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DECELERATION OF A RELATIVISTIC PARTICLE IN A PLASMA

A. I. Alekseyev
By the method of Green'!s functions there are found general
formulas for energy losses of a charged particle passing
with any speed through a multicompcnent plasma of arbitrary
temperature. 1In detail there 1is investigated region of

nonrelativistic temperature of the plasma and arbitrary
speed of flying particle. The work was completed in 1960,

Usually in calculating energy losses of & charged particle
passing through plasma, losses connected with pair collisions, and
losses caused -by excitation of plasma waves are examined separately.
Both named parts of energy losses have an identical order of
magnitude. Because of the incorrectness of the methods used, the final
results of total losses, obtained by different authors, as a rule,
differ by numerical factor under the sign of logarithm. In connection
with this it seems natural to apply to the given phenomenoi. new methods
with use of Green's functions and diagram technique which makes it
possible more clearly and correctly to solve the posed problem, The
method of Green's functions‘together with dlagram technique in appli-
cation to energy losses of particle in a plasma were first worked
out by Larkin (4] who, however, from the very beginning was limited
to the nonrelativistic region. Below there is proposed a further

development of the indicated method, in reference to the case bf

=)=




arbitrary velocities of particles passing through a multicompun.i .
plaama (see also [2]). Furthermore, in the present discussion the
wethod 1s readily extended to other problems: bremsstrahlung ana
the production of pairs during passage of charged particles thrcugh

a plasma, radiation of plasma, deceleration of charged particles i

matter, etc.

Probability of Scatteri of a Particle
= In a Plasma

We shall examine the statistical system in a thermal equilibrium
conslsting o{ several levels of fermions interacting with each other
by means of an electromagnetic field (multicomponent plasma). For s
generality we shall assume the problem relativistic. Such a system &
in a nonrelativistic approximation may describe, for example, an
electron-ion plasma containing several levels of ions., For
calculating the stopping power of multicomponent plasma we shall
write, in Schrddinger notation, the Hamiltonian of the plasma and of
the external flying particle, interacting by means of an electro-

magnetic field*

He=H,4+H'+H/, H--§Hl +”1 + Hyy, ; (1)
.(2 apr @ :,+2 hr 8. (2)
= ’2 oucl) uji o= [I0AOPs, (3)

*Everywhere the system of units is used in which A = ¢ =1 and
there is adopted the following rule of summation over the vector

indices: pq = p,q, = PyQq, - P49y - Pdp - P3d3. Here p = p v,, where
Yy and 71’2,3 = 74“1,2,3 are ordinary Dirac matrices.



Jy )= 2 o N (01, % 0] =)::,*- Top X
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h @)= v-'b(E o et 4 E kene™ (5

»r=3

f (x) = V=5 ( ¥ a.’:i’(» ~rx, g P (R L
n'- »r=3 (6)

Aw= 3 x)m Vi-ae g iy,
k=1 4 (7)
where H\ and Hy are Hamiltonians of the free fermion level X and of
the photon flelds, respectively and Hni is their interaction operator,
Hy is the Hemiltonian of the plasma. H(') is the Hamiltonlan of free
field of flying particle (fe'rmion), and H;_ is the operator of its 8

~o

interaction with photon field, H(') and Hi have the same structure

as H, and Hy 1in which the subscript A 1s discarded. At r = 1.2, u{(p_)

is the solution of the Dirac equation

(p—my ) € (p)= 0 (8)

for positive energy a:;-]/pz+ ,,,',f, and at r = 3.4 — for a negative

energy, equal to t4em? . Then, u = u*y eA(x) 1s the four-
: p*+ m; 4

A
dimensional vector potential of electromagnetic field; a.p(b; r) and

:; ';(b; :) are operators respectively of the absorption and creation

of a fermion (anti-fermion) of sort A with momentum p, polarization r,

and energy e;; and Cx 3 and c; 3 are analogous operators of photon

with momentum Kk, polarization Z.J and energy QY = |k| The sign
a




N Dbefore the operators designates the N-product [3]), V is the vul i.
of plaéma, and e, is the charge of fermion of level A, The S-matr’.
describing quantum-mechanical transitions of plasma and flying
particle, satisfies the equation

l-g-;!-é(ﬂ.+l'l.'+ H)S. (9)
We now use the transformation

Sl + 1, (10)

and then turn to another representation, in which the operators of
field w'(x) of a flying particle are written in the interaction

picture
¢ (x) o e g (x) 6= 7, (11)

and operators of fermion wx(x), Wi(x) and photon A(x) field — in
the Helsenberg picture

h (x) = o (x)e—Het

A= Ayt (12)

Here the operator A(x) in case of a Lorenz gauge transformation

satisfies the equation

(v— ) A == 4=Z e Nits ()1 () (13)
A

~o

o0

with a solution of the type

Ag‘n (x) == A’:A (X) + “;“ € Ilegu(x = x') NX
X (a ()7, 0 () d'w, (14)
F

Ouv
of propagation of photcn in quantum electrodynamics in the zero

!
where Ag(x) is the fre= photon field, and D, . (x - x ) is the function

approximation




(V’— -‘!F-) D:ps(")="4ﬂ,,¢(x). (15)
W=l by =ty =ty = — 1,

With the other gauge-transformation of the potentials A(x), equations
(13), (15) and function Dguv(x - xf) vary; however, general form
of the solution (14) will be maintained with arbitrary guage-trans-
formation potentials, On the right-hand side of equation (13) is

the sum of the currents formed by each level of fermions of the
plasma,

The transformation (10-12) in accordance  with the sense of the
posed problem assumes that the interaction of a flying particle with
plasme particles 1s engaged and is disengaged at moments of time
t = -0 and t = +m, respectively, whereas interaction between particles
of plasma one with another remains continuously engaged e, £ O,

In the indicated representation the s-matrix is determined in

the following way:

L] ’ — — 4
l—;:—:N, s, l__.Te 'I”'(")"‘. (16)

Hy' (x) = & NGF(£) A () ¥ ():

where e 1s the charge of flying particle; the operator A(x) is given
by expression (14) and the symbol T before operators indicates a
T-prodact [3). The s matrix (16) describes scattering of-flying
particles in a multicomponent plasma as a single whole., To an equal
degree the s-matrix (i€) is applicable for the description of the
phenomenon of scat%ering with radiation, the formation of pairs, etc.
We shall then acsume a flying particle, moving with a speed v,
sufficiently rapid exgt/@v << 1, in order that its interaction with

electromaegnetic field created by the plasma may be examined according

-5




to the theory of perturbations. Then the matrix element of the
s-matrix describing the scattering of an external particle with its

transition from a state with momentum b and polarization r to a state

with p' and rf, and the plasmas — from a state n to a state m, 1is g

. determined by following formula:

bnp'r', mpr= —l%c‘cl (mp' 7 00T, ¥ (0) X

X Db (x — ¥ ()7, %0 ()05l |1p ) =

. = - L@.‘.v)::.ml'o.:z.'u"_) l,‘f:‘..(q, .)}: ¢ A (17)
A

X G )% % (s $(Q — Prua) 2w — 00,);

Q=pP—p; o=3—3%_q: Pme=Pa—Psi
'..:E,-E,.; g | ”'i‘M’.

where the subscripts n and m.denot® the state of plasma, in which
the total energy E, the difference between total number of fermions

and anti-fermions N = ZNX , and also the total momentum P of the
A

plasma have specific values; q and w are, respectlvely, the momentum
and energy transmitted to the plasma during scattering of flying
perticle of mass M and of charge e'.

The probability dW of the scattering avereged on the basis of
the initilal and integrated on the basis of the final spin states of
a flying perticle, and also integrated over all final states of plasma
and statistically averaged on the basis of initial states of plasma
by means of the Gibbs distribution |

@+ %, Ny —EQ)S ( 18)
e X :
where B = 1/kT; Q is the thermodynamic potential of a plasma; u is
the chemical potential of fermions of sort A, and Ny the difference

between total number of fermions and anti-fermions of sort A, 1is

-6~
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determined in the followlng way:

AW = T Dy @ 9D, (4, )9 (4, )7 (19)
T = g | Pu P +P's Py — Yy (PP’ — M), (20)

0,00 o) =(2p S LFErN—E)Y ¥ o
.-.. )-. 1’ .

X O (O, % e T O T 4 Oan?@ = P20~ 00 (4
- 8
- 7
where ¢ _,(q, w) is expressed in terms of the correlation function,
which in turn 1s intimately connected with Green's thermodynamic

functions cof particles of a plasma, pu is the four-dimensional

momentum vector of a flying particle, in which Py = ep.

The Correlation Function

We shall examine the following correlation function:

@+ ) !‘)‘nﬁll —Hp)Ss

Kp(f_‘l — X)) = 2 e. €. Sple » X
| 9 ¢
X T [th (5 1, " (50 (070 B G, (22)

in which x is the totality of x and of the variable 1, varying within
the limits O = 7 s B, The symbol T, designates the T-product (3],
in which the order of operators proceeds according to the variable T,
and the tilde sign ~ denotes operators in the "Heisenberg picture,"
for example
2 —(Zy M —H):  (Em N —H):
hlx)=e * e (23)
In order to ascertain the indicated relationships between
functions (21) and (22) we shall make, by following Landau's [4]
method,a spectral expansion of the function Kuv(x) (22). We shall obtain

-T=-




§ a0 " du, >0
K,'n Q)= - ( 2k )

S ®.(q .)e-“0+')lo. <O

where -f s 1 s B, and the function °uv(q’ w) is determined by
expression (21). We shall periodically extend function (24) to

the entire axis 1, then at any 1 there will be fulfilled the relation-

ship
.K:.» Q. 7)== va Q =+H) ( 25)

Then, in completing the Fourier transform

S | (4% — uyv)
K(‘o ‘)—mzsx(‘o .l)e - "7- (26)
oy
we shall obtain, by taking into account relationship (25),
[ M)
. ; - —e—)
K@ o) = | 2mle 0277 4, (27)
©—{n,
-0

w=z} a=0 £, ~2...
Integral (27), considered formally as function of variable la,
determines analytic function Kﬁv(q’ w) in the upper half-plane

. ® . o)l — —e'})
K;‘(q' ) - S . '.)-,1“.‘ de’ =
8
® (q o)l—c="Y ’
md ,).(__c de' +159,,(q @) (1 —e~*), (28)

which coincides with Kuv(Q: -i(iwh)) at an infinite set of points
w = iah.@h > 0), having a point of bunching, By the theorem of

=~ O~

analytic continuation we conclude that Kﬁv(q, w) is analytic continua-

tion of function Kuv(q’ -1(iwh)) (27) on upper half-plane of complex

variable w

K:» (q @)= va(‘° — o). ‘ (29)



Inasmuch as °uv(q’ w) 1is the real function w on real axis, then

from formulas (28) and (29) we have
. mK (g —!o)
ohih.ﬂr-'——ig-::;r-° (30)
I(l -:.
Thus, problem reduces to finding the function Kuv(Qy wh)’ since

the formal substitution of @, = iw aids immediately in determining

¢uv(q’ w) by the formula (30). Calculations (see Appendix 1) result
in the following general relationship:

Kp\v' (q, ») Do, (q, ®)=— "p'-' Q. »,) D, (q, ), (31 )

in which the polarization operator Huv and Green's photon thermodynamic

function D, are found from equations [2]

G, (p, ww) =Gy, (p, #a) + Gy ;.(P, wa) M), (p, )G, (p, .’). (32)

NN =

D;ro k. »,) = Dy w (k, »s) — Dy Y (k, o) ":5'1.' (k, »,) X
XD, (k, »,) - ( 33)

M (p' l) —

e, \1 ’ . .
'(2‘), 3 j T U, P+ K oy + =) X

XF, (Pl+ Kk, 0y oy ko) D.‘.,-(k. wg) d-k.

- My (K, 'n) - 2.! )J j‘sl’ G (P Tk, o41s,) X

(2= )‘1 (34)

XTI, (p+k o04+0,p, o) 0;_ (P' ug) dp,
F@. wn P’ @'m)=1+\(p, o P’ &'
“'=(2M + l)n/a. 0). = 2"’:,"30 m! u = o' i 'o i20"-

Here A 18 determined in the form of series, being here the
totallty of all graphs of peak portion in addition to simple peak
(point), and Green's thermodynamic functions of zero approximation

GOX and DOuv’ respectively, for fermion of level A and photon are

-9~



equal to

Gor(p, o) = [py —(log+ 1. )7+ m |

4R
R

Expression (35) corresponds to a Lorenz condition of the potentials
(14). During another condition of the potentials (14) function Doy
has the form [5]:

a) in case Ay = 0"

Dontk, o) = o (b + 5L ): (36)
YT =Dy =Dy =0;.

b) in case div A = 0

4= bty
Dyjp(k, »;) = ¥ (3;.——".") . (37) .
D,5y= U.n—ﬂ? Dy (k, ";l”-‘-' - —:— . z

In a concrete calculation of magnitudes Huv(k, @) and M, (p, )
in relativistic region there appear singularities assoclated with
the renormalization of the charge and mass of plasma. In connection
with this we shall rewrite equation (33) in such a form, which 1is
the most convenlent for investigating the question on the renormaliza-
tion of the charge and mass of particles. For this purpose we note

that there takes place the relationship [6]
kT, (K, 0)—ie, T, (K, )= 0. (38)
In the most interesting case of the first approximation different

1
from zero Huv(k’ w,) of the polarization operator Huv(k’ w,) (this

*The vector designated by the Latin letters 1, k, 1, etc,, runs
through values from one to three (in distinction from the Greek letters
v, W,etc., which take on all possible values 4, 1, 2, 3), where for

5ik we have 611 = 622 = 533 =1,

=10~
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approximation is obtained if in the polarization operator (3U4) we
replace all functions by their zero approximations) the relationship
(38) 1is proven directly

oy
k.ln Ll(k. .n)—l“ "' ; (2:)‘1 .
X(X .\. SD .::l o(l 1 (p' m.)d’p— 2 I SP .l':n. .00 2 /\:
X(p+k, wy+w)dp)=0, (29)

where there has been usec¢ the equality

ky—logy = |(P+K)Y - (om+iogtm)u+m]—
—IPY—.(I“.-G-MI)T.-!-ML)- (40)
In the absence of a magnetic field the plasma is spatially an
isotropic systen. and vector k is only vector on which the polariza-
tion operator (34) depends., Therefore, taking into account relation-
ship (38) it 1is possible to write
Mg (K, o) = (35— S58) W (K, @)+ 22 (K, 0,)

Tk, o) =T, (K, w)=— % 21k, o) (41)

I, (k,

where the transverse nt and longitudinal it parts of polarization

operator (34) are determined as:

!
I (K, w,)= -%-["u(k. ag) + 2 0, -.)]. (42) :
:
wt

T (k, ) = 2L Tk, mg) = — S0,y (K, @) (43)
Thus, the problem on removing the singularities in equation (33)
reduces to removing the singularities 1n two scalar functions IIt and
Hl, through which there is expressed the polarizatidn operator
nuv' Question about the removal of divergence in Huv was investigated

in works [7, 8].

11~




Equation (33) has 1ldentical form independently of the conditions
imposed on the potentials (14). 1In practical calculations the most

convenient is the gauge transform of potentials in which

Am0. (4%)

In this case the solution of equation (33) has the form

Dak, o) = (3n - 22Dk, o) + 48 Dk, o) (45)
Dll-'Dll =Dy =0,

where

- .
Dk, =)= K4t +dxlli(k, w,) ° (¥6)

DIk, o) = -.+4-:'(k.-;) 3 (47)

On the other hand,an isolated quasi-neutral plasma may be -~
considered as a uniform isotropic material medium being characterized
by the dielectric constant € = e(X - X, t - t') and magnetic
permeebility p = u(x - x', t - tb, Helsenberg operators of macro-
scopic electromagnetic field satisfy Maxwell equations. If we
were to designate the Helsenberg operator of a four-dimensional vector
potential of electromagnetic field in medium through Ac(x) = Ac(x, t),
then with the gauge-transformation Aﬁ = 0 we shall obtain the follow-

ing equation for A® in a momentum representation:

[(oem & -2 )t + 24k, -0 (48)

We shall determine Green's delay function of electromagnetic

field in medium by the relationship

—isple =M AS (x) AS () —
D (%, — x) = — A () A ()l 6>,
0 t<t,

=12~

-



where H, is the Hamiltonian of the plasma in a macroscopic descrip- 4
tion, and F is the free energy of the plasma, Using equation (48)
and the relationship of the commutation for the vector potential, there

readily is obtained equation for Green's delay function:

[("'(" TS )) by + p;-‘f'-)]D:'“" = e
Dz"th'-Do.c.-o'

solution of which has the form

D3 (k, w) = (a,.——)o'(u o) + 2 D'(t--). (49)
dmp (k, &) _
Dk o) = g e o= D' =5a (50)

As is known (s-e, for example, work [5]), the Fourier component
of Green's delay function Dﬁv(k, w) and the Fourier component of
Green's temperature function in a medium (which is nothing else but

Duv(k’ qn) (33)) are connected by the relationship

R .
Dp'o (k, ¢ ..) = D’.s (k, ..)-
In other words, Dﬁv(k, w) is the analytic continuation of the func-
tion Duv(k’ -iw) to the upper half-plane of the complex variable w

DR, (k, @)= — Dy (k, —le) (51)
Considering equality (51) and comparing relationships (45)-(47)
and (49)-(50), we find an expression for dielectric and magnetic
permeabil;ty of the plasma [9], valid at any values of w, lying in
upper half-plane of the variable w
1= a(k, @) == 25 1 (k, —ia)
e — b ‘; [MU(k, — fo)—11'(k, —Fa}l

s(k, »)
or, according to relationships (42)-(43), we have

1= o(k, @) = = 11, (K, — o) (52)

© 13-



(L0 ]

1 _ &[3 e _
1= e = [ T — t0) = Tae, 1] (53)
In distinction from macroscopic electrodynsmics the magnitudes 4

e(k, w) and u(k, w), determined by formulas (52)-(53), are valid

at any values of k and w, i.e., they are a known generalization of

dielectric and magnetic permeability of macroscopic electrodynamics.
By means of a diagram technique the polarization operator

nuv(k' @,) in formulas (41)-(43) is calculated in any approximation

and a formal replacement of @, = -1 permits us to determine the

dielectric and magnetic permeability according to formulas (52)-(53).

In calculating II = usually there are discarded the terms proportional

ThY
to higher degrees of ef. In distinction from quantum electrodynamics,

where the parameter of the expansion is ei/hc (or ei/hv — v 1is the

Eh-im&/251/2’ param-

eters of the expansion at a high'temperature and weak shielding are

velocity of a particle), here, besides ei/hv ~ e

provided by hene/BBm;1 and efn;/zﬁ (and also their product
eanthm;%) and at low temperature and high density -efmk/h2n4/3.
Thus, in disregarding terms of higher order in ef, we make an

expansion in the indicated parameters depending upon conditions of
problem., We readily are convinced of this if by means of the dlagram
technique we analyze the graphs of terms proportional to different

degrees of ef.

For a nonrelativistic plasma 5'1 << m (where m is the mass of
the electron), the magnetic permeability is practically equal to
unity, and transverse and longitudinal parts of the polarization
operator are identical. 1In this cese polarization operator (34)

has the form

Nk, o)=— % 1Ly, (k, »,), (54)
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(K, o) =M1y (K o) = L2820 1, o), (55)

T (K, ) =TI (k, o) = — ‘%" o, (k-. o).

Energy Losses

The energy being lost per unit of time by particle Slying through

a plasme 1s equal to

d: we'? F .
— Gt = e T Dy (@ @) Dl @)X

XImK., (q. — iw)dq; (56) 7
o=t —ty_q, =P+ M. 4

It must be noted that during scattering of particle there takes place

the relationship wzlf q2. Equality w? = q2 would signify that

flying particle radiated a photon, but in the approximation being

F
Ouv

real function, Furthermore, in an arbltrary gauge transformation

considered (17) this does not occur.. Therefore D, .(q, ®) is a
of the potentials it is possible in relationship (56) to make the
substitution (see works[5, 2]).

Dl’).n (q. ) D&;'v' (q- w)= D‘_\:‘., (q. —iw) Dopv.,' (q. —iw).

Since, in relationship (56), Im.Douv(q, -iw) = 0, then, according
to equations (31) and (33), we shall obtain

dg i o Ty
_ ‘: = :g. j ! "“Dm(q' — {w)dq. (57)

| —e—o}

In such a form formula (57) is applicable for investigating the
energy losses of particle passing through any medium. In this case
function Duv(x - x') is Green's thermodynamic function of the electro-
magnetic field in a medium which is exbressed in terms of the dielec-
tric and magnetic permeability of the medium according to formulas
(45)-(47) end (52)-(53) (see Appendix 2).

Formula (57) is valid at any temperature of the plasma and
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arbitrary velccities of a flying particle. However, at first we
shall examine a nonrelativistic particle v << 1, passing through
nonrelativistic plasma B’i << m,where m 18 the mass of the electron,
As a result, we shall obtain formulas which generalize the well

known work of A, Larkin [1] in the case of multicomponent plasma

() 1 :
dyg __ 8¢'%e N (g, —iw)
—_a!"'§ dq 5““ e—=i—1 lqu--nuv..(q, —lw’ (58)
2‘2 " 14 P |
“'ll (q' "‘") -2 (2:)., J .!' ':I:, :1:-312 d’po (59)
) '
u: _(e("/?"'-,. -u’, )’+|)'-| , (60)

where w = q(vx - g/2M), x = pq/pq u; = i, - my, and the polarization
operator (34) is taken in the first approximation different from
zero. Relationships (58)-(60) include the distribution function

n; of only the fermions, since the distributlion function of anti-
7

74
a
We investigate in detail the region relative to high temperatures

fermions within a nonrelativistic limit vanishes.

and low density of the plasme when distribution function (60)
coincides with the Boltzmann distribution. 1In this case imaginary

part Hiuu is equal to

ImI, (q, —iw)= 2 n; e, ——a;l-— X
Y

_mh e [} )‘
Xe=-ne 2 \¢ M/
where n, is the density of fermions of level A
n =a‘—’)—'-j'u;c‘p.
The method of calculating the integral (58) in a nonrelativistic
region in detall is described in the indicated work [1], therefore
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we shall give the final result for one of the most interesting cases.
If the velocity v of a flying particle is great in comparison to the
mean-thermal velocity I/Vm P of the particles of plasma, then the

energy losses are given by the formula*

-T-E me l.(AH-u‘)l-. ’ (61)
L
where
& &
o Y —_——
? 2n

In formula (61) terms of an order 1/mx6v2;are discarded., As
is evident from formula (61), the energy losses occur chiefly in
an electron gas., Losses in ions must be taken into consideration
only in the case when quasi-neutral plasme conteins & high percentage
of negative ions. Energy losses in the electron gas are calculated
in work [1].

We shall consider further a relativistic particle being decelera-
ted in nonrelativistic plasma B'i << m, For this part of the integral
of (57), in which the transmitted momentum q has nonrelativistic
values, it is possible to use relationships (54)-(55), where

TuDyla—te)= (0~ ) =Z5, «=qv, .

where ¢ = €(q, w) is given by formula (52). In particular, energy g

losses with transmission of & small momentum, included in the
2

interval O & q s q,, where qj << m/B, have the form
= i‘! - 2“"’4 .)' ln j.' .
P/ e -y

A
In calculating the other part of the integral in (57), in which q
acquires relativistic values, there must be taken into account, in
general, both the relativistic and also the quantum effects.

In the most simple case of deceleration of a heavy relativistic

*AIl final formulas contain, in explicit form, the % and c.
~17-~




particle only in an electron gas of a plasma, quantum efl:cts are
immaterial and energy losses from pailr collisions are calculated

by the ordinary (classical) procedure. Finally, the energy being lost
per unit of time from a heavy relativistic particle in an electron

gas of plasma is equal to
_ Sy _ Zndd? in mdp! __0')
= - ( -nl‘('(l--‘!;.-) “)

where e, m and n are, respectively, the charge, mass, and density of

electrons of plasma.

The author is grateful to V. M. Galitskiy for his criticism on

certain questions relating to the given work,

Appendix 1

We shall use a certain general relationship, which may be
useful also in other problems, For this purpose we shall consider
Green's thermodynamic functions G;(x, x') of plasma particles in
the presence of external current J(x) (see, for instance, [2])

G (x. )= (T, [(F, (T, () S]) | (S), (1.1)

sarciimAnes 0+,

where for arbitrary magnitude B there is adopted the designation
[mum—nn-n, ’
Spel? ]

GLDe Iﬁmﬂx-lm-n, ’
Spel?

X = d3x dt, where the integratlon over X 1s made within limits

Here du

of the volume of plasma, whereas integral in the varlable Tt 1is taken
from O to B, The dependence of the field operators on the variable
v is determined in the following way ("interaction picture"):

~(mN), - M) (3) Ny = )

T (x)=¢ n(x)e

o O~

At J(x) = O function (1.1) coincides with Green's thermodynamic
function Gk (22). According to the well known éheorem connecting

=18~
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N- and T-products of operators [10-11], we shall rewrite Green's
function (1.1) in the form
0\(s, )=:K @ EGE) V()0 (S, (12.2)

where

.=.-ju:uma.

. »
T S dxd'y Gyyo5(x—1) W) lﬁ (=)’

1 »
A= TS"“"DOI"(" —y)w.
By commutating the operators exp A and ¢ in formula (1.2), we shall
obtain

G\in )= (D[ ¥, (1) ¥, (x') X

' .
= Iy (0 v (Z-9 1) &2
X e Tie f’"- sy, (1.3)

The polarization operator (34) in coordinate representation is

determined by the relationship [2]

W'y (£, 2) |

j“pv'(-‘—y)D-'-"—‘)‘f"‘—' Eel.‘;uﬁ_w,-— (1'4)

7=
Variational derivative with respect to external current in formula
(1.4) is readily found if we use formula (1.3). As a result we
shall have

fu, s—mo, —nday=—

~ [ Kpe = 0Dy 4~ D1 1, (1.5)
where the corrzlation function Kuv(x - y) is determined by formula
(22), 1In relationship (1.5), by completing the Fourier transformation
(26) we obtain formula (31). If we use the diagram technique,
then formule (1.%) may be obtalned also without involving variational

derivatives,

Appendix 2

We shall apply methods of quantum field theory in statistical
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physics to the problem on the decleration of & charged parvicle in a
substance, As 1is known, a charged particle flying thr..ugh a
substance loses its own energy owing to excitation and ilonizaticn
of atoms of substance, Furthermore, the energy of flying particle
is expended in surmounting the deceleration force, developing a: a
result of polarization of the medium by a charge of th~ particle, From
the macroscopic point of view the energy losses of parti:zles are con-
sldered to be a result of the excitation in medium of electromagnetic
waves, which attenuate if medium has a complex dielectric permeability.
Thus, the moving particle transmits energy to medium by means of
electromagnetic field. Energy losses of charged particle in a
substance can be calculated by methods of quantum field theory applied
in many-body problems. The calculatlon made below is of well-known
interest in methodology 1in view of future applications >f the present
method., 8
The Hamiltonian of the considered system in the Schrddinger §
pPicture will be written in the form of a sum
"+ 111 1y,

Here Hc includes the Hamiltonian of particles of the medium, the
Hamiltonian of free electromagnetic field Hy (3), and energy of inter-
action of particles of medium with free electromagnetic field, Hé
1s the Hamiltorian of external flying particle (fermion), and Hi is
energy of interaction of flying particle with the electrcomagnetic
field

hy \r () A(x)dx.
where j(x) is the operator of the four-dimensional current of the
flying particie, and A(xX) is the opera“our (7) of the four-dimensional

potential of free electromagnetic field.
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The Sc-matrix of the quantum-mechanical system being considered
is determined by the equation

as
1508 = Ul 4 1S,

By transformation
S, e ' Weitty)e o
we shall introduce the sc-matrix describing the scattering of flying

particle in the medium:
se=Te M WO e 1) A, (2.1)

Fa=e™ e ™ ame=""ame"™.

By means of the s -matrix (2.1) we shall find statistically the

averaged energy being lost by a flying particle per unit of time:

‘l' f' H . . .
T S “Ty Py (@ ) d7g,

€0 =)~ @ 3 oA
a,m

ol BN ) PP IA, (Nwn2(q -~ Plawn 3 (» — wqua)s

where A(O) 1is the operator of the electromagnetic field in the
Schrdinger picture taken at x = 0; F 1s the free energy of the
substance; and the remaining magnitudes were determined above.

1
The function ¢v is directly connected with Green's thermodynamic

v
function Dvu of the electromagnetic field in the medium

D, (x—x’, t— )= Sp [ T (A (x 9A (x, v, (2.2)

l(x, )= e”‘1 A(x)e-"c'

where T and 7 vary within the interval from O to B.
Rercating the discussions which resulted in formula (30), we

readily find

ImD,(q, lw)

UL Ll el

Here Dw(q, -iw) is obtained from Dv“(q,. @,) by the replacement
@, = -iw where Dvu(q, wn) is the Fourier component of function (2.2), §
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Thus, the energy lost by an external particle per unil ol 8

time during passage through a substance is equal to

ds e'? o

o ';f' T ) ";?,,;.; i, (4, - t)dy,

which coincides with formula (57).

If the medium being considered is a plasma, then, &8s was indicated
above, function Dvu(q’ wh) can be directly calculated in any approxi-
mation. In a general case the material medium 1s characterized by
dielectric permesbility € = e(x - x', t - t') and magnet i~ permeablility
L= pu(x - x', t - t') (for the sake of simplicity we assume the medium
homogeneous and isotropic). By the usual method there are introduced
operators of macroscopic electromagnetic field in the medium and
Green's delay function Dsu(x-x', t - t'), whose Fourier com-

ponent Dsu(q’ ) 1s connected with D (q, -iw) by relationship

4"
(51) where functicn Dﬁu(q, w) explicitly is determined by specifying
e(q, w) and p(Q, w) of the medium bteing considered.

We now consider the energy losses of relativistic particle in
a substance with transmicsion of a small momentum q << ep. The
spatial dispersion € - e(1) is ignored and we assume p =1, Then

we shall obteiln

. (1 —ovh) "--dt»
o L et (=) (e — 1 (2.3)

4
- g:_' = 20 ‘ dkk Im S
dil 4 5

where v 13 the velocity -1 a particle, and Ao is the upper 1limit of
the transver~e mrmentum beding transmitted at which there gtill is
valid the expression for € = e(w).

In considerirny that rcal part of e(w) is an even function, and
the imaginary prart e(4) an odd tunction of @, and considering the

inequality



formula (2,3) is readily transformed to the well-known relationship
[12]

d: le'?v : (1 —0°1) odm
e =
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RADIATION OF A HIGH-TEMPERATURE PLASMA

A, I, Alekseyev and M, A. Troitskiy
Methods of quantum field theory in statistical physics
are applied to problem on the radiation of a high-tempera-
ture plasma. There is found spectral decomposition of
intensity of bremsstrahlung cf a volume unit of plasma with
the shielding of Coulomb field of ions taken into account,
The production of a plasma by magnetic retardation also is
investigated, The work was completed in 1961.
Bremsstrahlung of a high-temperature plasma, and also recombi-
nation and bright-line radiations of a low-temperature plasma were
examined by a number of authors by means of classical methods (see,
for example, [1, 2]). Of considerable interest is the application
of new methods to the given problem in statistical physics, inasmuch
as in a number of cases they give the most correct solution of the
problem, Together with new results in certain limiting cases we
obtain already well-known formulas. Nevertheless new solution is of
definite methodical interest in view of the application of an analogous
method to other noninvestigated problems. For this purpose there
is examined the heat transfer of a high-temperature multicomponent
plasma, The device discussed below is generalized readily for the
region of lcw temperatures, in which the calculation of discrete
levels of lon becomes essential and also for the case of the-radiation

of a magnetized plasma, For plasme, which is found in a constant
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magnetic field there is obtalned a general formula of the magnetic

bremsstrahlung and certain limiting cases are investigated,

Bremsstrahlung of a High-Temperature Plasma

Hamiltonian Ho of a quasi-neutral system of electrons and lons
which are in thermal equilibrium have the following form in Schréddinger

representation

l.r:x_ll 8

. ' a ' ! ';‘ .’l $ (X "o "o
He=Y S @005 0F x5 § S (04 00 K, (0P,
1\ . .
where the sign A numbers the particles of a given level, The operator §
of interaction H1 of the plasma particles with the electromagnetic

fleld#*

. e P '
| H.--)‘,(--;’,‘: f ¥ (AP, (x)d'x +,_—: j "r:.(x)A’h.(X)tf'x)
A

results in bremsstrahlung and recombination and bright-line radiation
of the plasma. Inasmuch as we are limited to the nonrelativistic
region the‘basic contribution to the radiation will be introduced by
electrons, the lightest particles, Therefore, from the entire sum cof
the operator H1 subsequently we shall consider only the component
pertaining to the electron with charge e and mass m,

As also in work [3], we shall determine the S-matrix, describing
quantum-mechanical transitions of two quantum systems — plasma with

Hamiltonian HO and free field of radiation with Hamiltonian Hy

oS8
{5, =(H,+ H +H)S.

*There 18 used such a gauge transformation of the electromagnetic
potentials, at which scalar potential 1s equal identically to zero,
and the vector potential A satisfies the condition div A = O,
Furthermore, it 1is assumed h = ¢ =1,
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By means of the transformation
s_e-l(ﬂo-i-lf.,)f,

we shall turn to the interaction picture, in which the s-matrix is
defined as

I%H.l. s To! S H(x Ot

Hy(x, = -~ (x, DA, OPY(, -+
+- 0 OAT R D4, 0
px, =y T, ax, 0=t Ame

where symbol T before the operators designates the T-product [4]. $
Radiation of plasma in first approximation according to Hi is
described by the following matrix element of the s-matrix

SR l/ 2[4 (0) 4 (Olma 1" a3k -+ Par)

X%(ﬂ-[-ﬂ..): . (1)
’." =Py~ Pa: ®an=Egq—Es

where ¥(0) is the operator of electron field in the Schrbdinger represen-
tation taken at x = O; iA and w — respectively the vector of polari-
zation and energy of photon with the momentumk (l:2 = we), and P,
and En — respectively the total momentum and total energy of the plasma
in the n-th state; V 1s the volume of the plasma.

Using formula (1), we find statistically the averaged energy
dQ Dbeing radiated by a volume unit of plasma per unit of time in
the 1nterval dw

Q=55 [ (= ) oyt 4 ; (2)

. ¥ o
—E,)}

ok, )= (2=)'Z ‘”""‘*”* 18O 4(0m X

X (0)?(0)1.“_ PaiPas (K + Paa) (% + #00):



where B = 1/kT, Q is the thermodynamic potential of the plasma, and
K and Nx respectively are chemical potential and total number of
particles of level A, By the repeated vector subscripts 1, J there
is implied a summation from one to three,

By following the method presented in work [3], it is readily
proven that function ¢1J(k’ w) is connected with analytic continua-

tion of Fourier-component Kij(k’ wh) of the correlation function

Kyg(xg = xp)
Ky(x, - x3)--Sp e 2 +'f'h =i T, “7'.;' (xn)l';:' (*)) X
X (7 ()2, 2 (e
-?nm—mwmeﬁﬂm-ma

HR)= e

where Py is the differential operator of the momentum O = T & P and

TT designates the T-product, in which the order of operators occurs

according to the variable =, g
The indicated relationship has the form 8
—ImK,(-k, in)
Oyk, o)== ———
l s(l—e"") (3)

Formula (2) with function ¢1J(k, w) (3) 1is useful for investigating
the bremsstrahlung and the recombination and bright-line radiations.
Below there is considered only the bremsstrahlung.

) there 1is applied the well-known

In order to calculate Kij(k’ W,

diagram techni_,ue (see for example, [5]) and then the formal replace-
ment of w, = iw and k = -k permits us to find ¢1J(k, w) by formula

(3). In the case of & high-temperature plasma the first approxima-
tion different from zero for the imaginary part of function KiJ(-k, 1w)
is given by the graphs, on which the factor (-hrr)q2 corresponds to
dashed line and to the solid thin line — Green's electron thermodynamic
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4

function in the zero approxima-

i:::::::> tion (see Figure).

Oy, #g) = ——— :
' 'lq-+n-"£%

where u is the chemical potential

of the electron gas, In tae
figure the closed loop strung
to the dashed line, belongs

to ions of the plasma, since at

first we consider the dipole radiation without taking into account

shielding.

Here the sum of graphs corresponding to a dipole

radiation of electron on electron gives terms which mutually are

reduced.

As 1is known,

in the nonrelativistic region the momentum of a

radiated photon is much less than the momentum of a radiating particle,

and therefore in a dipole approximation the momentum of the photon

k in Kij('k’ iw) must be set equal to zero. Then integral over angles

in formula (2) may be calculated and dQ will be expressed through

Kig

Here, » , =

(0, iw), where

Kll (0. ”n)= ¢ % S _\_: G.(p, "’.) a, (p"'Q’ O ~® - "u)-'\

\’
e
%43 ,
“a y

KDy (p, om = a4 (P~ PGP —Q e~ wa) +

+ p(P '-'q)au(pt Oy - "’a)oo(P"‘Io Vg - G lx

X (g, wer ) S22 ; | (%)
Y 4 [ _"pier ="y
»w)= - ' dp.
. = % a‘)’.s .’-'——lo'n g (5)
. -
dh.= (om g 1)", where n', m=0, #1, 2, ,,,,
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Summation in formula (5) occurs in all levels of ions,

The ignored graphs, being proportional to the small dimensionless
parameters e)‘emi/eﬂj‘/zh'1 << 1 and exem'iﬁth2 << 1 (n 13 the density
of electrons) give a contribution, considerably less than the basic
term (4). The smallness of the parameter exemi/zﬁi/zh'1 permits us
to take into account the interaction between electron and ion in
the Born approximation, whereas in the realization of the inequality
e,em™1%mh << 1 there may be disregarded the effects of the medium's
polarization type.

Relationships (2)-(5) are applicable both for the Fermi, and
also the Bose laws of the distribution of particles according to
the momentum'n;. However, below we shall assume that distribution
function of electrons and ions of plasma coincides with the Boltzmann
distribution,

Using the formulas:

1 1
B = ley+s
oy

1 3
=lor cth ~—;— , @, .- Mxfs;

1y 1 53 — (O . :
XS T 5 = Em e,
m

where z is an arbitrary complex variable 1t is readily shcvn that

1 ]
ol (lay+ 8)(wp+ 33) (I oy - %) 2,551,

+f(2|, Z3, 2;). (6)

Here 295 25 and 23 are complex variables, and the function g
f(ziyze, 23) does not have poles with real values 2)s 2Zp and 23. If
the summation In cquality (6) is made in w, = (2n + 1)1/B; then we
shall obtain a function, which does not have poles with real values
Zys Zoy and 23 (the first component in the right-nand side of equality
(6) will ve lacking).

Considering realtionship (6), we shall use the equality
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Gy (P, #a) 0o (P, #m — #p) = ,—'— G, (pr @ -~ )
—Gy(p, »m)l (7)

and will discard all components in expression (4) whose imaginary

part of analytic continuation iw = -w 1s equal to zero. We shall

obtain
K0, o) = e j CIUESS
a (P --q, "m — 0y - a)"(qv °’l MP (8)

The summation in formule (8) is made in an elementary manner, As a
result for energy dQ being radiated by a volume unit of plasma per
unit of time in the interval dw we shall obtain in accordance with

work [1] the following expression:#*

2 , ms P
: % 4 P aT e :ﬂL)
aq= X3 - recan, V S &L
Y :
where ry = —9? is the classical electron radius, n and n, is the

me
density respectively of the electrons and ions of level A, and Ko

is the MacDonald function,

If the shielding of Coulomb interaction of particles of plasma
1s sirnificant then the dashed line with the strung ionic loop (see
figur:<) zhould he replaced by a dashed line on which 1n succession
there i: atrunv an infinite number of electron and ioric loops. Then
to the graph:, shown in the figure, we must add still two graphs
which are twc <lectron loops with three tips, connected to each other
by two dash=23 lines, on which there is strung a large number of

electron andl ionie loops.

*All fionl formulas contain the constants h and ¢ in explicit 8
form.
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In the most simple case of quiescent lons the Coulomb field of ]
ions may be assumed to be an external field in which the electron
gas moves, The discussed apparatus is readily generalized for this
case, where for Kii(o, an the shielding action of electrons taken
into account, we shall obtain

2 "o
X Ul Ll
@+
where na = Mweenﬁ is the square of the inverse Debye length., With

secured ions the energy dQ radiated by a volume unit of plasma per
unit of time in the interval dw has the following form:
p
dQ—)_; Tt vu r’,cinn l/—'- c""—F(- ) d w;
(10)
| 6 =3 (L
F(.,:')—J e 4 (y 4’)—"-:."——;.
r+iez)

For high frequencies uf >> 1 the shielding may be disregarded,

the function F(w, O) coincides with MacDonald's function
. “s
F(», 0) KO(T).

and formula (10) corroborates results of work [1].

At low frequencies the shielding becomes significant if there
is fulfilled the condition

e ]
05‘/—-1 e (11)
In taking into account the shielding, function F(w, u‘?) at low

frequencies (11) takes the following form:

. 8w Mty -
F(w, _")-In ey -C—-1-o = |f| iy

where C = 0,577 1is the Euler constant,

For the Boltzmann distribution of particles by momentum the ratio
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pmay  n VA
i —~ — = .
~ ~ 8
is fulfilled automatically, if only there is fulfilled the condition §

of the Born approximation e)‘emi/eﬁi/eh'1 << 1. Thus, the effects of
polarization of a medium are immaterial in Born case and the calcula-
tion for shielding is not reflected markedly in the magnitude of the
total energy radiated by a volume unit of the plasma per unit of
time. Calculation of the shielding of the Coulomb ion field
alters the spectral decomposition of the radiation intensity only at
very low frequencies (11) by removing logarithmic divergence charac-
teristic for radiation in Coulomb field.

There 1s basis for expecting that in case of strong shiélding
e)\eﬁenhm'1 >> 1 formula (10) will remain accurate in order of
magnitude. Then energy radiated by unit of volume of plasma in unit

of time in order of magnitude will be equal

Q= 2__'0‘,”“1‘/ P .a,‘;p

Matp

>

Magnetic Bremsstrahlung

We now investigate magnetic bremsstrahlung of plasma in constant
uniform magnetic field Hz, directed along axis oz, under the condition
that the aksorptiorn may be ignored and, consequently, &ll radiation
emerges from volume of plasma outwardly. Inasmuch as the major
contribution to the magnetic bremsstrahlung is given by light
particles, we shall write out in the Schrddinger notation the:Hamiltonian

only of the electron gas of the plasma

H= S v (x)-‘?l'-w(x)d'x. Y

N U
P|-—,E:+3pr P’-r—‘—;. p. lax‘
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We shall assume the plasma fairly well heated, so that the condltion
of Born approximation 1s fulfilled and energy of interaction of
electrons with électrons and ions may be ignored. Intcraction of
electrons with electromagnetic field

- -E-j v* (x) AR, ¥ (x) dx + %S‘I”(X)A,’ ¥ (x) d'x

results in a magnetic bremsstrahlung. Just as this was done above,

8

¥
Then in a dipole approximation the magnetic bremsstrahlung 1s described

we shall determine the s-matrix describing the radiation process,

by matrix element of the s-matrix

snk no={@— l / 2’ [J‘.‘ 5. v[‘t (x) c- ks [)Iq.' (x))m. dix >\

‘,- % (Eﬂ E. l ")0

where En is the total energy of electron gas of plasma in the n-th
state.
The statistically averaged energy Q, being emitted by a volume

unit of plasma per unit of time has the form
* (s Rk \
Q= '2} m? j ("Ji - I)'b (k. w)o?dwmd2y ;

Vyh )= | 3 E N8 P () ¢ KE P (kY X
n,m

- I kx’

X[¥*(x')e P Y (X')lpia® (Ep - Ep + o) dPxd’x".

Here ! and u are respactively the thermodynamic and chemical potentials
of the electron gas and N is the total number of electrons in a
volume V.
In a dipole approximat.ion in function ¢'1J(k, w) it is possible
to set k = 0, Thcn w» shall obtain

Qe - fl(b n{0, &) 4 934 (0, v)]e’de+

+ ,;.f._ £ @', (0, ) widwm. (12)

L



#we lati-r component in formula (12) does not make a contribution
in the ¢onsidered approximation, therefore subsequently it will be

!
discarded, By virtue of axial symmetry of problem, functions ¢ 11(O, W)

and & (0, w) are equal to each other, Thus, in order to calculate

2c
Q it is sufficient to know one of the named functions (for instance,

!

d 22).

If we introduce the correlation function

Kl/(t —) = _%’_Ssp {e('..’ +upN—H)3 T, [V*(x) P, () X
X (8 ()P ¥ (2]} dxdx’; -
—(N—H)- -

W (x) = ¢ wixye®r =M=

o

there 1s readily proven the equality

Im Ky (io)

‘p'lj(o' m) - ——————‘ (‘ — e.’) 3

where the function Kij(iw) is obtained from the Fourier component
Kij(wn) of function (13) by replacing @ = iw. Using the diagram

technique there is readily found

Kyloa) =~ = ¥ [ PrGo(x. X' om) Py

K Go(X’, X); @p — 00,)d'x dPx';
0y = 2nx[B; @y = (2m + 1) =B,

1
where Go(x, X5 T - T' is Green's thermodynamic function of electron
in a magnetic field which is investigated in detail in work [6]. As

a result of simple calculations for electron gas with Boltzmann's

law of distribution of paerticles based on momentum we shall obtain

where n is the density of electrons, and w = eHz/mc is Larmor
frequency of electron 1n a magnetic field. As we might have expected
the radiation occurs only at the frequency Wy«
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Finally the energy radiated by a volume unit of a magnetlized

plasnma per unit of time is equal to

Q=20 o —. (14)

As can be seen from formula (14), magnetic bremsstrahlung exponentially
attenuates with a decrease in temperature, However, the temperature
of the plasma must remain fairly high so that condition of Born
approximation is fulfilled,

Formula (14) 1s obtained by considering the fact that the motion
of an electron in a magnetic field obeys laws of quantum mechanics.
In classical limit A = O formula (14) changes to the weil-known

result [7]

Q= 2. (5)

Thus, the radiation of a magnetized plasma 1s described by means

of classical theory (15) only in the case when energy of radiated :
quantum th is much lower than the mean thermal energy of an elec*c.rong
(hah << 1/B), which is realizable in féirly weak magnetic fields

and at a high electron gas temperature. In the converse case (huy R 1/8)
there must be taken into account the quantum character of motion

of electron in the magnetic fleld; here the radiation of a magnetized

plasma is given by formula (14).
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