
^

BOLT BERANEK AND NEWMAN i K c

CONSUITING • DEVEIOPMENT • RESEARCH

APCRL- 66-771»
0 G o

/ o ö

O
THE STRUCTURE OP A LISP SYSTEM

USING TWO-LEVEL STORAGE

Daniel G. Bobrow
Daniel L. Murphy

Bolt Beranek and Newman Inc
50 Moulton Street

Cambridge, Massachusetts

Contract No. AP19(628)-5065

Project No. S668

Scientific Report No. 6

k November 1966

(The work reported was supported by the Advanced Research
Projects Agency, ARPA Order No. 627, Amendment No. 2, dated

9 March 1965)

Prepared For:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITEP STATES AIR FORCE
BEDFORD, MASSACHUSETTS

Distribution of this document

is unlimited

CAMBRIDGE NEWYOR< CHICAGO I. OJANCEIES

AFCRL- 66-774

THE STRUCTURE OF A LISP SYSTEM

USING TWO-LEVEL STORAGE

Daniel G. Bobrow
Daniel L. Murphy

Bolt Beranek and Newman Inc
50 Moulton Street

Cambridge, Massachusetts

Contract No. AF19(628)-5065

Project No. 8668

Scientific Report No. 6

4 November 1966

(The work reported was supported by the Advanced Research
Projects Agency, ARPA Order No. 627, Amendment No. 2, dated

9 March 1965)

Prepared For:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

Distribution of this document

is unlimited

r

TABLE OF CONTENTS

ABSTRACT - 1

SECTION I 1
INTRODUCTION

SECTION IT 3
ORGANIZATION OP CORE MEMORY

Segmentation of System Code „ 4
Compiled LISP Functions . T 5

SECTION III 7
ORGANIZATION OP THE DRUM MEMORY

JType Determination of Pointers 8
Lltergl Acorns . , 8
Numerical Atoms 10
Construction of Lists 11

I
I SECTION VI 18

SECTION IV 14
VARIABLE BINDINGS AND THE PUSHDOWN LIST

SECTION V 16
PERFORMANCE

SUMMARY

ACKNOWLEDGEMENTS 19

REFERENCES 20
I
[

FIGURES

I Fig. 1. Organization of the Virtual Memory 9

f

ABSTRACT

In an Ideal list-processing system there would be enough core

memory to contain ,A11 the data and programs. This paper

describes a number of techniques used to build a LISP system

which utilizes a drum for its principal storage medium, with

a surprisingly low time-penalty for use of this slow storage

device. The techniques include careful segmentation of sys-

tem programs, allocation of virtual memory to allow address

arithmetic for type determination, and a special algorithm

for building reasonably linearized lists, A scheme Is des-

cribed for binding variables which is good in this environ-

ment and allows for complete compatibility between compiled

and Interpreted programs with no special declarations.

-1-

r
i *

i

r
[

^-

j

i

L

SECTION I

INTRODUCTION

LISP is a list-processing language which Is being used ex-

tensively In research In artificial Intelligence. In the

Ideal list-processing system, there would be enough core

memory to contain all the data that were to be referenced

over a long time period. In this case, a data reference

would take on the orcter of one or two microseconds, a speed

typical of present core memories. When large systems are

constructed, requiring upwards of one hundred or two hundred

thousand words, the cost of core memory usually becomes

prohibitive. Memory size requirements of this order of

magnitude are, however, not the exception buy rather the

rule for many projects planning research on natural language,

speech processing, and a host of other areas.

Thus it becomes necessary to consider the use of bulk

storage memory devices such as magnetic drums and discs.

The problem in using such devices is that, while their data

transfer rate is sufficiently high (5-10 M-sec/wd), one must

wait for the data on the rotating medium to come around to

the read position. The average time to access data is one-

half the rotation time, or typically about 17 to 33 milli-

seconds. To use a drum, ther, as if it were core memory,

i.e. to read single words as they are required, would in-

crease data reference time by a factor of around 20,000 making

any list-processing system uselessly slow for practical problems.

-1-

As a first step toward utilizing drum storage efficiently,

we organize the drum into blocks of words, or pages, and

bring into core an entire block of words whenever one from

that block was required. As may be seen from the timings

above, the extra time required to transfer 200 to 300 words

instead of one, is negligible compared to the access time.

If multiple references are made to a block once it has been

moved into core, then the speed of data references is in-

creased by a factor equal to the number of references made

to a given page before another must be brought in.

In this paper we describe a number of techniques we have

used in the BBN LISP system to maximize the number of In-

core references per drum reference. These techniques should

increase the speed of operation of any list-processing system

embedded in a time-sharing system which uses paging to nup a

large virtual memory stored on a drum into a smaller core

memory, e.g. the MULTICS system (3).

-2-

r
r
r
r SECTION II

ORGANIZATION OF CORE MEMORY

t Our LISP system has been Implemented on a Digital Equipment

Corporation PDP-1. This machine has a core memory of 16K

| (K = 1024) and a drum memory of 8&C. Access time to one

18 bit word of core Is 5 microseconds, and average access

time to a word on the drum Is 1? milliseconds. The PDP-1

has no Index registers, floating point instructions, special

push-down-11st instructions, or paging hardware. It has an

unusually large collection of I/O devices, includirg paper

tape reader and punch, teletypes with reader and punch,

mag-tape drives, high speed display and light pen, and a

Graphicon (RAND) tablet. The LISP system can communicate

with all these i/o devices.

The BEN LISP system contains both an Interpreter and a com-

piler. The operation of the compiled code is completely

compatible with the Interpretation by the interpreter of

S-expression definitions of functions. One may run mixed

sets consisting of functions which are interpreted and

others which are run after being compiled. The scheme for

binding variables which allows this complete compatibility

is discussed in detail below.

\

f
I
I

The 16K of core memory must be allocated among permanent

code, list structure storage, and compiled code. To this

r end we have dedicated 4K to compiled code, 4K to the

-3-

supervisor and permanent code, and 8K to list structure and

pushdown list storage. Since a list element consists of two

18 bit words;, this 8K of memory is equivalent to at most

4K LISP words.

Segmentation of System Code

The permanent code for the system is well over 10K in length

itself. In order to stay within the allotted ^K of memory

we have segmented the system code into 6 overlays which have

minimal interaction oetween them, minimizing the number of

swaps necessary between overlays. We keep permanently in

core the interrupt routines for servicing user on-line

interaction, and an elementary time-sharing supervisor

(our system allows a small number of users - usually 2 or

3 - to use the machine as a LISP dedicated time-sharing

system), The remainder of the 4K is used as swapping area

for the feixowing overlays:

1. Interpreter and compiled code runner

2. Some non-critical special machine coded subroutines

for manipulating list structure

3. Input-Output and formatting

4. A special package for manipulating the rather stupid

magnetic tape drives on the machine

5. The garbage collector

6. An initialization package

Since all segmentation and paging is done by software on

this machine, we felt that explicit segmentation and com-

plete swapping of overlays was preferable to calling sub-

routines off the drum as needed. This is in contradistinction

to our philosophy on running compiled LISP code. For the

system code we know what reasonable segments are; in the

latter case the system could not know (and we did not want

-4-

r
r
r

to put the onus on the user for keeping „rack of) segments

that would fit in 4K of storage. All overlays are absolute

code and can therefore run only in fixed locations.

Compiled LISP Functions

r
Programs compiled from S-expression definitions of LISP

^ functions are stored on ehe drum in relocatable form. When

running, these functions are contained in a ring buffer in

core tJ about 3^00 words, properly relocated. Let us consider

what happens when a compiled function is called. The call

contains a pointer to the atom which names the function

(essentially the symbolic name of the function). This

name is used to search an in-core transfer vector contain-

ing starting locations --f all routines in core. The search

is done by "hashing" the name, ard searching the transfer

vector until the name or an empty space is found. We have

found that with the ring buffer full, the transfer vector

of 128 words (64 name-starting location pairs) is only

about l/4 full. Therefore the average number of checks to

determine the presence of a function in core is only slightly

largei than 1. If the function called is in core, a transfer

is made to the starting address given. Thus, in this case,

we have made no drum references to link functions. This

procedure could be improved if we wanted to modify the code

of the calling function to contain a Jump indirect through

the transfer vector. However, we prefer that the only ad-

dress binding Jone on compiled code be simple relocation.

If the function called is not in core, we obtain its drum

address from the function cell of its atom. We then read

into the ring buffer the first page of the compiled code for

thlg function (i.e. from its initial position to the end of

the 256 word block which constitutes a page on the drum).

r
r
r
1
1
1
1
r

[
-5-

The first word of the program contains the length of the

program. Successive pages are read In until the entire

program Is In core. If at any time we overlap the end of

the ring buff-r, we start again from the beginning of the

ring buffer with the beginning of the program. The transfer

vector is updated by removing entries for functions which

have been wholly or even partially overwritten, (taking

c»re to mark them properly for the hash lookup) and a new

entry is added for the program. Returns from calls are

also made through the transfer vector. Thus, programs

which have called subroutinea may be overwritten, In tnis

case, the program will be recalled from the drum before the

return Is effected. Sets of functions seem to stabilize

under this system, and if all the programs to be used for

a reasonable period can fit in core, they soon reside there.

-6-

SECTION III

ORGANIZATION OF THE DRUM MEMORY

LISP assumes that it Is operating in an environment containing

128K words, that is from 0 to 400,000 octal. Only 88K actually

exist on the drum. The remaining portion of the address space

is used for representation jf small integers between -32,76?

and 32,767 (offset by 300,000 octal), as described below. All

data storage is contained within this virtual memory, including

list structure, compiled code, atom value cells, property cells

and function cells, print name storage and pushdown list storage.

This virtual memory is divided into pages of 256 words. Refer-

ence to the virtual storage are made via an in-core map which

supplies «/he address of the required page if it is in core, or

traps to a supervisory routine if the page is not in core. This

drum supervisory routine selects an in-core page, writes it

back on the drum if it has been changed, and reads the required

page from the drum. Closed subroutine references to an in-core

word through the map takes approximately 170 microseconds (be-

cause of the poor set of operation codes on the machine, and

the lack of an index register). A reference to a word not in core,

which must be obtained from the drum, takes between 17 and 33

milliseconds. It takes the longer time if a page must be

written out on th> drum before the referenced page can be read

in. Thus, it r ally pays to minimize drum references.

-7-

Type Determination of Pointers

In standard wholly-In-core LISP systems the type of element a

pointer Is referencing (for example, an atom versus an S-ex-

presslon} can only be determined by looking at the Item Itself,

which might require a drum reference. We avoid this unnecessary

drum reference by dividing the virtual memory space into a

number of areas as shown In Pig. 1. As can be seen from this

map of storage, simple arithmetic on the address of a pointer

will determine its type. We chose to allocate storage rather

than provide an in-core map of storage areas, because the map

would take up valuable in-core space, and every aldlvlonal page

of storage that we can squeeze into core reduces he nutrber of

drum references.

Literal Atoms

When a string of characters representing a literal atom is read

in, a search is made to determine if an atom with the same print-

name has been seen before. If so, a pointer to that atom is

used for the current atom. If not, a new atom is created. Thus,

as in all LISP systems, a literal atom has a unfoue representa-

tion.

Pour cells (words) are associated with each literal atom. These

cells contain pointers tc the print-name of the atom, the func-

tion which it identifies, its top level or global value, and

its property list. A pointer to an atom points to its value

cell. Since these value cells occur in only one part of the

address space, one can tell from a pointer (address) whether or

not it is pointing to a literal atom.

Instead of having the other cells on the sa^.e page with the

value cell, each is put in a separate space in a nosition com-

putable from the address of the value cell. Separating value

-8-

r

i

I

t ♦ ♦ f

m

C
H

E
CO

03

E
C

I

JL

cm—

VIRTUAL MEMORY

HASH TABLE

PRINT-NAMES

PRINT-NAME POINTERS

FUNCTION CELLS

PUSHDOWN LIST

FULL WORDS

PROPERTY LIST CELLS

VALUE CELLS

I

400,000Q

3oo,ooo8

270,0008

230,0008

220,00C8

210,000g

200,0008

170,0008

160,000

- 150,0008
LIST

STRUCTURE

1
COMPILED

CODE
io,ooo8

Pig. 1. Orcn'.zatlon of the Virtual Memory.

cells and function cells, for example. Is useful because most

users will not use the same name for a global variable as they

will for a function, and, therefore. If the four cells are

brought In whenever any one was asked for. It Is likely that

the other three cells would never be referenced. Yet, they use

up room In core which could be used for other storage. Simi-

larly, the print-name pointers associated with atoms are needed

during input and output, but rarely during a computation.

Therefore, during computation these cells are never in core.

Numerical Atoms

In 709^ LISP, numerical atoms (numbers) do not have a unique

representation; that is, a number of different pointers may be

referencing numbers with the same value. This implies thzt

for comparison of numbers, or for arithmetic operations, the

value of the numbers murt be obtained, and comparison of num-

erical atoms cannot be Just a comparison of pointers.

The values of numbers are stored in "full word" space. In

7094 LISP, pointers to numbers in list structure do not point

directly to the values of the numbers in full word space. For

each numerical atom, a special word from free storage is acquired

with bits set in this word to indicate type, and a pointer to

the value of the number in full word space. A pointer in list

structure which references a number points to this "header"

word. Because type information is implicit in pointers

(addresses) in our LISP system, we do not need this extra level

of indirection, and pointers to number values directly address

free word space. This obviously saves possible drum references

in arithmetic operations and comparisons.

In addition, we utilize the fact that not all addresses in the

17 bit address space of the drum can legitimately appear as

-10-

-s pointers In list structure. Pointers between 200,000 (octal)
and ^00,000 (octal) are, therefore, used In the context of list
structure to represent directly "small" integers between
-32767 and +32767 (offset by 300,000 octal). Thus, a pointer
of 300,003 (octal) occurring In a list Is the number 3. Again,
eliminating a level of indirectness reduces the number of drum
references required. Another advantage of using this form for

1 small Integers is that numbers in this range are represented
uniquely; thus, arithmetic comparisons can be done directly
on the pointers. In addition, no additional storage is required,
and this reduces the number of garbage collections that must be
invoked. Traditionally, almost all the numerical operations
done in LISP are on these small integers.

Construction of Lists

Careful allocation of the address space of virtual memory
alleviates only some of the problems of list processing in a
paging environment. List structure, unless specifically and
purposefully organized, tends to become random and thus defeats
the advantages of the paging scheme. If only one-tenth of the
existing list structure can reside in core, and it is referenced
randomly, then nine out of ten data references, on the average,
will require a drum operation.

I

An examination of list-handling processes indicates that lists
are usually processed sequertially; that is, programs generally

m proceed down the elements of a list by taking the CDR of the
I successive tails. A process may be handling several lists at

onoe, but will typically make numerous references to each.
One of the best means of speeding up a paged LISP appeared to
be linearizing lists and concentrating them on as few pages as

-11-

possible. To do this, a special CONS, or list-word constructing

subroutine, was written. This attempts to assign a new list-word

on a page already In use by the list of which this new word Is a

part. The algorithm Is described below.

In constructing a new list pointer, a free word pair must be

obtained from a free storage list. Instead of keeping one large

free storage list as Is done on the 7094 version of LISP, we

have a separate free storage list on each page. Thus, the

system can determine If a new pointer pair can be placed on a

particular page. Using these free storage lists, we now con-

struct a new pointer pair (a LISP dotted pair consisting of two

18 bit PDP-1 words) according to the following algorithm:

To construct Z ■ CONS [XjY]:

1. If Y Is not an atom and there Is room on the page with Y

then place Z on this page.

2. Otherwise, If X Is not an atom and there Is room on the

page with X put Z on that page.

3. Otherwise, If there Is a page In core with room place Z

on this page.

4« Otherwise, place Z on a page In virtual memory with room.

This page Is found by searching an In-core table which gives

the Initial location of the free storage list on each page.

If storage Is available.

This algorithm tends to minimize cross linkages between pages

and to limit any single structure to a very few pages. This

has been born out by tracing through a number of fairly large

-12-

r

r
i
[

[

i
r
i

struc' res and computing the number of page crossings. When

workiüg with such a structure. It is unlikely that one will

make references to more than a few pages for a relatively long

period of time. Since these pages can reside ii- core, no drum

references are needed. For example, in entering the definition

of a function, the entire definition tends to appear on a

single page. Thus, during the interpretation of a function

multiple drum references are usually unnecessary.

When free storage is exhausted, garbage collection is necessary.

A number of garbage collection schemes (4) have been Invented

and Implemented in various versions of LISP. In some of these

schemes, free storage is compacted by a folding process in which

empty cells in lower storage are filled with the content of

cells in higher storage. However, this is a very bad type of

scheme for a paging environment, because this tends to effec-

tively shuffle pointers, and make lists extend over more pages

than are necessary. In our system, we simply mark used cells

and collect storage on each page as it stands. In addition to

this standard garbage collection algorithm, we also utilize

another scheme for dumping onto secondary storage (magnetic tape)

a compacted representation of tho list structure in use in the

system. This scheme (described in (4)) based on an algorithm

first suggested by Marvin Minsky (5) has the desirable property

that lists are, in general, linearized in the CDR direction.

-13-

SECTION IV

VARIABLE BINDINGS AND THE PUSHDOWN

LIST

A number or schemes have been used in different versions of

LISP for storing the values of variables. These include:

1. Storing values on an association list paired with the

variable names.

2. Storing values on the property list of the atom which

is the name of the variable.

3. Storing values in a special value cell associated with

the atom name, putting old values on the pushdown list,

and restoring these values when exiting from a function.

4. Storing values on the pushdown list.

The first three schemes all have the property that values are

scattered throughout list structure space, and, in general, in

a paging environment would require references to many pages to

determine the value of a variable. This would be very un-

desirable in our system. In order to avoid this scattering,

and possible excessive drum references, we utilize a variation

on the fourth standard scheme, usually only used for trans-

mitting values of arguments to compiled functions; that is.

-14-

we place these values on the pushdown list. But since we use

an interpreter as well as a compiler, the variable names must be

kept. The pushdown list thus contains pairs each consisting of

a variable name and its value. The Interpreter need only search

down the pushdown list for the binding (value) of a variable.

One advantage of this scheme is that the current top of the

pushdown stack is usually in core, and thus, drum references

are rarely required. Free variables work automatically in a

way similar to the association list scheme. In fact, the push-

down list is a guaranteed linear version of the association

list.»

An additional advantage of this scheme is that it is completely

compatible with compiled functions which pick up their argu-

ments on the pushdown list from known positions, instead of

doing a search. To keep complete compatibility, our compiled

functions put the names of their arganents on the pushdown

list, although they do not use them to reference variables.

Thus, free variables can be used between compiled and inter-

preted functions with no special declarations necessary. The

names on the pushdown list are also very useful in debugging,

for they provide a complt symbolic backtrace in case of error.

Thus, this technique, for a small extra overhead, minimizes

drum references, provides symbolic debugging infornnation, and

allows completely free mixing of compiled and interpreted

routines.

With appropriate passing down of pushdown list pointers we can
even achieve the same effect as the standard PUNARQ device on
the 7094 for functional arguments. This PUNARQ device pre-
serves local context well enough to handle the Knuth's "Man
and Boy" compiler problem (Algol Bulletin 18.1).

-15-

SECTION V

PERFORMANCE

The proof of programming techniques is in the running. We

have made a number of measurements on our system to test the

validity of our assumptions. To test the hypothecis that our

CONS algorithm was helping to minimize drum references, we ran

a computation for about 35 minutes with a number of counters

in various functions. The computation made was the compilation

of approximately 10 pages of LISP functions which define an

elementary programming language called GHOST. We were uti-

lizing about 12,000 words of free storage; core can only hold

about 3,500. Typical garbage collections reclaimed about

5,000 words. In this time we performed 31,000 CONS's, and

150,000 CAR's and CDR's (not counting those done in garbage

collection). For these CONS's and CAR's-CDR's only 5,500

drum references were needed, or only about 2.5 per cent of

the cases. If storage were distributed randomly, then the

expected number of references should have ranged between

50 per cent and 70 per cent depending on whether the space

in use for list structure was nearer 7,000 or 12,000 words.

With the 2.5 per cent figure, we computed that the system

spent 10 per cent of its time waiting for the drum. If

the system h&d to go to the drum for 50 per cent of its data

-1.6-

:^=3^"'TMMiainr- -■ -. ---- - ■ '.-^^ -...

references. It would be spending well over 90 per cent of

Its time waiting for the drum. Extracting the same Informa-

tion from a number of other runs for different users of the

system indicates that the drum is referenced between 2 per

cent and 10 per cent of the time. The types of Jobs being

done by the user were not recorded. The higher percentage

was realized when the user was involved in many small on-

line interactions with the system. However, it is in Just

this case that waiting for the drum is least costly to the

user, since most of his time is spent thinking,

Another facet of the cost of using the drum should be men-

tioned. Even in problems in which all the storage needed

can fit into core, you. are paying a price for the drum

facility. Instead of direct references to core, the system

must go through a software map to determine core addresses.

We compared the running time of one program on an in-core

LISP system,and a paged LISP system,on an SDS-9^0. Despite

the fact that all the data fit in core, this experiment

indicated that we are losing a factor of about 2 in speed

when we use the software map. Of course, if a hardware

paging map were available this problem would vanish.

-17-

SECTION VI

SUMMARY

In auminary, our LISP system surpassed our expectations and

Is proving a useful research tool for a number of artificial

intelligence projects. Careful segmentation of system code,

arrangement of data spaces by type, organization of list

structure, and special attention to the binding of variables

all contribute to the success of the system.

•18-

i «mSi

r

ACKNOWLEDOEKENTS

The authors would like to thank L, Peter Deutsch of Berkeley,

California for KTltlng (in LISP) the first version of the

compiler used on this system, and for a number of stimulating

discussions. The work reported here was supported by the

Advanced Research Projects Agency, ARPA Order No. 627* Amendment

No. 2- dated 9 March 1965.

•19-

,ta^mmmaä—mmMm^

PEPERENCES

1. McCarthy, J. et ai, LISP 1.3 Programmers Manual, M. I. T.

Press, Cambridge, Massachusetts, 1964.

2. Berkeley, E. G. and D. G. Bobrow (eds.). The Programming

Language LISP, Its Operation and Applications, M. I. T.

Press, Cambridge, Massachusetts, 1966.

3. Corbato, P., E. Glaser et ai, "The MULTICS System," Proc.

PJCC, Spartan Press, Baltimore, Maryland, 1965.

4. Bobrow, D. G., "Storage Management in LISP," Proc. IPIP

Conf. on Symbol Manipulation Languages, North Holland.

(In preparation)

5. Minsky, M. L., "A LISP Garbage Collector Algorithm Using

Serial Secondary Storage (rev.)," Memo 38, Artificial

Instelllgence Group, M. I. T., Cambridge, Massachusetts,

1963.

6. Cohen, J., "A Use of Past and Sic Memories in List

Proc< ssing Languages," Comm. ACM, January 196r.

-20-

J
I
I

1
!

Ilnr-lflHRi f1f>d
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security elatsification of title, body of ah*tract and indexing annotaticri muil 6« entered uihen the overall report it '.ossified)

I. OftloiNATiNO ACTK.rv (Corporal» auttjx)

Bolt Beranek and Newman, Incorporated
50 Moulton Street
l REPORT T

to. REPORT SECURITY r . AJIIFIC ATION

.. IlnrJaasifled
IK OR&UP

The Structure of a LISP System U3lng Two-Level Storage

4. DKJCR.fTive MOTES (Type of report and inclusive dates)

Interim Scientific Report
%. AUTHORTS; (Laet none, fiisl nans, initial)

Bobrow, Daniel G.
Murphy, Daniel L.

». RtRORT DATE

^ Ko\imber 1966
«Si-icSVxoTfl0CecnT^c ARPA Order No. AP19(o28)-5065 627 Amend> 2

k. PROJECT mtXMKWX *

No. 8668
C. OOO ELEMENT

615Ü501R
d. OOO (UMELEMENT

n/a

7a TOTAL NO. OF PACES

20
TS NO. OF RCFt

6
• a ORlOIMATOR'* REPORT NUHiERTS;

Scientific Report No. 6

»b. otHin mramy HO(SI (Any olktr numbers Aot may be
assigned this report)

APCRL-66-77^
AVAILASILITY/LIMITATION NOTICE»

DISTRIBUTION OP THIS DOCUMENT IS UNLIMTED

II. SUPPLEMENTARY NOTES

Hq. APCRL, OAR(ORB)
United States Air Porce
L. fi. Hanscom Fid., Bed£&riLJ&£>
II AMTRAtT ' '

ti SPONSORING MILITARY ACTIVITY

Advanced Research Projects
fta. Agency

In an Ideal list-processing system there would be enough
core memory to contain all the data and programs. This
paper describes a nunber of techniques used to build a LISP
system which utilizes a drum for its principal storage
medium, with a surprisingly low time-penalty for use of
this slow storage device. The techniques include careful
segmentation of system programs, allocation of virtual
memory to allow address arithmetic for type determina-
tion, and a special algorithm for building reasonably
linearized lists. A scheme is described for binding
variables which is good in this environment and allows
for complete compatibility between compiled and inter-
preted programs with no special declarations.

DD FO'," 1473 '"' I JAN «« ""

Unclassified
Security Classiiicmtion

Security Classification

KEY WORDS

List Processing

LISP

Paging Systems

Dynamic Storage Allocation

Two Level Storage Allocation

ROLE WT

LINK C

INi/RUCTIONS

I. ORIGINATING ACTIVITY: Enter the name and addre^a
of tne contractor, aubconUactor, grantee. Department of
Defenae activity or other organization (corporate author)
iaau.ng the report.
2a. REPORT SECURITY CLASSIFICATION; Enter the over-
all security claaaification of the report. Indicate whether
"Restricted Data" ia included. Marking ia to be in accord-
ance with appropriate security regulations.
26. GROUP: Automatic downcradirig ia specified in DoD
Directive 5200.10 and Armed Forces Indvstriel Manual.
Enter the group number. Alao, when applicable, ahow that
optional markings have been uaed for Croup 3 and Group 4
aa authorized.
3. REPORT TITLE: Enter the complete report title in all
capital lettera. Titlea in all caaea ahould be unclassified.
If a meaningful title cannot be »elected without clasaifica-
lion, show title claaaification in all capitala in parenlheaia
immediately following the title.
4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g.. interim, progress, summary, annual, o, final.
Give the inclusive dales when s specific reporting period ia
covered.
5. AUTHOR(S): Enter th- named) of autboHa) aa ahown on
or in the report. Enter laat name, tumi name, middle initial.
If military, ahow rank and branch of service. The name of
the principal author ia anabaolute minimum requirement.
6. REPORT DATE: Emer the date oi the report aa day,
month, year, or month, year. If more than one date appeara
on the report, use date of publication.
7a. TOTAL NUMBER OF PACES: The total page count
ahould follow normal pagination procedure», :.«., enter the
number of pages containing information.
76. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If sppropriate, enter
the applicable numb .' of the contract or grant under which
the report waa written.
86. 8c, I id. PROJECT NUMBER: Enter the appropriate
military department identification, auch aa project number,
aubprojfcl number, system number», taak number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): F.r.er the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.
96. OTHER REPORT NUMBERS): If the report hea been
aaaigned any other report numbers (either by the originator
or by the spomor), alao enter thia numberfs).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limi-
tations on further dissemination of the report, other than those
impoaed by security claaaification, using standard atatementa
such aa:

(1)

(2)

(3)

"Qualified requesters may obtain copiea of this
report from DDC."
"Foreign announcement and diaaemination of thia
report by DDC is not authorized."
"U S. Government agencies may obtain copiea of
this report directly from DDC. Other qualified DDC
users ahall request through

(4) "U. S. military agencies may obtain copies of thia
report directly from DDC. Other qualified users
shall request through

(5) "All distribution of this report is controlled. Quali-
fied DDC users iSalt request through

If the report haa been furnished to the Office of Technical
Services, Department of Comraerce, for sale to the public, indi-
cate thia fact and enter the price, if known.
11. SUPPLEMENTARY NOTES: Uae for additional explana-
tory notes.
12. SPONSORING MILITARY ACTIVr .: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing forjihe research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even
though it may also appear elsewhere in the body of the tech-
nical report. If additional apace ia required, a continuation
aheet ahall be attached.

It ia highly desirable that the abatract of classified re-
ports he unclassified. Each paragraph of the abatract ahall
end with an indication of the military aecurity claaaification
of the information in the paragraph, represented ss (TS), (S),
(C), or (V).

There is no limitation on the length of the abatract. How-
ever, the suggested length ia from ISO to 225 word».
14. KEY WORDS: Key words are technically meaningful terma
or short phraaea that characterize a report and may be used aa
index entriea for cataloging the report. Key worda must be
selected so that no aecurity claaaification ia required. Identi-
fiers, such aa equipment model deaianation, trade name, mili-
tary project code name, ceographic localion, may be uaed as
key words but will be followed by an indication of technical
context. The assignment of links, rules, and weight» is
optional.

Unclassified
Security Clasaificacion

1

I
I
f

