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ABSTRACT 

In an Ideal list-processing system there would be enough core 

memory to contain ,A11 the data and programs. This paper 

describes a number of techniques used to build a LISP system 

which utilizes a drum for its principal storage medium, with 

a surprisingly low time-penalty for use of this slow storage 

device.  The techniques include careful segmentation of sys- 

tem programs, allocation of virtual memory to allow address 

arithmetic for type determination, and a special algorithm 

for building reasonably linearized lists, A scheme Is des- 

cribed for binding variables which is good in this environ- 

ment and allows for complete compatibility between compiled 

and Interpreted programs with no special declarations. 
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SECTION I 

INTRODUCTION 

LISP is a list-processing language which Is being used ex- 

tensively In research In artificial Intelligence. In the 

Ideal list-processing system, there would be enough core 

memory to contain all the data that were to be referenced 

over a long time period. In this case, a data reference 

would take on the orcter of one or two microseconds, a speed 

typical of present core memories. When large systems are 

constructed, requiring upwards of one hundred or two hundred 

thousand words, the cost of core memory usually becomes 

prohibitive. Memory size requirements of this order of 

magnitude are, however, not the exception buy rather the 

rule for many projects planning research on natural language, 

speech processing, and a host of other areas. 

Thus it becomes necessary to consider the use of bulk 

storage memory devices such as magnetic drums and discs. 

The problem in using such devices is that, while their data 

transfer rate is sufficiently high (5-10 M-sec/wd), one must 

wait for the data on the rotating medium to come around to 

the read position. The average time to access data is one- 

half the rotation time, or typically about 17 to 33 milli- 

seconds. To use a drum, ther, as if it were core memory, 

i.e. to read single words as they are required, would in- 

crease data reference time by a factor of around 20,000 making 

any list-processing system uselessly slow for practical problems. 
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As a first step toward utilizing drum storage efficiently, 

we organize the drum into blocks of words, or pages, and 

bring into core an entire block of words whenever one from 

that block was required. As may be seen from the timings 

above, the extra time required to transfer 200 to 300 words 

instead of one, is negligible compared to the access time. 

If multiple references are made to a block once it has been 

moved into core, then the speed of data references is in- 

creased by a factor equal to the number of references made 

to a given page before another must be brought in. 

In this paper we describe a number of techniques we have 

used in the BBN LISP system to maximize the number of In- 

core references per drum reference. These techniques should 

increase the speed of operation of any list-processing system 

embedded in a time-sharing system which uses paging to nup a 

large virtual memory stored on a drum into a smaller core 

memory, e.g. the MULTICS system (3). 
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ORGANIZATION OF CORE MEMORY 

t Our LISP system has been Implemented on a Digital Equipment 

Corporation PDP-1. This machine has a core memory of 16K 

| (K = 1024) and a drum memory of 8&C. Access time to one 

18 bit word of core Is 5 microseconds, and average access 

time to a word on the drum Is 1? milliseconds. The PDP-1 

has no Index registers, floating point instructions, special 

push-down-11st instructions, or paging hardware. It has an 

unusually large collection of I/O devices, includirg paper 

tape reader and punch, teletypes with reader and punch, 

mag-tape drives, high speed display and light pen, and a 

Graphicon (RAND) tablet. The LISP system can communicate 

with all these i/o devices. 

The BEN LISP system contains both an Interpreter and a com- 

piler. The operation of the compiled code is completely 

compatible with the Interpretation by the interpreter of 

S-expression definitions of functions. One may run mixed 

sets consisting of functions which are interpreted and 

others which are run after being compiled. The scheme for 

binding variables which allows this complete compatibility 

is discussed in detail below. 

\ 

f 
I 
I 

The 16K of core memory must be allocated among permanent 

code, list structure storage, and compiled code. To this 

r end we have dedicated 4K to compiled code, 4K to the 
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supervisor and permanent code, and 8K to list structure and 

pushdown list storage. Since a list element consists of two 

18 bit words;, this 8K of memory is equivalent to at most 

4K LISP words. 

Segmentation of System Code 

The permanent code for the system is well over 10K in length 

itself. In order to stay within the allotted ^K of memory 

we have segmented the system code into 6 overlays which have 

minimal interaction oetween them, minimizing the number of 

swaps necessary between overlays. We keep permanently in 

core the interrupt routines for servicing user on-line 

interaction, and an elementary time-sharing supervisor 

(our system allows a small number of users - usually 2 or 

3 - to use the machine as a LISP dedicated time-sharing 

system), The remainder of the 4K is used as swapping area 

for the feixowing overlays: 

1. Interpreter and compiled code runner 

2. Some non-critical special machine coded subroutines 

for manipulating list structure 

3. Input-Output and formatting 

4. A special package for manipulating the rather stupid 

magnetic tape drives on the machine 

5. The garbage collector 

6. An initialization package 

Since all segmentation and paging is done by software on 

this machine, we felt that explicit segmentation and com- 

plete swapping of overlays was preferable to calling sub- 

routines off the drum as needed. This is in contradistinction 

to our philosophy on running compiled LISP code. For the 

system code we know what reasonable segments are; in the 

latter case the system could not know (and we did not want 
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to put the onus on the user for keeping „rack of) segments 

that would fit in 4K of storage. All overlays are absolute 

code and can therefore run only in fixed locations. 

Compiled LISP Functions 

r 
Programs compiled from S-expression definitions of LISP 

^ functions are stored on ehe drum in relocatable form. When 

running, these functions are contained in a ring buffer in 

core tJ about 3^00 words, properly relocated. Let us consider 

what happens when a compiled function is called. The call 

contains a pointer to the atom which names the function 

(essentially the symbolic name of the function). This 

name is used to search an in-core transfer vector contain- 

ing starting locations --f all routines in core. The search 

is done by "hashing" the name, ard searching the transfer 

vector until the name or an empty space is found. We have 

found that with the ring buffer full, the transfer vector 

of 128 words (64 name-starting location pairs) is only 

about l/4 full. Therefore the average number of checks to 

determine the presence of a function in core is only slightly 

largei than 1. If the function called is in core, a transfer 

is made to the starting address given. Thus, in this case, 

we have made no drum references to link functions. This 

procedure could be improved if we wanted to modify the code 

of the calling function to contain a Jump indirect through 

the transfer vector. However, we prefer that the only ad- 

dress binding Jone on compiled code be simple relocation. 

If the function called is not in core, we obtain its drum 

address from the function cell of its atom. We then read 

into the ring buffer the first page of the compiled code for 

thlg function (i.e. from its initial position to the end of 

the 256 word block which constitutes a page on the drum). 

r 
r 
r 
1 
1 
1 
1 
r 

[ 
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The first word of the program contains the length of the 

program. Successive pages are read In until the entire 

program Is In core. If at any time we overlap the end of 

the ring buff-r, we start again from the beginning of the 

ring buffer with the beginning of the program. The transfer 

vector is updated by removing entries for functions which 

have been wholly or even partially overwritten, (taking 

c»re to mark them properly for the hash lookup) and a new 

entry is added for the program. Returns from calls are 

also made through the transfer vector.  Thus, programs 

which have called subroutinea may be overwritten, In tnis 

case, the program will be recalled from the drum before the 

return Is effected. Sets of functions seem to stabilize 

under this system, and if all the programs to be used for 

a reasonable period can fit in core, they soon reside there. 
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SECTION III 

ORGANIZATION OF THE DRUM MEMORY 

LISP assumes that it Is operating in an environment containing 

128K words, that is from 0 to 400,000 octal. Only 88K actually 

exist on the drum. The remaining portion of the address space 

is used for representation jf small integers between -32,76? 

and 32,767 (offset by 300,000 octal), as described below. All 

data storage is contained within this virtual memory, including 

list structure, compiled code, atom value cells, property cells 

and function cells, print name storage and pushdown list storage. 

This virtual memory is divided into pages of 256 words. Refer- 

ence to the virtual storage are made via an in-core map which 

supplies «/he address of the required page if it is in core, or 

traps to a supervisory routine if the page is not in core. This 

drum supervisory routine selects an in-core page, writes it 

back on the drum if it has been changed, and reads the required 

page from the drum. Closed subroutine references to an in-core 

word through the map takes approximately 170 microseconds (be- 

cause of the poor set of operation codes on the machine, and 

the lack of an index register). A reference to a word not in core, 

which must be obtained from the drum, takes between 17 and 33 

milliseconds. It takes the longer time if a page must be 

written out on th> drum before the referenced page can be read 

in. Thus, it r ally pays to minimize drum references. 
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Type Determination of Pointers 

In standard wholly-In-core LISP systems the type of element a 

pointer Is referencing (for example, an atom versus an S-ex- 

presslon} can only be determined by looking at the Item Itself, 

which might require a drum reference. We avoid this unnecessary 

drum reference by dividing the virtual memory space into a 

number of areas as shown In Pig. 1. As can be seen from this 

map of storage, simple arithmetic on the address of a pointer 

will determine its type. We chose to allocate storage rather 

than provide an  in-core map of storage areas, because the map 

would take up valuable in-core space, and every aldlvlonal page 

of storage that we can squeeze into core reduces he nutrber of 

drum references. 

Literal Atoms 

When a string of characters representing a literal atom is read 

in, a search is made to determine if an atom with the same print- 

name has been seen before. If so, a pointer to that atom is 

used for the current atom. If not, a new atom is created. Thus, 

as in all LISP systems, a literal atom has a unfoue representa- 

tion. 

Pour cells (words) are associated with each literal atom. These 

cells contain pointers tc the print-name of the atom, the func- 

tion which it identifies, its top level or global value, and 

its property list. A pointer to an atom points to its value 

cell. Since these value cells occur in only one part of the 

address space, one can tell from a pointer (address) whether or 

not it is pointing to a literal atom. 

Instead of having the other cells on the sa^.e page with the 

value cell, each is put in a separate space in a nosition com- 

putable from the address of the value cell. Separating value 
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VIRTUAL MEMORY 

HASH TABLE 

PRINT-NAMES 

PRINT-NAME POINTERS 

FUNCTION CELLS 

PUSHDOWN LIST 

FULL WORDS 

PROPERTY LIST CELLS 

VALUE CELLS 

I 

400,000Q 

3oo,ooo8 

270,0008 

230,0008 

220,00C8 

210,000g 

200,0008 

170,0008 

160,000 

- 150,0008 
LIST 

STRUCTURE 

1 
COMPILED 

CODE 
io,ooo8 

Pig.  1.     Orcn'.zatlon of the Virtual Memory. 



cells and function cells, for example. Is useful because most 

users will not use the same name for a global variable as they 

will for a function, and, therefore. If the four cells are 

brought In whenever any one was asked for. It Is likely that 

the other three cells would never be referenced. Yet, they use 

up room In core which could be used for other storage.  Simi- 

larly, the print-name pointers associated with atoms are needed 

during input and output, but rarely during a computation. 

Therefore, during computation these cells are never in core. 

Numerical Atoms 

In 709^ LISP, numerical atoms (numbers) do not have a unique 

representation; that is, a number of different pointers may be 

referencing numbers with the same value. This implies thzt 

for comparison of numbers, or for arithmetic operations, the 

value of the numbers murt be obtained, and comparison of num- 

erical atoms cannot be Just a comparison of pointers. 

The values of numbers are stored in "full word" space. In 

7094 LISP, pointers to numbers in list structure do not point 

directly to the values of the numbers in full word space. For 

each numerical atom, a special word from free storage is acquired 

with bits set in this word to indicate type, and a pointer to 

the value of the number in full word space. A pointer in list 

structure which references a number points to this "header" 

word. Because type information is implicit in pointers 

(addresses) in our LISP system, we do not need this extra level 

of indirection, and pointers to number values directly address 

free word space. This obviously saves possible drum references 

in arithmetic operations and comparisons. 

In addition, we utilize the fact that not all addresses in the 

17 bit address space of the drum can legitimately appear as 
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-s pointers In list structure. Pointers between 200,000 (octal) 
and ^00,000 (octal) are, therefore, used In the context of list 
structure to represent directly "small" integers between 
-32767 and +32767 (offset by 300,000 octal).  Thus, a pointer 
of 300,003 (octal) occurring In a list Is the number 3.  Again, 
eliminating a level of indirectness reduces the number of drum 
references required. Another advantage of using this form for 

1        small Integers is that numbers in this range are represented 
uniquely; thus, arithmetic comparisons can be done directly 
on the pointers. In addition, no additional storage is required, 
and this reduces the number of garbage collections that must be 
invoked. Traditionally, almost all the numerical operations 
done in LISP are on these small integers. 

Construction of Lists 

Careful allocation of the address space of virtual memory 
alleviates only some of the problems of list processing in a 
paging environment. List structure, unless specifically and 
purposefully organized, tends to become random and thus defeats 
the advantages of the paging scheme. If only one-tenth of the 
existing list structure can reside in core, and it is referenced 
randomly, then nine out of ten data references, on the average, 
will require a drum operation. 

I 

An examination of list-handling processes indicates that lists 
are usually processed sequertially; that is, programs generally 

m proceed down the elements of a list by taking the CDR of the 
I successive tails. A process may be handling several lists at 

onoe, but will typically make numerous references to each. 
One of the best means of speeding up a paged LISP appeared to 
be linearizing lists and concentrating them on as few pages as 

-11- 



possible. To do this, a special CONS, or list-word constructing 

subroutine, was written. This attempts to assign a new list-word 

on a page already In use by the list of which this new word Is a 

part. The algorithm Is described below. 

In constructing a new list pointer, a free word pair must be 

obtained from a free storage list. Instead of keeping one large 

free storage list as Is done on the 7094 version of LISP, we 

have a separate free storage list on each page. Thus, the 

system can determine If a new pointer pair can be placed on a 

particular page. Using these free storage lists, we now con- 

struct a new pointer pair (a LISP dotted pair consisting of two 

18 bit PDP-1 words) according to the following algorithm: 

To construct Z ■ CONS [XjY]: 

1. If Y Is not an atom and there Is room on the page with Y 

then place Z on this page. 

2. Otherwise, If X Is not an atom and there Is room on the 

page with X put Z on that page. 

3. Otherwise, If there Is a page In core with room place Z 

on this page. 

4« Otherwise, place Z on a page In virtual memory with room. 

This page Is found by searching an In-core table which gives 

the Initial location of the free storage list on each page. 

If storage Is available. 

This algorithm tends to minimize cross linkages between pages 

and to limit any single structure to a very few pages. This 

has been born out by tracing through a number of fairly large 

-12- 
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struc' res and computing the number of page crossings. When 

workiüg with such a structure. It is unlikely that one will 

make references to more than a few pages for a relatively long 

period of time. Since these pages can reside ii- core, no drum 

references are needed. For example, in entering the definition 

of a function, the entire definition tends to appear on a 

single page. Thus, during the interpretation of a function 

multiple drum references are usually unnecessary. 

When free storage is exhausted, garbage collection is necessary. 

A number of garbage collection schemes (4) have been Invented 

and Implemented in various versions of LISP. In some of these 

schemes, free storage is compacted by a folding process in which 

empty cells in lower storage are filled with the content of 

cells in higher storage. However, this is a very bad type of 

scheme for a paging environment, because this tends to effec- 

tively shuffle pointers, and make lists extend over more pages 

than are necessary. In our system, we simply mark used cells 

and collect storage on each page as it stands. In addition to 

this standard garbage collection algorithm, we also utilize 

another scheme for dumping onto secondary storage (magnetic tape) 

a compacted representation of tho list structure in use in the 

system. This scheme (described in (4)) based on an algorithm 

first suggested by Marvin Minsky (5) has the desirable property 

that lists are, in general, linearized in the CDR direction. 

-13- 



SECTION IV 

VARIABLE BINDINGS AND THE PUSHDOWN 

LIST 

A number or schemes have been used in different versions of 

LISP for storing the values of variables. These include: 

1. Storing values on an association list paired with the 

variable names. 

2. Storing values on the property list of the atom which 

is the name of the variable. 

3. Storing values in a special value cell associated with 

the atom name, putting old values on the pushdown list, 

and restoring these values when exiting from a function. 

4. Storing values on the pushdown list. 

The first three schemes all have the property that values are 

scattered throughout list structure space, and, in general, in 

a paging environment would require references to many pages to 

determine the value of a variable. This would be very un- 

desirable in our system. In order to avoid this scattering, 

and possible excessive drum references, we utilize a variation 

on the fourth standard scheme, usually only used for trans- 

mitting values of arguments to compiled functions; that is. 

-14- 



we place these values on the pushdown list. But since we use 

an interpreter as well as a compiler, the variable names must be 

kept. The pushdown list thus contains pairs each consisting of 

a variable name and its value. The Interpreter need only search 

down the pushdown list for the binding (value) of a variable. 

One advantage of this scheme is that the current top of the 

pushdown stack is usually in core, and thus, drum references 

are rarely required. Free variables work automatically in a 

way similar to the association list scheme. In fact, the push- 

down list is a guaranteed linear version of the association 

list.» 

An additional advantage of this scheme is that it is completely 

compatible with compiled functions which pick up their argu- 

ments on the pushdown list from known positions, instead of 

doing a search. To keep complete compatibility, our compiled 

functions put the names of their arganents on the pushdown 

list, although they do not use them to reference variables. 

Thus, free variables can be used between compiled and inter- 

preted functions with no special declarations necessary. The 

names on the pushdown list are also very useful in debugging, 

for they provide a complt  symbolic backtrace in case of error. 

Thus, this technique, for a small extra overhead, minimizes 

drum references, provides symbolic debugging infornnation, and 

allows completely free mixing of compiled and interpreted 

routines. 

With appropriate passing down of pushdown list pointers we can 
even achieve the same effect as the standard PUNARQ device on 
the 7094 for functional arguments. This PUNARQ device pre- 
serves local context well enough to handle the Knuth's "Man 
and Boy" compiler problem (Algol Bulletin 18.1). 
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SECTION V 

PERFORMANCE 

The proof of programming techniques is in the running.  We 

have made a number of measurements on our system to test the 

validity of our assumptions. To test the hypothecis that our 

CONS algorithm was helping to minimize drum references, we ran 

a computation for about 35 minutes with a number of counters 

in various functions. The computation made was the compilation 

of approximately 10 pages of LISP functions which define an 

elementary programming language called GHOST. We were uti- 

lizing about 12,000 words of free storage; core can only hold 

about 3,500. Typical garbage collections reclaimed about 

5,000 words.  In this time we performed 31,000 CONS's, and 

150,000 CAR's and CDR's (not counting those done in garbage 

collection). For these CONS's and CAR's-CDR's only 5,500 

drum references were needed, or only about 2.5 per cent of 

the cases.  If storage were distributed randomly, then the 

expected number of references should have ranged between 

50 per cent and 70 per cent depending on whether the space 

in use for list structure was nearer 7,000 or 12,000 words. 

With the 2.5 per cent figure, we computed that the system 

spent 10 per cent of its time waiting for the drum.  If 

the system h&d to go to the drum for 50 per cent of its data 
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references. It would be spending well over 90 per cent of 

Its time waiting for the drum. Extracting the same Informa- 

tion from a number of other runs for different users of the 

system indicates that the drum is referenced between 2 per 

cent and 10 per cent of the time. The types of Jobs being 

done by the user were not recorded. The higher percentage 

was realized when the user was involved in many small on- 

line interactions with the system. However, it is in Just 

this case that waiting for the drum is least costly to the 

user, since most of his time is spent thinking, 

Another facet of the cost of using the drum should be men- 

tioned. Even in problems in which all the storage needed 

can fit into core, you. are paying a price for the drum 

facility. Instead of direct references to core, the system 

must go through a software map to determine core addresses. 

We compared the running time of one program on an in-core 

LISP system,and a paged LISP system,on an SDS-9^0. Despite 

the fact that all the data fit in core, this experiment 

indicated that we are losing a factor of about 2 in speed 

when we use the software map. Of course, if a hardware 

paging map were available this problem would vanish. 

-17- 



SECTION VI 

SUMMARY 

In auminary, our LISP system surpassed our expectations and 

Is proving a useful research tool for a number of artificial 

intelligence projects.  Careful segmentation of system code, 

arrangement of data spaces by type, organization of list 

structure, and special attention to the binding of variables 

all contribute to the success of the system. 

•18- 
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