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v   ABSTRACT:    Bach of the ensuing paragraphs represent one article's abstract: 

General formulas are derived for the energy loss of a charged particle passing 
with any velocity  through a multicomponent plasma of arbitrary temperature; 
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Because of the possibility that new statistical-physics methods can give more 
accurate results on the bremsstrahlung of a high temperature poasaa and on re- 
combination and line-spectrum radiation of low-temperature plasma, quantum 
field theory methods of statistical physics are used to determine the spectral 
expansion of bremsstrahlung intensity per unit volume of a plasma, with an 
allowance made for the shielding of the Coulomb vield of ionäu 
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(OlLOUIiS ARE THE CQRR> SPOHODIG RUSSIAN AMD ENGLISH 

DESIGNATIONS OP THE TRIOONOMETRIC FUNCTIONS 

Russian English 

sin sin 
oos oos 
tg tan 
etg cot 
sso sac 
cossc esc 

sh sinh 
eh eosh 
th tanh 
oth eoth 
seh sseh 
csch esch 

arc sin sin"^ 
arc oos cos"1 

arc tg tan"1 

arc otg cot-1 

sac"1 arc sco 
arc eosse CSC"1 

are sh sinh"1 

arc oh cosh"1 

arc th tanh-1 

are oth coth-1 

are seh ssch-1 

are esoh csch"1 

rot curl 
lg log 
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DECELERATION OF A RELATIVISTIC PARTICLE IN A PLASMA 

A. I. Alekseyev 

By the method of Green1 s functions there are found general 
formulas for energy losses of a charged particle passing 
with any speed through a multlcompcnent plasma of arbitrary 
temperature. In detail there Is Investigated region of 
nonrelatlvlstlc temperature of the plasma and arbitrary 
speed of flying particle. The work was completed In i960. 

Usually In calculating energy losses of a charged particle 

passing through plasma, losses connected with pair collisions, and 

losses caused by excitation of plasma waves are examined separately. 

Both named parts of energy losses have an Identical order of 

magnitude. Because of the Incorrectness of the methods used, the final 

results of total losses, obtained by different authors, as a rule, 

differ by numerical factor under the sign of logarithm. In connection 

with this it seems natural to apply to the given phenomenon new methods 

with use of Green's functions and diagram technique which makes it 

possible more clearly and correctly to solve the posed problem. The 

method of Green's functions together with diagram technique in appli- 

cation to energy losses of particle in a plasma were first worked 

out by Larkin [i] who, however, from the very beginning was limited 

to the nonrelatlvlstlc region. Below there is proposed a further 

development of the indicated method, in reference to the case of 
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arbitrary velocities of particles passing through a raulticompunt.n 

plasma (see also [2]). Furthermore, in the present discussion th<- 

lü-thod is readily extended to other problems: brems Strahlung and 

the production of pairs during passage of charged particles thrcugh 

a plasma, radiation of plasma, deceleration of charged particles In 

matter, etc. 

Probability of Scattering of a Particle 
in a Plasma 

We shall examine the statistical system in a thermal equilibrium 

consisting ci  several levels of fermions interacting with each other 

by means of an electromagnetic field (multicomponent plasma). For  e 

generality we shall assume the problem relativistic. Such a system § 

in a nonrelativ is tic approxipiation may describe, for example, an 

electron-ion plasma containing several levels of ions. For 

calculating the stopping power of multicomponent plasma we shall 

write, in Schrödinger notation, the Hamiltonian of the plasma and of 

the external flying particle, interacting by means of an electro- 

magnetic field* 

//-//.+ //•' + //.'.   Hm~2Hl+H.+HmU (1) 

//>.£.*(£#4,+ $ #4,).       (2) 

»Everywhere the system of units is used in which ix = c = 1 and 
there is adopted the following rule of summation over the vector 
indices: pq - pj/qv - p^ - p1q1 - p2q2 - p^. Here f> = pv7v, where 

yu  and 7^ 2 3 s ~*kal 2  3 are ordinary Dirac matrices. 
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t 4 

CO 

p.'«« •*»-• (6) 
• ■ 

»./-I        '     '    /     (7) 

where HX and H7 are Hamiltonians ot  the free fermlon level X and of 

the photon fields., respectively and H ^ is their interaction operator. 

Hn is the Hamiltonian of the plasma. HQ is the Hamiltonian of free 

field of flying particle (fermion), and IL is the operator of its   % 
1     t a 

interaction with photon field. H0 and H^ have the same structure   
7 

as Hx and H^ in which the subscript X is discarded. At r «» 1.2, uj(pj 

is the solution of the Dirac equation 

(A-^^^-O (8) 

for positive energy tp — |/p«^. m*,  and at r = 5.4 — for a negative 

energy,  equal to    j/pi+jnj     .    Then,  u = u 7^aA(x)  is the four- 

dimensional vector potential of electromagnetic field;  »-.(h    r) and 

art 
+(b    +)  are operators respectively of the absorption and creation 

of a fermion (anti-fermion) of sort X with momentum p, polarization r, 

and energy e  ; and ck .. and cj  . are analogous operators of photon 

with    momentum   k,  polarization l^ and energy o^ =  |k|.    The sign 
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N   before the operators designates the N-product [5]* V is the voi i;, • 

of plasma, and ex is the charge of fermion of level X.    The S-matr 

describing quantum-mechanical transitions of plasma and flying 

particle,  satisfies the equation 

I-jf=(//. + //•'+//,')& (9) 

We now use the transformation 

Smmt~nHm + H,vt (io) 

and then turn to another representation, in which the operators of 

field V (x) of a flying particle are written in the interaction 

picture 

fW-e1*'' f(x)e~l^'/. (11) 

and operators of fermion VsW* 7T,(
X
) and photon A(x) field — in 

the Heisenberg picture 

i4(Jc)-e
w-/^(x)e-///"'. (12) 

Here the operator A(x)   in case of a Lorenz gauge transformation 

satisfies the equation 

g 
with a solution of the type 

(14) 

0 F       ' 
where A^(x) is the fre-i photon field, and DQUV^ - X

 )  ^S
 ^e  function 

of propagation of photon in quantum electrodynamics in the zero 

approximation 
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^-^K^-'«^*. (15) 

«M-l.«..=<«-V|--l. 

With the other gauge-trans format Ion of the potentials A(x), equations 

(13), (15) and function Di (x - x ) vary;  however, general form 

of the solution (14) will be maintained with  arbitrary guage-trans- 

formatlon potentials. On the right-hand side of equation (13) Is 

the sum of the currents formed by each level of fermlons of the 

plasma. 

The transformation (10-12) In accordance- with the sense of the 

posed problem assumes that the Interaction of a flying particle with 

plasma particles Is engaged and Is disengaged at moments of time 

t = -00 and t = +00, respectively, whereas interaction between particles 

of plasma one with another remains continuously engaged e. / 0. 

In the indicated representation the s-matrix is determined in 

the following way: 

/-£.=*/.. f=re-'J*.'w-*.       (16) 

//l'(Jc)-«'Ar(V(jr)iWf(x))} 

where e is the charge of flying particle; the operator A(x) is given 

by expression (1^) and the symbol T before operators indicates a 

T-produrt [?], The s matrix (16) describes scattering of-flying 

particles in a multlcomponent plasma as a single whole. To an equal 

degree the s-natrix (16) is applicable for the description of the 

phenomenon of scattering with radiation, the formation of "pairs, etc. 

We shall then assume a flying particle, moving with a speed v, 

sufficiently rapid e^e /hv «1, in order that its interaction with 

electromagnetic field created by the plasma may be examined according 
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to the theory of perturbations. Then the matrix element of the 

8-matrlx describing the scattering of an external particle with Its 

transition from a state with momentum p and polarization r to a state 

with p and r , and the plasmas — from a state n to a state m. Is s 
determined by following formula; 

(17) = - ie!^:-P"'n. «" ) <» .(q. •)! n X 

x fa (Oh. h (Q))««(q - P«,)<(- - •«,); 

q-p~P'5 •-«,-«,-,; Pw^P^-P«; 

•*. = f«-fii: «p-l p' + M 

where the subscripts n and m-denofe the state of plasma, in which 

the total energy E, the difference between total number of fermions 

and antl-fermlons N = ZN, , and also the total momentum P of the 

plasma have specific values; q and m  are, respectively, the momentum 

and energy transmitted to the plasma during scattering of flying 
i 

particle of mass M and of charge e . 

The probability dW of the scattering averaged on the basis of 

the initial and integrated on the basis of the final spin states of 

a flying particle, and also integrated over all final states of plasma 

and statistically averaged on the basis of initial states of plasma 

by means of the Gibbs distribution 

(0 + 1:», AV-^)) (18) 

where ß = 1/kTj ft is the thermodynamic potential of a plasma; \i  is 

the chemical potential of fermions of sort X, and N^ the difference 

between total number of fermions and anti-ferraions of sort X, Is 
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(20) 

determined in the following way: 

a.« X, X' 

X Ö>. (0)T> % (0))«, R>.' (0)T/ V (0))«,«(q - p)?(• - O. / 21 ^ 
K     )        t 

7 
where <I>VV, (q,  OJ)  is expressed in terms of the correlation function,    0 

which in turn is intimately connected with Greeks thermodynamic 

functions of particles of a plasma, p    is the four-dimensional 

momentum vector of a flying particle,  in which p^ = e  . 

The Correlation Function 

We shall examine the following correlation function: 

^(Jfi-*i) = 1 */. *,:Sp\e     v x 
x.x' 

x rt Ktx {x,) Tl4 \ (^».(^ (JC,)TV tr (JC,))I). (22) 

in which x is the totality of x and of the variable T, varying within 

the limits 0 s T * ß. The symbol TT designates the T-product [5], 

in which the order of operators proceeds according to the variable T, 

and the tilde sign ~ denotes operators in the "Heisenberg picture," 

for example 

^<Jf) = c  k       *JL(«)« 
X (23) 

In order to ascertain the indicated relationships between 

functions (21) and (22) we shall make, by following Landau's [4] 

method,a spectral expansion of the function K (x) (22). We shall obtain 
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« m 

^(q? ^) = 

J ♦Fv^•>
e",,,'•• *>» 

— 30 

«0 
(24) 

J ♦,,(♦-)•—0 +'»*••'<* 
— 90 

where -ß s T s ß, and the function ♦.^(q, cu) Is determined by 

expression (21). We shall periodically extend function (24) to 

the entire axis T, then at any T there will be fulfilled the relation- 

ship 

Then, in completing the Fourier transform 

we shall obtain, by taking into account relationship (25)» 

Vrt- -HI-*—» 

(25) 

(26) 
7 
O 

I 

^.(q. •«)= j 
•—*«■ 

rf«. (27) 
—ao 

•,JI=2«,:.?» « = 0. ±1. ^2... 

Integral (27),  considered formally as function of variable iai. 

determines analytic function K8, (q,  co)  in the upper half-plane 

J •    — M 
0 

- / -^ -r~- rf-' + /^.(q. -)(l -e—J1). (28) 

which coincides with K (q, -i(icü )) at an infinite set of points 

a) = ico (CD > 0), having a point of bunching. By the theorem of 

analytic continuation we conclude that K8, (q, to) is analytic continua- 

tion of function K (q, -l(ia^)) (27) on upper half-plane of complex 

variable OJ 

<v(q. «O-^fo. -'•)• (29) 
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Inasmuch as <!> (q, a)) is the real function ü) on real axis, then 
[IV 

from formulas (28) and (29) we have 

(30) 

Thus, problem reduces to finding the function K (q> ct^), since 

the formal substitution of OL -♦ io) aids immediately in determining 

<I> (q, CD) by the formula (50). Calculations (see Appendix 1) result 

in the following   general relationship: 

ä;»' (q. •■) Db vs (q. •«)=- V (q. •».) D,S (q. •„), (51) 

in which the polarization operator n      and Green's photon thermodynamic 
[Lv 

function D r are found from equations [2] 

0>. (P. •«) = Oo l (P. ••) + O0 >. (p. mj Alk (p. mJO, (p, .J. ( 52 ) 

^ (P, •«) = ^ H j  7:4ö/.(P + k.V + -.)X 

Xr,(p + k.•*+-*; k^D^ck.-,)^. 

"^(k, •.) - S -^ S jsp^o^p+k, •.+•.) x 

X P., (p + k, «. + •«; p. «JOi (P. «w)^ 
r(p. -«; P', •'«)=T + A (pf •.; p' .'.). 

«„ = (2« + I) n/?f «, = 2« <i, «, « = 0, ± I. ±2.... 

(53) 

(54) 

7 
1 
7 
2 

Here A is determined in the form of series,  being here the 

totality of all graphs of peak portion in addition to simple peak 

(point),  and Green's thermodynamic functions of zero approximation 

GQ^ and DQ    ,  respectively, for fermion of level X and photon are 
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equal to 

On^. •«)-|Pt-(K + l»).)7i + «]L I"11 

Expression (55) corresponds to a Lorenz condition of the potentials 

(14). During another condition of the potentials (14) function PQUV 

has the form [5]s 

a) in case Aj, = 0 

Q.^.J.-i-^ + Ä.); (36) 

07) 7 
4« 2 

b) in case div A s 0 

In a concrete calculation of magnitudes nLLV(k, OJ ) and M^(p, cu ) 

in relativistic region there appear singularities associated with 

the renormalizatlon of the charge and mass of plasma. In connection 

with this we shall rewrite equation (35) in such a form, which is 

the most convenient for investigating the question on the renormaliza- 

tlon of the charge and mass of particles. For this purpose we note 

that there takes place the relationship [6] 

*/n,./(k. •s)-/«."l.40
t' «<,)= 0. (58) 

In the most Interesting case of the first approximation different 

from zero II
LJLV(k* ^n) of the polarization operator H (k, CD ) (this 

*The vector designated by the Latin letters i, k, 1, etc., runs 
through values from one to three (in distinction from the Greek letters 
v,  M-^etc, which take on all possible values 4, 1, 2, 5), where for 
6lk we have 6^ = 

522 := 555 = 1' 
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MV/fr. --)-/».iiVi(fc.«,)- S^jx 

approximation is obtained if in the polarization operator (34) we 

replace all functions by their zero approximations) the relationship 

(38) is proven directly 

V 
I 

X (il j* Sp T,, 0«). (p. «,) «T/» - 2 J Sp 7. 00 >. X 
•• •• 

X(p + k. v + ».)rf,/»)-0, (59) 

where there has been usec?. the equality 

k7 -/»/ITI- l(P + k)Y- ('•« +'•»-+11). )l« + ^ I " 
-[pY-(/«». + ?jL)T4 + '«k)- (40) 

In the absence of a magnetic field the plasma is spatially an 

Isotropie system and vector k is only vector on which the polariza- 

tion operator (34) depends. Therefore, taking into account relation- 

ship (38) it is possible to write 

HttCk, «J = (ilk - -^t) II'(k, ..) + ^ Il'(k..«.). 

(41) 

I 
7 
4 

where the transverse IT    and longitudinal H    parts of polarization 

operator (34) are determined as: 

iF(k, «.)= y[n//(k, «(l) + ^Ln,4(k. •,)], (42) 

n'(k, .<() = ^na(k, ^--^.^.(k...). (43) 

Thus, the problem on removing the singularities in equation (33) 

reduces to removing the singularities in two scalar functions n and 

IT , through which there is expressed the polarization operator 

IT  . Question about the removal of divergence in II  was investigated 

in works [7, 8]. 
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Equation (33) has Identical form independently of the conditions 

imposed on the potentials (14), In practical calculations the most 

convenient is the gauge transform of potentials in which 

ü—a (44) 

In this case the solution of equation (33) has the form 

DuOi. •-)=(iM—ÄÄi|y(k; •.)+ijJt0/(kt ^ (45) 

where 

On the other hand, an isolated quasi-neutral plasma may be    ^ 

considered as a uniform Isotropie material medium being characterized 

by the dielectric constant e ■ e(x - x, t - t  ) and magnetic 

permeability |i = ^(x-x,t-t).    Heisenberg operators of macro- 

scopic electromagnetic field satisfy Maxwell    equations.    If we 

were to designate the Heisenberg operator of a four-dimensional vector 

potential of electromagnetic field in medium through Ac(x)  = Ac(x,  t), 

then with the gauge-trans format Ion Aj = 0 we shall obtain the follow- 

ing equation for Ac in a momentum representation: 

[(**• •» -TshrW + Tfl^rl^* •)-a        W 
We shall determine Green's delay function of electromagnetic 

field in medium by the relationship 

^('i-*t) = 

-iSpje^-^fMjCx^W- 

7 
4 
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where Hy Is the Hamiltonlan of the plasma In a macroscopic descrip-   s 

tlon, and F Is the free energy of the plasma.    Using equation (48) 

and the relationship of the commutation for the vector potential, there 

readily is obtained equation for Green's delay function; 

((^••'-^N+T^I0«*--'-*► 

solution of which has the form 

OfLik, •)= («,, -Äj^k. m) f 4£.DHfc. -|L (49) 

^ ->" ^Mi^feg - »m-tt (50) 

As is known (b->e, for example, work [5]), the Fourier component 
■D 

of Green's delay function B    (k,  CD) and the Fourier component of 

Green's temperature function in a medium (which is nothing else but 

D    (k, CD )  (35)) are connected by the relationship 

In other words, D.lT.(k, CD) is the analytic continuation of the func- 

tion D.^k,  -I'JO) to the upper half-plane of the complex variable  CD 

i)*(k. m)~-D^(k% -14 (51) 

Considering equality (51) and comparing relationships  (45)-(47) 

and (49)-(50),  we find an expression for dielectric and magnetic 

permeability of the plasma [9], valid at any values of m, lying in 

upper half-plane of the variable CD 

l-.(kf.)"J!LlI'(k.-/.y. 

i-._i_.--£in'(k. -/•)-ii'(k.-#.fc 
•t(k. •)        k» 

or, according to relationships  (42)-(45), we have 

i-.(k.«) = -^-irM(k.-/4 (52) 
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i-^»i[^.(».-'-)-n,(fc-Hj.    (53) 
S 

In distinction from macroscopic electrodynamics the magnitudes     I 

e(k, CD) and ^(k, cu), determined by formulas (52)-(55), are valid 

at any values of k and a># I.e., they are a known generalization of 

dielectric and magnetic permeability of macroscopic electrodynamics. 

By means of a diagram technique the polarization operator 

n (k, o^) In formulas (41)-(45) Is calculated In any approximation 

and a formal replacement of m -►-Iü) permits ua to determine the 

dielectric and. magnetic permeability according to formulas (52)-(55). 

In calculating IT  usually there are discarded the terms proportional 
p 

to higher degrees of e^. In distinction from quantum electrodynamics, 

2        2 where the parameter of the expansion is e^/Kc (or e^/Kv — v is the 

velocity of a particle), here, besides e^/hv ~ e^fc" m^'   ß ' , param- 

eters of the expansion at a high temperature and weak shielding are 

provided by fc n ' ßm^  and e?n ' ß (and also their product 

e?nß fcnnri) and at low temperature and high density -e.m^/li n ' . 

2 
Thus, in disregarding terms of higher order in e^, we make an 

expansion in the indicated parameters depending upon conditions of 

problem. We readily are convinced of this if by means of the diagram 

technique we analyze the graphs of terms proportional to different 
2 

degrees of e^. 

For a nonrelativistic plasma ß      « m (where m is the mass of 

the electron),   the magnetic permeability is practically equal to 

unity, and transverse and longitudinal parts of the polarization 

operator are Identical.    In this ctse polarization operator (34) 

has the form 

iii»(k. •«)= - ^r»/*n41(k.«.). (54) 
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I 

ii. I(i^=niak,«ll)-^nll (*,•.).      (55) 

n'(k. •.) - n'(k. •.) — -^ n44(kt.,). 

Energy Losses 

The energy being lost per unit of time by particle flying through 

a plasma is equal to 

Xlm/Cwb-l*)** (56)  j 

It must be noted that during scattering of particle there takes place 
op 2 2 the relationship CD   / q .    Equality cu   = q    would signify that 

flying particle radiated a photon,  but in the approximation being 

considered (17)  this does not occur,.   Therefore DQLLV(Q*  M)  is a 

real function.    Furthermore,  in an arbitrary gauge transformation 

of the potentials it is possible in relationship (56)  to make the 

substitution (see works[5,   2]). 

D^Jq, -)ß£v(q. «) = A.y.(q. -'"OAv'/tq. -H- 

Since, in relationship (56), Im ^ouv^' 'iü^ = ^ ^hen,  according 

to equations (51) and (33)* we shall obtain 

- 4ir = ür J ,1^.,lm/V* -'-»^ (sr) 
In such a form formula (57) is applicable for investigating the 

energy losses of particle passing through any medium. In this case 

function D (x - x ) is Green's thermodynamic function of the electro- 

magnetic field in a medium which is expressed in terms of the dielec- 

tric and magnetic permeability of the medium according to formulas 

(45)-(47) and (52)-(53) (see Appendix 2). 

Formula (57) is valid at any temperature of the plasma and 
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arbitrary velocities of a flying particle. However, at first we 

shall examine a nonrelativistic particle v « 1, passing through 

nonrelativistic plasma ß  « m, where m is the mass of the electron. 

As a result, we shall obtain formulas which generalize the well 

known work of A. Larkin [1] in the case of multicomponent plasma 

l 
= ( datdx    SC= Im  H,"(*-f*> .      (58) 

a»? ^ «ij --—»x 

"'"(*-'-)-S^J-t;^.^^ (59) 

«J-(e<»*/*"i-''i>' + li-. (60) 

where CD = q(vx - (^/2M), x = pq/pq u^ = u^ - m^, and the polarization 

operator (5^) is taken in the first approximation different from 

zero.  Relationships (58)-(60) include the distribution function 

ri of only the fermions, since the distribution function of anti- 

fermions within a nonrelativistic limit vanishes. 
I 

We investigate in detail the region relative to high temperatures 

and low density of the plasma when distribution function (60) 

coincides with the Boltzmann distribution.  In this case imaginary 
1 

part n 44 is equal to 

Imn«44(q. -/.)- X Ä/ ^ y7u£ I  x 

X(e- 

where n. is the density of fermions of level X 

The method of calculating the integral (58) in a nonrelativistic 

region in detail is described in the indicated work [1], therefore 
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we shall give the final result for one of the most interesting cases. 

If the velocity v of a flying particle is great in comparison to the 

mean-thermal velocity UV^Tf   of the particles of plasma, then the 

energy losses are given by the formula* 

if    y ^'^m Mmy* 
it       4J mk9      "'(* + «*)•-*"• ^  ^ 

where 

^.-S 
In formula (61) terms of an order l/mxßv are discarded. As 

is evident from formula (61), the energy losses occur chiefly in 

an electron gas. Losses in ions must be taken into consideration 

only in the case when quasi-neutral plasma contains a high percentage 

of negative ions. Energy losses in the electron gas are calculated 

in work [1], 

We shall consider further a relativistic particle being decelera- 

ted in nonrelativistic plasma ß"1 « m. For this part of the integral 

of (57), in which the transmitted momentum q has nonrelativistic 

values, it is possible to use relationships (5^)-(55)» where 

where e = E(q, CD) is given by formula (52). In particular, energy  I 

losses with transmission of a small momentum, included in the 

interval 0 ^ q s q0, where qjj « m/ß,  have the form 

In calculating the other part of the integral in (57)i in which q 

acquires relativistic values, there must be taken into account» in 

general, both the relativistic and also the quantum effects. 

In the most simple case of deceleration of a heavy relativistic 

"■"""" *A11 final formulas contain, in explicit form, the ii and c. 
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particle only In an electron gas of a plasma* quantum ef J 'icts are 

Immaterial and energy losses from pair collisions are calculated 

by the ordinary (classical) procedure. Finally, the energy being lost 

per unit of time from a heavy relativistic particle in an electron 

gas of plasma is equal to 

where e, m and n are, respectively, the charge, mass, and density of 

electrons of plasma. 

The author is grateful to V. M. Galitskiy for his criticism on 

certain questions relating to the given work. 

Appendix 1 

We shall use a certain general relationship, which may be 

useful also in other problems. For this purpose we shall consider 

Green's thermodynamic functions Gk(x, x ) of plasma particles in 

the presence of external current J(x) (see, for instance, [2]) 

o;(Jr.*')-<rt(rk(4t»^(«')Ä'l>/ (F), (l.l) 

5'-r,.^,W4U,"./^-yW + /(x). 

where for arbitrary magnitude B there is adopted the designation 

Spei* i   B 

Here d x = d- x dx, where the integration over x is made within limits 

of the volume of plasma, whereas integral in the variable T is taken 

from 0 to ß. The dependence of the field operators on the variable 

T is determined in the following way ("interaction picture"): 

At J(x) = 0 function (1.1) coincides with Green's thermodynamic    o 

function Gx (52). According to the well known theorem connecting 
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N- and T-products of operators  [10-11],  we shall rewrite Green1 s 

function (1.1)   in the form 

O'^jf. *0-:A'(^/rl(x)Vi(*')f|)/<^>. (1.2) 

where 

A-4-J*'*''f£^.(x-y)U.(<,)»4t(x)   ' 

By commutating the operators exp A and o in formula (1.2), we shall 

obtain 

Cifojr'>-(0(«sri(jr)fr
]L(x')x 

The polarization operator (5^) in coordinate representation is 

determined by the relationship [2] 

f IC'is, (x, jr) 
V(*-if)ö.s'f-x)*f ^ %tklrt     $— (1.4) 

i »^       Jr-0 

Variational derivative with respect to external current in formula 

(1.4) is readily found if we use formula (1.5). As a result we 

shall have 

where the corrslatior. function K (x - y) is determined by formula 

(22).  In relationship (1.5), by completing the Fourier transformation 

(26) we obtain formula (3i). If we use the diagram technique, 

then formula (1.5) may be obtained also without involving variational 

derivatives. 

Appendix 2 

We shall apply methods of quantum field theory in statistical 
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physics to the problem on the decleratlon of a charged p^rvicifi in a 

substance. As is known, a charged particle flying thr uch a 

substance loses its own energy owing to excitation and ionizatlon 

of atoms of substance. Furthermore, the energy of flying partk;ifj 

is expended in surmounting the deceleration force, developing e:i a 

result of polarization of the medium by a charge of tho particle. From 

the macroscopic point of view the energy losses of particles are con- 

sidered to be a result of the excitation in medium of elpctromagnetic 

waves, which attenuate if medium has a complex dielectric permeability. 

Thus, the moving particle transmits energy to medium by means of 

electromagnetic field. Energy losses of charged particle in a 

substance can be calculated by methods of quantum field theory applied 

in many-body problems. The calculation made below is of well-known 

interest in methodology in view of future applications of the present 

method, a 
o 

The Hamiltonian of the considered system in the Schrödinger   f 

picture will be written in the form of a sum 

//, + //..' ^ //,'. 

Here H includes the Hamiltonian of particles of the medium, the 

Hamiltonian of free electromagnetic field H {J>), and energy of inter- 
i 

action of particles  of medium with free electromagnetic  field,    H0 

is the Harailtorian of external flying particle (fermion),  and H^ is 

energy of interaction of flying particle with  Ihe electromagnetic 

field 

where J(x)  is the operator of the four-dimensional current of the 

flying particle, and A(x)  is the operator (7) of the four-dimensional 

potential of free electromagnetic field. 
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The S -matrix of the quantum-mechanical system being considered 

is determined by the equation 

By transformation 

we shall introduce the s -matrix describing the scattering of flying 

particle in the medium: 

v-r.-,.(''>". H.M,mAl,i (2,i) 

fix).."'.''/•„,.<'. AM.J"'AW,-*'. 

By means of the s -matrix (2.1) we shall find statistically the 

averaged energy being lost by a flying particle per unit of time,: 

--iris-^r7V'**(*,-><r* 

m.m 

where A(0)   is the operator of the electromagnetic field in the 

Schrödinger    picture taken at  x = 0;  F is the free energy of the 

substance; and the remaining magnitudes were determined above. 
i 

The function *  is directly connected with Green's thermodynamic 

function Dv  of the electromagnetic field in the medium 

/>,(«-.'. x~-.')~SplWT, 0,(1. ,^(,'. OI|. (2.2) 

3[(ä. t) = e/''t>^(«)c■W*,. 

where T and T   vary within the interval from 0 to ß. 

Repeating the discussions    which resulted in formula  (50),  we 

readily find 

A. ,  4 ImD  (itm) 
♦*<*•>-Id I,-^- 

Here ^ (q, -ioo) is obtained from D (q, ü)n) by the replacement 

CD -* -iü) where D (q, co ) is the Fourier component of function (2,2). f 
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Thus,  the energy   lost by an external particle p« r uruL 'J! g 

time during passage through a substance is equal to 

which coincides with formula (57). 

If the medium being considered is a plasma,  then i «s was  Imlicated 

above,function D    (q,  cu ) can be directly calculated  in any approxi- 

mation.    In a general case the material medium is characterized by 

dielectric permeability e=e(x-x,t-t) and magneti? permeability 

\i = \i{x - x ,  t - t )   (for the sake of simplicity we assume the medium 

homogeneous and Isotropie).    By the usual method there are introduced 

operators of macroscopic electromagnetic field in the medium and 

Green's delay function D?) (x-x ,  t - t  ),  whose   Fourier com- 

ponent   D    (q,  (i))   is connected with D    (q,  -ico)  by relationship 

(51)  where function D    (q,  cu)  explicitly is determined by specifying 

e(q,  cii) and ^(q,   CD) of the medium being considered. 

We now consider the energy losses of relativistic particle in 

a substance with transmiColon of a small momentum q  « e  .    The 
P 

spatial dispersion e - F{X)  is ignored and we assume u. = 1. Then 

we shall obtain 

- -a'-JV]*»'"'S .•,w+..(l-.<,)i(.---.) • (2-3) 
(1 — p*t) fdu> 

where v is the velocity 'f a particle, and q0 is the upper limit of 

the tr?.nrv?r"p m^montum T-^-inp; transmitted at which  there still is 

valid the expression for e   = e(cü). 

In considering that  i>;al part of e(ü))  is an even function,  and 

the imaginary part e(a.) an odd  runction of a),  and considering the 

inequality 

c      ' I 
1      1       ">f 
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formula (2.5) is readily transformed to the well-known relationship 

[12] 
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RADIATION OF A HIGH-TEMPERATURE PLASMA 

A, I. Alekseyev and M. A. Troitskiy 

Methods of quantum field theory in statistical physics 
are applied to problem on the radiation of a high-tempera- 
ture plasma. There is found spectral decomposition of 
intensity of brems Strahlung of a volume unit of plasma with 
the shielding of Coulomb field of ions taken into account. 
The production of a plasma by magnetic retardation also is 
investigated. The work was completed in 1961. 

Brems st rah lung of a high-temperature plasma, and also recombi- 

nation and bright-line radiations of a low-temperature plasma were 

examined by a number of authors by means of classical methods (see, 

for example, [1, 2]). Of considerable interest is the application 

of new methods to the given problem in statistical physics, inasmuch 

as in a number of cases they give the most correct solution of the 

problem. Together with new results in certain limiting cases we 

obtain already well-known formulas. Nevertheless new solution is of 

definite methodical interest in view of the application of an analogous 

method to other noninvestlgated problems. For this purpose there 

is examined the heat transfer of a high-temperature multicomponent 

plasma. The device discussed below is generalized readily for the 

region of low temperatures, in which the calculation of discrete 

levels of ion becomes essential and also for the case of the .radiation 

of a magnetized plasma. For plasma, which is found in a constant 
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magnetic field there Is obtained a general formula of the magnetic 

brems Strahlung and certain limiting cases are Investigated. 

Brems Strahlung of a High-Temperature Plasma 

Hamlltonlan H0 of a quasi-neutral system of electrons and Ions 

which are In thermal equilibrium have the following form In Schrödlnger 

representation 

//.-Jf«w-^(«)*'« i Y 2TT^I**w*wvi*n(*)<px*x\ 

where the sign X numbers the particles of a given level. The operator f 

of Interaction IL of the plasma particles with the electromagnetic 

field» 

results In brems Strahlung and recombination and bright-line radiation 

of the plasma. Inasmuch as we are limited to the nonrelatlvistlc 

region the basic contribution to the radiation will be Introduced by- 

electrons, the lightest particles. Therefore, from the entire sum of 

the operator H^ subsequently we shall consider only the component 

pertaining to the electron with charge e and mass m. 

As also in work [3], we shall determine the S-matrlx, describing 

quantum-mechanical transitions of two quantum systems - plasma with 

Hamlltonlan Hn and free field of radiation with Hamlltonlan H u y 

'7f-W> + //T+^,)5. 

♦There  Is used such a gauge transformation of the electromagnetic 
potentials,  at which scalar potential is equal identically to zero, 
and the vector potential A satisfies the condition div A = 0« 
Furthermore,   it is assumed h = c = 1. 
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By means of the transformation 

we shall turn to the interaction picture, in which the s-matrix is 

defined as 

■ 

t(x. 0=e<IVt(x)e'"W,r. ^(x. 0=eWT'A(x)e"^,i#, 

where symbol T before the operators designates the T-product  [4]. f 

Radiation of plasma in first approximation according to IL   is 

described by the following matrix element of the s-matrix 

p««-p«- p»; ••»I = f«-^i •HI 

where ^(0)  is the operator of electron field in the Schrödingerrepresen- 

tation    taken at x = 0; 1    and CD — respectively the vector of polari- 
2    2 zation and energy of photon with the momentum k (k = CD ), and p 

and E — respectively the total momentum and total energy of the plasma 

in the n-th state; V is the volume of the plasma. 

Using formula (1), we find statistically the averaged energy 

dQ being radiated by a volume unit of plasma per unit of time in 

the interval do) 

^(k. -)=(af S e«" +f* *>■ -B* V(0WO)UX 
*,m 

X IV(0)«(0)UP.iP-,y«(k + P-«W" + O- 
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where ß ■ 1/kT,  ß is the thermodynamic potential of the plasma, and 

M,.   and N^ respectively are chemical potential and total number of 

particles of level X.    By the repeated vector subscripts  i,  J  there 

is implied a summation from one to three. 

By following the method presented in work [5],  it is readily 

proven that function ^.«(k,  CD) is connected with analytic continua- 

tion of Fourier-component K. ,(k,  cu ) of the correlation function 

Kij(xl " x2) 

where p, is the differential operator of the momentum 0 s T i ß and 

T designates the T-product, In which the order of operators occurs 

according to the variable T. f 

The indicated relationship has the form | 

Formula (2) with function Q^Ak,  co) (3) is useful for investigating 

the bremsstrahlung and the recombination and bright-line radiations. 

Below there is considered only the bremsstrahlung. 

In order to calculate K..(k, CD ) there is applied the well-known 

diagram technique (see for example, [5]) and then the formal replace- 

ment of CD -♦ io) and k -♦ -k permits us to find ^^ ^(k, co) by formula 

(3). In the case of e high-temperature plasma the first approxima- 

tion different from zero for the imaginary part of function K. ..(-k, iu>) 
2        

1J 
is given by the graphs, on which the factor (-4ir)q corresponds to 

dashed line and to the solid thin line — Green's electron thermodynamic 
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^ n function In the zero approxlma- 

ÖV^ , ~^f      tion (see Figure), 

where ^L IS the chemical potential 

of the electron gas. In the 

figure the closed loop strung 

to the dashed line, belongs 

to ions of the plasma, since at 

first we consider the dipole radiation without taking into account 

shielding. Here the sum of graphs corresponding to a dipole 

radiation of electron on electron gives terms which mutually are 

reduced. 

As is known, in the nonrelativistic region the momentum of a 

radiated photon is much less than the momentum of a radiating particle, 

and therefore in a dipole approximation the momentum of the photon 

k in ^.(-k, icü) must be set equal to zero. Then integral over angles | 

in formula (2) may be calculated and dQ will be expressed through    f 

K..(0, i(ü), where 

/C« (0. «».) =-^, J V O-Jp.^JfUp-q,«« •-• —JX 
"«"« 

x IP'OVP, •« - •••.) H (p - qWCp - * mm - *-•) + 
+ P(P - q)0..(P. W/H - --Mfo - q. •»• •*!.• IX 

xii(v.-.-)*f; W 

"*   "    ~   (2«)' J    JZ , . (5) 

Here, u^, - ^, c^ = i^+_ill, where n', m - 0, ±1, ±2, .... 
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Sunmatlon In formula (3) occurs In all levels of ions. 

The Ignored graphs, being proportional to the small dimenslonless 

parameters ej^em1/^1/2^"1 « 1 and e^em'^nh2 «1 (n 13 the density 

of electrons) give a contribution, considerably less than the basic 

term (4).    The smallness of the parameter e^em '   ß '   fc'    permits us 

to take into account the interaction between electron and ion in 

the Born approximation, whereas in the realization of the inequality 
-1  2 e^em   ß nK « 1 there may be disregarded the effects of the medium»s 

polarization type. 

Relationships  (2)-(5) are applicable both for the Fermi, and 

also the Bose laws of the distribution of particles according to 

the momentum zi .    However, below we shall assume that distribution 

function of electrons and ions of plasma coincides with the Boltzmann 

distribution. 

Using the formulas: 

P   ^' /•„ + !       2 2 " 

J-Y--J. ± th JLiL, •„ =(2m-f-1)* ?. 

where z is an arbitrary complex variable it is readily shr «i that 

Here z*,  z« and z, are complex variables, and the function § 

f (z^ z  ,  z,)  does not have poles with real values z±,  z2 and z,.    If 

the summation In equality (6)  Is made in a»   = (2n + l)rr/ß;  then we 

shall obtain a function, which does not have poles with real values 

ZA,  Zp, and z, (the first component in the right-hand side of equality 

(6)  will be lacking). 

Considering realtionship (6), we shall use the equality 
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• ••• 

~0.{t, *m)\ (7) 

and will discard all components in expression (4) whose imaginary 

part of analytic continuation i'jon -»• -üJ is equal to zero. We shall 

obtain 

*''(0'w«)"i5£%J S ö.(P.O 

o«(p- «I.»«-•-•-•«)"(q. «-•)-— •      (8) 

The summation in formula (8) is made in an elementary manner. As a 

result for energy dQ being radiated by a volume unit of plasma per 

unit of time in the interval da) we shall obtain in accordance with 

work [1] the following expression:* 

„Q-S-fl^-y^«-^^)- (9) 

where r0 = —ry is the classical electron radius, n and n^ is the 
mc 

density respectively of the electrons and ions of level X, and K0 

is the MacDonald  function. 

If the shielding of Coulomb interaction of particles of plasma 

is significant then the dashed line with the strung ionic loop (see 

figure; should be replaced by a dashed line on which in succession 

there it ;?■■'■ runv an infinite number of electron and icr.ic loops. Then 

to the graph.?, shown in the figure, we must add still two graphs 

which arp two electron loops with three tips, connected to each other 

by two dashed lines, on which there is strung a large number of 

electron aad ionic loops. 

♦All final formulas contain the constants h.  and c in explicit   s 
form. s 
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In the most simple case of quiescent lone the Coulomb field of 8 

Ions may be assumed to be an external field In which the electron 

gas moves. The discussed apparatus Is readily generalized for this 

case, where for 1^(0, ai ), the shielding action of electrons taken 

Into account, we shall obtain 

^1(0. «>,) = £ *^   JS 0.(h*m)0, (P - q.-« «-)X 
• i       "  ••• 

2     2 where n ■ 47re nß Is the square of the Inverse Debye length. With 

secured Ions the energy dQ radiated by a volume unit of plasma per 
i 

unit of time In the Interval do) has the following form: 

(10) 

For high frequencies cuß » 1 the shielding may be disregarded, 

the function F(a), 0) coincides with MacDonald's function 

^(•.o)-/r.(-^-). 

and formula (10) corroborates results of work [1], 

At low frequencies the shielding becomes significant if there 

Is fulfilled the condition 

V^f en) 
p 

In taking into account the shielding, function F(ai, K ) at low 

frequencies (11) takes the following form: 

where C = 0.577 is the Euler constant. 

For the Boltzmann distribution of particles by momentum the ratio 
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Is fulfilled automatically, if only there is fulfilled the condition g 

of the Born approximation e^em1/^1/2^  « 1. Thus, the effects of 

polarization of a medium are immaterial in Born case and the calcula- 

tion for shielding is not reflected markedly in the magnitude of the 

total energy radiated by a volume unit of the plasma per unit of 

time. Calculation of the shielding of the Coulomb ion field 

alters the spectral decomposition of the radiation intensity only at 

very low frequencies (11) by removing logarithmic divergence charac- 

teristic for radiation in Coulomb field. 

There is basis for expecting that in case of strong shielding 

2  -1 e^eß nKm " » 1 formula (10) will remain accurate in order of 

magnitude. Then energy radiated by unit of volume of plasma in unit 

of time in order of magnitude will be equal 

Q» £ *_ A r.*c>nnx l/^T" ^TTT ' 

tftfl 1. 

Magnetic Brems Strahlung 

We now investigate magnetic brems Strahlung of plasma in constant 

uniform magnetic field H , directed along axis oz, under the condition 

that the absorption may be ignored and, consequently, all radiation 

emerges from volume of plasma outwardly. Inasmuch as the major 

contribution to the  magnetic brems Strahlung is given by light 

particles, we shall write out in the Schrödinger notation the Hamlltonian 

only of the electron gas of the plasma 

//=fv»(x)-^-V(x)<f,Jf,       ' 
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We shall asBume the plasma fairly well heated, so that the condition 

of Born approximation is fulfilled and energy of interaction of 

electrons with electrons and ions may be ignored.  Interaction of 

electrons with electromagnetic field 

-JLf T»(X)i4/>/ir(x)<fjf + -^-fT*(x)i4y
aT(x)rf,x 

results in a magnetic brems Strahlung.    Just as this was done above, 
g 

we shall determine the s-matrix describing the radiation process. 
! 

Then in a dipole approximation the magnetic bremsstrahlang is described 

by matrix element of the s-matrix 

smu .0 = 1^ |/^ /,> ]' d- (x) c-' •" />;!• (x)U «r.v X 

where E is the total energy of electron gas of plasma in the n-th 

state. 

The statistically averaged energy Q, being emitted by a volume 

unit of plasma per unit of time has the form 

Qi~"2^Kv -T^'V
11
 «K''«"'2*; 

n, m 

X(V(x')e~/kx' P,
i\'(x')\mHEm - £. + *)d*xU*x'. 

Here Ü and pi are respectively the thermodynamic and chemical potentials 

of the electron gas and N is the total number of electrons in a 

volume V. 

In a dipole approximation in function * * ..(It, ou) it is possible 

to set k = 0. Then wo shall obtain 
00 

b 
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'tue latt ;r component in formula (12) does not make a contribution 

in the considered approximation, therefore subsequently it will be 

discarded. By virtue of axial symmetry of problem, functions * ^(0, u)) 

and $ or  (0, Cü) are equal to each other. Thus, in order to calculate 

Q it is sufficient to know one of the named functions (for instance, 

* 22^' 
If we introduce the correlation function 

? 
there is readily proven the equality i 

where the function K. .(ioo) is obtained from the Fourier component 

Ki.(ü)n) of function (13) by replacing  ü>n-* ico. Using the diagram 

technique there is readily found 

*//(«.) —Tp- £ j*p'0»(x' x'; ^/J//x 

X 0, (x', x); •* - o»,) rf'x rf'jf'; 

••.-2/i«/p;i.jll=(2m+1)i:/pf 

where G0(x, x ; T - T is Green's thermodynamic function of electron 

in a magnetic field which is investigated in detail in work [6], As 

a result of simple calculations for electron gas with Boltzmann's 

law of distribution of particles based on momentum we shall obtain 

♦'«(0.«)-y-^r8(.-«W). 

where n is the density of electrons, and üI, = eH /mc is Larmor 

frequency of electron in a magnetic field. As we might have expected 

the radiation occurs only at the frequency ax,. 
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Finally the energy radiated by a volume unit of a magnetic^d 

plasma per unit of time 1B equal to 

As can be seen from formula (14), magnetic brems Strahlung exponentially 

attenuates with a decrease In temperature. However, the temperature 

of the plasma must remain fairly high so that condition of Born 

approximation is fulfilled. 

Formula (14) Is obtained by considering the fact that the motion 

of an electron In a magnetic field obeys laws of quantum mechanics. 
* 

In classical limit h -^ 0 formula (14) changes to the well-known 

result [7] 

Q 5*— (15) 

Thus,  the radiation of a magnetized plasma is described by means 

of classical theory (15) only In the case when energy of radiated *? 

3 
quantum bux, is much lower than the mean thermal energy of an electron 

(hau « 1/ß), which Is realizable in fairly weak magnetic fields 

and at a high electron gas temperature. In the converse case (kca, *t 1/ß) 

there must be taken Into account the quantum character of motion 

of electron in the magnetic field; here the radiation of a magnetized 

plasma is given by formula (14). 
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