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DAMPING

MECHANISMS AND SCALING OF DAMPING
IN A PRACTICAL STRUCTURAL JOINT

Brantley R. Hanks and David G. Stephens
NASA Langley Research Center
Hampton, Virginia

An investigation was conducted to determine the effect of geometric
scale on the damping in a practical beam-joint assembly. A cantilever
configuration was utilized wherein the beam was bolted between two
angle brackets at the support. Four geometrically similar assemblies,
covering a scale range of approximately 20 to 1, were tested. Free
decay of the fundamental mode was measured over a range of joint
clamping pressures and beam tip amplitudes. Also, damping changes
resulting from the addition of liquid lubricants and viscoelastic films to
the joint interfaces were investigated. Data indicate that an increase in
model size results in a decrease in damping attributed to the structural
joint. Furthermore, joint dampiag is shown to be slightly dependent on
vibration amplitude and to vary as an inverse function of joint clamping
pressure. Joint damping may be subatantially increased by the addition
of liquid Iubricants or viscoelastic films at the. joint interfaces.

both model and prototype. The dev<i.i.nent of
proper scaling relationships for damping re-
quires a knowledge of each of the damping
mechanisms in the system, such as material
hysteresis [1,2], air damping [3,4], and joint
damping [5-7]. In space systems, scaling rela-
tionships for joint damping are of particular
importance since the major source of energy
dissipation in such gystems [8] is usually at-
tributed to structural interfaces or joints.

B. R. Hanks

The purpose of this paper is to present the
results of an experimental investigation of the
nature and scaling of damping in a structural
joint. The joi.. damping of four cantilever sys-
tems, covering a geometric scale range of 29

INTRODUCTION

Dynamic models are often used to study the
vibratory response of complex systems when

full-scale testing is precluded by system size
and/or cost. The usefulness of model tests is
dependent on 2 knowledge of the proper scaling
relationships required to extrapolate model data
to the full-scale systems. A considerabls
amount nf information has Yeen obtained on the
scaling relationehips for frequencies and mode
shapes. However, the variation of dampiny with
model size or scale is largely unknown and often
either neglected or considered to be the same in

to 1, was examined. Data are presented to show
the eifects of vibration amplitude, joint clamp-
ing pressure, and model scale, as well as that
of interface lubricants and iilms, on the magni-
tude of tha damping in structural joints.

APPARATUS AND TEST PROCEDURE

The apparatus used in this investigation,
shown in Figs. 1 and 2, consisted of four

A
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Fig. 1 - Joint damping models,
showing relative sizes
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A 60.1 X G 219
B 600 ) H 313
C 700 ) | 169
o] 100 ) Jd 263 )
E 088 ) K 113 )
F Q102 L 083 )

SCALE FACTOR ) :!, 667, 333, 053
Fig. 2 - Dimensions of joint

damping models

geometrically scaled beams bolted between
correspondingly scaled angle brackets. The

angle brackets were, in turn, clamped to a
massive concrete and steel supporting block
giving a cantilever beam configuration. The
four models hai scale factore A of 1, 0.667,
0.333, and 0.053 with the beams ranging from
5 ft down to 3.2 in. in overall length. The
beams and angle brackets were made of 6061
aluminum alloy with all surfaces finished to

63 vin. rms. Each angle bracket was machired
from a single piece of aluminum and had a web
welded to the center to provide rigidity.

Three joint interface conditions (dry, oil-
coated, and viscoelastic-film-filled) were stud-
ied in an effort to find a method for improving
the inherent damping of both small- and large-
scale systems. The dry and oil-coated joint
testa were performed on all four models,
whereas the effect of viscoelastic films was
studied on the 0.667 assembly. In studying the
effect of joint lubrication, the interfaces were
coated with a thin layer of oil before assembly.
Three oils having viscosities of 158, 525, and
1400 cp were used. The effect of viscoelastic
film inserts was studied using three film mate-
rials: 0.5 mil Teflon, 1 mil Mylar, and 1 mil
polypropylene. The films were cut to the shape
of the joint interface and placed in position dur-
ing model assembly.

The test procedure was essentially the same
in all cases. The total damping of the systems
was measured at atmospheric pressure for a
range of joint clamping pressures (by varying
bolt tightening torque) and beam tip amplitudes.
For 2 particular clamping pressure, the bezam
was deflected manually and released to osciliate
in the first cantiiever vibration mode. Oscilla-
tions of the beam were sensed by an electrical
resistance strain gage attached to one side of
the beam as shown in Fig. 1. The strain gage
wag coupled, through an amplifier, to an elec-
tronic dampometer, a device for determining
the frequency and damping of a vibrating sys-
tem. Basically, the dampometer counted the
number of cycles as the amplitude decayed be-
tween preset limits. The logarithmic decre-
ment 5 was then calculated from the equation

1 Ya
5 = = 1
Nlogc voon ()

where N was the number of cycles counted, y_
was the amplitude at which counting started,
and y_,y was the amplitude at which counting
ceased. In all tests the ratio of start to stop
amplitude was maintained at 10/7 so that

5 11 10
= =—10 —'
N g"7




Since the damping was measured over a band
(v, vq.n) Of the decay envelope, the logarithmic
decrement was specified at the average ampli-
tude of this band. Measurements were made at
several amplitude levels for each bolt torque by
varying the triggering voltage of the dampome-
ter. In all tests, sufficient initia. deflection was
given to the beam to allow transients to die out
before the darapometer triggering amplitude
was rcached. Each test was repeated at least
five times and the average value of the data was
u~ed in analysis.

Joint clamping pressures were calculated
from the bolt tightening torques using the for-
mula [9]

F-o>" 1t

where F is the clamping load per bolt, T is the
torque, and D is the bolt diameter. With con-
version to average clamping pressure produced
on the joint by the four bolts, the formula be-
comes

- 3)

where P is the average clamping pressure and
A is the joint interface area. No allowance was
made for variation of clamping pressure across
the interface.

MATERIAL DAMPING CONSIDERATION

The determunation of the magnitude of joint
damping in a complex system involves the sepa-
ration of the total damping into its various com-
ponents. One contribution to the total damping
is that of material or hysteretic damping within
the material comprising the system. Experi-
mental separation and measurement of this ma-
terial damping is difficult in complex systems
such as the one under study. However, an ana-
lytical expression developed by Zener [1] has
been verified for aluminum in experimental
work by Granick and Stern [2]. Material damp-
ing in a cantilever beam was shown to be
closely approximated by the equaticn

5 - ma? ET wy 4)
m C 1+ wliy? '

where

O
1]

logarithmic decrement for material
damping;

thermal coefficient of linear expan-
sion, 1/°R;

S
n

™
]

modulus of eiasticity, pei;

-3
"

absolute temperature, °R;

specific heat per unit volume, BTU/
in.3-°R; and

0
n

circular frequency of vibration, rad/
sec.

€
]

For a fiat beam of uniform thictness, material
damping can be approximated by

‘;:t_z.g' (5)

where

t

beam thickness, in.; and

K = thermal coaductivity, BTU/sec-°R-in.

The material damping as predicted by this
equation for the four beams tested in this joint
damping study is shuwn as a function of fre-
quency in Fig. 3a on the left. The magnitude of
the material damping at the fundamental reso-
nant frequency is dencted for each beam by a
circle. These resonant damping values are re-
plotted as a function of scale factor in Fig. 3b.
For the systems under study, material damping
as predicted by the Zener equation is essentially
inversely proportional to scale.

[4 |‘,w272
LOGARITHMIC .25k
DECREMENT, 3 4 2
3 v K
8xI0

| O 1st NATURAL FREQUENCY
- DAMPING VALUES

c ; :
6 0 8 e 0 25 % 75 10
FREQUENCY, 1, cps SCALE FACTOR,

(a) (b)

Fig. 3 - Material damping as predicted by
Zener theory: (a) as function of frequency,
and (b) at fundamental resunant frequency
as function of scale factor

PRESENTATION AND DISCUSSION
OF RESULTS

The test program consisted of an isolation
and examination of the damping for the varia-
bles: vibratory amplitude, joint clamping
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pressure. model scale, and interface condition
(i.e., dry, lubricated, or film insert). The de-
pendency of the damping on eack of these varia-
bles is illustrated by representative data in the

following sections.

Dry Interface

Effect of Vibration Amplitude — The damp-
ing measured for the 0.867-scale model, which
is typical of the four assemblies, is shown in
Fig. 4. The total damping in terms of the log
decrement ? is presented as a function of the
ratio of vibration dispiacement amplitude to
beam thickness y/t for five values of joint
clamping pressure. The total damping increases
linearly with an increase in ampliiude. Since
the total damping represents not only losses in
the joints but also internal hysteresis and air
damping, the question arises as to whether the
joint damping per se is amplitude dependent.
Several factors suggest that the joint damping
is amplitude dependent. First, Refs. 2 and 3,
respectively, indicate that both the hysteretic
and air-damping losses are amplitude independ-
ent for the range of amplitudes covered by these
tests. Secondiy, the slope of the faired lines in
Fig. 4 is observed to change with a change in
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250 x1073
t
204 .08
A=0.053
1sh .03 \
o \
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1 1 1 1 J
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! ¥
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o 3I™0 0667
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Fig. 4 - Variation of total damping with
heam tip vibration amplitude

clamping pressure (a variable affecting joint
damping only) with all other factore being held
constant.

Effect of Joint Clamping Pressure — The
damping for each of the models is presented as
a function of joint clamping pressure in Fig. 5.
These curves are cross plots of the damping-
amplitude curves such as the previous example,
Fig. 4. The total damping decreases rapidly as
the clamping pressure is increased in low range;

LOGARITHMIC
DECREMENT, 3
5r.:|o-3
4 -
20667
3+ bi
1
08
2r o3
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1 1 A e
0 1000 2000 3000 4000
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5rx1073
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3 \ ‘F =10
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NS T—
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0 1000 2000 3000 4000

JOINT CLAMPING PRESSURE, psi
(d)

Fig. 5 - Variation of total damping with joint clamping pressure: (a) scale factor = 0.053;
(b) scale factor = 0.333; (¢) scale factor = 0.667; and (d) scale factor = 1.0




however, it levels out or approaches a constant
value at relatively high clamping pressures. It
will be assumed henceforth that the joint damp-
ing at high stress levels is negligible compared
to the other or tare damping (the damping due
to the surrounding air and internal hysteresis)
in the system. Thus, the magnitude of the joint
damping at a particular pressure and amplitude
is considered to be the difference between the
measured value and the respective high clamp-
irg stress asymptote.

Effect of 3cale — The variation of total
damping with scale factor is shown in Fig. 6 for
two values of the joint clamping pressure. All
of the data between the amplitude limits y/t of
0.03 to 0.0¢ fall within the indicated band. These
data demonstrate that total camping increases
with decreasing scale factor, resulting in sub-
stantially higher damping for the smaller mod-
els. The trends of these curves are very simi-
lar to the variation of material damping with
scale factor as predicted by Zener, which is
repeated fcr comparison purposes.
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25,—x|0'3

The damping attributed to the joint, ob-
tained by subtracting the respective high stress
asymptote (Fig. 5) from the curves of total
damping (Fig. 6), is presented as a function of
scale factor in Fig. 7. The joint d=mping is also
seen to be inversely proportional to the scale
factor. Examination of the curve reveals that
the joint damping values for the 0.333- and 0.053-
scale models are several times higher thanthose
of the larger models. These curves indicate
that caution should be used in extrapolating to
full-scale systems damping data obtained in
tests of small models. The common practice
of assuming that the damping of the prototype is
the same as in the model could lead to gross
overestimates of the damping in the full-scale
systems.

Treated Interfaces

Effect of Oil — In an effort to alter the joint
damping, the effect of interface lubricants was
examined. Typical results are shown in Fig. 8
where the total damping for the 0.667-scale
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1500 "t

MATERIAL DAMPING (ZENER) ——

Fig. 6 - Variation of total
damping wiith scale factor
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Fig. 7 - Variation of joint damping
with scale factor
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Fig. 8 - Variation of total damping
with joint clamping pressure for
lubricated and dry joint conditions

model, with 150-cp oil added to the joint inter-
faces, is presented as a function of joint clamp-
ing pressure. For comparison purposes the
"dry" data (Fig. 5) are repeated.

The dependency of the damping on clamping
pressure i8 essentially the same in both the
lubricated and the dry cases. However, the
magnitude of the damping recorded for the lubri-
cated joint is considerably higher. A similar
phenomenon was reported in Ref. 10 where the
damping of a cantilever beam was substantially
increased by the addition of grease at the root
although the exact mechanism was not fully
discussed.

The dependency of the damping on amplitude,

as indicated by the width of the band in Fig. 8, is
higkar for the lubricated case. This was noted
for all models, except the 0.333-scale model for
which there was little difference in amplitude

dependency between the dry and lubricated joints.

Although data are not presented, the dependency
of the damping on amplitude was again found to
be linear. Also, tests conducted with thd 525-
and 1400-cp oils revealed no appreciable differ-
ence when compared with the damping in the
joint lubricated with the 15C-cp oil.

The relative effect of oil on damping for all
four models is summarized in Fig. 9, where the
ratio of total damping with oil to that without oil
is plotted as a function of scale factor. A Inbri-
cant ie shown to increase the damping in all but
the smallest model, where the addition of 2il
slightly decreased the damping.

Effect of Viscoelastic Films — The effect
of adding viscoelastic films to the joint inter-
faces of the 0.667-scale model is illustrated in
Fig. 10. In this figure, the range of total damp-
ing obtained with each of the three film mate-
rials is shown together with those obtained in
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Fig. 9 - Joint lubrication effectiveness
summarized for all models
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Fig. 10 - Total damping ranges obtained
for various joint conditions

the dry and lubricated joint cases in bar graph
form. The film materials are shown to increase
the damping substantially, although they are not
significantly more effective than oil in this
respect.

ZONCLUSIONS

An investigaticn was conducted to deter-
mine the effect of goemetric scale on the damp-
ing in the joint of a practical beam-joint as-
sembly. In addition, a brief study was made of
the effect on joint damping of adding oil and
viscoelastic films to the joint interfaces. Within
the range of variables considered in these stud-
ies, the following conclusions were noted:

1. The damping attributed to the structural
joint increases essentially linearly with vibra-
tion amplitude for any given joint clamping
pressure.

2. Total damping decreases with increas-
ing joint clamping pressure for low clamping
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pressures but becomes essentially invariant at
high pressures.

3. Both the total damping of the assembly
and the joint damping increase considerably
with a decrease in geometric scale.

4. Tbe addition of oil to joint interfaces
can, depending on model size, increase damp-
ing over that of the dry joint case. Thin visco-
elastic films inserted between joint inierfaces
are also effective in increasing damping, but
not significantly more so than oil.
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DISCUSSION

Mr. Ungar (Bolt Beranek & Newman): This
was a very interesting piece of work. I am par-
ticul cly gratified to see that your results are
very similar to those we got on a slightly differ-
ent geometry several years ago. We studied a
beam riveted to a plate and made some conjec-
tures about the mechanism. Did you determine
what caused the damping in the joints ?

Mr. Hanks: We were not able to determine
the exact mechanism. You determined that air
pumping had a considerable effect. We had very
littie air pumping and we couldn't attribute the
joint damping to Coulomb friction because the
trends of amplitude dependency was wrong, 8o
we could not identify the mechanism. We did try
to extrapolate the curves back to zero value and
to identify mechanisms from that but we were
unsuccessful.

Mr. Ungar: It was interesting to see that
the parametric dependences you got were very
similar to those we observed, and although you

do not have air pumping in this case you do have
oil pumping. We also experimented with oils of
different viscosities, but over a range of 1 to
10* in increments of orders of magnitude. We
found a peak in damping that you get with some
intermediate range of oil viscosity. I feel from
the things you report that probably the mecha-
nisms are oil pumping for the oily joints and
air pumping for the dry joints. Incidentally,
Madonic recently published in the Journal of the
Acoustical Society an analysis of the mechanism
and an analytical prediction. He also showed
that th~re are a couple of dependents of fre-
quency on frequency and viscosity in terms of
an oscillatory boundary 1aj 'r in the fluid be-
tween the joints.

Mr. Hanks: We did run the smallest beam
in a vacuum, although the vacuum was not a
hard one, so that we may not have gotten ali the
air out of the joint interface. However, the
trends were the same in that case as in the at-
mospheric test.
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Mr. Khilnani (Texzs Instruments): I notice
that the addition of the plastic llms Interferes
with the damping. What was the ratio of film
thickness to beam thickness ? Were the {{ims
double- or single-layered on either side of the
joint ? Did machining roughness of the beam
have any effect on the damping?

Mr. Hanks: The plastic films were very
thin, on the order of i/2 mil. The beams
vary from 0.05 to 1 in. in thickness. On the
2/3-8cale model, the beam was 2/3 in. in
thicxness compared to 1 mil for the plastic
films. We tried only the 63-uin. rms surface
roughness, 80 I am not prepared to answer
any questions as to the effect of the surface
roughness.

Mr. Baruch (Kollsman Instrument Corp.):
Since your total damping includes the effect of
material damping, joint damping and air damp-

" ing, wouldn't the fact that you decrease the

width of your specimen leave a smaller surface
area for air damping effects, thus resulting in
lower damping in the smaller scale models?
Could you possibly give an intuitive percentage
of the air damping, or was this just meant to
give an overall effect in the study ?

Mr. Hanks: We did not go into a detailed
study of the air damping, but as well as we
could determine, using the works of other peo-
ple and our tests on small beams in vacuum,
air damping accounted for less than 5 percent
of the damping in our systems.

*




DAMPING OF STRUCTURES BY VISCOELASTIC LINKS

David I. G. Jones
Air Force Materials Laboratory
Wright-Patte~son Air Force Base, Ohio

and

Ahid D. Nasif
University of Dayton
Dayton, Ohio

Many complex structures exhibiting vibrational problems contain paral-
lel or substantially parallel elements. The vibrational characteristics
of the parallel elements are often different and, under certain circum-
stances, the use of viscoelastic links between antinodal parts of paral-
lel elements can, with proper use, lead to the introduction of significant
amounts of damping into the structure at the expense of very little
added weight.

To gain some insight into the possibilities of such a technique, some
investigations of the response of parallel beams of diiferent flexural
rigidities and weights, joined by such links, have been carried out at
the Air Force Materials Laboratory. In the preliminary investigation,
attention has been concentrated on a pair of parallel clamped-clamped
beams with a viscoelastic link joining the centers, A theory of the re-
sponse of the system is developed and it is shown that substantial
amounts of damping can be introduced into the beams by proper choice
of the link stiffness, provided that a natural frequency of one beam is
not identical to {or close to)} any natural frequency of the other beam, in
which case no damping can be achieved no matter what the excitation
may be.

An experimental investigation is descrited in which the theory is veri-
fied for links made of one commercially available viscoelastic material.
Plans for further investigations of viscoelastic links in more complex
structural models, more representative of situations likely to arise in
current and future aerospace vehicles and other structures, are briefly
discussed.

viscoelastic links joining elements of compiex
structures to achieve high damping has re-
ceived much attention. An early investigaticn
(1] has shown that the use of distributed visco-

D. 1. G. Jones elastic links between parallel beams can lead
to high damping, provided the frequencies of
the fundamental modes of the two beams are
not equal.

In this paper, an analysis is presented for
the response and effective damping of two par-
allel clamped-clamped beams with a single
viscoelastic link joining the beam centers. It

INTRODUCTION ¢ shown that high damping can still be achieved,
provided the fundamental frequency of the beam
It does not appear, from a review of the in question i8 not equal to any natural frequency

available literature, that the possibility of using of the other bea:un.
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The experimental investigation of the same
configuration is described, and it is shown that
the theory accurately describes the phenomena
occurring for one value of the loss factor of the
link, which comprised a ring of a commercially
avaliable viscoelastic material..

LIST OF SYMBOLS
a,, s, See Egs. (7) and (10), respectively
A,,A, Arbitrary constants

A Amplification factor at resonance for
beam 1

b Breadth of circular link
b,,b, See Egs. (8) and (11), respectively
B,.B, Arbitrary constants
c,.c, See Egs. (9) and (12), respectively
C,.C, Arbitrary constants
cos Circular cosine function
ch Hyperbolic cosine furction (cosh)

d Separation of beams; also diameter of
circular link ueed in experimental in-
vestigation

D,.D, Arbitrary constants

exp Exponential function

, Young's moduli of beams 1 and 2, re-
spectively (psi)

i ~ -1 or suffix denoting beam (i = 1,2)
1,.I, Second moments of area of beams (in.*)

k Real part of stiffness of viscoelastic
link (ib/in.)

L Length of beams (in.)

sin Circular sine function
sh Hyperbolic sine function (sinh)
t Time (sec)

T, Transmissibility of beam 1

10

¥, Amplitudes of transverse vibrations of
beams relative to clamped ends at any

point « (in.)

1

x Station along beams, measured from
certers (in.)

X Amplitude of vibration of cltamped ends
(in.)

' k/E,I,A}, nondimensional link stiffness
parameter

n Loss factor of viscoelastic link
n, Effective loss factor of beam 1

A E,I,/EI,, nondimensional parameter
defining relative stiffnesses of beams

A..A, See Eq. (3)
4.4, Masses per unit length of beams (Ib/in.)
7 Thickness of link (ring)

£, X,L/2, nondimensional frequency
parameter

¢ u,/u,, nondimensional mass parameter

w Circular frequency (rad/sec)

THEORY OF PARALLEL CLAMPED-
CLAMPED BEAMS WITH VISCO-
ELASTIC LINK JOINING CENTERS

Consider two parallel clamped-clamped
beams joined by a viscoelastic link as shown in
Fig. 1. If the amplitude of the harmonic vibra-
tion of one beam relative to the clamped ends
is W,(x) and that of the other beam is W,(x),
and the supports are vibrating with harmonic
displacement X exp(i«t), then the equations of
motion of the two beams are

Eili(d‘wi/dx;) - by a)zwi = u.imle i=1,2 (1)
at all points apart from the points to which the
link is attached. The general solution of Egs.
(1) is:

Wi(x) S A.lch()\ix) + Bysh(h;x) + C, cos (X;x)

¢+ Dy sin (A\jx) - X, i - 1,2, (2)

where

o somngtin ot WA B ~ Sl
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Fig. 1 - Idealized link joining parallel beams

Ao oE I, i= 1,2, (3)

The eight constants A,, B,, C; and D; are de-
termined from the various boundary conditions:

W, =dW,/dx =0 at x = +L/2,
dW,/dx = 0 at x =0,
2,1 (W, /dx®) = k(1+in(W,-W)  (4)
and
2E,1,(d%W,/dx3) = k(1+im(¥,-W)) ()

at x = 0. From these conditions, the eight
equations for the eight unknown constants are
readily set up and solved. After some simpli-
fication, the solution W (x) is readily shown to
be:

Wix) [(1+imlbye,+ (b, AN 4] +4c a,
X T raeinlap, + (abyMN@N Y4 + 4aa,

(®)
where

sh £, cos £, + ch & sin &, . (7)

b, = a, [sh(26; x/L) - sin (2, x/L)]
- ch (26, x/LY(ch &, cos &, + shé, siné - 1]

= cos(2-flx/L)[chg’lcos £y-shésinéy- 1],
(8)

c, = sin& ch (26, x/L) + sh&, cos (26, x/Ly-a,
(9)
ay = sh {(¢/N)4 4.} cos {(r0)17H e}

Hch (M4} sin (0 ig) . (10)

11

by = a,[shite/n) /4 (2, L)}

sin {(&YN)V* (2, x/L)}]
- ch{(e/N) V4 (26, WLy} |ch{(e/M)1/ 4 €}
+ sh{(@/M 4 €)) sin ((MV4€,) - 1]
- cos {(evM)1/* (28, wL)} [ch WCANEAN
x cos {(/N)1/4¢£)}
- sh {(/N) V4 €, sin WM €} - 1], (11)
and
¢, = sin (N4 €.} ch {(erN) V4 (26, xL)}

+ shi(g/MV 4 £} cos (/N4 (25, x/L)} - a,.
(12)

The transmissibility T, is defined as the ratio
of the response at any point of beam 1, relative
to a fixed point in space, tc the input amplitude
X, l.e,,

T, = [W, +X]/X. (13)

METHOD OF SOLUTION

For given values of the ratio ¢ of the beam
masses per unit length, beam 1 being taken as
reierence, and the ratio » of the flexural rigid-
ities, the transmissibility T, can be expressed
as a function of the frequency parameter ¢,
the link loss factor n and the link stiffness pa-
rameter I" (Eq. (6)).

The calculations were performed for ¢ =
0.5, 1.0 and 2.0 and a range of values of A be-
tween 0.01 and 100 at x = 0. Transmissibility




e

A

A:0.%0

10 v +0.80
z-z,oo

i
}{\\

AR v

=06

TRANSMISSIBILITY AT CENTER OF BEAM |
o

\___ %
oO 2 4 6 8 1G 12 4 16
FREQUENCY PARAMETER €%
Fig. 2 - Typical transmissibility spectra for A\/¢ < 1
spectra such as those illustrated in Figs. 2 and If \/¢ = 1, the first resonant frequency of
3 were obtained by a digital computer. The beam 2 is equal to that of beam 1 and the two
characteristics of the response were found to beams will always vibrate in phase with each
depend on whether »/¢ =1, <1 or >1. other. In this case, no deformation vceurs in
12
A+10.00
0 — 080
! de200

| I(Yr.o.o

(Fl'.G

rs=10

ZaNDLY

2//7 \

) 2 4 6 8 10 12 1a 6
FREQUENCY PARAMETER §,°

TRANSMISSIBILITY AT CENTER OF BEAM |
o

yi

[

Fig. 3 - Typical transmissibilitv spectra for /¢ > 1

12




the viscoelastic link and hence no damging can
be introduced into the system by viscoelastic
links.

If »/¢ < 1, the first resonant frequency of
beam 2 is always lower than that of beam 1 and
the spectra shown in Fig. 2 are typical. Fig-
ure 2 shows that the amplitude of the low-
frequency resonance peak is smaller than that
of the higher frequency peak for small values
of I and, as I" increases, the amplitude of the
second peak eventually becomes smaller than
that of the first peak. The effective loss factor
n, ©f a clamped-clamped beam under shaker
excitation, for which the clamped ends are vi-
brated (o give the excitation, has been shown
[2] to be

ng = 1.32 (A2-1)"1/2, (14)

where A is the amplification factor measured
at the center of beam 1 at the resonant peaks
corresponding to the first mode. Typical
graphs illustrating the variation of the effective
loss factors of the two peaks with the stiffness
parameter " are shown in Fig. 4 for several

" values of the link loss factor . It is seen that,

for each 7, a value of I" exists for which both
peaks will have the same effective loss factor.
This loss factor corresponds to the case where
the system is "'properly tuned" for beam 1,
since it represents the maximum loss factor
obtainable for given values of A, ¢ and 7, in
the frequency range of the fundamental mode of
beam 1. This procedure was followed for vari-
ous values of A/¢ between 1 and 0.035. At

V¢ = 0.035, the first natural frequency of
beam 1 is identical to the third natural fre-
quency of beam 2 and the effective loss factor
is again zero. For values of A\/¢ < 0.035, anal-
ysis of the response spectra followed the proce-
dure adopted for values of \/¢ between 1 and
0.035. However, in this case, the natural fre-
quency of the fundamental mode of beam 1 is
higher than the natural frequencies of the first
and third modes of beam 2 and hence the pre-
dominant peak due to beam 2 was compared in-
stead with the first peak due to beam 1 to de-
fine the optimum effective loss factor.

On the other hand, when »/¢ > 1, the first
natural frequency of beam 2 is greater than that

o8
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Fig. 4 - Typical graphs of effective loss factor
vs link stiffness parameter for A/¢ < 1

13




040

&
o

¢ =200, A=1000

\

\\D\J

030

O 7M=020
0 7:0%0
O n=080
0 7M=200

[od
w
Lt
4

\
3

//

013

EFFECTIVE LOSS FACTOR 7,
[=]
3
N

010

7

003

=]

(eX-]

10

15 20 25

STIFFNESS PARAMETER T
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of eam 1, and the spectra shown in Fig. 3 are
typical. It is seen that one peak now dominates
the response for all values of the stiffness pa-
rameter ", even though two peakc still exist.
Graphs of - against I for the predominant
peak are illustrated in Fig. 5.

Depending on whether »/¢ <1 or > 1,
therefore, one may define the point of optimum
damping either as that at which the curves of
2, against [ cross over, or that at which the
curve of n, against I" has a maximum, respec-
tively. Graphs of the optimum damping so de-
fined were determined in this manner for many
values of A and ¢ and the results are plotted in
Figs. 6, 7 and 8 for ¢ = 0.5, 1.0 and 2.0 and
7 =0.2, 0.5, 0.8, 1.0 and 2.0,

EXPERIMENTAL INVESTIGATICN

The experiments were carried out for sev-
eral combinations of parallel clamped-clamped

beams joined by viscoelastic links in the center.

For these combinations, the weight ratios were

14

» = 0.5, 1.0 and 2.0 and the range of values of
the stiffness ratio was from 0.02 to 50. The
material used for the viscoelastic link was
LD-400 (Lord Manufacturing Co., Erie, Pa.),
having a loss factor of approximately 0.8 at
room temperature which does not vary greatly
with temperature in the vicinity of room tem-
perature.

For each set of values of .. and 4, two
beams were made and clamped in the mounting
fixture which was attached to the shaker table
as in Fig. 9. The circular viscoelastic link, of
thickness 7, width b and outside diameter 4,
was attached to both beams to join the centers.
An accelerometer was attached to the mounting
fixture to measure and contro! the input accel-
eration which was kept at a constant amplitude
throughout each test. The acceleration output
was measured by two miniature accelerometers
at the center of each beam. An overall view of
the experimental apparatus is illustrated in
Fig. 10. For a given width of the link. the ac-
celeration output was measured anc recorded
continuously on an X-Y plotter over a wide
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range of frequencies. The width b of the link,
which is proportiona) to the stiffness parame-
ter ', was then varied to obtain the maximum
effective loss factor in the same way as de-
scribed in the previous section. Typical ex-
perimentzl response spectra for beam 1 are
illustrated ir Figs. 11 and 12 for ~/¢ < 1 and
> 1, respectively. This test procedure was
repeated for every value of # and » used in the
tests.

From all the response spectra so obtained,
graphs of the effective loss factor of the signif-
icant peaks were plotted against the stiffness
parameter (here represented by the link width b)
in the same way as in the reduction of the theo-
retical results. Typical graphs of the effective
loss factor measured in the experiments with
the link width b are plotted in Figs. 13 and 14
for /¢ - 1 and - 1, respectively. From these
graphs, the optimum effective loss factors
were determined in the usual manner and
plotted against the beam stiffness parameter x
for ¢ = 0.5, 1.0 and 2.0, as shown in Figs. 15,
16 and 17, for a link loss factor - of 0.8. The-
oretically derived curves of »_ versus » for
»= 0.8, taken from Figs. 6, 7 and 8, are also
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shown with the experimental results. {t is seen
th:t the agreement between theory and experi-
ment is good.

DISCUSSION

The e:phasis in both the theoretical and
experimental investigations has been placed on
the response and effective damping of only one
of the parallel beams, referred to as beam 1.
This is because we have uassumed that, in the
real structure which we are endeavoring to
simulate in some measure, interest will gener
ally be concentrated on the reduction of vibra-
tions in one part of the structure only. For
example, one may be interested only in the
vibration levels in the outside skin of an air-
craft fuselage and the behavior of the rest of
the structure is to some extent secondary.
However, it is of little value to reduce vibra-
tions in beam 1, representing the most impor-
tant part of the structure, if one instead intro-
duces serious vibrations in beam 2. In the
experimental investigation, therefore, the re-
sponse in beam 2 was measured also. It was
found, in all cases, that when beam 1 was
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Fig. 12 - Typical measured

:ﬁ:i"ézgs ‘CFRECEL,:D‘Z::S response spectra for /¢ > 1
b075W The preliminary investigations described
in this paper have, therefore, shown that high
ACCEL 4tg AGEE: ighy damping can be introduced into a very simple
FREO 39CPS FREC 102CPS structure by a viscoelastic link. It remains to
/\\/\ ~ be seen whether the same is the case for a com-
plex multi-span skin stringer type structure
o=0SOM with such links, as illustrated in Fig. 18.
ACCEL 304 ACCEL 8 6¢ There is considerable hope that such a tech-
FREQ 56CPS FREQ H00CPS nique will work well, since the modes of such

l \
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FREOUENCY

ACCELERATION

Fig. 11 - Typical measured

response spectra for \/¢ < 1

a structure are closely spaced in frequency
compared with those of a simple clamped-
clamped beam, and the stored energ~~ are very
close [3].

CONCLUSIONS

An analysis has been deveioped for the re-
sponse of two parallel clamped-clamped beams,
with various relative masses and flexural rigid-
ities, “onnected at the centers by a viscoelastic
link. The effect of link stiffness and loss fac-
tor, and of the relative masses and flexural

rigiditie, of the beams, on an arbitrarily de-
fined effective loss factor are described. It is
shown that there are certain circumstances in
which no damping of the system occurs ana
others in which high damping is introduced.

properly tuned for optimum damping, high
damping was also introduced into beam 2. It
was also observed that even the third mode of
beam 1 was well damped when the fundamental
mode was optimally tuned.
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DISCUSSION

Mr. Huffington (Martin Co.): Did you have
to be concerned with the vibration characteris-
tics of the ring damper as coupling in with the
vibrations of the beams? To have a successful
energy attenuator it is necessary that the mate-
rial be capable of continuously dissipating en-
ergy without deterioration. Do you have any
comments on this?

Mr. Jones: Obviously, material must be
capable of withstanding vibration and any other
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type of environment which occurs. This is a
real problem. Certainly for the material we
used in this investigation we had no such aims
in mind. Maybe one of the papers later in this
session will answer that question. As to your
first question, in this particular investigation
the link was very very light compared tc the
beams so the problem did not arise. Inevitably
if the link is heavy you must bear this in mind.
This particular preliminary investigation was
not concerned with the practical problems, only




4

with demonstrating that it was worthwhile or
not worthwhile to go ahead and look at the
practical problems.

M~. Huffington: Was there a temperature
increase in the material and did it have any
effect?

Mr. Jones: It is thought that the tempera-
ture Tise In this type of situation is not neces-
sarily very great. It might be of the order of
10°F to 30°F, maybe 40°F, and with the spe-
cially tailored materials available, that should
be no serious probiem. We have indeed been
working in another investigation altogether with
dampers where we have bzen forced to deal with
temperature rises of this sort. Materials can
be made to withstand them.

Mr. DiTaranto (PMC Colleges): In your
curve of the stiffness ratio, it appeared that if

*
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A goes to a very large number or infinity, you
get more damping. This would seem to imply
that maybe the thing to do is have just pure
mass at the end rather than kaving any stiffness
or beam at the bottom.

Mr. Jones: What we are really dealing
with here 1s a means of using an existing struc-
ture. You might have two parts of a powerless
structure in which A, the stiffness ratio, is al-
ready defined and there is nothing you can do
about it. Since these links can be made very
light, and often very cheaply, you can get good
damping by adding just a very small amount of
weight to your structure. On the other hand, if
the other beam does not pre-exist, obviously
you must put something else there, and the mass
would probably be far more valuable than an-
other beam.




ELASTOMERS FOR DAMPING OVER
WIDE TEMPERATURE RANGES

F. S. Owens
Air Force Materiais Laboratory
Wright-Patterson Air Force Base, Ohio

The use of viscoelastic materials for structural damping on aircraft
and missiles has been unduly limited because of the temperature sensi-
tivity of these materials. The experimental work here described dem-
onstrates a technique for extending the temperature range over which
these materials have useful damping. The approach is based on the
phenomenon that viscoelastic polymers exhibit a high level of damping
only within a few degrees of their glass transition temperatures and
that certain types of polymer blends exhibit more than one glass transi-
tion temprrature, The dynamic response of blends of polyvinyl acetate
and polystyrene with a styrene-butadiene and a nitrile-butadiene rubber
were investigated over temperature ranges including all the glass
transitions of the polymers used in the blends. The polyvinyi acetate-
polystyrene-nitrile rubber blend and the polystyrene-nitrile rubber
blend both met the target properties of having a loss factor of 0.1 or
more and a modulus of 10* psi over a 200°F range. The three polymer
blends had a higher level of damping over a wider temperature range
than the iwo polymer blends, and the two polymer blendz were better

than the base elastomers. Further improvements in high temperature
damping materials are anticipated through the use of the fundamental
concepts demonstrated in this research effort.

F. S. Owens

INTRODUCTION

Vibrations in high-speed aircraft and mis-
siles arise from turbulent boundary layer con-
ditions, engine thrust, engine noise, unsymmet-
rical mass distribution of rotary components,
etc. Viscoelastic dampers are used to isolate,
insulate, and attenuate the unwanted, and at
times harmful, oscillations. The dampers pro-
tect delicate instruments from vibrations, per-
sonnel from undesirable noise, and structural
members of the craft from fatigue failure.
Ideally, the materials used for dampers should
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eliminate vibrations of all possible frequencies
occurring in the craft at all temperatures from
the lowest occurring in the arctic regions up to
the highest possible operating temperature. In
addition, the material should be strain insensi-
tive and have a low density. However, this
ideal material is becoming more difficult to
reach because as the speed of the craft in-
creases, the skin and engine temperatures in-
crease, thus widening the temperature require-
ments for a damping material. In general,
elastomers, in the usual sense of the term,
cannot act as effective dampers over such a
wide temperature range. The reasons for this
are evident from Fig. 1, in which the real part
of the complex Young's modulus and the loss
factor of an elastomeric high poly .ner are
plotted as functions of temperature [1]. The
loss factor, -, is a measure of the damping
ability of a material [2] and is related to the
complex modulus, E*, as follows:

E* - E' + iE’ (1)

E' - E' (1+in), (2)
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where
E’ = storage or real modulus,
i = ~-1, and
E" = E'n, the loss or imaginary modulus.

The segment AB of Fig. 1 is called the ''glassy"
region and is associated with a high modulus
and low mechanical losses, The segment BCD
is called the "transition" or ''dispersion' re-
gion. At temperatures within this range, the
materials absorb considerable mechanical en-
ergy, converting it into heat energy. The tem-
perature corresponding to C, the inflection
peint of the curve, is of particular interest. It
is called the glass transition temperature, usu-
ally denoted T_, and is that corresponding to
the maximum energy absorption of the material.
The width of the dispersion region, the temper-
ature range corresponding to segment BCD,
determines the temperature range over which
the material is most effective as a damper.

For most elastomers this temperature range is
approximately 50°F; butyl rubber, the exception,
is about 100°F [3]. Segment DE corresponds to
the "'rubbery" region and is usually associated
with damping that is higher than that in the
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glassy region but considerably lower than that
of the transition region. Since all amorphous
viscoelastic materials have modulus and damp-
ing curves similar to Fig. I [1], and since high
damping occure only within a few degrees of

T, [2,3], the problem of producing wide tem-
pera-. ure range viscoelastic dampers is really
a problem of producing materials with wider or
more numerous dispersion regions. The usual
techniques of varying the kind and level of min-
eral fillers, plasticizers, curing agents, etc.,
results only in altering the temperature range
at which maximum damping occurs and will not
greatly improve either the peak damping or the
temperature range of satisfactory damping
[2,4,5]. Fortuaately, such materials can be
produce=d by either chemical modification of
existing polymers or by selective blending
[1,4,6,7]). The chemical reactions yielding
these materials are those reactions which re-
sult predominantly in the formation of block
and graft polymers [6,7]. Blends ir this case
are immiscible mixtures of polymers which
have a common curing agent [1,4,5]. Block
polymers have chains consisting of alterrating
long sequences of chemically different polymers.
Graft polymers consist of one or more polymer
chains attached to the backbone of a different
type of chemical chain and result from the
reaction of a polymer with a monomer. Both
graft polymers and polyblends exhibit more
than one T, and, corsequently, have more than
one dampmg peak [1,4,5,6,7]. Thus, by the
proper selection of grafts or hlends, it is theo-
retically possible to have damping peaks at al-
raost any temperature. Both grafts and blends
have been used in this investigation; however,
this report is concerned primarily with ble:ds.

OBJECTIVES

The objectives of this research were, first,
to satisfy an Air Force need and, secondly, to
demonstrate a technique applicable for produc-
ing composites having high damping at specified
teinperatures or over specified temperz*ture
ranges. Since the Air Force needs viscoelastic
damping materials to cover a wide temperature
range, which is not likely to be covered with
only one formulation, the initial efforts were
directed toward satisfying an immediate need.
A rubberlike material having a loss factor of
at least 0.1 over a temperature range of about
0 to 200°F within a frequency range of 100 to
1000 cps with a minimum real dynamic Young's
E modulus of 10* nsi was set as the initial ob-
jective, Ultimately, our goal is a series of
compositions, each having a dynamic modulus
of 10° psi or greater, with a loss factor of
at least 0.3 over at least 200°F to cover the




temperature range where high damping is
needed, i.e., within 0 to 400°F and above.

MATERIALS SELECTION

T data were the most important criterion
used in the selection of the experimental poly-
mers to accomplish the objectives. First, the
particular polymer system chosen should be
available in a wide variety of T 's; second, it
should lend itself to easy mcdification, if nec-
essary, by simple chemical reactions not re-
quiring elaborate equipment; and, third, the
chemistry of the system should be well known
or easily accessible. The polyesters, pely-
urethanes, and the vinyls met these require-
ments. The vinyl system was chosen for the
initial phases of the research; however, there
is evidence that either of the other systems
would probably have worked as well. The choice
of the particular vinyl polymers to be used was
based on the desire tc have a composition ‘which
was essentially elastomeric at or below rcom
temperature, yet has glass transitions at
higher temperatures. Recalling (Fig. 1) that
elastomeric behavior is the result of the roly-
mer being above its glass transition tempera-
ture, T, and that this T_is shifted to higher
temperatures by vulcanization as well as by
increasing frequencies [4], the first elastomer
selected, a styrene-butadiene copolymer (Fire-
stone Synthetic Rubber #1502) containing 23
percent bound styrene, had a T_ of -65°F. The
vinyl polymers selected for blending in the
rubber were polyvinyl acetate and polystyrene
with T_'s of 84 and 212°F, respectively. Asa
means of controlling as many variables as pos-
sible, these polymers were prepared from the
monomers by emulsion polymerization. Com-
position of the polymers was as follows:

1. Polyvinyl acetate

Water, 500 ml;

Vinyl acetate, 340 ml;

Soap, 5.0 gm; and

Potassium persulfate, 1.5 gm.

(Ran for 3 hr at 65°C; air-dried reaction
mixture.)

2. Polystyreae

Water, 500 ml;

Styrene, 330 ml;

Soap, 5.0 gm; and

Potassium persulfate, 1.5 gm,

The results of dynamic measurements on pe-
roxide cures of mixtures of these materials

indicated that a higher T, elastomer would be
more desirable. Therefore, the second elasto-
mer chosen was a very high acrylcnitrile con-
taining nitrile-butadiene (Paracril-D, U.S.
Rubber Co.) rubber which hada T_ of 50°F
when cured, as measured dynamically.

BLENDING

The preparation of the blends listed in
Table 1 were done according to the usual pro-
cedures followed in rubber compounding. First,
the gum rubber was banded on a 2-roll 8-in.
water-cooled mill. Then zinc oxide was added
to neutralize any acid remaining from the co-
agulation of the polymers and to promote the
activity of the curing agent, dicuiayl peroxide.
The other polymers were added in simall
amounts as called for in the desired formula-
tion. The polystyrene had to be added next in
the styrene-butadiene blends. The order of
addition was not critical in the nitrile-butadiene
blends. Because these polymers were being
milled at temperatures below their T 's, there
resulted very high shearing forces and, conse-
quently, a rise in temperature. After the poly-
mers were taken into the rubber, the mixture
was refined by passing one end of the rolled-up
compound through a closely set mill. This
procedure was repeated several times until the
mixture appeared to be homogeneous and then,
after cooling, the curing agent wwas added. Spe-
cial care to prevent excessivz heating had tc be
exercised while, and after, the curing agent was
added. The formulation was again refined sev-
eral times on a closely se: mill, and finally,
when the curing agent war uniformly dispersed,
it was put back on the mill, sheeted into the
desired thickness, and cut into mold preform
specimens. :

TABLE 1
Experimenta! Formulations?
Amount
Material
1 2 3 4

Paracril-D 100 | 100 | 100 | 100
Polyvinyl acetate - 100 - 100
Polystyrene - - 100 | 100
Zinc oxide 10 10 10 10
Dicumyl peroxide 3 3 3 3

4Cure: 1 hr at 280°JF,

SPECIMEN PREPARATION

The preform specimens were compression
molded into strips 8-in. long, 0.450-in. wide
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and in different thicknesses up to 0.125 in. The
moiding was done at 280°F for 1 hr under a
pressure of 500 to 600 psi. Usually, the hot
mold was removed from the press and cooled
under a stream of tap water before the speci-
mens were removed. The strips of rubber were
bonded on the aluminum beams while the rubber
was being cured. The same thickness of the
viscoelastic material was bonded on both sides
of the metal strips as shown in Fig. 2. Rubber-
to-metal adhesive systems used were commer-
cial products, Chemlok 203 primer (Hughson
Chemical Co.) and Chemlok 220 adhesive. For
practical damping applications, a room temper-
ature curing epoxy adhesive may be better,
since it contributes to the mechanical losses of
the system.

ALUMINUM ADHES IVE LAYER

Fig. 2 - Specimen

DYNAMIC MEASUREMENTS

The dynamic mechanical properties of the
composite beams were measured by personnel
of the Strength and Dynamics Branch, AFML,
using the Bruel and Kjaer Complex Modulus
Apparatus and ancillary equipment, shown
schematically in Fig. 3.

yd
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%
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Fig. 3 - Schematic of
test equipment
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All measurements were made in the tem-
peratuvre test chamber. The room temperature
experiments were run first, followed by suc-
cessively lower temperatures until the temper-
ature was well below the lowest T_ of the par-
ticular blend. Next, the higher temperature
experiments were run, starting out at room
temperature again. A soak period of 30 min
was given at each experimental temperature
and then the oscillator was calibrated just prior
to making the test. At each experimental tem-
perature, the measurements consisted of ob-
taining the resonant frequencies and the half-
power bandwidth points of ezch resonant
frequency of the composite beam. These
measurements are relateu (o the physical and
mechanical properties of the materials in the
composite beam [8,9,10] and were used to cal-
culate the storage modulus and the loss factor
of the viscoelastic formulations. A discussion
of the mathematical relations used is given by
Nashif [10]. For each experimental tempera-
ture the storage modulus and the loss factor
are plotted as a function of resonant frequen-
cies. The resulting points are then connected
by smooth curves, and from thesz curves the
values of the storage modulus and the loss fac-
tor at 100 and 1000 cps were interpolated.
These values were plotted as a function of
temperature, connected with smooth curves,
and are the results used for this report.

DISCUSSION

Initial attempts were made to make graft
polymers by reacting vinyl acetate and styrene
monomers with styrene-butadiene rubber.
However, because it was difficult to control the
grafting and to analyze the resultant graft poly-
mers, this approach was dropped in favor of
making polymer blends. This accomplished the
desired results and was much easier to control.
Blends of polyvinyl acetate, polystyrene, and
the styrene-butadiene rubber were investigated
first. The composite beams used for the meas-
urements had only one side of the aluminum
coated with the viscoelastic material. The re-
sults were not completely reliable because the
adhesive being used at that time tended to be-
come ineffective at high temperatures and some
of the measurements were taken at resonant
frequencies where, as later found, large errors
were possible. Even though the results may not
be absolutely accurate, they did show tnat the
concept of using blends of polymers having
different T 's will broaden the temperatuie
range of high damping and that adding the plas-
ti: polymers to the base elastomer will in-
crease the modulus somewhat. For example, a
blend of equal parts by weight of polystyrene




and the styrene-butadiene rubber had a modu-
lus of greater than 10* psi over the tempera-
ture range of -75 tc 225°F. The loss factor
curves had peaks corresponding to the disper-
sions in the modulus curves. However, the loss
factor curves were lower than desired; there-
fore, the experimental work with styrene-
butadiene blends was discontinued because it
was thought that nitrile rubber had more de-
sirable preperties,

Nitrile-butadiene rubbers are more resist-
ant to hydrocarbon fuels, oils, solvents, and
heat than the styrene-butadiene rubbers.
Hence, they are more desirable for use as
dampers on aircraft. The higher the acrylo-
nitrile content of the nolymer, the higher the
solvent resistance of the rubber. The reason
for the hydrocarbon fluid resistance is the
presence of the polar nitrile groups in the poly-
mer molecule. These polar groups contribute
to the damping of the rubber by making the
polymer more sensitive to frequency varia-
tions; i.e., the damping : nder the same tem-
perature conditions is better at higher rather
than at lower frequencies. As the acrylonitrile
content of the polymer increases, the T_ also
increases. There is, however, a reduction of
low-temperature properties. The particular
nitrile-butadiene rubber, Paracril-D, used was
one which had a very high acryionitrile content
and has been successfully applied as liners for
fuel hose and as oil seals. It hasa T just be-
low room temperature and can be blended with
many other rubbers and plastics, particularly
the polar ones. It is somewhat reinforced by
compatible plastic polymers having high T 's,
such as polystyrene. The specimens used for
the evaluation of the storage modulus and the
loss factor had the rubber bonded with the
Chemlok adhesive system on both sides of the
aluminum beams. The results are more relia-
ble than those obtained with composite beams
having rubber on only one side.

The storage modulus of the gum vulcani-
zate (Formulation #1) was 4x 10° psi at 0°F
and dropped to 4 X103 psi at 75°F (Fig. 4).
This large change in the modulus is associated
with a very high loss factor peak (Fig. 5). The
height and width of the damping peak is consid-
erably higher and wider than that obtained for
the styrene-butadiene rubber. The maximum
in the loss factor was around 1.0, while it was
0.5 for the styrene-butadiene polymer. The
temperature range over which the losses were
above 0.1 was 20 to 175°F. The width of this
temperature range is ve' v frequency dependent;
for example, the loss factor at 150°F is 0.1 for
100 cps and 0.3 for 1000 cps. This frequency
dependence of the damping can be used to an
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Fig. 4 - Real dynamic modulus vs
temperature of a nitrile-butadiene
vulcanizate

advantage in applications where adequate damp-
ing at low frequencies can be obtained with the
aitrile rubber. An equal weight mixture of
nitrile-butadiene rubber and polyvinyl acetate
(Formulation #2) had two dispersion regions
which overlapped so much that they are not
obvious from the modulus curves (Fig. 6). The
modulus of this blend was greater than 104 psi
at temperatures below 115°F A 102 decrease
in the modulus took place over 2 temperature
range of 0 to 175°F. The closeness of the T_'s
of the two polymers is the reason why there is
not more of a break in the modulus curves and
led to the damping peaks being close together
(Fig. 7). Also, the nearness of the T 's helped
to keep the damping curves at a high fevel over
a wider temperature range. The loss factor
curve is above 0.1 over the 25 to 175°F range
and is above 0.3 over the 40 to 175°F. Peak
damping of about 1.0 occurred at about 50 and
125°F with the highest peak at 125°F being at-
tributed to the polyvinyl acetate. The damping
peak due to the rubber was lowered as a con-
sequence of the dominating effec’ of the second
polymer. The gum rubber met e target
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properties over the temperature range 20 to
60°F, while the two-component blends met the
objectives over the 20 to 115°F range. Thus,
the addition of polyvinyl acetate to the rubber
increased the temperature range by 55°F.

Blends of polystyrene and the nitrile rub-
ber (Formulation #3) had dynamic behavior
similar to the polyvinyl acetate blends; however,
the modulus curves (Fig. 8) have very definite
transitions and there are breaks in the curves
at about 150°F. This was a result uf the poly-
mers in the blend having widely separated T, 's.
Apparently, the polystyrene contributes to the
dynamic s'rength of the rubber and helps to
keep the modulus high, particularly at the ele-
vaied temperatures. The modulus remained
abcve 1C 4 psi up to 225°F, The loss factor
curves (Fig. 9) have peaks of 0.6 at 50°F and
0.8 at 250°F. The losses are above 0.1 over
the 25 to 275°F range with a minimum value of
0.1 occurring within the range of 50 to 250°F.
These two-component blends met the target
properties over the range of25t0225°F and will
function very well as a vibration damper within
this range. The equal weight mixture of poly-
vinyl acetate, polystyreue, and nitrile rubber
(Formulation #4) had three transitions which
are more evident from the damping curves
(Fig. 10) than from the modulus curves
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(Fig. 11). For this three-polymer blend, the
modulus remained above 104 psi up to 200°F,
which is not as good as obtained with the poly-
styrene blend. The loss factor vs temperature
curves had peaks of 0.3 at 65°F, 0.9 at 130°F,
and 0.4 at 230°F for 1000 cps and of 0.15 at
40°F, 0.5 at 120°F, and 0.6 at 230°F for 100
cps. Here again the frequency dependency of
the loss facter is very noticeable. While both
the two and three polymer blends met the target
properties, ‘t is thought that the three compo-
nent blends have better damping than the two-
component mixtures because the area under the
loss factor curves ie larger. Experiments are
now under way to optimize the amount of poly-
mers in the blend sc as to have all three of the
loss factor peaks of about the same height.
This change in the formulation should improve
the modulus values at high temperatures. Fur-
ther improvements can no doubt be made by
adding reinforcing fillers. The rubber is not
resistant to temperatures above 325°F so no
experiments are planned in which the high tem-
perature range is increased.

SUMMARY AND CONCLUSIONS

This preliminary investigation has demon-
strated that polymer blends have a higher level
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of damping thar. does a homogeneous material.
The reason for this is that polymers, in gen-
eral, are insoluble in each other and that blends
actually consist of more than one phase. Each
phase exhibitsa T ¢ Which is independent of the
other polymers used in the blend. Thus, poly-
mer blerds can be used to broaden the tempera-
ture range of adequate viscoelastic damping.

In particular, the three-component blends inves-
tigated were better damping materials than the
two-component blends, and the two-component
blends were better than the base elastomer.

The loss factor was 0.1 or more and the real
modulus was 104 psi or more over 20 to 60°F
for the nitrile rubber, 20 to 115°F for the poly-
vinyl acetate-nitrile rubber blend, ard 25 tc
225°F for both the polystyrene-nitrile rubber
blend and the polyvinyl acetate-polystyrene-
nitrile rubber blend.

The above results show that the tempera-
ture sensitivity of viscoelastic materials can
be used to an advantage to obtain a high level of
damping along with a high modulus over a wide
temperature range. It seems apparent that the
ideas used to achieve the objective can be ap-
plied to other temperature ranges where a high
level of damping has been difficult to obtain.
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DISCUSSION

Mr. Buonagulio (Applied Physics Lab.):
What effect would reducing frequency to 10 to
20 cps have on those curves?

Mr. Owens: We tried that on another rub-
ber formulation. As you reduce frequency, or-
dinarily the loss factor is reduced. As fre-
quency is increased at a constant temperature,
the same type of hump appears as was shown
here for temperature since there is an inverse
relationship between temperature and fre-
quency.
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Mr. Thompson (San Francisco Bay Naval
Shipyard): What is the nitrile rubber you were
using in the blends?

Mr. Owens: Nitrile rubber is commonly
called Buna-N. It is a copolymer of acrylo-
nitrile and butadiene. This particular one had
greater than 50 percent acrylonitrile. The
glass transition temperature of the Buna-N
rubbers is a linear function of the acrylo-
nitrile content.




Mr. Forkois (Naval Research Laboratory):
Did you monitor the creep characteristics of
these polymers? This is a very important con-
sideration. You get into a lot of trouble if you
do not consider it.
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Mr. Owens: Any time you go through a
glass transition temperature, all sorts of things
happen. Creep is a bad feature. \/e have not
run any creep tests on the blend, but 'we proba-
bly will. We have not completed the work on
this system and want to do some more before
we say it is perfected.

*




NEW METHOD FOR DETERMINING DAMPING PROPERTIES
OF VISCOELASTIC MATERIALS

Ahid D. Nashif
University of Dayton
Dayton, Ohio

Many methods have been developed to measure damping properties of viscoelastic
materials. Of these, the complex modulus apparatus developed by Oberst has been
one of the most widely used. The generally adopted method of using this apparatus
has been to excite the test specimen, comprising a metal cantilever beam with a
layer of the viscoelastic material on one side only, by an harmonic force of fixed
amplitude generated by a magnetic force transducer, and to measure the frequency
response by another transducer. Damping measurements are then made at the
resonant frequencies of the specimen by observing either the vibration decay or the
half-power bandwidth of each peak, and the relevant material properties are de-
duced by complicated but well-established theory. However, most viscoelastic
materials have higher thermal coefficients of expansion tan most metals, so con-
siderable bending of the specimen occurs during high- or low-temperature tests.
This problem cz:. be overcome by conducting the damping tests on symmetric
specimens, in which the viscoelastic material is coated in equal thicknesses on both
sides. This method greatly simplifies the theory from which the viscoelastic ma-
terial properties ar» deduced. This theory of symmetric specimens is derived
using a simpler approach than has hitherto appeared in the literature, and the for-
mulas by which the damping properties of the viscoelastic material are deduced
from experiments on the composite specimen are also presented in a simple form,
thereby reducing testing effort.

The simplified equations lead readily to a study of the effect of experimental errors
on the measured viscoelaiutic material properties. For certain combinations of
specimen dimensions and environmental conditions, an error magnification phe-
nomenon of serious proportions occurs. Knowledge of the error rnagnifications,
and the circumstances under which they occur, enables one to judge the reliability

, of the test results and to select appropriate specimen dimensions o minimize the
effect of experimental error. Experiments with symmetric and unsymmetric spec-
imens show that agreement between the measured properties is good, except in
areas where error magnification is large.

many investigations. For a proper understand-
ing of the application of viscoelastic materials
to specific vibration problems, the physical
properties, and particularly the damping prop-
A. D. Nashif erties, of the materials under consideration
must be determined over a wide range of fre-
quencies and temperatures. Many methods
have been developved to measure the damping
properties of viscoelastic materials. Of these,
the complex modulus apparatus developed by
Oberst [1] has been one of the most widely used.
Oberst's method involves the excitation of a

INTRODUCTION test specimen, comprising a co.aposite canti-
lever beam of metal and viscoelastic material,
The use of viscoelastic materials in the by an harmonic force of fixed amplitude gener-
reduction of vibration problems in structural ated by a magnetic force transducer, and the
members and systems has been the subject of measurement of frequency response by another
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transducer. The damping measurements are
made at the resonant frequencies of the speci-
men by obsezrving either the vibration decay or
tae haif-power bandwidth of each peak. It has
heen the general practice to test specimens
consisting of a metal cantilever coated on one
side only with a iayer of the viscoelastic mate-
rial under investigation. The damping proper-
ties of the viscoelastic material arethen culcu-
lated from the measuremerts made on the
composite specimen using a well-established
but complicated theory [1]. Since most visco-
elastic materials have a high thermal coeffi-
cient of expansion c .- pared with most metals,
considerable bending occurs in the test speci-
men during high- or low-temperature tests.
This difficulty can be avoided by conducting the
damping tests on symmetric specimens with the
viscoelastic material applied in equal thick-
nesses on both sides. Van Oort [2] has devel-
oped a2 method for measuring the damping prop-
erties of viscoelastic materials from tests
conducted on symmetric specimens. However,
the theory described by Van Oort is compli-
cated, and a simpler formulation is needed.

This paper describes a simplified approach
to the problem of measuring the damping prop-
erties of viscoelastic materials using symmet-
ric specimens in the Oberst apparatus. It is
shown that the procedure for determining the
loss factor and Young's modulus of the visco-
elastic material is far simpler than that for
specimens coated on only one side. Experi-
ments are described which demonstrate good
agreement between measurements taken on both
types of specimen, thereby demonstrating the
accuracy of the new technique.

Finally, experimental errors and their ef-
fect on the calculated values of the damping
properties of the viscoelastic materials are
discussed. The simplicity of the theory for
symmetric specimens allows one to demen-
strate readily the existence of an intrinsic
error magnification phenomenon inherent in the
equations, which was not at all apparent for the
far more complicated theory of the specimens
coated on one side. It is shown that there are
certain well-defined combinations of specimen
configurations and environments which, if not
rejected as unreliable on the grounds of exces-
sive magnification of possible experimental
errors, would lead to serious error in the test
results obtained from the Oberst apparatus.

LIST OF SYMBOLS
A Function of h,/h,, Eq. (25)

b breadih of cantilever beam, in.
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NN,

P(x)

W(x)

17

by

Exponential function

Error in calculated valuz of E,
Error in calculated value of n,
Young's modulus of metal beam, psi

Real part of Young's modulus of visco-
elastic material, psi

Effective flexural rigidity of composite
beam, psi

Calculated value of E, based on errone-
ous value of ¢ /w, , psi

Total thickness of metal part of canti-
lever beam, in.

Thickness of single layer of viscoelastic
material on composite beam, in.

V-1

Second moment of area of metal beam
section about neutral axis, in.*

Second moment of area of viscoelastic
material on beam about neutral axis, in.*

Function of h,/h,, Eq. (11)
Length of beam, in.

Error magnification factors
Applied transverse loading, 1b/in.
Time, sec

Amplitude of transverse vibration of
beam, in.

Station along beam, in.
(ap/wy)t OF (f /f, )7, in.
1+ 2h,0,/h, 0,

Effective loss factor of composite beam

Loss factor of viscoelastic material

Calculated value of n, based on inaccu-
rate values of o/« and 7

n

Mass per unit length of composite beam,
slug/in.

Mass per unit length of bare metal beam,
slug/in.




Eigenvalue corresponding to nth normal
mode of cantilever beam

¢, Density of metal, slug/in.
2, Density of viscoelastic. material, slug/in.
« Circular frequency, 2-f, rad/sec

~, Natural frequency of nth normal mode
of composite beam, 2-f_, rad/sec

«,, Natural frequency oi nth mode of metal
beam, 2~f, , rad/sec

THEORETICAL ANALYSIS
Determination of Material Properties

Consider a metal beam with a viscoelastic
layer attached in equal thicknesses to each of
its surfaces, as in Fig. 1. H a transverse load-
ing P(x) exp(i«t) is applied to the beam, the
equation of motion for the transverse displace-
ment ¥(x) exp(i«t) i8S

Ey(1+in)I,+E I 1(d*Wdx*) -0 = P(x), (1)

where . is the mass per unit length of the com-
posite beam, I, is the second moment of area
of the metal beam cross section about the neu-
tral axis (the centerline in the case of symmet-
ric specimens), I, is the second moment of
area of the viscoelastic material about the neu-
tral axis, E, is Young's modulus of the metal,
E, is the real part of the complex Young's
modulus of the viscoelastic material, and n, is
the loss factor of the viscoelastic material.
The loss factor n, of the metal beam is as-
sumed to be negligible and will be ignored.
Equation (1) may be rewritten i the form:

(E,1,+E T [1+ in E,T/(E, T, +F 1)](d*Wdx*")

- uw®W = P(x). )

VISCOELASTIC LAYER

If, however, we define an effective flexural
rigidity EI and an effective loss factor » for
the composite beam, then the aquation of mo-
tion may also be written:

EI(1+in)(d*Wdx*) - uo®W = P(x). 3)
Comparing Egs. (2) and (3), term for term, we
have

E,J/E,I, = (EI/E,I,) - 1 (4)
and
ny = nll + (E,I/E, 1] . (5)

But, for any given mode n the measured reso-

nant frequencies of the composite beam («_) and

of the uncoated metal beam (v ) are given by
"“‘"nz L‘/EI = Ry w:nL‘/ElIl = fn‘ M

where ¢ is the eigenvalue corresponding to the

nth mode and is a constant. Therefore,

EVE I, = (/@) (wpy). (6)
Putting Eq. (6) into Eq. (4) yields:
EJIEI, = (wn/wln)z(u/“l) - 1. M

To determine E, and 7, from the experi-
mentally measured values of » and «_/«,,, it
is now necessary to solve for the stiffness ratio
E,I,/E\X, in terms of the thickness ratio h,/h,
where h, is the thickness of the rmetal canti-
lever and h, is the thickness of one layer of the
viscoelastic material. The second moment of
area about the neutral axis of the viscoelastic
material is

((’7//////Z///// L)

METAL BEAM

i Z

I, = 2[bh/12 + bh,(h;+h,3%/4] ,  (8)

and of the metal beam is
I, = bh3/12. (9)

L S

By

ALY

VISCCELASTIC LAYER

N—

Fig. 1 - Sketch of metal beam with viscoelastic
layers coated on both sides
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The stiffness ratio E,L,/E,;I, may, therefore,
be written in the form

E, 1/ E,I, = k(E,/E,), (10)
where
k = 8(h,/h)? + 12(hy/h )% + 6(hy/h)) . (1)
The nondimensional parameter k is plotted as
a function of h,/h, in Fig. 2. Young's modulus

for the viscoeiastic material is now obtained
from Egs. (7) and (10):

E, = (E,/k)[(wy/w)? (w/usy) - 1] (12)
or
E, = (E,/K)[(wp/wyn) (14 20, 09/hy 0)) - 1}, (13)

where o, is the density of thke metal and », is
the censity of the viscoelastic material. The
loss factor of the viscoelastic material is seen,
from Eqs. (5) and (10), to be

ny = m(1 + E/KE)) . (14)

Analysis of Error

Equations (12) ard (14) represent equations
for the Young's modulus and loss factor, re-
spectively, of the viscoelastic material. To ob-
tain these two quantities, it is necessary to de-
termine from experiments on the metal and
composite beams the frequency ratio . /v, and
the composite loss factor n at several resonant
frequencies. These experimental measure-
ments are the main sourceg of error. There-
fore, the effect of such errors on the final cal-
culated values of the Young's modulus and loss
factor must be determined.

Let the error in measuring the frequency
ratio «_ /<, be 4, and that in measuring the
composite loss factor » be &,. Therefore, the
calculated Young's modulus E’ and loss factor
n3, corresponding to the erroneous fraquency
ratio (v, /w,,) +4, and the erroneous composite
loss factor n»+4,, become, from Eqs. (12) and
(14),

E; = (B0 {lwy /e + 8,7 (wupy -1} (15)

and
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Fig. 2 - Parameter k vs thickness ratio h,/h,




ny = (n+ O (1+E/kEY) . (16)
The errors in the calculated values of the mod-
ulus and loss factor are now defined as

e, = (E3-E,VE, (17)

and

ey = (m3- 1)1, (18)
By substituting Eqs. (12), (14), (15) and (16) into
Egs. (17) and (18) and assuming that the errors
are small, so that 42 and &, x 4, are negligible,

one may show that Egqs. (17) and (18) give

e, = M_A

(19)
and

d
= by/mi- Ny B, (2v)
where

N, = 2op/03 )W) f[(0n/010) w/ny) - 1] (21)

and
N - 2/(wn/wln) [(wn/wln)z(u/u.l) - l] . (22)

The error magnification iactors N, and M, are
plotted u: Figs. 3 and 4, respectively, as func-
tions of «_/«,, for several values of w/n,. It
can be seen that N, and M, are alwa 's small
except when (w,/«,,)? times (w/u,) is of the
order of unity. It is seen that errors in the ob-
served guantities o /w,, and 5 are magnified
in the calculated values of E, and n, and that,
under the specific condition that (v, /w, (Wi )
approaches unity, these errors may become
prohibitively great. The effect of these error
magnification factors on experimental data are
discussed in more detail in a later section.

EXPERIMENTAL INVESTIGATION

To demonstrate the effectiveness of the new
damping measurement technique, the damping
properties of a typical viscoelastic material

140 T
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Fig. 5 - Error magnification factor M, vs
frequency ratic w /w;, for various mass
ratios w/u,
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were evaluated using both singly and symmetri-
cally ccated specimens.

The material used for this investigation
was a viscoelastic material known as LD-400
(Lord Manufacturing Co., Erie, Pa.). Two
damped specimens were made, as shown in
Fig. 5, with LD-400 coated on both sides of one
specimen and on one side of the other. Identi-
cal undamped metal beams were used, as shown
in the same figure. The brass end sections
were used to insure that the viscoelastic mate-
rial was effectively bonded at the clamped ends
when the specimen was clamped around these
sections. Eastman 910 adhesive was used to
hold the viscoelastic material to the metal
suriaces.

The complex modulus apparatus used in the
investigation consisted of a mounting fixture
with two magnetic trarsducers, an oscillator,
an amplifier and a recorder. These elements
were assembled as shown in the block diagram
in Fig. 6.
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for various mass

For test purposes, the specimen was
clamped in the mounting fixture and a harmonic
force of constant amplitude was applied to the
driving transducer by the oscillator. The out-
put signal was sensed by the pickup transducer
and then plotted on the recorder after being
amplified. A frequency response spectrum
such as that in Fig. 7 was obtained in this man-~
ner for each specimen at various temperatures.
The frequencies at which each of the modes of
vibration occurred were measured for each
specimen and the loss factor » in each mode
was measured by the half-power bandwidth
method. After the various resonant frequencies
and loss factors for each of the damped speci-
mens were obtained, the damping properties of
LD-400 were calculated. For the symmetric
specimen, Eqs. (13) and (14) were used to de-
termine Young's modulus and loss factor, re-
spectively. A sample data sheet for tests on a
symmetric specimen at a single temperature is
shown in Table 1. For the specimen with the
viscoelastic material on one side only, the fol-
lowing formulas [1] were used:
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2 _Lnom"
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BRASS LD- 400 ALUMINUM
#W@zém —ohes
— < BEF

10" " 048"

DAMPED UNSYMMETRIC SPECIMEN

emass e 3
E" ¢ — 53%,,,

—
|

=
o 70
UNDAMPED UNSYMMETRIC SPECIMEN

Fig. 5 - Symmetric and unsymmetric test specimens
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Fig. 6 - Block diagram of experimental sstup
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TABLE 1

Data Reduction Sheet for Damping Measurements on

Symmetric Cantilever Beam Specimens

MATERIAL: LD-40C

TEMPERATURE: 40°F

DATE: 12 May 1966 SIGNATURE:
——— —
J 1 2 3 4 5
e ——————— ——
f,, CP8S 40.6 274.3 8.1 1536.5 2560.1
f,.,CPS 30.4 201.4 561.0 1095.5 1804.0
X = (£,/6,) 1.785 1.855 1.927 1.968 2.014
Y= 1+(2h;0/h0y) 1.44 1.44 1.44 1.44 1.44
XY -1 1.570 1.671 1.775 1.834 1.90C
E,/k(x 10" %), psi 2.222 2.222 2.222 2.222 2.222
E, (x10°%), psi 3.49 3.711 3.94 4.08 4.22
Z:E/kE, = (X¥-1)! 0.637 0.598 0.563 0.545 0.526
1+2 1.637 1.598 1.563 1.545 1.526
n (measured) 0.091 0.059 . 0.067 0.062 0.056
n,= (1+2)n 0.149 0.094 0.105 0.096 0.086
M, = 22XV 2Y/(XY- 1) 2.44 2.35 2.26 2.20 2.15
M, = 2/XY 2(XY- 1) 0.96 0.88 0.82 0.78 0.74
50
40
406 CPS 274 3CPS
- ﬂ n 778.7CPS
€30 \ —4 1s36.5cPs
g }\ 256?ICPS
i NPAVAY,
\/
10
cIO 20 30 100 200 300 1000 2000 3000 10000

FREQUENCY (CPS)

Fig. 7 - Typical frequency response spectrum <«
damped symmetric specimen
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(‘“n ‘u‘ln)z(l +hypyhyoy)

_ 1A (E EN(hy/h DA+ (E/EDN? (hy/h? (23)
1+ (E,’E\)(h;/h,)

and

niny = {(Ez ‘EN(h,'hy) [2A + "-’(Ez'l‘:‘l\(hz“/h1)J i
+ (E/Ep? (hy/npy* - 11} /{1 + (By/E
(hy/hy) [1+24F /E ) (hy/hy)

+ (Ez,'El)2 (hz'hl)‘]} s
(24)

where

A = 2+ 3(hy/hy) + 2 /b2 (25)

RESULTS AND DISCUSSION

The experimental results are presented in
Figs. 8 and 9, which represent graphs of Young's
modulus and loss factor, respectively, plotted
as functions of frequency at 40°F, 60°F, 90°F
and 110°F for the two types of specimen. It can
be seen from Fig. 8 that the measured Young's
moduli agree well at 40°F and 60°F. The
agreement is not as good at the other tempera-
tures because the frequency ratio « /«, be-
comes smaller as the temperature increases
and the viscoelastic material becomes softer,
and the error magnification factor M, becomes
very large. The error magnification factor was
calculated from Eq. {19) for the symmetric
specimens and was found to be between 2 and 5
at the low temperatures and greater than 10 at
the high temperatures. Therefore, the error in
measuring Young's modulus at 40°F and 60°F
is small compared with that at 90°F and 110°F.
The same behavior can be expected for the re-
sulte obtained with the sample coated on only
one side, since it had the same stiffness ratio
EI/E,I, as did the symmetric specimens. How-
ever, because of the complexity of Eq. (23), the
error magnification factors cannot be so readily
demonstrated. it is suggested by Oberst and
Frankenfeld [1] that the stiffness ratio EI/E I,
should be greater than 1.1 for accurate results.
Equation (6) indicates that this implies that
(w,/w; )} (wuy) -1 < 0.1, and this is very
much the same criterion as that to which the
error magnification factor M, leads. On this
basis, therefore, the results obtained for the
specimens coated on one side are unreliable for
the two higher temperatures.

The effect of the experimental errors on
the loss factor vs frequency data presented in
Fig. 9 can also be seen. Equation (20) shows
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that there are now two sources of error in the
estimates of the viscoelastic material loss fac-
tor, namely the measured frequency ratio « /o,
and the composite loss factor 5. However, the
error in measuring » was found to be very
small in several repeated tests of several spec-
imens, so that 4, /7 is small in comparison with
¥, A,. The error magnification factor M, was
calculated from Eq. (22) and is always less than
M,. Again, no accurate method was available
for estimating the effect of experimental errors
for the specimen coated on one side only, apart
from the criterion EI/E I, < 1.1. Again, there-
fore, all results at 90°F and 110°F were unre-
liable for the particular specimens used. The
{hickness ratio of the viscoelastic material to
the metal beam thickness was chosen in such a
way as to demorstrate readily the effect of the
experimental errors-on the calculated values of
Young's modulus and loss factor of the visco-
elastic material. To avoid the inaccuracy found
in the high-temperature tests, one could use
Figs. 3 and 4 as a guide for selecting appropri-
ate thickness ratios. In this way, the error
magnification factors can be minimized.

Finally, several tests were carried out at
high and low temperatures for several different
viscoelastic materials on symmetric specimens,
and no noticeable bending of the specimens was
observed at any time. However, prestresses
were inevitably set up, Tests on several speci-
mens, cured at room temperature and at about
280°F, showed no noticeable differences in the
values of the viscoelastic properties measured.
The effect of prestress was not important in
these tests, therefore, but one should verify
this from time to time during an investigation
of any specific material.

CONCLUSIONS

A new method has been described for de-
termining the damping properties of visco-
elastic materials from vibration tests carried
out on symmetric beam specimens. This method
demonstrates a simplified procedure for meas-
uring the loss factor and Young's modulus of
viscoelastic materials. With this method, the
problem of bending of the test specimens, which
usually occurs at high and low temperatures
when the specimen is coated on only one side
with the viscoelastic material, is avoided. Ex-
perimental errors and their effect on the calcu-
lated properties of viscoelastic materials were
established as functions of derived error mag-
nification factors. These error magnification
factors are shown to be useful for judging the
reliability of the test results and for selecting
the appropriate specimen dimensions to mini~
mize the effects of experimental error.
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DISCUSSION

Dr. Plunkett (University of Minnesota): You
assume that damping is due to the tensile mod-
ulus rather than the shear modulus. I would 25~
sume most of the damping would be due to shear
effects in the layers which should be greatly
influenced by the ratio of layer thickness to
beam thickness.

Mr. Nashif: This problem was investi-
gated at the Air Force Material Laboratory by

*

47

Dr. Nichols, who found that these assumptions
are true as long as the modulus is over 1000
psi and the ratio of viscoelastic material thick-
ness to metal thickness is no larger than 8§ to 1.

Dr. Plunkett: Do you mean the viscoelastic
layer is thicker than the metal?

Mr. Nashif: Yes.

*




EFFECT OF TUNED VISCOELASTIC DAMPERS ON
RESPONSE OF MULTI-SPAN STRUCTURES

David I. G. Jones and George H. Bruns
Air Force Materials Laboratory
Wright-Patterson Air Force Base, Ohin

Many complex structures exhibit multi-modal response within certain fre-
quency bands, and the excitation from jet engine, rocket engine or bouandary
layer sources often leads to early failure or equipment malfunction. Under
such conditions, severe vibrational amplitudes often occur near the centers
of panels in critical areas. A possible method is presented of reducing this
type of problem in complex structures by tunced viscoelastic dampers, an ap-
proach which has been generally considered to be limited to 3ingle frequency
vibrations. It has been shown that using viscoelastic materials with high loss
factors in tuned dampers enatles energy dissipation over a wide band of fre-
quencics. Therefore, tuned dampers could conceivably be used successfully
to damp multi-medal vibrations in typical aerospace structures.

The preliminary investigations reported are concerned witl. the response of
a multi-span beam with tuned dampers distributed uniformly along its length.
This idealization of the more practical case of isolated damipers at the center
of each span is shown to lead to a simple, easily solved equation of motion.
Expressicns for the response of the beam, both with distributed tuned damp-
ing and with homogeneous viscoelastic damping, are obtained and numerical
solutions are discussed for a 9-span pinned beam under uniform harmonic
loading. Effective less factors are defined for the beam-damper system, and
the effects of systematic variations of damper loss factor and damper mass
on the effective loss factor are discussed. It is shown that substantial
amounts of damping can be introduced.

Finally, some preliminary experiments on a skin-stringer-frame structure
are described. It is shown that response amplitudes can be reduced consid-
erably, with very moderate weight additions, by propexr use of tuned viaco-
elastic dampezrs,

F Force transmitted back to structure by
tuned damper, lb

i V-1
G. H. Bruns

I Second moment of area of beam cro:»
section about neutral axis (in.4)

i Span number, counting from left-hand side

k Real part of stiffness of tuned damper
spring, 1b/in.

LIST OF SYMBOLS
4 Length of beam occupied by individual
exp Exponential function tuned damper, in.
E Young's modulus of beam material, psi L Total length of span, in.
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i ® o

S

P(x)

My

Mass of tuned damper or number of modal
group, slug

Number of mode in =th group
Number of spans in beam

Amplitude of applied loadiag on beam,
/in.

Amplitude of applied uniform loading on
beam, 1b/in.

Coefficient in generalized Fourier expan-
sion of P(x)

Amplitude amplification f2- “or at resonance
Time, sec

Instantaneous transverse displacement of
beam relative to fixed point in space, in.

Amplitude of w, in.

Station along beam measured from extreme
left-hand support, in.

Statfon of center of jth span, in.
Instantaneous displacement of mass m of
tuned damper relative to fixed point in
space, in.

Loss factor of viscoelastic material of
tuned damper spring or of homogeneous
viscoelastic beam

Effective loss factor of beam-damper
system

kL*/4E1, stiffness parameter

Mass per unit length of beam, slug/cu in.
uwiL*/El, frequency parameter

uwfn L4/EI

nth normal mode in the mth modal group
m/uf, Mass parameter

Circular frequency, rad/sec

nth natural frequency in mth modal group,
rad/sec

(k/m)"/?, natural frequency of tuned
damper, rad/sec
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INTRODUVTION

Tuned viscoelastic dampers have often been
considered for the reduction of vibrations in one-
degree-of-freedom mechanical systems [1,2] and
in simple structures [3-5] for which the reso-
nant frequencies are well separated. Little
theught has been given, however, to the possi-
bility of utilizing high loss factor viscoelastic
materials to increase the useful frequency band-
width of such dampers so as effectively to damp
several modes of vibration of a complex struc-
ture. Some prelimirary investigations (6] have
shown that tuned darapers can be made effec-
tive over at least an octave band of frequencies
and that, for a class of complex structures
typical of many aerospace configurations, the
modes of greatest interest often fall within an
octave band.

The present investigation has been limited
to an analysis of a simple multi-supported
beam, representative in many ways of typical
aerospace structures, with distributed tuned
dampers, each far smaller than an individual
span of the beam. The advantage of this ideali-
zation of the more practical situation, consist-
ing of isolated dampers at the center of each
span, is that the equation of moticn is far ruore
readily solved. The essential features of the
more complex problem are retained, but the
analysis is greatly simplified and some general
conclusions can be reached far more readily.

It is shown that high damping can be intro-
duced into a complex structure by proper use
of tuned dampers with a sufficiently high loss
factor, albeit far less than in the case of a sim-
ple structure exhibiting unimodal response.
Finally, some preliminary experimental inves-
tigations on a multi-span structure with tuned
dampers are described. These experiments
verify that high damping can be introduced into
complex structures by properly utilized tuned
viscoelastic dampers.

THEORY

Theory of Multi-Span Beam with
Distributed Tuned Dampers

Consider a tuned damper consisting of a
mass m connected through a viscoelastic link of
stiffness k(1+in) to a point of the beam, vibrat-
ing with amplitude w(x,t) = W(x) exp (iwt) as in
Fig. 1. The equation of motion of the mass m is

m(d’y/dt?) + k(1+in)(y-wy =0, (1)




Fig. 1 - Idealized tuned
viscoelastic damper

where y is the displacement of the mass from
the equilibrium position. The solution of Eq.
(1) is

exp(iat)
= . 2
y 1 - mw¥/k(1+in) (2)
The force F transmitted back to the beam is
then readily shown to be
F = k(l+in)(w-~-y)
- 2
- mw™w (3)

1 - mo¥/k(l+in)

If the length of the N-span beam, illustrated in
Fig. 2, occupied by each individual damper is
4£(4 << span), the force per unit length acting on
the beam is F/{ and the modified Euler-
Bernoulli equation of the damped beam is readily
obtained simply by adding the term F/{ into the
equation for the undamped beam. The equation
of motion of the beam for harmonic excitation

by loading P(x) exp (iwt), therefore, becomes

(/1) 2 W
1-mw?/k(1+in)
where E is Young's modulus of the beam and 1

is the £econd moment of area of the beam sec-
tion about the neutral axis.

EI(d*W/dx*) - W - = P(x) . (4)

For the undamped N-gpan structure, with
fairly rigid supports at the ends of the spans,
the response consists of a series of groups of
modes FI), each with N modes, as illustrated
in Figs. 3 and 4. We may, therefore, expand ¥
as a series of these modes, assumed to be
known, as follows:

2 2 Vo ban (VL)

az=1l =1

N
Z Wy tan(/L) + ...

n=1

N
Z Vin @1a(vL) + - )

n=1

where n refers to the number of the mode in
the mth group. The functions ¢ are the nor-
mal modes or eigenfunctions of the system.
The frequency «_, corresponding to the mnth
mode generally satisfies the inequality:

2

2
<
®in <w

mn

(6)

for m>1, a8 seen in Fig. 3. The mode ¢, sat-
isfies the equation of motion for undamped free
vibrations:

(7)

Substituting Eq. (5) back into Eq. (3) and using
Eq. (7), we have

a*o,n(x/LY/dx* - (uwd /EI) ¢, (x/L) = 0.

8

N

2 2 (m/£)w? v
- - e x/L
& ,.z:‘,[“w'"" e aak(1r iy e Pan )
@« N
= ) ) Pandan(¥/L), (8)
m=1 pn=1

e
L $ §—MASS m
' ' ) $*—VISCOELASTIC
4ox ! SPRING t(1113)

J L —

J=t . j=2

1.3 le %V

Fig. 2 - Sketch of multi-span beam
with distributed tuned dampers
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where

N
2. Pan Gan(L)

n=1

P(x) = Z

and

pmn="\
0

from the orthogonal property of the normal
modes. Equating the mnth terms on the right-
and left-hand sides of Eq. (8) gives

L
P(x) b, (x/L) dx /J &2 (vLydx (9)
0

P

mn
i w? - pw? - (m/4) w?
H&mn K 1 - moi/k(1+in)

(10)

Therefore,
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Fig. 4 - Typical frequency bands of
response of multi-span structure

Pan Pan{ ¥L)
uw u.w (n\/{)wz
=1

1-mw?/k(1+ im)

(11)

2 2

However, as stated earlier, «_  >> «;, and
Pon << P, for m>1 so that all terms for which
m > 2 will not be significant in the equation for
¥, in the vicinity of the first group of modes

{m=1). We may, therefore, write approximately

N

P, &, (xL)
W - in ln( - - (12)
uw2 - uw? - /m/{)w
n=1 In 1 - me?/k(1+in)
and
N
EIV Pin 21a(x/L) (13)
LY T -et-uet-pEt (i)
where
£* = uw? LYEL,
-4 _ Q
glr. = l“'wln /EI ,
g @ mud,
and
X = KLYEI1.

At zero frequency, the response is




N
EILYN = T P, 6 (L) £,y (14)

nxl

Furthermore the stiffness ratio A may be ex-
pressed in terms of the mass ratio v, the first
eigenvalue ., , and the ratio wp/w,, of the
4amper [requency oy to the first natural fre-
quency w,, of the beam. Infact,

A

1t

(k/m){m/uf)(uL4/EI)

(wp/wyy) : ‘\i"f‘n ' (15)

since tz = k/m. Finally, therefore,

“’D/“’ll = (k/‘llf:l)llz- (16)

Theory of Multi-Span Homogeneous
Viscoelastic Beam

If the mult1-span beam is made entirely of
material of complex Young's modulus E(1+ in),
where 7 is the loss factor, the equation of mo-
tion is

EI(1+ in)(d*W/dx*) - uo®W = P(x). (17)

If we make use of the expansions in normal
modes given in Eq3. (5) and (9} in Eq. (17),

@ N
Z Z [“w:tn(l+ in) - #wz] wmn q’l'nn(x/l‘)

m=1 n=1

@©
1

N
= 2 2 Pan Gan(/D)

=1 n=1

80 that

L P,,,,,/[uwjmu +in) - uwz] . (18)

and, therefore,

w = i i Pmn ¢mn("/l‘)

) 2 °
=1 n=luw:.n(l+177) T oHw

(19)

If we make use, once more, of the fact that -
w? >> o} and P << P, , only the first group
of modes need be considered, and

N
EW 5 Pin i) (20)
LY D) Elarein - &

and, at zero frequency,
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= (1+im™ )Py b, (L) £, (21)
n=1

ElV
Ll

DISCUSSION OF SOLUTIONS

It has been shown that the predominant fea-
tures of the vibrational responsee of a complex
multi-span beam system with tun~d dampers
can be determined by considering a greatly
simplified model ir which the tuned dampers
are distributed eveni7 cver the beam instead of
being concentratead a: isolated poisnts. The
equation of moticn then takes on the greatly
simplified form shown in Eq. (4). H the normal
modes and natural frequencies of the undamped
beam are known [8-10], it is then possible to
expand the displacement ¥ at any point of the
beam and the loading Prx) in terms of these
modal functions and obtain formal solutions
such as those given in Egs. (10) and (13). From
Fq. (13), response spectra in the form of graphs
of (EI/LY)|W| against the frequency parameter
€ (or £?) can be evaluated for any chosen val-
ues of ¥, A, n and x/L and any chosen lcading
P(x). In preliminary calculations on a §-span
pinned beam, P(x) was taken to be a uniform
loading P and graphs of (EI/PL*)|W| against ¢2,
similar to the examples shown in Figs. 5 and 6,
have been computed for » = 0.1, 0.2, 0.5, 1.0,
1.5 and 2.0; v = 0.1, 0.2, 0.4 and 0.8; » between
0 and 100; and values of x/L corresponding to
the center points x;/L of the spans j=1to j=5§
only, since the response is symmetric about
the center span in this case. Some of the val-
ues used in the calculations are given in Tables
1 and 2.

It is not a difficult matter to determine the
transmissibility spectra for a system such as
this. Interpretation of the gpectra, however, is
not so simple. In fact, the most that one can do,
in the sense of defining a2 gross measure of the
damping introduced by the tuned dampers, is
plot a graph of the resonant amplification factor
Q against the stiffness parameter A for various
values of the damper loss factor r, the mass
ratio ¢y and the station x/L. In this particular
instance, the spectra contain only two predomi-
nant resonance peaks. One of the.'~ is at low
frequency, corresponding to the stringer tor-
sion mode, and the other is at high frequency,
corresponding to the stringer bending mode.
The intermediate modes appesar to be relatively
insignificant in this particular configuration.
The graphs of Q against A\ for the predominant
low- and high-frequency modes have been
plotted (Figs. 7-8) for , = 0.1, 0.2, 0.5, 1.0, 1.5
and 2.0; v = 0.1, 0.2, 0.4 and 0.8; and x/L =
x;/L, i = 1,2,3,4,5.
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Nothing further can be deduced from these
graphs of Q against ». If one is to define a
meaningful effective loss factor for the beam
with tuned dampers, one must make compari-
sons with the transmissibility spectra of the
same beam made of homogeneous viscoelastic
material of loss factor n. The response of a
beam with homogeneous viscoelastic damping

is given by Eq. (20) and some typical spectra
of (EI/PL*)|W| against #? are illustrated in
Figs. 10 and 11. Needless to say, the spectra
for the beam with homogeneous damping and
tuned dampers are not identical. The most that
one can do, therefore, is work in terms of the
greatest amplification factor ¢, corresponding
in the present example to the stringer bending




TABLE 1
Characteristics of 9-Span Finned Beam

Value
Characteristic
n=] n=3 n-5 n=7 n=9
£in 3.142 3.445 3.800 4.298 4.670
& 9.870 11.189° | 14.441 18.469 21.812
1, 97.409 | 125.182 | 208.528 | 341.095 | 475.778
1
2 [ o(vbrexny | +0.637 | <1338 | 41577 | -2.265 | +6.101
0
L 2
2 [ eluxbrdxly | 44500 | 44471 | 44360 | +4.001 | 43.667
0
P, /P +0.142 -0.299 +0.362 -0.554 +1.664
®1(%,/L) +1.000 -0.940 +0.766 -0.500 +0.737
¢ 1ol %a/L) -1.000 +0.500 +0.500 -1.000 +0.500
b1 l%3/L) +1.000 +0.174 -0.940 -0.500 +0.741
¢1alxe/L) -1.000 -0.766 -0.174 +0.500 +0.940
1n(xs/L) +1.000 +1.000 +1.000 +1.000 +1.000
9 -
2 3 ialx;/L) +9.000 +9.000 +9.000 +9.000 +9.000
i=0
TABLE 2
Mode Shape Data ¢, (x/L) for Pinned Beam
x/L n=1 n=3 n=> n=1 n*='8
0.0 0 0 0 0 0
0.1 | +0.3044 | -0.3035 | +0.2822 | -0.2268 | +0.G975
0.3 | +0.8090 | -0.7836 | +0.7004 | -0.5316 | +0.2169
0.5 | +1.0000 | -0.9397 | +0.7660 | -0.5000 | +0.1736
0.7 | +0.8090 | -0.7205 | +0.4866 | -0.2039 | +0.0252
0.9 | +0.3044 | -0.2507 | +0.1060 | +0.0364 | -0.0525
1.0 0 0 0 0 0
1.1 | -0.3044 | +0.2143 | +0.0080 | -0.1904 | +0.1309
1.3 | -0.8090 | +0.4801 | +0.2434 | -0.7354 | +0.4328
1.5 | -1.0000 | +0.5000 | +0.5000 | -1.0000 | +0.5000
1.7 | -0.8090 | +0.3203 | +0.5314 | -0.7354 | +0.2642
1.9 | -0.3044 | +0.0805 | +0.2454 | -0.1904 | -0.0010
2.0 0 0 0 0 S0
2.1 | +0.3044 | -0.0249 | -0.2850 | +0.0364 | +0.1a%4
2.3 | +0.8090 | +0.0461 | -0.7849 | -0.2039 | +0.5965
2.5 | +1.0000 | +0.1736 | -0.9397 | -0.5000 | +0.7660
2.7 | +0.8090 | +0.2299 | -0.6712 | -0.5316 | +0.4714
2.9 | +0.3044 | +0.1273 | -0.1912 | -0.2288 | +0.0505
3.0 0 0 0 0 0
3.1 | -0.3044 | -0.1762 | +0.0910 | +0.2268 | +0.1481
3.3 | -0.8090 | -0.5538 | +0.0202 | +0.5316 | +0.6883
3.5 | -1.0000 | -0.7660 | -0.1736 | +0.5000 | +0.9397
3.7 | -0.8090 | -0.6724 | -0.2983 | +0.2039 | +0.6217
3.9 | -0.3044 | -0.2755 | -0.1790 | -0.0364 | +0.0960
4.0 0 0 0 0 0
4.1 | +0.3044 | +0.2049 | +0.2534 | +0.1904 | +0.1208
43 | +0.8090 | +0.8004 | +0.7748 | +0.9354 | +0.6870
45 | +1.0000 | +1.0000 | +1.0000 | +1.0000 | +1.0000
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mode, and plot graphs of G against » for vari-
ous valueg of x/L. As an example, a graph of Q
against » for x'L = x;/L, j = 1,3,5, is plotted
in Fig. 12.

For given values of j, n, ¢, one can now
read the value of Q for the beam with tuned
dampers off the graph of Q0 against A and then
read the effective loss factor n, off the graph
of Q@ against » for the beam with homogeneous
damping. Graphs oi n, against A can then be
deavn, such as Figs. 13 and 14, for all values
of j. It is seen that, in every case, only cne
value of A exists for which the value of n, is
the same for all values of j. This value of =,
is the effective loss factor of the beam with
properly tuned viscoelastic dampers, for the
particular values of ¢ and .

From all such graphs of n_ against A, the
effective loss factor at the point of proper tun-
ing can be plotted against the damper loss fac-
tor n for various values of the mass ratio y,
as in Fig. 15.

Finally, from Eq. (16), one can determine
the ratio «p/w,, of the damper natural frequency
.0 the first natural irequency of the multi-span
beam, at the point of proper tuning, using the
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value of A cbtained from the graphs of n, against
A. Agraph of (/ped A1+ V(14 1/
obtained using Figs. 12 to 14, is illustrated in
Fig. 16. The empirical relationship, showing
that «p/«,, varies in proportion to (1+y)-'/?
and (1+~%)-'* has not been proved, but Fig. 16
shows that it gives a good collapse of the com-
puted data. Since, from Fig. 16, the value of
wp/wy, 18 equal to 1.58 (1+ )"V 31+ 0% -1/4, it
follows that, at ieast for moderate values of 7
and y, proper tuning occurs when the damper is
tuned approximately midway between the stringer
torsion and stringer bending modes.

EXPERIMENTAL INVESTIGATION OF
MULTI-SPAN STRUCTURE WITH
TUNED VISCOELASTIC DAMPERS

No experimental investigation has yet been
made of a 8-span beam with tuned viscoelastic
dampers. Howaver, some recent preliminary
experiments with a 5-span skin-stringer-frame
structure, typical of a part of an aircraft fuse-
lage, have recently been carried out [11] and
have yielded results of sufficient interest to be
briefly mentioned in this paper.
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The model structure, shown in Fig. 17, was
mounted on a rigid fixture which was vibrated
harmonically by an electrodynamic shaker. The
input acceleration was controlled by an accel-
erometer along one of the frames, the position
being chosen so as to minimize variations of
the input acceleration at all points along the
frames. The response measured by miniature
accelerometers at the center span {span C) is
shcan in Fig. 18. The multi-modal response is
clearly seen, the stringer bending mode being
predominant.

Tuned dampers in which the stiffness was
provided by a ring or loop of viscoelastic mate-
rial (LD-400, Lord Manufacturing Co., Erie,
Pa.) were then attached at the center of each
panel, as in Fig. 19. The dampers were nomi-
nally identical and similar to those used in
previous investigations [3, 4, 6]. The experi-
mental setup is illusirated in Fig. 20. Response
records were again taken for each span and a
typical record, taken for the center span, is
shown in Fig. 21. It {s seen that the greatest
amplification factor at resonance is reduced
from about 30 in the nominally undamped case
to about 6 in the damped case, for a total weight
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Fig. 18 - Typical measured response spec-
trum at center panel of 5-span skin-stringer
structure excited by shaker
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addition of about &€ gm per damper, which
amounts to about 3 percent of the weight of the
skin of the structure.

Needless to say, no direct comparisons can
be made between the present theory and these
experimental resulis. However, they do serve
to show tbat excellent damping can be intro-
duced into multi-span structures, exhibiting
multi-modal re~ponse, by properly optimized

Fig. 19 - Sketch of typical ring
damper used in experimental

investigation

tuned damners.
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Fig. 20 - Photograph of skin-étrirger structure
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Fig. 2i - Typical response spectrum measured
at center panel of 5-span skin-stringer struc-
ture excited by shaker, with tuned dampers
close to optimal tuning
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An analysis has been developed for the
response of a multi-span beam, with tuned



viscoelastic dampers distributed along the beam,
to a harmonically varying loading of arbitrary
spatial dependence. The solution is expressed
in terms of the normal modes of the undamped
beam, and a knowledge of these rodes and the
corresponding natural frequencies is a prereq-
uisite of the analysis. By comparisons between
the response of the beam with tuned dampers and
the same beam configuration with homogeneously
distributed viscoelastic damping, an effective loss
factor giving a measure of the damping introduced
by the tuned dampers is defined. The variationof
the effective loss factor with damper mass, loss
factor and stiffness is demonstrated, and it is
shown that high damping can be introduced into
structures exhibiting muiti- modal response by
tuned dampers. P.eliminary experiments, de-
scribed in the paper, support this conclusion.
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Mr. Hooper: How much change in acceler-
ation would have been brought about just by the
dead weight of your added dampers apart from
their viscoelastic properties ?

Lt. Bruns: I don't quite understand you.
Do you mean if we had invested this weight in a
thicker skin?
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Mr. Hooper: No, if you had just added con-
centrated weights.

Lt. Bruns: In other words, a sprung mass
without any damping ?

Mr. Hooper: No, if you had just taken the
weight of your rings and put it in those spots as




a rigid mags. That would probably make quite
a dramatic change.

Lt. Bruns: You are just adding a lumped
mass to the system?

Mr. Hooper: Yes.

Li. Prung: This, to the best of my knowl-
edge, would only result in a shift of the curve.
The same pesks would resuit; in fact, I should
think they would be a little worse. True, the
frequency would shift as it would when you add
mass to any elastic system, but you certainly
would not eliminate the peak: the way we did
there.

Mr. Woolam (Southwest Research Inst.):
It appears that we presentuy have two very
good methods of daraping. What are future
uses for this? Can we expect to see this in the
Flight Dynamics Lab now?

Lt. Bruns: My boss is sitting in the front
row. He can answer this if he likes. We are
working more and more toward getting a prac-
tical solution. You cannot envision a fuselage
with these rings hanging all over the inside.
There are problems, and there is work to be
done. I think our major goal in the two papers
presented by Dr. Jones and myself is8 to show
that this is a fruitful zrea of investigation. This
is something you should consider when 7Tou run
into problems in this area. Of course, we will
be continuing to work in this area but we also
hope that maybe some other people in the indus-
try who are closer to the problems will help.

*
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Mr. Smith (Bell Aerosystems Co.): Under
random loading, of course, the reduction in re-
sponse, while still being pretty dramatic, will
decrease as the square root of the damping in-
stead of the damping. Have you compared the
local strains for a p2ael both with and without
the tuned dampers at the center of the panel?
Are you eiiminating on2 potential problem but
perhaps intr¢iucing another ?

Lt. Bruns: Wz realized that there i3 more
than one criterion in evaluating what is being
done to the response of the system. We chose
amplitude of vibration. We feel that anything
else will be in some way involved with this,
possibly, even probably, proportional to it. I
fully admit that there are other criteria to be
used and you could run this whole investigation
over using a different criterion, such as maxi-
mum bending stress.

Mr. West {Aerojet-General Corp.): Very
often in vibration testing fixture resonances
present a serious problem. Would you expect
that this viscoelastic damper system could be
used to help out in thig situation?

Lt. Bruns: Yes, although I should think that
if it is just a fixture, the solution would be to
stiffen it and to raise the fixture natural fre-
quency above the area of interest. The primary
reason for using the tuned damper is to get a lot
of reduction with a low weight penalty and this
is, of course, extremely important when you
have anything airborne. You can solve most
vibration problems by adding weight, but this
is usually not acceptable.

*




METHOLD FOR IDENTIFYING AND EVALUATING
LINEAR DAMPING MODELS IN BEAM VIBRATIONS

M. W, Wambsganss, Jr., B. L. Boers, and G. S. Rosenberg
Argonne National Laboratory
Argonne, lllinois

This paper presents i.e results of an effort to identify and evaluate ef-
fective linear damping models in beam vibration. The study was mcti-
vated by the Jesire to model mathematically the dynamic response of a
beam-type element in which significant energy dissipation could be at-
tributed to the contact of the component with adjacent similar cornpo-
nents. The usual methcd of modeling damping, that is, assuming damp-
iag mechanisms and empirically evaluating the coefficients, is employed.
The three damping mechanisms considered are viscous, stress, and
load damping. The problem is that of identifying the dominant damping
mechanism(s}) for inclusion in the mathematical model and of evaluating
the associated damping coefficients,

A theoretical analysis, based on the usual assumptions in (Euler) beam
theory and the further assumption of the damping being small enough
that the natural frequencies and mode shapes are unaffected, is carried

cluster size are presented,

ovt, The analysis leads to a sensitive method, compatible with results
obtained from tests on a vibration exciter, for identifying the effective
damping mechanisms. The technique involves a comparison of the ex-
perimentally determined ratio of first to second mode magnification
factors, related to a common point on the beam, with the constant values
of this ratio corresponding to ""pure forms' of the proposed damping.
The method is illustrated by application to the modeling of the response
of a cluster of cantilevered beams clamped together at the base. This
model is being employed in the preliminary analysis of the interaction
effects of vibrating fuel rods in a nuclear reactor core. Darnping mod-
els are identified and curves of damping coefficients as a function of

M. W. Wambsganss, Jr.

INTRODUCTION

A nuclear reactor core is made up of a
large number of structural elements, usually in
the form of slender plates or rods, which
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contain the fuel material. These fuel elem:nts
are often arranged in small subassemblies
which, in turn, are mounted on a support grid,
forming a relatively tightly spaced bundle.
High velocity coolant flows axially through this
arrangement while the entire core is addition-
ally subjected to severe thermal and pressure
loads.

Parallel ccolant flow is known to induce
oscillations of plates and rods. In a reactor,
large amplitudes of oscillation must necessarily
be avoided, not only for conventional structurat
reasons, but because ensuing coolant channel
closure may have a critical effect on heat trans -
fer and reactor neutron dynamics. In addition
to flow-induced vibration, mobile reactors for
use on submarines or space vehicles are sub-
jected to disturbances from the environment. in
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which the vehicle operates. This paper stems
from a part of the study directed toward acquir-
ing pertinent design insights.

The mathematical modeling of the dynamic
behavior of an in-core fuel assembly is imme-
diately complicated by the fact that interaction
occurs among the clustered fuel subassemblies.
Because of this interaction, and the fact that
critical displacements are small, damping be-
comes an important consideration of the model-

ing.

The study of the interaction and damping
using a full-size core mock-up becomes prohib-
itive due to the high cost of fabricating proto-
type fuel assemblies. Therefore, as a prelimi-

narv model, the fuel subassemblies are simulated

by hexagonal rods. The cluster is formed by
clamping a rod bundle together at the base.
Among the objectives of the study of this pre-
liminary model are the following:

1. Determine the effect of cluster size on
the natural frequencies and damping of a rod
within the cluster;

2. Identify damping models and associated
damping coefficients to describe satisfactorily
the dissipation of energy in a rod; and

3. Determine the experiment size in terms
of the number of elements in the experimental
cluster that would be required to obtain experi-
mental estimates of certain corresponding fea-
tures (listed above) without requiring the full
prototype compliment of cluster elements.

The damping force associated with the dis-
sipation of energy can be a linear or nonlinear
function of displacement, velocity, stress, tem-
perature, and/or other factors. The mathemati-
cal modeling of this force is difficult and the
dynamicist must generally assume a damping
mechanism and rely on empirical determination
of the effective damping coefficients. The most
widely used model, which leads to the simplest
mathematical treatment, is that of viscous
damping, in which the damping force is as-
sumed proportional to the velocity. Structural,
or material, damping is ofter. modeled assum-
ing the damping force to be proportional to the
displacement but in phase with the velocity.
Various other damping mechanisms can be
conceived.

This basic approach to modeling damping,
that is, assuming damping mechanisms and uti-
lizing empirical results for evaluation, is fol-
lowed in studying the energy dissipated in the
vibration of simulated fuel assembly clusters.
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The three damping mechanisms considered are
viscous, stress, and load damping. They are
defined by the distributed damping force inten-
sity as

[ CyY,. viscous damping;

fp(x,t) = Cg¥yxy Stress damping: (1)

CL ¥xxxxt' load damping.

In the analysis it is assumed that the damping
is sufficiently small that the naturai frequen-
cies and mode shapes are unaffected.

The selection of the dominant damping
mechanisms is based on a comparison of the
experimentally determined ratio of first to
second mode magnification factors, with the
constant values of this ratio corresponding to
"pure forms'' of the proposed damping, as ob-
tained from theoretical considerations. Evalu-
ation of the associated damping coefficients is
performed via solution of a set of independent
simultaneous equations. The set of equations
is constructed by expressing the coefficients
as a linear combination and using experimental
results obtained at resonant conditions.

THEORETICAL ANALYSIS

Forced Vibration of Lightly
Damped Beam

Consider a transverse motion imparted to
a uniform beam by giving the support the har-
monic displacement,

z{(t) = Ao cos uwt . (2)
With y(x,t) defined as the relative lateral dis-
placement of the beam with respect to the sup-

port, the absolute displacement of the beam can
be written

Y(x,t) = y(x,t) + z(t). (3)
Including the three proposed damping mecha-
nisms and using Euler beam theory, the equation
of motion for the beam becomes

EIYIV + cLi'Iv + csi'” + cv? + oAY = 0, (4)
or




For structural systems the amount of where
cdamping is generaily small. Based on this ob-
servation, the assumption will now be made that )
the relative motion of the beam can be repre- 2 lm tla g
sented as a superposition of the undamped free
vibration modes, or eigenfunctions, as found

from solving yV . _Sv
v B (cep), '
Tn = AnPn
(6) [ s - CS '
A= LY " (cep)

m = ET “m -
with the appropriate boundary conditions. LL . '
Therefore, the relative motion of the beam can " (e
be « ritten

(ccr’) s 2pAwm,
y(x.t) = Z A(x) gy (t) . M and the eigenfunctions have been normalized
b such that

Application of Galerkin's method by sub-

stituting Eq. (7) into Eq. (5), multiplying ]-'

2
through by +.(x) and integrating over the b () dx = 4. (10)
length, gives, using the orthogcenality property
of the normal modes, a set of n-ordinary dif-
ferential equations to solve for the n-generalized
coordinates. In general, because of the nature
of the stress dam.ping term, the equations will
be coupled. However, noting a turther property
[1] of the normal modes, that

v
. 2L,
;o q,(t) = B, <{cos (wt V) t A, sin (wt -y )¢,
J &l X) <ﬁr”1(x) dx = 0, fo: (m+n), odd, (8) (11)

o

o

The steady-state forced vibration response
tc the sinusoidal forcing function, Ec. (2), can
be written, using superposition, as

where

up of an even and an odd harmonic term, will A_g 2

a two-term approximation to the motion, made 1
o ©m Z Jl ¢m(x) dx

give uncoupled equations. Since a two-degree-

of-freedom approximation often gzives satisfac- m T , 12
tory results in slender beam vibrations, this [( - 5m’> + 4;{3 5m’:|
requirement for uncoupling is not serious.
Further, higher degree of freedom approxima-
tions may be used with this grocedure when the
stress damping term is included, if it can be
shown, say by an "order of magnitude' compar-
ison, that the coefficients in front of the cou- and
pling terms are such that the coupiing terms w
can be neglected relative to the remaining Bo = o= -
terms. With these comments regarding the "
uncoupling of the equations of motion, the anal-
ysis will be developed in general {or a n-term,
or n-degree-of-freedom, approximation, under
the assumption that uncoupled equations can be

{cos {wt - V)

2.8

m

oA

tan"!

=
3
"

The relative motion of the beam can then be
represented by

obtained. The resulting set of uncoupled equa- - -
tions can be written y(x.t) MZI B &p(x)

AS

¢ v
. . AR |
9y * 2memqm +("m2 A4 = - (2Lmvz tz) T{‘/—Jr ¢m( x)dx'(g) + 2 ';i sin (wt - ym)} (12)

m
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or

Z yu(x} cos (wt-v,-6.), (13)

y(x,t)

where

({:z 172
1+ 4 ‘E

2
(1-82) +4) 8]

2
Yal 2Y = A d(x) B,

1 f
x I[ ¢m(x)dx':

v
6=t "2Ll ‘
s an ﬁn .

Therefore, the absolute motion of the beam is
given by

Y(x,t) = A cos wt + Z Yu(X) cos (wt-vy,-6.).
==t (14)

When vibrating at one of the natur~! fre-
quencies, assume all the energy input goes into

that mode of vibration. Under this assumption,
when o = Wy

Y(x,t) = & cos ot + y (X) cos (w t-7,-6).
(15)
Also, when w = w_, B, = 1 which gives

Ay $,(0) A2yt
Ya(x) = °2§n X (l + 4(:) %I ¢n(x>dxt16

where y_ = 7/2, and leads to

Ya(X)
Y(:.t) = cos w,t + “A sin (wt-6.). (17)

o o

At a resonance, with small damping,

Y(x,t) 5> 1
A s

[]

and (18)

47 << 1;

therefore,
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Y(x,t) %y (x) sinw_t, (19)

where
Ag 3a(x) 1 !
Ya(X) = Tz 7| ®a(x)dx.
n

Vibrating a beam on a vibration exziter,
the beam displacement at a resonance can be
observed to be of the form

Y(x,t) = A (x) sin wat (20)

where the amplitude A (x) can easily be meas-
ured. Equating Eqgs. (19) and (20) gives

4
¢, (x) J ¢,(x) dx (21)

Ln prg <
W ou (%)

where

A (x)
Ma(X) = —— .

o

Damping Model Identification

Three damping mechanisms have been
proposed in mathematically modeling the damp-
ing in a beam. The problem which now arises
is that of identifying, from the three, the domi-
nant damping mechanism(s). In this ragard, it
would be desirable to have a rather sensitive
method of making the identification from simple
experimental tests.

Assume, for the moment, that only one
damping mechanism is dominant; take the other
two damping coefficients to be zero. Then the
remaining damping coefficient can be obtained
from Eq. (21) as

N
pAwn¢n(x)J Do (x) dx
c = 7 2 , (22)
u,,(x)f ooy dx

o

where
cy, for r =0;
c = cg., for r = 2;
cp, for r=4.

Equating the expressions for the damboing co-
efficient (which is being assumed constant} as
obtained from first and second mode consider-
ations gives




I-‘](x) w]\ @1(")]
R z | _ = —— —_—
) [uzm] (w,) [qs;(x)

¢ L
T
Id:ldx J ¢, b,  dx

x < 2 . (23)

4 f
(r)
J‘ ¢, dx J ¢, P dx

b — 5= = o

. 'That is, the ratio of first to second mode mag-

nification factors is a constant at a particular
value of x or section along the heam. Knowing
the eigenfunctions and the ratio of natural fre-
quencies, the constant depends only on the or-
der of the derivative of the eigenfunction under
the integral, which in turn is directly related to
the form of damping. Therefore, experimental
determination of the ratio of magnification fac-
tors, related to a section on the beam, and
comparison with the corresponding ratio con-
stants, associated with a particuiar damping
mechanism, gives a method of determining if
one particular damping mechanism alone is
present, or which two are dominant.

As an example, consider a clamped-free
or cantilevered beam. The required modal
properties of beams are given by Biskop and
Johnson [2]. An additional property, required
in evaluating Eq. (23), is given by Langhaar [1),
that is,

£
I Prm ¢; dx = %[om‘ym{(Z-Um'ym{)] .

The symbols correspond to those in Ref. 2.
Using these to evaluate Eq. (23) gives as the
ratio of magnification factors, related o the
tio of a cantilevered beam,

0.28%, viscous damping (r =0) ;
R({)y = 4.46, stress damping (r=2); (24)

11.3, load damping (r = 4).

Therefore, a comparison of the ratio of magni-
fication factors gives a rather sensitive method,
cornpatible with results derived from tests on a
vibration exciter, for evaluating or selecting a
damping madel for a uniform beam.

It shculd be noted that similar sets of ratio
cons:ants can be developed for beams mounted
in various other basic configurations. Also,
although it is not always practical, modes other
than the first and second may be employed to
give a ratio of magnification factors. The effect

of shear and rotatory inertia, which have been
neglected, increase with frequency. Therefore,
if higher modes are used, care must be taken
to be sure that the effective length (modal
"wavelength") in comparison with the depth of
the beam, is still such that slender beam theory
applies. Further, it must be remembered that
for the modal property given by Eq. (8) to hold,
which allows stress damping to be included in
general, an even and odd harmonic mode riust
be used.

In general, a two-mode approximatiorn is
oiten sufficient in the description of the dynamic
response of most structural components. Un-
less the boundary conditions or type of excita-
tion indicates that other modes might be expected,
the two modes selected are generally the first
and second. Therefore, it is logical to use the
first and second mode magnification factors in
the damping model identification scheme.

Damping Coefficient Evaluation

Once the damping mechanisms and corre-
sponding damping models have been selected,
completing the formulation of the mathematical
model requires evaluation of the associated
damping coefficients. If a consideration of the
ratio of magnification factors indicates, by a
close comparison with one of the ratio constants
given by Eq. (24), that only one form of damping
is dominant, the corresponding damping coeffi-
cient can be readily evaluated with Eq. (22). In
general, however, more than one type of damp-
ing will be indicated.

Equation (21) can be expanded and written
in the form

¢
1 "
cy + CSZI b bn dx + cp A}
o

4
oA W, (%) J @, (x) dx (25)
Lu (%)

Let only two damping mechanisms be included
in the model by assuming one of the damping
coefficients to be zero. By vibrating a beam
on a shaker through its first two resonant modes,
the corresponding natural frequencies and
magrification factors can be measured. With
this information and Eq. (25), two equations
can be written and the two unknown damping
coefficients can be computed.
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As an example, consider once again the
cantilevered beam and let viscous and stress
damping be the two damping mechanisms in-
cluded in the mathematical model for the beam.
With Eq. (25) and the properties previm <ly
given for a clamped-free beam, the viscous and
stress damping coefficienis can be expresszd as

El [/ 18.2 25.5 )
Cv -_— = .

»C‘ \“’1 I-l-]('c) Wq #2('{)
an’ (26)

El 1.37 29.8
i:s = ——2 + -
A w,y [J.l(‘f:) wy p.z(’t)

In the shove squations, the ratios of magnifica-
tion factors are referred to the beam tip or
free encl. Note that all that is required to com-
pute the damping coefficients is a knowledge of
the flexural rigidity and length of the beam and
values for the first and second mode natural
frequencies and magnification factors.

APPLICATION TO REACTOR CORE
FUEL ASSEMBLIES

Experiment Design

As discussed earlier, the preliminary
medel, simulzting the reactor fuel subassem-
blies, consists of a cantilevered cluster of
hexagona! rods. For the experiment, 1/2-in.
rods were used. The clamping fixture cor - ‘ted
of two square 2-in. thick plates of aluminui i
witk an 8-in. diameter hole in the center. The
plates ‘were cut intc halves which could ke
holted {ogether. The maximum size cluster.
which fits inside an 8-in. diameter circle (163
rods), was made cne row larger by adding 4-in.
long stubs. The resulting bundle was then
turned down to an 8-in. diameter to fit inside
the clamping fixture. Thus, the fixture clamps
on the lower 4 in. of the rods. Any size cluster,
up to the maximum size of 183 rods, counld be
tested by replacing rods with 4-in. stubs. For
this study, eight cluster sizes of 1, 7, 18§, 37,
61, 91, 127 and 163 rods were tested. The
clamping fixture and a 37-rod cluster are
shown in Fig. 1.

The test fixture was mounted on a slip
plate and excited by a 10,000-1b shaker. The
shaker was servocontrolled to maintain a con-
stant input displacement amplitude as sensed
by a variable reluctance displacement trans-
ducer. The experimental test setup is shown
in Fig. 2.
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Fig. 2 - Experimental test setup

The input displacement and acceleration,
strain at the root of the center rod, and strain
at the root and acceleration at the free end of a
rod in the outer row, were measured and re-
corded on magnetic tape. The data were then
processed on a spectrum analyzer to give fre-
quency response plots of the measured variables.

Tests were conducted using both aluminum
«nd steel rods. The effective length of the alu-
minum rods was 25-3,/8 in.; the steel rods were
24 in, long. Three sets of tests were run with
each type of rod. In the first set of tests, the
initial cluster consisted of a single element and
a row was added for each suvcessive test. The
second set started with the maximum size
cluster and for each succeeding test the outer




row wculd be removed and replaced with 4-in.
long stubs. In the third set of tests, the clus-
ters were formed from randomly selected rods.

Test Results

The results of the tests, applicable to the
subject matter of this paper, are presented as
sets of curves in Figs. 3 aad 4. In running the
tests at second mode with the larger size clus-
ters (61 to 163 rods), large vertical g-levels
were measured at the fixture. It must be re-
membered that the influence of these large
vertical accelerations is present in the given
results. Redesign of the fixture or mounting is
required for future tests.

For the purpose of this analysis, a natural
frequency was assumed to be equal to the cor-
responding resonant freguency as defined by a
maximum in magnification factor. Figure 3
indicates that the natural frequencies of vibra-
tion of a rod in a cluster do not vary signifi-
cantly from the corresponding natural frequency
of a single rod.

The strain versus frequency plots for the
center rod compared favorably with those for
an instrumented outer rod. Therefore, it was
assumed that an outer rod was representative
of the behavior of a typical rod in a given clus-
ter. This was an advantage in data reduction.
The cutside rod could easily be instrumented
with a miniature accelerometer, and since ac-
celeration is proportional to displacement, for
the harmonic response at resonance, the mag-
nification factor becomes simply the ratio of
tip to input acceleration. The first and second
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mode magnification factors calculated in this
manner are plotted in Fig. 4.

As illustrated in Fig. 4, as the number of
rods in the cluster is increased from one to
the maximum of 163, the magnification factors
decrease continuously. Sensitivity of the mag-
nification factor to input amplitude is ruled out
by the fact that a controlled constant amplitude
input was used. Therefore, the difference in
response between a single rod and a rod in a
multi-rod cluster is dr -::- ~ted by the increased
dissipation of energy w.." “.:creasing cluster
size; hence, it is important to include damping
in the equation of motion for a fuel assembly.
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The theoretical analysis, developed in the
previous part f this paper, is based on the as-
sumption that the natural frequencies and mode
enapes are unaffected by the damping. Figure 2
shows the ..atural frequencies remained rela-
tively constant with cluster size. Based on this
observation one would intuitively expect the
mode shapes to also remain effectively un-
changed. This was shown to be the case via
observation of sicw-motion movies and meas-
uring and comparing, with theory, strains at a
number of locations along the length of a rod.

Damping Model Identification

To model the damping, the three damping
mechanisms given by Eq. (1) were considered.
The method developed earlier, for identifying
linear damping models using test results ob-
tained on a vibration exciter, will now be ap-
plied to determine the dominant damping mech-
anisms, describing the dissipation of energy
which occurs during the vibration of simulated
fuel subassemblies.

The identification scheme is based on the
comparison of the ratio of first to second mode
magnification factors with theoretically deter-
mined constants correspondirg to "pure’ forms
of the proposed damping mechanisms. Using
the averaged experimental data points given in
Fig. 4, the ratios of first to second mode mag-
nification factors can be calculated. The re-
sults are given in Fig. 5, where comparison
can be made with ratio constants correspsnding
to pure viscous, stress, and load damping as
obtained from Eq. (24).

The experimental data can be seen to lie
between the lines correspondiag to viscous and
stress damping. Therefore, it is deduced that
these may be the two dominant damping mecha-
nisms to be included in the equation of moticn
for a fuel subassembly. The ratio of first to
second mode magnification factors ic employed
as a means of identifying the damping mecha-
nisms presert. Since the experimentally de-
termined ratios are approximately constant,
and ! ence independent of cluster size, it may
be concluded that the dampirg mechanisms
themselves are invariant with cluster size.

In summary, based on a consideration of
the ratio of magnification factors, viscous and
stress damping are assumed tv represent the
dominant energy dissipative mechanisms.
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Damping Coefficient Evaluation

Having selected the damping models, that
is, viscous and stress damping, the remaining
problem is to determine the appropriate damp-
ing coeiiicients to use in the models. This is
easily accomplished by substituting the experi-
mental results into Eq. (26), which was derived
for a cantilevered beam. The magnification
factors averaged over the three sets of tests
were used. The damping coefficients, so calcu-
lated, are plotted versus cluster size in Fig. 6.

With the results given in Fig. 6, a two-
mode, or two-term, approximation for the
equation of motion of a rod in a particular size
cluster can be written including damping. The
response to an arbitrary input, e.g., p(x, t),
which might result from a pressure loading,
would take the form

Y(x.t) = @(x) q(t) + ¢a(x) ay(t). (27)

The generalized coordinates are determined by
solving

?
f p(x,t) ¢x)dx (28)

2 _ o

EI £




>

() 2
Cyiscous * 10°, b sec/in!
Cerress * 10, b sec

<) ~

8
gt
E s
w
o
e
w
8
g 2
&
< | [
o
0 20 40 60
NUMBER OF

Fig. 6 - Damping coefficient vs cluster size

s

(! 1
cm = 2pAwm CV+ C' -ZJ- ‘pm d)m de'

The coefficients ¢, and ¢, are read fromFig. 6
for the particular size ciuster.

SUMMARY AND DISCUSSION

A study of the dynamic response of reactor
fue assembly clusters indicated the importance
of including damping in the model. The effort
to model the damping led to the development of
a method for identifying assumed damping
mechanisms and calculating the associated
damping coefficients. The method is based on
a comparison of experimental results with the-
oretically determined values. The required
experimental results are easily obtained from
tests performed on a vibration exciter. The
method is sensitive to the ratio of first to sec-
ond mode magnification factors and appears
well-suited to formulating mathematical models
for structural components, amenable to vibra-
tion testing, which can be modeled as two-
degree-cf-freedom systems.

Experimental results were obtained using
a constant displacement amplitude input. Lin-
earity is assumed in the mathematical model
and in application should be checked experimen-
tally in investigating the dependence of the
magnification factor on the input displacement

amplitude. Also, in conducting such tests, the
fixture or connection damping is included im-
plicitly in the results. In certain cases this
may be desirable, 'However, it must be remem-
bered that to obtain quantitative results from
such tests, the tests must closely resemble the
final application,

The mathematical maodel, formulated in the
manner outlined in the paper, has been forced
to give the correct responee at the first two
natural frequencies for the given input. This
results from using information obtained while
operating at the resonances to compute the re-
quired damping coefficients. Since a system is
most sensitive t¢ damping at, or near, a reso-
nant frequency, it may be reasonable to expect
the mathematical model to predict satisfactorily
the dynamic response throughout the frequency
range for which the mode! is derived. The abii-
ity of the mathematical model to predict system
response to arbitrary loadings must be checked
via experiment,

It is obvious that any two damping models
might have been chosen and the coefficients
forced to give the required responses at the
resonances. However, the proposed models of
viscous, stress, and load damping do have cer-
tain physical significance. Also, the location of
experimental data in relation to the theoretical
values on the plot of the ratio of magnification
factors versus cluster size lends support for
the use of these models to represent the energy
dissipaiive niechanisms.
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With regard to satisfying the objectives of
the study, the following concluding remarks can
be made:

1. The cluster size and, hence, the inter-
action phenomena have little, if.any, effect on
the natural frequencies of an individual element
within the cluster.

2. The magnification factor, reiatzd to the
free end of the rod, decreases cominucusly
with cluster size, but appea=s to be approach-
ing a limiting value.

3. In the attempt to determine the experi-
ment size required to give resulis typical of a

full-size core, the only invariant observed was
the ratio of first to second mode mignification
factors. This is the ratio employed in the
damping model identification scheme. The
magnitude of this ratio indicates that viscous
and stress damping may be the dom:inant damp
ing mechanisms.
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DISCUSSION

Mr. Smith (Bell Aerosystems Co.): Did
you calculate only the coefficients for the first
two modes ?

Mr. Wambsjganss: That's right.

Mr. Smith: The results are obviously a
function of the type of damping assumed in the
first place. Why did ycu choose load damping
for both a solid structure and the clustered tyne
of structure? Wouldn't a shear type of damping
be more appropriate? Secondly, do you intend
to extend this tG sce whether you get the same
sort of coefficlents from other combinations of
modes, for example, second and third or first
and third? This might illustrate whether the
types of damping that you have chos.n or other
types of damping cculd be used generally for
any number of modes.

Mr. Wambsganss: I am not sure if I can
answer the first question satisfactorily. Mr.
Rosenberg, one of the coauthors, chose the
damping models, so I cannot give a good reason
why we included the low damping mechanism.
In answer to your seccnd question, I would like

x*
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to extend the work. We have not done any more
than that reported here.

Mr. Dobson (Knolls Atomic Power lab.):
You showed that stress damping increased with
the number of rods in the cluster. Previously,

I believe, you had showed decreasing amplitude
or decreasing Q factor for a number of rods in
the cluster. There seems to be a paradox.
Stress damping normally would increase with
deflection, assuming the stress increase: some-
what proportionally. Could you explain the fact
that apparently the stress coefficieut is ir.creas-
ing with cluster size? Isn't the stress coeffi-
cient you are trying to determine related to
material damping? Or is it unknown exactly
what you are determining?

Mr. Wambsganss: Actually it is unknown,
because the damping is due to an in eraction of
all the rods and is not necessarily material
damping. We are looking for some damping
mechanism that we can use to describe what is
going on within a nuclear reactor core whera2
these rods can interact, ru:. together, and pro-
vide damping in that manner, so this is not re-
lated directly to mateiial damping,.

*




EFFECT OF AIR DAMPING ON
STRUCTURAL FATIGUE FAILURE®

John R. Fagarn
Radio Corporation of America
Princeton, New Jersey

The response of a single-degree-of-freedom resonant system is de-
pendent on the amount of damping present; the stress induced is de-
pendent on the system response. Fatigue data of most structural ma-
terials can be expressed mathematically as a power function relating
stress to number of cycles to failure. After determining the expres-
sion described for sine and random forcing excitations, it is possible
to plot curves relating the ratio of damping parameters in air and in a
vacuum to the time to failure of the structure., The principal conclusion
is that when low-mass large-area structures are vibration excited in a
vacuum, they should be tested in a manner that will reflect the lack of
air damping on the structure. This consideration is especially perti-
nent in relation to the application to lunar ascent and descent functions,
such as are now being planned.

INTRODUCTION A

Significant levels of structural excitation M
will probably be generated during lunar ascent. Y x
and descent functions. Because of the environ-
ment, the coupling will be almost ex-lusively

through the hardware, and this condition must INTERNAL tj E cam Lv

be recognized during environmental testing.
This analysis does not encompass the entire

problem but merely serves to indicate the sig- 8
nificance of the impact of these factors on the % 5
test specification. A A
Y fo
The response of a single-degree-of- Xz RELATIVE DISPLACEMENT RESPONSE A WITH
freedom resonant system is effectively de- RESPECT TO B
scribed by the Q oi the system. For a sine in- .
put dwelling at resonance, the response ratio is Y= ACCELERATION INPUT
Q; for a flat random: input, the response ratio
is approximately (Qf )!/?, where f _is the Fig. 1 - Schematic representation
natural frequency of the system {1]. The units of displacement response ratio

determining the ratio are g rms divided by

g rms. For our purposes, we desire a ratio
that consists of the displacement response to
the g rms input to the system; this ratio is
proportional to (Q/f_)!/? (Fig. 1). Now

for light damping, where ¢ is the damping ratio
and 8, is the total log decrement (decay of am-
plitude at a logarithmic rate) of the system. Let

Q = 120 = n/8 (1) By = 8, + b, (2)

*This paper was presented by H. W. Lekuch, Radio Corporation of America, Princeton, N, J.
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where 5, is the internal log decrement of a
system and &, is the log decrement due to air

damping.

FATIGUE FAILURE FOR CASE OF
SINE EXCITATION

All structural materials have a certain
fatigue !ife described by the well-known S-N
fatigue curves, as exemplified in Fig. 2. These
curves follow a law that can be mathematically
expressed as

NSt = C, 3)
wnere B and C are material constants [2], N is
the number of stress cycles to failure, and S is
the peak stress. Also N = f,T and substitution
into Eq. (3) results in

Tf,S¥ = C, 4)

where T is the total time to actual fatigue fail-
ure of the material.
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Fig, 2 - Typical S-N fatigue
curve f{or aluminum alloy

A simple system has a .esponse, at rezo-
nance, described cv

XXy = 12 2w/, (5)

where X is the response amplitude and X, is
the zero-frequency (static) deflection.

Since S = AX, where A is the coefficient
relating stress to displacement,

S, = ATX,/8,

at atmospheric pressure, and

S, = AnXo/(8, - 8,} (6)
in vacuum. Setting a ratio,

S, = S, (1-5./8,). (7)
Soiving for T in Eq. (4) and establishing a ratio
of T ,toT,, where T, is time to failure ina
vacuum and T, is time to failure at atmospheric
pressure, results in

T,/T, = (1-5,/8)b. (8)

FATIGUE FAILURE FOR CASE OF
RANDOM EXCITATION

The problem is effectively described by
Crandall and Mark [2]. The mean square stress
response of a simple resonator to an ideal
white-noise input is (Fig. 3)

¥, (386)°

SZ = AZ
8 gqnf)?

(9)

where A? is a coefficient relating S? to the
mean square of the displacement response, W,
is the input spectral density level (g2/cps),

{ is the damuping ratio, and f_ is the system
natural frequency. Also, [ - 5, ’27; therefore,

S A Wo (386) (10)
rms 8 bt(%)anJ :

It is now necessary to select a failure theory.
The Palmgren-Miner hypothesis is general in
scope and the most widely used (within its
limits) of any [2]. The theory is simply stated
as:

@

D - Z [n(S,)/N(S)] , (11)

where N(S;) is the number of cycles to failure
in a constant-amplitude fatigve test with stress
amplitude S;, n(S;) is the nuxber of cycles
experienced at stress amplitude S,, and i is
an arbitrarily assigned stress level (i = 1,2,3,
etc.). When D = 1, failure occurs.

Cyclical stress damage is dependent cn
the stress peaks. The distribution of peaks in
a random process (if the process is assumed to
be normal or Gaussian) is Rayleighian. There-
fore, to determine n(S;) for any specific S, it
is necessary to multiply f T by the prcbability
of the occurrence of these peaks. Thus,
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Fig. 3 - Curve of resonator
response to flat noise input

n(S;) = f_ TAP(S,), (12)
where f T is the total number of cycles of the
responding system and AP(S,) is that fraction
of all the peaks associated with stress cycles
n(S;). It can be further stated that 4p(S,) is
the incremental area under the probability den-

sity curve of a Rayleigh distribution.

To determine the damage contribution of a
specific n(S,), we divided by N(S,)

n(S;)/N(S,) = [f, TAPrS)I/N(S,).  (13)
The total damage is the sum of the damage
contributions at all the stress amplitudes:
Accumulated damage = f_T J M , (14)
N(S)

J

where d(P(S)] - S/Slexp(-S?/252)ds, and S,
is the mean stress of the process. Now

Sb+l

; exp(-S? "2SM2)ds .

[++]

Accumul ated damage = N f
0

(15)

Solving this expression results in

Accumul ated damage - (fnT/C)(\/f Srms)br‘( 1+b/2),
(16)
where T is the duration of the excitation.
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For failure to occur, accumulated damage
becomes unity, and we can write

= b
1 = (€.T/0) (\/2 sm) Fe1eb/2y . (17)

Equation (9) at atmospheric pressure is

2
S - A ‘/(386) T
rm 8 (271)2 fn3 5‘
and in vacuum is
s 50 (386)7 W, 1 (19)
i 8 (2m2f3 b-3,
Substitution in Eq. (17) results in
T, = = ] ris+ b
Voo f, 3867 Yo 1 P 2
V2 AV 5 TS BT
(2m)“f 5 ¢~ %
and (20)
T. = fi 1 1+ b,

L (386 W, l b 2
2 A V i
\/— 8 (277)2fn3 5'

and the ratio is

T,/T, =

a = (1-38,/8)2, (21)
The consiant b of Eq. (3) ranges between 5 and
20, depending on the material. T, /T, for ran-

dom excitation and for values of b from 5 to 20

is plotted against air damping (5,/5,) in Fig. 4.

An attempt to determine the air-damping
decrement was made by Stevens and Scavullo
[3]. They state that the air damping can be as
small as 5 or as large as 83.3 percent. For
the smaller value and a typical material con-
stant of 6.09,

T,/T, = (1-0.05)%%/2 - 0.856 .

This means that if the structure fails in 10 min
at atmospheric pressure with 5 percent air
damping, it will fail in 8.56 min in vacuum un-
der equal conditions of excitation. For 83.3
percent of air damping,

T,/T, = (1-0.833)%%/% - 0.0043 .
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Fig. 4 - Curve of time to failure in
vacuum vs percent of air damping

Thus, if the structure fails in 10 min at atmos-
pheric pressure, it will fail in 0.043 min in a
vacuum environment.

The statistical variation of the solution has
not been attempted; an excellent discussion of
the effect of the magnitude of damping is given
by Crandall and Mark [2].

Intuitively, air damping would exhibit tne
greatest effect on structures that have large
areas and small masses associated with these

areas (panels, printed-circuit boards, sheet
me ‘1l beams, radar antennas, and solar panels).

CONCLUSIONS

The subject of the vibrating structure in a
vacuum is of no interest when no excitation ex-
Jists; the most severe vibration environment
presently occurs during booster lift-off and at
Mach 1 velocities. Both of these conditions oc-
cur within the Earth's atmosphere. Further,
rocket firings in space have been of minor sig-
nificance and short duration. With the advent of
Apollo, the requirements for withstanding rela-
tively severe excitations in a vacuum first
appear.

Lunar descent and ascent functions will
probably result in the generation of significant
levels of structural excitation. Obviously, no
acoustic coupling can exist in the lunar environ-
ment and structural vibration would be trans-
mitted almost exclusively through the hardware;
the environmental test must include consider-
ation of this effect. The analysis presented
here hardly describes the entire problem; it
does, however, indicate the significance of the
test specification. (Should testing be specified
for longer times, or should the combined
vibration-vacuum environment be simulated ?
Are there other failure modes that are af-
fected?) Any performance parameter affected
by an increased level of response would serve
to lower the overall reliability of a system.
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DISCUSSION

Mr. Plunkett: I think the estimate as to
how much influence air damping can have is a
little conservative, because we know from other
results that air damping in connection with joint
damping may have an influence of perhaps 99
percent rather than only 40 percent. In this
case, the change in life would be very significant.

Mr. Lekuch: We agree with that. We have
not done any specific testing, but we have seen
cases where structures that have undergone
vibration in vacuum have responded to an

extent that we did not expect. I should refer
again to the paper by Stephens and Scavullo [3].

Mr. Jacisin (Bell Telephone Labs.): You
made a statement that the lifetimes of these
structures were reduced in vacuum. Possibly
this conclusion was reached primarily from
an air damping standpoint. There has been
much work done on fatigue of various metals,

a phenomenon exicting here, which shows that
the fatigue is increased considerably in vacuum.
Have you also investigated this effect ?




Mr. Lekuch: We have not looked intc the that a great deal ¢’ investigation into fatigue in

fatigue mechanism; we simply accepted, in this vacuum has been nwde, but we have not spe-
case, the Miner failure hypothesis. I realize cifically gone into it.
* * *
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DEVELOPMENT OF DAMPED MACHINERY FOUNDATIONS

W. Blasingame and E. V. Thomas
Navy Marine Engineering Laboratory
Annapolis, Maryland

and

R. A. DiTarant>
Pennsylvania Military Colleges
Chester, Pennsylvania

R. A. DiTaranto

INTRODUCTION

A program designed to reduce the vibratory
energy transmitted through machinery founda-
tions in naval ships is currently under way at
the Navy Marine Engineering Laboratory (MEL),
Annapolis, Md." The objective is being pursued
through the development of damped machinery
foundations capable of attenuating vibratory en-
ergy before it reaches a ship's hull where it
can be transformed into acoustical energy and
radiated overboard as undesirable noise. To
obtain a reduction in radiated noise, it is pro-
posed that foundations be fabricated from highly
damped laminated plates and a pipe-within-a-
pipe configuration separated by a visccelastic
material. These members, ccmposed of alter-
nate layers of steel and viscoelastic material,
have been shown to dissipate large amounts of
vibratory energy through cyclic shear induced
in the viscoelastic material. For laiainated
rlates the dissipation of energy occurs through
flexural vibration, whereas the pipe-within-a-
pipe member produces damping primarily by
shearing the viscoelastic material through axial
vibration. However, damping occurs for this
configuration for all planes of vibrations. The
program has been directed towards the devel-
opment of highly dampad structural laminates
and means of being able to design and predict
their performance, the investigation of the
effects of dynamic mechanical properties of
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viscoelastic material on composite damping and
the reliability in measuring these properties,
and the design and evaluation of damped ma-
chinery foundations. In particular, the program
has led to a general specification of test sam-
ples for damping evaluation, analytical means
for predicting damping and determining com-
posite behavior, development of a method for
reasonably determining the dynamic properties
of a particular viscoelastic material, and the
design and evaluation of laminated foundations
for effectiveness in reducing vibration trans-
mission. The problems and highlights of the
development program are described in this
paper.

ANALYSIS OF LAMINATED BEAMS

To design foundations properly with lami-
nated material, it is necessary to be able to
predict the composite loss factor vs natural
frequency and the natural frequencies of the
system if the elastic and viscoelastic physical
properties, cross-sectional geometry and end
conditions are known.

Historically the anaiyses of laminates be-
gan with the investigation by Oberst [1] who
predicted the composite loss factor vs natural
frequency for an elastic plate having an uncon-
strained viscoelastic layer. In this case the
primary mechanism of dissipation is the exten-
sion and compression of the viscoelastic mate-
rial as the composite is subjected to bending.
It is found that the composite loss factor, =, in
this case is

o M RiH, (3H ¢ GHH, + dH))
EH? + EH,(3H2 + 6HH, + 4H?)

(1)

where
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E = elastic modulus of eiastic material;

£' = real part of elasiic modulus of visco-
elastic material;

n = E{/E;, loss of viscoelastic materlal;
H, = thickness of elastic layer; and
H, = total thickness of viscoelastic layer.

t was further found that a limited amount of
damping i3 obtainad by the unconstrained visco-
elastic layer configuration. In the late 1950's,
Kerwin et al. [2] investigated the damping capa-
bility of constrained layers, i.e., a material
composed of alternaie elastic and viscoelastic
layers. They developed a bending theery for
constrained layers based on several reasonable
assumptions:

1. The elastic modulus of the viscoelastic
is small compared to that of the elastic layer
and thus extensional forces in the viscoelastic
layer may be neglected.

2. The predominant motion of the visco-
elastic material is due to shear.

3. The beams are simply supported or in-
finitely long.

It was found that more damping could be
obtained over a discrete frequency range by
using the laminated beams or constraining the
viscoelastic material. With respect to this
program, Kerwin's results left several ques-
tions unanswered:

1. What is the effect of having more than
three layers?

2. Since the beams to be considered by
MEL are finite, what is the effect of end condi-
tions, other than simply supported, on the com-
posite loss tactor and natural frequencies ?

3. What is the effect on the composite loss
factor of varying geometric and physical prop-
erties cf the laminated beam?

Analytical investigations were conducted in an
effort to answer these questions. The resuits
of Kerwin et al. were programmed for a high-
speed digital computer in which the composite
loss factor was found for three- and five-layer
laminated beams. These computer results are
reported in Ref. 3, and the salient rurves are
shown in Figs. 1 and 2. It is seen that for a
given overall thickness, the composite less fac-
tor is higher for a five-layer laminate at the

82

optimum and higher frequency range than that
obtained for a three-layer laminate for the
same viscoelastic material. Higher values of
the viscoelastic material loss factor g is seen
generally to produce higher composite loss fac-
tors. In the low-frequency region, however,
there appears to be a value of 3 between 1 and
2 for which maximum damping is obtainable.
Increasing the shear modulus of the viscoelastic
material produces a frequency shift of the
damping curve.

Many of the results obtained in Ref. 3 can
be seen better in a curve of » vs h, recently
obtained in the course of this program (Fig. 3).
The parameter h, is given by

12vEH? 2
hy = —2 -T2 %2 )

G,?

where 7 is the average mass density of the
composite, G, is the real part of the shear
modulus of the viscoelastic material, H, is the
thickness of the viscouelastic layer, and «, is
the natural frequency of vibration. It can be
seen that the variation of » vs «» with variations
of G,, 5 and H, can be predicted. Thus, a typi-
cal » vs » curve will shift to the left as G, is
increased. The curve will move up bodily as

5 increases and shift to the left for increasing
H,. This last curve of » vs h, is based on a
sandwich construction in which the thickness of
the viscoelastic layer is small compared to the
thickness of the two equal elastic layers. Thus,
one can find the composite loss factor of a
three-layer sandwich beam if G,, 2, H, and «
are known.

The results of DiTaranto [4], in which the
differential equation of motion is derived for a
three-layer beam, indicate that composite loss
factor vs frequency curve is independent of the
boundary conditions. This finding implies that
the results of Kerwin for an , vs « curve of a
simply supported beam are applicable to all
nondissipative end conditions. A series of tests
conducted at MEL on the effect of end condi-
tions [5] has shown good correlation with the
theoretical results.

The effect of the viscoelastic layers on the
natural frequencies of vibraticn of laminated
beams is presently being considered and forms
the basis of current results. The natural fre-
quencies can be calculated using the results of
Ref. 4, but the resulting se of equations must
be satisfied in general by the nulling of a 12 x12
determinant. In itself, this is not an impossible
task, but for all the possible variations in each
elastic layer thickness, viscoelastic layer
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thickness, physical properties of the materials
plus different end conditions, the problem is
best handled on an individual need-to-solve
basis.

From a design standpoint, the determina-
tion of the natural frequencies by solving a
12 x 12 determinant is too sophisticated 7 nd dif-
ficult to use. Therefore, a simplified #-.proach
has been recommended. This simplified method
uses the frequency relation for a sandwich beam
having a thin viscoelastic layer. The natural
frequencies may be calculated from the ex-
pression

2
“h

= ol {1+ 6al, (3)
in which «, is the natural frequency of the coin-
posite sandwich beam having a thin viscoelastic
layer, and =, is the natural frequency of one
elastic layer carrying its own weight plus half
of the weight of the viscoelastic layer, i.e.,

“2 - _a_n- E_Il'2
10 L2 |z, *

where a_ is the mode number associated with
the end conditions, L is the length of the beam,
EI is the stiffness of onc elastic layer, ., is
the mass/unit length of the elastic layer plus
half the viscoelastic layer, and « is a shear
parameter which varies with a, or, in effect,

wyo - In particular,
R, [, + R;S(1+5))] @)
a = 0
Aol + 2SR, + STR? (145
where
a
n
o T3
2 . Gib
L MK,
3 = K, + K,
Kl
and
K, = Eb2H,, =1 3.

It is to be noted that for a small a_ (low «), «
is approximately equal to 1/2 so that the factor
(1+6a) equals 4. When this condition occurs,
we have the case for both elastic layers acting
together as a solid beam. As a, becomes large
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(«~ large), a approaches zero and each elastic
layer vibrates, in effect, by itself as though it
were completely isolated. Tabhle 1 shows val-
ues of a, for various end conditions. This table
can be very helpful in predicting the natural
frequency of a sandwich beam.

The results of the analytical work in this
program places the designer in the position of
being able to predict natural frequencies and
associated composite los.: factors for a sand-
wich beam having a thin viscoelastic layer.
These predictions may be made if the cross-
sectional geometry and physical properties of
the elastic and viscoelastic materials are
known. The curves shown herein and found in
the references enable one to design highly
damped laminates.

Equations are available for determining the
natural frequencies and composite loss factors
of various three-layer laminates, but the equa-
tions are complicated and require the use of a
high-speed digital computer. A computer pro-
gram is available, however, for predicting the
loss factor as a function of frequency for lami-
nated beams with up to 13 layers. Verification
of the analytical predictions for damping of
lamicated beams have been successfully made
by Douglas and Longley [6].

DYNAMICC SHEAR MODULUS
MEASUREMENTS

Since the laminated materials considered
for use are composed of layers of elastic and
viscoelastic materials, the physical properties
of these materials are important. Pnysical
properties of elastic materials are well known
for steel and aluminum, but are not well defined
for viscoelastic materials. The nature of visco-
elastic materiais is such that the shear modu-
lus, which is of interest in the flexural damping
of laminates, is a function of temperature, time
and/or frequency. From the vibratory damping
standpoint, the shear modulus is considered a
function of temperature and frequency and writ-
ten in complex form by G* = G,(1+i5), where
G, is the material loss factor 3. To design
laminates, the values of G, and 5 must be known
for several temperatures and over a broad fre-
quency range.

In the course of this program, it became
apparent that measuring the shear modulus of
viscoelastic materials was difficult. The extent
of this difficulty was not known. Four labora-
tories actively determining the dynamic me-
chanical properties of viscoelastic materials
were surveyed to ascertain the degree of
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agreement in meaeuring the shear moduli of
two viscoelastic materials with good damping
characteristics [7]. Figure 4 shows the mate-
rials used and the geometry reguired by two of
the laboratories. The black material is 2 neo-
prene normal.y produced in sheets. The cylin-
der and block specimens were especially molded
for two of the four participants. The white-
appearing material is a filled polyvinyl chloride
(PVC). Different apparatus was used by the
four laboratories; two laboratories used the
Fitzgerald apparatus, one used the flexometer
developed by Painter, and the other used a tor-
sional shear apparatus developed by Baltrukonis.

Complete data were desired on the storage
modulus and the loss modulus over a wide fre-
quency and temperature range, but no partici-
pant was able to supply this. Typical reported
data are shown in Figs. 5 and 6. Figure 5 pre-
sents results for the shear storage modulus of
the PVC at 60°F. Three of the four participants
reported, but the frequency coverage and agree-
ment in results were limited. Results for the

Fig. 4 - Viscoelastic materials used for
dynamic tests in 3urvey

shows typical results reported by all partici-
pants. Though the frequency coverage was
improved, the differences in measured shear
modulus values were large. One participant
reported measurements which fluctuated widely
over the frequency range. The dashed curve is
an average of the points with an envelope show-

neoprene material were similar. Figure 6 ing the extent of fluctuations.
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chloride dz.nping material as measured by
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The results of this survey indicated a de-
gree of discrepancy in the measurement of the
shear modulus of viscoelastic materials. Al-
though the discrepancy may, in part, be attrib-
uted to differences in samples and strain am-
plitude, the survey strongly indicated that the
apparatus and measuring techniques are the
prime source of difficulty.

In view of the results obtained in the sur-
vey, a method was developed by Roscoe et al.
[8] to measure the shear modulus and loss fac-
tor of viscoelastic materials using a three-
layer laminated beam. The method utilizes the
measured composite loss factor at resonant
frequencies and the analytical relation derived
by Kerwin et al. [2] for the damping of a sand-
wich beam. This method yielded repeatable and
reliable measurements for the shear storage
modulus from 100 to 40,000 psi and shear loss
factor from 0.2 tc 2.0 over a frequency range
from 20 to 5000 Ez. Though this method has
limitations, it offers a means of evaluating the
damping material for the purpose of recommend-
ing cross-sectional changes of the composite
and changes in the material dynamic properties.
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FOUNDATION DESIGN AND TESTING

Concurrent with the analytical investigation
and shear modulus tests, a major portion of the
cdamping program was concerned with the design,
fabrication and testing of representative ma-
chine foundation structures [9]. Figures 7 and 8
show solid steel and laminated foundation struc-
tures which were fabricated for a motor-pump.
Laminated material which had shown excellent
damping characteristics was employed in fab-
ricating the damped f~'ndation. Because of the
low strength characteristic associated with
highly damped laminates, 3/8-in. Huck bolts
were placed on approximately 2-in. centers
throughout the bedplates to add stiffness. The
foundation legs were originally composed of
several laminated members bolted together to
gain required strength. Since it was impossible
to weld this material, mounting the foundation
for tests was accomplished by welding brackets
to a test vessel hull to which the foundation was
bolted. Fer comparison of vibration transinis-
sion losses, the solid steel foundation was
mounted for test 7n the hull in the piace where
the laminated structure was tested.




Fig. 8 - Laminated machinery foundation

Mechanical impedance tests were made on
each foundation to determine the level of vibra-
tion transmitted to the hull, and overboard
measurements were taken simultaneously to
determine radiated noise. Results of these
measurements showed that no reduction in ra-
diated noise was accomplished with the lami~
nated foundation. An analysis of the problem
pointed to the laminated legs as a direct trans-
mission path to the hull. The laminated legs
were being excited axially, thereby producing
no shear in the viscoelastic material. To
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comrensate, the laminated legs were replaced
by legs in the form of a pipe-within-a-pipe sep-
arated by a viscoelastic material (Fig. 8). Fig-
ure 9 shows the attenuation effects for this
modification. It is seen that the use of damped
pipe legs with the riveted foundation in place of
the laminated ones resulted in negligible vibra-
tion transmission loss.

A further evaluation of the laminated foun-
dation led to the conclusion that to gain sub-
stantial attenuation in vibration transmission
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Fig. 9 - Comparison of damping effectiveness for machinery foundations

and a reduction in radiated noise, laminated
materials must be used such that shearing of
the viscoelastic material occurs. A completely
redesigned motor-pump foundation (Fig. 10) was
fabricated using pretwisted laminated beams.
The damped pipe legs were also redesigned to
provide a viscoelastic cushion at the bottom of
the outer pipe which served as an isolation
mount for the foundation. Brackets were used
to attach the foundation to the hull, while the
new design of the legs allowed them to be
welded. An evaluation of this structure (Fig. 9)
revealed that a substantial reduction in over-
board neise had resulted. The application of
laminated beams in present foundation designs
appeared promising but limited, however, in
machinery support structures. The length of
the laminated members made the pretwisted
foundation unacceptable for present use on op-
erating vessels because of space limitation.
This design, however, could be incorporated in
future design of vessels so that the length of the
laminated members is considered.

The damping obtained with the pipe-within-
a-pipe configuration led to the fabrication of
viscoelastic supported pipe-within-a-pipe portal
frame foundations. Figure 11 shows a damped
portal frame foundation (foreground) and an un-
damped one mounted for tests. Results of the
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. tests are shown in Fig. 12. It is seen that, in

general, a large reduction in overboard noise
was obtained at the resonant frequencies with
the damped pipe members. Because of the
manner in which these foundations are designed,
their application to immediate use on operating
vessels seems practical.

The damping effectiveness of foundations
are evaluated following the approach of Wright
et al. [10] with several modifications. Evalua-
tion follows the mobility matrix for three axis
inputs and neglects rotational inputs. Experi-
mental mwverse mobilities are measured on a
transfer basis from each input terminal to each
output terminal. A combination of transfer in-
verse mobility with the termiination mobility
yields the insertion factor defined as

j transfer mobility with structure in place

i radiator mobility without structure inplace

vout .Fin lTout (5)

out " out in

where 1 = 1,2,3,4,and ; = 1,2,3,4. Thus, the
result of the experimental inverse mobility
measurements is 16 insertion factors for each
direction of input excitation. A total of 48




Fig. 11 - Damped portal frame foundation (foreground) and
undamped portal frame foundation
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insertion factor curves, therefore, are obtained
with respect to irequency. The 16 insertion
factor curves can be combined by power level
summation and averaged to produce a force
amplification ratio. This power level summa-
tion may be expressed as
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