these points the damping coefficient
c is constant but assumes increasing values as A, B, or C is exceeded.
Furthermore, in replacing the amplitude (y...) by stress (am=), a modifica-
tion is introduced equivalent to dividing th abscissa dimensionally by h/i 2 .

Thus the thickness difference is effectively removed from consideration,
resulting in a single curve in each case with a common parameter c. This
dimensional change is also reflected in the ordinate scale. Thus by
comparing the damping work at points A, B, and C it will be found that the
readings become exactly in inverse proportions to p4, a condition that is
also indicated in Equation A5 Appendix A, where ( X 1 )4 is a constant in a
particular mode for a given beam or plate configuration. A normalization
process is, therefore, feasible if the relative abscissa locations at A, B,
and C could also be rationalized. This may be directly accomplished in a
dimensional analysis of the critical damping coefficient cc which, as
expressed in Reference 15 and many other textbooks, is:

cc j kW•

where k, the spring constant, carries the unit of force/displacement for a
lumped elastic system of total weight W. Inasmuch as transverse deflection
due to bending only i considered, the characteristic dimension of k is
essentially w I EI/wl or EI/ j 3 . Because c and cc must have the same
dimensions and disregarding common constants for the beams concerned, the
parameter c governing the abscissa positions of A, B, or C in Figure
varies therefore as (1 )+3/2 which the observed data satisfactorily confirmed.
For higher stresses such as at point I shown in Figure 7, the increased
damping coefficient ci can be referred to the dotted extension of the linear
base line through point "B" and calculated by proportionate increment in D
as indicated in the figure. A more ,significant indication is found in the
fact that upon normalization, all data points presented in Figure merge
into one curve as shown in Figure 8. Moreover, additional data given by
Kerr and Lazan in the same reference for an assortment of beam section- of
sandwich construction obeyed the same normalized curve shown in Figure 9,

differing only in scales and specific readings. The general shape is
therefore accepted in subsequent analysis and extension of linear conditions
will be shown as dotted lines for consistency. From the combined location
of points such as A, B, or C, a correlation of damping for different sections
and effective spans is obtained.

3.3.2 Damping Correlation Tests

In order to apply the Kerr-Lazan curve to current test results, a
change in scale expressions is necessary. While retaining the stress
expression in psi, but changing the system damping to force input in unit
of g's (which is a variable standard to be defined by the system weight
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per g in each beam) it must be realized that essentially the system damping
is being recorded on a unit-displacement basis because the work done is a
product of force and displacement. Consequently, the stress correlation
in current tests to locate points such as A or B must be reckoned after
correction to the same basis of unit displacement. Representative test
results as recorded are given in Figure 10 for cantilever beams in the 5/8
size honeycomb sandwich sections at 12" and 16" spans, correlation moints
are designated as A and B, damping coefficients ratios having been
established in decay traces at 0.0056 and 0.0094 respectively.

Observe that following the changes of c introduced in 3.3.1, the
damping coefficient ra~ios 0.0056:0.0094 should be in the same
proportion as (12:16)+3/2. A close agreement is obtained numerically.
For stress correlation of points A and B, it is necessary to convert the
respective readings at 4700 and 9000 psi to a unit displacement basis.

The cross-sections being the same, the comparative ratio becomes '4(00:
(9000)(12/16)4 or 4700:2860 which is also in reasonable agreement numerically
with (12:16)-3/2. For input correlation, the original factor of 14 is
now effectively cancelled, leaving a direct comparison of total input force
which is proportional to the span and actual damping coefficient ratio, or
(I )(c/cc). Thus for the experimental input readings 0.55 and 1.2 in
Figure 10, the ratio 0.55:1.2 is found to be quite close to (12)(O.006):
(16)(0.0094). In cantilever beam tests, therefore, a reliable method is
available to correlate damping coefficient ratios to size changes.

3.4 Extension of Cantilever Beam Tests to Fatigue Life Observation

3.4.1 Distinctions in Failure Location and Correlation to Sonic
Fatigue Strength

Besides verifying the frequency correction factors discussed in
Section 3.2, a clear indication is found in the results observed that (1)
adequate core rigidity prevailed in all sandwich specimens fabricated and
(2) in confining ultimate failures to the face sheets, a uniform tensile
stress was obtained corresponding to the material strength with an appropriate
stress concentration factor Kt. Without exception, not only were the
tensile fractures confined to the locations of maximum bending moment
at or within, the clamped section as shown in Figure 11, but the failure
stress averaged consistently 30,000 psi (peak) within a range of approx-
imately 20%. Although a failure becomes noticeable only after a time
duration has accumulated in the tests, it is the short term fatigue which
compares very well with the sonic fatigue strength shown in Figure 4 for
simple aluminum plates such as a face sheet. Therefore, insofar as the
strength is concerned, there is little difference as a result of the
nature of the loading imposed on the material. The stress, as lumped in
Equation 1 is indeed the criterion - providing adequate core strength is
provided so that failure occurs in the face sheet and not in the core.
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CANTILEVER SPAN CLAMPED END

CLAMPED END

Figure 11. Face Sheet Fracture in Honeycomb Section
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3.4.2 Illustrated Cases of Inadequate Core Stength in Sandwich
Structures

In addition to the stress criterion of the previous paragraph, a
frequency significance of providing adequate core strength in sandwich
structures can also be experimentally proven. A honeycomb sandwich beam
of the following proportion with a light core was used, Figure 12.

Face Sheet, aluminum; thickness 0.020"
Core, aluminum; density ý lb/ft 3

Total Weight; .006 lb/in
Cantilever Span 10. 5"; Arrangement shown in Figure 12a

The calculated resonance frequency is 222 cps based on a correction
factor of 0.834. The inadequacy of core strength is reflected in the

actual resonance observed at 191.5 cps, and also in the final failure con-

ditions shown in Figure 13. Similar failures of a brazed steel honeycomb

panel also with a light core, subjected to high intensity acoustical loading,

are shown in Figure 14 for comparison. Indeed a modeling of failures between

dissimilar structures is demonstrated. nh- significance indicated is

that inadequacy in core rigidity is not permissible in sound sandwich

structures.

3.4.3 Significant Differences in Honeycomb Sandwich Failures

In the case illustrated in the preceding section, based on the peak

loading observed immediately before the failure was initiated, the calculated

maximum bending stress in the face sheets is 8740 psi. The potential strength

is not, therefore, fully utilized. More significant, however, is the fact

that the ultimate load was not sustainable as it continued to decrease sharply

before a failure could be identified as such. The decrease in load is attrib-

uted to a rapid deterioration of damping for which a change from 0.0096 to

0.0078 was observed well in advance of any indication of the impending

failure. The nature of a core failure appears to be inherently catastrophic.

In contrast to the above, by confining failures to the face sheet in a

sound design, more bending resistance must be temporarily carried by the

core for increased system damping. This is indicated in Figure 15 for a

current beam specimen where the top curve is a normal decay trace and the

lower curve is derived from the same strain gage after the occurrence of a

failure. There is a slight change in frequency but the damping coefficient

ratio is raised many times over from 0.0079 to 0.12. Although such an

increment cannot be reckoned as a general rule, the fact remains that a face

sheet failure will not become catastrophic and allows ample time for inspection

and repair. A design standard based on full utilization of face sheet

strength seems to be the proper approach. In actual applications, investiga-

tion of core strength should be conducted for each of its two lateral axes.

In this report, transverse bending along the ribbon direction only ha. #fn

investigated.

29



z

CV1

eq HH

ZI
or' H I ~ Q)

z z

z I~ -

oz

LMH w

H 0

0z wI

0 w

C4

S-4

30



-END INSERT
**USED AS

SPACER

FRACTURES IN MIDSECTION
OF CORE EXTENDING OVER
ENTIRE WIDTH OF BEAM

VIEW AFTER REMOVAL OF END INSERT

Figure 13. Core Failure In Honeycomb Section
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(A)

(A) NORMAL DECAY TRACE, - CANTILEVER BEAM
76.3 cps, c/cc = 0.0079

(B) DECAY TRACE FROM SAME SOURCE AFTER FACE
SHEET FRACTURE

67.2 cps, c/cc = 0.120

Figure 15. Sample Excursion Traces
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3.5 Crack Propagation and Resonance Frequency in Fatigue Failure

The consistency in the behavior of all eighteea cantilever beaus is

sumarized in Figure 16 where the frequency change of each beau is plotted
versus the input levels. The frequency change is expressed on a perceatage
basis of the normal bean frequency. In the resultant curve there seem to

be a significant point where the crack in a face sheet may be, in fact,
initiated. As the crack propagates beyond this point, the change in resonance
frequency occurs at a different rate. This point is designated in Figure 16
as the knee, a mere 1 to 1-1/2 percentage below the normal resonance. It
is noteworthy that a recomendation of the sam percentage change in
frequency as a safe limit is containd in Reference 14 based on different test

procedures. Of primary importance is the indication in Figure 16 that a
fatigue failure is completed within an intensity range of input forces equiva-
lent to a level change of 5 dB only, reckoned from the initial crack at the

'knee' in the failure history curve to an ultimate realization of the accomp-
lished fracture. Therefore, it appears quite necessary to rely on cantilever
beau tests to establish an accurate reference of the fatigue strength.
Furthermore, the composite failure history curve also sustains the uniformity
in damping correlation obtained by merging all response points such as 'A',
'B', 'C', Figure 7, at one location as indicated in Figures 8 or 9.

Similar to the established damping criterion, the input force an a unit

displacement basis is normalized upon the displacement parameter v w V/I
modified by (c/cc) 1 "ue to the dynaic amplification involved. The Joint
paraneter becomes w /Ak 2 (c/cc) as numerically illustrated in Table V. In
Figure 16, proper scales of the input levels apply to respective sections at
indicated cantilever spans. Table V shove the calculated scale ratios
required for corresponding failure curves to merge together. The data were
actually fitted at slightly different ratios prior to the above deduction.
For beans of the same sections v and A will be comon. By substituting 13
by its proportionate quantity (c/Cc) 2 introduced in Section 3.3.1, the input
parameter is reducible to (Q) (C/cc) presented in Section 3.3.2. Figure 16
includes data from beams other than the indicated spans but corrected by
the required parmtric ratio, c/Cc's as tabulated in Table IV.

3.6 Nonlinear Response

3.6.1 Similarity of Cantilever Beams to Other Elastic Units

On the question of nonlinear response in an elastic plate element sub-
Jected to transverse bending variations, theoretical analysis is referred to
References 15, 16, 17, and 18 and to References 19, 20, and 21 for experi-
mental investigations. The presence of an induced axial force is generally
attributed to be the basic cause of nonlinearity. In a cantilever been such
a force does not appear to exist because one end is always free while the
other end only is constrained. Nevertheless, it can be shown that there
are induced stresses of varying magnitudes at different beae sections which
influence the bending stresses and promote a nonlinear relationship to
changes in transverse loading intensities. As sketched in Figure 12b for

34



rz~ p4

z z

0 44
Fz4 U02

0O0

0 -X4

*c
N]4

00C.

000

-44
0*n

0E- W) ~4

U00-
Z*

0* 0

z 0

0*35



04PL

4-)

4) 0)8H

36 H H '



the cantilever beam section dx, weight dW, at instantaneous amplitude y, the
dynamic forces acting on the rigid body system may be represented by vectors
T, and T2 , the resultants of uniform sectional stresses, and vectors Y and R
the inertial vectors for converting the system to a static balance such that
vectorially T2 + T1 + R a Y. It is observed that T1 is always greater than
T2 and becomes a maximum at the clamped end. The induced stress modifies
the bending displacement y and causes a nonlinear change in bending stress
much in the sam manner as an induced stress at constant magnitude (under a
given load) influences nonlinear response of beams and plates. Due to the
varying nature of T1 , which is proportional in magnitude to the displacement
y, the characteristic elastic shape in cantilever beams remains, however,
unaffected dynamically and a constant resonance frequency is maintained.

3.6.2 Experimental Data for a Clamped Clamped Beam, Damping
Characteristics

In contrast to a cantilever beam, the dynamic elastic shape will be
greatly modified in a clamped clamped beam if the axial tensile stress induced
by forces similar to T1 approaches a magnitude that can no longer be neglected
in comparison to the vibratory bending stress. An example of such a case
can be found in Reference 20 from which the pertinent data are replotted in
Figure 17 on the sam scales as Figure 9 for direct comparison of the
observed nonlinear changes attributable to variations in the damping
coefficient c. The increase in damping can also be investigated from the two
factors defining the damping work done. Representing the displacement factor,
the bending deflection coefficient 02 is given in Reference 22 as a variable
dependent of u, a complex function of the induced axial tensile stress.
Representing the forcing intensity, an equivalent bending stress coefficient
ý2 may be used. Both coefficients are plotted in Figure 18 a and equal to
unity in linear cases when u - 0. As nonlinearity becomes more pronounced,
the coefficients ý2 and 02 assume divergent values. Because the damping
work can also be expressed as the force per unit displacement, in the ratio
of coefficients •'2 over *2, a change in damping coefficient c is inherently
indicated which is given in Figure 18b. In the nonlinear response of Figure
17, the function u reaches a probable high of 6. From Figure 18, this would
correspond to a doubling of coefficient c or c/cc for a reduction of 6 dB in
dynamic amp•Lification ratio. In addition to a change in damping, their J $:-
a simultaneous change in elastic shape and a resultant increase in resonance
frequency In nonlinear response which must be taken into further consideration.

3.6.3 Resonance Frequency and Amplified Amplitude or Maximum
Dynamic Stress Variations

In Section 3.3.1, Equation 3 may be interpreted as an expression of
constancy in the ratio D/yo for a given input force P regardless of
response nonllnearity in the amplified amplitude ymax. By multiplying both
sidep of Equation 4 by Wr, an expression of damping power is obtained, £rwoc
Sc Y&M we. Rearranging and extracting D/y.. as a related constant if c
is unchanged,
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'sr 'r (6)

it is, therefore, observed that for a given damping coefficient c, the input
power is proportional to ym 1 wr2 . In such a fictitious nonlinear response
P frequency w, the input power will be P'w which must be equal to Fw or
yw2 where w is the nonlinear resonance frequency, P' the nonlinear input
force and y the maxima nonlinear response amplitude. The generalized
solution is therefore -

yw2 Constant, or

w2 = Constant where a is the maximum dynami- stress.

A graphical representation of the above equality is given in Figure 1'4
(from Reference 19) where 0 is an amplitude or stress corresponding to Yma,
and O'r the nonlinear amplitude or stress corresponding to y at frequency w.The line Joining Os and 0 'r will be dictated by the numricpl. relationsh~p
yw2 that requires a 4 to 1 amplitude change or -12 dB when w = 2wr. It'
conjunction with such necessary amplitude change, an apparent change in
spring constant is indicated for which a familiar modification in the forcing
function attributed to Duffing is -

P = ay + by 3 , where a and b are two constants.

With this mdification, Chu and Herrmann (Reference 23) calculated the
frequency changes which can be plotted as the accented curve in Figure a.,,
P varying sinusoidally. Sound pressure levels corresponding to P may be
indicated &long the ordinate scale at wr.

The increase in damping coefficient ratio presented in Section 3.6.2
must now be incorporated. An illustrative example is provided in Figure 20,utilizing data from Reference 20. The necessary correction is resolved as
the tabulated change in damping obtained from a reduction of amplification
ratio or a relative decrease in dB of sound pressure levels for constant
damping along the 12 dB per octave rule indicated above. These differences
may be compared with the expected reductions in amplification ratios, con-
verted to relative levels in dB in figure 18b.

3.6.4 Sinusoidal Versus Random Excitation Tests

In Figure 19, the amplitude at the point 0' drops very sharply to the
linear resonance curve that peaked at point On. ff the frequency is then
reduced from w to P. , a sudden increase of amplitude to point Or will be
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observed. This is discussed in Reference 17 ad attributed to phase mg3.e
changes in Reference 19. For rando excitation and response, the frequmacy

Q becomes the more significant because the net dimgag powr, represented

by the integrated area under the resonance curves, excludes the aesa betwen

Q and w . A separate curve for random excitation aa be formed, after an

appropriate number of points like Or have been obtained first in simasoidal

excitation tests. Inasmuch as the basic nonlinear forcing fUnction repre-

sented by Equation 6 in the preceding section is generally appllicble vith1ut

restrictive conditions, the resmlt•nt random frequency curve shown is Figure

21 may be employed under all conditions such as illustrated for the best fit

with data points from Reference 1. The use of sinusoidal excitation is

recommend•d as an essential step by virtue of a defiaitive indication in the

locations of frequencies Q .

3.6.5 Nonlinear Effect Due to Deficiency in Core Strength

As indicated in Equation A6 of Appendix A, the frequency of a

bean or plate element of honeycomb sandwich construction can be evaluated

on the basis of complete adequacy in core rigidity, subject only to a

weight correction factor demonstrated in Section 3.2 and verified in the

tabulated results of Table IV, Section 3.2.2. In the case of marginal

rigidity at a shear stress that is still within the strength of the core,

the expectation is a degradation in resonance frequency as shown by the

three beams in the full size sections at 24" cantilever span. While the

change in frequency is barely detectable, the extent of nonlinearity in

amplitude or stress response to load changes is much more severe. This

offers another reason for the advisability of testing with sinusoidal

excitation forces. For these beams, the results are shown in Figure 22,

plotted in the same manner as Figure 10. The correlation point B is calcu-

lated as before (Section 3.3.1) in addition to a reference check point S.

Through these two points the linear response line (dotted) passes. The

accented solid line, transferred from an established curve would represent

the anticipated primary response curve if the core rigidity remained

adequate. The actual response in this case involves, therefore, secondary

nonlinearity. The area between these curves indicates the effect due to

core deficiency. In comparison, the observed stress response for beams at

16" span in the same sections passes through the calculated linear check

points and the correlation point A without any indication of secondary
nonlinearity. As a further proof, a 12"-span was cut from the outside

end of each of two 24"-beams. The observed frequencies of these shortened

halves reverted to slightly above the theoretical frequencies. See T•able IV.

By reducing the dynamic shear force, the shear stress is held within

a safe limit and perfect adequacy in cere rigidity is again maintained.

Incidentally, the test also shows that the damage was localized to the

clamped ares and did not extend to the free ends where the shear forces were

less.
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3.7 Honeycomb Sandwich Panel Tests

3.7.1 Full size specimens, 41" x 28" plate almensions

3.7.1.1 Calculated Frequencies

The calculated resonance frequency on the basis of Equation 2, Section
2.5.1.2 is shown in Figure 23 for various modes defined by mods numbers a
for the longer side b, n for the shorter side a and the boundary co itions
C for clamped, and S for supported edges. Thus 1,18 would be the expected
first mode. In practice, supported edges are not physically achieved
unless accompanied by a slight yield in the clamping plates in which cae
the effective dimensions extend to bolt hole centerlines. Figure 23 shovs
the clamped mode frequencies in solid lines, supported mode at clamped
dimensions in dotted lines and extended dimensions (+2 inches to both b and
a) in broken lines. Mode number's a are plotted as ordinates for all fre-
quency curves at parameters n for each of the bou•mary conditions specified.
The theoretical resonance frequencies of Fig. 23 were defined from the data
of Fig. 5 using the techniques of Appendix A of Reference 33.

3.7.1.2 Test Arrangement

The test arrangement is shown in Figure 24 for the specimn mounted
on one side of a duct through which acoustical forces at controlled inten-
sities are propagated. The input sound pressure level was sensed with
three microphones spaced apart at less than 1/4 of the minim- acoustical
wave-length when sinusoidal signals were being used. If a truly progressive
wave is generated, identical sound pressure levels should be indicated. In
general,, this condition is likely uobtainable sad sigmiflcant chanags in
sound levels are expected because of reflected Waves at the duct termination.
Due to the fact that the pressure trough would be quite sharp, its effect on
pressure distribution upon the specimen surface my be neglected. For the
effective pressures acting as if uniformly distributed on the specMs, the
highest reading of the three microphones was therefore used. When specimen
vibrations contain higher harmonics resulting in significant distortions
in sound waves as indicated by the microphmes, the corrected harmonic
amplitude at the excitation frequency indicates the true effective pressures.

The strain gage circuit was the same as used in cantilever beau tests,
and gage locations in accordance with the designations of Figure 24&. Read-
ings were directly recorded as beading stresses in psi rum or peak.

When the acoustical excitation is by random signal, the three micro-
phone outputs are more or less even. Any one signal, microphone or strain
gage, may be selected to feed into a spectrum analyzer for a continuous
record and to feed into a probability density analyzer for indications
pertaining to amplitude distributions.
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Figure 24. General Test Arrangement

3.7.1.3 Modes Observed

The following analysis will indicate that the modes observed in each
specimen are neither simple modes defined in singular combinations of m, n
nor restrained in one of the classical boundary conditions. However,
multiple numbers in both m and n were identified for many modes existing
simultaneously at harmonically related frequencies. Thus the application
of Fourier's series in the analysis becomes completely relevant. While
the combined constraint can be created through the elastic properties of
the supporting elements, the harmonic relationship of the frequencies is
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greatly influenced by the overall aspect ratio of the original panel. The
choice of a ratio so close to 4-2 was unfortunate. The significance of 42
as an aspect ratio is given in Appendix C. The unfortunate result (from
a test viewpoint) of the many harmonic modes obtainable is that it becomes
virtually impossible to excite single pure modes. However, the subsequent
stress analysis shows that for such a panel aspect ratio a significant
reduction in stress is realized. This of itself could be of substantial
benefit in structural design. Unfortunately, this indication of potential
benefits accruable from panel aspect ratio of C2 was obtained at the
expense of relinquishing fatigue data for these panels. If an aspect
ratio of 1.8 had been used, the interaction of these harmonically related
modes would have been extensively reduced and the first mode response
would have been enhanced.

Examples of mode analysis are given in Figure 25 and 26 for full-size
specimens. Figure 25 shows the observed waveforms at 385 cps at an
acoustical excitation level of 138 dB re 0.0002 Mbar, analyzed into two
predominant amplitudes at frequencies of 385 cps and 770 cps. Each of
which can be further divided into component modes, - 1,2S or 2,1C at 385 cps
and 3,2S or 4,lS at 770 cps. Figure 26 shows the waveforms at 470 cps at
the same excitation level, analyzed into three predominant amplitudes at
frequencies of 470 cps, 940 cps and 1410 cps. The component modes are
2,2S and 2.5,1C at 470 cps, 2,3S and 3,2C at 940 cps, and 5,2C at 14l0 cps.
Observed frequencies falling between the theoretical values of m, n modes
in Figure 23 were assigned the fractional m value corresponding to their m,
n location on the figure (e.r. 2.5,1C). Note that to be sustained, these
modes require a higher order m, n mode with m an integer for excitation
(e.g. the 5,2C mode at 1410 eps excites the 2.5,1C mode at 470 cps). In
these multiple numbers for either m, n or both occuring at the same
frequencies, phase angles would be constantly but regularly varying as
displayed in the oscilloscope pictures in both figures. A summanry of all
modes detected in this manner is tabulated in Table VI from the two panels
tested. Inasmuch as the calculated frequencies curves are verified, the
third panel was not needed in model analysis.

3.7.1.4 Damping Coefficient Ratio and Frame Vibrations

The multiplicity in the number of modes excited at any one instant
gives considerable complexity in the decay trace. This complexity
does not permit a simple and accurate indication of the damping
coefficient ratio. The mode multiplicity is further complicated by
the frame vibrations which appeared to be in resonance at about 128 cps,
investigated through a separate strain gage attached thereto (see
Section 3.7.2.3). No coupling effect between the frame system and the
panel system was observed, however, in spite of the fact that at an excita-
tion frequency of 128 cps, the first panel mode with supported edges was
excited in coexistence with the first clamped mode at the second harmonic
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order of excitation. It is to be recalled that as a second order excita-
tion, the latter mode is self-excited and extracts no damping power from
the input energy (see Reference 15). The energy samation of all modes
must, therefore, be identical to the damping energy in whichever fundamental
mode [1,IS or I,IC] exists individually without complications. Because
of the displacement reduction in 1,1C mode, the damping coefficient c (but
not necessarily the coefficient ratio to critical c/cc ) becomes larger in the
1,1S mode.

Representative oscilloscope displays of frame vibrations, occurring
at the same time as panel vibrations in complicated modes, are shown in
Figure 27. By extracting an imaginary decay trace appropriate to the frame
frequency as shown at the top of Figure 27 and superimposing the sae over
the original traces, not only are the multiple panel modes easily
revealed, some phase reversals required in the frame trace can also be
observed. These reversals do not occur when the frame drives the model
panels at second or higher harmonic orders (see Section 3.7.2.3). It
appears, therefore, that the frame and panel are essentially two separate
elastic systems in simultaneous resonance without interference or amplitude
reinforcement. Both amplitudes are 90* in phase to the common forcing
vector whose energy is shared by the two systems. If the respective phase
angles are 90" and 270*, then the amplitudes are merely opposed or reversed
without upsetting the input energy distribution. The conclusion is that a
sub-structure need not be specifically designed to have a drastically
different resonance mode. The mounting of an electronic package or black
box at the area of maximum amplitude is, however, a different problem where
the input to the black box itself may become excessively large.

3.7.2 5/8-Size Specimens, 23.75" x 16.25 Plate Dimensions

3.7.2.1 Calculated Frequencies

The calculated resonance frequencies are given in Figure 28 in identical
manner as described in Section 3.7.1.1. Because the specimens are modeled
in the same aspect ratio these curves take the same forms as Figure 23
except for numerical changes in frequencies . In extending the boundaries
to bolt-hole centerlines for supported conditions, 2 inches are added for
each side, modifying the aspect ratio differently to result in a slightly
altered frequency curve shown in broken lines.

3.7.2.2 Test Arrangement

The test arrangement is identical to that given in Section 3.7.1.2.

3.7.2.3 Modes Observed

The modes observed are identified through the waveforms of strain gage
signals displayed on an oscilloscope and analyzed into component modes
pertaining to each harmonic order. An example is shown in Figure 29. Like
the full-sized specimens, each order is again a combined mode. Table VII
lists all modes so recognized which are represented by the data points from
two panels plotted onto Figure 28, the calculated frequency curves. The
third specimen was not tested.
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HONEYCOMB SANDWICH PANEL NO. 2, "5/8" SIZE

EXCITATION LEVEL 150 dB

at 528 cps

STRAIN GAGES

No. 4

NO. 4

NNO. 1

NO.1I

ANALYSIS: HARMONIC 1ST 4TH 5TH

FREQUENCY 528 2112 2640 cps
1, 1C 4,1 C 3,3S
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Figure 29. Sample Response Waveform and Analysis From a

Honeycomb Sandwich Panel
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By comparing Tables VI and VII together, it is noted that the same
modes are duplicated or successfully modeled. For example, the combination
of 1,1S and 1,lC mode in the full-sized specimens is also observed in the
5/8-size specimens in spite of the fact that in the latter panels frame
vibrations were excited by the acoustical forces, exciting in turn these
same panel modes of higher harmonic orders. The presence of frame vibrations
is indicated by a separate strain gage attached to a frame member whose
signal is shown in Figure 30. The lower curve shows the predominant frame
frequency, idealized into the artificial trace at the top of the figure,
which reveals the true panel modes at the 2nd and 4th harmonics when it is
superimposed onto the panel trace. It proves to be difficult, however, to
extract appropriate decay curves for damping coefficient ratio calculation.

A further significance derived from Tables VI and VII is seen in the
mode parameter product m * n for supported component modes. This will be
discussed in a subsequent section (5.3)

3.7.3 3/8-Size Specimens, 14.25 x 9.75

3.7.3.1 Test Arrangement

In view of the size reduction, it became expedient to use a different
mounting which closely simulated fully clamped boundary conditions. The
size of the opening, or the frame size, exposing the panel to acoustical
forces was slightly larger than the honeycombed section, extending the true
panel size to 14.25" x 11". The test arrangement is sketched in Figure 31,
employing acoustical forces generated through electro-dynamic speakers.

3.7.3.2 Calculated Frequency & Damping Coefficient

The frequency is calculated on the same basis as before, e.g., l,lC
mode at 1000 cps. The observed decay curve is shown in Figure 32, obtained
when the electrical input to the speaker was instantaneously removed. The
observed frequency is 990 cps and the decay rate corresponds to a damping
coefficient ratio c/cc of 0.015. The slight modulation is probably caused
by the heavy frame structure which is smoothed out and averaged for damping
calculation.

At this frequency range, it would be difficult to subject this panel
to the same acoustical environment as the larger panels. Because the
frequency correlation has been obtained and very little increment in stress
could be realized in this arrangement, further tests with 3/8 panels were
not conducted.

3.7.4 Mode and Response Correlation between Models

Apart from the general indications in Tables VI and VII that similar
modes were indeed obtained in the modeling experiments, detailed considera-
tions in fatigue analysis requires specific correlation in the respective
stresses and in the respective modes generated. Therefore, for each
combination mode, the stress component due to each individual mode must be
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Figure 31. Test Arrangement for "'3/8" Size Honeycomb
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Figure 32. Decay Signal From a Modeled Honeycomb
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ascertained in order to differentiate between the cumulative demage in each
case. The basic considerations as indicated by Equation 2 (Section 2.5.1.2)
for frequency correlation and Equation 1 (Section 2.5.1.1) for stress
correlation will be applied in the following cases.

3.7.4.1 Combined Mode: llC and 2,1S

Full-Size Panel 5/8-Size Model

Tested at 142 dB, 227 cpsa Tested at 150 dB, 528 cps

Freq. Equation: C8 noa k

Modeling Requirement: C3  . conmon constant for each
component

(W.R. : weight ratio)

Modeling Parameters

k . o.496 inch k2 - 0.39 inch

a1 = 28 inch a2 - 16.25 inch

= 0.1130 ,3 W - 0.534

f = 227 cps observed f2 - 528 cps observed

Calculated frequency ratio, .2 0.319 (0.534) (28)2 - 2.37f, (16.25) o.496) (o. M

Observed frequency ratio, 528 2.32
227

These ratios hold true for all other modes at higher harmonic orders.
Observe that the weight ratio factors cannot be retained at a fixed mglni-
tude. Whereas the frequency ratio ceases to follow inversely as the apparent
geometric scale factor of 8 to 5 in this case, the inclusion of the weight
ratio correction is clearly indicated as a necessary modeling parameter.

Stress Analysis, full-size panel Stress Analysis, 5/8 size model
142 dB 150 dB

Center of Plate, Sinusoidal response, Center of Plate - 3300 psi, rws
rms - 1100 psi

1st order response = 3100 psi
Linear Conversion to 150 dB, - 2760 ps

(best sine wave fit roFigure 29)

Stress Equation: &2 (A.R.) (Modeling Basis; See Appendix A)
:6 A k
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Modeling Relationship: 0 = comn constant

p = comn pressure intensity

A = comon area, as fabricated

Modeling Parameters

dl= 0.502 inch 12  = 0.324 inch

kI = o.496 = 0.319

a, = 28 a2 = 16.25

(AR) 1  = yet unknown (AR) 2  - yet unknown

O = 2760 2 - 3100

Assume (AR) 2 = (c/cc)l from cantilever tests
(AR)• (c/cc)2 =r ar

= = 2.26
1 (16.25)2(0. 32;4)( 2.26)(.4)2

Calculated stress ratio = r 2 = (.3 (2 8 4 ý(.5002) = 1.18

Observed stress ratio = = 1.12

Note that if the model stress was left uncorrected into a sinusoidal wave,
the observed stress ratio would be 1.20. In any event, the deviation from
full agreement is within 5% which is only 1/2 dB off. Therefore, either
reading may be used for subsequent analysis into its component stress due
to vibratory excursions in either 1,1C mode or 2,1S mode at the same fre-
quency. The locations of the strain gages permit response observation in
n-modes only which, in this case, are stronger than corresponding m-modes
of the same order along the other principal axis. If a single m,,lC mode
prevailed, the edge stress should be almost twice the stress at the center.
As this is not so observed, a simultaneous mode reiS must also be in exis-
tence where the stress would be zero at the edge and high at the center;
hence tVe ne-essity of the following analysis as illustrated.

Thus the given conditions, observed with a model specimen, are:

Excitation Frequency and Intensity: 528 cps at 150dB or 0.13 psi peak

Center Stress: 3100 psi rue in combined lIC and 2,1S mode
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Edge Stress: 1350 psi ms, responding to 1,1C only, zero in 2,1S mode

Let Ocrepresent the edge stress due to a component load intensity PC
at 528 cps, and (AR)c be the resonance amplification factor at a
damping coefficient ratio (c/cc)c.

With 0/6 = 0.0726, (from Reference 24 ; See Appendix A)

a = 16.25 in., the clamped span

A = 0.024 in 2

k = 0.319 in.

d = 0.325 in.

Then (b = 1350 x 1.414 = 1910 psi peak

And PC (AR) 191)1.o2)(.9)(319) =0.752 1 psi peakAndPc AB~ =(0.0726)k16.25)(16.25)(0.325)

Possible answers are paired below:

1,1C MODE - Response & Amplification Ratio

(Ao100 80 60 50 40 30 20

Pc 0.00752 0.0o94 0.0125 0.015 o.0188 0.025 0.0376

At the same time, the center stress could be determined by changing 0/6

from 0.0726 to 0.0349 for a component magnitude of 650 psi rms, leaving a
difference of 2450 psi rms as the other component in m,lS mode.

Let as represent the center stress due to component load intensity ps
at 528 cps, and (AR) be the resonance amplification factor at damping
coefficient ratio (cTc,),.

Then as - 2450 x 1.414 = 3460 psi peak; 0/6 = 0.0506 (From Ref. 22;
See Appendix A)

Based on a = 23.8 + 2 12.9 in.

2

And ps (AR)- (360)(0.024)(O.319)(0.319) 3.11 1 psi peak

S(0.0506)(12.9)k12.9)0.325)
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Possible answers are paired below:

2,1S MODE - Response & Amplification Ratio

(AR) s 100 80 60 50 40 30 20

Ps 0.0311 0.0388 0.0519 0.0620 0.0778 0.104 0.155

Though these component modes are considered in different boundaries,
the actions are necessarily simultaneous. For this reason a uniform ampli-
fication ratio prevaills in addition to the known condition ps + Pc = p =
0.130. It appears, therefore, that the following combination is the only
solution applicable to the conditions at 150 dB.

PC = 0.025 psi, (c/cc) = 0.015

Ps = 0.104 psi, (C/Cc) = 0.015

While it appears that the damping coefficient ratio in a supported system
should be much lower than that in a clamped plate, the observation is made
that in this case the supported constraints can be realized only at the
expense of elastic deformation in the form of twisted clamping plates or
distorted frames, resulting in additional damping work required and a
relatively higher lImped coefficient ratio. By considering this clamped
plate in 5/8 size to have the same damping ratio as a 3/8 size specimen
(Section 3.7.3.2), a slight error of little significance is probably incurred.

3.7.4.2 Simple Mode, 2,18 Predominating

Apart from the combined mode discussed above, there are many other modes
of higher complexities but inducing much lower stresses. Agreement in
modeling parameters is nevertheless obtained as illustrated below.

Observed data corresponding to 140 dB excitation levels are as follows:

Full Size Panel 5/8 Size Model

Specimen #1 at 185 cps Excited by frame vibrations at
the 4th harmonic order of directCenter stress = 270 psiexiaonfqucy
excitation frequency.

Edge stress= 170 psi Specimen #1 at 125 cps, 4th
Specimen #2 at 195 cps harmonic = 500 cps for partial

resonance only and low amplitude
Center stress = 350 psi center stress = 40 psi
Edge stress = 110 psi Specimen #2 at 133 cps, 4th

harmonic = 532 cps for full
resonance center stress = 430 psi
edge stress = 60 psi
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The difference between this mode and the previous mode is the relative
weakness in 1,1C mode and the enrichment in many other modes at still higher
orders. For simplification, idealization to a simple 2,1S mode may be made
by transferring and adding the observed edge stress, which would have been
zero, to the center for the maximum plate stress. The full size panel
average of 450 psi rms as compared to 490 psi in modeling relationship follows
very much the same ratio as 2760 to 3100 in the previous illustration. How-
ever, important significance is indicated in the frequency changes and the
stress magnitude attained.

In the modeled specimens, this mode was generated in self-excited
vibrations for no energy loss with the mode frequency remaining the same as
before. The slight frequency variation (528 to 532) is of an experimental
nature or due to differential temperature changes. The input energy at a
different frequency was largely consumed in frame vibrations so that by
extrapolation to the previously illustrated level at 150 dB the indicated
stress at 1550 psi was well below the directly excited response. In the
full-sized panel, the mode frequency was 227 cps, where in combination with
1,1C mode, the energy absorbed by the edge constraints was partially
compensated between the two modes resulting in lowered damping work necessary.
However, as a directly excited and predominantly 2,1S mode, the additional
force required to overcome damping is available only at a reduced frequency.
The observed reduction to 185 or 195 cps is expected from the generalized
relationship P w = constant and the average at 84% of the theoretical mode
(227 cps) is compatible with other results under similar environment. (See
Section 5.1 and Fig. 50).

It is interesting to note that the idealized center stress for any
m,lS mode can be obtained from any combined &,,lC mode by adding together
the component stress readings at the center and at the edge for a given
excitation level. This condition was indeed supported by the results of
such a summation in the data obtained. As one component appears to improve
nonlinearly with soft spring characteristics, the other component must vary
with hard spring characteristics in order to .aintain the sum at an appro-
priate level. The equalivent total response remained in fact linearly de-
pendent on the excitation pressures applied.

3.7.4.3 Simple Mode, 3,1C Predominating

This mode at 550-600 cps is observed with full-size specimens sub-
harmonically generated as a second order within an excitation frequency
range of 263 to 286 cps. The modeled panels in the same mode would be at
1500 cps, too high to be excited as a dominating component. All observed
stress readings at the center gages are in agreement and indicating 240 to
250 psi at 140 dB. The average edge stress of 400 psi serves to substantiate
the clamped boundaries on the basis that the aspect ratio of the middle
element in this 3,1C mode would be in excess of 2.5, and the bending stress
coefficients for the center and edge locations would approach one to two as
the readings so indicated. To calculate these stresses, due to a sblf-
excited mode, a determination of the effective forcing intensity is required
in addition to a still unknown damping coefficient. However, by assuming
that the maximum displacement y is related through the factor y w2 = constant
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(see Section 3.6.3) the amplitude of the self-excited mode at twice the
frequency at full power may be reckoned at 1/4 as large, i.e. the equivalent
intensity p' equals 1/4 p. Using a bending stress coefficient of 0.73 from
Appendix A corresponding to b/a - 2.5 for the center element in this
case, the stress equation is:

(o.7i){1.4 =12i125)k _ (1.414)S= 6 (0.024) (0.496)e-

With p = O.04" psi at 140 dB, p' = 0.010; the amplification ratio (AdH) is

35.'y which appears to be within the proper range as estimated in the combined
mode illustrated elsewhere. It is demonstrated that in higher modes, the
-tress is always so significantly reduced that its damage contribution
becomes increasingly less and less.
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4. EXPERIMENTAL OBSERVATIONS IN CURVED PLATE MODELING

4.1 An Investigation of Boundary Conditions and Resonance Response

To analyze the vibratory motions of a curved plate such as ABCD shown
in Fig. 33 as a representative element in a fuselage section (see Ref. 26)
a ring section may be used in the same analogy as a beam is to a flat plate.

1

A-

I 1

RI 
I

I .
SECTION 1-1

SHOWING i NUMBER OF 1

COMPLETE WAVES PER
CIRCUMFERENCE, AND 1=7rR/i

Figure 33. Outline of Cylinder (Fuselage Section)
Vibration in a Breathing Mode

For ring modes, the resonance frequency equation as given in Reference 15 is

r a i 2  2 C(7fr = 2-• r# 1--AR- i + cpsý

If the number i of complete waves per circumferential length is large, it is
permissible to simulate ring segments as stiffened flat beams either in
1/2-wave lengths or full-wave lengths with respective end conditions as
specified in Table VIII. The observation is that the stiffening effect
prevailing at increased modal frequencies may also be expressed as an increaqed
moment of inertia or as a shortened effective span. To account for the
boundary conditions of a complete plate, additional stiffening due to axial
constraint must be added. For the observation of dynamic effect between
two axially adjacent elements, a preliminary test was undertaken with a two-
panel configuration to determine the extent of possible interactions.
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4.1.1 Curved Plate in Two-Panel Configuration

The center clamp was one inch wide and solidly clamped on both sides
of the specimen plates. The aspect ratio of each element as a divided
half of the full plate was maintained at b/a - 1.525 with b = 24.5, 15.25,
and 9.15 in. respectively for the scaled models arbitrarily selected as
full-size, 5/8, and 3/8 sizes. As one-half of the plate, or one element
panel, was lightly but sharply struck once, strain gage signals from
corresponding locations in each half were displayed simultaneously on an
oscilloscope to show the characteristic waveforms. The samples given in
Figs. 34 and 35 are for full-size and 5/8 size specimens respectively.
The indicated frequencies of 271 and 446 cps are found to be within 3%
of the expected scale ratio at 5 to 8. The use of 3/8-models was termin-
ated because the frequency would be too high and stress level too low for

meaningful fatigue tests.

Besides indicating the stiffening effect, the real significance lies
in the modulation between the two elements or in the transfer of dynamic

energies between the two panels having nearly equal but not identical
modal frequencies. The true decay rate follows the envelope shown in

each figure yielding a damping coefficient ratio of 0.0016 for the full-
size specimens and 0.0017 for the 5/8-models. In spite of the extremely
low damping, the observed stress in each case under the maximum acoustical
forces available was not high enough to warrant continued tests in this
configuration. However, within the frame work of the discussion of fre-
quencies and length factors in Paragraph 5.1, the results do indicate a

consistency in damping ratios which in conjunction with high frequencies
point to the fact that for the curved elastic element, the length factor

is significantly reduced (because of the high frequencies) and approaches
simply supported boundaries (because of the low and uniform damping).

Furthermore, in the transfer of energy between the two halves, a modifi-

cation in fatigue contribution appears to be taking place due to the
indicated manner of stress variations. These may possibly be additive

to the Rayleigh distribution that was the basis of fatigue cumulation

used in the Miles-Miner (References 6 and 8) theories. In order to

attain test objectives directly, the center clamp was, therefore, re-

moved resulting in enlarged test specimens at the dimensions given in

Table II (Section 2.7). After this change was made, the two original
halves of the 5/8 scale plate vibrated in phase as shown in Fig. 36, modu-

lated jointly at a frequency equal to that expected of a flat plate. The

enlarged full size plate on the other hand, was excited in a higher mode
such that the two previously divided halves remained out of phase. In this
case, however, the energy transfer previously evident with the center

clamped installed was clearly not shown in Fig. 37. The modulation was
cosmmn to both halves and was again due to the flat plate mode.
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NATURAL FREQUENCY AT 271 CPS

SIGNALS FROM
STRAIN GAGES

NO. 1-

4 TRANSFER OF

-- ENERGIES

NO. 2 " .

(A) -

10 MSEC I ,FULL-SIZE" CURVED PLATE

SPECIMEN IN 2-PANEL CONFIGURATION,
STRAIN GAGES LOCATED IN THE

50 MSEC-"I"- • CENTER OF EACH PANEL

SAME SIGNALON ANO.. _

COMPRESSED CALCULATED
TIME BASIS DECAY

ENVELOPE
FOR c/cc = .0016

(B)

Figure 34. Decay Signals From a Curved Panel
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CURVED PANEL, "5/8" SIZE IN 2-PANEL CONFIGURATION

FREQUENCY = 446 cps

STRAINGAGES

NO. 1

TRANSFER OF
ENERGY

NO. 2

"DECAY ENVELOPE FOR
c/cc = . 0017

10 AULLISEC
TWO PANEL
CONFIGURATION

NO.3
il I 41l I.

• ,s ..... TRANSFER OF ENERGY

NO. 4 , A AA-* Ahl WAW.,.- -J -- i

-[ _ 1..__ _ _ _

Figure 35. Decay Signals From a Curved Panel
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STRAIN 
i h 20 MILLISEC

GAGES N

NO. 3
DECAY ENVELOPE FOR
c/cc .0055
MODULATION

NO. 4 
FREQUENCY = 47 cps

FREQUENCY = 249 cps

"5/8" SIZE CURVED PLATE IN
ONE PANEL CONFIGURATION
(CENTER DIVIDER REMOVED)

Figure 36. Decay Signals from a Curved Panel

4.1.2 Curved Plate In 1-Panel Configuration, Test Arrangement

The curved plates now measure 33 x 24.4 x .10* inches in full size

with a 36" radius on the 24.4" side, 21 x 15.25 x .024, and R = 22.5" in

5/ 8 -size, and 13 x 9.15 x 0.024, R = 13.5 in 3/8 size. Observe that the

aspect ratios vary slightly which must be accounted for in all frequency

correlations. The test arrangement was essentially the same as for flat

plates with the exception that more strain gages were used as indicated in

Fig. 24b.
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SIGNALS FROM STRAIN GAGES

PIP ---- mnmWJN!V]imruNIN•us,,u --- U .
I~ -CALCULATED

DECAY ENVELOPE
FOR C/Cc = .0016

NO. 2

50 MILLISEC

NATURAL FREQUENCY AT 252-266 cps

K0OMILLISEC

[ PHASE OPPOSITION
AT NATURAL
FREQUENCIES

MODULATION AT
3 0 cps

(B)

"FULL-SIZE" CURVED PLATE
SPECIMEN, CENTER DIVIDER
CLAMP REMOVED

Figure 37. Decay Signals from a Curved Panel
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4.1.3 Frequency Correlation in Curved Plate Modeling

The observed frequencies of the curved plates in each size are smn-
marized in Tables IX and X together with line sketches of the vibrating
element(indicated by node lines)in each configuration. From these results,
the stitfening effect of curvature is calculated in terms of the ratio of
its frequency to that of a flat plate of the same linear dimensions with
equal mode numbers m and n. Significant agreement is obtained in the
stiffening effect so defined as well as in frequency dependency on size
factors. It is, therefore, indicated that modeling of stiffening effect
of curvature has evidently been achieved. In the higher modes, addi-
tional conmarison of current results from full-size plates with data
extracted from Reference 27 is shown in Figure 38, using the product of
mode numbers as a lumped argument. It appears from Figure 38 that a key
is being obtained in reducing the nonlinear characteristics of stiffness
in curved plates to a function of the subtended angle which is shown to
be the control parameter identifying each curve. To obtain frequency
modeling of curved plates, the subtended angle of the curvature is, there-
fore, maintained constant. As in the case of flat plates, either true or
adequate models may be used in other linear dimensions.

The same stiffening effect of curvature is also illustrated in the
curves of Figure 39. In this case the separation distance or ratio between
the calculated flat plate frequencies (determined as for Figure 23) for the
plate geometric data of Table IX and appropriate curved plate data for the
same mode numbers represents the stiffening effect. It is noted that when
the flat plate curve for n = 1 is displaced to the right at the designated
ratio of first mode stiffening as defined in Table IX so that the 1, 1
point coincides with the observed curved plate 1, 1 frequency, the trans-
posed curve (dotted line-Figule 39) intercepts the accented lines for
curved plates. Thus at the point marked F, a common condition exists
where the mode could be either 2,1 or 2,3 (See Section 4.3.2) depending
on the prevailing stiffening effect over an unstiffened condition at Fl
or F3. No modes m,n lying above and to the right of this transposed flat
plate n = 1 curve could be defined on the curved plates.
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TABLE IX FUNDAMENITAL 14DDES IN CURVED PLATES

Notminal 
Scale 

Ratio

1 5/8 3/8
Item

Dimension's, inch
Plate Thickness 0.064 0.040 0.024

Long side, b 33.0 21.0 13.0
Short side, a 24.5 15.5 9.3
Radius, R 36.0 22.5 13.5

Aspect Ratio b/a 1.347 1.355 1.397

Calculated flat
plate in clamped (29.2) (45.3) (74.5)

m edges

Observed Modula- 30 50 77
0 tion Rate (beat
t frequencies on curved plate)

Curved Plate 153/154 249 426
258
26o

Stiffening Effect 511 5.12
5. I 5.125.52

= Freq. Ratio

Flat Plate at Maintain same outside

Curved Platedieso.

go Frequency Increase thickness h to he)

e = (Freq. Ratio) 2 = he3

Y h3•

_ _ _ _ he

Approximation only:
Curved Plate at Consider flat plate to have

SApparent Flat 1,3 mode and determine a3 ,
distance between displacement

Plate Sizes nodes.
t Se Actual curved element will be

/ bounded by stress nodes at
distance %e. ae < a 3 , for a
slightly higher frequency.
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TABLE X HIGH ORDER MODES OBSERVED IN CURVED PLATES (FULL SIZE)

Frequencies

Mode Designation Flat Curved

m, n Plate Plate Ratio

2,3

156 260 1.67

m~n= 6

3,3

182 280 1.54

m-n -- 9

4,3

229 338 1.48

m-n=12

278 388 1.4o

m. n=15
"4,5

405 54o 1.34

m. n=20O

465 580 1.24

e.n=25
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.4.2 Damping Analysis in Modeled Plates

Damping coefficient ratios are derived from decay curves as shown
in Figure 40 for a full-sized panel and in Figure 41 for a 5/8-model plate.
In the tabulated results given in rable XI, a general agreement in first
mode damping coefficients is indicated not only between plates of the same
size but also between model sizes. The observation is, therefore, that all
control length factors which determine the frequencies as well as damping

are effectively simply supported (See Section 4.1.1).

TABLE XI DAMPING CHARACTERISTICS IN CURVED PLATES

Mode i,1 2,3 3,3

Frequency €ic Frequency Frequency

Specimens cps " cps cps

No. 1 (152) 260 282

Full
No. 2 153 0.0062 258 28]

Size

No. 3 154 0.0068 26o 0.002 286

No. 1 249 0.0055 X 480

Note:
5/8 No. 2 258 0.0060 X 480 2Nt 9

Slze • =152
Size92 2

No. 3 260 0.0064 X
not
tested

No. 1 426 0.0030 X

3/8 No. 2 x x x

Size
No. 3 X X X
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CURVED PANEL, FULL SIZE; NO. 2

STRAIN GAGE NO. 1

- --------- -- ------- (A

.... .... SHOWING ALL SIGNALS
"S I GE N. 3ARE IN PHASE AT 153 cpsSTRAIN GAGE NO. 3 10ME

10 MSEC AVERAGE C/Cc 0.0062

FREQUENCY = 153 cps

STRAIN GAGE NO. 1

(B)

STRAIN. GAGE NO. 2

Figure 40. Decay Signals From a Curved Panel

80



GAGES NO. 1 "5/8" SIZE CURVED PANEL
NO. 3

FREQUENCY = 258 cps
NOTE AMPLITUDE
MODULATION

NO. 2

(A)

NO. 1 "5/8" SIZE CURVED PANEL
NO. 2

FREQUENCY = 260 cps

INDICATION OF CROSS-
MODE MODULATION

NO. 3

(B)

Figure 41. Decay Signals From a Curved Panel
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To determine the damping coefficient at a higher mode is an endeavor
that has not been extensively covered elsewhere. The effort being presented
below appears to yield a reasonable result but limited to only one higher
mode. The procedure is shown in Figure 42. The initial step, Figure 4 2a,
is to ascertain the decay envelope (dotted) for the first mode at 154 cps.
If repeated blows of identical intensity are applied, then the same decay
envelope could be transferred to Figure 42b or 4 2c at the appropriate time
scales as noted, adjusting amplitude scales for a best fit for variances
in forcing intensities. The decay envelope at the next significant mode,
apparently 260 cps in this case may then be extracted from the outside
traces which varied within ±10% of each other for an average c/cc of 0.002.
Compared to the damping coefficient of 0.006 at the fundamental mode, this
implies a shortened control length in a numerical relationship that is
compatible to the correlation determined for cantilever beams (Section
3.3.1). However, the stiffening effect is different which accounts for the
relatively low frequency in the higher mode.

4.3 Stress Correlation Between Models

4.3.1 First Mode Response

The observed data for the fundamental mode are shown in Figure 43 in
the form of stress variations at various sound pressure levels for which sep-
arate scales are provided for each panel size in order to show the curves in
the same figure. A significant difference exists between the respective ratio
of the stresses at the edge and at the center. A change in mode shape had
occurred which could be attributed to the curvature size. For the apparently
different behavior in the modeled plates, additional data must be obtained in
an extended dissertation. The following analysis can be based, however, on
the center stresses which were the dominant readings in all specimens tested.

In the modal analysis of Table IX it has been shown that the curvature
effect is to raise the first mode resonance of a reference flat plate of the
same dimensions by a particular stiffening ratio. A simple approach in
stress analysis is to calculate the maximum bending stresses in the flat
plate and convert it to curved plate stress by considering the same stiffen-
ing effect as a corresponding change in the moment of inertia,-stiffened as
it were and raised in magnitude by the square of the frequency ratio.

For example, under a static peak pressure p, the equation of bending

stress in an unstiffened plate is:

Sf-= 0p (a/h)2 ,

and for the stiffened or curved plate,

S -- p (a/h) 2  I = P (a/h) 2 (Frequency Ratio)- 2

c;1c =
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STRAINCGAGE NO. 1 FULL-SIZE CURVED PANEL

0.1E CSTRAINGAG NO.NO.D3

ui FREQUENCY = 154 cpsiEWEM ~ iUIIC/CC = .0068

(A)

MIli p U E ~ I N~ I W U l l E M O D ULATIO N D UE TO O THER

SSEC STRAIN GAGE NO. 2

(B)

____ 0._1_SEC__STRAIN__GAGENO. AVERAGE c/Ce . 002

0. SE STAINGAG NO 2FOR 260 cps MODE
(DECAY AMPLITUDE

0. SE STAINGAG NO iEXCLUDING 154 cps
.2 S IN G AG E NO . EN V ELO PE)

STRAIN GAGE NO._2

Figure 42. Decay Si,-nals From a Curved Panel
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The peak dynamic stress, to which equation (A3) in Appendix A also
applies, is simply this same (static) bending stress multiplied by an
amplification ratio and becomes a modeling criterion., Thus at 120 d3,
p w 0.0042 psi peak for the fundamental mode, the moment coefficeint at
the location and orientation of the relevant strain gae is 0.0349
(See Appendix A) and the bending stress coefficient is 0.21 (w 6 X 0.0349).

Full-Size Panel 5/8-Size Model

P - 0.21 0 - 0.21
a - 24.5 inches a = 15.5 inches
h - 0.o64 inch h = 0.o4o inch
c/cc = 0.0065 c/cc = 0.006

Frequency Ratio = 5.1 Frequency Ratio - 5.4

Calculated Stress a 495 psi Calculated Stress - 455 psi

Observed Stress a 450 psi Observed Stress - 450 psi

The agreement confirms the large reduction of bending stress in a
curved plate due to the stiffening effect. At a sinusoidal excitation
level of 150 dB, a maximum stress of 10,000 psi is indicated which would be
far short of reaching fatigue within a reasonable test period.

4.3.2 Response in a Higher Mode, Full-Sized Panel Only

In the following illustration, it is intended to demonstrate that a
calculated stress is in ready agreement with an observed value if the
stiffening effect is predetermined. The fatigue expectancy can then
be simply reckoned on the basis of known material properties expressed
in constant amplitude S-N curves.

The observed data in the next higher mode at 260 cps for the full size
plate are given in Fig. 44. The mode may be designated either as 2,3 or
2,1 depending on the strength of the principal stress. Referring to Fig.
39, the 2,1 mode would be reckoned along the dotted line curve drawn for
the stiffened flat plate as a complete unit. If the elements between node
lines are considered individually, the controlling length factor becomes b/2
which is now the shorter dimension. Referred to an unstiffened flat plate, the

same mode may also be the 2,3 mode stiffened to the accented solid line for the
curved plate. In the latter case, there are two displacement nodes within the
outside edges and the middle strip may be singularly considered as a flat
plate element stiffened to a lesser degree at a parametric mode number m.n
of 6 formulated in Table X and in Fig. 38. The control length beomes
merely a fraction of a.

The stress analysis follows, - c/cc = 0.002 (See Fig. 42 for full-
sized specimens only, in 2,3 mode- where the central portion vibrating as an
element measures very nearly 7" long on the shorter dimension.)
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BENDING STRESS FULL-SIZED
±PSI CURVED PANELS
PEAK AT 260 cps

/-/

5000 0

CENTER STRESS
IN 2,3MODE /G<

2000 SPECIMENS c,

0 A

-, SPECIMEN NO. 1
IN 2.1 MODE

200

100 -

50

20 -

10 -
SOUND PRESSURE LEVEL IN dB RE 0. 0002"p bar

I I I I , I I l

110 120 130 140 150 160

Figure 44. Vibratory Stress in Curved Plates
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f= p (a/h) 2 ; - = .73 a = 7 displacement node distance

a 3 = 7 x .55 = 3.9 stress node distance

(between the inflexion noints of a ýlamped beam)

The Cactor 0.ýv for detpnnining the inflexion point distance is obtained from

Reference 13. The effective aspect ratio for this mode component is

24.5/3.0 or larger than 6. The bending stress coefficient as listed in
Appendix A is 0.73. Stiffening ratio = 1.67 (from Table X)

At 120 dB sound pressure level,

Sc = (0.73)(0.0042)(3.9/0.064)2(1/1.67)2(1/0.004) = 1020 psi peak

Against this value, the observed readings from two specimen panels
were 1350 and 760 psi averaging 1055. The analytical value is, therefore,
reasonable.

On the other hand, if the mode was 2,1 the calculated maximum stress
would be: - at a stiffening ratio of 5.1 (from Table IX) in frequencies
and an approximate stress coefficient $ = 0.57 which is averaged from
the nearest end conditions listed in Appendix A.

=c = (0.57)(.0042)(16.5i/0.064) 2 (i/5.l)2 (L/.0].3) = )4'0 psi

Against this, the observed reading from the third specimen was only
160 psi. This is in fact expected because the maximum stress location in
this case would be at the center of the short side and not at the actual
gage location. Using appropriate coefficients from Reference 24 or 25, the
corrected bending stress at the center of the short side should be close to
three times the observed value at the center of the long side. The resulting
stress at 480 psi would then compare very favorably with the calculated
result.

The observation can now be made that in curved plates, an additional
degree of freedom is available in the stiffening effect. In the above
illustration, the 2,j mode dominated in two specimens and 2,1 mode dominated
in a third. Due to the reduced stiffening, the maximum stress in trje2, 3 mode
is higher than inthe 2,1 mode as data so indicated. However, as excitation
forces are increased at higher sound pressure levels, the plates would tend
to be stiffer by virtue of inherent hard-spring characteristics; and mode
2,3 improves to 2,1 but the stress either decreases by comparison or changes
nonlinearly. Under this condition no fatigue due to bending stress can occur
within a reasonably long test period.

4.3.3 Changes in Still Higher Modes

Two of the higher modes were observed at 283 and 338 cps for the full-
sized specimens with composite curves shown in Figs. 45 and 46. The results
indicate that as excitation pressures are raised, the maximum stress
increases nonlinearly in a general sense as both the mode complexity and
the stiffening effect vary simultaneously. Thus one mode may appear to be
more linear than another without necessarily having a nonlinear spring rate
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BENDING STRESS

±PSI PEAK FULL-SIZE CURVED PANELS

STIFFENED 3,3 MODE

AT 283 cps
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10K
-o

e00
015K - l

2K o

1000-

500 - /o

200

100- SOUND PRESSURE LEVEL IN dB RE 0.0002 bar
I , I I ,I , ,

120 130 140 150 160

Figure 45. Vibratory Stress in Curved Plates
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BENDING STRESS
±PSI PEAK FULL-SIZE CURVED PANELS

STIFFENED 4,3 MODE
AT 338 cps
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Figure 46. Vibratory Stress in Curved Plates
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in either. By superposing Figures 45 and 46 for these two modes over
Figure 44 for another mode, it is observed that the peak amplitudes appeared
to be approaching a common limit at about 155dB. The implication is
that at high acoustical intensities, many modes exist at the same time, with
amplitudes limited in each component mode and apparent nonlinearities
attributable to the presenc'e of many modes. The possible potential for
mode improvement (i.e., altering the primary response mode) with
increased stiffening effect giving reduced stress is found in ohe of the
three specimens tested as shown in Figure 46 at 141 dB. In changing from
4,3 to 4,1 mode, the principal component was sub-harmonically excited in
the form of low amplitude modulations carrying highly enriched harmonics
at 4,3 mode frequencies. Indeed in many other modes, frequent up and
down changes in response amplitudes were of this nature.

One other example of such mode improvement is provided in the wave-form
analyses given in Fig. 47 for a full-sized specimen. Depending on the
specific strain gage signal of reference, many concurrent mode components
can be identified. Fig. 4 7a shows a good resonance condition at 156 dB for
a nominal 5,3 mode at 386 cps, with some second harmonic component at 772
cps but little modulation at 193 cps as a subharmonic. However, at 141 dB
in Fig. 47b, considerable noise is generated at 194 cps due to the un-
stiffened flat plate response in the 4,1 mode. Insignificant strain in-
dications are shown at 194 cps. Returning to 156 dB again, Fig. 4 7c shows
the enriched harmonics of 193 cps, identifiable as a subharmonic of no
less than five different modes existing simultaneously in the response.

4.4 Response to Random Excitation

With a specimen retained in the test fixture, discrete frequency excita-
tion was replaced by random signals of limited bandwidth. The spectrum
analysis of this signal is shown at the top of Figure 48 a which indicates
that the bandwidth extended essentially from 60 cps to 500 cps with a
moderate amount of extraneous high frequency noise presumedly caused by
the accompanying airflow. The amplitude distribution in terms of rms
sound pressures was ascertained by means of a probability density analyzer
in conjunction with an X-Y recorder. The result shown in Figure 49 con-
firms the normal distribution assumed in the theoretical analysis by Miles
and many others whose solutions were introduced in Section 2. The spec-
trum analyses of all five strain gages in use are shown in Figures 48 a and
48b recorded through 1/3-octave band filters.

Significant indications in support of the analyses presented in
References 6 and 19 may be obtained from these random response data. For
the condition of equivalent rms stress, the deduced requirement is that a
sinusoidal excitation level should be in excess of the random spectrum
level by AdB., expressed as

Ad~ - 2 + 10 log Af, where Af = (c/cc)(2fr) for each resonance modeat frequency fr

The observed results based on the maximum stress are given in Table XII,
along with the calculated results obtained from the above expression for
the two modes indicated.
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Figure 47. Characteristics of Response Waveforms
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RECORDED ANALYSIS IN 1/3 OCTAVE BANDS CURVED PLATE, FULL SIZE NO. 3
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Figure 48a. Spectra of Random Noise and Response

92



RECORDED ANALYSIS IN 1/3 OCTAVE BANDS CURVED PLATE, FULL SIZE NO. 3
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Figure 48b. Spectrum Analysis of Response
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TABLE XII RANDOM - SINUSOIDAL EQUIVALENCE

SfLISOfIDAL EXCITATION for

RANIOM EXCITATION SAME rms STRESS RESPONSE

3PEC- STRESS SOUND EXCESS over MDDE
1/3 Oct. BAND TRUK READ- PRESSURE RANDOM

BAND LEVF1 LEVEL ING LEVEL SPECTRUM., FMMUWCN
AdB1

cps dB dB +psa dB I cps
O bs. Cal.

140/180 141 125 780 129 4 5 154

224/280 139 1320 440 121 1 2 260

The agreement in AdB, obtained here, is within 16B. However, larger
variations are not intolerable. The calculation of spectrum levels in
random analysis in the first place incurs uniform averaging in the band-
width concerned and is not generally a precise indication. Secondly, a

permissible variation in the damping coefficient ratio can easily absorb

this difference. At higher modes, the second factor alone becomes

increasingly large numerically.

Insofar as random fatigue is concerned, it has already been indicated

(Section 2.4 and Fig. 4) that the sinusoidal equivalent stress level, or
sound pressure level must be in excess of an equivalent level for equal
stress by WBd (- 10 log a/e) if failure time is to be reproduced. AdB2

can be added ýo dB1 for fatigue considerations.

Another significance cannot be allowed to pass unnoticed. In

Figures 48 s and 48b considerable amplitude changes occur in the strain

gage indications within the 140/180 cps band. The implication is that

the fundamental mode at 154 cps in this case has a tendency to disappear

or not be excited. This is advanced as an explanation of why this

particular mode was overlooked in one out of three specimens tested.

In any event the stress analyses here readily establish that the expected
stress in a fundamental mode of curved plates my not be produced. At the

same time the maximum stress occurring in any one of many higher modes

is very much lover than the first mode stress. The frequency and stress
magnitude depend on which of the higher modes dominated the response
amplitude. Unless the thickness of the modeled plates of this program
vere further reduced, a fatigue duration test vould not be justified.
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5. DISCUSSION

5.1 Vibratory Modes and Stress Response Related to Fatigue

While the experimental results presented in Sections 3 and 4 indi-
cated satisfactory correlation in the parameters governing the response of
the specimens tested, either as individual elastic units or as modeled
components, the attainment of long term fatigue remains dependent on the
magnitude of the stress induced by the acoustical forces applied. In this
respect, the proven strength obtained in a shorter duration, even though at
a mechanically recreated cyclic stress, also correlated with existing data
of acoustically induced fatigue for the same plate material in simple
geometric configurations. The problem is reduced to defining the vibra-
tory modes prevailing in whatever configuration is being investigated whereby
the induced stress can be predicted for known fatigue expectancy. From the
test results obtained significant factors in the purely geometrical dimensions
have been found which greatly modified the modes obtainable in an acoustical
environment and accounted for the stress reductions observed. For this
discussion, the basic equations of motion in a linear response may be utilized.

Considerinp- a vibratory particle in any beam configuration
restricted to one degree of freedom, in equation A4, Appendix A,

4 2
d y pAy =

4 + 0
dxE

the implied condition is a simple bending phenomenon. Insofar as the deflec-
tion y is linearly related to the forcing intensity p , the frequency
solution of w is independent on the amplitude of y . In most cases ,the
acoustically applied pressure , p is essentially uniform over the entire
config•nration whose linear dimensions are significantly less than the wave
length of the acoustical forces at mode frequency w . A convenient
constant X is given in Reference 13 from which w can be calculated;
thus: 2

4 pA wjr

r El

and = a constant for a given configuration and boundary conditions,

where I is a significant length factor. For a uniform plate of rectangular
configuration, the frequency fr in the m,n mode is reduced to fr . C h / a2
where C is the dimensionalized constant given in Fig. 5, for unity modes
m and n. For simply supported square or rectangular plates ,C is unchanged
whenever m = n. The resulting mode frequencies are shown in Fig. 50 with
substantiating data from Reference 28. Some energy loss to the supporting
frame due to friction is indicated in the slight reduction in frequency.
This frequency reduction becomes progressively negligible in higher modes.In A
log-log plot, the idealized relationship for no energy loss follows the cal-
culated line and is unaffected if the mode number m is converted to a normal-
ized length factor A, inverted in the figure for convenience to indicate
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A a a/a. The equality is, therefore, transformed to A2 Wr = constant. A
second change in the lofarithmic scale given at the right-hand side trans-
forms the readings to A and converts the product A4 4 into another
constant. The relationship is synonymous to yW - constant, where y,
the dynaaic amplitude, is made to be proportionairto the fourth power of a
length factor. This fact in a linear response at a constant damping co-
efficient ratio c/cc (See 3.6.3) demonstrates the amplitude reduction in
higher modes, where the length factor being a function of the modal
distances decreases for increasing mode orders. For other plate conflig-
urations, the initial decrease from a fundamental mode is even more rapid
at lower modes but approaches the illustrated conditions as limiting cases,
Figs. 23, 28, and 39.

Failure to generate response in the fundamental modes, for vhatever
causes there may be, invariably results in greatly decreased stress responses.
The basis of fatigue similitude at a uniform stress required to correlate
scale ratio to duration change becomes quite difficult to realize unless
each and all the higher nodes can be completely defined. In the honeyomb
sandvich panels, the higher modes were so closely related harmonically to
the fundamental mode due to the aspect ratio selected that high mode
responses became the more dominating. In curved plates, the stiffening
effect in the higher modes is much less than the fundamental mode. And at
the curvature selected, the generation of a truly fundaental mode is over-
shadowed by the relative ease in the formation of higher modes. In this
regard, the observation is made that a constancy in y w 2 is equivalent to
uniform g2 units in power spectral densities as well as in total power.
The most likely node combination is predicated upon an equal energy distri-
bution when randomly excited. Thus, from the strain gage responses of
Figs. 48a and 48b, a more or less uniform stress in each node is obtainable
when the pressure spectra are equalized at the same level as illustrated at
125 dB in Table XIII.
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TABLE XIII RANDOM RESPONSE AT EQUALIZED FORCING SPECTRA

1/3 Octave qualized
Spectrm Stress Response Response per Mode

Band
Level Mode

ape rox Reference r are uscy
dB psi psi IN .

140/180 125 780 Table XII 780 154
224/280 790 790 260

extrapo- 870 286

280/355 1240 lation
from 870 338
Table XI_

355/450 830 830 395

F 450/560 _____ 830 ____ 830 540

Determination of Dampint Coeffi !jent and Siz, Factor

A decay rourve for' damping coefficient calculation is found to be very
effective and convenient to use. The validity and accuracy of the retult
depend only on the linearity between displacement and stress obtainable
at low amplitudes regardless of the manner of excitation. Thus strain gages
may be at any location and all decay signals may be averaged for better
results. Fig. 51 is given here to facilitate calculation. From the correla-
tion of damping coefficients with the span of the beam a size factor can be
determined, indicating a scaling law that the damping coefficient ratio
decreases as the model size is decreased. For flat panels, therefore,
fatigue data on smaller models must be modified by damping characteristics,
known beforehand or determined as part of the test. For curved plates.
however, if the dominant modes occur in simply supported elements, no appre-
ciable change in damping coefficient needs to be considered.

5.3 Mode Numbers m, n and Parameter Product m-n

From all available information and the data collected in this program,
a lumped argument in the form of the product of mode numbers m and n emerges
as a very useful reference parameter. It appears warranted to continue this
investigation in other cases involving model changes for further substantiation.
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In the frame supported plate of Fig. 50, the elastic energy can be
expressed in terms of a frequency ratio based on the calculated resonance
frequency corresponding to a given mode defined by a and n. It will be found
that for equal parameter product m n, this ratio remains sensibly constant
and approaches unity for no energy loss at higher modes. If knife edge
supports are used, such as in Reference 3, the energy loss is reducible to a
minimum and is negligible in all modes.

When the conditions at the supporting edges are complicated as in
practical structures where deformations in many ways prevail, the response
mode is predominated by the components in simply supported constrainment.
The results in Tables VI and VII can thus be compared in isolated m,n S
modes to reveal a better modeling correlation in parameter products rather
than in the complicated compositions pertaining to each mode. For example,
the response of the full size specimen at the second harmonic of the excitat-
ion frequency (2 x 216 cps) is predominantly a 3,1S mode as indicated in
Table VI and Fig. 23. For the modeled specimen, though excitable at the
same forcing frequency, the comparable response should occur at a frequency
2.37 times (see p.61) higher, or corresponding to a harmonic order of 4.7 in
this case. The closest indication was provided at the 4th and 5th order (of
216 cps) in Table VII as a 1.5,2S and 3,1S modes respectively. The same
lumped argument of 3 is obtained. It is therefore, indicated that as the
modes become more complicated, there will be many other combinations that can
share the same argument, rendering it imperative in modeling studies to ana-
lyze each mode completely and to define the elastic response in detail. It
must be added that no coupling effect in excessive amplitude change has been
observed in this test series.

By extending the use of the mode number product as a parameter defining
the stiffening effect in curved plates, the result given in Fig. 38 appears
to offer a highly useful guide in the delineation of the potential for
altering the response mode by curvature. It would be desirable, however,
to secure additional data to substantiate the indicated relationship by
varying the parameter dimensions that were held constant in this rather
limited test program.

5.4 Application of Beam Test Results to Panels

In view of the fact that the first mode response in all test panels was
unobtainable because of the joint influence of the prevailing aspect ratio
and edge conditions, a calculated comparison between the beems in honeycomb
sections and the anticipated panel strength is presented as follows which
can also be applied to curved plates. On the basis that the proven fatigue
strength at approxinmtely 10,000 cycles is 30,000 psi in the face sheets,
a raim spectrum level in the acoustical enviroinent can be readily estab-
lished to met a service requirement as defined by a given life duration.

Example: Equivalent fatigue duration a 109 cycles with these kwmo
parameters:
Pael Size 28" x 41 x I" Honeycomij all edges clamqpd
Radius of gyration - 0.496 in. Area of Face Sheets-
0.0214 in 2 , d - 0.505 Inch
Frequency Correction Factor -/ 8 - 0.43 based an Table
Damping Coefficient = 0.01 I11

considered here as typical (see Table IV)
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Calculations: Let sinusoidal pressure at fr be P 24)

Max. Bending Moment = 0.073 P a2,0/6 -0.073 (Reference

Max. Bending Stress = 0.073 P a2 (d) (A.R.), from p.61
I

(0.073) (28)2(0.505) (1)=(0.024) ko.496)e ko.o2)

Reduce the fatigue strength of 30,000 psi at 104 cycles to 5700 psi
at 109 cycles by extrapolation of S-N curve shown in Fig. 52 as the bending
stress limit and solve for

P - 0.0233 psi peak or 135 dB which is expected to be within
the linear response range.

Calculated mode frequency - (27.1) (42) 12 (0.43) - 250 CPS (Fig. 23)(26) (26)= 5 p(F.23

AdB1 = 2 + 10 log (0.01) (500) = 9 for equal stress

AdB2 = 4 (average log log S-N curves) for equal damage

Random spectrum level = 135 - (9 + 4) = 122 dB at 250 cps

The proof required is to secure a maximum stress reading of 5700 psi at 135
dB in this mode. If it is extended nonlinearly to 15,000 psi at 150 dB, it
may be used as a test level to secure an accelerated fatigue life at 200,000
cycles. At 250 cps, this takes 13.3 minutes. If the test stress is set at
10,000 psi, the fatigue duration will be 133 minutes. If a higher mode
prevails instead, the stress will be greatly reduced. A much extended test
is required which is not considered to be within the originally programmed
scope for defining applicable modeling techniques.
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6. CONCLUSIONS AND RECOMMENDATIONS

Stress correlation is the critical parameter in modeling
for acoustic fatigue. True models with exact geometric scaling in
all elements are not necessary for achieving the required stress
correlation. Adequate models are obtained by maintaining the same
aspect ratio and modes for the specimen and models. For curved plates
the necessity of maintaining identical modes between specimen and
model requires that the radius of curvature must be scaled in the same
ratio as the linear dimensions defining the aspect ratio. The
frequency and stress of adequate models then vary at predetermined
magnitudes with a functional relationship to damping, amplitude, and
cross-section (thickness) geometric and material parameters.
Nonlinear effects are dependent on excitation levels and may be
present in both specimen and model or may appear to be different
between the specimen and models. These nonlinearities are amenable
to resolution. In general, a prerequisite to sonic fatigue tests is a
knowledge of the nonlinearity induced by damping and amplitude for each
specimen. Data of this type are obtainable from non-destructive
vibration tests. The experimental data confirms the application of
basic procedures formulated by Miles, Palmgren, and Miner. The
requirement for random excitation in the use of modeling techniques
for sonic fatigue prediction is thus minimized.

6.1 Honeycomb Sandwich Construction - Preliminary Tests and

Modeling Procedures

6.1.1 Configuration Integrity Test

The structural integrity of all honeycomb sandwich
sections should be determined by obtaining specimen failure with
mechanical vibratory tests. The use of cantilever beam specimens in
a minimum of two span lengths suffices for this requirement. The
reasons for the requirement are: (1) To ascertain that failures are
confined to tensile (bending) fractures in face sheets, and (2) to
compare the maximum available low life-cycle strength in complete
stress reversals (R = -1) with an applicable S-N curve.

6.1.2 Damping Coefficient Ratios

In testing the configuration integrity, the damping
coefficient ratios should be obtained as a function of amplitude prior
to the determination of fatigue strength. These ratios, suitably
corrected for span changes, are required for Panel modeling parameters.

6.1.3 Modeling Procedures

The modeling parameter in frequency is based on the equation

fm,n " Cm,n kj ri re

am,n
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fm,,n is the frequency of full-size or model panel at mode numbers

m and n in dimensions b and a respectively, cps

C,'n a frequency constant common to all panels at the given mode

m,n, in-lb-sec system

k, the radius of gyration of the section, inch

weight of face sheets
, a weight factor equal t total section weight and

amn the short dimension (in b x a) inch

The only restricted constant is Cmn for which the aspect

ratio of the specimen and model panels must be kept the same and with

the panel edges identically constrained. All other variables may be

chosen in suitable proportions.

The modeling parameter of dynamic flexural stress is based on the
e quat ion: a

equat a2  (A.R.) a a 2  d (A.R.)
-mn 2 where

h 2  6Ak 2

Gmax is the maximum reversible bending stress in a fundamental mode

defined in length factor am,n;

d, distance of extreme fiber to neutral layer of honeycomb section

whose total face sheet area per unit width is A aLt radius of r•yra
tion k,

h, the thickness of an equivalent rectangular section;
1

(A.R.), an amplification ratio = 1 at damping coefficient
ratio c/Cc; and

0, a maximum bending moment coefficient appropriate to the mode

defined by amn. (Ref. 24 and 25)

By examining these two parametric equations jointly, it can be seen

that if all dimensional factors are in proportion to scale ratios in true

modeling and the weight correction is neglected, the frequencies would be

raised in a scaled (down) model for the same stress if the amplification
ratio remained the same. Because the last condition is generally not ob-
tainable, it is unnecessary to use true models. In adequate modeling, by
maintaining the same aspect ratio, the frequency and stress in each mode

of the specimen and the models are allowed to vary at predetermined mag-
nitudes. These modeling parameters are applicable to isotropic panels by
correct interpretation of the terms k, X and A. For a constant gage
panel, the sectional width is given a unity value: Thus, A oc h; k och;
and Ak2 Oc h 3 , where h is the panel thickness. X is of course unity.

The modeling parameter between sinusoidal and random environment is
based on the Miles' solution and depends on the conditions specified below:
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(a) For equal ras stress observation - The equivalent sinusoidal pressure
level is AdB1  above the spectrum level at mode frequency fr in
random excitation. This level change in decibels is given by the
equation AdB1 = 2 + 10 log Af where Af = 2(c/cc)fr

(b) For equal fatigue or damage stress in mode fr - The equivalent sinusoidal
pressure level is Add 1  + Ad D2 above the spectrum level at mode
frequency fr in random excitation. The level change in AddB2 is
given by the equation AdB2 = 10 logIo/eI where e = 2.72 and
ctis average slope in a conventional S-N curve on log-log scales,
i.e.

= log (Life Cycle Ratio),or= log n2 -log nI with sl>s 2 and n2 >nI.
log (Stress Ratio) 0log I -log s2

If more than one mode is involved, then the damages due to all
relevant modes are cumulated together in accordance with Palmgren-Miner
Rule. However all modes which are not contributory to the stress at a
particular location must be excluded. In this respect, it is evident
that different damages will result due to: (1) variations in the model stres&
response and (2) variations in the composition of a random environment.
The model response is best determinable by sinusoidal excitation tests
and can be verified for as many excitation levels as desired. A specific
level is then selected for fatigue test. The lifetime durations between
models can be readily compared with an acceptable S-N curve.

The nonlinearity parameters are dependent on the specific excitation
levels under consideration. In general, a prerequisite knowledge is
required for each specimen or model on the extent of the nonlinearity in-
curred and on the frequency range of respective "Jump phenomena" (best
obtainable with sinusoidal excitation forces), before a long range
fatigue relationship can be established. Data of this program indicate that
a well designed honeycomb sandwich structure based on the tensile strength of
the face sheet is predominantly a vibrating body with linear characteristics.
Unless the core is deficient in shear strength or rigidity, nonlinear
response is probably negligible even in random considerations. However,
with undersized cores the failures would be catastrophic in nature; a
contingency that has been ruled out of the current applications.

6.2 Curved Plate Configuration - Modeling Procedures

6.2.1 Definition and Limitation

The curved plate is defined here as a stiffened rectangular flat
plate unit element with linear dimensions a x b and bent to a radius R
in one direction only. Although a lumped argument was introduced involving
the product of mode numbers m and n that appeared to correlate well with
data from this program and one other source, potential independent and/or
interrelated effects of thickness to radius, thickness to length, length
to width, and width to radius ratios have not been specifically considered.
The following procedures are applicable within these limitations.
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6.2.2 Aspect Ratio and Radius of Curvature

The modeling requirement is that both the linear dimensions
defining the aspect ratio and the radius of curvature are to be scaled in
the same ratio, i.e., a, b, and R are the essential modeling dimensions.
The subtended central angle for the curvature is the same in all cases.

6.2.3 Frequency Parameter and Stiffening Effect

For each mode the stiffening effect of curvature is the same. The
stiffening effect is defined as the ratio of the frequency of the curved
configuration to that of an unstiffened flat plate. The variation in the
stiffening effect with mode numbers appears to follow the relationship
indicated in Figure 38, for which a lumped argument is introduced as the
product of mode numbers m and n for the two sides. Frequencies of
the referenced flat plate, unstiffened, are calculated for each mode
desired on the same basis as illustrated in Section 4. The plate thick-
ness h is, therefore, a parameter dimension and need not be necessarily
scaled. Because of the stiffening effect of curvature, it would usually
be desirable to scale down the thickness parameter more than by the
scaled model reduction in order to maintain important model frequencies
within a desirable frequency range for the tests. Observe that in this
varied degree of stiffening effect, the fundamental and higher modes are
no longer harmonically related as in unstiffened flat plates, even for
an aspect ratio of 1.4 as demonstrated in Section 3.

6.2.4 Equivalent Flat Plate and Stress Parameter

An equivalent flat plate designates an imaginary flat plate of
the same linear dimensions but with an increased moment of inertia such
that its mode frequency is the same as the curved plate. The increase
in moment of inertia is, therefore, proportional to the square of the
frequency ratio which reflects a corresponding decrease in bending
stress in the equivalent flat plate or the curved plate.

6.2.5. Fatigue Consideration Versus Instability

If a comparison is made between the decrease in bending stress in
curved plates and acceptable S-N curves, it would be realized that the
accrued increase in fatigue life would be more than adequate on a
time basis to offset the increase in mode frequency. This is illustrated
in Figure 53 for the worst condition in which the slope of the given
S-N (log-log) curve is much steeper than most materials within an
average fatigue duration range. For a curved plate, moderately stiffened
by curvature so that the mode frequency is doubled, the reduced stress
would be only 25% of the original value. The fatigue extension in life
cycles is 1000 times at the same frequency or 500 times in time-duration
based on the calculated strength of the unstiffened flat plate. In
other words to maintain the same fatigue strength on a stress basis, it
would be permissible to allow a 2/3 decrease in the true section modulus
in the curved plate. In reducing the rigidity so drastically it is
suggested that this would come very likely under an instability
criterion which was not investigated in this program.
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6.3 Recommendations for Additional Tests

In fatigue under a random environment, acoustically or otherwise
induced, the question appears to be a definition of the environment
itself rather than on the mechanics of failure. Data presented in this
report are in satisfactory support of the application of Miles, Palmgren-
Miner cumulative fatigue hypothesis. In this respect, the use of power
spectral densities or spectrum levels in dB per cps is recommended for
the definition of acoustical environment in lieu of octave band levels.
This definition is also applicable to stress response which is more specific
than the overall reading usually taken. Concurrently, it is emphasized
that nonlinear response is better revealed with sinusoidal excitation
tests than with random signals. A recommendation is also made that the
concept of using models for sonic fatigue predictions be extended to
establish modeling parameters for anisotropic panels, e.g. corrugation
stiffened, or stiffened single faced panels.

6.3.1 Curved Plates

The application of a method using acoustical excitation to resolve
the question of increased stiffening in curved plates has been demonstrated.
In order to consolidate the findings illustrated in Figure 38, where the
stiffness parameter is the subtended angle of curvature, it is recommended
that investigations be conducted on at least three more parametric changes
to supplement the existing curves. Academically, if the specimens include
one plate configuration at a subtended angle of 180e, with axial ends free,
the result obtainable by this method should be in agreement with several
published treatises on incomplete circular rings where the minimum subtended
angle is usually 7r , e.g., References 29 and 30. In this connection, it
must be noted that the subtended angle, held constant in this program,
might be a complex function in itself of other characteristic ratios such
as thickness to radius, thickness to length, or thickness to width.
The latter two ratios may be compounded in turn by the aspect ratio.

6.3.2 Flat Plates

In order to resolve the question of the influence of aspect ratio
on plate modes, particularly in the reduced stress at 1.4 aspect ratio,
it is recommended that further verification be obtained by extending
the investigation to cover a wider range in aspect ratios. A suggested
range for aspect ratio would be from 1.1 to 2.5. Better control of edge
restraint and uniformity of specimens and models could be obtained by
using flat plates (aluminum 2024) on supported edges. It is anticipated
that higher modes could then be generated separately for a better
evaluation of damping characteristics.
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APPENDIX A

BASIC BEAM THEORIES APPLIED IN ANALYZING HONEYCOMB SANDWICH CONFIGURATIONS

1. Bending Rigidity and Stress

The extreme cases in which a honeycomb sandwich construction deflects

in resistance to transverse loads only are sketched in Figures 54a and 54b.

Sections of width dx along the longitudinal length are shown as isolated

elastic units in exaggerated proportions under the action of external

shear forces V, the bending moments being deleted for clarity. In Fig. 54 a,

the two face sheets deflect individually but essentially in the same

flexural mode. Both compressive and tensile stresses in bending are 2

induced in each face sheet for a total bending moment resistance of 2EIf a

In Fig. 54b, the face sheets bend as a unit with plane sections remaining

plane at all times. It is, therefore, clear that in the latter case, a

simple bending phenomenon in face sheets is depicted for a resistive moment

Mo = EI1. 1 d 2 y/d 2 x where 1-1 represents the neutral axis of the entire

section. For a honeycomb sandwich section as dimensioned in Fig. 54 c the

moment of inertiq Il.1 of the face sheets is given in the equation

1 2 bt3F b c t -2

l- 12  2 21

= 2 (If + b t jc/2 + t/212) (Al)

The first term in the bracket, being much smaller then the 2nd term is

usually neglected. In other words, the bending rigidity in a honeycomb

section rests predominantly in Eli.1 and is a maximum when adequate strength

is built into the core enabling an element such as 1234 to maintain the

coplanar requirement of the face sheet sections. When this condition is

fulfilled, the static bending stress co is given by the following equation

and distributed in the manner shown in Fig. 54d.

MO d

In the above equation, the static bending moment Mo is frequently expressed

in the form Mo = p'p a 2 where p is a uniformly distributed pressure, a is

the shorter span of a rectangular plate a x b; and P 'is the moment

coefficient as given in References 22 and 24. A condensed listing is

shown below for clarity because of the notatiomal variations involved.

The coefficients employed elsewhere in this report are accented.
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Figure 54~. Simple Bending Configurations
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Bending Moment Coefficient _P' 1

Simply Supported Edges All Edges Clamped .
(From Ref. 22) (From Ref. 24)

b/a Mx Max. My Max. .Mx max my max.
center .. center of

center of plate acenter of plaedge 'b edge a "'

1.0 0.0479 0.0479 0.0513 I
1.2 0.0616 0.0501 0.0639 0.0299 0.0554 0.0228
1.4 0.0753 0.0506 0.016 0.03e*9 0.0568 0.0212
1.6 0.0862 0.0493 0.0780 0.0381 0.0571 0.0193
1.8 0.0948 0.0479 0.0812 0.0401 0.0571 0.0174
2.0 0.1017 0.0464 0.0829

0.1250 0.0375

From the substitution of o'p a 2 for Mo in eauation (A2), it is observed
that the bending stress o* is linearly proportional to the pressure
intensity p. In dynamic loading the spectral pressure intensity q varies
sinusoidally as in the expression q = p cosw t at a maximum value equal to
p. The maximum dynamic bending stress is readily obtainable from this equa-
tion by considering the maximum amplitudes as derived from a lumped mass
system, ao2= c/c or a='a (A.R.) 

(A3)2 c/cc

where c/cc represents a damping coefficient ratio and (A.R.) stands for
the amplification ratio ( = 1/2 c/cc).

The maximum dynamic flexural stress is simply the amplified maximum
static bending stress Or@ . A direct expression of the latter in the
form ao=" p a 2s/j 2  is freouently used for a uniform plate of
thickness h, P now becoming a stress coefficient having a value of
6 0' . The values of stress coefficient P also depend on the aspect
ratios and end constraints. In Reference 25 many curves can be found
delineating its values in specific cases. A condensed listing is given
below with accented values indicating those that were used in this report.

Max. Bending Stress Coefficient P
Simply Supported,j Clamped on One Edge

b/a All Edges Simply Supported on Remarks
3 Edges

1 0.29 0.50 Readings off curves
from Ref. 25.

1.4 0.47* 0.67* *Average 0.57 used in
2 test example, p. 87

2 0. 61 0. 72

3 0.71 0.73
6 0.73 Erot reading.

.. . .. Extrapolatedr
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Careful distinction has to be exercised in employing the coefficients of
bending moment 0' from References 22 and 24 and of bending stress P
from Reference 25.

An additional variation is found useful in the substitution of A k2
for the moment of inertia term I1-1 where A is the sectional area whose
radius of gyration is k. The general expression of the maximum dynamic
flexural stress is therefore

S- P p a2 d(A.R.) (A3a)

6 A k2

for a bending fiber at distance d to the neutral axis.

2. Shear Rigidity and Resonance Frequencies

In the application of equations Al and A2, the prerequisite condition
is emphasized that there must be adequate core strength in shear to sustain
the bending rigidity in the sandwich structure as being bounded by undis-
torted plane sections. In order to verify the extent to which this oondition
is fulfilled, the resonance frequency solution to the general equation
Governing elastic vibrations is utilized. If the observed resonance
frequency agrees with a calculated theoretical value, then adequate shear
rigidity prevails.

The general equation (Refs 13, 15, 18)
d4y wA 2

EI 4 +-yw o (A4)
dx g r

indicates that the second term represents a vector due to the inertial force
at the beam section dx which must, therefore, include the weight of the oore

carried. In other words, the effective density w is no longer the density
of the face sheets only. To the solution4

,2 Ir 1 EI g

wA 4 (A5)

derived in Reference 13, a correction term must be added as follows:

I E(ri) g (face sheet weight)•r =.... I4 (total weight)

wheie (\Xf) is a k=on constant for the given configuration.
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APPENDIX B

A RE-APPRAISAL OF HONEYCOMB CONSTRUCTION AND ITS

STRENGTH CONTRIBUTION IN SANDWICH CONFIGURATIONS

ITNRODUCTION

In this report, the hypothesis has been used that in sandwiched
honeycomb structures, core failures would be considered catastrophic for
the reason that structural integrity is considerably impaired whereas
face sheet failures may be detectable, arrested, or otherwise repaired
without the los1 of a structural component. The design of the sandwich
is, therefore, based on the conception that ultimate failures are confined
to face sheets. To insure that adequate strength is built into the core
which is usually hidden from view and practically bars normal inspection,
this analysis is presented as an aid to core selections. For illustrative
purposes, aluminum cores will be used and are composed of hexagonal cells
with the width across flats in the direction WW defined as the cell size,
corner directions designated TT. The depth of the core is along the
direction of the flute, L. Valuable test data from References 31 and
32 are used in this analysis.

1. Compressive Strength along Axis L and Total Shear Force of Bending

Typical test data from Reference 31 are shown in Fig. 55 with an
inset indicating core geometry as defined in the introduction. The cell
size was given as 3/8", wall thickness 0.003". The maximum load on a
compressive block of 2.01 x 1.98 was given at 1410 lbs. This load will be
compared in the following calculation with Euler's column load, considering
the effective walls per cell as two columns at right angles.

Cell Area 1.5 (0.375)2 = 0.122 in. 2

1.7321

No. of effective cells 3.98/0.122 = 32.6

Maximum load per cell = 1410/32.6 = 43.3 lbs. (observed data)

Euler's load per cell Pe = n r2 ElI/ 2 where t= core depth = 5.62"

n= 1

E = (lO)(1O)6 lbs/in. 2

I = (0.003)(O.375)3/12 in 4

The calculated Pe is 41.5 lbs. on the basis that the structural
integrity of the stronger column for which the moment of inertia I is used,
provides the limiting strength. The agreement is good but is by no means
coincidental. Reduced to normal •-cre de-ýths (for example d = L"), th.
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COMPRESSION TEST (REF. 31)
MAX LOAD = 1410 LB

14 BLOCK AREA - 2.01 IN. X 1. 98 IN.
LENGTH = 5.62
(DIRECTION L)

12 -

W

T T
8 L.

CELL SIZE
/sw = 3/8 N.

6 0.003 IN. FOIL6
CELL GEOMETRY SHOWING
NUMBER OF EFFECTIVE WALLS
PER CELL = 4

4

2

STRAIN IN A IN/IN
0 1 1 a 1 0

1000 2000

Figure 55. Honeycomb Core Compression Test
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permissible compressive load or strength will be greatly increased and
generally exceeds the applied load. The total shear force V (Fig. 12) in
the bending of a beam or plate is a local compressive force on the cells.
Because of this high strength, it ceases to be a desig criterion.

2. Shear Strength in the Ribbon Direction and Shear Stress in Bending

Some of the test results obtained in a direct application of shearing
forces onto core specimens from Reference 32 are plotted in Fig. 56 with the
test arrangement indicated in the inset. These data delineate a shear
strength that is (i) directly proportional to the foil thickness, and (ii)
inversely proportional to the cell size. At the same time, it may be
identified with the core density scale at the right. A significant but
not much heralded fact is indicated in the strength of the bond between
the core and face sheets' which proves to be stronger than the core at all
times.

If an entire core is considered, the action of the applied forces P
(See Fig. 56) is of course a shear, but the shear is exerted on the two
bonding surfaces between the core as a unit and the face plates. Insofar
as the core element or a cell section is concerned, forces P may be considered
also as compressive load in planes TW transmitted through the cell walls.
For each cell, therefore, there is a Euler's load limit determined by the
stronger wall column beyond which initial failure will be exhibited in the
weaker column. It is, therefore, not a shearing stress in its true sense
but is conventionally so expressed due to the direction only. The dependency
of this strength upon the sizes is illustrated in the following application
of the Euler's equation.

Pe E n W or P CI where Ii is the moment of inertia
2 1 of either equivalent element TT

or WW and 4 is its length,
subscript i is 1 or 2 for either
TT or WW.

For the same cell size, i(or 5 is constant.Sinc Ii t SBS (orSc

Since I M 12 , or 12 and a. >> t, t being the foil thickness;
12 12c

P1 increases linearly as t and is larger than P2 ;
increases as t 3; - yielding

P2/PI at a relative rate of change proportional to t 2 .

The true strength Pe' therefore, varies also as t 2 .
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Figure 56. Honeycomb Core Shear Strength and Geometry
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The apparent unit strength (=Pe/A = t 2 /t) accordingly increases linearly as
t in agreement with data indication (i) above. If the thickness is kept
constant, Pi increases linearly as Sc but P is inversely proportional to
8c. The apparent strength in this case is ?he joint product divided by the
area change (oc Sc) which results in a strength change proportional to Sc'l
as per indication (ii) observed.

In these established strength characteristics, a basis is provided in
selecting appropriate cores that can be made stronger than the bending
strength of the face sheets. For a given design criteria where the maximum
shear stress is also known, a core can be selected to meet any degree of
overstrength desired. On the basis of available test results, it appears
that these strengths as given in Fig. 56 for static shear may also be
considered as safe dynamic shear limits.
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APPENDIX C

SIGNIFICANCE OF PANEL ASPECT RATIO IN THE GENERATION OF MODE RESPONSE

The bending frequency of uniform rectangular flat plate, simply
supported at the sides, is given by

(4 nqD m2  + n- where

in, ni s the frequency of the m,n mode
D is the plate flexural rigidity
P is the plate mass per unit area

a,b are plate dimensions - aspect ratio A= b/a, b ; a

m,n are integers denoting mode number or the number of half-waves,
in b,a directions respectively.

The ratio of mode frequency Wim,n to the fundamental mode frequency Wldlis

Wm,= [2+ n] 2 +1 -1
b, aa b

Substituting b = a [2
LiMn/(ý ' =[A U2+M]A 2 2

For a panel aspect ratio of 472, ý_m,n 2?2 + U2

(11,1. 3S4n~2 + m h oprsni
For another ratio, e.g. A = 2, _,_ 2.2

tabulated as follows: U1t, 1rw 5

Mode Number Node ' 0 mn/ Aspect Ratio between
Pattern 1,1 Node Lines

n Ia- A 42A =2 = .... 2

1 2 Lii 2 8/5 F2 1

2 1 ii 3 17/5 2 % 4

2 2 4 4 *22

S1 3 11/3 13/5 3/N 3/2

1 4 - 6 4 2 •/2 2

2 3 17/3 5 3/24• , /3
2 4 8 1

3 3 ..... . 9 9 _ 02 2
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For all simply supported plates, mode frequencies for m = n are
integer multiples of the fundamental with 4 being the lowest multiple (from
man-2). However, in aspect ratio 42 plates, there are lower modes with
frequencies at integer multiples of 2 and 3, which facilitate the formation
of modes in the two harmonic series of 1-2-4-8 and 1-3-6-9 eta. in sharp
contrast to the reduced number of modes in the harmonic series of 1-4-5-9
with A = 2.

The presence of four modes at frequencies 1,2,3, and 4 times the
fundamental led to the ready excitation of all modes in the tests reported
with discrete frequency excitation or with an applied "haystack" shaped
spectrum peaking near the excited mode (e.g.spectrum shape of -6dB per octave
below peak and -6 dB per octave above peak). With the applied energy
being absorbed by a large number of modes rather than concentrated in the
fundamental mode, it was found that the stress levels were dominated by
the higher complexity modes and were so low as to preclude obtaining
fatigue failures in a reasonable time with the maximum sound pressure
level available (168 dB overall).

Although the mode analysis is based on a simply supported plate,
the same reasoning applies to the actual system for two reasons. At an
aspect ratio of C2 the first mode (1,1C) in fully clamped boundaries has
practically the same frequency as the simply supported 2,2 mode (2,2S).
Secondly, in any physical condition, some degree of edgewise rotation
approaching pinned or simply supported restraint does exist. All
modes were accordingly identified as clamped (m,nC) or simply supported
(mnS) in the results presented.

122



REFERENCES

1. Gray, C. L. Study in the Use of Structural Models for
Sonic Fatie

ASD TR 61-5547, 1962
Wright-Patterson Air Force Base, Ohio

2. Murphy, G. Similitude in Engineering
Ronald Press Co., New York, 1950

3. Dyer, I. Sonic Fatigue Resistance of Structural Designs

Smith, Jr., P. W. ASD TR 61-262, 1961
Maine, C. I. Wright-Patterson Air Force Base, Ohio

Gogos, C. M.

4. Wang, P. A Linear Approach in Sonic FatiAe
Analyslis and Calculationb
SAE Paper No. 671B April 1963

5. Koval, L. R. On the Free Vibrations of Thin Cylindrical
Cranch, E. T. Shells Subjected to an Initial Static Torque

Space Technology Report No. EM 11-20
July 1961

6. Miles, J. W. "On Structural Fatigue Under Random
Loading"
Journal Aero Sc. p 753, November 1954

7. Hess, R. W. Studies of Structural Failure Due to

Fralich, R. W. Acoustical Loading
Hubbard, H. H. NACA TN 4050, 1957

8. Miner, M. A. "Cumulative Damage in Fatigue"
Journal Appl. Mech., Vol. 12, pAl59,
September 1945

9. MacDuff, J. N. "Vibration Frequency Charts"
Felgar, R. P. Methods of Space Vehicle Noise Prediction

WADC TR 58-343 Appendix, 1958
Wright-Patterson Air Force Base, Ohio

10. Warburton, G. B. "The Vibration of Rectangular Plates"
Proc. Inst. of Mech.Eng. Vol. 168, p 371, 1954

11. Young, D. "Vibration of Rectangular Plates by the
Ritz Method"
Journal Appl. Mech. ASME Vol. 17, p 448, 1950

123



12. Hearmon, R.F.S. "The Frequency of Flexural Vibration of

Rectangular Orthotropic Plates with
Clamped or Supported Edges"
Journal Appl. Mech. Vol. 81, P.537, 195)

13. Bishop, R.E.D. The Mechanics of Vibration
Johnson, D.C. Cambridge University Press, New York, 1960

14. Kerr, L. Damping and Fatigue Properties of Sandwich

Lazan, B. J. Configurations in Flexure
ASD TR 61-646, 1961

Wright-Patterson Air Force Base, Ohio

15. Timoshenko, S. Vibration Problems in Engineering
D.Van Nostrand Co. Inc., New York, 1955

3rd Edition

16. Stoker, J. J. Nonlinear Vibrations in Mechanical and
Electrical Systems
Interscience Publishers, New York, 1950

17. Ku, Y. H. Analysis and Control of Nonlinear Sstems
Ronald Press Company, New York, 1958

18. Den Hartog, J.P. Mechanical Vibrations
McGraw Hill Book Co., New York, 1956
4th Edition

19. Wang, P. "Application of Linear Response Techniques
to Stress and Fatigue Analyses in Acoustical
Loading Problems"
Journal Acoustic Soc.of Am. Vol. 34
No. 9, p. 1161, September 1962

20. Smith, Jr. P.W. "Nonlinear Response of Simply
Malme, C.I. Clamped Panel"
Gogos, C.M. Journal Acoustic Soc.of Am. Vol.33, No.11

p.1 4 76 , November 1961

21. Lyon, R. H. Observation on the Role of Nonlinearity
in Random Vibration of Structures
NASA TND-1872, 1963

22. Timoshenko, S. Strength of Materials, Part II
D. Van Pbstrand Co. Inc., New York, 1956
3rd Edition

23. Chu, H. N. "Influence of Large Amplitudes on Free
Herrmann, G. Flexural Vibrations of Rectangular Elastic

Plates"
Journal of Appl. Mech., Vol. 23, p.532

December 1956

1.24



24. Evans, T. H. "Table of Moments"
ASME Trans. (Jour.of AppI. Mech.)
Vol. 61, p.A-7, 1939

25. Wojtaszak, I.A. "Design Data"
ASME Trans. (Journal of Appl. Mech.)
Vol. 58, p.A-71, 1936

26. Mead, D. J. "The Practical Problems of Assessing
Damping Treatments"
Journal Sound Vib. Vol. 3, p.270, 1964

27. Hess, R. W. A Study of The Acoustic Fatigue
Herr, R. W. Characteristics of Some Flat and Curved
Hayes, W. H. Al. Panel Exposed to Random and

Discrete Noise
NASA TN D-l, 1959

28. Robbins, M. S. "Demonstration of Model Patterns in
Vibrating Plates"
Sound, Vol. 2, No. 4, p. 8 , 1963

29. Ojalvo, I. U. "Natural Frequencies of Clamped Ring

Nevuan,M. Segments"
Design and Development, p.219
May 21, 1964

30. Archer, R. R. "Small Vibrations of Thin Incomplete
Circular Rings"
Int. J. Mech. Science, Vol. 1, p.45, 1960
(Pergamon Press, Ltd., Poland)

31. Dept. of Defense ANC-23 "Sandwich Construction for
Document Aircraft, Part II"

Second Edition, 1955

32. kuenzi, E. W. Mechanical Properties of Alumiz
Honeycomb Cores
Forest Product Lab. Report No. 1849
September 1955

33. North American Establishment of The Approach To, and
AviationInc. Development of, Interim Design Criteria
Los Angeles Div. for Sonic Fatigue

ASD-TDR-6-6 1962
Wright-Patterson Air Force Base, Ohio

125



UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA- R&D
(Security clasesifcation of title, body of abetract and indexingl annotetion muet be entered wAen the overall report ta cleeasiied)

I. ORIGINATING ACTIVITY (Corporate author) jie REPORT OECURITY C LASSIFICATION

Unclassified
North American Aviation, Inc. Zb GRoUP N/A

International Airport, Los Angeles, Calif.
3. REPORT TITLE

Modeling Techniques and Sonic Fatigue Prediction

4. DESCRIPTIVE NOTES (Type of report and Incluesve datae)

FIinaj Report - May 1964 to October 1965
S. AUTHOR(S) (Laot namee, firet name, initial)

Wang, Paul

6. REPORT DATE 74. TOTAL NO. OF PAGES 7b. NO. OF REFS

June 1966 1401 33
Sa. CONTRACT OR GRANT NO. go. ORIGINATOR'S REPORT NUMBER(S)

AF33(615) -1743
b PROJECT NO. AFFDL-TE-65-171

1471
1c, 1 9b. OTHERs RPORT WO(S) (Any othernumbere that may be oeeldned

d. Task Nr. 147101 NAA TFD-64-490-13
10. A VA IL ABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from DDC. This report
will be furnished to CFSTI for sale to the public.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Air Force Flight Dynamics Laboratory

Wright-Patterson AFBJ Ohio 45433

13. ABSTRACT

The principles of static and dynamic similitude were applied to typical com-
plex structural components for the purpose of examining the application of model-
ing techniques to sonic fatigue predictions. Modeled specimens of curved panels,
honeycomb sandwich flat panels, and honeycomb sandwich cantilever beams have been
tested. The tests were conducted on full scale, 5/8, and 3/8 size models. The
tests and analyses demonstrated that scale reductions of linear panel dimensions,
and other size factors necessary in the fabrication of models, may be separately
considered in maintaining the established similitude relationships. Both random
spectra and discrete frequency acoustic excitation are considered.

Correxation of available data from other sources has established a frequency
parameter defining the effects of radius of curvature along one side of a curved
panel. This frequency parameter converts to a stress reduction factor that has
been verified experimentally in many modes. Although the section modulus for
honeycomb sandwich panels need not be controlled by the scaling factors, the
generation of response modes is significantly related to the aspect ratios of
surface dimensions. This panel aspect ratio effect can yield a dominant excit-
ation of higher complexity modes at low stresses and impose difficulties in
fatigue duration tests. Experimental data are used to identify these complexities
and differences between modes without introducing consideration of coupling effect

(continued on next page)

DD 1 JAN84 1473 UNCLASSIFIED

Security Classification



UNCLASSIFIED
ý.ecunty Classification

DOCUMENT *,ONTROL DATA- R&D
(Security claaaificatu'n cl title. [ody ct abstract and inaexlng annotatfon must .a entr•ra i 'vn , i etsal .. pot* o i c/neoit@ea)

I. ORIGINATING ACTIVITY (Corporate author) Ita. REPORT SECURITY C L A111IFICATION

l b GROUP

3. REPORT TITLE

4. DESCRIPTIVE NOTES (Type of report amd Inclualvo datae)

S. AUTHOR(S) (Let name, first name, Initial)

IG. REPORT DATE 7f. TOTAL NO. OF PAGES 7b. No. or mars

"SG. CONTRACT OR GRANT NO. 9a. ORIOINATOR'S REPORT NUMBER(S)

b. PROJECT NO.

c. Sb. OTHER R SPORT WO(S) (Any other numbere lattmay be aeessged
tie reportJ

d.

10. AVA ILABILITY/LIMITATION NOTICES

I I. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT

Stress correlation is the critical parameter in modeling for acoustic fatigue

True models with exact geometric scaling in all elements are not necessary. Ade-

quate modeling is obtained by maintaining the same aspect ratio and modes for the

specimen and model. The frequency and stress then vary at predetermined magni-

tudes with a functional relationship to damping, amplitude, and cross-section
(thickness) geometric parameters. Non-linear effects are dependent on excitation
levels. In general, a prerequisite to sonic fatigue tests is a knowledge of the
non-linearity induced by damping and amplitude for each specimen. The experiment-
al data confirms the application of basic procedures formulated by Miles, Pslmgrez•

and Miner which minimize the requirement for random excitation in the use of mod-

eling techniques for sonic fatigue predictions.

D OD JA.4 1473 UNCLASSIFIED
Security Classification



UNCLASSIFIED - .
Security Classification

14& LINK A LINK B LINK C

KYWRSROLE WT ROLE VVT ROLE W T

Modeling Techniques

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address imposed by security classification, using standard statements
of the contractor, subcontractor, grantee, Department of De- such as:
fense activity or other organization (corporate author) Issuing (1) "Qualified requesters may obtain copies of this
the report. report from DDC."

2a. REPORT SECU1ITY CLASSIFICATION: Enter the over- (2) "Foreign announcement and dissemination of this
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord- report by DDC is not authorized."

ance with appropriate security regulations. (3) "U. S. Government agencies may obtain copies of
2b. GROUP: Automatic downgrading is specified in DoD Di- this report directly from DDC. Other qualified DDC
rective 5200. 10 and Armed Forces Industrial Manual. Enter users shall request through

the group number. Also, when applicable, show that optional ,i
markings have been used for Group 3 and Group 4 as author- (4) "U. S. military agencies may obtain copies of this
ized. report directly from DDC. Other qualified users

3. REPORT TITLE: Enter the complete report title in all shall request through
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis (5) "All distribution of this report is controlled. Qual-
;rimediately following the title. ified DDC users shall request through

4. DESCRIPTIVE NOTES: If appropriate, enter the type of ."'el,port, e.g., interim, progress, summary, annual, or final. If the report has been furnished tc the Office of Technical
Give the inclusive dates when a specific reporting period is Services, Department of Commerce, for sale to the public, indi-
covered, cate this fact and enter the price, if known.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on 11. SUPPLEMENTARY NOTES: Use for additional explana-
or in the report. Entei last name, first name, middle initial, tory notes.
If mrilitary, show rank end branch of service. The name of
the principal :.ithor is an absolute minimum requirement. 12. SPONSORING MILITARY ACTIVITY: Enter the name of

the departmental project office or laboratory sponsoring (payr
6. REPORT DAT-. Enter the date of the report as day, ing for) the research and development. Include address.
month, year; or month, year. If more than one date appears
on the report, use date of publication. 13. ABSTRACT: Enter an abstract giving a brief and factual

summary of the document indicative of the report, even though
7a. TOTAL NUMBER OF PAGES: The total page count it may also appear elsewhere in the body of the technical re-
should follow normal pagination procedures, i.e., enter the port. If additional space is required, a continuation sheet shall
number of pages containing information. be attached.
7b. NUMBER OF REFERENCES; Enter the total number of It is highly desirable that the abstract of classified reports
references cited in the report. be unclassified. Each paragraph of the abstract shall end with
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter an indication of the military security classification of the in-
the applicable number of the contract or grant under which formation in the paragraph, represented as (TS). (S), (C), or (U).
the report was written. There is no limitation cn the length of the abstract. How-

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate ever, the suggested length is from 150 to 225 words.
military department identification, such as project number,
subproject number, system numbers, task number, etc. 14. KEY WORDS: Key words are technically meaningful terms

or short phrases that characterize a report and may be used as
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi- index entries for cataloging the report. Key words must be
cial report number by which the document will be identified selected so that no security classification is required. Identi-
and controlled by the originating activity. This number must fiers, such as equipment model designation, trade name, military
be unique to this report. project code name, geographic location, may be used as key

'-. OTHER REPORT NUMBER(S): If the report has been words but will be followed by an indication of technical con-
, signed any other report numbers (either by the originator text. The assignment of links, rules, and weights is optional.

bý the sponsor), also enter this number(s).

AVAILABILITY/LIMITATION NOTICES: Enter any lim-
.:-tions on further dissemination of the report, other than those

FO StA-531 UNCLASSIFIED

Security Classification


