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ABSTRACT 

^A very simple and flexible procedure is given for reducing a 

concave mathematical program to a finite sequence of subproblems, each 

Involving a subset of the original constraints. While very much in the 

spirit of the "secondary constraint" Idea; constraints are dropped as well 

as added from sübproblem to subproblem. The reduction procedure is of 

quite general applicability, and is designed to be used with various 

concave programming algorithms for solving the subproblems. It seems 

particularly suited to facilitating the solution of problems with more 

constraints than could otherwise be handled. It is shown that an obvious 

specialization to linear programs yields the dual Simplex method, and 

that various "cutting-plane" methods can alto be naturally described from 

the general viewpoint offered hpre^ '     > ' //' U 
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DIRECT REDUCTION OF LARGE CONCAVE HtOGRAMS 

This paper discusses an extremely simple procedure for directly 

reducing a concave mathematical program to a finite sequence of subproblems, 

each with a subset of the original constraints.   The procedure Is quite 

flexible and general In Its applicability.    It Is Intended primarily for 

use with various concave programming algorithms to enable them to solve 

problems with more constraints than would otherwise be possible; hence how 

to solve the subproblems is deliberately left unspecified here.    However» 

Its use is by no means restricted to large problems. 

Although conceived In the spirit of related reduction procedures 

developed by the author i3tb] for concave programs with some linear Inequality 

constraints, it soon became evident that it can be viewed as a generalization 

of the "secondary constraints" procedure discussed by Dantzig [2] for linear 

programs; which,  In turn, can be viewed as a way of implementing the dual 

Simplex method [8].    Indeed, we shall show that the procedure has a natural 

specialization for linear programs that corresponds exactly to the dual 

Simplex method.    We further show that various "cutting-plane" methods can 

be viewed naturally as Instances of the reduction procedure.    Some of its 

aspects can also be found in a number of other works not cited here. 

In section I we present the procedure, validate it, discuss its main 

arbitrary feature, and indicate its relation to an alternative class of 

reduction procedures.    In section II we prove that it can be naturally 



specialized to the dual Simplex method when applied to a linear program. 

The flual section discusses difficulties that arise when there Is an Infinite 

number of constraints,  or when some of the constraints are not explicitly 

available.    Qomory's method for Integer linear programming [5] and Kelley's 

method for concave programming [7] are shown to be Instances of the reduction 

procedure for which these difficulties can be at least partially overcome. 



I. THE BEEÜCTION PROCEDÖRE 

Let f, S-.f--'fg^   be concave functions defined on a convex set 

XC Rn, and let M be a finite index set (e.g., M » {1,2,.. .,ni)). 

The problem 

(P)   Maximize . v f(x) subject to g.(x) > 0, i e M 
X £ A 1   ^ 

will be reduced to a finite sequence of subproblems of the form 

{?„)       Maximize ^ v f(x) subject to g.(x) > 0, i « S c M. 

Assume that a subset S is known such that (Pgo) admits an optimal 
gO gO 

solution   x     (with   f(x    ) < «),  and assume further that    (Pg)   admits an 

optimal solution whenever it admits a feasible solution and its maximand 

is bounded above on the feasible region by   f(x    ). 

Under the above assumptions, we shall show that the following procedure 

is well-defined and terminates in a finite number of steps. 

The Reduction Procedure 

Step 0;    Put    f m co and   s » S0, where   3° is any subset of   M   such 

(Pgo) admits a finite optimal solution. 
g 

Step 1; Solve (P,^) for an optimal solution x  if one exists; if 

none exists (i.e., (Pg) is infeasible), then terminate with 

the message "(P) lnfcaslblew. Define Vg « {1 « M-S: g1(x
S) < 0), 

If Vg - it  terminate with the message "x is an optimal 

solution of (P)"; otherwise, go on to Step 2. 
■ ■ 

B ' 



Step 2: Put v equal to ai-y subset of M such that {v fl Vg} } $, 

If f(x ) < f, replace S by Eg U v, where Eg « {1 e S: 

s • s g-Cx ) ■ 0), and   f   by    f(x );    otherwise    (i.e., If 

f(x: ) « f), replace   S   by   S U v.    Return to Step 1. 

This procedure simply goes from one subproblem to the next by adding 

at least one constraint that is violated at an optimal solution of the 

current subproblem, while deleting the amply satisfied constraints so long 

as the value of the objective function is decreasing.    Eventually a sub- 

problem is encountered that is either infeaslble, In which case (?) 

obviously must be infeaslble, or has an optimal solution that is also 

feasible in (P),  in which case that solution obviously must solve (P). 

To show that the subproblems which arise are either Infeaslble or admit 

an optimal solution, in view of our assumptions it is enough to show 

inductively that the sequence   <r> is non-Increasing, where   x     is the 
s 

supremum of the maximand of (Pg) (let    f   = -» if (Pg) is Infeaslble). 

Certainly   f31^ < fS, and   f23*^ < f28 .   We assert that    f23 = fS, which 

yields the desired monotoniclty of <f^.    The assertion is an easy consequence 

of 

S S 
Lemma 1.1; Let x be optimal for (Pg)« Then g^x ) > 0 and 

o 
J e S    implies that   x     is also optimal for (Pe  .). 

Proof:    Certainly   f8"*5 > f(xS).    Suppose that   f8"''> f(xS).   Then there 
q 

exists a point    x1 feasible in (Pa   .) such that ^x') > f(x ).    We may 
a 

assume    g^x') < 0, or else   x'    would contradict the optlmality of   x   in 



(Pg). By the concavity of f and the g., 1 e S, and the convexity of X, 

it follows that for X positive but sufficiently small the point 

Xx» + (l-X)xS is feasible in (Pa). But then f(Xx,+(l-X)xS) > 

XfCx») + (l-X) f(xS) > f(xS), which contradicts the definition of xS. 

Hence f d» f(x ), and x must be optimal for (Pe .). 

Thus far we have shown that the procedure is well-defined, and that 
q 

the sequence <f(x )> is non-increasing. Since Step 2 only deletes amply 

satisfied constraints from S (before adding v) when the maximand has Just 

strictly decreased, it follows from the finiteness of the number of possible 

subsets of M that <f(x )> can remain constant for only a finite number 

of consecutive iterations. Again appealing to the finiteness of the 

number of possible trial sets, we see that finite termination is established. 

Theorem 1.1; The reduction procedure terminates in a finite number 

of steps with either (a) an optimal solution of (P), or (b) the 

identification of a subset of the constraints of (P) that are collec- 

tively infeasible over X. Moreover, in case (a) a monotone decreasing 

sequence <f(x )> of upper bounds on the optimal value of (P) Is 

obtained. 

Choice of v 

There is considerable latitude in the choice of   v   at Step 2.    The 

only requirement is that it must include the index of at least one constraint 
q 

violated by the current x . As will be discussed more fully in section III, 

there are cases in which It is difficult or expensive to identify any 



violated constraint, let alone all of   Vg.    But when   Vg   Is readily 

available, propitious choice of   v   can heighten computational efficiency. 

There are at least two conflicting considerations in the choice of 

v, depending on whether one focuses on making the subproblems easy to solve 

or on making the number that must be solved small.    On one hand, the fewer 

the indices of which   v   is composed t J easier it will probably be to 
g 

solve the next subproblem starting from the current   x .    When a "primal 

feasible" optimization method is used to solve the subproblems, for example, 

it can be applied starting with the last   x     to each   g., ,) e v, in turn, 

until a feasible solution is found for the new subproblem (or until it is 

determined that the new subproblem is infeasible).    A reasonable choice of 

v   from this point of view might be to let it be a singleton (the index of 

the most violated constraint,  say).    On the other hand, it would seem that 

by taking   v   large (all of V- or even more) the number of subproblems to 

be solved will be relatively small.    This point of view is suggested by 

interpreting the reduction procedure as minimizing   f(x ) over   S c M; 

the more violated constraints are Imposed at each iteration, the greater 

will be the decrease of   f(x ) at next subproblem. The compromise between 

these two points of view which tends to minimize total computation time is 

probably quite problem-dependent. 

Relation to Mother Reduction Procedure 

When the   g.    are all linear, or when any nonlinear constraints have 

been incorporated into   X,    we have shown elsewhere    [3;^] how to reduce (P) 

to a sequence of subproblems of the form 

(Pi) Maximize    . Y f(x) subject to   g-(x) =0,  i e S c M. 
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The advantage of such subproblems i s clear: linear !.c;uali ty constraints are 

otten· easier to deal with than the corresponding inequality constraints 

{especially when some of these constraints are simple non-negativity 

requirements). Without going into details, we can indicate that this sub

problem simplicity is purchased at the price of a slightly more complicated 

reduction strategy and proof of termination. 

One variant [4 1 chooses the next subproblem from the currE"nt one by 

the addition or deletion of a single constraint according to rando~ selection 

from a certain set of candidates. It is interesting to note that Markov 

chain analysis and computational results suggest that termination then 

takes place on the average in something less than 2N subproblems, where N 

is the number of mistakes made in identifying (by the choice of the initial 

(P~)) the truly restrictive constraints of (P). other variants coincide, 

when ( P) is a linear program, w1 th the primal or dual Simplex methods 

(cf. the next section). 

Unfortunately subproblems of the form (PS) are not helpful when some 

of the gi are nonlinear, for tben the feasible region need no longer 

be convex . 
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II.    RELATION TO THE WAL SIMPLEX METHOD 

The fact that a feasible solution of (P) Is not obtained until the 
c 

final step, and that <f(x )> is monotone decreasing to the optimal value 

of (P), suggests the adjective "dual" in describing the reduction procedure. 

Indeed, in this section we shall show that the procedure can be specialized 

in a natural way to yield Lemke !s dual Simplex method [8] when (P) is a 

linear program. 

Let   f(x) = ex, 

g.(x) » x., M = {1, ...,n), and X = {x:Ax = b) hold for (?), where 

c is 1 x n, b is m.x 1, and A is HL. x n. The dual Simplex method 

is initiated with some set B  of variables designated as "basic" which 

yields, from the "reduced costs" of an associated tabular representation 

of (P) (see below), a feasible solution of the dual to (P). Assuming that 

the successive feasible solutions to the dual are non-degenerate, we shall 

prove 

Theorem 2.1; If S is taken as M-B and v always as the most 

violated constraint, then the set of non-basic variables at the v 

iteration of the dual Simplex method coincides with Eg at the v 

iteration of the reduction procedure, and the u basic solution 

coincides with the u x . 

It is necessary to give a brief rendering of the dual Simplex method 

in order to establish the notation used in the proof. More complete details 

may be found, for example, in [6] or [8]. 



Problem (P) can be restated as one of maximizing   z    subject to 

x > 0   and the following equality constraints stated as a tableau 

(m^+l by n+2) of detached coefficients: 

1       -c 0 

0 A b 

At any given iteration there is specified a collection B of ro  basic 

variables such that AZ exists, where Ag is formed by extracting columns 

from A according to B, and such that c = (^^0 )A - c > 0, where 

c_ is similarly formed by extraction according to B. Moreover, the equality 

constraints are re-expressed as: 

z X                   =1 
1 

1 jUgA^A-c         CßA^b 

0 1    %h            ^Lb 
( 

If b = Al b > 0, then it is easily shown that an optimal solution of (P) 

is at hand: put x = 0 for J non-basic and the basic variable x- 

corresponding to the 1   row equal to b . If b ^ 0, then let b  be 

the most negative component (actually, an^ negative component will do) and 

test to make sure that at least one component ä . of the matrix AT A 

is negative for some non-basic J (if none is negative, it can be shown 

that (P) is infeaslble). Let k be defined so that 

Ck c1 —   =   Maximum    { ^    : J non-basic and    a . < 0 ) , 
ark \j 
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and pivot on the element ILk to obtain the detached coefficient array 

corresponding to the new set of basic variables {B - B + k) (x. Is called 

the "entering," and x^   the "exiting" basic variable). If c, > 0 then 

.1 r . 
c-A« b strictly decreases, and In any event the new c Is also non-negative, 

The assumption of dual non-degeneracy means that c > 0 for all non-basic 

J at each Iteration, and can always be enforced by arbitrarily small 

perturbations of the problem data. 

We are now In a position to make three key observations about the 

dual Simplex method. 

Lemma 2.1; At any iteration of the dual Simplex method, the current 

basic solution is the unique optimal solution of (Pg) with S equal 

to the current set of non-basic variables (S = M-B). 

Proof!  The current basic solution is certainly feasible in (PM B)» To 

show that it is optimal, by the Dual Theorem of linear programming it 

suffices to display a feasible solution to the dual of (PM «) with the 

same value of the objective function. One has only to verify, using 

/  -1\ 
c > 0, that (C-AQ )  is such a dual solution. Uniqueness of the optimal 

solution of (PM-B) follows from the assumed non-degeneracy of the dual. 

Lemma 2.2; If the dual Simplex method terminates because (P) is 

infeasible (i.e., if b < 0 and ä . > 0 for all non-basic j 
'    r       rj - J 

at some tableau), then (P„ ), with S  equal to the current set of 

non-basic variables plus B , is infeasible. 
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Proof; By the Dual Theorem of linear programming. It Is enough to show 

that the dual of (Ps ) is feasible and has an unbounded optimum. It may 

be verified that (cgAJJ1) +0(Ar1) # , where (AJJ1)^ is the rth row 

of AT (b < 0), is feasible in the dual for all  9 > 0 and achieves 

an arbitrarily small value of the dual objective as 0 -♦ », 

Lemma 2.3;  At any non-terminal iteration of the dual Simplex method, 

if x.  is the entering basic variable then x. > 0 in the next 

basic solution. 

Proof; The definition of the pivot operation implies that x. = (b /a . ) 

in the next basic solution. By selection, b < 0 and a . < 0. 

Proof of Th. 2.1:  The proof proceeds by induction on u. At u = 1, 

S  has been taken as M-B , the initial set of non-basic variables. 

cO cO 
Lemma 2.1 asserts that (Pqo) has a unique solution   x    .    Hence    x     must 

S0 

be the initial basic solution.    Since   x. = 0   by definition for all non- 

basic    j,    Ego = S0,    Thus the assertion is true for   u « 1. 

Assume that the assertion is true for the   u       iteration of the dual o 

Simplex method. Either the v       iteration is terminal because (P) has 

been solved, or is terminal because (P) has been found to be infeasible, or 

is not terminal. In the first case, the reduction procedure also termi- 

nates with an optimal solution of (P). In the second case, by Lemma 2.2 

the next sub-problem encountered by the reduction procedure is infeasible 

and therefore terminal. Consider now the third case. We shall show that 

the assertion of the theorem 1 'ds at the next iteration by detailing the 

operation of the reduction procedure starting at Step 2 of the current 

iteration. 
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\ 
acy Implies that f(x ) decreases strict 

st 

s 
Dual non-degeneracy Implies that f(x ) decreases strictly at 

each iteration. HeQ^e the trial set to he used at the (v +1) 

iteration of the reduction procedure Is Eg U B . where Xg is the 
S r 

most negative component of the current x . It follows from Lemmas 2.1 

and 2.3 that (Pg IJD ) ^^ a unique solution, and that all components 
3 r 

indexed hy EgUB  vanish In this solution except for x., which is strictly 

positive. The assertion of the theorem now follows immediately. 

It would not he at all surprising if a similar relation to van de Panne 

and Whinstou's dual method for quadratic programming [9] could be established, 

in view of its close relation to the dual Simplex method. 
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III. DISCUSSION 

There are tvo especially important types of difficulties that may 

arise in connection with certain potential applications of the reduction 

procedure. One is that there may be an infinite (possibly uncountable) 

number of constraints associated with (P). In this case most of the 

constraints can be expected to be redundant, and the number of constraints 

in the subproblems will usually not become unbounded. It may or may not 

be difficult to test for Vg = JZJ at Step 1, and a convergence proof must 

be constructed along different lines than the one given above. The other 

difficulty is that some or all of the constraints may only be implicitly 

available, or available only at high computational cost. This,  of course, 

may make it difficult to identify any violated constraint, let alone an 

advantageous subset of Vg. 

One or both of these difficulties are encountered by the so-called 

"cutting-plane" methods of mathematical programming, as typified by 

Gomory's method for integer linear programming [5] and Kelley's method for 

concave programming [?]. The term "plane" rather than "surface" has come 

into general use because such methods usually employ linear rather than 

nonlinear constraints. 

Gomory's method can be viewed as the dual Simplex method applied to 

a linear program that is equivalent to the original Integer program; 

equivalent in the sense that its feasible region coincides with the convex 

hull of the feasible integer solutions of the original program. Although 

there is a vast number of constraints, and most of them are not explicitly 

available, Gomory has shown how to generate an appropriate violated constraint 
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inexpensively if Vg ^ ^ (in our terminology). This enables Step 2 to 

be carried out, and of course there is no difficulty in testing Vg ■ ^. 

Convergence is finite, although "finite" is sometimes too large for 

practical purposes. 

Kelley's method (see also Cheney and Goldstein [l], and the references 

therein) can be cast in the form of the present reduction procedure 

as follows. Define a(x) = Min {g.(x)). 
1 

(G(x) is concave on X.) Then (p) can be replaced by 

Maximize eX f(x) subject to G(x) > 0. 

Kelley imposes sufficient conditions for the existence of a support 

G^') + Y ^(x-x1) to the graph of G for each x' in X, where Y , is 

a fixed n-vector for each x1 e X. For fixed x1, the support function 

Is linear and has the defining property: G(xl) + Y ^(x-x1) > G(x) for 

all x e X, with equality holding for x « x1. (If G is differentiable at 

x1, Y i is Just the gradient of G at x',) The family of support 

functions for G is introduced to permit the feasible region of (?) to 

be represented by the intersection of the half-spaces containing it; 

that is, to enable (P) to be replaced by 

Maximize  f(x) subject to GU') + Y.^x-x») > 0, all x'eX», 
xeX 

where X1 « {xleX:G(xl) < 0). It is easy to verify that this problem, 

which in addition to X Is restricted by an Infinite collection of linear 

constraints Indexed by X1, has the same feasible region as (P). Now apply 

the reduction procedure. Testing for Vg ■ ^ is equivalent, of course, 

to testing G(x ) > 0. (Since this test is unlikely ever to be satisfied 
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for truly nonlinear problems. In practice one would probably test 
q 

G(x ) > -€| vhere € Is some suitably small positive number.) If 

S " 0 and v Is chosen to correspond to the constraint 

G(xS) + Y^Cx-x8) > 0 

at Step 2, then the result Is Kelley's method with an explicit rule for 

dropping unneeded constraints (cf. fT/P. 710]). Note that the choice of 

v Is not necessarily the constraint most violated at the current trial 

solution; but it is violated, and It would be computationally expensive 

to find one that Is more so. Of course, since M (= X* here) Is Infinite 

our finite termination proof no longer holds. But Kelley was able to obtain 

a simple proof of convergence In the limit (cf. [l]) under rather mild 

conditions, and this suggests that convergence of the reduction procedure 

In the appropriate sense can also be shown for other Interesting classes 

of problems with an Infinite number of constraints. 
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