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ABSTRACT

\/A very simple and flexible procedure is given for reducing a
concave mathematical program to a finite sequence of subproblems, each
involving a subset of the original constraints. While very much in the
spirit of the "secondary constraint" idea, constraints are dropped as well
as added from subproblem to subproblem. The reduction procedure 1is of
quite general aspplicability, and is designed to be used with verious
concave programming algorithms for solving the subproblems. It seems
particularly suited to facilitating the solution of problems with more
constraints than could otherwise be handled. It is shown that an obvious
specialization to linear programs yields the dual Simplex method, and
that various "cutting-plane" methods can also be naturally described from

‘ ) {
the general viewpoint offered here. I £ )u ’



DIRECT REDUCTION OF LARGE CONCAVE PROGRAMS

This paper discusses an extremely simple procedure for directly
reducing a concave mathematical progrem to a finite sequence of subjnroblems,
each with a subset of the original constraints. The procedure is quite
flexible and general in its applicability. It is intended primarily for
use with various concave programming algorithms to enable them to solve
problems with more constraints than would otherwise be possible; hence how
to solve the subproblems is deliberately left unspecified here. However,
its use is by no means restricted to large problems.

Although conceived in the spirit of related reduction procedures
developed by the author [3,&] for concave programs with some linear inequality
constraints, i1t soon became evident that it can be viewed as a generalization
of the “"secondary constraints" procedure discussed by Dantzig [2] for linear
programs; which, in turn, can be viewed as a way of implementing the dual
Simplex method [8). Indeed, we shall show that the procedure has & natural
specialization for linear programs that corresponds exactly to the dual
Simplex method. We further show that various "cutting-plane" methods can
be viewed naturally as instances of the reduction procedure. Some of its
aspects can also be found in a number of other works not cited here.

In section I we present the procedure, validate it, discuss its main
arbitrary feature, and indicate its relation to an alternative class of

reduction procedures. In section II we prove that it can be naturally



specialized to the dual Simplex method when applied to a linear program.

The firal section discusses difficulties that arise when there is an infinite
number of constraints, or when some of the constraints are not explicilly
available. Gomory's method for integer linear programming (5] and Kelley's
method for concave programming [7] are shown to be instances of the reduction

procedure for which these difficulties can be at least partially overcome.




I. THE REDUCTION PROCEIURE

Let f, 8yr: 18y be concave functions defined on & convex set
XC R, and let M be a finite index set (e.g., M = (1,2,...,m)).
The problem

(P) Meximize . f(x) subject to gi(x) >0, 1eM
will te reduced to a finite sequence of subproblems of the form

(p)

Maximize . . £(x) subject to gi(x) >0, 1¢8CM.
Assume that a subset S° is known such that (Pso) admits an optimal
i so
solution x~ (with £(x° ) < =), and assume further that (PS) admits an
optimal solution whenever it admits a feasible solution and its maximand
0
is bounded above on the feasible region by t‘(xS ).
Under the above assumptions, we shall show that the following procedure

is well-defined and terminates in a finite number of steps.

The Reduction Procedure

Step 0: Put f == and S = S° vhere 8° is any subset of M such
(Pso) admits a finite optimal solution.
Step 1: Solve (PS) for an optimal solution xs if one exists; if
none exists (i.e., (Ps) is infeasible), then terminate with
the message "(P) infeasible". Define Vg2 (1 ¢ M-8: gi(xs) < 0}).
Ir Vg = ¢, terminate with the message n,S is an optimal

solution of (P)"; otherwise, go on to Step 2.




Step 2: Put v equal to ay subset of M such that {v N VS] # 4.
If f(xs) < #, replace S by ES U v, where ES = (1 ¢8:
gi(xs) =0}, and £ by f(xs); otherwise (i.e., if

f(xs) = ), replace S by S Uv. Return to Step 1.

This procedure simply goes from one subproblem to the next by adding
at least one constraint that is violated at an optimal solution of the
current subproblem, while deleting the amply satisfied constraints so long
as the value of the objective function 1s decreasing. Eventually a sub-
problem is encountered that is either infeasible, in which case (P)
obviously must be infeasible, or has an optimal solution that is also
feasible in (P), in which case that solution obviously must solve (P).

To show that the subproblems which arise are either infeasible or admit
an optimal sclution, in view of our assumptions it 1s enough to show
inductively that the sequence <fs> is non-increasing, where fS is the
supremum of the maximand of (PS) (1let 5 = 1p (PS) is infeasible).
Certainly fSUv < fs, and fESUV < fFG . We assert that fEs = fS, which
ylelds the desired monotonicity of <fS>. The assertion 1s an easy consequence
of

Lemms 1.1: Let x° be optimal for (PS). Then gd(xs) > 0 and

J €S implies that x° 1is also optimal for (B, ,).

-J
Proof: Certainly £-J > f(xs). Suppose that £S5 f(xs). Then there
exists 8 point x' feasible in (PS-J) such that f(x') > f(xs). We may

assume gJ(x') < 0, or else x' would contradict the optimality of < in




(g

it follows that for A positive but sufficiently small the point

). By the concavity of f£ and the g 1 ¢S, and the convexity of X,

' + (1-A)x° 1s feasible in (Pg). But then £(Ax+(1-0)x") >
Af(x') + (1-A) f(xs) > f(xs), which contradicts the definition of ad
S

).

Hence fs"j= f(xs), and x~ must be optimal for (PS

-J
Thus far we have shown that the procedure is well-defined, and that

the sequence <f.‘(xs)> is non-increasing. Since Step 2 only deletes amply

satisfied constralnts from S (before adding v) when the maximand has Just

strictly decreased, it follows from the finiteness of the number of possible

subsets of M that <f(xS)> can remain constant for only a finite number

of consecutive iterations. Again appealing to the finiteness of the

number of possible trial sets, we see that finite termination is established.

Theorem 1.1: The reducticn procedure terminates in a finite number

of steps with either (a) an optimal solution of (P), or (p) the
identification of a subset of the constraints of (P) that are collec-
tively infeasible over X. Moreover, in case (a) a monotone decreasing
sequence <f(xs)> of upper bounds on the optimal value of (P) is

obtained.

Choice of v

There is considerable latitude in the choice of v at Step 2. The
only requirement is that it must include the index of at least one constraint
violated by the current xS. As will be discussed more fully in section III,

there are cases in which it i1s difficult or expensive to identify any




violated constraint, let alone all of VS. But when VS

available, propitious choice of v can heighten computational efficiency.

is readily

There are at least two conflicting considerations in the choice of
v, depending on vhether one focuses on making the subproblems easy to solve
or on making the number that must be solved small. On one hand, the fewer
the indices of which v 1is composed t . easier it will probably be to
solve the next subproblem starting from the current x°. When & "primal

feasible" optimization method is used to solve the subproblems, for example,

it can be applied starting with the last xS to each g 3 J e v, in turn,
until a feasible solution is found for the new subproblem (or until it is
determined that the new subproblem is infeasible). A reasonsble choice of
v from this point of view might be to let it be a singleton (the index of
the most violated constraint, say). On the other hand, it would scem that
by taking v large (all of Vg or even more) the number of subproblems to
be solved wlll be relatively small. This point of view is suggested by
interpreting the reduction procedure as minimizing f(xs) over SCNM;
the more violated constraints are imposed at each iteration, the greater
will be the decrease of f(xs) at next subproblem. The compromise between

these two points of view which tends to minimize total computation time is

probebly quite problem-dependent.

Relation to Another Reduction Procedure

When the g, are all linear, or when any nonlinear constraints have
been incorporated into X, we have shown elsewhere [3,4) how to reduce (P)
to a sequence of subproblems of the form

(Pé) Meximize . 4 £(x) subject to gi(x) =0, 1 e€eSCM

oft



The advantage of such subproblems is clear: linear equality constraints are

often: easler to deal with than the corresponding inequality constraints
(especially when some of these constraints are simple non-negativity
requirements). Without going into details, we can indicate that this sub-
problem simplicity is purchased at the price of a slightly more complicated
reduction strategy and proof of termination.

One variaant [4] chooses the next subproblem from the current one by
the addition or deletion of a single constraint according to randou selection
from a certain set of candidates. It is interesting to note that Markov
chain analysis and computational results suggest that termination then
takes place on the average in something less than 2N subproblems, where N
is the number of mistaekes made in identifying (by the choice of the initial
(Pé)) the truly restrictive constraints of (P). Other variants coincide,
when (P) is a linear program, with the primal or dual Simplex methods
(cf. the next section).

Unfortunately subproblems of the form (Pé) are not helpful when some
of the gi are nonlinear, for tben the feasible region need no longer

be convex.



II. RELATION TO THE DUAL SIMPLEX METHOD

The fact that a feasible solution of (P) is not obtained until the
final step, and that <f(xS)> is monotone decreasing to the optimal value
of (P), suggests the adjective "dual" in describing the reduction procedure.
Indeed, in this section we shall show that the procedure cen be specialized
in a natural way to yleld Lemke's dual Simplex method [8] when (P) is a

linear program.

Let £f(x) = ex,
gi(x) =x, M= (1,...,n}, and X = (x:Ax = b} hold for (P), where

¢ isl1lxn, bis m, X l, and A is m, X n. The dual Simplex method
i1s initiated with some set B° of variables designated as "basic" which
ylelds, from the "reduced costs" of an associated tebular representation
of (P) (see below), a feasible solution of the dual to (P). Assuming that
the successive feasible solutions to the duasl are non-degenerate, we shall
prove

Theorem 2.1: If S° is taken as M-B° and v always as the most

violated constraint, then the set of non-basic variables at the vth

iteration of the dual Simplex method coincides with E% at the vth

iteration of the reduction procedure, and the vth basic solution
coincides with the vth xS.
It is necessary to give a brief rendering of the dual Simplex method

in order to establish the notation used in the proof. More complete details

may be found, for example, in [6] or [8].



Problem (P) can be restated as one of maximizing 2 subject to
x > 0 and the following equality constraints stated as a tableau

(ml‘l‘l by n+2) of detached coefficients:

At any given iteration there is specified a collection B of m:L basic
variables such that Agl exists, where AB is formed by extracting columns
from A according to B, and such that ¢ = (cBAl;l)A - ¢> 0, where

¢, 1s similarly formed by extraction according to B. Moreover, the equality

B

constraints are re-expressed as:

2 X = 1
i 1 ‘(cBA];l)A -c % cBAsl b
BIEG

If b= Agl b > 0, then it is easily shown that an optimal solution of (P)

is at hand: put x, = 0 for J non-basic and the basic varigble Xy

J 1

corresponding to the 1 o equal to ‘51. If b ¥ 0, then let ‘Sr be

the most negative component (actually, any negative component will do) and

test to make sure that at least one component a of the matrix A;]' A

rJ

is negative for some non-basic J (if none is negative, it can be shown

that (P) is infeasible). Let k be defined so that

o c
._.l.E = Maximum ( :J- ¢ J non-basic and arj <01},
a 8

rk r)
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and pivot on the element ;rk to obtain the detached coefficient array

corresponding to the new set of basic varigbles (B - B + k) (xk is called

the "entering," and xB the "exiting" basic variable). If Ek.> 0 then
AB b strictly decreases, and in any event the new c¢ 1is also non-negative.

The assumption of dual non~degeneracy means that c‘j > 0 for all non-basic

J at each iteration, and can always be enforced by arbitrarily small

perturbations of the problem data.

We are now in a position to make three key observations about the

dual Simplex method.

Lemma 2.1: At any iteration of the dual Simplex method, the current
basic solution is the unique optimal solution of (PS) with S equal

to the current set of non-basic variables (S = M-B).

Proof: 'The current basic solution is certainly feasible in (P M- B) To
show that it is optimal, by the Dual Theorem of linear programming it

suffices to display a feasible solution to the dual of (P with the

M- B)
same value of the objective function. One has only to verify, using
522_0, that (cBAil) is such a dual solution. Uniqueness of the optimal

solution of (PM_B) follows from the assumed non-degeneracy of the dual.

Lemma 2.2; If the dual Simplex method terminates because (P) is

infeasible (i.e., if b <0 eand &, > 0 for all non-basic J

rj =
at some tableau), then (Pé ), with S equal to the current set of

non-basic variables plus Br’ is infeasible.
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Proof: By the Dual Theorem of linear programming, it is enough to show

that the dual of (PS ) is feasible and has an unbounded optimum. It may
-1 -1 -1 th

be verified that (cBAB ) +9(AB )r- , where (AB )r- is the r rov

of At (5 <0), 15 feasible in the dual for all 03> O and achieves

an arbitrarily small value of the dual objective as 6 = «,

Lemma 2.3: At any non-terminal iteration of the dual Simplex method,
if X is the entering basic variable then X > 0 1in the next

basic solution.,
Proof: The definitior of the pivot operation implies that x = (ﬁr/Erk)

in the next basic solution. By selection, EI_< 0 and Erk’< 0.

Proof of Th. 2.1: The proof proceeds by induction on v At v =1,

So has been taken as M-Bo, the initial set of non-basic variables.

0 0
Lemmsa 2.1 asserts that (Pso) has & unique solution xS . Hence xS must

(o]

be the initial basic solution. Since xg = 0 by definition for all non-

basic J, ES° = S0, Thus the assertion is true for v = 1.

Assume that the assertion is true for the uzh iteration of the dual
Simplex method. Either the vgh iteration is terminal because (P) has
been solved, or is terminal because (P) has been found to be infeasible, or
is not terminal. 1In the first case, the reduction procedure also termi-
nates with an optimal solution of (P). In the second case, by Lemma 2.2
the next sub-problem encountered by the reduction procedure is infeasible
and therefore terminal. Consider now the third case. We shall show that
the assertion of the theorem ]} "ds at the next iteration by detailing the

operation of the reduction procedure starting at Step 2 of the current

iteration.



12

Dual non-degeneracy implies that f(xs) decreases strictly at
each 1terat;oﬁ'.\ e the trial set to be used at the (v°+1)8t
iteration of the reduction procedure is ES U Br’ vhere xBr is the
most negative component of the current xs. It follows from Lemmas 2.1
and 2.3 that (PESLmr) hes a unique solution, and that all components
indexed by ESUBr vanish in this solution except for X which 1is strictly

positive. The assertion of the theorem now follows immediately.

It would not be at all surprising if a similar relation to van de Panne
and Whinstou's duel method for quadratic programming [9] could be estsblished,

in view of its close relation to the dual Simplex method.
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ITI. DISCUSSION

There are two especially important types of difficulties that may
srise in connection with certain potential epplications of the reduction
procedure. One is that there may be an infinite (possibly uncountable)
number of constraints associated with (P). 1In this case most of the
constraints can be expected to be redundant, and the number of constraints
in the subproblems will usually not become unbounded. It may or may not
be difficult to test for VS = ¢ at Step 1, and a convergence proof must
be constructed along different lines than the one given gbove. The other
difficulty is that some or all of the constraints may only be implicitly
availsble, or available only at high computational cost. This, of course,
mey make it difficult to identify any violated constraint, let alone an
advantageous subset of VS.

One or both of these difficulties are encountered by the so-called
"cutting-plane" methods of mathematical programming, as typified by
Gomory's method for integer linear programming [5) and Kelley's method for
concave programming [7]. The term "plane" rather than "surface"” has come
into general use because such methods usually employ linear rather than
nonlinear constraints.

Gomory's method can be viewed as the dual Simplex method applied to
a linear program that is equivalent to the original integer program;
equivalent in the sense that 1ts feasible iegion coincides with the convex
hull of the feasible integer solutions of the original program. Although
there is a vast number of constraints, and most of them are not explicitly

availeble, Gomory has shown how to generate an appropriate violated constraint

[ — S ——
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inexpensively if Vg # ¢ (in our terminology). This ensbles Step 2 to
be carried out, and of course there is no difficulty in testing Vs = ¢.
Convergence 1s finite, although "finite" is sometimes too large for
practical purposes.
Kelley's method (see also Cheney and Goldstein [1], and the references
therein) can be cast in the form of the present reduction procedure
as follows. Define &(x) = Min [gi(x)].

i
(6(x) is concave on X.) Then (P) can be replaced by

Maximize .. ?(x) subject to G(x)> 0.

Kelley imposes sufficient conditions for the existence of & support
G(x') + Yx',.(x-x') to the gragh of G for each x' in X, where Y , is
a fixed n-vector for each x' ¢ X. For fixed x', the support function
1s linear and has the defining property: G(x') + \x (x-x') > G(x) for
all x € X, with equality holding for x = x'. (If G is differentisble at
x's Y, 18 Just the gradient of G at x'.) The family of support
functions fcr G 4s introduced to permit the feasible region of (P) to
be represented by the intersection of the half-spaces containing it;

that is, to enable (P) to be replaced by

Maximize £(x) subject to g(x') + Yx,°(x-x') > 0, all x'ex',
xeX

vhere X' = (x'eéX:G(x') < 0). It is easy to verify that this problem,
which in addition to X 1s restricted by an infinite collection of linear
constraints indexed by X', has the same feasible reglon as (P). Now apply
the reduction procedure. Testing for VS = ¢ is equivalent, of course,

to testing G(xs) > 0. (Since this test is unlikely ever to be satisfied
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for truly nonlinear problems, in practice one would probably test
G(xs) > -€, vhere € 1s some suitably small positive number.) If
° = @ and v 4s chosen to correspond to the constraint

6(x") + v 5(x-x") > 0

at Step 2, then the result is Kelley's method with an explicit rule for
dropping unneeded constraints (cf. [7,p. 710]). Note that the choice of

v 1s not necessarily the constraint most violated at the current trial
solution; but it is violated, and it would be computationally expensive

to find one that is more so. Of course, sinceM (= X' here) is infinite

our finite termination proof no longer holds. But Kelley was able to obtain
a simple proof of convergence in the limit (cf. [1]) under rather mild
conditions, and this suggests that convergence of the reduction procedure
in the gppropriate sense can also be shown for other interesting classes

of problems with an infinite number of constraints.
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