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Normality of the plastic strain increment vector to the loading sur-

face is not always observed for granular media. Beginning from a thermo-

dynamic basis and considering only isothermal processes, a series of

physically appealing assumptions is employed to increasingly delimit the

possible directions of the plastic strain increment vector. The results

of the analysis indicate that on certain portions of the loading surface

normality should hold while on the remainder, envelopes or fans are possi-

ble. Finally, several alternative restrictions are offered which provide

a unique stress-strain relation at every point on the loading surface.
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Introduction

A granular media is qualitatively described as an aggregate of particles

whose resistance to inelastic flow in enhanced by an increase in the hydro-

static component of the external forces. The voids of such a material are

considered to be interconnected and these interstices may be dry, partially

saturated or completely filled with liquid. It will be presumed for the

system in question that drainage is rapid enough so that the pressure in the

liquid remains constant under a quasi-static load change. The particles com-

prising the aggregate are considered as rigid bodies of unspecified size or

shape. The over-all size of the particle is assumed, however, to be small

enough with respect to the size of the system to permit treatment by the

methods of continuum mechanics. The theory to be presented here allows for

cohesion between particles, and it presumes time-independent and isothermal

behavior.

Historically a mathematical formulation of the division between attain-

able and unattainable stress states in granular media was proposed first by

Coulomb [E]*. This was generalized later by Mohr [2]. The form of the line

demarking the regions is shown in Figure 1 for a two-dimensional (T - p)

stress space. Until recently the major aim of those working in the mechanics

of granular media has been in finding states of stress in equilibrium with

the applied loads for generalized inelastic flow conditions. The extent of

this endeavor is described in a recent book by Sokolovskii [3].

Numbers in brackets designate references listed in the bibliography.
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In contrast to the above mentioned effort the literature concerned with

the generalization of the stress-strain relationship had to be deferred until

the theory of plasticity had been well-developed. Generalizations of a lin-

earized, two-dimensional, Mohr-Coulomb criterion (shown in Figure 2) to in-

clude stress-plastic strain increment relations were proposed by Drucker and

Prager [4], Shield [5], Drucker, Gibson, and Henkel [6], Jenike and Shield

[7], and Drucker [8], [9]. All of the above employed the concept of normality

[10] to determine the direction of the plastic strain increment vector.

Experimentally it is observed that granular media are inelastically de-

formed almost immediately upon application of stress and subsequently work

harden until the stress state reaches the Mohr-Coulomb envelope. At this

point if the material was initially in a loose state, it begins to flow, while

if the initial state was dense, work softening begins. Although much effort

has been devoted to experimentally determining the shape of the limiting en-

velope, little work has been reported describing the shape of the intervening

loading surfaces. Consequently correlation of theory to experiment has rested

largely on observation of the direction of the strain-increment vector at

stress-states on the limiting surface. In Figure 3 if normality holds, then

the strain increment vector must indicate a volume increase. Numerous experi-

ments give evidence that the rate of volume increase lies closer to the direc-

tion of zero volume change than to the direction required by normality.

Although this phenomenon can be explained through the use of corners on

the loading surface, an attempt will be made i the subsequent discussion to

present an alternative explanation. In granular media the resistance to de-

formation is furnished by two types of friction. The first of these arises

on the contact surfaces of adjoining particles termed surface friction. The
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second, denoted as interlocking friction refers the resistance offered by

the interference of the particles themselves to changes of their relative

positions. It has been previously pointed out that normality is not a law

of nature and that in frictional systems, normality does not hold in gen-

eral [11], [12].

Perhaps the most significant alteration incorporated in the theory pre-

sented here is the dependence of the loading surface on the specific volume

of the material. This phenomenon has been discussed by Jenike and Shield

[7]. If, for a given stress state, the flow makes the material more dense,

then work-hardening will generally occur while if the flow is such that the

volume increases, the material will generally work soften. Whenever a theory

includes this feature, the direction of the plastic strain increment vector

assumes the additional significance that besides determining the flow state

it determines the subsequent loading surface.

The purpose of this paper then is to develop a stress -- plastic strain

increment relation which accommodates the observed phenomena.

General Considerations

The theory to be presented is deduced by observing the restrictions re-

sulting from a series of physically motivated assumptions. These assumptions

are presented in a sequence which begins from a thermodynamic basis and con-

tinues to the point where a definite theory can be established. Each of these

assumptions implies its predecessors but at the same time the plausibility of

each assumption decreases. In the ensuing development tensile stresses are

taken as positive.
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The theory, as was previously mentioned, is based on isothermal behavior

with changes of state accomplished quasistatically. The state of the material

is assumed to be known when the stress and plastic strain tensors are known.

Elastic strains are neglected and the initial state is one where the stress

and plastic strain tensors both vanish. A loading surface is assumed to exist

that encloses all stress states which do not induce plastic flow.

The configuration of the loading surface is determined by the state and

is defined by a relationship of the form:

F(cij, ijP) = 0 (i)

Here the c. .P are also the components of the total as well as the plastic
1]

strain tensors, since the elastic components are assumed equal to zero. The

direction and sense of the vector in nine dimensional strain space with com-

ponents, dEijP , are uniquely determined by the stress state akl. It is pos

tulated that for each stress state on the loading surface it is possible to

induce plastic flow and for each dE..p vector there is at least one point on2x]

the loading surface.

Finally all functions, including the loading surface, are assumed to

possess sufficient continuity for the ensuing development. Specifically such

notions as corners on the loading surface are excluded.

Conjugate Points and the Clausius Inequality

The behavior of any material must be such that the laws of thermodynamics

are not violated. The first such law is a balance equation between work, heat

flow, and internal energy. Since the measurement of the heat flow in a
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granular medium is exceedingly difficult, the first law does not play a cen-

tral role in the development of an analytical theory of behavior. The first

law can thus be regarded as an auxiliary equation which determines the heat

flow in any process. As the state of the system is defined by aij and eij

and the internal energy is a state variable, it is clear that the internal

energy per unit current volume, U , may be expressed by

U = U(Oij, .ij ) (2)

In general one would anticipate that when the elastic strain is neglected U

would be dependent only on the plastic strain. This restriction is intro-

duced later. Thus the first law, or balance of energy is given by

dQ = dU - a.. dc.. (3)
1] 1]

where dQ is the differential of the heat flow per unit current volume into

the system and a.. dE.. is the work per unit current volume done on the sys-
i] 1]

tem. Since ds.. equals dE. .p (elastic strains being neglected), Equation (3)

may be rewritten as

dQ = dU - a.. dE..p (4)
1] 1]

This result gives no restrictions on the behavior of granular media. It only

gives a means for finding dQ for a differential change of state in an element

of the material.

The second law of thermodynamics may be conveniently stated in terms of

a cycle. Il'yushin [13] has used this concept to develop a thermodynamic pos-

tulate for elastic-plastic materials. A cycle is defined as a continuous

change of state where the initial and final states coincide. Before examining
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the consequences of the second law, the concept of a cycle in a granular sys-

tem must be clarified. The requirement of returning to the initial state in

a cycle implies a zero net change in the plastic strain. It further implies

by Equation (l) that the initial and final loading surfaces are the same.

Consequently a cycle in a granular system requires that the original packing

or an equivalent packing can be restored or established by a properly chosen

sequence of stress states. Isotropically work hardening materials provide an

example where this requirement on cycling cannot be satisfied by isothermal

processes. Here the size of the loading surface, an additional state vari-

able, always increases even though the net plastic strain can be made equal

to zero. In reality, permanent changes to the granular system do occur during

plastic deformation, but it is assumed that they are of secondary importance

to the over-all behavior. Such changes include modification of surface fric-

tion factors, breakage or abrasion of grains, and permanent deformation or

rupture of cohesive bonds.

Having discussed the concept of a cycle in general terms, the following

thought experiment illustrating the concept will be useful in the subsequent

development of the theory.

First applying a loading

a.. = Kij (5)

where •i. is a constant stress vector and K is a parameter which has a zero

value in the reference state and increases monotonically to 0 as the stress

state reaches the initial loading surface. Hence

F(0iy , o) = 0 (7)
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By a previous postulate the direction and sense of the strain vector are

determined by a..Q For this thought experiment a differential amount of1]

strain, de.. p, is induced to which there corresponds the nine component1]

vector, dcp, in strain space. The assumption that corresponding to this

there is a differential change in stress do..Qis substantiated experimen-
1]

tally for most soils and is accepted in what follows. Consequently

F(oQ+ do Q d. .P) = 0 (8)
iJ iJ 3 iJ

defines the new yield surface. In order to complete this cycle the element

must be returned to zero stress and zero strain as these are the state vari-

ables. Consequently the negative of the existing plastic strain must be in-

duced. A previous assumption, insuring the availability of all strain vec-

tors, indicates that for at least one stress state, say a.(2, on the new
1]

loading surface, the initial change of plastic strain will be opposite to

dEp. Such a stress state is said to be the conjugate stress state to a..iJ

The next increment of the loading program is to change the stress state from

o..0 + da..Qto a..@in such a way that no additional plastic flow occurs.iJ 1J i]

It is assumed that such a loading path can be found. At this point a differ-

ential change of strain is induced which eliminates the existing plastic

strain. This is possible since the initial plastic strain increment vector

at a.. is directed opposite to dEv. The final step in the loading program
i]

is to return to zero stress without inducing further plastic deformation.

This gives the same initial and final states to the cycle; i.e., a.. = C. . = 0.

This cycle is presented schematically in Figure 4. The above cycle of load-

ing may be extended to include finite changes of strain as well as cycles be-

ginning from an arbitrary state.
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It is now of interest to investigate the consequences of applying the

second law of thermodynamics to such cycles. For an isothermal process the

second law of thermodynamics requires that

dQ < 0 (9)

where implies integration around a closed cycle and dQ is, as mentioned

before, the heat flow per unit current volume into the system. Actually what

is meant by an isothermal process is not defined since temperature has not

been defined. In this sense it may be more appropriate to regard Equation (9)

as a postulate. Now since the internal energy change in any closed cycle is

zero, Equation (9 ) and Equation (4) yield

.ij dE.ijP (10)

Thus for the cycle depicted schematically in Figure 4, Equation (10) may be

written as

. .d Y (11)1] 1] 1] 1]

if products of the second order in the differentials of stress and strain are

neglected. On factoring out de. .P, the resulti]

(o.(I- a.(]2)) de..p > 0 (12)1] ] 1]

may be interpreted as requiring the dot product of the vector (a..- a..

iJ i]

and the vector de..p to be greater than or equal to zero. In other words the1]

projection of the vector dCp on (•D - ) in the nine dimensional stress-

strain space must be positive or zero. A schematic representation of this is

shown in Figure 5 where the admissible directions of dcp are depicted.
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If for a..Q, two conjugate points, a. .and a. .@, exist the limitations

on the direction of de-p are indicated schematically in Figure 6. Since for

each stress state on the loading surface, it is possible to induce plastic

flow, the conjugate stress states must be located so that a plane can be

passed through a. such that all conjugate points are in the plane or on onei]

side of it.

A Less Restrictive Concept of State

It is clear from the preceding section that more definite assumptions

must be made before the direction of d-' can be uniquely determined for a

stress point on the loading surface. Now any sufficiently restrictive pos-

tulate, as long as it satisfies Clausius' Inequality, Equation (10), can es-

tablish a definite stress-strain increment relationship; for example, see

Drucker [10]. The approach to be followed in this paper is to continue to

make further assumptions, usually in thermodynamic terminology, finally

reaching a point where, for each point on the loading surface, dC~p is

uniquely determined. The first assumption in this process is presented in

this section.

The preceding analysis depended on a closed cycle which had the same

initial and final state. In the case of granular media it appears to be of

interest to explore the consequences of specifying the state in a less re-

strictive manner than was done in the preceding section. Let the state be

now determined if a.. and v , the specific volume, are known.
i]

Since the differential change in v is given by

dv = v de. .p (13)il
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and as the configuration of the loading surface must be the same for equiva-

lent states, i.e.

F(oij, v) = 0 (14)

then the process of a closed cycle, similar to that of Figure 4, is shown as

Figure 7. Other than the modified definition of the state and Equation (14)

replacing Equation (1), the preceding theory is unaltered.

In this case it is anticipated that more than one conjugate point exists

for every point on the loading surface. The reader should note that at a con-

jugate point in this cycle de ii = - dei D but that, in general, de.i $

- de P In fact it is anticipated that any point on certain regions of the
1]

loading surface would be a conjugate point for 0..
1]

The restriction placed on the closed cycle shown in Figure 7 by Equation

(10) is

o..Q dE..IQ+ a~td 0 (15)
ij ij ij ij

for every conjugate stress state a..
1]

It is clear that this less restrictive concept of state will not, by it-

self, lead to a definite specification of dep. Subsequent assumptions, how-

ever, will incorporate this modification. Owing to the fact that the results

presented in this section are a special case of the preceding section, all re-

sults are, thus far, consistent.

Discussion of the Strain Energy Function

In the previous section the state variables were reduced to a.. and v
I]

Implied in this assumption was a concept that the only permanent deformation
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altering the response of the material to subsequent changes of stress was a

change in the specific volume.

The assumption made in this section is that the internal energy, U , is

a function of the specific volume only, i.e.,

U = U(v) (16)

and

d d = dU dv = dp vdc..p (17)
dv dv ii

Physically, the basis for this assumption lies in the mechanisms avail-

able in granular media for storing internal energy. If an aggregate of par-

ticles decreases in volume, it is possible for some of the particles to be

wedged between their neighbors in such a manner that on a release of stress,

residual forces remain in the system. Should subsequent stressing alter the

existing volume then it is plausible that these residual forces could be aug-

mented or released.

To place some bounds on the possible variations of U with v , the

pressure-volume curve typical to granular media is shown as Figure 8. This
dUi

curve provides a limit on d, i.e.

ddUv p (18)

so that Figure 9 results. p* represents that value of p where the stress

path - p6.. intersects the current loading surface. Now since p*, the hydro-i]
dUi

static pressure is positive, d- must be less than or equal to zero and hence

the internal energy -- specific volume curve has a shape as depicted in Fig-

ure 10.
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With this assumption on the internal energy, it is of interest to apply

a load to the system causing a differential change of strain dc..P and con-
1]

dU
sequently a change in specific volume v . As d- is anticipated to be nega-

tive, there will be, by Equation (17), energy released from storage if dv

is positive and energy stored if dv is negative. During this process the

consequences of requiring that the sum of the work done by the stress field

and the energy released from storage be positive semi-definite may be ex-

pressed as

a. d -ijP dU , 0 (19)

or using Equation (18) as

(a.. dU vi6.) de. . 'O (20)
ij dv ij ij

A schematic representation of Inequality (20) is shown as Figure 11. In

this figure the reader should note that p = p* serves to govern the magnitude

of the vector - v d 6.. as 0s v d p*. This requirement is a result of a
dv ij dv

postulate concerning the way in which energy is stored and released in a soil

and has no deeper meaning than this. Comparison of Equation (4) and Inequal-

ity (20) shows the equivalence of this requirement to that obtained by postu-

lating that during isothermal flow the heat flow from the soil is positive --

semi-definite.

If Inequality (20) is written for a.Q where oa.@is a stress state on

the loading surface, then for a differential change in plastic strain de..

(recall v > 0)

a.Qdej d-v v dc 0 (21)
1] ij d-v ii
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Now for a..@©a stress state which is a conjugate to a.0, Inequality (20)

can be written for a change in plastic strain dc..e such thatiJ

de ii dc 1. (22)
il ii

as

a dE.. + d- v deii , 0 (23)
ij ij dv i

Inequalities (21) and (23) imply

c-. o..@ dc. .P 0 (24)
1] 1J 1] 1]

which is equivalent to Inequality (15). Consequently the restriction of In-

equality (20) implies all previously derived restrictions.

As the direction for dcp is still not uniquely determined the following

section introduces further limitations to be imposed on the soil behavior.

Stability Considerations

A direct postulate for stability of soil would be unreasonable as experi-

ments indicate, that soil is, in the usual sense, unstable for certain kinds

of loading. However, it seems hopeful to try to make some limitation on the

material behavior corresponding to a stability postulate. As previous reason-

ing has been based on a storage of energy (change of internal energy) deter-

mined by the change of specific volume, it is appealing to introduce this con-

cept into a "stability" postulate.

One approach which leads to a definite restriction is to postulate some-

thing about the energy balance when a set of loads is superimposed on an
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initial set of loads. Presume that the initial loading induces the stress

state a..*. Obviously this initial stress must lie in or on the loading1)

surface corresponding to the initial state. Now the superimposed stress

state is applied so that the total stress oil is at some point on the yield

surface. If a differential change of plastic strain, de ij.P, is induced then

it is postulated that the sum of the work done by the superimposed stresses,

S - .ij*, during the change and a fraction, a, of the energy released beiii

greater than zero. When energy is stored due to a volume decrease, or when

the volume is unaltered, it is only required that the work done by the arbi-

trary superimposed stresses be positive-semi-definite. This leads to

(G.1 - oi 1 *)dci 1 P + a du 0 (25)

where the notation

Sif x 0
(26)

=0 if x<0

is used and

0 s a < 1 (27)

As the point a..* may be any point on or inside the yield surface, (a.. - a.*)

may be interpreted as a vector whose tail is in or on the yield surface and

whose tip is on the yield surface. Anticipating that d- is negative the sta-
dv

bility requirement may be rewritten in the following form

dU <4 ~kkl p(a.ij - a - 6ij a- v Mde.. 0 (28)
dCkkp

which yields the graphical interpretation shown in Figure 12.
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When de..p > 0 the stability requirement Inequality (28) simply requires11

the projection of de.p Yon (a.. - a.* -a dU v 6 .) to be positive.
1h 1]oAc1] dv dj

When dcii p < 0 the above requirement reduces to (a.jA - aij*) dEij >' 0.

In other words, referring to Figure 12, the boundary of the shaded region

coincides with the loading surface. Consequently when deiip < 0 the stability

requirement leads to normality of dc+p with the loading surface. The sense of

de*p is outward.

Further when de iip < 0 at point P on the limit surface then (aij p- a.ij

de..p >' 0 implies, in geometrical terminology, that all points enclosed by theLJ

loading surface are on one side of the tangent plane to the loading surface P.

This latter property will be referred to as convexity.

Now consider point A in Figure 12. Either deii < 0 or not. Assume that

dc.P < 0, then outward normality must hold. According to Figure 12 if de+p
11

were normal to the loading surface, it would have a projection on the .. =13

-p6.j line in the direction of increasing tensile stress so that deilp a 0

contrary to the assumption. Consequently at point A deiip >, 0. The admissi-

ble directions for dEp deduced from Inequality (28) are shown in Figure 13.

Point B in Figure 12 is inside the shaded area if de..p , 0. Clearly no

non-trivial dcp is possible such that Inequality (28) is satisfied if delip p 0

so that de. ii p 0. It had previously been assumed that plastic flow could be11

induced for every point on the loading surface. Consequently outward normality

of dp to such points as B must exist.

Finally consider point C. If dE iip < 0 is assumed the outward normality

condition of dcp to the loading surface results whereas if de.lp >, 0 is assumed

the conditions on the direction of dep deduced from Inequality (28) and shown
in Figure 14 result. Consequently either de ii p 0 or dc . < 0 may occur at

point C.
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It is now of interest to determine under what conditions Inequality (28)

implies satisfaction of Inequality (20). In the case that the volume in-

creases the two inequalities are equivalent if

au
a V ýv (29)

If the volume decreases the two inequalities are equivalent if

V ;U a (30)
13 WV ij

In other words, satisfaction of Inequality (28) implies satisfaction of In-

equality (20) if the two values for a given by Equations (29) and (30) are

au
admissible (i.e. inside the loading surface). Since 0 <, -v -ýv- s P* the re-

strictions do not seem unreasonable and consequently will be assumed satisfied

in the following. This means then that satisfaction of Inequality (28) auto-

matically implies satisfaction of all previous requirements which have been

presented, i.e., Inequalities (10), (15) and (20)

The above reasoning, thermodynamic and otherwise, imposes restrictions on

the kind of incremental stress-strain relationship that can be used with a

specified loading surface. In the case where a dU
TV- is identically zero the con-

ditions, similar to plasticity, show that normality between eep and the corre-

sponding tangent plane to the loading surface must be specified everywhere.

This result is significant because stipulation of the loading surface then

automatically gives the incremental stress-strain relation. In the present

dU
case where a jv is less than zero the incremental stress-strain relation is

determined for some points on the loading surface (point B types) and delimited

for the remainder.
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The result of the above restrictions then, unlike plasticity, is that

further restraints must be introduced before a definite direction for delp

corresponding to each stress point on the loading surface can be established.

In order to be of practical use in solving problems a definite choice of di-

rection for d- at each point on the loading surface must be established.

In attempting to introduce further postulates concerning soil behavior

those postulates compatible with the previous set of assumptions should be

considered first. That is, it would be appealing to insure that the previous

set of postulates could be satisfied. The next section presents several pos-

sible restrictions which lead to definite choices for de-p which are compatible

with the theory thus far developed.

Possible Restrictions Leading to a Definitive Incremental Stress-Strain
Relationship

The three restrictions to be presented in this section which lead to de-

finitive incremental stress-strain relationships are so chosen that the pre-

ceding theory is automatically satisfied. This is accomplished by only con-

sidering directions of de-P admissible from the preceding theory (hereafter

called admissible directions) and then making a statement regarding them which

leads to a unique choice of dc-p at each point on the loading surface. It is

convenient to define the length of a dCp vector to be

length of dcp Id•PI = d..p d(31)

The first choice presented can be conveniently stated in the following

proposition:
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"Of all the admissible directions of dc•p at a point on the loading sur-
face the actual d- maximizes the plastic work a. .dF. .P, done by the external

1] 2l]

loading when compared to all other admissible dep of equal length." Figure 15

shows schematically, the consequences of such a proposition (dc-p vectors marked

bye). The points, B,C,AA',A" correspond to points BC,AAA of Figures 12,

13, and 14. This choice of dc~p was found by determining which projection of

dc-+p on the vector a was a maximum and yet lay within the fans provided by the

previous section.

The second alternative is expressed by the postulate

"Of all the admissible dc-p at a point on the loading surface, the actual
a..ds..P

demaximizes the expression{ ] 1 } when compared to all other admissible
i dekk•

e•P.' The quantity maximized here is seen to be the ratio of the plastic work

and the volume change. The de determined by this postulate are shown again in

Figure 15 by the vectors marked®.

The final postulate presented is expressed by the proposition:

"Of all the admissible vectors dep at a point of the loading surface the

actual dp maximizes the dissipation (a.. - dU v .)de.P when compared to all

other admissible dcp of equal length."?*

This result is shown again on Figure 15 by the vectors marked®.

Which of these three postulates and possibly some others not presented is

the correct one can only be answered by further analytical and experimental

work. The validity of all the previous assumptions as to their applicability

to problems of granular media can again only be answered by further effort.

This formulation was pointed out to the authors by Professor D. C. Drucker
in a private communication.
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Discussion:

In order to improve upon the currently used plastic deformation theories

of granular media, a theory is presented here which attempts to overcome some

of the known deficiencies in previous theories. Clearly the development of a

more sophisticated theory almost always brings mathematical difficulites so

that a balance must be maintained between sophistication and tractability.

The authors feel that adoption of an appropriate specific loading surface

function in the framework of the above theory will lead to the ability to

solve several technically important problems [141, [15].

Several assumptions made in the theory should be verified experimentally

by comparison of predicted and measured results for technically important

problems. Direct verification of individual assumptions, such as the sta-

bility postulate used here, is not usually possible. Often confidence in

such postulates can be strengthened by finding relatively simple mechanical

models for the material which satisfy the postulate. Although no such model

has yet been conceived, except for a = 0, the authors feel that the postulate

may nevertheless have meaning when 0 < a s 1.
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FIGURE CAPTIONS

Figure 1 - Division Between Attainable and Unattainable Stress States in

a Granular Media

Figure 2 - Two-dimensional Linearized Form of the Mohr-Coulomb Yield

Criterion

Figure 3 - Observed Discrepancy in Direction of dep on Limit Surface

Figure 4 - Schematic Diagram Illustrating Concept of a Loading Cycle in

Stress-Strain Space

Figure 5 - Schematic Diagram Showing How aijdcijp ., 0 Restricts the

Directions of dc in Terms of the Stress a..0 and One of1]

its Conjugate a..(2)

Figure 6 - Case of Two Conjugate Stress States

Figure 7 - Schematic Diagram Showing Loading Cycle in Stress-Strain Space

for Material Whose State is Given by aij, v

Figure 8 - Typical Specific Volume Versus Hydrostatic Pressure Curve for

Granular Media
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Figure 9 - Bounds on d- v Provided by Hydrostatic Pressure -- Specific

Volume Curve

dUFigure 10 - Dependence of Internal Energy on Specific Volume if d 0

Figure 11 - Admissible dc-p Which Satisfy Inequality (21)



Figure 12 - A Schematic Way of Determining Admissible (a - a..* -
dO

6ij a d-Uv Vectors. Any Vector Originating in the Shaded

Region is Admissible. (For du < 0)
dv

Figure 13 - Determination of Admissible Directions for dEp at Point A

(for du < 0)
dv

Figure 14 - Determination of Admissible Directions for dcP at Point C.

In this case dE..p s 0 Leads to Outward Normality. Either

dE..p < 0 or dE..p > 0 May Satisfy the Condition Imposed
1) 1]

by Inequality (29) (for du < 0)
dv

Figure 15 - Three Possible Restrictions Leading to Definite Incremental

Stress-Strain Relationships. (1) Maximum Work, (2) Maximum

of Work Divided by Volume Change, (3) Maximum Dissipation

(For d- 0)
dv
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