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Electromagnetic Pulse Propagation in the
Normal Terrestrial Waveguide Environment

J. Ralpn Johler

/

The theoretical problem of predicting the effect
of the prépagation medium on the form or shape of the
low frequency electromagnetic pulse of nuclear origin
has been discussed in a previous paper. This paper
presents some greater detail on this remarkable prop-
agation phenomenon. Particular emphasis is placed
on the construction of transforms (amplitude and phase
of the propagation medium as a function of frequency)
which can be employed to propagate theoretically almost
any pulse shape.

The distinctive features of the propagated pulse
at great distance froun the source can be identified
with particular reflection regions of the ground and
the ionosphere along the path between the source and
the observer. .

Key Words: EM-pulse, EM-pulse of nuclear original,
LF, VLF, ELF transient propagation, pulse propaga-
tion, transient propagation, transient response of
terrestrial waveguide.

1. Introduction

In previous papers (Johler and Morgenstern, 1965; Johler, 1967)
the propagation of the electromagnetic pulse of nuclear origin was
considered both as a ground wave and as a sum of ground and ionospheric
waves in the terrestrial waveguide. Furthermore, the engineering
significance of the study for nuclear test detection was considered
quantitatively. Although a particular pulse’ was propagated to great
distance in the terrestrial waveguide, the transforms (amplitude and
phase of the propagation medium as a function of frequency) calculated
in the analysis procedure can be used to propagate most any pulse. Thus,
in addition to presenting more detail on the propagation of the nuclear

! For details on the observed v veform employed in this paper to
illustrate pulse propagation, see Johler and Morgenstern (1965).
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pulse in the normal environment, this paper presents detail on the
transforms at various distances from the source.

2. Terrestrial Waveguide Propagation Formulas

In previous papers (Johler, 1966a; 1966b; 1967) two basic
formulas were considered: (1) the series of zonal harmonics and (2)
the wavehop integral equations.” The relative merits of these methods
have also been discussed in some detail in these papers. The analysis
employed in this paper was developed with the aid of the integral
formulas:

Y “£) ¢S taa) 0L taa) (1R, glav,  (21)

cos VN

ilod Woc ~ F(v-B) (3) ()
Er,s =k§:‘ 8011 Je cos T gv-ﬁ (oa) () g a2l (1 +Rv-§fcidv’ (2.2)

where Iy 4 is the dipole source intensity, ampere-meters. The vertical
electric source dipole field, E, o, is th: ground wave. Also, the fields
E, 4»J=1,2, 3... represent waves reflecting from the ionosphere
j-times while traveling to great distance in the terrestrial waveguide.
In formulas (2. 1) and (2. 2),

Fiv-}) = vV -%) P, (-cos §)

where the distance, d, between source and observer is af,

c“ *Ye) = /“ B (),

3
where Hg’a )(z) is a Hankel function of order v, argument z of the first
w
or second kind, and P,(z) is a Legendre function, k; = < T, where

f= iﬁ- is the frequency, a is the radius of the terrestrial sphere,
Mo = 411(10°7) henry/meter, 1; = index of refraction (air ~ 1. 0001 to
1.0003) and c is the speed of light. The spherical reflection coefficient

of the ground R, 3 is given for the vertical electric polarization (TM-

mode propagation in the terrestrial waveguide) as:
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where n = V - # and the abbreviations {;. '= {; '(k;a)and

§$1.'8)= C.(.l ' 2z)(ka a) have been introduced. Here C,,(,l ') (z) = -&fl; Csl ) a)(z)

2
.0 C . .
and kg = /ea -1 —-BTDQ——- , where €; and 0 are the dielectric constant

and conductivity of the ground, respectively.

The factor, C,, can be calculated from the ionosphere and
ground reflection coefficient matrices, R, and I,,

« C 7 .
Ay = [o R, J° (2.4)
r.. TQ- -
T' Tla Tll J ’ (Z. 5)
Pv = P (l,;‘_: (2. 6)
(3) (a)
- Sis ¢ 2
P —FT c(l) ' (e.7)
1a i

where g = a +h and h ie the reflection height of the terrestrial waveguide,
Then,

Cy xy°

T YR, T ) = pl .
(Pady) (Mady) p Yy z,J

(2.8)

The reflection cocfficients, Tee. To,. Tye, and T,, are calculated by
the Johler and Harper (1962) method with complex angle of incidence on
the ionosphere (Johler, 1966a),
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The refiection coefficients, Tee, Tea, Ines Isa, 2lso depend
on the profile of the ionosphere (electron density, ion density, and
collision frequency as a function of altitude) the magnetic azimuth, @,,
the magnetic dip, 1, and the magnetic intensity, H. For details, see
Johler and Harper (1962), Johler (1963).

It is, of course, noted thatn = vV - # when equations (2. 3) to
(2. 9) are employed in the integrals (2. 1) and (2. 2). The details on
evaluating these integrals (2. 1) and (2. 2) have been thoroughly dis-
cussed by Berry (1964), Berry and Chrisman (1965), and computer
programs to accomplish this evaluation are available.

An alternate approach to this problem has been given by Johler
(1964, 1966a) in the form of the zonal harmonics series,

Lt ¢ )
Eeo = 2t e o F i el 0ama), (2.10)
az0
Lt % )
E, 4y = -u—;-;' -Té;? E F(n) ¢§‘. i.) (1 +R.)® PICy. (2.11)

H

where F(n) = n{n+1){2n+1) P,(cos 8). Wherecas, it was anticipated that
(2. 10) and (2. 11) would replace the former (2.1) and (2. 2) as a conse-
quencec of greater flexibility and programming simplicity (a discussion
of these matters have been given by Johler, 196a), the former
formulas (2. 1) and (2. 2) were employed, since the computer programs
for the latter (2. 10) and (2. 11) were not complete at the onset of this
task. However, a check was made by comparing the calculations based
on (2.1) and (2. 2) with calculations based on (2. 10) and (2. 11) and
excellent agrcement was found.

To completely define the pr mises of the calculations to be
presented, .he reader will be burdencd with one additional mathe -
matical co. cept--the Fourier transform integral. Equations (2. 1),

(2. 2), (2.10), and (2. 11) satisfy Maxwell's equations in the terrestrial
waveguid- at any frequency, ¥, a8 vertical electric components of the




field E(w,d), H(w,d). Quite generally (i.e., for linear amplitude
restrictions) the Fourier transform-integral theorem can bte employed
to obtain solutions of Maxwell's equations, E(t’, d), H(t’, d) in the time,
t, domain,

[~-] [~ -]
E(t',d) = 5= | exp (iwt) E(w,d)f, () | exp(-iwt)F, (1) dtds,
‘® 3 (2.12)

where f, (W) is the transfer function of the receiver or measuring
device, F,(t) is the transient dipole source current moment, and the
local time, t ', is defined,

/

t =t -m d/c. (2.13)
In the equation (2. 12), it is assumed that

E(w, d) = E E,(v,d) (2. 14)
4

and the integration can be performed term-by-term before summation,

E(t',d) = E E,(t’,d). (2.15)
3

These methods of transformation to the time domain have been
described in detail by Johler (1962). The integral (2. 12) is complex.
Ordinarily, the waveform, Re E(t',d) is or primary interest (Re
designates the 'real part of'). The modulus, lE(t',.d)', describes an
cnvelopc of the pulse. Also, a perfect receiver will be assumed in
(2 12), f,(w) =1L

Consider an experirmental situation in which a waveform is
observed and recorded at a short distance {(ground wave distance), d,,
from the source. After digitizing the wavefcrm, Re E(t'.d;)a
transformation on the computer can be made,

Fo(w. d) = J‘ exp(-iwt) Re E(t’. d,) dt. (2. 16)
Q




To propagate the waveform theoretically on the computz2r to a great
distance, dz, the transforms Eg (#,d;) and E{w,d3) = & E,{w,d3) are
required, The predicted waveform at dz is then,

o -]
' da)=F - ) <o jwe /) To (%, di)
ReE(t ,d3) = I Z S J P (iwt ") B, (0, d;) Ey(w,dz)dw, (2.17)
1=0 0

where the integration can be performed term-by-term and summed,
after an interchange oi the order of summation and integration.

3. Discussions Concerning the Transforms

The geometric-optical theory is a useful adjunct for any discus-
sion of the rigorous theory employed in the calculations. The rays
corresponding to the rays of the geometric-optical theory (Johler, 1962)
are depicted in figure 1. The rigorous theory has been expressed in
(2. 1), (2.2), (2.10), and (2. 11) as the series,

©
E,(0,d) = ) E, ,(@d). 3.1)
3=0

Geometric optical rays (the principal rays) corresponung to each term
of this rigorous series (Johler, 1964) can be identified with regions

of reflection near the points [1,1], [2,1], [2,2], [3,1], [3,2] - in
figure 1. Tne angle of incidence on the ionosphere is at a particular
value, n, the real par: of @ in (2.9), and is a geometrical angle which
the ray makes with the vertical direction. The precision calculations
used in the rigorous theory employ the complex angle of incidence, both
at the ionosphere aad the ground.

At each point [1,1], [2,1], [2,2], [3,1], [3,>] -+, a profile
is introduced to determine the reflection process. A typical profile for
daytime -noon conditions of the ionosphere is illustrated in figure 2.

He re both the ion and electron density are shown. However, at
frequencies greater than approximately 1 kc/s, for the particular case
of the normazal daytime ionosphere only the electrons need be considered.
In a disturbed or ruclear environment this is no longer true. Thus, ion
densities between 10* and 10° below 60 km can be induced by natural
x-rays or x-rays and B-rays from a high altitude nuclear detonation.
Johler and Berry (1965) have introduced this analysis into the general
propagation theory, and details can be obtained from their paper.




The reflection coefficient (amplitude and phase) as a function

@)
of the angle of incidence, ®; = Re Arc cos [i s _(ag) ] is given in

) (1, g)

figures 3 and 4. Thus, the real part of the angle of incidence can be
interpreted as a geometrical angle of incidence on the ionosphere. Note
that T,s and T,, approach -1 at grazing incidence, @; = 90°, and T,,
and T,, vanish. The pseudo-Brewster angle of T,, (vertical electric
polarization of the incident and reflected waves) is evident at approxi-
mately 50° as an inflection in the curve IT.. l as a function of ¥, .

The calculation of the reflection coefficients also employed a
profile of collision frequency used by Johler and Berry (1965),

P(h)

v(h) = 1. 6(10%*) B (3. 2)

where P(h) is the pressure at height, h, above the surface of the earth
as given by the standard model atmosphere (U. S. Standard Atmosphere,
1962) and Py is the pressure at sea level.

The propagation in the ionosphere assumed the following magnetic

parameters;
|d| = 40 A/m

@, = 270° (magnetic azimuth, the propagation into
the West)

I = 60° (the magnetic dip).

Obviously, other magnetic parameters can be selected, but this
rapidly generates large volumes of data, whereas in this paper we wish
to demonstrate principles of pulse propagation.

As a consequence of the calculation of reflection coefficients by
the Johler-Harper (1962) method, the transmission into the ionosphere
can also be described as a by-product of this analysis. This also gives
an estimate of the effective height, h, of the upper boundary of the
ionosphere emplaced at g = a + h relative to the center of the terres-
trial sphere, This effective height of the upper boundary of the wave-
guide can be estimated from the transmission coefficient curves
depicted, for example, in figures 5 and 6. Let Ey ; be the normal




component of the incident electric field in the plane of incidence
(vertical polarization) and let E; ; be the component perpendicular to
the plane of incidence (horizontal polarization). Let E, , and E, ,
be the corresponding upgoing waves inside the ionosphere and E, :4
and E; 4 bc the downgoing waves. Then, using the transformed
coordinates of Johler and Harper (1962), x and y, the ratios

Ez Es . . .
=243 and -E-’;-L“—- describe the propagation of waves into the
} F Y, 1

ionosphere. In such a formulation, the transmission coefficient, U,,
for vertically polarized waves is given by the quantity

U ==Lev | (3. 3)
Ef o
or (Johler and Berry, 1965),
U, ~-§-’}‘4‘- cos @; cos @,. (3. 4)
¥,

Thus, for the case @, = 270°, Uy ~0. In fact, U, is very small at the
bottom of the ionosphere for the upgoing wave in figures 5 and 6. The
transmission coefficient, U,, is finite as a consequence of the coupling
between propagation components Uy and U, within the ionosphere. In
short (3. 4) is an equality only in an isotropic plasma. In an anisotropic
plasma there are small additional terms caused by the anisotropy.

The transmission coefficient, U,, for the horizontally polarized
incident wave can be written,

U, =2kt (3.5)
%14
or, again,
Ef .y
U ~g- sin@. (3. 6)

K,1

Thus, the transmission of the vertical electric polarization of
the wave into the ionosphere can be conveniently studied when ¢, = 270°,
while 90° is the most convenient for the horizontal electric polarization,
Figures 5 and 6 for 10 kc/s and 100 kc/s, respectively, show the
amplitude IU. | IU. | for both upgoing and downgoing waves as a
function of distance, z, into the ionosphere (z is the distance from the
assumed bottom of the profile, h = 40 km in figure 2. This point




should be chosen such that the ionization is negligible at the assumed
frequency. The typical angle of incidence, @, is 82° (grazing incidence).
Figures 5 and 6 show that |U, ,u | ~ 1 just inside the ionosphere, z ~ 0.
Here virtually no energy has as yet reflected; the situation continues
with only slight decrease in |U. u ' until the wave penetrates approxi-
mately 25 km into the ionosphert’a in both figures 5 and 6 (10 kc/s and
100 kec/s, respectively). There is then a sharp decrease in the next
few kilometers that appears to be more precise at 100 kc/s. This
sharp decrease in the field indicates a decrease in the upgoing energy.
Hence, as far as the reflection ccefficient is concerned, the greatest
contribution occurs before the upgoing wave has diminished to negligible
amplitude. At this point the transmission coefficient, lU, n |, has -
decreased only slightly from unity. . few kilometers beyond that point,
|Us 4 | diminished rapidly. It is apparent, in both figures 5 and 6, that
the effective height of reflection lies between approximately z ~ 20 and
z ~ 30 km and depends upon the precise ratio |U| used to define such a
point., The uncertainty of resolution of the point follows, of course,
since some energy, however small, is reflected at all heights, z. The
uncertainty is also somewhat greater at 10 kc/s than at 100 kc/s, since

the sharpness of the steep part of the curve is less at the lower frequency.

It can be concluded, however, that the approximate value for the wave-
guide height, h ~ 65 km. This value was employed in the analysis,
since only a weak frequency dependence of the reflection heights thus
defined exists. A decrease in the attenuation of the upgoing wave is
reached at higher altitude (fig. 5, for example). Fortunately, the
reflection coefficient is determined to the required accuracy before this
point is reached. Otherwise, it is at least conceptuaily possible that
more than a single reflection height could exist.

The propagation medium transform constructed from the above
described model of the ionosphere is illustrated at a distance, d = 1609
km (1000 statute miles) from the source in figure 7 (amplitude) and 8
(phase). The amplitude (volts/meter) is normalized to unity source
dipole current moment, Io4 =1 A/m. The ground wave, j = 0,
and various ionospheric waves of importance, j=1, 2, 3
are show. together with the total field, L. Since the ions can be neglected
in the normal ionosphere, an electron gas was used to calculate the
reflection coefficients, As a check, however, several reflection
coefficients were calculated employing both the ions and elecirons
illustrated in figure 2, together with the neutrals and corresponding
negative ions obtained from the conservation of charge equation. Also,
the corresponding 12 collision frequencies as described by Johler and
Berry (1965) were introduced. The electron gas model was found to be
sufficiently accurate for the normal daytime model in figure 2.




Figures 7 through 18 give the complex transforms of the
propagation medium in the presence of the normal daytime -noon
model ionosphere to great distance, 1609 km to 8046 km. Thus, in
addition to providing transforms for the propagation of pulses, a
survey of the propagation at frequencies < 300 kc/s is clearly shown.
Although the pulses are suumed Z E(t’, d) in the time domain, the

J

Z E(w, d) in the frequency domain provides information over the
J

entire low frequency spectrum for CW type (continuous wave)
propagation.

The form of the |2 E,(w, d)| curve as a function of frequency is
d

of particular interest, see figure 17, for example, representing
propagation to a distance, d = 8046 km. If the propagation path were
entirely in daytime noon conditions one could expect such a curve to
represent the propagation medium. The crest of the spectrum is
approximately 18 kc/s. Thereafter, on the high frequency side the
attenuation of the wave is quite severe. On the low frequency side of
the crest of the spectrum, waveguide cutoff causes some attenuation.
However, near 3 to 5 kc/s a minimum is reached and the propagation
recovers. This region 3 to 5 kc/s resembles a pseudo-Brewster angle
phenomenon analogous to reflection from a dielectric or the behaviour
of the reflection coefficient T4 previously discussed. This is caused,
however, by the reflection coefficient of the ground R, ,,, (2. 3) where
the complex angle of incidence,

3
oat i ) g

¢ (q2)

is a function of frequency. Details on this phenomenon have been given
in a previous paper (Johler and Berry, 1964). The rather excellent
propagation in the vicinity of 16 kc/s is herein substantiated
theoretically.

The detail on the propagation at short distances (< 1609 km)
was presented in two previous papers by Johler (1967) and Johler and
Morgenstern (1965) and hence will not be treated here. Aiso, the
former paper presented waveforms at great distance, In this paper
we shall supplement those calculations with greater detail on the
distances greater than 1609 km.

-10-




4. Propagation of the Pulse to Great Distances

The theoretical reconstruction of the pulse from a nuclear burst
is illustrated at intermediate and great distances in figures 19 through
24. The waveform Re E(t',da) is depicted for each term, j =0, 1, 2,
3+ - of the series (2, 17) together with the sum Re Z E (t’,dz). Thus,

J

for example, in figure 22, d = d3 = 4828 km, the curve of the composite
pulse is constructed by superposing the multiple ionospheric waves,
ji=0,1, 2, 3, 4, 5. The ground wave, Re Eo(tl,d) produces almost
negligible ripple on this scale as shown by the long dash, two short
dash, and long dash ... curve. A small undulation represents the

Re Eo(t',d) +Re E; (t ! d) as represented by the short dashed curve.
The long dashed curve representing the sum Re Eq(t’,d) +Re E; (t', d) +
Re E3(t’, d) essentially establishes the second cycle of the pulse. The
long dash, dotted curve essentially establishes the third cycle of the
pulse as the sum Re Eq(t',d) +Re E,(t',d) + Re Ez(t’,d) + Re Ea(t’, d).
The dotted curve represents the sum Re Eq(t’,d) + Re E, (t’, d)

+Re Ea(t’,d) +Re Ea(t’,d) +Re E4(t’,d). Finally, the L E (t’,d)
represents the first 300 us of the pulse. For later times, higher
ionospheric wave pulses may be required. However, these higher
order pulses become highly attenuated in the propagation transforms
considered in this paper. It is evident that the first cycle of the pulse
between 0 and approximately 70 Us is essentially determined, figure 1,
by a reflection from the ionosphere in approximately the region about
the midpoint, [1, 1], of the propagation path. Between 70 and 110 us,
a reflection from the regions about j = 2 reflection points, [2,1],
[2,2], determined essentially this portion of the pulse. Similarly, the
other parts of the pulse can be associated with ionosphere regions
along the propagation path.

Similar comments could be made at the various distances
between 1609 and 8046 km. At the shorter distances only two or three
terms j are required. Also, at distances greater than 4828 km, the
ground wave is extremely small compared with the ionospheric waves.

The complete waveform, Re I E,(t', d), is depicted in figure 25
J

as a function of local time, t', at various distances between 160$ and
8046 km. The change in form or shape of the pulse as a consequence
of the filtering action of the propagation medium is evident. Of
particular interest is the sinusoidal nature of the propagated pulse
which has been reconstructed by summing the geometric series. Thus,
as the distance from the source become¢s great the source becomes

-11-
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obscured by the characteristic frequency of the propagation medium
illustrated in figure 17, for example. Thus, at the greater distances
the higher frequencies are even more severely attenuated.

5. Conclusions

The development of complex transforms for the terrestrial
waveguide propagation medium is an extremely useful enterprise,
since the complex transforms so constructed can be kept in permanent
form and employed to propagate most any pulse with energy composi-
tion in the low frequency (< 1000 kc/s) domain.

At very great distances from the sources, the pulse is
characterized in a large measure (but not completely) by the propaga-
tion medium frequency characteristic. In fact the pulse tends to be-
come sinusoidal in nature as the higher frequencies are attenuated
more severely at the greater distances.

A transient waveform reconstructed theoretically at great
distance from the source can be analyzed with the aid of the Fourier
transform-integral theorem applied to each term of the geometric
series expansion of the terrestrial waveguide propagation formula.
Different times on the pulse can be identified with particular reflection
regions of the ground and ionosphere along the propagation path., At
great distance from the source the pulse is primarily determined by
the higher order terms of the geometric series, i.e., the pulse is
propagatec. around the terrestrial sphere by successive reflections to
and fro between the ionosphere and the ground.

The analysis presented in this paper suggests its use as a
powerful tool for the understanding of D-region phenomena. Thus,
physical changes along the propagation path can be identified as
amplitude changes at diffe ~ent local time, t’, on the pulse.

The author is indebted to Richard S. Greeley, Ted Jarvis,
Laurence Jacobs, Nicholas Del Vecchio, John Morgenstern, and other
members of the professional staff of the Mitre Corporation for many
stimulating discussions which influenced the course of this work. The
author acknowledges the able assistance of Carlene Lilley with the
many details of the computer computation.
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Figure 3, Amplitude of the ionosphere reflection coefficients as a function
of the real part of the angle of incidence, ®,, where cos @, is
given by (2.9). @ =270°, I = 60°, ¥ = 40 A/m,
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Phase of the ionosphere reflection coefficients as a function of
the real part of the angle of incidence, ®,, where cos ¢, is
siven by (2.9). @, = 270°, I = 60°, H = 40 A/{n.

The phase is referenced to a height, h = 40 km,
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Transmission into the model ionosphere at 10 kc/s, depicting
the amplitude of the transmission coefficients IU. ‘. |U. |
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Figure 6.

7 IN KILOMETERS
FREQUENCY=100ke/s ¢; = 82°

Transmission into the model ionosphere at 100 kc/s, depicting
amplitude of the transmission coefficients |U, l, |U. |
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Figure 7.

Amplitude of the normal propagation medium transform,

d = d; = 1609 km; illustrating the terms of the geometric s

series |E,(0,d;)| and the total field |§E,(w. dg)]. ©
-21-

e o ot g 1 hh




—_ e e i e st 1 s B g i

120 T
“0 - —_—
100 — —_]
90 — ELECTRON GAS i
NORMAL DAY :
d* 1609 km
80 — —_
0 — —_
LEGEND i / |
OnreOmoanQmes | = D) :.’ h ,' 1
: /
: !

T

PHASE , RADIANS
s

—— 1|

L el LE 4

—-—-—114

uo-ouooocouoi (3.

__;
[

40
30

20

10 |

0

-10

0’2 10" | 10 10° 10
FREQUENCY, ke/s
Figure 8, Phase of the normal propagation medium transform,
d = d; = 1609 km; illustrating the terms of the geometric
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series Arg E,(w, da) and the total phase Arg? E,(w,d3).
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Figure 9. Amplitude of the normal propagation medium transform,

d = dg = 2414 km; illustrating the terms of the geometric
series |E;(w,dy)| and the total field If E;W,dg)]|.
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Arplitude of the normal propajgation medium transform,
d = d; = 3219 km; illustratin 7 the terms of the geometric
series |E,(w,d;)| and the total field |Z E,(w, d;)].
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Figure 12. Phase of the normal propagation medium transform,
d = dg = 3219 km, illustrating the terms of the geometric
series Arg E,(w, dy) and the total phase Arg L E (v, dg).
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Amplitude of the normal propagation rnedium transform,
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Figure 16. Phase of the normal propagation medium transform,

d = d; = 6437 km; illustrating the terms of the geometric
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d = d3 = 8046 km; illustrating the terms of the geometric *
series |E,(w, d;)| and the total field |§ E,(,d3)].
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Figure 25. Pulse propagated theoretically from a nuclear burst to various

distances between 1609 and 8046 km, illustrating the change in
form or shape of the pulse as a consequence of the filtering action
of the propagation medium.
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