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DAMPING 

MECHANISMS AND SCALING OF DAMPING 

IN A PRACTICAL STRUCTURAL JOINT 

Brantley R. Hanks and David G. Stephens 
NASA  Langley Research Center 

Hampton,  Virgin!?. 

An investigation was conducted to determine the effect of geometric 
scale on the damping in a practical beam-joint assembly.   A cantilever 
configuration was utilized wherein the beam was bolted between two 
angle brackets at the support.   Four geometrically similar assemblies! 
covering a scale range of approximately 20 to 1, were tested.   Free 
decay of the fundamental mode was measured over a range of joint 
clamping pressures and beam tip amplitudes.   Also, damping changes 
resulting from the addition of liquid lubricants and viscoelastic films to 
the joint interfaces were investigated.   Data indicate that an increase in 
model size results in a decrease in damping attributed to the structural 
joint.   Furthermore, joint damping is shown to be slightly dependent on 
vibration amplitude and to vary as an inverse function of joint clamping 
pressure.   Joint damping may be substantially increased by the addition 
of liquid lubricants or viscoelastic films at the. joint interfaces. 

B. R. Hanks 

INTRODUCTION 

Dynamic models are often used to study the 
vibratory response of complex systems when 
full-scale testing is precluded by system size 
and/or cost. The usefulness of model tests is 
dependent on a knowledge of the proper scaling 
relationships required to extrapolate model data 
to the full-scale systems. A considerable 
amount of information has been obtained on the 
scaling relationships for frequencies and mode 
shapes. However, the variation of damping with 
model size' or scale is largely unknown and often 
either neglected or considered to be the same in 

both model and prototype. The devicrjaent of 
proper scaling relationships for damping re- 
quires a knowledge of each of the damping 
mechanisms in the system, such as material 
hysteresis [1,2], air damping [3,4], and Joint 
damping [5-7]. In space systems, scaling rela- 
tionships for joint damping are of particular 
importance since the major source of energy 
dissipation in such systems [8] is usually at- 
tributed to structural interfaces or joints. 

The purpose of this paper is to present the 
results of an experimental investigation of the 
nature and scaling of damping in a structural 
joint. The joiui. damping of four cantilever sys- 
tems, covering a geometric scale range of 20 
to 1, was examined. Data are presented to show 
the effects of vibration amplitude, joint clamp- 
ing pressure, and model scale, as well as that 
of Interface lubricants and films, on the magni- 
tude of thd damping in structural joints. 

APPARATUS AND TEST PROCEDURE 

The apparatus used in this investigation, 
shown in Figs. 1 and 2, consisted of four 

. 
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Fig. 1  - Joint damping models, 
showing relative sizes 
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Fig. 2 - Dimensions   of joint 
damping models 

angle brackets were, In turn, clamped to a 
massive concrete and steel supporting block 
giving a cantilever beam configuration. Tbe 
four models hal scale factors 1 of 1, 0.667, 
0.333, and 0.053 with tbe beams ranging from 
5 ft down to 3.2 in. in overall length.  The 
beams and angle brackets were made of 6061 
aluminum alloy with all surfaces finished to 
63 Min. rms.  Each angle bracket was machined 
from a single piece of aluminum and had a web 
welded to the center to provide rigidity. 

Three joint interface conditions (dry, oil- 
coated, and viscoelastic-film-filled) were stud- 
led in an effort to find a method for improving 
the inherent damping of both small- and large- 
scale systems.  The dry and oil-coated joint 
tests were performed on all four models, 
whereas the effect of viscoelastic films was 
studied on the 0.667 assembly.  In studying the 
effect of joint lubrication, the interfaces were 
coated with a thin layer of oil before assembly. 
Three oils having viscosities of 158, 525, and 
1400 cp were used. The effect of viscoelastic 
film inserts was studied using three film mate- 
rials:   0.5 mil Teflon, 1 mil Mylar, and 1 mil 
polypropylene- The films were cut to the shape 
of the joint interface and placed in position dur- 
ing model assembly. 

The test procedure was essentially the same 
in all cases.  The total damping of the systems 
was measured at atmospheric pressure for a 
range of joint clamping pressures (by varying 
bolt tightening torque) and beam tip amplitudes. 
For a particular clamping pressure, the beam 
was deflected manually and released to oscillate 
in the first cantilever vibration mode.  Oscilla- 
tions of the beam were sensed by an electrical 
resistance strain gage attached to one side of 
the beam as shown in Fig. 1.  The strain gage 
was coupled, through an amplifier, to an elec- 
tronic dampometer, a device for determining 
the frequency and damping of a vibrating sys- 
tem.   Basically, the dampometer counted the 
number of cycles as the amplitude decayed be- 
tween preset limits.  The logarithmic decre- 
ment b was then calculated from the equation 

h   =    N" loKf yn+N 
(1) 

where N was the number of cycles counted, y 
was the amplitude at which counting started, 
and yn+N was the amplitude at which counting 
ceased.  In all tests the ratio of start to stop 
amplitude was maintained at 10/7 so that 

geometrically scaled beams bolted between 
correspondingly scaled angle brackets.  The 

1 10 
5   =   — log. — 

N        e   7 



Since the damping was measured over a band 
(yn. yn»N) of the decay envelope, the logarithmic 
decrement was specified at the average ampli- 
tude of this band.  Measurements were made at 
several amplitude levels for each bolt torque by 
varying the triggering voltage of the dampome- 
ter. In all tests, sufficient inltla. deflection was 
given to the beam to allow transients to die out 
before the danpometer triggering amplitude 
was reached.  Each test was repeated at least 
five times and the average value of the data was 
u-ed in analysis. 

£ = modulus of elasticity, pel; 

T = absolute temperature, °R; 

c = specific heat per unit volume, BTl)/ 
ln.3-0R; and 

u = circular frequency of vibration, rad/ 
sec. 

For a flat beam of uniform thiclmess, material 
damping can be approximated by 

Joint clamping pressures were calculated 
from the bolt tightening torques using the for- 
mula [9] 

T 
0.2D (2) 

where F Is the clamping load per bolt, T Is the 
torque, and D Is the bolt diameter.  With con- 
version to average clamping pressure produced 
on the joint by the four bolts, the formula be- 
comes 

20T 
DA (3) 

where P is the average clamping pressure and 
A Is the joint interface area.  No allowance was 
made for variation of clamping pressure across 
the interface. 

rr*  ' 
(5) 

where 

t = beam thickness, in.; and 

K = thermal conductivity, BTV/aec-'R-ln. 

The material damping as predicted by this 
equation for the four beams tested in this Joint 
damping study is shown as a function of fre- 
quency in Fig. 3a on the left.  The magnitude of 
the material damping at the fundamental reso- 
nant frequency is denoted for each beam by a 
circle. These resonant damping values are re- 
plotted as a function of scale factor in Fig. 3b. 
For the systems under study, material damping 
as predicted by the Zener equation is essentially 
inversely proportional to scale. 

MATERIAL DAMPING CONSIDERATION 

The determination of the magnitude of joint 
damping in a complex system involves the sepa- 
ration of the total damping Into its various com- 
ponents.  One contribution to the total damping 
is that of material or hysteretic damping within 
the material comprising the system.  Experi- 
mental separation and measurement of this ma- 
terial damping is difficult in complex systems 
such as the one under study.  However, an ana- 
lytical expression developed by Zener [1] has 
been verified for aluminum in experimental 
work by Granick and Stern [2].  Material damp- 
ing in a cantilever beam was shown to be 
closely approximated by the equation 

77a2 ET 

[i + «vj (4) 

where 
sm = logarithmic decrement for material 

damping; 

a = thermal coefficient of linear expan- 
sion, 1/0R; 
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Fig. 3 - Material damping as predicted by 
Zener theory: (a) as function of frequency, 
and (b) at fundamental resonant frequency 
as function of scale factor 

PRESENTATION AND DISCUSSION 
OF RESULTS 

The test program consisted of an isolation 
and examination of the damping for the varia- 
bles:  vibratory amplitude, joint clamping 



pressure, model scale, and Interface condition 
(i.e., dry, lubricated, or film insert). The de- 
pendency of the damping on each of these varia- 
bles is illustrated by representative data In the 
following sections. 

Dry Interface 

Effect of Vibration Amplitude - The damp- 
ing measured for the 0.667-scale model, which 
is typical of the four assemblies, is shown in 
Fig. 4. The total damping in terms of the log 
decrement i is presented as a function of the 
ratio of vibration displacement amplitude to 
beam thickness y/t for five values of joint 
clamping pressure. The total damping increases 
linearly with an increase in amplitude. Since 
the total damping represents not only losses in 
the Joints but also internal hysteresis and air 
damping, the question arises as to whether the 
joint damping per se is amplitude dependent. 
Several factors suggest that the joint damping 
is amplitude dependent. First, Refs. 2 and 3, 
respectively, indicate that both the hysteretic 
and air-damping losses are amplitude independ- 
ent for the range of amplitudes covered by these 
tests. Secondly, the slope of the faired lines in 
Fig. 4 is observed to change with a change in 
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Fig. 4 - Variation of total damping with 
beam tip vibration  amplitude 

clamping pressure (a variable affecting joint 
damping only) with all other factors being held 
constant. 

Effect of Joint Clamping Pressure — The 
damping for each of the models is presented as 
a function of joint clamping pressure in Fig. 5. 
These curves are cross plots of the damping- 
amplitude curves such as the previous example, 
Fig. 4. The total damping decreases rapidly as 
the clamping pressure is increased in low range; 
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however, it levels out or approaches a constant 
value at relatively high clamping pressures.  It 
will be assumed henceforth that the joint damp- 
ing at high stress levels is negligible compared 
to the other or tare damping (the damping due 
to the surrounding air and internal hysteresis) 
in the system.  Thus, the magnitude of the joint 
damping at a particular pressure and amplitude 
is considered to be the difference between the 
measured value and the respective high clamp- 
ing stress asymptote. 

Effect o^ 3cale — The variation of total 
damping with scale factor is shown in Fig. 6 for 
two values of the joint clamping pressure.  All 
of the data between the amplitude limits y/t of 
0.03 to 0.08 fall within the indicated band. These 
data demonstrate that total damping increases 
with decreasing scale factor, resulting in sub- 
stantially higher damping for the smaller mod- 
els.  The trends of these curves are very simi- 
lar to the variation of material damping with 
scale factor as predicted by Zener, which is 
repeated for comparison purposes. 

The damping attributed to the joint, ob- 
tained by subtracting the respective high stress 
asymptote (Fig. 5) from the curves at total 
damping (Fig. 6), is presented as a function of 
scale factor in Fig. 7.  The joint damping is also 
seen to be inversely proportional to the scale 
factor.  Examination of the curve reveals that 
the joint damping values for the 0.333- and 0.053- 
scale models are several times higher than those 
of the larger models.  These curves indicate 
that caution should be used in extrapolating to 
full-scale systems damping data obtained in 
tests of small models.  The common practice 
of assuming that the damping of the prototype is 
the same as in the model could lead to gross 
overestimates of the damping in the full-scale 
systems. 

Treated Interfaces 

Effect of Oil - In an effort to s»lter the joint 
damping, the effect of interface lubricants was 
examined. Typical results are shown in Fig. 8 
where the total damping for the 0.667-scale 
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summarized for all models 

model, with 150-cp oil added to the joint inter- 
faces, is presented as a function of joint clamp- 
ing pressure.  For comparison purposes the 
"dry" data (Fig. 5) are repeated. 

The dependency of the damping on clamping 
pressure is essentially the same in both the 
lubricated and the dry cases. However, the 
magnitude of the damping recorded for the lubri- 
cated joint is considerably higher. A similar 
phenomenon was reported in Ref. 10 where the 
damping of a cantilever beam was substantially 
increased by the addition of grease it the root 
although the exact mechanism was not fully 
discussed. 
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The dependency of the damping on amplitude, 
as indicated by the width of the band in Fig. 8, is 
higher for the lubricated case.  This was noted 
for all models, except the 0.333-scale model for 
which there was little difference in amplitude 
dependency between the dry and lubricated joints. 
Although data are not presented, the dependency 
of the damping on amplitude was again found to 
be linear. Also, tests conducted with thd 525- 
and 1400-cp oils revealed no appreciable differ- 
ence when compared with the damping in the 
joint lubricated with the 150-cp oil. 

The relative effect of oil on damping for all 
four models is summarized in Fig. 9, where the 
ratio of total damping with oil to that without oil 
is plotted as a function of scale factor. A lubri- 
cant is shown to increase the damping in all but 
the smallest model, where the addition of oil 
slightly decreased the damping. 

Effect of Viscoelastic Films - The effect 
of adding viscoelastic films to the joint inter- 
faces of the 0.667-scale model is illustrated in 
Fig. 10.  In this figure, the range of total damp- 
ing obtained with each of the three film mate- 
rials is shown together with those obtained in 

the dry and lubricated joint cases in bar graph 
form.  The film materials are shown to increase 
the damping substantially, although they are not 
significantly more effective than oil in this 
respect. 

CONCLUSIONS 

An investigation was conducted to deter- 
mine the effect of goemetric scale on the damp- 
ing in the joint of a practical beam-joint as- 
sembly.  In addition, a brief study was made of 
the effect on joint damping of adding oil and 
viscoelastic films to the joint interfaces. Within 
the range of variables considered in these stud- 
ies, the following conclusions were noted: 

1. The damping attributed to the structural 
joint increases essentially linearly with vibra- 
tion amplitude for any given joint clamping 
pressure. 

2. Total damping decreases with increas- 
ing joint clamping pressure for low clamping 



pressures but becomes essentially invariant at 
high pressures. 

3.  Both the total damping of the assembly 
and the joint damping increase considerably 
with a decrease in geometric scale. 

4. The addition of oil to joint interfaces 
can, depending on model size, increase damp- 
ing over that of the dry joint case. Thin visco- 
elastic films inserted between joint interfaces 
are also effective in increasing damping, but 
not significantly more so than oil. 
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DISCUSSION 

Mr. Ungar (Bolt Beranek & Newman):  This 
was a very interesting piece of work.  I am par- 
ticul sly gratified to see that your results are 
very similar to those we got on a slightly differ- 
ent geometry several years ago.  We studied a 
beam riveted to a plate and made some conjec- 
tures about the mechanism.  Did you determine 
what caused the damping In the joints ? 

Mr. Hanks:  We were not able to determine 
the exact mechanism.  You determined that air 
pumping had a considerable effect.  We had very 
little air pumping and we couldn't attribute the 
joint damping to Coulomb friction because the 
trends of amplitude dependency was wrong, so 
we could not identify the mechanism.  We did try 
to extrapolate the curves back to zero value and 
to identify mechanisms from that but we were 
unsuccessful. 

Mr. Ungar:   It was interesting to see that 
the parametric dependences you got were very 
similar to those we observed, and although you 

do not have air pumping in this case you do have 
oil pumping. We also experimented with oils of 
different viscosities, but over a range of 1 to 
104 in increments of orders of magnitude.  We 
found a peak in damping that you get with some 
intermediate range of oil viscosity.  I feel from 
the things you report that probably the mecha- 
nisms are oil pumping for the oily joints and 
air pumping for the dry joints.  Incidentally, 
Madonic recently published in the Journal of the 
Acoustical Society an analysis of the mechanism 
and an analytical prediction.  He also showed 
that ch^re are a couple of dependents of fre- 
quency on frequency and viscosity in terms of 
an oscillatory boundary la; >r in the fluid be- 
tween the joints. 

Mr. Hanks:  We did run the smallest beam 
in a vacuum, although the vacuum was not a 
hard one, so that we may not have gotten all the 
air out of the joint interface.  However, the 
trends were the same in that case as in the at- 
mospheric test. 



Mr. Khllnanl (Texaa Instrunaents):  I notice 
that the addition of the plastic fUmilhterferes 
with the damping. What was the ratio of film 
thickness to beam thickness ? Were the films 
double- or single-layered on either side of the 
joint ?  Did machining roughness of the beam 
have any effect on the damping? 

Mr. Hanks;   The plastic films were very 
thin, on the order of 1/2 mil.   The beams 
vary from 0.05 to 1 in. in thickness.   On the 
2/3-scale model, the beam was 2/3 in. in 
thickness compared to 1 mil for the plastic 
films.   We tried only the 63-Min. rms surface 
roughness, so I am not prepared to answer 
any questions as to the effect of the surface 
roughness. 

Mr. Baruch (Kbllsman Instrument Corp.): 
Since your total dampingxincludes the effect of 
material damping, joint damping and air damp- 
ing, wouldn't the fact that you decrease the 
width of your specimen leave a smaller surface 
area for air damping effects, thus resulting in 
lower damping in the smaller scale models ? 
Could you possibly give an intuitive percentage 
of the air damping, or was this just meant to 
give an overall effect in the study ? 

Mr. Hanks;  We did not go into a detailed 
study of the air damping, but as well as we 
could determine, using the works of other peo- 
ple and our tests on small beams in vacuum, 
air damping accounted for less than 5 percent 
of the damping in our systems. 
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Many complex structures exhibiting vibrational problems contain paral- 
lel or substantially parallel elements.   The vibrational characteristics 
of the parallel elements are often different and, under certain circum- 
stances, the use of viscoelastic links between antinodal parts of paral- 
lel elements can, with proper use, lead to the introduction of significant 
amounts of damping into the structure at the expense of very little 
added weight. 

To gain some insight into the possibilities of such a technique, some 
investigations of the response of parallel beams of different flexural 
rigidities and weights, joined by such links, have been carried out at 
the Air Force Materials Laboratory.   In the preliminary investigation, 
attention has been concentrated on a pair of parallel clamped-clamped 
beams with a viscoelastic link joining the centers.   A theory of the re- 
sponse of the system is developed and it is shown that substantial 
amounts of damping can be introduced into the beams by proper choice 
of the link stiffness, provided that a natural frequency of one beam is 
not identical to (or close to) any natural frequency of the other beam, in 
which case no damping can be achieved no matter what the excitation 
may be. 

An experimental investigation is described in which the theory is veri- 
fied for links made of one commercially available viscoelastic material. 
Plans for further investigations of viscoelastic links in more complex 
structural models, more representative of situations likely to arise in 
current and future aerospace vehicles and other structures, are briefly 
discussed. 

D. I. G.  Jones 

INTRODUCTION 

It does not appear, from a review of the 
available literature, that the possibility of using 

viscoelastic links joining elements of complex 
structures to achieve high damping has re- 
ceived much attention. An early investigation 
[1] has shown that the use of distributed visco- 
elastic links between parallel beams can lead 
to high damping, provided the frequencies of 
the fundamental modes of the two beams are 
not equal. 

In this paper, an analysis is presented for 
the response and effective damping of two par- 
allel clamped-clamped beams with a single 
viscoelastic link joining the beam centers. It 
is shown that high damping can still be achieved, 
prodded the fundamental frequency of the beam 
in question is not equal to any natural frequency 
of the other beam. 



i   I 

The experimental Investigation of the same 
configuration is described; and it is shown that 
the theory accurately describes the phenomena 
occurring for one value of the loss factor of the 
link, which comprised a ring of a commercially 
available viscoelastic material.. 

LIST OF SYMBOLS 

a,.a.   See Eqs. (7) and (10), respectively 

A,. A 2   Arbitrary constants 

A   Amplification factor at resonance for 
beam 1 

b Breadth of circular link 

b,,b3 See Eqs. (8) and (11). respectively 

BJ.BJ Arbitrary constants 

CpCj See Eqs. (9) and (12), respectively 

C^Cj Arbitrary constants 

cos Circular cosine function 

ch Hyperbolic cosine function (cosh) 

d Separation of beams; also diameter of 
circular link ufed in experimental in- 
vestigation 

DJ.DJ   Arbitrary constants 

exp   Exponential function 

E,,E2   Young's moduli of beams 1 and 2, re- 
spectively (psi) 

i    NT^T or suffix denoting beam (i = 1,2) 

I,, l2   Second moments of area of beams (in.4) 

k   Real part of stiffness of viscoelastic 
link (ib/in.) 

L Length of beams (in.) 

sin Circular sine function 

sh Hyperbolic sine function (sinh) 

t Time (sec) 

T, Transmissibility of beam 1 

W..W 1' "2 Amplitudes of transverse vibrations of 
beams relative to clamped ends at any 
point v (in.) 

x    Station along beams, measured from 
cei.ters (in.) 

x    Amplitude of vibration of clamped ends 
(in.) 

r   k/E,!,^3, nondimensional link stiffness 
parameter 

T,    Loss factor of viscoelastic link 

»],    Effective loss factor of beam 1 

K    Ejlj/E,!,, nondimensional parameter 
defining relative stiffnesses of beams 

\I.\2 See Eq. (3) 

ßl,ß1    Masses per unit length of beams (lb/in.) 

T    Thickness of link (ring) 

<f:    KJi/2, nondimensional frequency 
parameter 

0    *X/MII nondimensional mass parameter 

ui   Circular frequency (rad/sec) 

THEORY OF PARALLEL CLAMPED- 
CLAMPED BEAMS WITH VISCO- 
ELASTIC LINK JOINING CENTERS 

Consider two parallel clamped-clamped 
beams joined by a viscoelastic link as shown in 
Fig. 1,  If the amplitude of the harmonic vibra- 
tion of one beam relative to the clamped ends 
is w^x) and that of the other beam is w2f x), 
and the supports are vibrating with harmonic 
displacement X exp(iut), then the equations of 
motion of the two beams are 

E.I.^W./dx,4) V2*.   ^ 1.2       (1) 

at. all points apart from the points to which the 
link is attached.  The general solution of Eqs. 
(1) is: 

WjCx) = AjchCXjx)  t BjsWX.x) + Cj cos CX.x) 

+ D;  sin (\.x) - X,     i   :   1,2 , (2) 

where 

10 



I \ 
X««p(iüJt) 

L BEAM I 

L %4M 2 t VSCOELASTtC 
LMK   K(l+nj) 

F XwpdüJt) 

Fig.   1 - Idealized link joining parallel beams 

X« = M,«2^.!. i  =   1.2 (3) 

The eight constants A., Bj, Cj and Dj are de- 
termined from the various boundary conditions: 

W; = dWj/dx = 0    at    x = ± L/2 . 

dWj/dx =0    at    x = 0 , 

2E1I1(d3W1/dx3)  = kfl + i^CWj-W,) 

and 

2EjI2Cd3Wj/dx3) = kd + iT7)(W, - Wj) 

(4) 

(5) 

at x = 0.  From these conditions, the eight 
equations for the eight unknown constants are 
readily set up and solved. After some simpli- 
fication, the solution Wjfx) is readily shown to 
be: 

W^x)      rq + JTjjfejCj + (b^AK^r374] 4 4cla2 

X r(l + iT))[ajb, + (alb/\)(*/'X)-3/'*] +48,83 

where 
(6) 

8, =   sh ?, cos .f, +  cli £_  sin ?, , (') 

b, =   a, [sh(2f,  x/L)  -   sin  (2^,  x/L)] 

- ch (2?', x/L)[ch Ci cos f,  +   sh .f, sin < , - 1] 

- cos (2^j x/L) [cli Ci cos l-x- sh.f, sin^f- 1] , 

(8) 

c, =  sin^1cii(2Cj x/L) +   sh .f, cos (2^, x/L)-a,, 

(9) 

a2 =  sh {(^A)174^,} cos   {(^A)174?!} 

+ {ch    (0/\),/4<f,}  sin  {(cA^)174^,}   ,     (10) 

and 

aj[shU0A)l/4 (2^, x/L)} 

- sin {(^A)17* (2f, x/L))] 

- chU^A)174 (2?, x/L)}[ch{^A),/4^1} 

+  sh{(4/\)I74f1}  sin  {(^/\)I74f,} -  l] 

- cos {(<jly^)174 (2?, x/L)}  [ch{(<//\),/4f1} 

x cos {(-j/^)174^,} 

- sh{(^\)174^1} sin{(<jV\)1/4^1}- l],   (11) 

sin {(^A)'''4^,} ch{(«A),/4(2fI x/L)} 

+ sh{{0A)174^1}cos {(<i)A),74(2c-jX/L)}-a2. 

(12) 

The transmissibility T, is defined as the ratio 
of the response at any point of beam 1, relative 
to a fixed point in space, to the input amplitude 
X, i.e., 

T, =   |W,+X|/X. (13) 

METHOD OF SOLUTION 

For given values of the ratio <£ of the beam 
masses per unit length, beam 1 being taken as 
reference, and the ratio \ of the flexural rigid- 
ities, the transmissibility T1 can be expressed 
as a function of the frequency parameter s, x, 
the link loss factor v and the link stiffness pa- 
rameter r (Eq. (6)). 

The calculations were performed for <p = 
0.5, 1.0 and 2.0 and a range of values of \ be- 
tween 0.01 and 100 at x = 0.  Transmissibility 

11 



10 

*      8 

e 

ü  6 

>- 

m 
a   4 

r1 

X'O 50 
n*0 80 
9*2 00 

r»o.6-« 
Vr'O.s 

\ 

i ̂
 

3 
/^ 

^ 
6 8 10 

FREOUeNCY PARAMETER   f,1 

14 16 

Fig. 2 - Typical transmissibility spectra for K/<P < 1 

I    : 

spectra such as those illustrated in Figs. 2 and 
3 were obtained by a digital computer. The 
characteristics of the response were found to 
depend on whether v^ = 1, <1 or > 1. 

If V0 = 1, the first resonant frequency of 
beam 2 is equal to that of beam 1 and the two 
beams will always vibrate in phase with each 
other. In this case, no deformation occurs in 
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Fig. 3 - Typical transmissibility spectra for \/<p >  1 
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the viscoelastic link and hence no damping can 
be introduced into the system by viscoelastic 
links. 

If K/(p < 1, the first resonant frequency of 
beam 2 is always lower than that of beam 1 and 
the spectra shown in Fig. 2 are typical.  Fig- 
ure 2 shows that the amplitude of the low- 
frequency resonance peak is smaller than that 
of the higher frequency peak for small values 
of r and, as r increases, the amplitude of the 
second peak eventually becomes smaller than 
that of the first peak.  The effective loss factor 
vs of a clamped-clamped beam under shaker 
excitation, for which the clamped ends are vi- 
brated io give the excitation, has been shown 
[2] to be 

^  1.32 (AJ- !)• 1/2 (14) 

where A is the amplification factor measured 
at the center of beam 1 at the resonant peaks 
corresponding to the first mode.  Typical 
graphs illustrating the variation of the effective 
loss factors of the two peaks with the stiffness 
parameter r are shown in Fig. 4 for several 

values of the link loss factor r/.   It is seen that, 
for each v, a value of r exists for which both 
peaks will have the same effective loss factor. 
This loss factor corresponds to the case where 
the system is "properly tuned" for beam 1, 
since it represents the maximum loss factor 
obtainable for given values of \, ^ and v, in 
the frequency range of the fundamental mode of 
beam 1. This procedure was followed for vari- 
ous values of V4> between I and 0.035. At 
K/<P - 0.035, the first natural frequency of 
beam 1 is identical to the third natural fre- 
quency of beam 2 and the effective loss factor 
is again zero.  For values of K/<p < 0.035, anal- 
ysis of the response spectra followed the proce- 
dure adopted for values of V4> between 1 and 
0.035. However, in this case, the natural fre- 
quency of the fundamental mode of beam 1 is 
higher than the natural frequencies of the first 
and third modes of beam 2 and hence the pre- 
dominant peak due to beam 2 was compared in- 
stead with the first peak due to beam 1 to de- 
fine the optimum effective loss factor. 

On the other hand, when K/<t> > i, the first 
natural frequency of beam 2 is greater than that 
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Fig, 4 - Typical graphs of effective loss factor 
vs link stiffness parameter for X/4> < 1 
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of beam 1, and the spectra shown in Fig. 3 are 
typical.  It is seen that one peak now dominates 
the response for all values of the stiffness pa- 
rameter r, even though two peaks still exist. 
Graphs of r,t against r for the predominant 
peak are illustrated in Fig. 5. 

Depending on whether v? < i or > i, 
therefore, one may define the point of optimum 
damping either as that at which the curves of 
Tg against r cross over, or that at which the 
curve of vs against r has a maximum, respec- 
tively.  Graphs of the optimum damping so de- 
fined were determined in this manner for many 
values of k and 4> and the results are plotted in 
Figs. 6, 7 and 8 for * = 0,5, 1.0 and 2.0 and 
v = 0.2, 0.5, 0.8, 1.0 and 2.0. 

EXPERIMENTAL INVESTIGATION 

The experiments were carried out for sev- 
eral combinations of parallel ciamped-clamped 
beams joined by viscoeiastic links in the center. 
For these combinations, the weight ratios were 

(p = 0.5, 1.0 and 2.0 and the range of values of 
the stiffness ratio was from 0.02 to 50.  The 
material used for the viscoeiastic link was 
LD-400 (Lord Manufacturing Co., Erie, Pa.), 
having a loss factor of approximately 0.8 at 
room temperature which does not vary greatly 
with temperature in the vicinity of room tem- 
perature. 

For each set of values of K and J , two 
beams were made and clamped in the mounting 
fixture which was attached to the shaker table 
as in Fig. 9.   The circular viscoeiastic link, of 
thickness T, width b and outside diameter d, 
was attached to both beams to join the centers. 
An accelerometer was attached to the mounting 
fixture to measure and contro) the input accel- 
eration which was kept at a constant amplitude 
throughout each test.   The acceleration output 
was measured by two miniature accelerometers 
at the center of each beam.  An overall view of 
the experimental apparatus is illustrated in 
Fig. 10.  For a given width of the link, the ac- 
celeration output was measured and recorded 
continuously on an X-Y plotter over a wide 
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range of frequencies.  The width b of the link, 
which is proportion^] to the stiffness parame- 
ter r, was then varied to obtain the maximum 
effective loss factor in the same way as de- 
scribed in the previous section.   Typical ex- 
perimental response spectra for beam 1 are 
illustrated ir. Figs. 11 and 12 for \/0 •   1 and 
> 1, respectively.   This test procedure was 
repeated for every value of $ and k used in the 
tests. 

From all the response spectra so obtained, 
graphs of the effective loss factor of the signif- 
icant peaks were plotted against the stiffness 
parameter (here represented by the link width b) 
in the same way as in the reduction of the theo- 
retical results.   Typical graphs of the effective 
loss factor measured in the experiments with 
the link width b are plotted in Figs. 13 and 14 
for v,v     1  and     1, respectively.   From these 
graphs, the optimum effective loss factors 
were determined in the usual manner and 
plotted against the beam stiffness parameter \ 
for 0 - 0.5, 1.0 and 2.0, as shown in Figs. 15, 
16 and 17, for a link loss factor • of 0.8.   The- 
oretically derived curves of r.. versus \ for 
n = 0.8, taken from Figs. 6, 7 and 8, are also 

shown with the experimental results.  It is seen 
tJu.t the agreement between tneory and experi- 
ment is good. 

DISCUSSION 

The enphasis in both the theoretical and 
experimental investigations has been placed on 
the response and effective damping of only one 
of the parallel beams, referred to as beam 1. 
This is because we have assumed that, in the 
real structure which we are endeavoring to 
simulate in some measure, interest will gener- 
ally be concentrated on the reduction of vibra- 
tions in one part of the structure only.   For 
example, one may be interested only in the 
vibration levels in the outside skin of an air- 
craft fuselage and the behavior of the rest of 
the structure is to some extent secondary. 
However, it is of little value to reduce vibra- 
tions in beam 1, representing the most impor- 
tant part of the structure, if one instead intro- 
duces serious vibrations in beam 2.  In the 
experimental investigation, therefore, the re- 
sponse in beam 2 was measured also.   It was 
found, in all cases, that when beam 1 was 
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Fig. 7  -  Optimum  effective  loss  factor 
vs beam stiffness  parameter for ^=1.0 
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Fig.   10 - Experimental equipment 
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Fig.   11   -   Typical  measured 
response spectra for  k/<p <  1 

properly tuned for optimum damping, high 
damping was also introduced into beam 2.  It 
was also observed that even the third mode of 
beam 1 was well damped when the fundamental 
mode was optimally tuned. 
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b • O 29 IN 
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Fig.   12  -  Typical  measured 
response spectra for  K/(p >  1 

The preliminary investigations described 
in this paper have, therefore, shown that high 
damping can be introduced into a very simple 
structure by a viscoelastic link.  It remains to 
be seen whether the same is the case for a com- 
plex multi-span skin stringer type structure 
with such links, as illustrated in Fig. 18. 
There is considerable hope that such a tech- 
nique will work well, since the modes of such 
a structure are closely spaced in frequency 
compared with those of a simple clamped- 
clamped beam, and the stored energy- are very 
close [3]. 

CONCLUSIONS 

An analysis has been developed for the re- 
sponse of two parallel clamped-clamped beams, 
with various relative masses and flexural rigid- 
ities, connected at the centers by a viscoelastic 
link.  The effect of link stiffness and loss fac- 
tor, and of the relative masses and flexural 
rigidities of the beams, on an arbitrarily de- 
fined effective loss factor are described.  It is 
shown that there are certain circumstances in 
which no damping of the system occurs ana 
others in which high damping is introduced. 
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Fig. 16 - Comparison of experimental and theoretical 
values  of optimum  effective  loss  factors  for 0 = 1.0 

An experimental investigation is described 
wMch shows that the analysis accurately pre- 
dicts the behavior of the system and that high 
damping can be introduced into a simple struc- 
tural system by viscoelastic links. 
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Fig.   18 - Skin-stringer structure 
with viscoelastic links 

DISCUSSION 

Mr. Huffington (Martin Co.):  Did you have 
to be concerned with the vibration characteris- 
tics of the ring damper as coupling in with the 
vibrations of the beams?  To have a successful 
energy attenuator it is necessary that the mate- 
rial be capable of continuously dissipating en- 
ergy without deterioration.  Do you have any 
comments on this? 

Mr. Jones:  Obviously, material must be 
capable of withstanding vibration and any other 

type of environment which occurs.  This is a 
real problem.  Certainly for the material we 
used in this investigation we had no such aims 
in mind.  Maybe one of the papers later in this 
session will answer that question. As to your 
first question, in this particular investigation 
the link was very very light compared to the 
beams so the problem did not arise.  Inevitably 
if the link is heavy you must bear this in mind. 
This particular preliminary investigation was 
not concerned with the practical problems, only 
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with demonstrating that it was worthwhile or 
not worthwhile to go ahead and look at the 
practical problems. 

gfr\ Huffington;  Was there a temperature 
increase in the material and did it have any 
effect? 

Mr. Jones:  It is thought that the tempera- 
ture rüelnTEis type of situation is not neces- 
sarily very great.  It might be of the order of 
10oF to 30oF, maybe 40oF, and with the spe- 
cially tailored materials available, that should 
be no serious problem.  We have indeed been 
working in another investigation altogether with 
dampers where we have been forced to deal with 
temperature rises of this sort.  Materials can 
be made to withstand them. 

Mr. DiTaranto (PMC Colleges):  In your 
curve of the stiffness ratio, it appeared that if 

k goes to a very large number or infinity, you 
get more damping.  This would seem to imply 
that maybe the thing to do is have just pure 
mass at the end rather than having any stiffness 
or beam at the bottom. 

Mr. Jones:  What we are really dealing 
with here is a means of using an existing struc- 
ture. You might have two parts of a powerless 
structure in which \, the stiffness ratio, is al- 
ready defined and there is nothing you can do 
about it.  Since these links can be made very 
light, and often very cheaply, ycu can get good 
damping by adding just a very small amount of 
weight to your structure.  On the other hand, if 
the other beam does not pre-exist, obviously 
you must put something else there, and the mass 
would probably be far more valuable than an- 
other beam. 
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ELASTOMERS FOR DAMPING OVER 
WIDE TEMPERATURE RANGES 

F. S. Owens 
Air Force  Materials Laboratory 

Wright-Patterson Air Force Base,  Ohio 

The use of viscoelastic materials for structural damping on aircraft 
and missiles has been unduly limited because of the temperature sensi- 
tivity of these materials.   The experimental work here described dem- 
onstrates a technique for extending the temperature range over which 
these materials have useful damping.   The approach is based on the 
phenomenon that viscoelastic polymers exhibit a high level of damping 
only within a few degrees of their glass transition temperatures and 
that certain types of polymer blends exhibit more than one glass transi- 
tion temperature.   The dynamic response of blends of polyvinyl acetate 
and polystyrene with a styrene-butadiene and a nitrile-butadiene rubber 
were investigated over temperature ranges including all the glass 
transitions of the polymers used in the blends.   The poiyvinyi acetate- 
polystyrene-nitrile rubber blend and the polystyrene-nitrile rubber 
blend both met the target properties of having a loss factor of 0.1 or 
more and a modulus of 104 psi over a 200oF range.   The three polymer 
blends had a higher level of damping over a wider temperature range 
than the two polymer blends, and the two polymer blend" were better 
than the base elastomers.   Further improvements in high temperature 
damping materials are anticipated through the use of the fundamental 
concepts demonstrated in this research effort. 

F. S. Owens 

INTRODUCTION 

Vibrations in high-speed aircraft and mis- 
siles arise from turbulent boundary layer con- 
ditions, engine thrast, engine noise, unsymmet- 
rical mass distribution of rotary components, 
etc.  Viscoelastic dampers are used to isolate, 
insulate, and attenuate the unwanted, and at 
times harmful, oscillations.  The dampers pro- 
tect delicate instruments from vibrations, per- 
sonnel from undesirable noise, and structural 
members of the craft from fatigue failure. 
Ideally, the materials used for dampers should 

eliminate vibrations of all possible frequencies 
occurring in the craft at all temperatures from 
the lowest occurring in the arctic regions up to 
the highest possible operating temperature.  In 
addition, the material should be strain insensi- 
tive and have a low density.  However, this 
ideal material is becoming more difficult to 
reach because as the speed of the craft in- 
creases, the skin and engine temperatures in- 
crease, thus widening the temperature require- 
ments for a damping material.  In general, 
elastomers, in the usual sense of the term, 
cannot act as effective dampers over such a 
wide temperature range.  The reasons for this 
are evident from Fig. 1, in which the real part 
of the complex Young's modulus and the loss 
factor of an eiastomeric high polj .ner are 
plotted as functions of temperature [1].  The 
loss factor, -q, is a measure of the damping 
ability of a material [2] and is related to the 
complex modulus, E*, as follows: 

E* =   E'  <   iE" 

E* -  E' (1 + IT?) , 

(D 

(2) 
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Fig.   1 - Typical loss factor and 
real modulus vs temperature 

where 

E' = storage or real modulus, 

i = NTTT, and 

E" = E'77, the loss or imaginary modulus. 

The segment AB of Fig. 1 is called the "glassy" 
region and is associated with a high modulus 
and low mechanical losses.  The segment BCD 
is called the "transition" or "dispersion" re- 
gion. At temperatures within this range, the 
materials absorb considerable mechanical en- 
ergy, converting it Into heat energy.  The tem- 
perature corresponding to C, the inflection 
point of the curve, is of particular interest.  It 
is called the glass transition temprrature, usu- 
ally denoted Tg, and is that corresponding to 
the maximum energy absorption of the material. 
The width of the dispersion region, the temper- 
ature range corresponding to segment BCD, 
determines the temperature range over which 
the material is most effective as a damper. 
For most elastomers this temperature range is 
approximately 50° F; butyl rubber, the exception, 
is about 100CF [3].  Segment DE corresponds to 
the "rubbery" region and is usually associated 
with damping that is higher than that in the 

glassy region but considerably lower than that 
of the transition region.  Since all amorphous 
viscoelastic materials have modulus and damp- 
ing curves similar to Fig. I [1], and since high 
damping occurr- only within a few degrees of 
T, [2,3], the problem of producing wide tem- 
perature range viscoelastic dampers is really 
a problem of producing materials with wider or 
more numerous dispersion regions.  The usual 
techniques of varying the kind and level of min- 
eral fillers, piasticizers, curing agents, etc., 
results only in altering the temperature range 
at which maximum damping occurs and will not 
greatly improve either the peak damping or the 
temperature range of satisfactory damping 
[2,4,5].  Fortuiiately, such materials can be 
produrod by either chemical modification of 
existing polymers or by selective blending 
[1,4,6,7].  The chemical reactions yielding 
these materials are those reactions which re- 
sult predominantly in the formation of block 
and graft polymers [6,7].  Blends in this case 
are immiscible mixtures of polymers which 
have a common curing agent [1,4,5].   Block 
polymers have chains consisting of alternating 
long sequences of chemically different polymers. 
Graft polymers consist of one or more polymer 
chains attached to the backbone of a different 
type of chemical chain and result from the 
reaction of a polymer with a monomer.  Both 
graft polymers and polyblends exhibit more 
than one Tg and, consequently, have more than 
one damping peak [1,4,5,6,7].  Thus, by the 
proper selection of grafts or blends, it is theo- 
retically possible to have damping peaks at al- 
most any temperature.  Both grafts and blends 
have been used in this investigation; however, 
this report is concerned primarily with blends. 

OBJECTIVES 

The objectives of this research were, first, 
to satisfy an Air Force need and, secondly, to 
demonstrate a technique applicable for produc- 
ing composites having high damping at specified 
temperatures or over specified tempereWre 
ranges. Since the Air Force needs viscoelastic 
damping materials to cover a wide temperature 
range, which is not likely to be covered with 
only one lormulation, the initial efforts were 
directed toward satisfying an immediate need. 
A rubberlike material having a loss factor of 
at least 0.1 over a temperature range of about 
0 to 200° F within a frequency range of 100 to 
1000 cps with a minimum real dynamic Young's 
E modulus of 1C4 osi was set as the initial ob- 
jective. Ultimately, our goal is a series of 
compositions, each having a dynamic modulus 
of 105 psi or greater, with a loss factor of 
at least 0.3 over at least 200° F to cover the 
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temperature range where high damping is 
needed, i.e., within 0 to 400°F and above. 

MATERIALS SELECTION 

Tg data were the most importa.nt criterion 
used in the selection of the experimental poly- 
mers to accomplish the objectives.  First, the 
particular polymer system chosen should be 
available in a wide variety of T 's; second, it 
should lend itself to easy modification, if nec- 
essary, by simple chemical reactions not re- 
quiring elaborate equipment; and, third, the 
chemistry of the system should be well known 
or easily accessible.  The polyesters, poly- 
urethanes, and the vinyls met these require- 
ments.  The vinyl system was chosen for the 
initial phases of the research; however, there 
is evidence that either of the other systems 
would probably have worked as well.. The choice 
of the particular vinyl polymers to be used was 
based on the desire to have a composition which 
was essentially elastomeric at or below room 
temperature, yet has glass transitions at 
higher temperatures.  Recalling (Fig, 1) that 
elastomeric behavior is the result of the poly- 
mer being above its glass transition tempera- 
ture, Tg, and that this Tg is shifted to higher 
temperatures by vulcanization as well as by 
increasing frequencies [4], the first elastomer 
selected, a styrene-butadiene copolymer (Fire- 
stone Synthetic Rubber #1502) containing 23 
percent bound styrene, had a T^ of -65° F.  The 
vinyl polymers selected for blending in the 
rubber were polyvinyl acetate and polystyrene 
with T 's of 84 and 212^, respectively.  As a 
means of controlling as many variables as pos- 
sible, these polymers were prepared from the 
monomers by emulsion polymerization.  Com- 
position of the polymers was as follows: 

1. Polyvinyl acetate 

Water, 500 ml; 
Vinyl acetate, 340 ml; 
Soap, 5.0 gm; and 
Potassium persulfate, 1.5 gm. 

(Ran for 3 hr at 650C; air-dried reaction 
mixture.) 

2. Polystyrene 

Water, 500 ml; 
Styrene, 330 ml; 
Soap, 5.0 gm; and 
Potassium persulfate, 1.5 gm. 

The results of dynamic measurements on pe- 
roxide cures of mixtures of these materials 

indicated that a higher Tg elastomer would be 
more desirable.  Therefore, the second elasto- 
mer chosen was a very high acrylonitrile con- 
taining nitrile-butadiene (Paracril-D, U.S. 
Rubber Co.) rubber which had a Tg of 50° F 
when cured, as measured dynamically. 

BLENDING 

The preparation of the blends listed in 
Table 1 were done according to the usual pro- 
cedures followed in rubber compounding.  First, 
the gum rubber was banded on a 2-roll 8-in. 
water-cooled mill.  Then zinc oxide was added 
to neutralize any acid remaining from the co- 
agulation of the polymers and to promote the 
activity of the curing agent, dicumyl peroxide. 
The other polymers were added in small 
amounts as called for in the desired lormula- 
tion.  The polystyrene had to be added next in 
the styrene-butadiene blends.  The order of 
addition was not critical in the nitrile-butadiene 
blends. Because these polymers were being 
milled at temperatures below their T 's, there 
resulted very high shearing forces and, conse- 
quently, a rise in temperature. After the poly- 
mers were taken into the rubber, the mixture 
was refined by passing one end of the rolled-up 
compound through a closely set mill.  This 
procedure was repeated several times until the 
mixture appeared to be homogeneous and then, 
after cooling, the curing agent ^as added.  Spe- 
cial care to prevent excessive heating had to be 
exercised while, and after, the curing agent was 
added.  The formulation was again refined sev- 
eral times on a closely set mill, and finally, 
when the curing agent wa« uniformly dispersed, 
it was put back on the mill, sheeted into the 
desired thickness, and cut into mold preform 
specimens. 

TAJ3LE 1 
Experimental Formulations* 

Amount 
Material 

1 2 3 4 

Paracril-D 100 100 100 100 
Polyvinyl acetate - 100 - 100 
Polystyrene - - 100 100 
Zinc oxide 10 10 10 10 
Dicumyl peroxide 3 

. _    _. 
3 3 3 

lCure:    1 hr at 280°] 

SPECIMEN PREPARATION 

The preform specimens were compression 
molded into strips 8-in. long, 0.450-in. wide 
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and In different thicknesses up to 0.125 in.  The 
molding was done at 280 °F for 1 hr under a 
pressure of 500 to 600 psi.  Usually, the hot 
mold was removed from the press and cooled 
under a stream of tap water before the speci- 
mens were removed.  The strips of rubber were 
bonded on the aluminum beams while the rubber 
was being cured. The same thickness of the 
viscoelastic material was bonded on both sides 
of the metal strips as shown in Fig. 2.  Rubber- 
to-metal adhesive systems used were commer- 
cial products, Chemlok 203 primer (Hughson 
Chemical Co.) and Chemlok 220 adhesive.  For 
practical damping applications, a room temper- 
ature curing epoxy adhesive may be better, 
since it contributes to the mechanical losses of 
the system. 

rBRASS DISC    ..VISCOClASTr; 

ALUMINUM N-ADtcsivtuvw 

Fig, 2 - Specimen 

DYNAMIC MEASUREMENTS 

The dynamic mechanical properties of the 
composite beams were measured by personnel 
of the Strength and Dynamics Branch, AFML, 
using the Bruel and Kjaer Complex Modulus 
Apparatus and ancillary equipment, shown 
schematically in Fig. 3, 

VZZZZZZZZZZZZZ: 
-PICK-UP TRANSDUCER 

,SPfCIMfl 

] EXCITER 
TRANSDUCl 

'Mr//////////////. 

-ENVIRONMENTAL 
CHAMBER 

OSCILLATOR 

AMPLIFIER ■     RECORDER 

Fig.   3 - Schematic of 
test equipment 

All measurements were made in the tem- 
perature test chamber.  The room temperature 
experiments were run first, followed by suc- 
cessively lower temperatures until the temper- 
ature was well below the lowest Tg of the par- 
ticular blend.  Next, the higher temperature 
experiments were run, starting out at room 
temperature again. A soak period of 30 min 
was given at each experimental temperature 
and then the oscillator was calibrated just prior 
to making the test. At each experimental tem- 
perature, the measurements consisted of ob- 
taining the resonant frequencies and the haif- 
power bandwidth points of each resonant 
frequency of the composite beam.  These 
measurements are relateü ic the physical and 
mechanical properties of the materials in the 
composite beam [8,9,10] and were used to cal- 
culate the storage modulus and the loss factor 
of the viscoelastic formulations.  A discussion 
of the mathematical relations used is given by 
Nashif [10].   For each experimental tempera- 
ture the storage modulus and the loss factor 
are plotted as a function of resonant frequen- 
cies.  The resulting points are then connected 
by smooth curves, and from thefc curves the 
values of the storage modulus and the loss fac- 
tor at 100 and 1000 cps were interpolated. 
These values were plotted as a function of 
temperature, connected with smooth curves, 
ani are the results used for this report. 

DISCUSSION 

Initial attempts were made to make graft 
polymers by reacting vinyl acetate and styrene 
monomers with styrene-butadiene rubber. 
However, because it was difficult to control the 
grafting and to analyze the resultant graft poly- 
mers, this approach was dropped in favor of 
making polymer blends.   This accomplished the 
desired results and was much easier to control. 
Blends of polyvinyl acetate, polystyrene, and 
the styrene-butadiene rubber were investigated 
first.  The composite beams used for the meas- 
urements had only one side of the aluminum 
coated with the viscoelastic material.  The re- 
sults were not complptely reliable because the 
adhesive being used at that time tended to be- 
come ineffective at high temperatures and some 
of the measurements were taken at resonant 
frequencies where, as later found, large errors 
were possible.  Even though the results may not 
be absolutely accurate, they did i-now that the 
concept of using blends of polymers having 
different Tg

ls will broaden the temperatuie 
range of high damping and that adding the pias- 
tic polymers to the base elastomer will in- 
crease the modulus somewhat.   For example, a 
blend of equal parts by weight of polystyrene 
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and the styrene-butadiene rubber had a modu- 
lus of greater than 104 psi over the tempera- 
ture range of -75 to 225CF.  The loss factor 
curves had peaks corresponding to the disper- 
sions in the modulus curves.   However, the loss 
factor curves were lower than desired; there- 
fore, the experimental work with styrene- 
butadiene blends was discontinued because it 
was thought that nitrile rubber had more de- 
sirable properties. 

Nitrile-butadiene rubbers are more resist- 
ant to hydrocarbon fuels, oils, solvents, and 
heat than the styrene-butadiene rubbers. 
Hence, they are more desirable for use as 
dampers on aircraft.  The higher the acrylo- 
nitrile content of the polymer, the higher the 
solvent resistance of the rubber.   The reason 
for the hydrocarbon fluid resistance is the 
presence of the polar nitrile groups in the poly- 
mer molecule.  These polar groups contribute 
to the damping of the rubber by making the 
polymer more sensitive to frequency varia- 
tions; i.e., the damping ; nder the same tem- 
perature conditions is better at higher rather 
than at lower frequencies. As the acrylonitrile 
content of the polymer increases, the Tl, also 
increases.  There is, however, a reduction of 
low-temperature properties.  The particular 
nitrile-butadiene rubber, Paracril-D, used was 
one which had a very high acrylonitrile content 
and has been successfully applied as liners for 
fuel hose and as oil seals. It has a Tg just be- 
low room temperature and can be blended with 
many other rubbers and plastics, particularly 
the polar ones.  It is somewhat reinforced by 
compatible plastic polymers having high T 's, 
such as polystyrene.  The specimens used for 
the evaluation of the storage modulus and the 
loss factor had the rubber bonded with the 
Chemlok adhesive system on both sides of the 
aluminum beams.  The results are more relia- 
ble than those obtained with composite beams 
having rubber on only one side. 

The storage modulus of the gum vulcani- 
zate (Formulation #1) was 4x 105 psi at 0oF 
and dropped to 4 xlO3 psi at 75°F (Fig. 4). 
This large change in the modulus is associated 
with a very high loss factor peak (Fig. 5).  The 
height and width of the damping peak is consid- 
erably higher and wider than that obtained for 
the styrene-butadiene rubber.  The maximum 
in the loss factor was around 1.0, while it was 
0.5 for the styrene-butadiene polyner.  The 
temperature range over which the losses were 
above 0.1 was 20 to 175° F.  The width of this 
temperature range is ve v frequency dependent; 
for example, the loss factor at 150° F is 0.1 for 
100 cps and 0.3 for 1000 cps.   This frequency 
dependence of the damping can be used to an 
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advantage in applications where adequate damp- 
ing at low frequencies can be obtained with the 
nitrile rubber.  An equal weight mixture of 
nitrile-butadiene rubber and polyvinyl acetate 
(Formulation #2) had two dispersion regions 
which overlapped so much that they are not 
obvious from the modulus curves (Fig. 6).  The 
modulus of this blend was greater than 104 psi 
at temperatures below 115 F   A 102 decrease 
in the modulus took place over & temperature 
range of 0 to 1750F.  The closeness of the T 's 
of the two polymers is the reason why there is 
not more of a break in the modulus curves and 
led to the damping peaks being close together 
(Fig. 7).  Also, the nearness of the T 's helped 
to keep the damping curves at a high level over 
a wider temperature range.  The loss factor 
curve is above 0.1 over the 25 to 175° F range 
and is above 0.3 over the 40 to 175° F,   Peak 
damping of about 1.0 occurred at about 50 and 
1250F with the highest peak at 125° F being at- 
tributed to the polyvinyl acetate.  The damping 
peak due to the rubber was lowered as a con- 
sequence of the dominating effer' of the second 
polymer.  The gum rubber met nie target 
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properties over the temperature range 20 to 
60° F, while the two-component blends met the 
objectives over the 20 to 1150F range. Thus, 
the addition of polyvinyl acetate to the rubber 
increased the temperature range by 55° F. 

Blends of polystyrene and the nitrile rub- 
ber (Formulation #3) had dynamic behavior 
similar to the polyvinyl acetate blends; however, 
the modulus curves (Fig. 8) have very definite 
transitions and there are breaks in the curves 
at about 150° F.  This was a result uf the poly- 
mers in the blend having widely separated T 's. 
Apparently, the polystyrene contributes to the 
dynamic strength of the rubber and helps to 
keep the modulus high, particularly at the ele- 
vated temperatures. The modulus remained 
abcve IC 4 psi up to 2250F.  The loss factor 
curves (Fig. 9) have peaks of 0.6 at 50°F and 
0.8 at 250° F. The losses are above 0.1 over 
the 25 to 275°F range with a minimum value of 
0.1 occurring within the range of 50 to 250° F. 
These two-component blends met the target 
properties over therangeof25to225':'Fandwill 
function very well as a vibration damper within 
this range.   The equal weight mixture of poly- 
vinyl acetate, polystyrene, and nitrile rubber 
(Formulation #4) had three transitions which 
axe more evident from the damping curves 
(Fig. 10) than from the modulus curves 

(Fig. 11).  For this three-polymer blend, the 
modulus remained above 104 psi up to 200°F, 
which is not. as good as obtained with the poly- 
styrene blend. The loss factor vs temperature 
curves had peaks of 0.3 at 65° F, 0.9 at 130°F, 
and 0.4 at 230°F for 1000 cps and of 0.15 at 
40oF, 0.5 at .l20oF, and 0.6 at 230oF for 100 
cps.  Here again the frequency dependency of 
the loss factor is very noticeable. While both 
the two and three polymer blends met the target 
properties, 't is thought that the three compo- 
nent blends have better damping than the two- 
component mixtures because the area under the 
loss factor curves if. larger.  Experiments are 
now under way to optimize the amount of poly- 
mers in the blend so as to have all three of the 
loss factor peaks of about the same height. 
This change in the formulation should improve 
the modulus values at high temperatures.  Fur- 
ther improvements can no doubt be made by 
adding reinforcing fillers.  The rubber is not 
resistant to temperatures above 325° F so no 
experiments are planned in which the high tem- 
perature range is increased. 

SUMMARY AND CONCLUSIONS 

This preliminary investigation has demon- 
strated that polymer blends have a higher level 

31 



105- 

w . 

-1— 

-50 

 1XCPS 

   1000 CPS 

-1— 

50 
—l— 

100 

-1— 

200 
—n 

?50 150 

TIMPERATUREPf) 

Fig. 8 - Real dynamic modulus vs 
temperature of a polystyrene/nitrile 
rubber blend 

1.0 

i 

\, // \ 
/"N.                                      '/ /    X                                   '/ r >  X                                     1/ 

,      v   \                                   / 
/       ^   \                                / /         \     \                              P 
.'          x     \                           /' x      \                        /' 
•/           v      \                    // !        NV_X/ 
If                                                   ** —*'" 

0.1- 

/ 
y               loocps 

m - 

/ 

50 100 150 

TEMPERATURE ("f) 

200 250 

Fig. 9 - Loss factor vs temperature of 
a polystyrene/nitrile rubber blend 

32 



-« 0 

 1 1 r—— 

SO            100           130 

ItMPfRATURE ("f) 

an 
 r 

250 

Fig. 10 - Loss factor vs temperature of 
a polyvinyl acetate/polystyrene/nitrile 
rubber blend 

10- 

/ 
— 100 CPS 

— 1000 CPS 

T 1 1 1  
•50 0 50 100 

TEMPERATURtrF) 
m 

—r- 
250 150 

Fig, 11 - Real dynamic modulus vs 
temperature of a polyvinyl acetate/ 
polystyrene/nitrile rubber blend 

33 



of damping than does a homogeneous material. 
The reason for this is that polymers, in gen- 
eral, are insoluble in each other and that blends 
actually consist of more than one phase.  Each 
phase exhibits a Tg which is independent of the 
other polymers used in the blend.  Thus, poly- 
mer blends can be used to broaden the tempera- 
ture range of adequate viscoelastic damping. 
In particular, the three-component blends inves- 
tigated were better damping materials than the 
two-component blends, and the two-component 
blends were better than the base elastomer. 
The loss factor was 0.1 or more and the r<;al 
modulus was 104 psi or more over 20 to 60oF 
for the nitrile rubber, 20 to 115° F for the poly- 
vinyl acetate-nitrile rubber blend, and 25 to 
225°F for both the polystyrene-nitrile rubber 
blend and the polyvlnyl acetate-polystyrene- 
nitrile rubber blend. 

The above results show that the tempera- 
ture sensitivity of viscoelastic materials can 
be used to an advantage to obtain a high level of 
damping along with a high modulus over a wide 
temperature range.  It seems apparent that the 
ideas used to achieve the objective can be ap- 
plied to other temperature ranges where a high 
level of damping has been difficult to obtain. 
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DISCUSSION 

Mr. Buonaguiio (Applied Physics Lab.): 
What effect would reducing frequency to 10 to 
20 cps have on those curves? 

Mr. Owens:  We tried that on another rub- 
ber formulation.  As you reduce frequency, or- 
dinarily the loss factor is reduced.  As fre- 
quency is increased at a constant temperature, 
the same type of hump appears as was shown 
here for temperature since there is an inverse 
relationship between temperature and fre- 
quency. 

Mr. Thompson (San Francisco Bay Naval 
Shipyard):  What is the nitrile rubber you were 
using inlhe blends? 

Mr. Owens: Nitrile rubber is commonly 
called Buna-N, It is a copolymer of acrylo- 
nitrile and butadiene. This particular one had 
greater than 50 percent acrylonitrile. The 
glass transition temperature of the Buna-N 
rubbers is a linear function of the acrylo- 
nitrile content. 
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Mr. Forkois (Naval Research Laboratory): Mr. Owens:  Any time you go through a 
Did you monitor the creep characteristics of glass transition temperature, all sorts of things 
these polymers? This is a very important con- happen.  Creep is a bad feature.  V/e have not 
sideration.  You get into a lot of trouble if you run any creep tests on the blend, but we proba- 
do not consider it. bly will.  We have not completed the work on 

this system and want to do some more before 
we say it is perfected. 
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NEW METHOD FOR DETERMINING DAMPING PROPERTIES 

OF VISCOELASTIC MATERIALS 

Ahid D. Nashif 
University of Dayton 

Dayton, Ohio 

Many methods have been developed to measure damping properties of viscoelastic 
materials.   Of these, the complex modulus apparatus developed by Oberst has been 
one of the most widely used.   The generally adopted method of using this apparatus 
has been to excite the test specimen, comprising a metal cantilever beam with a 
layer of the viscoelastic material on one side only, by an harmonic force of fixed 
amplitude generated by a magnetic force transducer, and to measure the frequency 
response by another transducer.   Damping measurements are then made at the 
resonant frequencies of the specimen by observing either the vibration decay or the 
half-power bandwidth of each peak, and the relevant material properties are de- 
duced by complicated but well-established theory.   However, most viscoelastic 
materials have higher thermal coefficients of expansion man most metals, so con- 
siderable bending of the specimen occurs during high- or low-temperature tests. 
This problem ctu, be overcome by conducting the damping tests on symmetric 
specimens, in wh.'ch the viscoelastic material is coated in equal thicknesses on both 
sides.   This method greatly simplifies the theory from which the viscoelastic ma- 
terial properties ar.i deduced.   This theory of symmetric specimens is derived 
using a simpler approach than has hitherto appeared in the literature, and the for- 
mulas by which the damping properties of the viscoelastic material are deduced 
from experiments on the composite specimen are also presented in a simple form, 
thereby reducing testing effort. 

The simplified equations lead readily to a study of the effect of experimental errors 
on the measured viscoelastic material properties.   For certain combinations of 
specimen dimensions and environmental conditions, an error magnification phe- 
nomenon of serious proportions occurs.   Knowledge of the error magnifications, 
and the circumstances under which they occur, enables one to judge the reliability 
of the test results and to select appropriate specimen dimensions to minimize the 
effect of experimental error.   Experiments with symmetric and unsymmetric spec- 
imens show that agreement between the measured properties is good, except in 
areas where error magnification is large. 

A. D. Nashif 

INTRODUCTION 

The use of viscoelastic materials «n the 
reduction of vibration problems in structural 
members and systems has been the subject of 

many investigations.  For a proper understand- 
ing of the application of viscoelastic materials 
to specific vibration problems, the physical 
properties, and particularly the damping prop- 
erties, of the materials under consideration 
must be determined over a wide range of fre- 
quencies and temperatures.  Many methods 
have been developed to measure the damping 
properties of viscoelastic materials.  Of these, 
the complex modulus apparatus developed by 
Oberst [1] has been one of the most widely used. 
Oberst's method involves the excitation of a 
test specimen, comprising a co«nposlte canti- 
lever beam of metal and viscoelastic material, 
by an harmonic force ot fixed amplitude gener- 
ated by a magnetic force transducer, and the 
measurement of frequency response by another 
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transducer.  The damping measurements are 
made at the resonant frequencies of the speci- 
men by observing either the vibration decay or 
the haif-power bandwidth of each peak. It has 
been the general practice to test specimens 
consisting of a metal cantilever coated on one 
side only with a layer of the viscoelastic mate- 
rial under investigation.  The damping proper- 
ties of the viscoelastic material are then calcu- 
lated from the measurements made on the 
composite specimen using a well-established 
but complicated theory [1].  Since most visco- 
elastic materials have a high thermal coeffi- 
cient of expansion c ,?. pared with most metals, 
considerable bending occurs in the test speci- 
men during high- or low-temperature tests. 
This difficulty can be avoided by conducting the 
damping tests on symmetric specimens with the 
viscoelastic material applied in equal thick- 
nesses on both sides.  Van Oort [2] has devel- 
oped a method for measuring the damping prop- 
erties of viscoelastic materials from tests 
conducted on symmetric specimens.  However, 
the theory described by Van Oort is compli- 
cated, and a simpler formulation is needed. 

This paper describes a simplified approach 
to the problem of measuring the damping prop- 
erties of viscoelastic materials using symmet- 
ric specimens in the Oberst apparatus. It is 
shown thai the procedure for determining the 
los£> factor and Young's modulus of the visco- 
elastic material is far simpler than that for 
specimens coated on only one side. Experi- 
ments are described which demonstrate good 
agreement between measurements taken on both 
types of specimen, thereby demonstrating the 
accuracy of the new technique. 

Finally, experimental errors and their ef- 
fect on the calculated values of the damping 
properties of the viscoelastic materials are 
discussed.   The simplicity of the theory for 
symmetric specimens allows one to demon- 
strate readily the existence of an intrinsic 
error magnification phenomenon inherent in the 
equations, which was not at all apparent for the 
far more complicated theory of the specimens 
coated on one side.  It is shown that there are 
certain well-defined combinations of specimen 
configurations and environments which, if not 
rejected as unreliable on the grounds of exces- 
sive magnification of possible experimental 
errors, would lead to serious error in the test 
results obtained from the Oberst apparatus. 

LIST OF SYMBOLS 

A    Function of hj/h,, Eq. (25) 

b    Breadth of cantilever beam, in. 

exp Exponential function 

ea Error in calculated value of E, 

ej, Error in calculated value of 7;2 

E, Young's modulus of metal beam, psi 

E2    Real part of Young's modulus of visco- 
elastic material, psi 

El    Effective flexural rigidity of composite 
beam, psi 

Ej   Calculated value of E2 based on errone- 
ous value of cun/u,lnf psi 

h,    Total thickness of aietal part of canti- 
lever beam, in. 

hj    Thickness of single layer of viscoelastic 
material on composite beam, in. 

i     vr-l 

I,    Second moment of area of metal beam 
section about neutral axis, in.4 

12    Second moment of area of viscoelastic 
material on beam about neutral axis, in.4 

k Function of hj/h^ Eq. (11) 

L Length of beam, in. 

Ma Mb Error magnification factors 

P(x) Applied transverse loading, lb/in. 

t Time, sec 

W(x)    Amplitude of transverse vibration of 
beam, in. 

x    Station along beam, in. 

X    fan/v.,ln)2 or (f^f,,,)2, in. 

Y      1 +  2h2P2/hl p1 

Effective loss factor of composite beam 

Tin    Loss factor of viscoelastic material 

7/j    Calculated value of r;2 based on inaccu- 
rate values of ^ ^ln 

and v 

u    Mass per unit length of composite beam, 
slug/in. 

u,    Mass per unit length of bare metal beam, 
slug/in. 
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In 

Eigenvalue corresponding to nth normal 
mode of cantilever beam 

Density of metal, slug/in. 

Density of viscoelastic material, slug/in. 

Circular frequency, 27Tf,rad/sec 

Natural frequency of nth normal mode 
of composite beam, 2rT{n, rad/sec 

Natural frequency of nth mode of metal 
beam, 27rfln, rad/sec 

THEORETICAL ANALYSIS 

Determination of Material Properties 

Consider a metal beam with a viscoelastic 
layer attached in equal thicknesses to each of 
its surfaces, as in Fig. 1.  If a transverse load- 
ing P(x) exp(i^t) is applied to the beam, the 
equation of motion for the transverse displace- 
ment  W(x) exp(i^t) is 

[E2(l + ir^I^EjIJfd^W/dx4) -^2W = P(x) ,    (1) 

where M is the mass per unit length of the com- 
posite beam, I j is the second moment of area 
of the metal beam cross section about the neu- 
tral axis (the centerline in the case of symmet- 
ric specimens), l2 is the second moment of 
area of the viscoelastic material about the neu- 
tral axis, E, is Young's modulus of the metal, 
E2 is the real part of the complex Young's 
modulus of the viscoelastic material, and T)2 is 
the loss factor of the viscoelastic material. 
The loss factor TJ, of the metal beam is as- 
sumed to be negligible and will be ignored. 
Equation (1) may be rewritten in the form: 

(E2I2 T E,I,)[1 + iT^EjI/^Ij + r jl^Uc^W/dx4) 

- fj.a>3V   =   P(x) . (2) 

If, however, we define an effective flexural 
rigidity El and an effective loss factor -n for 
the composite beam, then the equation of mo- 
tion may also be written: 

Eld-f i75Ud4W/dx4) - ^2W   =   P(x) .        (3) 

Comparing Eqs. (2) and (3), term for term, we 
have 

Ejl/E,!,   =   (EI/E,!,) -  1 (4) 

and 

vil + (E^/Ejlj)] . (5) 

But, for any given mode n the measured reso- 
nant frequencies of the composite beam (u>n) and 
of the uncoated metal beam (^ ln) are given by 

^LVEI   =   ^„LVE.I,   --   t*. 

where fn is the eigenvalue corresponding to the 
nth mode and Is a constant.  Therefore, 

EI/E,!,   -.   (^/"tjU^ßi) ■ (6) 

Putting Eq. (6) into Eq. (4) yields: 

Ejlj/E,!,   =   K/^,,,)2^^,) - 1. (7) 

To determine E2 and JJ2 from the experi- 
mentally measured values of v and &-n/u>ln, it 
is now necessary to solve for the stillness ratio 
Ejl/E,!,  in terms of the thickness ratio hj/h,, 
where h, is the thickness of the metal canti- 
lever and h2 is the thickness of one layer of the 
viscoelastic material. The second moment of 
area about the neutral axis of the viscoelastic 
material is 

I2   =  2[bh2
3/12f bh2(h1 + hj)V4]   ,        (8) 

and of the metal beam is 

I,   =   bh ,*/ 12 . (9) 

VISCOELASTIC LAYER 
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Fig. I  - Sketch of metal beam 'vith viscoelastic 
layers coated on both sides 
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The stiffness ratio l2l2/Ell1 may, therefore, 
be written in the form 

Ejl/E,^   =   kCEj/E,) , (10) 

where 

k = Sfhj/h,)1 +  «(hj/h,)2 + 6(h2/h,) .    (11) 

The nondimensional parameter k is plotted as 
a function of h,/h, in Fig. 2. Young's modulus 
for the viscoeiastic material is now obtained 
from Eqs. (7) and (10): 

Ej = CEI/k)[(a.nAüln)JCw/M1) -  1] (12) 

or 

E2 - (t1/V)[(ü>n/ü,ln)1(l+ 2h2p1/hlpl) -  Ij . (13) 

where P, is the density of the metal and Pj is 
the density of the viscoeiastic material.  The 
loss factor of the viscoeiastic material is seen, 
from Eqs. (5) and (10), to be 

r,(l + E^kEj) (14) 

Analysis of Error 

Equations (12) and (14) represent equations 
for the Young's modulus and loss factor, re- 
spectively, of the viscoeiastic material.  To ob- 
tain these two quantities, it is necessary to de- 
termine from experiments on the metal and 
composite beams the frequency ratio ^n/^ln and 
the composite loss factor v at several resonant 
frequencies.  These experimental measure- 
ments are the main sources of error.  There- 
fore, the effect of such errors on the final cal- 
culated values of the Young's modulus and loss 
factor must be determined. 

Let the error in measuring the frequency 
ratio wn/a-ln be &, and that in measuring the 
composite loss factor - be ' b.  Therefore, the 
calculated Young's modulus Ej and loss factor 
v'j, corresponding to the erroneous frequency 
ratio (vn/vln) + \ and the erroneous composite 
loss factor T- + Ab> become, from Eqs. (12) and 
(14), 

Ei = (E./k)   {[KA-.J + AJ2 (U/M,)-!}       (15) 

and 
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Fig. 2 - Parameter k vs thickness ratio h2/hj 
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rjj   =   (Tj + ^Kl + E/kEJ) . (16) 

The errors in the calculated values of the mod- 
ulus and loss factor are now defined as 

and 

(£'-£,)/£, 

?b   =   (v't- ^ji/^j • 

(17) 

(18) 

By substituting Eqs. (12), (14), (15) and (16) into 
Eqs. (17) and (18) and assuming that the errors 
are small, so that ü,* and Aa x \ are negligible, 
one may show that Eqs. (17) and (18) give 

e     =   M    A (19) 

and 

"b =   Vk^'ln) [K/'-In) ' C/^M.) - 1]  •      (22) 

The error magnification factors Ma and i^ are 
plotted Ui Figs. 3 and 4, respectively, as func- 
tions of wn/t*(n for several values of ^-'M, . It 
can be seen that Ma and Mb are alwa/s small 
except when (^n/^In)J times (^//V,) is of the 
order of unity. It is seen that errors in the ob- 
served quantities "„/"in ancl ^ are niagntlied 
in the calculated values of E2 and 772 and that, 
under the specific condition that ("„/",n)2fM/M,) 
approaches unity, these errors may become 
prohibitively great.  The effect of these error 
magnification factors on experimental data are 
discussed in more detail in a later section. 

and 

= V; - «b A. ■ (2Ü) EXPERIMENTAL INVESTIGATION 

where 

II, = 2(vn/u>lnHu/nl)/[(vn/vln)2(v/n1) - *] (21) 

To demonstrate the effectiveness of the new 
damping measurement technique, the damping 
properties of a typical viscoelastic material 
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were evaluated using both singly and symmetri- 
cally ccated specimens. 

The material used for this investigation 
was a viscoelastic material known as LD-400 
(Lord Manufacturing Co., Erie, Pa.).   Two 
damped specimens were made, as shown in 
Fig. 5, with LD-iOO coated on both sides of one 
specimen and on one side of the other.  Identi- 
cal undamped metal beams were used, as shown 
in the same figure. The brass end sections 
were used to insure that the viscoelastic mate- 
rial was effectively bonded at the clamped ends 
when the specimen was clamped around these 
sections.  Eastman 910 adhesive was used to 
hold the viscoelastic material to the metal 
surfaces. 

The complex modulus apparatus used in the 
investigation consisted of a mounting fixture 
with two magnetic transducers, an oscillator, 
an amplifier and a recorder.  These elements 
were assembled as shown in the block diagram 
in Fig. 6. 

For test purposes, the specimen was 
clamped in the mounting fixture and a harmonic 
force of constant amplitude was applied to the 
driving transducer by the oscillator.  The out- 
put signal was sensed by the pickup transducer 
and then plotted on the recorder after being 
amplified.  A frequency response spectrum 
such as that in Fig. 7 was obtained in this man- 
ner for each specimen at various temperatures. 
The frequencies at which each of the modes of 
vibration occurred were measured for each 
specimen and the loss factor T; in each mode 
was measured by the half-power bandwidth 
method.  After the various resonant frequencies 
and loss factors for each of the damped speci- 
mens were obtained, the damping properties of 
LD-400 were calculated.  For the symmetric 
specimen, Eqs. (13) and (14) were used to de- 
termine Young's modulus and loss factor, re- 
spectively.  A sample data sheet for tests on a 
symmetric specimen at a single temperature is 
shown in Table 1.  For the specimen with the 
viscoelastic material on one side only, the fol- 
lowing formulas [1] were used: 
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TABLE I 
Data Reduction Sheet for Damping Measurements on 

Symmetric Cantilever Beam Specimens 

MATERIAL:  LD-400 TEMPERATURE:  400F 

DATE:   12 May 1966 SIGNATURE: 

1 2 3 4 5 

'n' CP8 40.8 274.3 778.7 1536.5 2560.1 

fln»Cp8 30.4 201.4 561.0 1095.5 1804.0 

x= (*„".„) 1.785 1.855 1.927 1.968 2.014 

Y =   lU2h2p^hlpl) 1.44 1.44 1.44 1.44 1.44 

XY -   1 1.570 1.671 1.775 1.834 1.900 

:   Ej/kf« lO'6) , psi 2.222 2.222 2.222 2.222 2.222 

E2 (»lO-^.psi 3.49 3.71 3.94 4.08 4.22 

Z = E^/kEj - (XY- l)"1 0.637 0.598 0.563 0.545 0.526 

1 + z 1.637 1.598 1.563 1.545 1.526 

7] (measured) 0.091 0.059 0.067 0.062 0.056 

v2 = (1 + Z)v 0.149 0.094 0.105 0.096 0.086 

M, = 2Xl/3Y/(XY- 1) 2.44 2.35 2.26 2.20 2.15 

Mb =  2/X,/2(XY- 1) 0.96 0.88 0.82 0.78 0.74 

10   20     50   TOO  200    500  IOOO  2000   5000 IOOOO 

FUEOUENCY (CM) 

Fig. 7 - Typical frequency response spectrum ex 
damped symmetric specimen 
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1 +  fE2/E,)fhj/h,) 

and 

TJ/TJJ .{(Ej/E^fhj/h,)   [2A f  2rEj/E1Hhj/h1)
3 - 

+  (E2 E,)2 (hj/h,)4 -   l]}/{l + (Ej/E,) 

rrijii,)   [1+ 2ACFi/E1)(li2/hl) 

T  (E/E,)2 (h^/h,)4]} . 
(24) 

where 

A   =   2 + SChj/h,) + 2(h2/h,)3. (25) 

RESULTS AND DISCUSSION 

The experimental results are presented in 
Figs. 8 and 9, which represent graphs of Young's 
modulus and loss factor, respectively, plotted 
as functions of frequency at 40° F, 60 0F, 90 0F 
and 110° F for the two types of specimen.  It can 
be seen from Fig. 8 that the measured Young's 
moduli agree well at 40° F and 60° F.  The 
agreement is not as good at the other tempera- 
tures because the frequency ratio ^n/^ln be- 
comes smaller as the temperature increases 
and the viscoelastic material becomes softer, 
and the error magnification factor lia becomes 
very large.  The error magnification factor was 
calculated from Eq. (19) for the symmetric 
specimens and was found to be between 2 and 5 
at the low temperatures and greater than 10 at 
the high temperatures.  Therefore, the error in 
measuring Young's modulus at 40oF and 60oF 
is small compared with that at 90oF and 110oF. 
The same behavior can be expected for the re- 
sults obtained with the sample coated on only 
one side, since it had the same stiffness ratio 
El/E,!,  as did the symmetric specimens. How- 
ever, because of the complexity of Eq. (23), the 
error magnification factors cannot be so readily 
demonstrated.  It is suggested by Oberst and 
Frankenfeld [1] that the stiffness ratio El/Zlll 
should be greater than 1.1 for accurate results. 
Equation (6) indicates that this implleF that 
(u>n/wl )2 (p/^,) - l < o. l, and this is very 
much the same criterion as that to which the 
error magnification factor Ma leads. On this 
basis, therefore, the results obtained for the 
specimens coated on one side are unreliable for 
the two higher temperatures. 

The effect of the experimental errors on 
the loss factor vs frequency data presented in 
Fig. 9 can also be seen.  Equation (20) shows 

that there are now two sources of error in the 
estimates of the viscoelastic material loss fac- 
tor, namely the measured frequency ratio "„/<",„ 
and the composite loss factor r,. However, the 
error in measuring v was found to be very 
small in several repeated tests of several spec- 
imens, so that \/v is small in comparison with 
MfcA,. The error magnification factor Mb was 
calculated from Eq. (22) and is always less than 
Ma. Again, no accurate method was available 
for estimating the effect of experimental errors 
for the specimen coated on one side only, apart 
from the criterion EI/E,!, < i.i. Again, there- 
fore, all results at 90oF and 110oF were unre- 
liable for the particular specimens used.  The 
thickness ratio of the viscoelastic material to 
the metal beam thickness was chosen In such a 
way as to demonstrate readily the effect of the 
experimental errors on the calculated values of 
Young's modulus and loss factor of the visco- 
elastic material. To avoid the inaccuracy found 
in the high-temperature tests, one could use 
Figs. 3 and 4 as a guide for selecting appropri- 
ate thickness ratios, in this way, the error 
magnification factors can be minimized. 

Finally, several tests were carried out at 
high and low temperatures for several different 
viscoelastic materials on symmetric specimens, 
and no noticeable bending of the specimens was 
observed at any time.  However, prestresses 
were inevitably set up.  Tests on several speci- 
mens, cured at room temperature and at about 
280°F, showed no noticeable differences in the 
values of the viscoelastic properties measured. 
The effect of prestress was not important in 
these tests, therefore, but one should verify 
this from time to time during an investigation 
of any specific material. 

CONCLUSIONS 

A new method has been described for de- 
termining the damping properties of visco- 
elastic materials from vibration tests carried 
out on symmetric beam specimens.  This method 
demonstrates a simplified procedure for meas- 
uring the loss factor and Young's modulus of 
viscoelastic materials.  With this method, the 
problem of bending of the test specimens, which 
usually occurs at high and low temperatures 
when the specimen is coated on only one side 
with the viscoelastic material, is avoided.  Ex- 
perimental errors and their effect on the calcu- 
lated properties of viscoelastic materials were 
established as functions of derived error mag- 
nification factors. These error magnification 
factors are shown to be useful for judging the 
reliability of the test results and for selecting 
the appropriate specimen dimensions to mini- 
mize the effects of experimental error. 
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DISCUSSION 

Dr. Plunkett (University of Minnesota): You 
assume that damping is due to the tensile mod- 
ulus rather than the shear modulus. I would as- 
sume most of the damping would be due to shear 
effects in the layers which should be greatly 
influenced by the ratio of layer thickness to 
beam thickness. 

Mr. Nashif:   This problem was investi- 
gated at the Air Force Material Laboratory by 

Dr. Nichols, who found that these assumptions 
are true as long as the modulus is over 1000 
psi and the ratio of vtscoelastic material thick- 
ness to metal thickness is no larger than 8 to 1. 

Dr. Plunkett:  Do you mean the viscoelastic 
layer is thicker than the metal? 

Mr. Nashif: Yes. 
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EFFECT OF TUNED VtSCOELASTIC DAMPERS ON 
RESPONSE OF MULTI-SPAN STRUCTURES 

David I. G. Jones and George H. Bruns 
Air Force Materials Laboratory 

Wright-Patterson Air Force Base,  Ohio 

Many complex structures exhibit multi-modal response within certain fre- 
quency bands, and the excitation from jet engine, rocket engine or boundary 
layer sources often leads to early failure or equipment malfunction.   Under 
such conditions, severe vibrational amplitudes often occur near the centers 
of panels in critical areas.   A possible method is presented of reducing this 
type of problem in complex structures by tuned viscoelastic dampers, an ap- 
proach which has been generally considered to be limited to single frequency 
vibrations.   It has been shown that using viscoelastic materials with high loss 
factors in tuned dampers enables energy dissipation over a wide band of fre- 
quencies.   Therefore, tuned dampers could conceivably be uned successfully 
to damp multi-medal vibrations in typical aerospace structures. 

The preliminary investigations reported are concerned with the response of 
a multi-span beam with tuned dampers distributed uniformly along its length. 
This idealization of the more practical case of isolated dampers at the center 
of each span is shown to lead to a simple, easily solved equation of motion. 
Expressions for the response of the beam, both with distributed tuaed damp- 
ing and with homogeneous viscoelastic damping, are obtained and numerical 
solutions are discussed for a 9-span pinned beam under uniform harmonic 
loading.   Effective loss factors are defined for the beam-damper system, and 
the effects of systematic variations of damper loss factor and damper mass 
on the effective loss factor are discussed.   It is shown that substantial 
amounts of damping can be introduced. 

Finally, some preliminary experiments on a skin-stringer-frame structure 
are described.   It is shown that response amplitudes can be reduced consid- 
erably, with very moderate weight additions, by proper use of tuned visco- 
elastic dampets. 

G. H. Bruns 

LIST OF SYMBOLS 

exp   Exponential function 

E   Young's modulus of beam material, psi 

F  Force transmitted back to structure by 
timed damper, lb 

i   NT-T 

I   Second moment of area of beam cro1! 
section about neutral axis (in.4) 

j   Span number, counting from left-hand side 

k   Real part of stiffness of tuned damper 
spring, lb/in. 

■i   Length of beam occupied by individual 
tuned damper, in. 

L   Total length of span, in. 
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■ 

m   Mass of tuned damper or number of modal 
group, slug 

n   Number erf mode is mth group 

N   Number of spans in beam 

P(x)   Amplitude of applied loadlig on beam, 
ib/ln. 

P   Amplitude of applied uniform loading on 
beam, lb/in. 

P,,,   Coefficient In generalized Fourier expan- 
sion of P(x) 

Q  Amplitude amplification fa   or at resonance 

t   Time, sec 

w  Instantaneous transverse displacement of 
beam relative to fixed point in space, in. 

W(x)   Amplitude of w, in. 

x   Station along beam measured from extreme 
left-hand support, in. 

Xj   Station of center of jth span, in. 

>■  Instantaneous displacement of mass m of 
timed damper relative to fixed point in 
space, in. 

v   Loss factor of viscoelastic material of 
tuned damper spring or of homogeneous 
viscoelastic beam 

vi   Effective loss factor of beam-damper 
system 

k  kL4/-£El, stiffness parameter 

ß  Mass per unit length cf beam, slug/cu in. 

^4  ßvV/tl, frequency parameter 

4>mn  nth normal mode in the mth modal group 

4J m/ßl, mass parameter 

w Circular frequency, rad/sec 

cümn  nth natural frequency in mth modal group, 
rad/sec 

COJJ (k/m)1/2, natural frequency of tuned 
damper, rad/sec 

INTRODUCTION 

Tuned viscoelastic dampers have often been 
considered for the reduction of vibrations in one- 
degree-of-freedom mechanical systems [1,2] and 
in simple structures [3-5] for which the reso- 
nant frequencies are well separated.   Little 
thought has been given, however, to the possi- 
bility of utilizing high loss factor viscoelastic 
materials to increase the useful frequency band- 
width of such dampers so as effectively to damp 
several modes of vibration of a complex struc- 
ture.  Some preliminary investigations [6J have 
shown that tuned dampers can be made effec- 
tive over at least an octave band of frequencies 
and that, for a class of complex structures 
typical of many aerospace configurations, the 
modes of greatest interest often fall within an 
octave band. 

The present investigation has been limited 
to an analysis of a simple multi-supported 
beam, representative in many ways of typical 
aerospace structures, with distributed tuned 
dampers, each far smaller than an individual 
span of the beam.  The advantage of this ideali- 
zation of the more practical situation, consist- 
ing of isolated dampers at the center of each 
span, is that the equation of motion is far ruore 
readily solved.  The essential features of the 
more complex problem are retained, but the 
analysis is greatly simplified and some general 
conclusions can be reached far more readily. 

It is shown that high damping can be intro- 
duced into a complex structure by proper use 
of tuned dampers with a sufficiently high loss 
factor, albeit far less than in the case of a sim- 
ple structure exhibiting unimodal response. 
Finally, some preliminary experimental inves- 
tigations on a multi-span structure with tuned 
dampers are described.  These experiments 
verify that high damping can be introduced into 
complex strLitures by properly utilized tuned 
viscoelastic dampers. 

THEORY 

Theory of Multi-Span Beam with 
Distributed Tuned Dampers 

Consider a tuned damper consisting of a 
mass m connected through a viscoelastic link of 
stiffness k( l + IT,) to a point of the beam, vibrat- 
ing with amplitude w(x, t) --. w(x) exp (iwt) as in 
Fig. 1.  The equation of motion of the mass m is 

m(d2y/dt2) ■1-  k(l + irjXy- w)  =  0 (1) 
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VISCOELASTIC 
ELfMENT 

EI(cl4«/dx4) - pwaf 
(m/t) 

l-niaJ
2A(l+ iv) 

- P(x) . (4) 

where E is Young's modulus of the beam and I 
is the escond moment of area of the beam sec- 
tion about the neutral axis. 

For the undamped N-span structure, with 
fairly rigid supports at the ends of the spans, 
the response consists of a series of groups of 
modes [7], each with N modes, as illustrated 
in Figs. 3 and 4.  We may, therefore, expand w 
as a series of these modes, assumed to oe 
known, as follows: 

Fig. 1 - Idealized tuned 
viscoelastic damper "^   L   £  ,-n*-n<Jt/L) 

•< i  i.« i 

where >- is the displacement of the mass from 
the equilibrium position.  The solution of Eq. 
(Dls 

y  - 
exp(iat) 

1 - mcoVkd + iv) 
(2) 

The force F transmitted back to the beam is 
then readily shown to be 

F   =   k(l+ i77)(w-y) 

=   E  *tn*i./*/L)+  £  ■jn*,„C«/L) .(5) 
n=l 

where n refers to the number of the mode in 
the nth group.  The functions <pmn are the nor- 
mal modes or eigenfunctions of the system. 
The frequency &>an corresponding to the mnth 
mode generally satisfies the inequality: 

In mn (6) 

for m > l, as seen in Fig. 3. The mode ^ sat- 
isfies the equation of motion for undamped free 
vibrations: 

1 - mijVk(l + iT7) 
(3) 

If the length of the N-span beam, illustrated in 
Fig. 2, occupied by each individual damper is 
i{i « span), the force per unit length acting on 
the beam is F/l and the modified Euler- 
Bernoulli equation of the damped beam is readily 
obtained simply by adding the term F/l into the 
equation for the undamped beam.  The equation 
of motion of the beam for harmonic excitation 
by loading P(x) exp (i'^t), therefore, becomes 

d4*mn(x/L)/dx4 - (M^yEI) ^„fx/L) = 0 .     (7) 

Substituting Eq. (5) back into Eq. (3) and using 
Eq. (7), we have 

m-l    n= 1  L 

M^ra„ - MW 
i_ (m/-{)c 

l-ma;Vk(l + ir;). »■nn^r/*/^ 

L    L   P»n*^^). (8) 
■1=1   n= 1 

-m % m- 

HIE 
•■ MASS m 

VISCOELASTIC 
SPRING  timi)) 

Z=3 C 
J-l i'2 J-3 i»N 

Fig. 2 - Sketch of multi-span beam 
with distributed tuned dampers 
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Fig. 3 - Mode shapes  for 9-span 
pinned beam 
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Fig. 4 - Typical frequency bands  of 
response  of multi-span structure 

j l (m/t)*2 '    U1) 
Util*    - UM    -      x ■  

.= 1       n=,    ^  „m    ' l-mwVkn + iT)) 

However, as stated earlier,  ^n >> w\n and 
Pmn << pin ^or ^ > 1 so that all terms for which 
m > 2 will not be significant in the equation for 
w, in the vicinity of the first group of modes 
(m= 1).  We may, therefore, write approximately 

where 

p(x) = £ £ ?„,„ ^(vx) 
m=1   n= 1 

L Pln «ln(x/I0 

^a)jn   -   U.U)      - 
(m/l)c (12) 

1  - ma)''/k(l + IT;) 

and 

| 

and 

Pmn=|   PCx)*^^)^/[   ^n(x/L)dx    (9) 

EIW 

L 

Pln  *I„(X^) [W_    V-    rln  ^ln(x/L) 

*    '   n=l   ^n-^-^4/[l-vf4A(lvi 7?)] 

(13) 

where 

from the orthogonal property of the normal 
modes.   Equating the mnth terms on the right- 
and left-hand sides of Eq, (8) gives 

f4 - ßa>2 LVEI , 

■Mr. =  ^!n L4/EI ■ 

~   mn • ^lO)     - 
(m/t) v2 

1 - ina)2/k(l + ITJ) 

(10) 
and 

\ = kLVEI-e . 

Therefore, At zero frequency, the response is 
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Furthermore the stiffness ratio \ may be ex- 
pressed in terms of the mass ratio ^, the first 
eigenvalue illt and the ratio a^,, of the 
-iamper frequency ^ to the first natural fre- 
quency CJ, , of the beam.   In fact, 

\ = (k/m)(n/fil)(vL*/El) 

since <^ - k/m.  Finally, therefore, 

4        1/J 

(15) 

(16) 

Theory of Multi-Span Homogeneous 
Viscoelastic Beam 

If the multi-span beam is made entirely of 
material of complex Young's modulus E{1 + ir;), 
where T? is tli\e loss factor, the equation of mo- 
tion is 

Elf! + i.T7)(d
4W/dx4)   - y.u?V =  P(X) . (17) 

If we make use of the expansions in normal 
modes given in Eq3. (5) and (9) in Eq. (17), 

ffl N 

L L ßCümn(l + Lv) - W     Vmn 4-mn(x/L) 

oo N 

'-   L    L   Pn.n ^n^^) 
1    n=l 

so that 

w    = P   / mn mrv M^ran(l + iv) - U*** (18) 

and, therefore, 

..1  „«l^n^1*1^ "^ 

Pmn   ^nC^) 
(19) 

If we make use, once more, of the fact that 
^n ^ win and pn,n ^ Pin. only the first group 
of modes need be considered, and 

Pln *,„f*/L) EIW Y       rln ^in"71- 

and, at zero frequency. 

(20) 

DISCUSSION OF SOLUTIONS 

It has been shown that the predominant fea- 
tures of the vibrational response of a complex 
multi-span beam system with tun^d dampers 
can be determined by considering a greatly 
simplified model in which the tuned dampers 
are distributed even).? c /er the beam Instead of 
being concentrated su isolated points. The 
equation of motten then takes on the greatly 
simplified form shown in Eq. (4).  If the normal 
modes and natural frequencies of the undamped 
beam are known [8-10], it Is then possible to 
expand the displacement ff at any point of the 
beam and the loading P'x) in terms of these 
modal functions and obtain formal solutions 
such as those given in Eqs. (10) and (13).  From 
Eq. (13), response spectra in the form of graphs 
of (Ei/L4)|w| against the frequency parameter 
f (or e.1) can be evaluated for any chosen val- 
ues ol --ii, K, r, and x/L and any chosen loading 
P(x).  In preliminary calculations on a S-span 
pinned beam, P(x) was taken to be a uniform 
loading P and graphs of (Ei/PL4)|w| against f2, 
similar to the examples shown in Figs. 5 and 6, 
have been computed for r, =0.1, 0.2, 0.5, 1.0, 
1.5 and 2.0; ^ = 0.1, 0.2, 0.4 and 0.8; \ between 
0 and 100; and values of x/L corresponding to 
the center points x j/L of the spans j = 1 to j = 5 
only, since the response is symmetric about 
the center span in this case.  Some of the val- 
ues used in the calculations are given in Tables 
1 and 2. 

It is not a difficult matter to determine the 
transmissibility spectra for a system such as 
this.  Interpretation of the spectra, however, Is 
not so simple.  In fact, the most that one can do, 
in the sense of defining a gross measure of the 
damping introduced by the tuned dampers, is 
plot a graph of the resonant amplification factor 
Q  against the stiffness parameter \ for various 
values of the damper loss factor T?, the mass 
ratio i// and the station x/L.  In this particular 
instance, the spectra contain only two predomi- 
nant resonance peaks.  One of the. ^ is at low 
frequency, corresponding to the stringer tor- 
sion mode, and the other is at high frequency, 
corresponding to the stringer bending mode. 
The intermediate modes appear to be relatively 
insignificant in this particular configuration. 
The graphs of Q against \ for the predominant 
low- and high-frequency modes have been 
plotted (Figs. 7-9) for T) = 0.1, 0.2, 0.5, 1.0, 1.5 
and 2.0; ^ =0.1, 0.2, 0.4 and 0.8; and x/L = 
x/L, j = 1,2,3,4,5. 
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Nothing further can be deduced from these 
graphs of Q against \.  If one is to define a 
meaningful effective loss factor for the beam 
with tuned dampers, one must make compari- 
sons with the transmlssibility spectra of the 
same beam made of homogeneous viscoelastic 
material of loss factor 77.  The response of a 
beam with homogeneous viscoelastic damping 

is given by Eq. (20) and some typical spectra 
of (El/PL4)iw| against ^2 are illustrated in 
Figs. 10 and 11.  Needless to say, the spectra 
for the beam with homogeneous damping and 
tuned dampers are not identical.  The most that 
one can do, therefore, is work in terms of the 
greatest amplification factor Q , corresponding 
in the present example to the stringer bending 

54 



TABLE 1 
Characteristics of 9-Span Pinned Beam 

Characteristic 
Value 

n = J n = 3 rj = 5 n=7 n = 9 

£ln 3.142 3.445 3.800 4.298 4.670 
.1 

9.870 11.189' 14.441 18.469 21.812 

^ 97.409 125.182 208.528 341.095 475.779 

2 J   0ln(x,/L)d(x/L) 
0 

+0.637 -1.338 +1.577 -2.265 +«.101 

2 J   oJn(x^)d(x/
/L) +4.500 +4.471 +4.360 +4.091 +3.667 

P:n/P +0.142 -0.299 +0.362 -0.554 +1.664 

«.„(x./L) +1.000 -0.940 +0.766 -0.500 +0.737 

<?ln(x2/L) -1.000 +0.500 +0.500 -1.000 +0.500 

^.n^^/L) +1.000 +0.174 -0.940 -0.500 +0.741 

^.nf^/D -1.000 -0.766 -0.174 +0.500 +0.940 

«lnfxj/L) +1.000 +1.000 +1.000 +1.000 +1.000 

2  £ ^„(Xj/L) +9.000 +9000 +9.000 +9.000 +9.000 
i=o ... 

TABLE 2 
Mode Shape Data <*>,„(x/L) for Pinned Beam 

x/L n= 1 n = 3 n=5 n = 7 n = 9 

0.0 0 0 0 0 0 
0.1 +0.3044 -0.3035 +0.2822 -0.2268 +0.0875 
0.3 +0.8090 -0.7836 +0.7004 -0.5316 +0.2169 
0.5 +1.0000 -0.9397 +0.7660 -0.5000 +0.1736 
0.7 +0.8090 -0.7205 +0.4866 -0.2039 +0.0252 
0.9 +0.3044 -0.2507 +0.1060 +0.0364 -0.0525 
1.0 0 0 0 0 0 
1.1 -0.3044 +0.2143 +0.0080 -0.1904 +0.1309 
1.3 -0.8090 +0.4801 +0.2434 -0.7354 +0.4328 
1.5 -1.0000 +0.5000 +0.5000 -1.0000 +0.5000 
1.7 -0.8090 +0.3203 +0.5314 -0.7354 +0.2642 
1.9 -0.3044 +0.0805 +0.2454 -0.1904 -0.0010 
2.0 0 0 0 0 P 
2.1 +0.3044 -0.0249 -0.2850 +0.0364 +0.1%34 
2.3 +0.8090 +0.0481 -0.7849 -0.2039 +0.5965 
2.5 +1.0000 +0.1736 -0.9397 -0.5000 +0.7660 
2.7 +0.8090 +0.2299 -0.6712 -0.5316 +0.4714 
2.9 +0.3044 +0.1273 -0.1912 -0.2268 +0.0505 
3.0 0 0 0 0 0 
3.1 -0.3044 -0.1762 :-0.0910 +0.2268 +0.1481 
3.3 -0.8090 -0.5538 +0.0292 +0.5316 +0.6883 
3.5 -1.0000 -0.7660 -0.1736 +0.5000 +0.9397 
3.7 -0.8090 -0.6724 -0.2083 +0.2039 +0.6217 
3.9 -0.3044 -0.2755 -0.1790 -0.0364 +0.0960 
4.0 0 0 0 0 0 
4.1 +0.3044 +0.2949 +0.2534 +0.1904 +0.1298 
4.3 +0.8090 +0.8004 +0.7748 +0.7354 +0.6970 
4.5 +1.0000 +1.0000 +1.0000 +1.0000 +1.0000 
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Fig. 7 - Typical graphs of amplifi- 
cation factor VB stiffness parameter 
for predominant peaks of response 
(j  = 5. 7,= 0.2) 
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Fig. 9 - Typical graphs of amplifi- 
cation factor vs stiffness parameter 
for predominant peaks of response 
(j  ^ 5. T, = 1.0) 
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Fig. 8 - Typical graphs of amplifi- 
cation factor vs stiffness parameter 
for predominant peaks of response 
(j a 5, 77 = 0.5) 

mode, and plot graphs of Q against 77 for vari- 
ous values of x/L.  As an example, a graph of Q 
against 77 for x/L = Xj/L, j = 1,3,5, is plotted 
in Fig. 12. 

For given values of ], v, 4>, one can now 
read the value of Q for the beam with tuned 
dampers off the graph of Q against X and then 
read the effective loss factor 77, off the graph 
of Q against 77 for the beam with homogeneous 
damping.  Graphs of 77, against k can then be 
dvav/n, such as Figs. 13 and 14, for all values 
of j.  It Is seen that, in every case, only one 
value of X exists for which the value ol r)^ is 
the same for all values of j.  This value of 77, 
is the effective loss factor of the beam with 
properly tuned viscoelastic dampers, for the 
partlcuJar values of 41 and 77. 

From all such graphs of T;S against \, the 
effective loss factor at the point of proper tun- 
ing can be plotted against the damper loss fac- 
tor 77 for various values of the mass rptio 0, 
as in Fig. 15. 

Finally, from Eq. (16), one can determine 
the ratio ^A'n of the damper natural frequency 
lo the first natural frequency of the multi-span 
beam, at the point of proper tuning, using the 
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Fig. 10 • Typical response spectrum for 
9-8pan pinned beam with homogeneous 
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Fig. 12 - Typical graphs of amplification factor 
of predominant peak vs beam loss factor, for 
9-span pinned beam with homogeneous visco ■ 
elastic damping 
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Fig. 13 - Typical graphs of effective loss factor 
vs stiffness parameter for 9-span pinned beam 
with tuned viscoelastic dampers (^ s 0.2, 77= 0.2) 
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Fig. 14 - Typical graphs of effective loss factor vs 
stiffness parameter for 9-spaii pinned beam with 
tuned viscoelastic dampers (0 = 0.2, -q = 0.5) 

value of K obtained from the graphs of T;S against 
k.  A graph of (/V^*,)17^! + 0) 1/2(l + T,2)1/4 

obtained using Figs. 12 to 14, is illustrated in 
Fig. 16.  The empirical relationship, showing 
that CJJJ/W,, varies in proportion to (l + ^)'l/2 

and (1 + v2)-l/4 has not been proved, but Fig, 16 
shows that it gives a good collapse of the com- 
puted data.  Since, from Fig. 18, the value of 
cVoij, is equal to 1.56 (i + 1/<)-,/2(i + v2)'1'*, it 
follows that, at least for moderate values of r, 
a id 0, proper tuning occurs when the damper is 
tuned approximately midway between the stringer 
torsion and stringer bending modes. 

EXPERIMENTAL INVESTIGATION OF 
MULTI-SPAN STRUCTURE WITH 
TUNED VISCOELASTIC DAMPERS 

No experimental investigation has yet been 
made of a 9-span beam with tuned viscoelastic 
dampers.  However, some recent preliminary 
experiments wl*^ a 5-apan skin-stringer-frame 
structure, typical of a part of an aircraft fuse- 
lage, have recently been carried out [11] and 
have yielded results erf sufficient interest to be 
briefly mentioned in this paper. 

The model structure, shown in Fig. 17, was 
mounted on a rigid fixture which was vibrated 
harmonically by an electrodynamic shaker.  The 
input acceleration was controlled by an accel- 
erometer along one of the frames, the position 
being chosen so as to minimize variations of 
the input acceleration at all points along the 
frames.  The response measured by miniature 
accelerometers at the center span (span C) is 
shc-m in Fig. 18.  The multi-modal response is 
clearly seen, the stringer bending mode being 
predominant. 

Tuned dampers in which the stiffness was 
provided by a ring or loop of viscoelastic mate- 
rial (LD-400, Lord Manufacturing Co., Erie, 
Pa.) were then attached at the center of each 
panel, as in Fig. 19.  The dampers were nomi- 
nally identical and similar to those used in 
previous investigations [3,4,6].  The experi- 
mental setup is illustrated In Fig. 20.  Response 
records were again taken for each span and a 
typical record, taken for the center span, is 
shown in Fig. 21.  It is seen that the greatest 
amplification factor at resonance is reduced 
from about 30 in the nominally undamped case 
to about 6 in the damped case, for a total weight 
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Fig.  17  - Diagram   of  five- 
span skin-stringer structure 
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Fig. 18 - Typical measured response spec- 
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mm oggg 

Fig. 19 - Sketch of typical ring 
damper used in experimental 
investigation 

addition of about 6 gm per damper, which 
amounts to about 3 percent at the weight of the 
skin of the structure. 

Needless to say, no direct comparisons can 
be made between the present theory and these 
experimental results.  However, they do serve 
to show that excellent damping can be intro- 
duced into multi-span structures, exhibiting 
multi-modal response, by properly optimized 
tuned damoers. 

CONCLUSIONS 
An analysis has been developed lor the 

response of a multi-span beam, with tuned 

Fig. 20 - Photograph of skin-stringer structure 
with tuned dampers at center of each panel 
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Fig. 21 - Typical response spectrum measured 
at center panel of 5-span skin-stringer struc- 
ture excited by shaker, with tuned dampers 
close to optimal tuning 
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vlscoelastic dampers distributed along the beam, 
to a harmonically varying loading of arbitrary 
spatial dependence.  The solution is expressed 
in terms of the normal modes of the undamped 
beam, and a knowledge of these nodes and the 
corresponding natural frequencies is a prereq- 
uisite of the analysis.  By comparisons between 
the response of the beam with tuned dampers and 
the same beam configuration with homogeneously 
distributed vlscoelastic damping, an effective loss 
factor giving a measure of the damping introduced 
by the tuned dampers is defined. The variation of 
the effective loss factor with damper mass, loss 
factor and stiffness is demonstrated, and it is 
shown that high damping can be introduced into 
structures exhibiting multi-modal response by 
tuned dampers.  P. ellminary experiments, de- 
scribed in the paper, support this conclusion. 
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DISCUSSION 

Mr. Hooper:   How much change in acceler- 
ation would have been brought about just by the 
dead weight of your added dampers apa*-t from 
their vlscoelastic properties ? 

Lt. Bruns:   I don't quite understand you. 
Do you mean if we had invested this weight in a 
thicker skin? 

Mr. Hooper:   No, if you had just added con- 
centrated weights. 

Lt. Bruns:  In other words, a sprung mass 
without any damping? 

Mr. Hooper;  No, if you had just taken the 
weight of your rings and put it in those spots as 
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a rigid mass.  That would probably make quite 
a dramatic change. 

Lt. Bnias;  You are Just adding a lumped 
mass to the system? 

Mr. Hooper;  Yes. 

Lt. Prass:  This, to the best of my knowl- 
edge, would oiLly result in a shift of the curve. 
The same peaks would result; in fact, I should 
think they would be a little worse.  True, the 
frequency would shift as it would when you add 
mass to any elastic systPT*, but you certainly 
would not eliminate the peak.* the way we did' 
there. 

Mr. Woolam (Southwest Research Inst.); 
It appears that we pre&enüy have two very 
good methods of damping. What are future 
uses for this ? Can we expect to see this in the 
Flight Dynamics Lab now? 

Lt. Bruns:   My boss is sitting in the front 
row.  He can answer this if he likes. We are 
working more and more toward getting a prac- 
tical solution.  You cannot envision a fuselage 
with these rings hanging all over the Inside. 
There are problems, and there is work to be 
done. I think our ma jar goal in the two papers 
presented by Dr. Jones and myself is to show 
that this is a fruitful area of investigation. This 
is something you should consider when you run 
into problems in this area.  Of course, we will 
be continuing to work In this area but we also 
hope that maybe some other people In the indus- 
try who are closer to the problems will help. 

Mr. Smith (Bell Aerosystems Co.):   Under 
random loading, of course, the reduction in re- 
sponse, while still being pretty dramatic, will 
decrease as the square root of the damping in- 
stead of the damping.  Have you compared the 
local strains for a panel both with and without 
the tuned dampers at the center of the panel? 
Are you eliminating on£ potential problem but 
perhaps introducing another ? 

Lt. Bruns:  We realized that there is more 
than one criterion in evaluating what is being 
done to the response of the system.  We chose 
amplitude of vibration.  We feel that anything 
else will be in some way involved with this, 
possibly, even probably, proportional to it.  I 
fully admit that there are other criteria to be 
used and you could run this whole investigation 
over uslrg a different criterion, such as maxi- 
mum bending stress. 

Mr. West (Aerojet-General Corp.):   Very 
often in vibration testing fixture resonances 
present a serious problem.  Would you expect 
that this viscoelastic damper system could be 
used to help out in this sltuatiyo ? 

Lt. Bruns:   Yes, although I should think that 
If it is just a fixture, the solution would be to 
stiffen it and to raise the fixture natural fre- 
quency above the area of interest.  The primary 
reason for using the tuned damper is to get a lot 
of reduction with a low weight penalty and this 
is, of court, «»j extremely important when you 
have iinything airborne.   You can solve most 
vibration problems by adding weight, but this 
is usually not acceptable. 
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METHOD FOR IDENTIFYING AND EVALUATING 
LINEAR DAMPING MODELS IN BEAM VIBRATIONS 

M. W. Wanibsganss, Jr., B. L. Boers, and G. S. Rosenberg 
Argonne National Laboratory 

Argonne,  Illinois 

This paper presents i.ie results of an effort to identify and evaluate ef- 
fective linear damping models in beam vibration.   The study was moti- 
vated by the desire to model mathematically the dynamic response of a 
beam-type element in which significant energy dissipation could be at- 
tributed to the contact of the component with adjacent similar compo- 
nents.   The usual method of modeling damping, that is, assuming damp- 
iig mechanisms and empirically evaluating the coefficients, is emplayed. 
1'he three damping mechanisms considered are viscous, stress, and 
load damping.   The problem is that of identifying the dominant damping 
mechanism(8) for inclusion in the mathematical model and of evaluating 
the associated damping coefficients. 

A theoretical analysis, based on the usual assumptions in (Euler) beam 
theory and the further assumption of the damping being small enough 
that the natural frequencies and mode shapes are unaffected, is carried 
out.   The analysis leads to a sensitive method, compatible with results 
obtained from tests on a vibration exciter, for identifying the effective 
damping mechanisms.   The technique involves a comparison of the ex- 
perimentally determined ratio of first to second mode magnification 
factors, related to a common point on the beam, with the constant values 
of this ratio corresponding to "pure forms" of the proposed damping. 
The method is illustrated by application to the modeling of i:he response 
of a cluster of cantilevered beams clamped together at the base.   This 
model is being employed in the preliminary analysis of the interaction 
effects of vibrating fuel rods in a nuclear reactor core.   Damping mod- 
els are identified and curves of damping coefficients as a function of 
cluster size are presented. 

M, W. Wambsganss, Jr. 

INTRODUCTION 

A nuclear reactor core is made up of a 
large number of structural elements, usually in 
the form of slender plates or rods, which 

contain the fuel material.  These fuel elements 
are often arranged in small subassemblies 
which, in turn, are mounted on a support grid, 
forming a relatively tightly spaced bundle. 
High velocity coolant flows axially through tiiis 
arrangement while the entire core is addition- 
ally subjected to severe thermal and pressure 
loads. 

Parallel coolant flow is known to induce 
oscillations of plates and rods.  In a reactor, 
large amplitudes of oscillation must necessarily 
be avoided, not only for conventional structural 
reasons, but because ensuing coolant channel 
closure may have a critical effect on heat tram - 
fer and reactor neutron dynamics.  In addition 
to flow-induced vibration, mobile reactors for 
use on submarines or space vehicles are sub- 
jected to disturbances from the environment, in 
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which the vehicle operates. This paper stems 
from a part of the study directed toward acquir- 
ing pertinent design insights. 

The mathematical modeling of the dynamic 
behavior of an in-core fuel assembly is imme- 
diately complicated by the fact that interaction 
occurs among the clustered fuel subassemblles. 
Because of this interaction, and the fact that 
critical displacements are small, damping be- 
comes an important consideration of the model- 
ing. 

The study of the interaction and damping 
using a full-size core mock-up becomes prohib- 
itive due to the high cost of fabricating proto- 
type ftiel assemblies. Therefore, as a prelimi- 
nary model, the fuel subassemblles are simulated 
by hexagonal rods.  The cluster is formed by 
clamping a rod bundle together at the base. 
Among the objectives of the study of this pre- 
liminary model are the following: 

1. Determine the effect of cluster size on 
the natural frequencies and damping of a rod 
within the cluster; 

2. Identify damping models and associated 
damping coefficients to describe satisfactorily 
the dissipation of energy in a rod; and 

3. Determine the experiment size in terms 
of the number of elements in the experimental 
cluster that would be required to obtain experi- 
mental estimates of certain corresponding fea- 
tures (listed above) without requiring the full 
prototype compliment of cluster elements. 

The damping force associated with the dis- 
sipation of energy can be a linear or nonlinear 
function of displacement, velocity, stress, tem- 
perature, and/or other factors.  The mathemati- 
cal modeling of this force is difficult and the 
dynamicist must generally assume a damping 
mechanism and rely on empirical determination 
of the effective damping coefficients.  The most 
widely used model, which leads to the simplest 
mathematical treatment, is that of viscous 
damping, in which the damping force is as- 
sumed proportional to the velocity.  Structural, 
or material, damping is often modeled assum- 
ing the damping force to be proportional to the 
displacement but in phase with the velocity. 
Various other damping mechanisms can be 
conceived. 

This basic approach to modeling damping, 
that is, assuming damping mechanisms and uti- 
lizing empirical results for evaluation, is fol- 
lowed in studying the energy dissipated in the 
vibration of simulated fuel assembly clusters. 

The three damping mechanisms considered are 
viscous, stress, and load damping. They are 
defined by the distributed damping force inten- 
sity as 

J cvyt,   viscous danp'riR: 

fj/x.t)    -   -^  CsVxxf stress danping; (1) 

^Vxxxxf load danpinR. 

In the analysis it is assumed that the damping 
is sufficiently small that the natural frequen- 
cies and mode shapes are unaffected. 

The selection of the dominant damping 
mechanisms is based on a comparison of the 
experimentally determined ratio of first to 
second mode magnification factors, with the 
constant values of this ratio corresponding to 
"pure forms" of the proposed damping, as ob- 
tained from theoretical considerations.  Evalu- 
ation of the associated damping coefficients is 
performed via solution of a set of independent 
simultaneous equations. The set of equations 
is constructed by expressing the coefficients 
as a linear combination and using experimental 
results obtained at resonant conditions. 

THEORETICAL ANALYSIS 

Forced Vibration of Lightly 
Damped Beam 

Consider a transverse motion imparted to 
a uniform beam by giving the support the har- 
monic displacement, 

z(t) A„ cos cot (2) 

With y(x,t) defined as the relative lateral dis- 
placement of the beam with respect to the sup- 
port, the absolute displacement of the beam can 
be written 

Y(x,t)   =   y(xvt)  +   z(t) (3) 

Including the three proposed damping mecha- 
nisms and using Euler beam theory, the equation 
of motion for the beam becomes 

EIYIV + cLYIV +  CsY11 +  cvY + pAY o , (4) 

or 

yIV   f 

--&)-(§)'■      <5! 
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For structural systems the amount of 
clamping is generally small.  Based on this ob- 
servation, the assumption will now be made that 
the relative motion of the beam can be repre- 
sented as a superposition of the undamped free 
vibration modes, or eigenfunctions, as found 
from solving 

where 

_   pA       2 
^  "   ET ^ 

(6) 

v S   1   f „ 111 '^ 
dx, 

^cr) 

(ccr)_ 

with the appropriate boundary conditions. 
Therefore, the relative motion of the beam can 
be v "itten 

y(x.t)   =    2]   ^x)  M*) • (7) 

Application of Galerkin's method by sub- 
stituting Eq. (7) into Eq. (5), multiplying 
through by fj.*) and integrating over the 
length, gives, using the orthogonality property 
of the normal modes, a set of n-ordinary dif- 
ferential equations to solve for the n-generalized 
coordinates. In general, because of the nature 
of the stress damping term, the equations will 
be coupled.  However, noting a further property 
[1] of the normal modes, that 

r '^IT,^)     ^t/")     (iX fo:    (m + n),   odd,   (8) 

a two-term approximation to the motion, made 
up of an even and an odd harmonic term, will 
give uncoupled equations. Since a two-degree- 
of-freedom approximation often ijives satisfac- 
tory results in slender beam vibrations, this 
requirement for uncoupling is not serious. 
Further, higher degree of freedom approxima- 
tions may be used with this procedure when the 
stress damping term is included, if it can be 
shown, say by an "order of magnitude" compar- 
ison, that the coefficients in front of the cou- 
pling terms are such that the coupang terms 
can be neglected relative to the remaining 
terms.  With these comments regarding the 
uncoupling of the equations of motion, the anal- 
ysis will be developed in general for a n -term, 
or n-degree-of-freedom, approximation, under 
the assumption that uncoupled equations can be 
obtained.  The resulting set of uncoupled equa- 
tions can be written 

rccr^   --   2pKu,a, 

and the eigenfunctions have been normalized 
such that 

f 0„(x)dx = -e (10) 

The steady-state forced vibration response 
to the sinusoidal forcing function, Eq. (2), can 
be written, using superposition, as 

2im 

^ *> = Bm jcos ^'t " yj + -3— sin (cot - ym)> , 

'(11) 
where 

Jo 

^^■f\   *m(x)dx 

(i-^</C 

■ym   =    tan 
,     2^/3, 

f1 - ^) 
and 

The relative motion of the beam can then be 
represented by 

y(x.t) = l>m0m(x) Jcos (vt-ym) 

+ 21 w q + 0, 2 q m   "IT (2Ci+« Z)TJ ' 
•'o 

^m<'x)dx. 
(9) +  2 -— sin (u,t - yj I (12) 
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or 

y(x.t) =   2] yJ*' coa M-y.-^,).   (13) 

where 

y.»'^ = Ao*J«) z9. ' 

1 + 4 (0 
1/2 

U'- i(x)dx 

and 

9-='■"•■ nt, 
Therefore, the absolute motion of the beam Is 
given by 

Y(x.t)   =   A COS Cut   +   2]   yn/x)   COS   ^t-^in-^J ■ 

(14) 
■= i 

When vibrating at one of the natural fre- 
quencies, assume all the energy Input goes Into 
that mode of vibration.  Under this assumption, 
when Co - a), 

y(x1t) = Ao cos o)nt + yn(x) cos ("nt - yn - #„)• 

(15) 
Also, when u = u,n, ßn = l which gives 

A. 
yn(x) = ^(..«rn/W 

(16) 

where yn = n/2, and leads to 

-^    =    COSVJ  + -J-   sin (vnt-en).   (17) 

At a resonance, with small damping, 

Y(x,t) 
» 1, 

ana (18) 

44     « 1 : 

therefore. 

Y(x.t) =b yn(x)  sin ^„t (19) 

where 

yn(x)   = 
Ao*,/*)   1   ff 

2L 
(x) dx 

Vibrating a beam on a vibration exciter, 
the beam displacement at a resonance can be 
observed to be of the form 

Y(x,t)   =   An(x)  sin wnt , (20) 

where the amplitude An(x) can easily be meas- 
ured.  Equating Eqs. (19) and (20) gives 

4>n(x)  I   0nl (x)  dx 
(21) 

H ßn(x) 

where 

Mn(x) 
A„(x) 

Damping Model Identification 

Three damping mechanisms have been 
proposed in mathematically modeling the damp- 
ing in a beam.  The problem which now arises 
is that of identifying, from the three, the domi- 
nant damping mechanism(s).  In this regard, it 
would be desirable to have a rather sensitive 
method of making the identification from simple 
experimental tests. 

Assume, for the moment, that only one 
damping mechanism is dominant; take the other 
two damping coefficients to be zero. Then the 
remaining damping coefficient can be obtained 
from Eq. (21) as 

pA -W^J     *n (x)  dx 

r1 
I (r) 

(22) 

dx 

where 

for    r  = 0 

for 2 ; 

cL ,   for    r  -  4 . 

Equating the expressions for the damping co- 
efficient (which is being assumed constant) as 
obtained from first and second mode consider- 
ations gives 
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J *. dx 

dx 

r 4>J 4>2    ox 

\ 
*, 0,     ax 

(23) 

That is, the ratio of first to second mode mag- 
nification factors is a constant at a particular 
value of x or section along the beam. Knowing 
the eigenfunctions and the ratio of natural fre- 
quencies, the constant depends only on the or- 
der of the derivative of the eigenfunction under 
the integral, which in turn is directly related to 
the form of damping. Therefore, experimental 
determination of the ratio of magnification fac- 
tors, related to a section on the beam, and 
comparison with the corresponding ratio con- 
stants, associated with a particular damping 
mechanism, gives a method of determining if 
one particular damping mechanism alone is 
present, or which two are dominant. 

As an example, consider a clamped-free 
or cantilevered beam.  The required modal 
properties of beams are given by Bishop and 
Johnson [2].  An additional property, required 
in evaluating Eq. (23), is given by Langhaar [1], 
that is. 

I 'P   4>m d/i Ky*t(2 ^ ?.,*>] ■ 

The symbols correspond to those in Ref. 2. 
Using these to evaluate Eq. (23) gives as the 
ratio of magnification factors, related io the 
tip of a cantilevered beam, 

of shear and rotatory inertia, which have been 
neglected, increase with frequency. Therefore, 
if higher modes are used, care must be taken 
to be sure that the effective length (modal 
"wavelength") in comparison with the depth of 
the beam, is still such that slender beam theory 
applies.  Further, it must be remembered that 
for the modal property given by Eq. (8) to hold, 
which allows stress damping to be Included in 
general, an even and odd harmonic mode must 
be used. 

In general, a two-mode approximation is 
often sufficient in the description of the dynamic 
response of most structural components.  Un- 
less the boundary conditions or type of excita- 
tion indicates that other modes might be expected, 
the two modes selected are generally the first 
and second. Therefore, it is logical to use the 
first and second mode magnification factors in 
the damping model identification scheme. 

Damping Coefficient Evaluation 

Once the damping mechanisms and corre- 
sponding damping models have been selected, 
completing the formulation of the mathematical 
model requires evaluation of the associated 
damping coefficients. If a consideration of the 
ratio of magnification factors indicates, by a 
close comparison with one of the ratio constants 
given by Eq. (24), that only one form of damping 
is dominant, the corresponding damping coeffi- 
cient can be readily evaluated with Eq. (22). In 
general, however, more than one type of damp- 
ing will be indicated. 

Equation (21) can be expanded and written 
in the form 

Rd) =  < 

0.28S, viscous damping (r = 0) ; 

4.46, stress dampinR (r = 2); (24) 

11.3,  load damping (r - 4). 

Therefore, a comparison of the ratio of magni- 
fication factors gives a rather sensitive method, 
compatible with results derived from tests on a 
vibration exciter, for evaluating or selecting a 
damping model for a uniform beam. 

It should be noted that similar sets of ratio 
constants can be developed for beams mounted 
in various other basic configurations. Also, 
although it is not always practical, modes other 
than the first and second may be employed to 
give a ratio of magnification factors.  The effect 

+ c, il' dx + =L^ 

PA (x) dx (25) 

•Wx) 

Let only two damping mechanisms be included 
in the model by assuming one of the damping 
coefficients to be zero.  By vibrating a beam 
on a shaker through its first two resonant modes, 
the corresponding natural frequencies and 
magrdfication factors can be measured. With 
this information and Eq. (25), two equations 
can be written and the two unknown damping 
coefficients can be computed. 
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As an example, consider once again the 
cantilcvered beam and let viscous and stress 
damping be the two damping mechanisms in- 
cluded in the mathematical model for the beam. 
With Eq. (25) and the properties previoi ily 
given for a clamped-free beam, the viscous and 
stress damping coefficients can be expressed as 

EI /    18.2             25.5    \ cv  =  — j     , 

(26) 

EI /    1.37 29.8 

In the &l)ove equations, the ratios of magnifica- 
tion factors are referred to the beam tip or 
free end. Note that all that is required to com- 
pute the damping coefficients is a knowledge of 
the flexural rigidity and length of the beam and 
values for the first and second mode natural 
frequencies and magnification factors. 

APPLICATION TO REACTOR CORE 
FUEL ASSEMBLIES 

Experiment Design 

As discussed earlier, the preliminary 
model, simulating the reactor fuel subassem- 
blies, consists of a cantllevered cluster of 
hexagorul rods.   For the experiment, 1/2-in. 
rods were used.  The clamping fixture cor     ted 
cf two square 2-in. thick plates of aiuminmi 
with an 8-in. diameter hole in the center. The 
plate? were cut into- halves which could be 
bolted iogether.  The maximum size cluster 
which fits inside an 8-in. diameter circle (163 
rods), was made one row larger by adding 4-in. 
lung stubs.  The resulting bundle was then 
turned down to an 8-in, diameter to fit inside 
the clamping fixture.  Thus, the fixture clamps 
on the lower 4 in. of the rods. Any size cluster, 
up to the maximum size of 163 rods, could be 
tested by replacing rods with 4-in. stubs.  For 
this study, eight cluster sizes of 1, 7, 19, 37, 
61, 91, 127 and 163 rods were tested.  The 
clamping fixture and a 37-rod cluster are 
shown in Fig. 1. 

The test fixture was mounted on a slip 
plate and excited by a iO,000-lb shaker. The 
shaker was servocontroiled to maintain a con- 
stant input displacement amplitude as sensed 
by a variable reluctance displacement trans- 
ducer. The experimental test setup is shown 
in Fig. 2. 

Fig. 1 - Clamping fixture for model cluster 

Fig,   2 - Experimental test setup 

The input displacement and acceleration, 
strain at the root of the center rod, and strain 
at the root and acceleration at the free end of a 
rod in the outer row, were measured and re- 
corded on magnetic tape.  The data were then 
processed on a spectrum analyzer to give fre- 
quency response plots of the measured variables. 

Tests were conducted using both aluminum 
and steel rods.  The effective length of the alu- 
minum rods was 25-3/8 in.; the steel rods were 
24 in. long.  Three sets of tests were run with 
each type of rod.  In the first set of tests, the 
initial cluster consisted of a single element and 
a row was added for each successive test.  The 
second set started with the maximum size 
cluster and for each succeeding test the outer 
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row would be removed and replaced with 4-in. 
long stubs. In the third set of tests, the clus- 
ters were formed from randomly selected rods. 

Test Results 

The results of the tests, applicable to the 
subject matter of this paper, are presented as 
sets of curves in Figs. 3 a id 4.  In running the 
tests at second mode with the larger size clus- 
ters (61 to 163 rods), large vertical g-levels 
were measured at the fixture. It must be re- 
membered that the influence of these large 
vertical accelerations is present in the given 
results.  Redesign of the fixture or mounting is 
required for future tests. 

For the purpose of this analysis, a natural 
frequency was assumed to be equal to the cor- 
responding resonant frequency as defined by a 
maximum in magnification factor.  Figure 3 
indicates that the natural frequencies of vibra- 
tion of a rod in a cluster do not vary signifi- 
cantly from the corresponding natural frequency 
of a single rod. 
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Fig.   3 - Natural frequency 
vs cluster size 

mode magnification factors calculated in this 
manner are plotted in Fig. 4. 

The strain versus frequency plots for the 
center rod compared favorably with those for 
an instrumented outer rod.  Therefore, it was 
assumed that an outer rod was representative 
of the behavior of a typical rod in a given clus- 
ter.  This was an advantage in data reduction. 
The outside rod could easily be instrumented 
with a miniature accelerometer, and since ac- 
celeration is proportional to displacement, for 
the harmonic response at resonance, the mag- 
nification factor becomes simply the ratio of 
tip to input acceleration.  The first and second 

As illustrated in Fig. 4, as the number of 
rods in the cluster is increased from one to 
the maximum of 163, the magnification factors 
decrease continuously.  Sensitivity of the mag- 
nification factor to input amplitude is ruled out 
by the fact that a controlled constant amplitude 
input was used. Therefore, the difference in 
response between a single rod and a rod in a 
multi-rod cluster is d^      ^ted by the increased 
dissipation of energy wi^ -.icreaslng cluster 
size; hence, it is important to include damping 
in the equation of motion for a fuel assembly. 
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■*. 

The theoretical analysis, developed in the 
previous part of this paper, is based on the as- 
ftumptioo that the natural frequencies and mode 
eiiüpes are unaffected by the damping. Figure 2 
shows the ..utural frequencies remained rela- 
tively constant with cluster size. Based on this 
observation one would intuitively expect the 
mode shapes to also remain effectively un- 
changed. This was shown to be the case via 
observation of slow-motion movies and meas- 
uring and comparing, with theory, strains at a 
number of locations along the length of a rod. 

Damping Model Identification 

To model the damping, the three damping 
mechanisms given by Eq. (1) were considered. 
The method developed earlier, for identifying 
linear damping models using test results ob- 
tained on a vibration exciter, will now be ap- 
plied to determine the dominant damping mech- 
anisms, describing the dissipetlon of energy 
which occurs during the vibration of simulated 
fuel subassemblies. 
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Fig. 5 - Ratio of first to second 
mode magnification factors as 
function of cluster size 

The identification scheme is based on the 
comparison of the ratio of first to second mode 
magnification factors with theoretically deter- 
mined constants corresponding to "pure" forms 
of the proposed damping mechanisms.  Using 
the averaged experimental data points given in 
Fig. 4, the ratios of first to second mode mag- 
nification factors can be calculated.  The re- 
sults are given in Fig. 5, where comparison 
can be made with ratio constants corresponding 
to pure viscous, stress, and load damping as 
obtained from Eq. (24). 

The experimental data can be seen to lie 
between the lines corresponding to viscous and 
stress damping.  Therefore, it is deduced that 
these may be the two dominant damping mecha- 
nisms to be included in the equation of motion 
for a fuel subassembly.  The ratio of first to 
second mode rnagnification factors is employed 
as a means of identifying the damping mecha- 
nisms present.  Since the experimentally de- 
termined ratios are approximately constant, 
and ] ence independent of cluster size, it may 
be concluded that the damping mechanisms 
themselves are invariant with cluster size. 

In summary, based on a consideration of 
the ratio of magnification factors, viscous and 
stress damping are assumed to represent the 
dominant energy dissipative mechanisms. 

Damping Coefficient Evaluation 

Having selected the damping -nodels, that 
is, viscous and stress damping, the remaining 
problem is to determine the aopropriate damp- 
ing coefficients to use in the modele.  This is 
easily accomplished by substituting the experi- 
mental results into Eq. (26), which was derived 
for a cantilevered beam.   The magnification 
factors averaged over the three sets of tests 
were used.  The damping coefficients, so calcu- 
lated, are plotted versus cluster size in Fig. 6. 

Wdh the results given in Fig. 6, a two- 
mode, or two-term, approximation for the 
equation of motion of a rod in a particular size 
cluster can be written including damping.   The 
response to an arbitrary input, e.g., p(x, t), 
which might result from a pressure loading, 
would take the form 

y(x.t)    =    0,(x)   q/t)   +   02(x)   q2(t) .      (27) 

The generalized coordinates are determined by 
solving 

r p( x, t)/)(x) dx (28) 

El 
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where 

k |cv + c4l/^dx} • 2pA. 

The coefficients cv and c, are read fromFlg. 6 
for the tartlcular size cluster. 

SUMMARY AND DISCUSSION 

A study of the dynamic response of reactor 
fue assembly clusters indicated the importance 
of including damping in the model.  The effort 
to model the damping led to the development of 
a method for identifying assumed damping 
mechanisms and calculating the associated 
damping coefficients. The method is based on 
a comparison of experimental results with the- 
oretically determined values.  The required 
experimental results are easily obtained from 
tests performed on a vibration exciter.  The 
method is sensitive to the ratio of first to sec- 
ond mode magnification factors and appears 
well-suited to formulating mathematical models 
for structural components, amenable to vibra- 
tion testing, which can be modeled as two- 
degree-of-freedom systems. 

Experimental results were obtained using 
a constant displacement amplitude input.   Lin- 
earity is assumed in the mathematical model 
and in application should be checked experimen- 
tally in investigating the dependence of the 
magnification factor on the input displacement 

amplitude. Also, in conducting such tests, the 
fixture or connection damping is included im- 
plicitly in the results. In certain cases this 
may be desirable. However,, it must be remem- 
bered that to obtain quantitative results from 
such tests, the tests must closely resemble the 
final application. 

The mathematical model, formulated in the 
manner outlined in the paper, has been forced 
to give the correct response at the first two 
natural frequencies for the given input. This 
results from using information obtained while 
operating at the resonances to compute the re- 
quired damping coefficients. Since a system is 
most sensitive to damping at, or near, a reso- 
nant frequency, it may be reasonable to expect 
the mathematical model to predict satisfactorily 
the dynamic response thz oughout the frequency 
range for which the mode.', is derived.  The abil- 
ity of the mathemaMcal model to predict system 
response to arbitrary loadings must be checked 
via experiment. 

It is obvious that any two damping models 
might have been chosen and the coefficients 
forced to give the required responses at the 
resonances.  However, the proposed models of 
viscous, stress, and load damping do have cer- 
tain physical significance. Also, the location of 
experimental data in relation to the theoretical 
values on the plot of the ratio of magnification 
factors versus cluster size lends support for 
the use of thtse models to represent the energy 
dissipadve hiechanisms. 
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With regard to satisfying the objectives of 
the study, the following concluding remarks can 
be made: 

1. The cluster size and, hence, the inter- 
action phenomena have little, if any, effect on 
the natural frequencies of an individual element 
within the cluster. 

2. The magnification factor, related to the 
free end of the rod, decreases conünucusly 
with cluster size, but appears to be approach- 
ing a limiting value. 

3. In the attempt to determine the experi- 
ment size required to give results typical of a 

full-size core, the only invariant observed was 
the ratio of first to second mode magnification 
factors.  This is the ratio employed in the 
damping model identification scheme.  The 
magnitude of this ratio indicates that viscous 
and stress damping may be the dorn; nant damp- 
ing mechanisms. 
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DISCUSSION 

Mr. Smith (Bell Aerosystems Co.):  Did 
you calculate only the coefficients for the first 
two modes? 

Mr. Wambstptnss:  That's right. 

Mr. Smith: The results are obviously a 
function of the type of damping assumed in the 
first place.  Why did you choose load damping 
for both a solid structure and the clustered type 
of structure?  Wouldn't a shear type of damping 
be more appropriate ? Secondly, do you intend 
to extend this to see whether you get the same 
sort of coefficients from other combinations of 
modes, for example, second and third or first 
and third?  This might illustrate whether the 
types of damping that you have chosen or other 
types of damping could be used generally for 
any number of modes. 

Mr. Wambsgancti:  I am not sure if I can 
answer the first question satisfactorily.  Mr. 
Rosenberg, one of the coauthors, chose the 
damping models, so I cannot give a good reason 
why we included the low damping mechanism. 
In answer to your second question, I would like 

to extend the work.  We have not done any more 
than that reported here. 

Mr. Dobson (Knolls Atomic Power Lab.): 
You showed that stress damping increased with 
the number of rods in the cluster.   Previously, 
I believe, you had showed decreasing amplitude 
or decreasing Q factor for a number of rods in 
the cluster.  There seems to be a paradox. 
Stress damping normally would increase with 
deflection, assuming the stress increases some- 
what proportionally.  Could you explain the fact 
that apparently the stress coefficient is increas- 
ing with cluster size?  Isn't the stress cooffi- 
cient >ou are trying to determine related to 
material damping?  Or is it unknown exacv.ly 
what you are determining? 

Mr. Wambsganss:  Actually it is unknown, 
because the damping is due to an in eraction of 
all the rods and is not necessarily material 
damping.  We are looking for some damping 
mechanism that we can use to describe what is 
going on within a nuclear reactor core where 
these rods can interact, rul. together, and pro- 
vide damping in that manner, so this is not re- 
lated directly to material damping. 
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EFFECT OF AIR DAMPING ON 

STRUCTURAL FATIGUE FAILURE* 

John R. Fagan 
Radio Corporation of America 

Princeton,  New Jersey 

The response of a single-degree-of-freedom resonant system is de- 
pendent on the amount of damping present; the stress induced is de- 
pendent on the system response.   Fatigue data of most structural ma- 
terials can be expressed mathematically as a power function relating 
stress to number of cycles to failure.   After determining the expres- 
sion described for sine and random forcing excitations, it is possible 
to plot curves relating the ratio of damping parameters in air and in a 
vacuum to the time to failure of the structure.   The principal conclusion 
is that when low-mass large-area structures are vibration excited in a 
vacuum, they should be tested in a manner that will reflect the lack of 
air damping on the structure.   This consideration is especially perti- 
nent in relation to the application to lunar ascent and descent functions, 
such as are now being planned. 

INTRODUCTION 

Significant levels of structural excitation 
will probably be generated during lunar ascent 
and descent functions.  Because of the environ- 
ment, the coupling will be almost exclusively 
through the hardware, and this condition must 
be recognized during environmental testing. 
This analysis does not encompass the entire 
problem but merely serves to indicate the sig- 
nificance of the impact of these factors on the 
test specification. 

The response of a single-degree-of- 
freedom resonant systnm is effectively de- 
scribed by the 0 of the system.   For a sine in- 
put dwelling at resonance, the response ratio is 
Q; for a flat random input, the response ratio 
is approximately (0fn )l/ 2, where f n is the 
natural frequency of the system [1].  The units 
determining the ratio are g rms divided by 
g rms.   For our purposes, we desire a ratio 
that consists of the displacement response to 
the g rms input to the system; this ratio is 
proportional to (Q/{n)l/2 (Fig. 1).  Now 

INTERNAL 

X: RELATIVE   DISPLACEMENT    RESPONSE  A WITH 
RESPECT   TO 8 

Y = ACCELERATION   INPUT 

Fig.   1 - Schematic representation 
of displacement   response ratio 

for light damping, where £ is the damping ratio 
and S, is the total log decrement (decay of am- 
plitude at a logarithmic rate) of the system.  Let 

Q  =   1/21 - TT/S (1) st  =   si + ia. (2) 

*Thi8 paper was presented by H. W. Lekuch, Radio Corporation of America, Princeton, N. J. 
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where si Is the internal log decrement of a 
system and 
damping. 

sa is the log decrement due to air 

FATIGUE FAILURE FOR CASE OF 
SINE EXCITATION 

All structural materials have a certain 
fatigue life described by the well-known S-N 
fatigue curves, as exemplified in Fig. 2.  These 
curves follow a law that can be mathematically 
expressed as 

NSl C , (3) 

wnere B and c are material constants [2], N is 
the number of stress cycles to failure, and s is 
the peak stress. Also N = f0T and substitution 
into Eq. (3) results in 

Tfn Sb =   C (4) 

where T is the total time to actual fatigue fail- 
ure of the material. 

10s I04 

CYCLES (N) 

Fig, 2 - Typical S-N fatigue 
curve   for   aluminum   alloy 

Sv  =  KnXX)/(it -ia) 

in vacuum.  Setting a ratio, 

s. 3 sv(i-VM- 

(6) 

(7) 

Solving for T in Eq. (4) and establishing a ratio 
of Tv to Ta, where Tv is time to failure in a 
vacuum and Ta is time to failure at atmospheric 
pressure, results in 

Tv/T,  =   n-S./5.)b- (8) 

FATIGUE FAILURE FOR CASE OF 
RANDOM EXCITATION 

The problem is effectively described by 
Crandall and Mark [2].  The mean square stress 
response of a simple resonator to an ideal 
white-noise input is (Fig. 3) 

A2W£      (386): 

8       ^27Tfn )3 
(9) 

where A2 is a coefficient relating s2 to the 
mean square of the displacement response, w0 
is the input spectral density level (g2/cps), 
I is the damping ratio, and fn is the system 
natural frequency.  Also, £ = at 2^; therefore, 

nr0    (386) ^ 

V 8   V27^2^3 
do) 

It is now necessary to select a failure theory. 
The Palmgren-Miner hypothesis is general in 
ocope and the most widely used (within its 
limits) of any [2].  The theory is simply stated 
as: 

no 

V   [rtfS.VI^Sj)] (ID 

A simple system has a response, at reso- 
nance, described by 

X/X0   r.    1/2^    ;   v/hx , (5) 

where x is the response amplitude and x0 is 
the zero-frequency (static) deflection. 

Since s = .AX, where A is the coefficient 
relating stress to displacement, 

Sa =   ArrX0/8t 

at atmospheric pressure, and 

where N(S;) is the number of cycles to failure 
in a constant-amplitude fatigve test with stress 
amplitude Sj, r^Sj) is the nu.-.ber of cycles 
experienced at stress amplitudo Sj, and i is 
an arbitrarily assigned stress level (i = 1,2,3, 
etc.).  When D = l, failure occurs. 

Cyclical stress damage is dependent on 
the stress peaks.  The distribution of peaks in 
a random process (if the process is assumed to 
be normal or Gaussian) is Rayleighian.  There- 
fore, to determine n^) for any specific S;, it 
is necessary io multiply fnT by the probability 
of the occurrence of these peaks.   Thus, 
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Fig. 3 - Curve of resonator 
response to  flat noise input 

nCSj)   =    fnTAP(Si) (12) 

where frT is the total number of cycles of the 
responding system and &P( Si) is that fraction 
of all the peaks associated with stress cycles 
nCS;).   It can be further stated that APfS^ is 
the incremental area under the probability den- 
sity curve of a Rayleigh distribution. 

To determine the damage contribution of a 
specific n^Sj), we divided by NcSj) 

nfS.VNcSi)   =   [fnTAPrSi)]/N(Si) .       (13) 

The total damage is the sum of the damage 
contributions at all the stress amplitudes: 

f d[P(S)] /i4^ 
Accumulated damage   =    f„T    I      ,      \"' 

where d[P(S)] - s/SM
2 exp (-s2/2SM

2) ds, and sM 
is the mean stress of the process.  Now 

/cb* 1 
  exp(-SV2Su

2)ds. 

(15) 

Solving this expression results in 

Accumulated damage =   Cf nT/C)(v/J Srn "'(l + b'2), 

(16) 

For failure to occur, accumulated damage 
becomes unity, and we can write 

1   =   (fJ/C) [y/l Stm,J Fi l * b/2) .      (17) 

Equation (9) at atmospheric pressure is 

5r.. = * y- 
386) 

8        f27r)Jfn
3    8t 

J. (18) 

and in vacuum is 

S A   /(386)' Wo 1 
V      8 (^)2fn

3    *,-8. ' 

Substitution in Eq. (17) results in 

1 

(19) 

T-^ 

and 

T    =-£- •      f 

— •» 

J2 ./^ 
*o 1 

(2n)3fR* 

p ,    b 

br l +T 

(20) 

_ ■     -, 

72 A^T (2.)2fn
3 

1 
^r 1+f 

and the ratio is 

VT, -- (i- VM b/ i (21) 

where T is the duration of the excitation. 

The constant b of Eq. (3) ranges between 5 and 
20, depending on the material.   Tv/Ta for ran- 
dom excitation and for values of b from 5 to 20 
is plotted against air damping (S,/St) in Fig. 4. 

An attempt to determine the air-damping 
decrement was made by Stevens and Scavullo 
[3].  They state that the air damping can be as 
small as 5 or as large as 83.3 percent.   For 
the smaller value and a typical material con- 
stant of 6.09, 

Tv/Ta   =   (l-0.05)609/2   =   0.856 . 

This means that if the structure fails in 10 min 
at atmospheric pressure with 5 percent air 
damping, it will fail in 8.56 min in vacuum un- 
der equal conditions of excitation.   For 83.3 
percent of air damping, 

VTv   =   (l-0.833)609/2   =   0.0043. 
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Fig. 4 - Curve of time to failure in 
vacuum VB percent of air damping 

Thus, if the structure fails in 10 min at atmos- 
pheric pressure, it will fail in 0.043 min in a 
vacuum environment. 

The statistical variation of the solution has 
not been attempted; an excellent discussion of 
the effect of the magnitude of damping is given 
by Crandall and Mark [2]. 

Intuitively, air damping would exhibit the 
greatest effect on structures that have large 
areas and small masses associated with these 

areas (panels, printed-circuit boards, sheet 
me'al beams, radar antennas, and solar panels). 

CONCLUSIONS 

The subject of the vibrating structure in a 
vacuum is of no interest when no excitation ex- 
tats; the most severe vibration environment 
presently occurs during booster lift-off and at 
Mach 1 velocities.  Both of these conditions oc- 
cur within the Earth's atmosphere.  Further, 
rocket firings in space have been of minor sig- 
nificance and short duration. With the advent of 
Apollo, the requirements for withstanding rela- 
tively severe excitations in a vacuum first 
appear. 

Lunar descent and ascent functions will 
probably result in the generation of significant 
levels of structural excitation.  Obviously, no 
acoustic coupling can exist in the lunar environ- 
ment and structural vibration would be trans- 
mitted almost exclusively through the hardware; 
the environmental test must include consider- 
ation of this effect. The analysis presented 
here hardly describes the entire problem; it 
does, however, indicate the significance of the 
test specification.  (Should testing be specified 
for longer times, or should the combined 
vibration-vacuum environment be simulated? 
Are there other failure modes that are af- 
fected?) Any performance parameter affected 
by an increased level of response would serve 
to lower the overall reliability of a system. 
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DISCUSSION 

Mr. Plunkett:  I think the estimate as to 
how much influence air damping can have is a 
little conservative, because we know from other 
results that air damping in connection with joint 
damping may have an influence of perhaps 99 
percent rather than only 40 percent.  In this 
case, the change in life would be very significant. 

Mr. Lekuch:  We agree with that.  We have 
not done any specific testing, but we have seen 
cases where structures that have undergone 
vibration in vacuum have responded to an 

extent that we did not expect.  I should ref<?r 
again to the paper by Stephens and Scavullo [3]. 

Mr. Jacisin (Bell Telephone Labs.):  You 
made a statement that the lifetimes of these 
structures were reduced in vacuum.  Possibly 
this conclusion was reached primarily from 
an air damping standpoint.  There has been 
much work done on fatigue of various metals, 
a phenomenon existing here, which shows that 
the fatigue is increased considerably in vacuum. 
Have you also investigated this effect? 
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Mr. Lekuch: We have not looked into the 
fatigue mechanism; we simply accepted, in this 
case, the Miner failure hypothesis.  I realize 

that a great deal o.f investigation into fatigue in 
vacuum has been nude, but we have not spe- 
cifically gone into it. 
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INTRODUCTION 

A program designed to reduce the vibratory 
energy transmitted through machinery founda- 
tions in naval ships is currently under way at 
the Navy Marine Engineering Laboratory (MEL), 
Annapolis, Md.  The objective is being pursued 
through the development of damped machinery 
foundations capable of attenuating vibratory en- 
ergy before it reaches a ship's hull where it 
can be transformed into acoustical energy and 
radiated overboard as undesirable noise.  To 
obtain a reduction in radiated noise, it is pro- 
posed that foundations be fabricated from highly 
damped laminated plates and a pipe-within-a- 
pipe configuration separated by a vlscoelastic 
material.  These members, composed of alter- 
nate layers of steel and viscoelastic material, 
have been shown to dissipate large amounts of 
vibratory energy through cyclic shear induced 
in the viscoelastic material.  For laminated 
plates the dissipation of energy occurs through 
flexural vibration, whereas the pipe-within-a- 
pipe member produces damping primarily by 
shearing the viscoelastic material through axial 
vibration.   However, damping occurs for this 
configuration for all planes of vibrations.  The 
program has been directed towards the devel- 
opment of highly damped structural laminates 
and means of being able to design and predict 
their performance, the investigation of the 
effects of dynamic mechanical properties of 

viscoelastic material on composite damping and 
the reliability In measuring these properties, 
and the design and evaluation of damped ma- 
chinery foundations. In particular, the program 
has led to a general specification of test sam- 
ples for damping evaluation, analytical means 
for predicting damping and determining com- 
posite behavior, development of a method for 
reasonably determining the dynamic properties 
of a particular viscoelastic material, and the 
design and evaluation of laminated foundations 
for effectiveness in reducing vibration trans- 
mission.  The problems and highlights of the 
development program are described In this 
paper. 

ANALYSIS OF LAMINATED BEAMS 

To design foundations properly with lami- 
nated material. It is necessary to be able to 
predict the composite loss factor vs natural 
frequency and the natural frequencies of the 
system if the elastic and viscoelastic physical 
properties, cross-sectional geometry and end 
conditions are known. 

Historically the analyses of laminates be- 
gan with the investigation by Oberst [1] who 
predicted the composite loss factor vs natural 
frequency for an elastic plate having an uncon- 
strained viscoelastic layer.  In this case the 
primary mechanism of dissipation is the exten- 
sion and compression of the viscoelastic mate- 
rial as the composite is subjected to bending. 
It is found that the composite loss factor, v, in 
this case is 

EH,3 + EHjOH,2 + SHjH, + 4H2
2) 

(1) 

where 
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E » elastic modulus of elastic material; 

E' = real part of elastic modulus of visco- 
elastic material; 

v - EJ/EJ, loss of vibcoelastic material; 

H, = thickness of elastic layer; and 

H2 = total thickness of viscoelastic layer. 

It was further found that a limited amount of 
damping is obtained by the unconstrained visco- 
elastic layer configuration. In the late 1950*8, 
Kerwin et al. [2] investigated the damping capa- 
bility of constrained layers, i.e., a material 
composed of alternate elastic and viscoelastic 
layers. They developed a bending theory for 
constrained layers based on several reasonable 
assumptions: 

optimum and higher frequency range than that 
obtained for a three-layer laminate for the 
same viscoelastic material. Higher values of 
the viscoelastic material loss factor J Is seen 
generally to produce higher composite loss fac- 
tors.  In the low-frequency region, however, 
there appears to be a value of ß between 1 and 
2 for which maximum damping is obtainable. 
Increasing the shear modulus of the viscoelastic 
material produces a frequency shift of the 
damping curve. 

Many of the results obtained in Ref. 3 can 
be seen better in a curve of T? vs h, recently 
obtained in the course of this program (Fig. 3). 
The parameter h, is given by 

12 >E H2
2 

(2) 

1. The elastic modulus of the viscoelastic 
is small compared to that of the elastic layer 
and thus extensional forces in the viscoelastic 
layer may be neglected. 

2. The predominant motion of the visco- 
elastic material is due to shear. 

3. The beams are simply supported or in- 
finitely long. 

It was found that more damping could be 
obtained over a discrete frequency range by 
using the laminated beams or constraining the 
viscoelastic material. With respect to this 
program, Kerwin's results left several ques- 
tions unanswered: 

where y is the average mass density of the 
composite, G, is the real part of the shear 
modulus of thp viscoelastic material, H2 is the 
thickness of the viscoelastic layer, and o, is 
the natural frequency of vibration. It can be 
seen that the variation of n vs ^ with variations 
of G,, 0 and Hj can be predicted.  Thus, a typi- 
cal v vs cü curve will shift to the left as G, is 
increased.  The curve will move up bodily as 
ß increases and shift to the left for increasing 
H2.  This last curve of v vs ii, is based on a 
sandwich construction in which the thickness of 
the viscoelastic layer is small compared to the 
thickness of the two equal elastic layers.  Thus, 
one can find the composite loss factor of a 
three-layer sandwich beam if G,, ß, H2 and w 
are known. 

1. What is the effect of having more than 
three layers? 

2. Since the beams to be considered by 
MEL are finite, what is the effect of end condi- 
tionis, other than simply supported, on the com- 
posite loss factor and natural frequencies? 

3. What is the effect on the composite loss 
factor of varying geometric and physical prop- 
erties of the laminated beam? 

The results of DiTaranto [4], in which the 
differential equation of motion is derived for a 
three-layer beam, indicate that composite loss 
factor vs frequency curve is independent of the 
boundary conditions.   This finding implies that 
the results of Kerwin for an rj vs - curve of a 
simply supported beam are applicable to all 
nondissipative end conditions.  A series of tests 
conducted at MEL on the effect of end condi- 
tions [5] has shown good correlation with the 
theoretical results. 

Analytical investigations were conducted in an 
effort to answer these questions.  The results 
of Kerwin et al. were programmed for a high- 
speed digital computer in which the composite 
loss factor was found for three- and five-layer 
laminated beams.   These computer results are 
reported in Ref. 3, and the salient curves are 
shown in Figs. 1 and 2.  It is seen that for a 
given overall thickness, the composite lews fac- 
tor is higher for a five-layer laminate at the 

The effect of the viscoelastic layers on the 
natural frequencies of vibration of laminated 
beams is presently being considered and forms 
the basis of current results.   The natural fre- 
quencies can be calculated using the results of 
Ref. 4, but the resulting set of equations must 
be satisfied in general by the nulling of a 12 xl2 
determinant.  In itself, this is not an impossible 
task, but for all the possible variations in each 
elastic layer thickness, viscoelastic layer 
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Fig. 1 - Computed composite loss factor values: 
(a) for three-layer laminated beam with cross- 
sectional area equal to that of five-layer beam, 
and (b) for five-layer laminated beam 
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Fig. 2 - Loss factor values for three-layer 
laminated beam computed for several values 
of shear storage modulus and constant value 
of viscoelastic material loss factor 

1000 

Fig. 3 - Generalized composite loss factor values 
for three-layer laminated beam 
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thickness, physical properties of the materials 
plus different end conditions, the problem is 
best handled on an individual need-to-solve 
basis. 

From a design standpoint, the determina- 
tion of the natural frequencies by solving a 
12 x 12 determinant is too sophisticated ?nd dif- 
ficult to use.  Therefore, a simplified ? proach 
has been recommended.  This simplified method 
uses the frequency relation for a sandwich beam 
having a thin viscoelastic layer.  The natural 
frequencies may be calculated from the ex- 
pression 

a.J0 [I  + 6a] (3) 

in which w, is the natural frequency of the com- 
posite sandwich beam having a thin viscoelastic 
layer, and wia Is the natural frequency of one 
elastic layer carrying its own weight plus half 
of the weight of the viscoelastic layer, i.e.. 

2 

L2 

El 1/ 2 

where an is the mode number associated with 
the end conditions, L is the length of the beam, 
Ei  is the stiffness of one- elastic layer, pe is 
the mass/unit length of the elastic layer plus 
half the viscoelastic layer, and a is a shear 
parameter which varies with an or, in effect, 
u)1Q. In particular, 

R,  l\0  +  R^d + ySj)] 

+  2>0SRI + S^R,2 (1 + /3j) 
(4) 

where 

«. 

L2 

2ipr 

s  = 

and 

K. 

Eb 2H; 1, 3 

It is to be noted that for a small an (low u>), a 
is approximately equal to 1/2 so that the factor 
(1 + 6a)   equals 4.  When this condition occurs, 
we have the case for both elastic layers acting 
together as a solid beam.  As an becomes large 

(u large), a approaches zero and each elastic 
layer vibrates, in effect, by itself as though it 
were completely isolated.  Table 1 shows val- 
ues of an for various end conditions.  This table 
can be very helpful in predicting the natural 
frequency of a sandwich beam. 

The results of the analytical work in this 
program places the designer in the position of 
being able to predict natural frequencies and 
associated composite los.: factors for a sand- 
wich beam having a thin viscoelastic layer. 
These predictions may be made if the cross- 
sectional geometry and physical properties of 
the elastic and viscoelastic materials are 
known. The curves shown herein and found in 
the references enable one to design highly 
damped laminates. 

Equations are available for determining the 
natural frequencies and composite loss factors 
of various three-layer laminates, but the equa- 
tions are complicated and require the use of a 
high-speed digital computer. A computer pro- 
gram is available, however, for predicting the 
loss factor as a function of frequency for lami- 
nated beams with up to 13 layers. Verification 
of the analytical predictions for damping of 
laminated beams have been successfully made 
by Douglas and Longley [6]. 

DYNAMIC SHEAR MODULUS 
MEASUREMENTS 

Since the laminated materials considered 
for use are composed of layers of elastic and 
viscoelastic materials, the physical properties 
of these materials are important.  Physical 
properties of elastic materials are well known 
for steel and aluminum, but are not well defined 
for viscoelastic materials.  The nature of visco- 
elastic materials is such that the shear modu- 
lus, which is of interest in the flexural damping 
of laminates, is a function of temperature, time 
and/or frequency.  From the vibratory damping 
standpoint, the shear modulus is considered a 
function of temperature and frequency and writ- 
ten in complex form by G* = 0,(1 + iß), where 
G, is the material loss factor ß.  To design 
laminates, the values of G, and ß must be known 
for several temperatures and over a broad fre- 
quency range. 

In the course of this program, it became 
apparent that measuring the shear modulus of 
viscoelastic materials was difficult.  The extent 
of this difficulty was not known.  Four labora- 
tories actively determining the dynamic me- 
chanical properties of viscoelastic materials 
were surveyed to ascertain the degree of 

85 



TABLE 1 
Values of Mode Numbers Associated with End Condition 

Beam Condition Diagram 
General Relation Specific 

Relation 

Cantilever 

Simply supported 
#= 

Free-free 

Fixed-fixed 

Fixed-pinned 

% 

lb 

>* H)2*' 
for n >  2 

a,, =  (nrr)' 

'„    (n^)2 

[same an for Free- 
free and fixed- 
fixed] 

3ln      ("Uj    ^ 

a, = 3.52 

a, =   22.0 

a,  =   61.7 

a4 =  121.0 

as  =  200.0 

a, = 9.87 

a2 = 39.5 

aj = 88.9 

a4  =   158.0 

a5 = 247.0 

a,   =   22.0 

a2 =   61.7 

aj  =   121.0 

a,  =   200.0 

a5 = 298.2 

a,   =   15.4 

a3 =   50.0 

33   =    104.0 

a4 =   178.0 

as = 272.0 

^-ri- 

se 



agreement in measuring the shear moduli of 
two viscoelastic materials with good damping 
characteristics [7].  Figure 4 shows the mate- 
rials used and the geometry required by two of 
the laboratories.  The black material is a neo- 
prene normally produced in sheets.  The cylin- 
der and block specimens were especially molded 
*or two of the four participants.   The white- 
appearing material is a filled polyvinyl chloride 
(PVC).  Different apparatus was used by the 
four laboratories; two laboratories used the 
Fitzgerald apparatus, one used the flexometer 
developed by Painter, and the other used a tor- 
sional shear apparatus developed by Baltrukonis. 

Fig. 4 - Viscoelastic materials used for 
dynamic tests in Survey 

Complete data were desired on the storage 
modulus and the loss modulus over a wide fre- 
quency and temperature range, but no partici- 
pant was able to supply this.  Typical reported 
data are shown in Figs. 5 and 6.   Figure 5 pre- 
sents results for the shear storage modulus of 
the PVC at 60°F.  Three of the four participants 
reported, but the frequency coverage and agree- 
ment in results were limited.  Results for the 
neoprene material were similar.   Figure 6 

shows typical results reported by all partici- 
pants.   Though the frequency coverage was 
improved, the differences in measured shear 
modulus values were large. One participant 
reported measurements which fluctuated widely 
over the frequency range.  The dashed curve is 
an average of the points with an envelope show- 
ing the extent of fluctuations. 

o 

I0G IjOOO 

FREQUENCY, tps 

10,000 

Fig. 5 - Comparison of shear storage modulus measurements 
for polyvinyl chloride (te.nping material as measured by- 
three activities 
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Fig. 6 - Comparison of shear storage modulus measurements 
for neoprene damping material as measured by four activities 

The results of this survey indicated a de- 
gree of discrepancy in the measurement of the 
shear modulus of viscoelastic materials.  Al- 
though the discrepancy may, in part, be attrib- 
uted to differences in samples and strain am- 
plitude, the survey strongly indicated that the 
apparatus and measuring techniques are the 
prime source of difficulty. 

In view of the results obtained in the sur- 
vey, a method was developed by Roscoe et al. 
[8] to measure the shear modulus and loss fac- 
tor of viscoelastic materials using a three- 
layer laminated beam.   The method utilizes the 
measured composite loss factor at resonant 
frequencies and the analytical relation derived 
by Kerwin et al. [2] for the damping of a sand- 
wich beam.   This method yielded repeatable and 
reliable measurements for the shear storage 
modulus from 10C to 40,000 psi and shear loss 
factor from 0.2 to 2.0 over a frequency range 
from 20 to 5000 Hz.   Though this method has 
limitations, it offers a means of evaluating the 
damping material for the purpose of recommend- 
ing cross-sectional changes of the composite 
and changes in the material dynamic properties. 

FOUNDATION DESIGN AND TESTING 

Concurrent with the analytical investigation 
and shear modulus tests, a major portion of the 
damping program was concerned with the design, 
fabrication and testing of representative ma- 
chine foundation structures [9].   Figures 7 and 8 
show solid steel and laminated foundation struc- 
tures which were fabricated for a motor-pump. 
Laminated material which had shown excellent 
damping characteristics was employed in fab- 
ricating the damped ^"ndation.  Because of the 
low strength characteristic associated with 
highly damped laminates, 3/8-in. Huck bolts 
were placed on approximately 2-in. centers 
throughout the bedplates to add stiffness.   The 
foundation legs were originally composed of 
several laminated members bolted together to 
gain required strength.   Since it was impossible 
to weld this material, mounting the foundation 
for tests was accomplished by welding brackets 
to a test vessel hull to which the foundation was 
bolted.   For comparison of vibration transmis- 
sion losses, the solid steel foundation was 
mounted for test, on the hull in the place where 
the laminated structure was tested. 
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Fig. 7 - Solid steel machinery foundation 

Lp ^7 

Fig. 8 - Laminated machinery foundation 

Mechanical impedance tests were made on 
each foundation to determine the level of vibra- 
tion transmitted to the hull, and overboard 
measurements were taken simultaneously to 
determine radiated noise.  Results of these 
measurements showed that no reduction In ra- 
diated noise was accomplished with the lami- 
nated foundation.  An analysis of the problem 
pointed to the laminated legs as a d'rect trans- 
mission path to the hull.   The laminated legs 
were being excited axially, thereby producing 
no shear in the viscoelastic material.   To 

compensate, the laminated legs were replaced 
by legs in the form of a pipe-within-a-pipe sep- 
arated by a viscoelastic material (Fig. 8).   Fig- 
ure 9 shows the attenuation effects for this 
modification.  It is seen that the use of damped 
pipe legs with the riveted foundation in place of 
the laminated ones resulted in negligible vibra- 
tion transmission loss. 

A further evaluation of the laminated foun- 
dation led to the conclusion that to gain sub- 
stantial attenuation in vibration transmission 
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Fig.  9 - Comparison of damping effectiveness for machinery foundations 

and a reduction in radiated noise, laminated 
materials must be used such that shearing of 
the viscoelastic material occurs.  A completely 
redesigned motor-pump foundation (Fig. 10) was 
fabricated using pretwisted laminated beams. 
The damped pipe legs were also redesigned to 
provide a viscoelastic cushion at the bottom of 
the outer pipe which served as an isolation 
mount for the foundation.  Brackets were used 
to attach the foundation to the hull, while the 
new design of the legs allowed them to be 
welded.  An evaluation of this structure (Fig. 9) 
revealed that a substantial reduction in over- 
board noise had resulted.  The application of 
laminated beams in present foundation designs 
appeared promising but limited, however, in 
machinery support structures.   The length of 
the laminated members made the pretwisted 
foundation unacceptable for present use on op- 
erating vessels because of space limitation. 
This design, however, could be Incorporated In 
future design of vessels so that the length of the 
laminated members is considered. 

The damping obtained with the pipe-wlthin- 
a-pipe configuration led to the fabrication of 
viscoelastic supported pipe-within-a-pipe portal 
frame foundations.  Figure 11 shows a damped 
portal frame foundation (foreground) and an un- 
damped one mounted for tests.  Results of the 

tests are shown in Fig. 12.  It is seen that, in 
general, a large reduction in overboard noise 
was obtained at the resonant frequencies with 
the damped pipe members.  Because of the 
manner in which these foundations are designed, 
their application to immediate use on operating 
vessels seems practical. 

The damping effectiveness of foundations 
are evaluated following the approach of Wright 
et al. [10] with several modifications.  Evalua- 
tion follows the mobility matrix for three axis 
inputs and neglects rotational inputs.   Experi- 
mental inverse mobilities are measured on a 
transfer basis from each input terminal to each 
output terminal.   A combination of transfer in- 
verse mobility with the termination mobility 
yields the insertion factor defined as 

j transfer  mobility with structure  in place 
T. = ; £  

1   radiator mobility without structure in place 

V 'F- out      in 

V -'F out      out 
(0) 

where i = 1, 2, 3, 4, and j = 1, 2, 3, 4.  Thus, the 
result of the experimental inverse mobility 
measurements is 16 insertion factors for each 
direction of input excitation.   A total of 48 
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Fig. 10 - Highly damped machinery foundation 

Fig. 11 - Damped portal frame foundation (foreground) and 
undamped portal frame foundation 
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Fig.   12 - Comparison of damping effectiveness for damped and undamped 
oortal frame foundations 

insertion factor curves, therefore, are obtained 
with respect to frequency.   The 16 insertion 
factor curves can be combined by power level 
summation and averaged to produce a force 
amplification ratio.   This power level summa- 
tion may be expressed as 

P o > r r 

i  •  ) 

T   .axi s £      T,'   - 10   lo R   I 

or 

(output  pressure irmediiim  with structure in 
place   input   force  with  structure  in place)/ 

( output pressure in medium without   structure 
radiator   input   force) 

(7) 

n  1     __       out 

j ?;„ 

and is easily handled graphically to solve the 
foundation transmission problem. 

By using the radiated noise from the radi- 
ator structure as a check on the system approx- 
imation made through power level summation, 
it becomes apparent that, the branch outputs are 
automatically vector summed by the radiator 
structure.   The inputs can be summed using the 
sam<j approach and approximations for pres- 
sure, i,e.. 

The four P_   for any single axis of excitation 
can be summed by the branched force technique. 

The expression for pressure became 

2]     Pj'  - 10   lof (8) 

Experimental agreement between Tn and P   is 
normally within ±5 db. 
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Concurrent with the program to test and 
evaluate damped foundations, the development 
of instrumentation to measure force and veloc- 
ity lias been proceeding.  As the level of the 
transmitted energy becomes smaller, accurate 
measurements become more difficult.   To alle- 
viate this problem, a three-channel automatic 
mechanical impedance plotting system was de- 
veloped to increase the range, accuracy, and 
sp ed of data acquisition [11]. 

FUTURE CONSIDERATIONS 

The analysis and testing of damped founda- 
tions and viscoelastic materials are continuing. 
Of future concern is the formulation of a visco- 
elastic material which can yield significant 

damping at 5000F and retain its other needed 
properties. 

Analytical work will proceed to study the 
damping characteristics of the pipe-within-a- 
pipe damper to provide guidelines in the opti- 
'■ am design of this promising configuration. 

Future experimental efforts will investi- 
gate spaced damping for large foundations in 
the design, fabrication, and evaluation of 13 
different highly damped machinery foundations 
for vibration transmission, shr jk resistance 
and creep.  Passing these laboratory examina- 
tions, the foundations will be installed in naval 
ships and retested at sea to determine total 
effectiveness. 
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DISCUSSION 

Mr. Ungar (Bolt Beranek and Newman): 
Were the tubes-within-tubes loaded in bending 
or torsion ? 

Mr. DiTaranto:  The load was carried lon- 
gitudinally from one tube through the visco- 
elastic material to the outside tube. 

Mr. Ungar:   This requires a different 
analysis. 

Mr. DiTaranto:  Yes.  We have mentioned 
nothing here about the analysis; this is one of 
the things we are looking into right .low. 
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Mr. Ungar:  Hü» •« you done an analysis 
where the transfer is axial or torsional? 

Mr. DiTaranto:  No, this is a current pro- 
gram. 

Mr. Ungar:  Have you correlated theoreti- 
cal and experimental multiple layer data ? 

Mr. DiTaranto: Yes, on simple beams, and 
the agreement between analysis and experiment 
Is very good. 

Mr. Plunkett:  Didn't you publish the com- 
parison between your experimental and theoret- 
ical results in the Journal of the Acoustical 
Society? 

Mr. DiTaranto:  Y-js.  We r aported there 
the results of the experiment and theory that the 

composite loss factor versus natural frequency 
is independent of the mode shape and boundary 
cortditions. 

Mr. Plunkett:  I was impressed by your 
experimental results for the highly damped 
structure.  You had much detail in your spec- 
trum, whereas you had relatively simple spec- 
tra for the less highly damped structures. 
Would you care to comment on that? 

Mr. DiTaranto: I think maybe Mr. Thomas 
could comment on that. He had quite a bit to do 
with the testing. 

Mr. Thomas:  A lot of this was due to the 
measurement.  We were getting exceptionally 
low levels on our hull structures, and we were 
picking up some waterborne excited noise. 
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DYNAMIC MECHANICAL STUDIES OF A COMPOSITE MATERIAL' 

M. G. Sharma, M. Critchfieid and W. F. St. Lawrence 
The Pennsylvania State University 

University Park, Pennsylvania 

A study was made of the dynamic mechanical behavior of a composite 
material consisting of a soft substance interspersed with spherical 
particles of finely divided aluminum of prescribed volume concentra- 
tions.   The study has been extended to frequencies between 300 and 
1000 cps and to various temperatures below and above room tempera- 
ture.   An apparatus developed for the determination cf the dynamic 
mechanical behavior of soft substances for this frequency range is de- 
scribed.   The apparatus is provided with a thermal cabinet to study the 
effect of temperature on the dynamic mechanical beharior. 

A theory that considers the composite material system to be made up 
of an elastic filler (aluminum) randomly dispersed in & matrix of a 
viscoelastic material (soft mpterial) has been developed.   The theory 
predicts the dynamic behavior of the material in terms of the creep 
properties of the constituent materials for uniaxial and volumetric 
compression loading. 

An examination of the experimental data shows that the dynamic modu- 
lus and the damping properties of the material are considerably af- 
fected by the volume fraction of the filler substance in the bulk mate- 
rial.   In addition, it is found that, by using the time-temperature shift 
principle, one reduced curve can be constructed for the complex dy- 
namic modulus varying with the frequencies. 

Finally, the theoretically predicted values are compared with the cor- 
responding experimenta) results, and the comparisons are found to be 
reasonably good. 

INTRODUCTION 

In recent years great interest has been 
shown in the development of new materials that 
possess high strength as well as damping prop- 
erties.   This is due to the diverse use of engi- 
neering materials.   For instance, the materials 
used in aerospace applications are not only 
subjected to extreme environmental conditions 
of temperature but also complex dynamic load- 
ing resulting from severe applications that oc- 
cur during operation.   For the effective design 
of structures for aerospace applications, it is 
very essential to determine the characteristic 
parameters that specify the mechanical behav- 
ior for all possible dynamic loading and tem- 
perature conditions. 

Until recently, homogeneous (on macro- 
scopic scale) high-strength materials with low 
damping properties were used for engineering 
structures.  But with applications where mate- 
rials are subjected to severe dynamic loads and 
high temperature, it has become necessary to 
select a material having both high strength and 
high damping properties to prolong the useful 
life of structural components.   To achieve this 
purpose, new composite materials are devel- 
oped.  The composite materials usually consist 
of a combination of two o* more materials, with 
one of the materials functioning as matrix to the 
remaining filler subst^-ces    The filler sub- 
stances can be randomly dispersed or oriented 
in a particular direction in the bulk material. 
The mechanical behavior of such materials 

*This  paper  was  not presented  at the  Symposium. 
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depends on the type of the constituems, relative 
volume concentration of the matrix, the fillers 
and the geometry of the filler particles in the 
composite substance. 

Over the past decade considerable effort 
has been directed towards the understanding of 
mechantca. behavior of composite materials [Ij. 
An examination of the literature indicates that 
most of the studies pertain to the behavior under 
static loading conditions.   Very little work can 
be found on lie dynamic mechanical behavior of 
composite materials [2j. 

This paper deals with an experimental pro- 
gram for the study of dynamic mechanical be- 
havior of a viseoelastic material containing 
finely divided metallic substances of pre-cribed 
volume concentration.   An apparatus specially 
developed for the purpose is described.   Effect 
of temperature on the dynamic properties has 
been studied.   Finally, an analytical procedure 
has been developed for the prediction of dynamic 
properties of composite niaterial in terms of 
material properties of the constituents obtained 
from static loading conditions. 

EXPERIMENTAL INVESTIGATION 

Description of Apparatus 

The dynamic mechanical behavior of a 
composite material was studied by developing 
an apparatus based on an experimental method 
originally conceived by Förster [3].   The speci- 
men in tlie form of a cylindrical rod was sub- 
jected to longitudinal vibration.   The frequency 
of vibration was varied continually so that the 
rod passes through various modes of vibration. 
The amplitude curves for resonant frequencies 
corresponding to various vibration modes were 
automatically recorded.   The specimen was 
suspended by two fine silk threads irom a rigid 
brass rod.   A periodic force, approximately 
sinusoidal, was imposed on one end of the spec- 
imen by a coil and magnet arrangement.   An 
identical arrangement picked up the response 
at the other end of the specimen.   The entire 
driving and receiving system with the specimen 
was placed in a thermal cabinet designed for a 
temperature range of -40=F to 300oF.   Figure 1 
shows a block diagram for the experimental 
arrangement.   The entire experimental setup is 
shown in Fig. 2. 

j jj Sp>'cimfn(f ' 

Temperature Cabinet 

Power 
Aasplifier 

Frequency 
Counter 

\ jltage 
Amplifier 

2-Channel 
Oscilloscope 

Audio-Hange 
Oscillator 

Drive 

Shaft B & K 
Level Recorder 

Bandpass 
Fi Iter 

Fig.  I  - Diagram of ex;  »rimental arrangement. 
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Fig. 2 - Experimental arrangement 

Description of Driving and 
Pickup Systems 

Figure 3 shows the location of the driving 
and pickup Systems with respect to the speci- 
men.  The pick jp and driving systems are made 
up of a solenoid coil and magnet assembly.  The 
solenoid coils consisted of 70 turns of No. 38 
enamel coated copper wire, woiud in four lay- 
ers.  They were 1/4 in. in diameter and 3/32 in. 
long.   Each layer was coated with epoxy during 
the winding process so that the coils would not 
unwind.   Epoxy glue was used to secure the coils 
firmly to the ends of the specimens. 

circular aperture of the front plate was 2000 
gauss. 

A periodic driving force (approximately 
sinusoidal) is imposed on the specimen when 
alternating current flows through the coll gen- 
erating an alternating magnetic field that inter- 
acts with the steady-state magnetic field of the 
permanent magnet assembly.   Precautions must 
be taken to center the driving coll properly 
within the aperture so that a uniform force is 
produced over the end face of the specimen. 
Otherwise, undesirable bending vibrations may 
be excited in the specimen.  The resonant 

Fig. 3 - Driving and pickup system 
specimen and suspension rod 

Two identical magnet assemblies, one for 
each end of the specimen, were constructed. 
Figure 4 shows a cross section of the magnet 
assembly with a list of materials used in con- 
struction.   After machining and cadmium plat- 
ing, the components of the magnet assembly 
were assembled with epoxy glue and nonmag- 
netic bolts before magnetization.   The magnet 
assembly was constructed in such a way as to 
produce a radially symmetric magnetic field. 
The estimated magnetic flux density in the 

frequency of the driving coll was found to be 
approximately 110 cps.  After running the setup 
at this frequency, the solenoid coils were found 
to be damaged.  The uniform periodic driving 
force applied at the driving end of the specimen 
generates longitudinal vibrations In the specimen, 
causing a periodic displacement of the pickup 
solenoid coll within the steady magnet field of 
the magnet assembly at the pickup end of the 
specimen.  As the moving coll cuts the lines of 
flux, an alternating voltage on the order of 1 mv 
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Fig. 4 - Cross-sectional view of magnet assemblies 

is induced in the coil.   The magnet assemblies 
were mounted on a 30-in. long aluminum rod. 
This arrangement makes it possible to adjust 
the magnetic assemblies to accommodate any 
length of specimen. 

Instrumentation 

The instruments comprising the experi- 
mental arra-gement are shown in Figs. 1 and 
2.   The arrangement consists of the driving and 
pickup circuits.   In the driving circuit a 1-v 
signal generated by a B & K beat frequency 
oscillator is fed into a 32-w Knight power am- 
plifier.   The low 1-v output voltage was selected 
because it allowed a greater amplification of the 
signal without waveform distortion than did 
higher output voltages.   The amplified signal is 
passed through both driving coil and one chan- 
nel of a dual beam oscilloscope. 

When the specimen vibrates, a 1-mv signal 
is generated in the pickup circuit.   This signal 
is fed through a bandpass filter before entering 
the B & K recorder and the other channel of the 
oscilloscope.   The dual beam oscilloscope is 
intended to monitor the input signal to the driv- 
ing coil and the output signal from the pickup 
coil.   The oscilloscope also gives the magnitude 
of the input and output voltages so that the sen- 
sitivity of the recorder may hi regulated.   The 
B & K recorder is a high-speed instrument for 
recording signal level variation with the fre- 
quency range of 20 to 200,000 cps.   A special 
feature of the recorder is its provision to drive 
automatically the frequency dial on a B & K 
beat frequency oscillator. 

Calibration 

For the determination of dynamic behavior 
by the resonance method, the frequency values 
at the peaks of the recorded resonance curves 
and the bandwidth at the half-power points must 
be known.   While passing through resonance, 
the frequency value corresponding to the peak 
amplitude may be accurately read directly from 
the electronic counter.   However, reading the 
frequency values at the half-power points from 
the electronic counter is too difficult and inac- 
curate.   This is because the half-power points 
cannot easily be detected when the recorder is 
quickly tracing a resonance curve.   Therefore, 
the bandwidth has been obtained by a convenient 
and more accurate method [4j.   The method 
determines    - -r where ^ is the bandwidth and 
.n is the resonant frequency.   Using this method, 
a calibration test was conducted leading to the 
following relation: 

(4.9 * 10"2) As (D 

where s is the width of a recorded resonance 
curve (mm) at the half-power points, and n is 
the resonant frequency (rad/sec). 

Material Tested 

The material u.^ed in the test program is 
Paracril RF-1 liquid polymer, a copolymer of 
butadiene and acrylic acid.   The liquid polymer 
(63 percent by weight) was combined with a 
cross-linking agent, Epon 828 (27 percent by 
weight) and H-10 aluminur" powder (10 percent 
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by weight; Valley Metallurgical Processing Co.) 
consisting of particles of 10M size.  The mate- 
rial was cast in the form of cylindrical rods in 
cylindrical molds.   The procedure for specimen 
preparation is described elsewhere [5j. 

EXPERIMENTAL PROCEDURE 
AND RESULTS 

Longitudinal vibration experiments were 
conducted on specimens of the composite mate- 
rial in the frequency range of 300 to 1000 cps. 
The storage modulus and the loss modulus cor- 
responding to eight resonant frequencies were 
obtained by vibrating four specimens of 9-, 8-, 
7- and 6-in. lengths at their fundamental and 
first harmonics.  The resonance curves for 
harmonics above the first were too low and 
broad for accurate measurements.   The chart 
speed of 1 mm/sec and a drive shaft speed of 
7.5 rpm were used in all four experiments. 
These speeds produced excellent resonance 
curves, in that the curves were relatively wide 
and sharp for accurate measurement   By ad- 
justing the power amplifier setting and the 
sensitivity of the recorder, resonance curves 
with heights of approximately 65 mm were ob- 
tainea.  The ratio -^- -„ associated with each 
resonance curve was found by measuring -s, 
the width of the resonance curve at the half- 
power points, and substituting in Eq. (1).   The 
half-power points were determined by measur- 
ing down 3 db or 15 mm from the peak of a 
resonance curve.  The resonant frequencies 
were determined with an accuracy of ±2 cps 
for tne fundamental mode and 13 cps for the 
first harmonics.   To determine the resonant 
frequency of the specimen, the oscillator was 
switched from its automatic sweep mode to a 
manual sweep mode.   The oscillator was then 
set at the frequency where a peak voltage was 
obtained from the output coil of the specimen. 
This peak voltage was then observed on the 
oscilloscope, and the corresponding frequency 
was read from the frequency counter.   Using 
this procedure, the fundamental and first har- 
monic frequencies were easily obtained. 

From the experimentally observed reso- 
nant frequencies and the width of resonance 
curves at half-power points, the dynamic prop- 
erties of the composite material, specified in 
terms of the storage and loss modulus, were 
determined by using the following relations 
[6.7]: 

F:(. 

EUU) (2) 

_2j k)*" ). (3) 

where 

£*(>) = storage modulus of composite 
material, 

Ej(c<-) = loss modulus of composite mate- 
rial, 

< = length of cylindrical specimen, 

c = mass density of composite mate- 
rial, and 

n - number of vibration mode. 

Following the procedure described above, the 
storage and loss moduli were calculated from 
the vibration experiments conducted at various 
temperatures ranging from 22 °F to 140 0F.   Fig- 
ures 5 an   5 show the variations of E*t(w) and 
E'(-) with frequency for various constant tem- 
perature values. 

Using the time-temperature superposition 
principle [8], it was found that the curves in 
Figs. 5 and 6 could be expressed in terms of 
reduced storage and loss moduli curves as 
shown in Figs. 7 and 8.   The shift factor re- 
quired to crnstruct the reduced curve is shown 
in Fig. 9, varying with temperature. 

THEORETICAL CONSIDERATIONS 

Following the procedure developed by 
Oldroyd [9] for an elastic solid with viscous 
inclusions, the response functions for the com- 
posite material consisting of a viscoelastic 
matrix with a small volume percentage of elas- 
tic filler can be shown to be 

[2K' MG(t)]K(t)  + 4G(t)[K'-K(t)]c 
^    ' ^   ~ im        TZ".     ! _ f.,. ,       ~     ~^ I*/ 

and 

G'm^Gan 

3K' +4G(t) - 3[K' -K(t)]c 

[9K(t)+8G(t)]G(t) + 6rK(t) + 2G(t)]G'-^ 

-   [SK(t)  1   8G(t)] lG(t) - G']c 

9K(t)+8G(t)]G(t) + 6[K(t)+2G(t)jG' 
U  6[K(t) +  2G(t)] [G(t) - G']c 

(5) 
where 

and 

K'(t)  = bulk modulus function for compo- 
site mater Lai, 

G'(t)  = shear modulus function for compo- 
site material, 
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frequency f (10-   cps) 

Fig. 5 - Variation of tensile modulus with frequency 
and temperature for composite material 

c 

=   1 

frequency  f (10    cps) 

Fig. 6 - Variation of tensile loss modulus with frequency 
and temperature for composite material 

100 



5 

K 

i    „ 
t     — 
at       « 

£     a 

0      -~ 
•>      o 
•     —     J 

V^ 

c 
0 

^-O  o 

3 

^0|H 
c      —* 
•>      .  

3               ?! 

S\0 

0 

H*f?rence temperature 

TO - 75
0r 

T3 
II a: 

1 

 . ■ o" 0^^ 

;TO 1000        10000        100000 

Reduced frequency f •_ (cp«) 

Fig. 7 - Reduced stc rage modulus curve for composite material 

-1 01 

TT ■w 1000 

Referenc« 

10000 

teaperature 
T    - TPf 

100000 iOCOOOC 

Reduced frequency f ■    (cpa) 

Fig. 8 - Reduced tensile loss modulus curve for composite material 

G( t)  = shear modulus function for visco- 
elastic matrix, 

K(t)  = bulk modulus function for visco- 
elastic matrix, 

K', G'  = bulk modulus and shear modulus 
for elastic filler substance, 

c = volume concentration of filler in 
composite material, and 

t = time. 

For the composite viscoelastic material in a 
state of steady vibrations, the complex bulk and 
shear moduli are given by substituting ioj (where 
i  is the imaginary number) for t in Eqs. (4) 
and (5).  The justification for this procedure is 
given in the Appendix.   Making the substitution 
for t with iw in Eqs. (1) and (5) and separating 
the resulting complex function into real and 
imaginary parts, the following expressions are 
obtained: 

K*(aj) 
ay + ßb 

y2 +  b2 
(6) 

(Cont.) 
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and 

KjCoO 
ßy - ah 

y2 +   ö2   ' (6) 

where 

a =    K'lÄ^a.) + 4cG,(w)]   + 4[G1(aJ)K,(u
,) 

- Gjf^Kjf^ld-c) 

K'[3K2(a.) + 4cG2ro]   + 4rGl(a;)Kj(cL) 

+ G2(uj)Vil(co)](l-c) 

3K'(l-c)  +   [tGiiw) +  ScK^w)] 

4G2(u) +  3cK2r.) 

Kjf.)^,»^) = storage bulk moualus and storage 
shear modulus, respectively, for 
viscoeiastic matrix; and 

K2( o,Gj(. > = loss bulk modulus and loss shear 
modulus, respectively, for visco- 
eiastic matrix. 

Similarly, 

and 

where 

G,(-)   - 

C'2( ,)   - 

y2 +   S2 

ßy -  5 i 

y2 +  S2 

(7) 

ä   --    [Gjfa,) A - G2B]  , 

/?   -    iG, B + G2Ä] , 

QfG^^K^aj) - G/u)K2(,Olri-c) 

+ G'[3K1(a;)(2. 3c)  + 4G1^K3+2c)] 

+ SlCG^a'))2 -  fG2^/,>2]M-c) 
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B   =   jgiG^OKjU) * GjfoK,^)^!-c) 

t G'[XJ(u.)(2*3c)  * 4G2(.)(3i 2c)1 

t   160,(0.) G^Kl-c) 

SiGjC^K^ O - G2f.)K2(Ok3+ 2c) 

♦   eG'TK/u;)  -   2G,(a))(l-c) 

+ 4[fG1(.0)2 - (G,(a.))2]{2t3c) | , 

and 

7   .   UfG^KjCa) + G2(^)K,(Mi(3*2c) 

- 9G'[K2(a) -  2C2(a.)jn-c) 

- SG^w) G2(^)C2 -3c) 

Equations (6) and (7) are the expressions for the 
dynamic properties of the composite viscoelas- 
tic material in terms of the dynamic properties 
of the viscoelastic matrix, the material con- 
stants for the elastic filler, and the volume con- 
centration of the filler. 

CORRELATION OF THEORETICAL 
AND EXPERIMENTAL RESULTS 

Creep tests in tension of the unfilled Para- 
cril RF-1 gave the following expression for 
creep compliance function; 

D(t) D.      D, -   exp VD/J 
(8) 

where 

Do = 60.45 x 10 ^ psi, 

D, = 22.20 x 10 5 psi, 

\D = 33.6 min, and 

t  = time (min). 

In arriving at Eq. (8), it must be noted that 
linearization of the observed slight nonlinear 
behavior had been made. 

Conducting volumetric creep experiments, 
it was noted that the bulk creep compliance 
function for the unfilled material is of the form 

B(t) B    + B    1 oxp 0) 

Bo = 2.58 x IQ-s psi, 

B, = 1.59 x JO 6 psi, and 

A.B = 55 mln. 

Using Eqs. (8) and (9), the storage and loss 
compliance functions can be evaluated and are 
given by [10]: 

D^u.)   =   D0 + D, 

ü2(u>)   -   D, 

1        1 
1  *  ^X'J ' 

LI + -J
2
 \n

2 J 

B,^)   =   Bo + 6, 
1 + c2 xB

2 

and 

B0(w)   ~   B 
1   i    a2 Z 

(10) 

(11) 

(12) 

(13) 

where üt(a>),D2(ta) are storage and loss com- 
pliances in tension, respectively, and B^.B^-) 
are storage and loss bulk compliances, respec- 
tively.   From Eqs. (10) through (13), the ex- 
pressions for storage moduli can be determined 
as follows [10]: 

and 

£,M 

E-COJ) 

K,^) 

K,(^    = 

D.(w) 

[D^.)]2 +   [D2(^)l2 

D2(^)  

[D,(aj)] 2  +   [Dj(a,)] 2 

Bj(v)  

[B,^)] 2 +   [Bj(aj)]2 

B2(u.)  

[8,(0.)] 2  4    [B2(a;)]2 

(14) 

(15) 

where £,(01) and E2(a») are the storage and loss 
modulus in tension, respectively.   Equations (14) 
and (15) lead to the following expressions for 
storage and loss shear modulus: 

G,^) 
C1C3    *■   C2C4 

and 

where 
0,(0)) 

C32 

c c 

(16) 

f c 
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where G'/-)K;U)  + G'/^^K^O . 

and 

c,  = slz^ww^w) - tjwynjw)] 

Cj    =   SLE^'^K^^)  +  £,(&))»,(tu)] 

Cj   =   9Kl(^ - £,(0.) . 

C4   =   9Kjr^) - Ej(a.) . 

Substituting Eqs. (lt>) and (16) in Eqs. (6) and 
(7), 

E*(i^) 
9G*(i^)K*(i^) 

3K*(ia)) iGVio)) 

where E*(iw) is the complex modulus in tension. 
The following expression for storage and loss 
tension modulus can be obtained after separating 
the real and imaginary parts in E4. (17): 

and 

where 

t\(v) 

E'2(a>)    = 

C.C3 ♦ cac4 

c»C3- c.c, 

c 2 + c2 

(18) 

OIG'COOK'COJ)  -  Gj(a;)K'(w)i 

and 
C4   =   3K](.) t  Gji^) 

Using Eq. (18) and the material constants for 
the unfilled Paracril RF-1, as given by Eqs. 
(8) and (9), the theoretical values of storage 
and loss modulus for various frequencies were 
calculated for a filler (aluminum) concentra- 
tion of 10 percent.   Table 1 compares the the- 
oretically predicted and experimentally deter- 
mined values. 

DISCUSSION 

The apparatus described here is very suit- 
able for studying the dynamic mechanical be- 
havior of materials.   Since the test material 
was soft, the frequency range for which the dy- 
namic properties were evaluated was small — 
300 to 1000 cps.   This is in part due to the 
limited number of resonant modes that can be 
produced because of large damping occurring 
in the material.   A stiller material would have 
given a greater number of resonant modes and 
thus would have increased the range of fre- 
quencies.   An extension of the present investi- 
gation indicates that the increase of percentage 
of filler in the bulk material would stiffen the 

TABLE 1 
Theoretically Predicted vs Experimental Values for Composite Material 

Frequency 
(cps) 

Theoretical Values Experimenta Values 

E/o;) E2M E.CcO E2(0 
a 

tan  6 

300 2053 2.854   x 10"6 2925 590 0.180 

375 2053 2.29     x lO"6 3025 480 0.167 

450 2053 1.903   x 10"6 3080 390 0.122 

525 2053 1.631   x lO6 3150 390 0.140 

600 2053 1.4270 x lO"6 3200 410 0.215 

675 2053 1.270   x lO"6 3250 460 0.283 

750 2053 1.141   x lO"6 3310 510 0.272 

825 2053 1.038   x lO6 3350 510 0.240 

900 2053 9.513   x lO"7 3400 610 0.197 

975 2053 8.787   x lO"7 3450 660 0.170 

ltan 6 -- Ej/E, . 
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material further, leading to an increase in fre- 
quency range for which the dynamic properties 
can be evaluated. 

The dynamic properties of the material, 
specified in terms of the storage modulus and 
the loss modulus, are very much dependent on 
the frequency of excitation and the operating 
temperature.   This can be easily seen from 
Figs. 5 and 6.   It is interesting to note that the 
time-temperature shift hypothesis makes it 
possible to construct reduced modulus curves 
covering a frequency range of 10 to 104 cps 
(Figs. 7 and 8). 

The dynamic properties of the composite 
material have been predicted from the static 
creep properties of the vlscoelastic matrix 
and the elastic constants of the filler.  The 
comparison between theoretical and experi- 
mental values is shown in Table 1.  The the- 
oretical value for storage modulus remains 
constant for the range of frequencies studied, 
and the value checks better for lower frequen- 
cies than for higher frequencies.  The constancy 

of theoretical value for storage modulus is 
due to the second term in Eqs. (10) and (12) 
becoming small, resulting in constant values of 
D,(^) and B,^).  The discrepancy between the 
theoretical and experimental values of loss 
modulus is much greater.  This can be explained 
as follows.  The creep data used for prediction 
were obtained for time scales much larger than 
those of the dynamic experiments, since it is 
extremely difficult to obtain accurate creep data 
for the small time scale in the dynamic experi- 
ments.  It can be argued that one may get better 
correlation if one can obtain accurate creep data 
for times on the order of milliseconds. 
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Appendix 

TRANSFORMATION OF TIME-DEPENDENT TO 
FREQUENCY-DEPENDENT RESPONSE FUNCTIONS 

The justification for substitution of (iw) for 
In Eqs. (4) and (5) to obtain the complex 

moduli for the composite material can be es- 
tablished as follows.    Suppose a linear 
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vlscoelastic material Is subjected to a steady 
vibration as expressed by 

en't)   =   a   e' (A-l) 

where ^ n is the time-dependent stress and 
ao Is the amplitude of stress. The resulting 
strain can be shown to be 

e(t) i(«t- 8 ) (A-2) 

where 

e(t) = time-dependent strain, 

e0 = strain amplitude, 

h = phase angle, and 

i = N' -1, Imaginary number. 

The stress-strain law for a linear vlscoelastic 
material can be expressed In general form as 

PcT(t)      =      Q£(t)   , 

where 

9" 

9tn "r at"-1 

and 

(A-3) 

0   =   q     +  q     , 
St" 9^-1 

Substituting Eqs. (A-l) and (A-2) Into Eq. 
(A-3) yields 

+   q^^M-'.-.-.q^^e^^-5)   . (A-4) 

By definition. 

oft) ao e i (US 

-   EVico) (A-5) 

That Is, 

Z'(icü)    =   4 
q;n(i^)m + qm. ,(ia.)B,-1+ ••• +q 

i (A-6) 

If cr(t) and e(t) In Eq. (A-3) apply to a relaxa- 
tion test, the following relation holds good: 

4^   =  (|) =   E(t) . (A-7) 

where £0 Is the constant value of strain in a 
relaxation test.  The correspondence between 
Eqs. (A-6) and (A-7) is immediate. 
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