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In an 1deal list-processing system there would Le enough core
memocry to contaln 11l the data and programs., This paper
describes a number of techniques used to bulld a LISP system
which utlilizes a drum for its principal storage medium, with
a surprisingly low time-penalty for use of thils slow storege
device, The techniques include careful segmentation of sys-
tem programs, allocation of virtual memory to allew address
arithmetic for type determination, and a speclal algorithm
for bullding reasonably linearized lists., A scheme 1s des-
cribed for binding variables which 1s good in this environ-
ment and allows for complecve compatlibility between compiled
and interpreted programs with no special declarations.
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SECTION I

INTRODUCTION

LISP 1s a list-processing language which 18 being used ex-
tensively in research in artificial intelllgence. 1In the
ideal 1list-processing system, there would be enough core
memory to contain all the data that were to be referenced
over a long time perlod. In this case, a data reference
would take on the orcder of one or two microseconds, a speed
typical or present core memories. VWhen large systems are
constructed, requiring upwards of one hundred or two hundred
thousand words, the cost of core memory usually becomes
prohibitive. Memory size requirements of this order of
magnitude are, however, not the exception buy rather the
rule for many projects planning research on natural language,
speech processing, and a host of other areas.

Thus 1t becomes necessary to conslider the use of bulk

storage memory devices such as magnetic cdrums and discs.

The problem in using such devices 18 that, while thelr data
transfer rate is sufficlently high (5-10 usec/wd), one must
walt for the data on the rotating medium to come around to

the read position. The average time to access data 1s one-
half the rotation time, or typlcally about 17 to 33 milli-
seconds, To use a drum, ther, as if 1t were core memory,

i1.e. to read single words as they are required, would in-
crease data reference time by a factor of around 20,000 making
any list-processing system uselessly slow for practical problems.




As a first step toward utilizing drum storage efficilently,
we organize the drum into blocks of words, or pages, and
bring into core an entire block of words whenever one from
that block was required. As may be seen from the timings
above; the extra time required to transfer 200 to 300 words
instead of one, is negligible compared to the access time.
If multiple references are made to a blocck once it has been
moved into core, then the speed of data references is in-
creased by a factor equal to the number of refererces made
to a given page before another must be brought in.

In this paper we describe a number of techniques we have

used in the BBN LISP system to maximize the number of in-
core references per drum reference. These techniques should
increase the speed of cperation of any list-processing system
embedded in a time-sharing system which uses paging to mip a
large virtuzl memory stored on a drum into a smaller core
memory, e.g. the MULTICS system (3).
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SECTION II

ORGANIZATION OF CORE MEMCRY

Our LISP system has been implemented on a Digital Equipment
Corporation PDP-1., This machine has a core memory of 16K
(K = 1024) and a drum memory of 88{. Access time to one

18 pit word of core is 5 microseccnds, and average uccess
time to a word on the drum is 17 milliseconds. The PDP-1
has no index registers, flcating point instructions, specilal
push-down-list instructions or paging hardware. It has an
unusually large collection of I/0 devices, includirg paper
tape reader and punch, teletypes with reader and punch,
mag-~-tape drives, high speed display and light pen, and a
Graphicon (RAND) tablet. The LISP system can communicate
with all these I/0 devices.

The BBN LISP system contains both an interpreter and a com-
piler, The operation of the compiled code is completely
compatible with the interpretation by the interpreter of
S-expression definitions of functions. One may run mixed
sets conaisting of functions which are interpreted and
others which are run after being compliled. The scheme for
binding variables which allows this complete compatibility
is discussed in detall below.

The 16K of core memory must be allocated among permanent
code, l1list structure storage, and compiled code. To this
end we have dedicated 4K to compiled code, 4K to the




supervisor and permanent code, and 8K to 1list structure and
pushdown list storage. Since a list element conasists of two
18 bit words, this 8K of memory is equivalent to at most

4K LISP words,

Segmentation of System Code

The permanent code for the system is well over 10K in length
itself. 1In order to stay within the allotted 4K of memory
we have segmented the aystem code into 6 cverlays which have
minimal interaction petween them, minimizing the number c¢f
swaps necessary between overlays. We keep permanently in
core the intermupt routines for servicing user on-line
interaction, and an elementary time-sharing supervisor

(our system allows a small number of users - usually 2 or

3 - to use the machine as a LISP dedicated time-sharing
system). The remainder of the 4K 1s used as swapping area
for the fol.owing overlays:

1. Interpreter and compiled code runner

2. Some non-critical special machine coded subroutines
for manipulating list structure

3. Input-Output and formatting

+. A speclal package for manipulating the rather stupid
magnetic tape drives on the machlne

5. The garbage collector

6. An initialization package

Since all segmentation and paging is Gune by software on
this machlne, we felt that explicit segmentation and com-
plete swapping cf overlays was preferable to calling sub-

routines off the drum as needed. This 1s in contradistinction

to our phllosophy on running compliled LISP code. For the
system code we know what reasonable segments are; in the
latter case the system could not know (and we did not want

e
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to put the onus on the user for keeping .rack of) segments
that would fit in 4K of storage. All overlays are absolute
code and can therefore run only in fixed locations.

Compiled LISP Functions

Programs complled from S-expression definitions of LISP
functions are stored on the drum in relocatable form. When
running, these functions are contained in a ring buffer in
core (. about 3400 words, properly relocated. Let us consider
what happens when a compiled functlon 1s called. The call
contailns a pointer to the atom which names the functilion
(essentially the symbolic name of the function). This

name 18 used to search an in-core transfer vector contain-
ing starting locations -.f all routines in core. The search
is donz by "hashing" the name, and searching the transfer
vector until the name or an empty space 18 feund. We have
found that with the ring buffer full, the transfer vector

of 128 words (64 name-starting location pairs) is only

about 1/4 full. Therefore the average number of checks to
cetermine the presence of a function in core is only slightly
largerr than 1. If the function called is in core, a transfer
is made to the starting address given. Thus, in this case,
we have made no drum references to link functions. This
procedure could be improved if we wanted to modify the coce
of the calling function to contain a Jjump indirect through
the transfer vector. However, we prefer that the only ad-
dress binding Jone on compiled code be simple relocation.

If the function called is not in core, we obtain its drum
address from the function cell of its atom. We then read
into the ring buffer the first page of the complled code ror
this function (i1.e. from its initial position to the end of
the 256 word block which cunstitutes a page on the drum).

-5~




The first word of the program contains the length of the
program. Successive pages are read 1n until the entlire
program 18 in core. If &t any time we overlap the end of
the ring bufi~r, we start again from the beglnning of the
ring buffer with the beginning of the program. The transfer
vector 1s updated by removing entries for functions which
have been wholly or even partially overwritten, {(*taking

cere to mark them properly for the hash lookup) and a new
entry 1s added for the program. Returns from calls are
also made through the transfer vector. Thus, programs
which have called subroutines may be cverwritten. In tnis
case, the program will be recalled from the drum before the
return 18 effected. Sets of functions seem to stabilize
under this system, and 1f all the programs to be used for

a reasonable period can fit in core, they soon reside there.




SECTION III

ORGANIZATION OF THE DRUM MEMORY

LISP assumes that 1t 1s operating in an environment containing
128K words. that is from O to 400,000 octal. Only 88K actually
exlist on the drum. Tne remaining portion of the address space
is used for representation >f small integers between -32,767

and 32,767 (offset by 300,000 octal), as de=cribed below. A1l
data storage i1s contained within this virtual memory, including
1ist structure, compiled code, atom value cells, property cells
and function cells, print name storage and pushdown 1list storage.
This virtual memory 13 divided into pages of 256 words. Refer-
erice to the virtual storage are made via an in-core map which
supplies he address of the required page 1f it is in core, or
traps to a supervisory routine if the page i1is not in core. This
drum supervisory routine selects an in-core page, writes it
back on the drum if i1t has been changed, and reads the required
page from the drum. Closed subroutine references to ar in-core
word through the map takes approximately 170 microseconds (be-
cause of the poor set of operation codes or. the machine, and

the lack of an index register). A reference to a word not in core,
which must be obtained from the drum, takes between 17 and 33
milliseconds., It takes the longer time 1f a page must be
written out on th: drum before the referenced page can be i-ead
in. Thus, 1t v ally pays to minimize drum references,




Type Determination of Pointers

In standard wholly-in-core LISP systems the type of elemert a
pointer 1s referencing (for example, an atom versus an S-ex-
pression) zan only be determined by looking at the item itself,
which might require a drum reference. We avold this unnecessary
drum reference by dividing the virtual memory space into a
number of areas as shown in Fig. 1. As can be seen from this
map of storage, simple arithmetic on the address of a pointer
willl determine 1ts type. We chose to allocate storage rather
than provide an in-core map of storage areas, because the map
would take up veluable in-core space, and every aidiilonal page
of storage that we can squeeze into core reduces “he numrber of
drum references.

Literal Atoms

When a string of characters representing a literal atom is read
in, a search 1s made tu determine 1if an atom with the same print-
name has been seen before. If so, a pointer to that atom 1is

used for the current atom. If not, a new atom is created. Thus,
as in all LISP systems, a literal atom has a un?oue representa-
tion.

Four cells (words) are assoclated with each literal atom. These
cells contaln pointers tc¢ the print-name of the atom, the func-
tion which it 1dentifies, 1ts top level or global value, and

its property 1ist. A pointer to an atom points to its value
cell. Since these value cells occur in oriy one part of the
address space, one can tell from a pointer (address) whether or
not it 1s pointing to a literal atom.

Instead of having the other cells on the same page with the
value cell, each 1s put in a separate space in a position com-
putable from the address of the value cell. Separating value

-8-
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HASH TABLE

PRINT-NAMES

PRINT-NAME PCINTERS

FUNCTION CELLS

PUSHDOWN LIST

FULL WGRDS

PROPERTY LIST CELLS

| _(large integers)

VALUE CELLS

l LIST
STRUCTURE

COMPILED
T CODE

UOO,OOOS

300,0008
270,0008
230,000g
220’0008
210,0008
200,0008
160,0008

150,0008

10,0008

Org~n’zation of the Virtual Memory.




cells and function cells, for examrle, 1s useful because most
users will not use the same name for a global variable as they
will for a function, and, therefore, if the four cells are
trought in whenever any one was asked for, it 1s likely that
the other three cells would never be referenced. Yet, they use
up room in core which could be used for other storage. Simi-
larly, the print-name pointers assoclated with atoms are needed
during input and output, but rarely during a computation.
Therefcre, during computation these cells are never in core.

Numerical Atoms

In 7094 LISP, numerical atoms (numbers) do not have a unique
representation; that 1s, a number of different pointers may be
referencing numbers with the same value. This implies th=t
for comparicon of numbers, or for arithmetic operations, the
value of the numbers murt be obtalned, and comparison of num-
erical atoms cannot be Just a comparison of pointers.

The values of numbers are stored in "full word" space. In
7094 LISP, pointers to numbers in 1list structure do not point
directly to the values of the numbers in full word space. For

each numerical atom, a speclial word from free storage 1s acquired

with bits set 1n this word to 1ndicate type, and a pointer to
the value of the number in full word space. A pointer in 1list
structure which references a number points to this "header"
word. Because type information 1s implicit 1n pointers
(addresses) 1n our LISP system, we do not need this extra level
of indirectlion, and poilnters to number values directly address
free word space. This obviously saves possible drum references
in arithmetic op~rations and comparisons.

In addition, we utilize the fact that not all addresses in the
17 bit address space of the drum can legitimately appear as

-10-
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pointers in 1ist structure. Pointers between 200,000 (octal)
and 400,000 (octal) are, therefore, used in the context of list
structure to represent directly "small" integers between

-32767 and +32767 (offset by 300,000 octal). Thus, a pointer
of 300,003 (octal) occurring in a 1list is the number 3. Again,
eliminating a level of indlirectness reduces the numbar of drum
references required. Another advantage of using this form for
small integers is that numbers in this range are represented
uniquely; thus, arithmetic comparisons can be done directly

on the pointers. 7In addition, no additional storage 1s required.
and this reduces the number of garbage collections that must be
invoked. Traditiocnally, almost all the numerical operations
done in LISP are on these small integers.

Construction of Lists

Careful allocation of the address space of virtual memory
alleviates only some of the problems of list processing in a
paging environment. List structure, unless specifically and
purposefully organized, tends tc become random and thus defeats
the advantages of the paging scheme. If only one-tenth of the
existing list structure can reside in core, and 1t 1s referenced
randomly, then nine out of ten data references, on the average,
will require a drum oneration.

An examination of list-handling processes indicates that lists
are usually processed sequert*ially; that 1s, programs generally
proceed down the elements of a list by taking the CDR of the
successive talls., A process may be handling several lists at
on;e, but will typically mezke numerous references to each.

One of the best means o1 speeding up a paged LISP appeared to
be linearizing lists and concentrating them on as few pages as

-11-




possible. To do this, a special CONS, or list-word constructing
subroutine, was written. This attempts tc assign a new list-word
on a page already in use by the list of which this new word 1s a
part. The algoritim is described below.

In constructing a new list pointer, a free word pair must be
obtained from a free storage list. Instead of keeping one large
free storage 1ist as is done on the 7094 version of LISP, we
have a separate free storage 1list on each page. Thus, the
sy2tem can determine if a new pointer pair can be placed on a
particular page. Using these free storage 1l.sts, we now con-
struct a new pointer pair (a LISP dotted pair consisting of two
18 bit PDP-1 words) according to the following alghrithm:

To construct Z = CONS [X;Y]:

1, If Y 1is not an atom and there is room on the page with Y
then place Z on this page.

2. Otherwise, if X 1is not an atom and there is room on the
page with X put Z on that page.

3. Otherwise, if there 1s a page in core with room place 2
on this page.

4, Otherwise, place Z on a fage in virtual memory with room.
This page 18 found by searching an in-core table which gives
the initial location of the free storage list on each page,
if storage 1s available.

This algori-hm tends to minimize @ross linkages between pages

and to 1limit any single structure to a very few pages. This
has been born out by tracing through a number of fairly large

-12-
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struc’ cres and computing the number of page crossings. When
workiig with such a structure, it is unlikely that one will
make references to more than a few pages for a relatively long
period of time. Since these pages can reside i1, core, no drum
references are needed. For example, in entering the definition
of a function, the entire definition tends to appear on a
single page. Thus, during the interpretation of a function
multiple drum references are usually unnecessary.

When free storage 1s =2xhausted, garbage collection 1s necessary.
A number of garbage collection schemes (4) have been invented
and implemented in various versions of LISP. In some of these
schemes, free storage i1s compacted by a folding process in which
empty cells in lower storage are filled with the content of
cells in higher storage. However, this is a very bad type of
scheme for a paging environment, because this tends to effec-
tively shurfle pointers, and make 1ists extend over more pages
than are necessary. In our system, we simply mark used cells
and collect storage on each page as it stands. In addition to
this standard garbage collection algorithm, we also utilize
another scheme for dumping onto secondary storage (magnetic tape)
a compacted representation of thz 1list structure in use in the
system. This scheme (described in (4)) based on an algorithm
first suggested by Marvin Minsky (5) has the desirable property
that 1ists are, in general, linearized in the CDR direction.

-13-




SECTION IV

VARIABLE BINDINGS AND THE PUSHDOWN
LIST

A number of schemes have been used in different versions of
LISP for storing the values of variables. These include:

1. Storing values on an assoclation 1list palrad with the
variable names.

2. Storing values on the property list of the atom which
is the name of the variable.

3. Storing values in a special value cell associlated with
the atom name, putting old values or. the pushdown 1list,
and restoring these values when exiting from a function.

4, Storing values on the pushdown 1list.

The first three schemes all have the property that values are
srattered throughout list structure space, and, in general, in
a paging environment would require references to many pages to
determine the value of a varliable. This would be very un-
desirable in our system. In order to avold this scattering,
and possible excessive drum references, we utilize a variation
on the fourth standard scheme, usually only used for trans-
mitting values of arguments to compiled functions; that 1is,

14 -
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we place these values on the pushdown 1list. But since we use
an interpreter as well as a compller, the variable names must be
kept. The pushdown list thus contains pairs each consisting of
a variable name and 1ts value. The Iinterpreter need only search
down the pushdown list for the binding (value) of a variable.

One advantage of this scheme 1s that the current top of the
pushdown stack 18 usually in core, and thus, drum references
are rarely required. Free variables work automatically in a
way similar to the association 1list scheme. In fact, the push-
down 1ist is a guaranteed linear version of the association
list,»

An additional advantage of this scheme 18 that it is completely
compatible with compiled functions which pick up their argu-
ments on the pushdown 1list from known positions, instead of
doing a search. To keep complete compatibllity, our compiled
functions put the names of thelr arguments on the pushdown
list, although they do not use them to reference variables.
Thus, free variables can be used between complled and inter-
preted functions with no special declarations necessary. The
names on the pushdown list are also very useful in debugging,
for they provide a comple . symbolic backtrace in case of error.
Thus, this technique, for a small extra overhead, minimizes
drum references, provides symbolic debugging information, and
allows completely free mixing of complled and interpreted
routines.

*# With appropriate passing down of pushdown 1list pointers we can
even achieve the same effect as thz standard FUNARG device on
the 7094 for functional arguments. This FUNARG device pre-
serves local context well enough to handle the Knuth's "Man
and Boy'" compiler problem (Algol Bulletin 18.1).

-]_5-




SECTION V

PERFORMANCE

The proof of programming techniques is in the running. We
have made a number of measurements on our system to test the
validity of our assumptions. To test the hyposthecis that our
CONS algorithm was helping to minimize drum references, we ran
a computation for about 35 minutes with a number of counters
in various functions. The computation made was the compilation
of approximately 10 pages of LISP functions which define an
elementary programming language called GHOST. We were uti-
lizing about 12,000 words of free storage; core can only hold
about 3,500. Typical garbage collectlions reclaimed about
5,000 words. 1In this time we performed 31,000 CONS's, and
150,000 CAR's and CDR's (not counting those done in garbage
collection). For these CONS's and CAR's-CDR's only 5,500
drum references were needed, or only about 2.5 per cent of
the cases, If storage were distributed randomly, then the
expected number of references should have ranged between

50 per cent and 70 per cent depending on whether the space

in use for list structure was nearer 7,000 or 12,000 words.
With the 2.5 per cent figure, we computed that the system
spent 10 per cent of its time waiting for the drum. If

the system had to go to the drum for 50 per cent cf its data

-16-
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references, it would be spending well over 90 per cent of
its time waiting for the drum, Extracting the same informa-
tion from a number of other runs for different users of the
system indicates that the drum i1s referenced betwee:. 2 per
cent and 10 per cent of the time. The types of jobs being
done by the user were not recci:ded. The higher percentage
was realized when the user was involved in many small on-
line interactions with the syst:m. However, it is in Just
this case that waiting for the drum is least costly to the
user, since mest of his time i1s spent thinking.

Another facet of the cost of using the drum should be men-
tioned. Even in problems in which all the storage needed
can fit into core, you are paying a price for the drum
facility. Instead of direct references to core, the system
must go through a software map to determine core addresses,.
We compared the running time of one program on an in-core
LISP system,and a paged LISP system,on an SDS-940, Despite
the fact tha*t all the data fit in core, this experiment
indicated that we are losing a factor of about 2 in speed
when we use the software map. Of course, 1f a hardware
paging map were available this problem would vanish.




SECTION VI

SUMMARY

In summary, our LISP system surpassed our expectations and
is proving a useful research tool for a number of artificial
intelllgence projects. Careful segmentatlon of system code,
arrangement of data spaces by type, organization of 1list
structure, and speclal attention to the binding of variables
all contribute to the success of the system.

-18-
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