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ABSTRACT 

Rotationally symmetric stresses and deformations are considered for 

a prestressed elastic sheet of circular outer boundary loaded transversely 

by a centered indenter with a hemispherical tip. A nonlinear membrane 

solution is obtained for the portion of the sheet that is in frictionless 

contact with the rigid tip of the indenter. This solution and the non¬ 

linear membrane solution previously obtained by Nachbar for a prestressed 

annular membrane are used to obtain a complete solution for stresses and 

deflections of the indented membrane. Three limiting cases of the exact 

solution are investigated: l) an explicit expression for an upper 

bound PL on the indenter load above which stresses under the indenter 

are inelastic; 2) for small values of indenter load, simple closed- 

form solutions reducing to those found from linearized membrane theory; 

3) for fixed values of indenter load and prestress, the limit of the 

solution as the tip radius tends towards zero. In case 3, tne center 

deflection approaches the finite limit also found by Jahsman, Field and 

Holmes; the difference between these results and those obtained from 

linearized membrane theory is found to be due to improper interchange of 

limiting processes in the latter. 

Comparison of computations from this analysis with experimental data 

of Jahsman, Field and Holmes on indentation of stretched mylar membranes 

shows good agreement except in the immediate neighborhood of the indenter. 

Since the reported experimental values of indenter loads were all consid¬ 

erably in excess of PL , the theoretical prediction of yielding and 

plastic deformation of the membrane in the vicinity of the indenter is 

confirmed. 

Part II 

The indenter problem defined in Part I is reconsidered under the 

assumption that the membrane is composed of an elastic-perfectly plastic 

material. Tresca's yield condition and associated flow rule are used. 

It is assumed that the plastic region is separated from the elastic 
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region by a distinct circular elastic-plastic boundary. This boundary 

may lie eithe in the constrained region for sufficiently small indenter 

loads, or in tne free region for sufficiently large loads. Both cases 

are considered. 

Nonlinear membrane solutions are obtained for the constrained region 

(in contact with the indenter) and for the free plastic region of the 

membrane. These solutions, together with solutions previously obtained 

for the prestressed elastic membrane, are used to obtain the complete 

solution for both the cases mentioned above. An upper bound on the 

indenter load is found, beyond which a (static) solution to the indenter 

problem does not exist. For the particular case of small indenter radii, 

it is shown that PL = , where ?¿ is defined as the indenter load 

for incipient plastic flow under the indenter. 

The compuoed results from this analysis are compared with the exper¬ 

imental data of Jahsman, Field and Holmes for stretched mylar membranes. 

Very good agreement is found. In these calculatiois, the elastic-plastic 

boundary radius is shown to be a monotone Increasing function of the 

indenter load for fixed values of prestress. Loads at which rupture of 

the membrane occurred in the experiments are found to be close to the 

theoretical upper bound on the indenter load. 
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GENERAL INTRODUCTION 

1» General Area of Investigation 

Very thin-walled shell structures are of considerable interest for 

aerospace applications especially where large volume or area coupled 

with low weight are primary design considerations. In particular, due 

to recent developments of high-strength polymer materials which can be 

formed into very thin sheets, increasing use is being made of inflatable 

membrane structures. The principal inherent advantage of these 

structures is that they can be transported to their destination in a 

compact lightweight package and inflated only Just before they are used. 

A membrane" shell is defined as one having zero bending rigidity, 

which means physically that bending stresses and the resultant bending 

moments are absent despite flexural deformations of the shell. In 

practice, this idealized membrane is approached in the limit as the wall- 

thickness approaches zero. The Justification for the idealization is 

that, in a shell of thickness h , the extensional or membrane stiffness 

is proportional to h , while the flexural or bending rigidity is pro¬ 

portional to h . Therefore, in the limit of vanishing wall-thickness, 

bending rigidity of the shell tends to zero faster than the extensional 

stiffness. Thus, in a membrane shell, resistance to external loading 

is accomplished by membrane stresses alone. 

Certain problems for thin shells, and in particular for membrane 

shells, involve finite displacements and finite displacement gradients 

of the shell elements. The governing differential equations for these 

problems are formulated by considering equilibrium in the deformed state 

of the shell. The differential equations become nonlinear, and the theory 

which incorporates this consideration is called a geometrically nonlinear 

theory. In this dissertation, such a geometrically nonlinear membrane 

theory is used for a rotationally symmetric problem. 

This nonlinear membrane theory, which is developed by neglecting 

bending stresses, may seem to be useful only for very thin shells. 

However, it turns out that even for shells that are not very thin but 
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4 I 

are loaded in such a manner that membrane stresses are predominant, the 

membrane theory is adequate and gives good results. 

Insofar as the magnitude of the maximum elastic strain in the 

membrane element is concerned, it may be either small compared to one 

or finite of order one, depending upon the type of material used. For 

example, a very thin mylar membrane may have a maximum elastic strain 
»2 

before yielding of order 10 , whereas, in highly exastic, rubber¬ 

like materials, the maximum elastic strain may become of order unity. 

For the problems considered in this dissertation, it will be assumed that 

the magnitude of the maximum elastic strain is negligible compared to 

unity. 

In this dissertation, attention is restricted to the analysis of a 

particular problem of very thin membrane structures. This is. the rota- 

tionally symmetric, finite deformations and stresses in a "prestressed" 

circular flat sheet or membrane due to transverse loading by a rigid 

indenter with a lubricated hemispherical tip. This problem is hence¬ 

forth referred to as the "indenter problem". The word "prestress" in 

this dissertation indicates that a prescribed uniform traction, in the 

plane of the undeformed sheet, is applied along the outer edge or 

boundary. This prestress does not necessarily imply an "initial stress" 

in the membrane. In fact, the analysis is valid if both prestress and 

indenter load are varied arbitrarily and independently. Furthermore, 

the radial displacement component u along the outer edge is not 

restricted tío be zero. 

In Part I of this dissertation, a finite deformation, small strain, 

elastic solution for the indenter problem is obtained. The membrane 

material is assumed to be homogeneous and isotropic, and the constitu¬ 

tive relations are assumed to be linear. In Part II, a solution is 

obtained for the indenter problem under the assumption that the membrane 

is composed of an elastic-perfectly plastic material. Tresca's yield 

condition and associated flow rule are used in this analysis. 

» 
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2. Historical Background 

The earliest werk on finite deformations in circular elastic 

membranes under uniform axisymmetric loading is given in the classic 

papers of Hencky [Ref. l] in 1915, and Schwerin [Ref. 2] in 1929. 

Hencky considered the problem of stresses and deformations in an ini¬ 

tially unstressed, flat circular membrane which is fixed along its 

boundary and loaded by uniform lateral pressure. This problem is known 
■li¬ 

as the problem of Föppl Hencky . Hencky used Föppl's equations to 

apply to the Föppl-Hencky problem. These equations contain inherently 

the assumption that the angle ß , which measures rotation of the tangent 

to the midsurface, obeys the inequality ß « 1 . This assumption is 

called the "moderate ß" assumption. Hencky obtained a solution by ex¬ 

pressing the stresses and the transverse displacement w in terms of 

an infinite power series in even powers of the radius r . 

Campbell [Ref. 5] in 1956, generalized and extended Hencky's power 

series technique to include the effect of initial stress. Campbell's 

solution was restricted to the problem of additional stresses due to 

lateral pressure in a membrane which was initially stressed and then 

fixed along its edge. In other words, boundary displacements were 

taken to be zero during the application of lateral pressure. 

The problem considered by Schwerin was to some extent different 

from the Föppl-Hencky problem. He considered rotationally symmetric 

stresses and deformations of an annular, initially unstressed membrane, 

fixed along its outer edge; the inner edge was considered to be attached 

to a rigid circular disk. The membrane was loaded both by uniform 

lateral pressure on the membrane surface and by a lateral force operating 

on the rigid disk. The disk was assumed to be held in equilibrium by 

uniform stress in the membrane along the inner edge. Schwerin also used 

Föppl's equations. Schwerin showed, by suitable transformation of var¬ 

iables, that the governing differential equations reduced to a simple- 
* ■— ———_ 

See, for instance, the discussion in the paper by Bromberg and Stoker 
[Ref.3] on nonlinear membrane theory. 

The governing differential equations for finite deformations of initially 
flat and unstressed membranes were first obtained by Föppl [Ref.4] in 1907. 
Föppl also deduced the equations for the rotationally symmetric case. 
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looking nonlinear second-order differential equation for a stress 

function. He obtained a power series solution for this differential 

equation, following Hencky's technique. 

In Schwerin's paper [Ref. 2], results were also obtained for the 

case when the membrane was loaded only by the lateral force on the disk, 

and the pressure on the membrane was absent. Schwerin showed that, in 

this case, the governing differential equations for the rotationally 

symmetric state reduced to an especially simple nonlinear second-order 

differential equation. This equation is integrable by quadratures. 

The solution to this equation involved two constants of integration. 

With the use of the boundary conditions of zero radial displacement 

components along the inner and outer edges, the evaluation of the two 

constants of integration reduced to finding the roots of two transcen¬ 

dental equations which, in Schwerin's paper, were solved graphically. 

Schwerin arrived at the interesting conclusion that " . . . . real 

solutions for th2 desired stress state exist only^^ for v ^ , and 

thus we can conclude that for values of v > , the assumed axial 

symmetry of the stress state with bilateral attachment is no longer 

possible and a wave-like buckling of the membrane occurs". 

In 1962, Jahsman, Field and Holmes [Ref, 6] studied analytically 

and experimentally the problem of a prestressed, centrally loaded 

membrane. In the analytical portion of Jahsman's paper, the problem 

considered was that of a circular membrane under fixed distributed 

tension along its outer edge and a central point load applied laterally. 

Jahsman started by considering the exact membrane equations of Reissner 

[Ref. 7]. However, he subsequently assumed that ". . . . rotations 
2 

while finite, remain small so that ß « 1 . In addition, by assuming 

that u' « 1 ("small strain" assumption), it is possible to eliminate 

u ....". With these assumptions, the exact equations reduced to the 

membrane equations of Föppl. In Jahsman's japer, u' denotes the 

derivative of radial displacement component u with respect to the 

radial coordinate r . The validity of the moderate rotation assumption 

V is Poisson's ratio 
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was not demonstrated. Jahsman indicated that u' « 1 was due to the 

small strain assumption. Actually, the assumption u' « 1 is valid if 

both the small strain and moderate rotation assumption are satisfied. 

Jahsman followed substantially the steps in the Schwerin analysis 

to reduce the governing differential equations to a simple nonlinear 

differential equation, equivalent to that obtained by Schwerin, which 

was integrable by quadratures. Jahsman observed that the integration 

constants need not be real in order to generate real solutions; Schwerin 

had assumed that they were real. Jahsman made the important observation 

that Schwerin's solution could be extended to all physically meaningful 

values of Poisson's ratio by allowing one of the integration constants 

to take on purely imaginary values. The solution itself would still be 

real-valued. 

In the experimental part of Ref. 6, central load-transverse deflection 

characteristics and the deflection profile were obtained for the indenter 

problem. The experimental setup consisted of a mylar sheet, 6 xlO’^in. 

thick, which was supported in the transverse direction by a rigid circu¬ 

lar ring of inner radius 5 inches. The mylar sheet was stretched in its 

plane by dead-weight loading, which was assumed to have developed uniform 

stress at the edge of the sheet. A transverse load was applied at the 

center of the sheet by a rigid indenter having a hemispherical tip of 

l/l6 inch radius. Tne magnitude of the load was increased in steps of 

0.11 lbs, while the prestí ess was held constant. The central deflection 

under the indenter and the deflection profiles were measured. 

In order to compare theoretical results with the experimental values, 

two methods were used in Ref. 6. In the first method, central deflection 

under the indenter and the indenter load were reduced to the nondimension- 

al parameters Pg and wg , respectively, and the experimentally deter¬ 

mined relation between these two parameters was compared with the relation 

determined by the theory described above. Good agreement was shown to 

exist. In the second method, comparison was made of the deflection pro¬ 

file normalized by the central deflection. This comparison showed dis¬ 

crepancies in considerable excess of estimated experimental errors. Thus, 

only the first of the two methods showed a good comparison between theory 

and experiments. 



Nachbar [Ref. 8] pointed out several shortcomings of the previous 

analytical work of Schwerin and Jahsman cited above. He indicated that 

both papers deal with formal solutions to boundary value problems and 

do not investigate the question of eicistence of the solution for the 

complete, meaningful range of the various physical parameters. In 

addition, the general consistency of their solutions with the "moderate 

ß " assumption is not investigated. Furthermore, in obtaining the 

analytical solution for the case of concentrated load at center, Jahsman 

assumed, without proof, the existence of the solution for stresses and 

displacements in the limit as the indenter radius tends to zero. 

The previous work was extended in several ways by Nachbar. The 

problem he considered is similar to Jahsman's problem and consists of a 

prestressed annular membrane, loaded transversely by a rigid plug of 

finite radius inserted at the center. The finite deformation, small 

strain equations for thin shells of revolution, as developed by Reissner 

[Ref. J], were used to obtain appropriate equations for the case of an 

initially flat membrane. These equations were valid for arbitrary 

magnitudes of ß . By making the moderate ß assumption, and using 

suitable transformation of dependent and independent variables, the 

equations simplified to a nonlinear second-order differential equation 

for a stress function F . This equation is equivalent to that obtained 

previously by Schwerin, and was integrated by quadratures in closed 

form. The stress and displacement components were expressed as functions 

of the stress function. The existence and uniqueness of the solution 

thus obtained was also investigated for a range of physical parameters 

involving prestress and indenter load. 

The problem of wrinkling of the membrane was also investigated. For 

this purpose, a wrinkling stability criterion was given by restricting 

the circumferential stress Oß to be nonnegative. 

- 6 - 



5. Principal Results of this Dissertation 

The actual indenter problem for which experimental results were 

obtained by Jahsman [Ref. 6] has not been considered in any of the 

papers described above. Jahsman's analytical solution was for point 

loading at the center of the membrane, whereas, in the experiments, an 

indenter of finite radius was used. In this dissertation, the indenter 

problem for a finite tip radius is studied in detail, and comparison is 

made with the experimental results of Ref. 6. 

The results of the elastic analysis. Part I, are indicated first. 

The existence and uniqueness of the elastic solution to the indenter 

problem is investigated; this was motivated by the following considerations. 

First, Schwerin and Jahsman encountered difficulties in proving the exist¬ 

ence of solutions to their problems for the complete range of Poisson's 

ratio. Second, we are dealing here with solutions to boundary value 

problems involving nonlinear differential equations. There are no general 

proofs of existence and uniqueness of solutions which we found applicable 

to our problems . 

It is shown that an upper bound P_ on the indenter load P can 
1j 

be chosen such that, for prestress exceeding a certain lower bound [see 

Eqc(4.8), Part I], and for PSP , a unique elastic solution to the 

indenter problem exists, and the membrane is stable against wrinkles. 

With the definition of PT as a certain function of an elastic limit or 
Ij 

yield stress [see Eq,(4.6), Part I], it is fcund that, in general, the 

stress under the center of the indenter exceeds the limit stress for 

P = P Since, in the experiments reported in Ref. 6, radial wrinkles 

appeared along the outer edge of the membrane for large indenter loads, 

a wi inkle stability criterion must be imposed to determine the validity 

of the rotational symmetry assumption. The wrinkle stability criterion 

mentioned above is used [Ref. 81. 

It is shown that, with further restrictions on prestress end for 

small indenter radii, yielding of th*; membrane begins under the indenter 
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at P ?! . The numerically calculated value of this yiell load, for 

Jahsman's experimental problem, turns out to be less than all of the 

indenter load values for which experimental results were reported. Thus, 

the theory predicts that, for Jahsman’s experiments, yielding of the 

membrane under the indenter must have occurred for all indenter load 

values used in the experiments. 

A limiting case of the exact solution is investigated for suffi¬ 

ciently small values of indenter load P and for fixed prestress a 
ro 

It is shown that if P is small enough so that the order relation (U.lTd) 

of Part I is satisfied, then the exact solution reduces to a simple closed- 

form solution for stresses and displacements which is identical to that 

found from linearized membrane theory. 

Another limiting case of the exact solution is investigated in which 

the radius of the indenter tends to zero for fixed values of indenter 

load P and prestress o ^ . The solution is shown to exist in the limit. 
ro 

The numerical calculation of central deflection from this limiting solu¬ 

tion and from Jahsman's theory are in agreement for various indenter loads. 

The exact limit solution for central deflection w and radial stress 

ar cannot be obtained by allowing the indenter radius to approach zero 

in the linearized membrane solution. This disagreement is found to be 

due uo an improper interchange of the limiting processes. This result 

may have some significance with regard to the validity of singular solu¬ 

tions obtained in the linearized membrane theory of shells. 

Numerical values of central deflection and the deflection profile 

computed from the elastic theory for the actual indenter radius are 

compared with experimental results of Jahsman. Comparison of deflection 

profiles showed good agreement except in the neighborhood of the indenter. 

Comparison of central deflections showed discrepancy especially for large 

indenter loads. This discrepancy is shown in Part II to be due to plastic 

deformation of the membrane in the neighborhood of the indenter. 

To obtain a complete solution for the elastic-plastic problem, it 

is assumed that the plastic region is separated from the elastic region 

by a distinct circular elastic-plastic boundary. This boundary may lie 
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either in the constrained region or in the free region. Both cases are 

considered. 

It is shown in Part II that for both cases mentioned above, a unique 

elastic-plastic solution exists for values of indenter load P greater 

than P^ , where P^ is defined as the indenter load for incipient 

plastic flow under the indenter. For the particular case of small in¬ 

denter radii, it is further shown that P£ = PL , which is consistent 

with the previous result, and that, at P * 2P£ , the entire constrained 

legion is plastic. 

Numerical calculations corresponding to the experiments of Ref. 6 

are presented for stresses and vertical deflections. In these calcu¬ 

lations, the elastic-plastic boundary radius is shown to be a monotone 

increasing function of the indenter load for fixed values of prestress. 

Numerical values of central deflection and the deflection profile are 

compared with the experimental data, and very good agreement is found 

for all indenter loads up to the wrinkling limits. 

An upper bound on the indenter load is found such that for loads 

greater than this upper bound there exists no (static) solution to the 

indenter problem. However, at this upper bound load, the moderate ß 

assumption is violated in the vicinity of the indenter. Therefore the 

derivation of the upper bound may be questionable. However, in two of 

the experiments, indenter loads at which the membrane ruptured or punc¬ 

tured were reported. These loads are found to be quite close to values 

calculated from the theoretical upper bound. 
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PART I 

FINITE INDENTATION OF AN ELASTIC MEMBRANE 

BY A SPHERICAL INTENTER 
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NOTATION 

a Outer radius of membrane . 

b Radius at the point of tangency. 

c Radius of the hemispherical head of the indenter . 

Cq Integration constant, Eqs. (l-Tojc). 

Co(Fo) Function determined by Eq. (3.12) . 

E Young's modulus. 

s(ß) 

WS,SL 

u 

w 

w 
0 

y 

= 22/3 (ep)1/3 y1/2 ctn ß . 

= y ^ UîrEha^ # combined loading parameter . 

Value of F at which C (F ) = 0 . 
o o o 

Value of F for P = PT . 
o L 

Value of Fe for P = PL . 

Thickness of elastic sheet. 

= ho , Horizontal component of stress resultant at 
ro 

r = a . 

Central indenter load. 

= 47TEhc s^ , upper bound on P at elastic limit. 
L 

Transverse pressure on the elastic sheet under the 

indenter. 

Radial coordinate. 

^ Sr + se • 

H (or/E), (o0/E), [(or+o0)/E], (ol/e) . 

Horizontal displacement component. 

Transverse (vertical) displacement component. 

= ~w(0) , Central deflection. 

= (r/a)2. 

-.12- 



Notation (Continued) 

Angle of tangent rotation. 

Value of ß at point of tangency. 

= (b/a) . 

Radial and circumferential strain components. 

Poisson's ratio. 

P 
2nEhfc 

Radial and circumferential stress components. 

Applied prestress. 

Elastic proportional limit stress. 

£ 
a 



SECTION 1. INTRODUCTION 

A theoretical analysis has been given by Nachbar [Ref. 1] for the 

finite, rotationally symmetric deformations and stresses of a prestressed, 

annular elastic membrane, or sheet, subjected to applied transverse 

loading only along the inner edge. The sheet is initially flat and is 

supported at the outer edge where stretching is also applied. An ex¬ 

plicit solution was obtained for the case of transverse loading introduced 

through a rigid plug or disk which is attached centrally to the annular 

membrane. Experimental results for a similar problem have also been 

given by Jahsman, Field and Holmes [Ref. 2]. However, the experiments 

used a complete membrane and a rigid indenter with a hemispherical tip 

in order to apply transverse load. Thus, stresses and deformations of 

the membrane in the immediate neighborhood of the indenter tip are to 

be expected to be different from those predicted by the plug analysis. 

In the present paper is considered the problem of finite, rotationally 

symmetric deformations and stresses in a prestressed circular flat sheet, 

of outer radius a , due to transverse loading at the center by a rigid 

indenter with a hemispherical tip of radius c . This problem will 

henceforth be referred to as the indenter problem. A small strain, 

elastic solution for the indenter problem is obtained. Figure 1 shows 

the indenter problem geometry and the nomenclature. The radial distance 

to the membrane is r, and r = b % denotes the point of tangency of the 

sheet with the indenter; b is a function both of load P and of H . A 
o 

solution for the portion of the sheet (0 < r S b) in frictionless con¬ 

tact with the indenter is obtained in Section 2. This portion will be 

called the constrained region. This solution and the results for the 

free region (annular portion of the membrane which is not in contact 

with the indenter) are used in Section 3 to obtain the complete solution 

to the indenter problem. 

The results for the free annular region [Ref. 1] which are essential 

for the present paper are summarized below. These are valid for small 

strain and moderate rotation restrictions. The inner radius is b and 

the outer radius is a. Displacements normal and parallel to the initial 



DEFORMED EQUILIBRIUM CONFIGURATION 

Fig. 1. Deformation of the Elastic Sheet - Deformed Equilibrium 
Configuration. 
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Fig. 2. Deformation of the Elastic Sheet — For the Constrained 
Region. 
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plane are w and u , respectively. The angle of rotation of the 

tangent to the midsurface from the Initial plane Is 0 . The sheet has 

uniform thickness h and elastic coefficients E,v . Nondimensional 

stress variables s and s_ are defined as 
r e 

s = 
ï“ 

and s- 3 = 
9 E 

9 
(1.1a) 

and the Independent variable is chosen as 

k2 

■(5) (1.1b) 

With use of the nondlmensional shape parameter e and the load 

parameter p , 

_ _ b _ P 
= ã ' 0 ” SnXhb ' (l.lc) 

a nondlmensional stress function F is defined as 

F S (4CP)1/5 y1/2 etn p « (4«p)1/S y1/2 p’1 (l.ld) 

Stresses and displacements are given in terms of F(y) by Eqs. (3.7), 

(3.8), (3.9), (3.11), (3.13) and (3.23) of Ref. 1 as follows: 

MH2/s 
s 
9 (î»f (2s-n 

8 /1 tQf/3 F 
1? tp j ÿ 

(1.2) 

(1.3) 

(1.4) 

ï" - (è*«») (1.5) 

P . (4.P)1/3 y1/2 F*1 (1.6) 
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Equations (1.3) and (1.4) are seen to satisfy identically the differential 

equations of equilibrium [Eqs. (2.1a,b) below with p * 0] , and the equa¬ 

tion of compatibility [Eq. (2.5b)] becomes, with the use of Eq. (1.6), a 

differential equation for F(y) : 

d_F _1_ 

^ 2F2 ’ ° 
€ < y < 1 (1.7a) 

The Integral of this equation corresponding to bq > 0 everywhere has 

the form 

dF /w-i x1/2 o 
* (F + co) , € < y < 1 (1.7b) 

where CQ Is a real-valued constant. An additional Integration gives 

,F(1) 
1 Y0-/2) 

l*y“/ (v +Co) 

P(y) 

dv , € < y < 1 (1.7c) 

The boundary condition at y » 1 is Ehs s ho * H . Thus H 
r ro o o 

determines the prestress oro . The parameter Fq expresses the com¬ 

bined loading condition, through use of Eq.(l.4), as 

F(l) ‘ Fo s (^) 

2/3 

(1.8a) 

The boundary condition at y - c2 is expressed as 

F(c2) * F, (1.8b) 

where Fc is to be determined from conditions of continuity with the 

constrained region. When €,Fo,F€ are given so that F0 > F€ > 0 , 

Cq is uniquely determined from Eq.(l«7c) expressed at y * as 

follows : 

(1.9) 

Upon determination of C0 , the function F(y) which satisfies Eq.(l.7a) 

and boundary conditions (l.8a,b) is given by Eq.(l.7c). The noraml dis¬ 

placement component w is then determined explicitly through use of 
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Eq.(l.7a) in Eq.(1.5) [see Ref. 1, Eqs.(3.23) and (5.7)]: 

(1.10) 
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SECTION 2. SHEET IN FFICTIOHIBSS CONTACT WITH INDENTER 

Finite deformation« small strain equations for the constrained 

region (0 S r S b) of the sheet are [Ref. 3] those of equilibrium« 

d 
(rsr cos ß) - se + sin ß = 0 (2.1a) 

^ (rs^ sin ß) - cos ß * 0 (2.1b) 

elasticity [0 S v S (1/2)] , 

€r * 8r " V80 

ce * 8e - V8r 

(2.2a) 

(2.2b) 

and strain-displacement « 

(1 + €r) sin ß 
dw 
d? 

du 
(1 + cr) cos ß » 1 + ^ 

« u 
0 * r 

(2.3a) 

(2.3b) 

(2.3c) 

When p is eliminated between Eqs. (2.1a«b)« there obtains 

3? (rs ) * sA cos ß (2.4) 

The conqpatibillty relation obtained by combining Eqs. (2.5b«c)« 

Jj: (r*e) + 1 - (1 + *r) CO. P » 0 , (2.5a) 

can be written in a more convenient form« with the use of Eqs. (2.2) 

and (2.4)« as 

r 3r ^80 + 8r^ + (1 + Be + ^)(1 - COB ß) - 0 (2.5b) 

- 20 - 
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Since the membrane is assumed to deform smoothly onto the indenter, the 

geometric relation for the constrained region 

sin ß (1*0 (2.6) 

is apparent from Pig. 2. 

It is next shown that f ß | must necessarily be of the order of the 

square root of the maximum elastic strain or smaller. Prom Eq. (2.3b) 

and the derivative of both sides of Eq. (2.6) there Is obtained 

dr 
c*1 (1 + er) (2.7) 

The differential operator transforms as [Eqs.(2.6) and (2.?)] 

râü. r_âÊ_ . áü. (1 1 M .iBfliü 
dr e d(r/c) dß y 1 «► €e y 8in ^ dß 

Equation (2.5b) can then be written as 

dß (8e + 8 r + [“(l . *r)-j 
(1 -COS ß) 

.in ß *0 

Because of the assumption of small strains, |sr| « 1 and |se| « 1 , 

the square bracketed terms in the above equation can be approximated by 

unity, and the equation becomes 

3p (#r + V + ° (2.8) 

Let s(ß) ® ®r + «0 ; then the integral of Eq. (2.8) can be written as 

s(ß) = s(0) + 2 in cos ^ (2.9) 

or also as 

cos I * exp ¿ (s(0) - s(ß)]} (2.10) 

Equation (2.10) shows that s(ß) S s(0) for all ß fc 0 . Purthermore, 

since |sj is bounded by some linear elastic limit value denoted by 
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(2sl), where sL « 1 , then Eq. (2.10) implies 

[1 - cos (ß/2)] SI- exp(-sL) ?» 

2 
so that ß S 8sL . Therefore, if is sufficiently small, it is 

necessary to assume as consistent with the small strain approximation 

that the rotation is finite but "moderate", viz. 

2 
ß « 1 

Hence Eqs. (2.6) and (2.9) are approximated as 

sin ß £ ß £5 — 
c 

•(e) = »(0) - £ e2 

If Eq. (2.4) is written in the form 

ds 

r + 2sw * s - se(l - cos ß) 

(2.11) 

(2.12a) 

(2.12b) 

dr r 

then with the use of Eqs. (2.12a,b) and the small strain assumption, 

this becomes 

ds 
- + 28 » s(0) - i ß2 ß dß r 

The solution is 

(2.13) 

s = I2 sí£i 1 2 
Sr ' ^ + 2 " US ß 

and from Eq. (2.12b) , 

(2.14a) 

s (2.14b) 

With use of these relations in Eqs. (2.2b) and (2.3c), u is determined 

to be 

£ - -(1 + v) ^ + i (1 - v)p s(o) - (3 - v)p; (2.15) 

- £2 - 
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The contact pressure p between the membrane and the indenter is 

determined by using Eqs. (2.1b), (2.12a) and (2.l4a): 

Eh 
[.(0) - ç oaJ (2.16) 

An expression can be given for s(0) in terms of * vhere 

s (b/c) , by using Eq. (2.lUa): 

C2 , 1 02 
s(0) « 2 s^^) “ 2 “J + ff (2.17) 

ß 

Equations(2.14) to (2.1?) are valid for Cp / 0 , but if the membrane 

is to be elastic for all ß fc 0 , then Cg » 0 . Por the case 

Cg = 0 , Eqs. (2.14) to (2.l6) become with use of Eq. (2.17): 

2 „2 
•r(p) - .,.(¾) (¾ - o ) 

*8(P) " 8r(&b) + IS ' Î5 p2 

(2.18a) 

(2.18b) 

üiÊi - p [(1 - V) .,(¾) + ^ - i^ir1 P2] (2-^) 

p(P) * [a .,(¾) + ¿ Pb * Î p2] (2-l8d) 

The displacement w(ß) is found by integration of Eq. (2.3a): 

(2.l8e) w(P) = »(P,.) - I (^ - P2) 

A necessary condition to be satisfied for contact between indenter 

and membrane in 0 5 ß S ß^ , is that p(ß) ï 0. This condition is 

seen to be fulfilled if 

a0(ßb) > 0 (2.19) 

This latter condition is necessary, however, for the stability of the 

free membrane against wrinkling [Ref. 1, Eq. (3.16)] and must be imposed 

for a rotationally symmetric solution to the indenter problem. It will 

be shown in the following section [see Eq. (3.39)] "that (2.19) 18 

satisfied. 
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The equilibrium of the indenter at the point of tangency, 

requires 

P « 2TfEh bß^ ßr(ßb) 

which is written as 

slhï * ^ 7 

ß - ßb, 

(2.20) 
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SECTION 3. SOLUTION OF THE INDENTER PROBLEM 

Solutions from Section 1 for the free region and from Section 2 

for the constrained region are now used. Solutions for these two regions 

are distinguished by the use of y as independent variable in the free 

region and of ß as independent variable in the constrained region. At 

the point of tangency r * b (y = € for the free region and ß = 3b 

for the constrained region), conditions of continuity of displacements 

and normal stress are imposed. From Eq. (1.4), 

(3.1) 

where, from Eq. (1.1c), 

€p ~ 2TTEha 

Continuity of sr requires 

sr(e2) " 8r(V 

(3.2) 

(3.3) 

This equation, after substitution from Eqs. (1.8b), (2.20), (3.1) and 

(3.2), can be written as 

F - (si-) « \ TrEha / 

1/3 £ 
ä (3.4) 

Note that F does not depend upon € . 

Continuity of the displacement u is invoked to determine b, or 

what is equivalent, the nondimensional parameter €: 

u(c ) * u(ßb) 

Equations (1.2), (l.Jb), (1.8b) and (3.2) give 

2 2/3 
u(g2) = / P 
tt* * (ïïïïlbr ) [2 4 co) ’ 4 v) J 

. (3.5) 

(3.6) 

Equation (2.18c) gives 



« 

u(ßJ . \ /a \ 1 p? (3.7a) 
—^2- - (1 - v) 8rOb) - 5 % 

uhien can be «ritten ln the convenient form, using Eqs. (3.1) to (3.U), 

b 

/ p \2/s 
\TSmZ) (1 - v) 

Fc *2 

¡7 
(3.7b) 

substitution froo Eqs. (3.7b) and (3,6) Into Eq. (3.5) leads to the 

following equation quadratic in c , 

uf2« ( ï; + cof *2 * 4F‘ ^0 s'* + 
(3.8) 

The only positive root is 

E2 = -2 F? 
kl/2 ,3 > 1/2 

which can be written simply as 

2F2 (h • °.r • (i; • 
1/2 

(3.9) 

Equations (1.9) and (3.9) are used to deterolne e and Co with 

F and F , or equivalently, with P and H0 , through the use of 

Eqs. (1.8a* and (3.4), considered as independent variables. 

Certain characteristics of the solutions * and Co to Eqs. (1.9) 

and (3.9) for fixed Ho > 0 are now studied. Restrictions of these 

developments to small indenter radii will be made subsequently as 

sufficient for applied purposes and In the Interest of brevity. 

First, It is observed that Fc is expressible as a function of 

F and H by means of Eqs. (1.8a) and (3.9) 
O O 

J'oY c ,-(1/2) (3.10) r''2{m) ãFo 

Therefore, for fixed H0 , F« »»» * regarded »a » FunC*1°" 

only, viz. Ft(F0) • Substitution of F€(F0) into Eq. (3.9) yields 
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the function € = €«* ,C ) . Then th'e right-nand side of Eq. (1.9) can o o 
be defined by the function *s 

(3.11) dv 

and then Eq. (1.9) can be written as 

(3.12) 

Equation (3.12) will be shown to determine implicitly a function 

C (F ) . which can be regarded as the solution to the problem. Since 
o o 

0 £ € < 1 is a geometrical constraint^ then by Eq. (3.12) 

0 < liF ,C (F )] S 1. It la necessary to consider the left-hand side 
o o o 

of Eq. (3.12) in the Fo,Cq plane within the allowable domain which 

is determined by the two inequalities 

i- + C > 0 
F o 

(3.13a) 

(3.13b) 

Inequality (3.13b) follows from Eq. (3.10) and the inequality I > 0, 

which implie« FÂ> F > 0 . 

It is evident from Eq-*. (3.9)> (3.10) and (3 II) that €(F0>C0) 

and I(F ,0 ) are continuous functions of Fä and C in the allowable o o o o 
domain ITe partial derivative with respect to CQ of the left-hand 

side of Eq. (3.12) is 

^It is shown in Fef. 1 that if wrinkling is to be avoided, 
Co(Fg) mu6t bfe confinen to a smaller domain which lies wholly within 
the allowable domain. 

- 27 



â fe24. T 1\ 1-2/2 X'i1/2) 
35" (* +1-1) - 

O (h°°) (?:*'•) 2 e [f¡*Co 

F_ 

•i/ u+c0r. (3.lUa) 

F 

Therefore, in the allowable domain, the right-hand side above is 

negative, and so 

gl" (c2+i - i) < o 
o 

(3.14b) 

This partial derivative is a continuous function of F and C . The 
o o 

partial derivative with respect to Fq of the left-hand side of Eq.(3.12) 

is 

sr (^+1-1) - (r+co) Q ^ ft r 

-(1/2) 

o 

0Fe 

+s?; ^ - 2(f+co) 

-(1/2)*1 

1 

where with the use of Eq.(3.10), 

0F- 
“ ~ 2 ‘€rO f-f:1 

Then Eq.(3.13a) becomes 

d 

(3.15a) 

(3.15b) 

ST («2 + i-D - (f+co) 
-(1/2) 2 F -(1/2) 

(3.15c) 

When Cq * 0 , let Fq = F* be a root of Eq.(3.12). From Eqs.(3.9), 

(3.11) and (3.12), an equation for F* is easily derived: 

FJ3/2 -f [1-2(/2- |)fJ3/2] (3.16) 

where F* = F (F*) . 
C € O 
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For convenience, a new parameter k is now defined as 

.&r>) 1/3 
2/3 

(3.17) 

By the right-hand inequality of (3.13b), k is a lower bound on F* in 
0 

the allowable domain. In general, k may have any positive value de¬ 

pending on the prestress and the radius of the indenter. It is shown in 

Appendix A that there exists a unique value of F£ which satisfies 

Eq.(3.16) and inequalities (3.13a,b) if and only if k satisfies ine¬ 

quality (lOA), which is 

0 < k < V2 +1\2/3 
(3.18) 

For larger values of k , does not exist. But for most practical 

cases, k does satisfy inequality (3.l8) and, in fact, if the indenter 

is comparatively small, satisfies the stronger Inequality 

K « 1 (3.19a) 

To show this, we observe that since arQ < aL and sL = (oj/E) « 1 , 

then (HQ/Eh) * °ro/® <<: 1 • Therefore, unless the Indenter radius is 

of the order of the membrane radius ( c/a 1 ), (3.19a) is surely valid, 

and, further, with the use of the results of Appendix A, Eq.(3.l6) can 

be written in this case as 

i?/3 
(3.19b) 

With k satisfying the weaker inequality (3.18), the existence of 

CQ as a continuous function of 

CÍO 0 

F. is now shown in the subdomain 

(3.20a) 

of the allowable domain (3.13a,b), where (3.13b) can be written equiva¬ 

lently as 

F > k > F 0 c (3.20b) 

For C » 0 Eq.(3.15c) is written with the use of Eq.(3.9) as 
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I 

(C2+I-1) 
co.° 

^ [‘ - (^rf] 
The right-hand side above is positive by inequality (3.20b). Furthermore, 

since Co * 0 , ^ ^ is the root 0:f E<1*(3.12) 

Co-O 

V1^ 
Therefore, 

(« +1-1) < 0 

Co-° 

VS 

and (€¿+ I -1) > 0 
co-0 
F >p* 
o o 

(3.21a) 

It can be shown, with the use of Eqs.(3.9)> (3.10) and (3.11), that 

_2 Ä 
lim and 

F fixed 
o 

lim 
C 00 
O 

F fixed 
o 

0 , 

from which it follows that 

lim (c2+ 1-1)- - 1 
c -0 00 
O 

FÄ fixed 
o 

(3.21b) 

Inequality (3.1^b) implies that (€¿+I-l) is a monotone, strictly 

decreasing function of C for a fixed F^ . Therefore, it follows from 
o o 

(3.21a,b) that for each F fc F* , there exists a unique positive value 
* o o 

of C0 such that Eq. (3.12) is satisfied. The continuity of C0(Fq) 

follows from a theorem on implicit functions [Ref. 4]. 

In view of the above results, we will now show that Co(Fq) is a 

monotone increasing function of F for * F* • However, proof of 
o o o 

this will depend upon the additional assumption that k is small, i.e., 

that (3.19a) holds. Then the right-hand inequality of (3.20b) shows that 

Fe « 1 (3.22) 
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For any fixed F€ , let Eq.(3.9) be regarded as expressing the function 

G (Co> ^or C0 i 0 . It is easily shown that €^(C ) is a monotone 

decreasing function and hence that 

c2(Co) S 2(./2 - 1)F*/2 (3.23) 

where the equality holds only for C - 0 . Then from (3.22) it follows 

€2 « 1 

for all C fc 0 . 
0 

(3.2*0 

For F i F* , upper and lower bounds for C (F ) are obtained 

when Eq.(3.1l) is rewritten as 

F_ 

0' 0' 

i(po'co) -/ co1/2)* - °;(1/2){/ [1 - (i+^)’(1/2)] dv 

This becomes 

F° 'Fe . c-(l/2) » 
co R 

co 

where 

(3.25) 

’■/[‘-Hr dv (3.26) 

It is easily shown that 

0 < R < C 
* 

Then Eqs. (3.12) emd (3.25) are used to obtain 

(1- e2) C*/2 ■ F - F - R < F , 

which yields 
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» 

1 - F 
-^(¾¾ < Co < +0(‘2)] 

(3.28) 

With the right Inequality and Eq.(3.10), an upper bound for F C Is 
obtained € 

F 
/H X1/2 

:Co < 2k) ! Fc/2[l+0(c2)] (3.29) 

Equation (3.15c) with the use of the right-hand Inequality of (3.28) 
yields 

5F (e2 + i-i) >£ i + 
2, iT^/Z) 2 2 .-(l/2)\ 

0(e )+-4 - «¿+F (^-+C ) > 
FoJ °> J 

(3.30) 

(3.31) 

From this Inequality It Is evident that 

SF («2+i-i) >o 
O 

in the subdomain (3.20a,b). 

The differential of Eq.(3.12) yields an expression for the deriv¬ 
ative of C0(F0) : 

^ (e2+1 * X)/&1(e2+1'1)] 
(3.32) 

In view of inequalities (3.lUb) and (3.31), this derivative Is positive 

for all Fq £ F* . This implies that the solution to Eq.(3.12) expressed 

by Co(Fo) 18 a continuous, monotone strictly increasing function. 

The final topic considered in this section is the stability of the 

free membrane against wrinkling. It has been shown in Ref. 1 (see 

Appendix: II, p.43), that the wrinkling stability condition is satisfied 
if 

se(l) * 0 (3.33a) 
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and 

se(e2) i O 

It can easily be shown that (3.33a) is satisfied if 

C_ 1_ 

F 

(3.33b) 

(3.34) 

This inequality is satisfied both for F * F* and for F » 1 . o o o 
Furthermore, the numerical solutions for C0(F0) show that inequality 

(3.34) is satisfied for all F £ F* . O o 
P 

An expression for s0(c ) is obtained with the use of Eqs.(2.18b) 

and (2.20) as 

se(cs) (3.Î5) 

Inequality (3.23), with the use of Eq.(3.4), implies that 

(3.36) 

Therefore, with the use of (3.36) and (3.35), it is concluded that in¬ 

equality (3.33b) is satisfied for all F0 * • Hence, in particular, 

the membrane is stable against wrinkles for PSP., where P. is 

defined below by (4.6), and when the prestress satisfies inequality (4.8). 
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SECTION U. APPROXIMATE SOLUTIONS FOR LIMITING CASES 

In Section 3, the exact solution for the indenter problem was 

shown to exist with k in the range (3.18), and for F fc F* . This 
o o 

solution is now used to obtain approximate solutions for certain limit¬ 

ing cases. 

In the first case, we will determine a load P^ which is an 

upper bound on P , meaning that if P > PT and F fc F* , then the 
L O O 7 

maximum value of the normal stress components will certainly exceed the 

elastic limit stress aL . It will be initially assumed that P = PL 

determines a value F = F T such that 

This restriction on Fq^ will be shown to imply that the prestress 

must be chosen to be greater than a lower bound [Eq.(4.8)] for these 

present results to hold. Furthermore, inequality (4.1a) assures the 

existence and uniqueness of a positive-valued C Ÿ s C^(F ) in the 
oL o oL 

exact solution. 

Consider any value of P S P_ . Then F fc F T , and there is a 
•Li O OL 

unique value of CQ > 0 for this value of P . The corresponding 

value of 62 is given uniquely by Eq.(3.9). An upper bound on this 
2 

value of c is given by inequality (3.23) which, through use of 

Eq.(3.4), can be written in terms of • P : 

(4.1b) 

It follows from Eqs.(2.l8a,b) that the maximum value of normal 

stress components in the constrained region occurs directly underneath 

the indenter (i.e., at ß * 0 or r = 0 ); it is, furthermore, a con¬ 

sequence of these equations and Theorem (5.3) of Ref. 1 that this is 

also the location of the maximum value for the entire membrane. From 

Eqs.(2.l8a) and (2.20), therefore. 

(4.2a) 



where, from Eqs.(l.lc) and (2.12a), 

«s • (if • (if (4.2b) 

From Eq.(U.2b) and inequality (4.1b), it can be concluded at once that, 

if P á and (4.1a) holds, then the actual value of must be 

bounded as 

0 < @2 < 

where 

s ^-1) (ãík) 
1/2 

(4.3a) 

(4.3b) 

Now, if the right-hand side of Eq.(4.2a) is considered as a 
2 

function of ßT for a fixed value of P , then it is readily shown that 

this function is monotonically increasing as decreases for ß£ in 

the interval 

° ^ < ‘•fey 
yl/2 

(4.4) 

The interval (4.3a) for ß^^ i? contained in the interval (4.4), and so 

the actual value of s (0) has a lower bound: 
r 

sr(0) > *r(0) 
,2 

(**•5«) 

Substitution from Eq.(4.3b) into the right-hand side of Eq.(4.2a) then 

leads to the following condition for the actual value of s (0) : 
r 

s 
.«»>(tifcfft 

(I*. 5b) 

The value P s PL Is taken, by definition, as that which makes the 

right-hand side of (4.5b) equal to s^ ; thus 

P_ s 4ifEhc sf 
Lj L 

(4.6) 

and 
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(¾) (‘er ■ ©if oL 
-4/3 

(4.7) 

From Eq.(4.7) it is seen that condition (4.1a) is satisfied if the pre¬ 

stress is large enough and satisfies 

H k > (f (4.8) 

Since F* ^ 0(1) , from Eq.(9A), and since (4.8) can be written as 

ro k\T ■ 
(4.9a) 

then this lower bound on aro/aii can be quite small for sufficiently 

small indenter radii. If (c/a) < 1 , then 

,1/3 

M-J « 1 (4.9b) 

Under certain further restrictions, it can now be shown that 

sr(°) « for P “ and exPre8sions for 8r(ßb) and 8r(0) 

for P near ?L can be derived. The first restriction is that k 

is again assumed to be small and (3.19a) holds. Therefore, (3.22), 

(3.24), and (3.29) also hold. Upon substitution from Eq.(4.7) of 

Fo * FoL lnt0 the rl8bfc-hand side of inequality (3.29), there is 
obtained for F_ « F _ and C » C T , 

€ CL o oL 

fclcol < 2 ftf * «'!>3 (4.10a) 

As a second restriction, ratio (ovft/oT) is assumed to satisfy 

2^1 «1 (4.10b) &Ï 
This order relation evidently cannot be satisfied by any a 

ro 
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the square of the right-hand side of inequality (4.9a) is also small com¬ 

pared to one; this latter condition is independent of inequalities (3.19a) 

and (4.10b). However, a third restriction, sufficient but not necessary 

to insure the existence of a range for aTQ , is that (c/a) be snail 

(see inequality (4.9b)). It can be seen that these three restrictions 

will not unduly limit the consideration of practical problems. 

It follows then from (4.10a,b) that for F * F 
o oL 

FC * F - C T « 1 
G O GL OL (4.11a) 

Hence the following order relation will hold, by continuity, for F in 

some neighborhood of F _ and for P in some neighborhood of P : 
OJj L 

0 < F C « 1 
G O (4.11b) 

Let Eq.(3.9) be approximated for small F C as 
€ O 

6 ■ [2(-/2-D]1/2 Fs/U[1-0(P£0o)] 

? 2(-/2-1)1^ (f)5A (ais)171* 
Hence this can be written as 

./ 3 vlA 

b * 2(^-Dl/2 (¾ 

Expressions for ß^, flr(ß^) and ar(0) are now developed for P near 

^ this Is meant that these expressions cure approximately valid 

at P = PL and also for other values of P such that (4.11b) is 

satisfied. From Eqs.(4.2b), (2.10a) and (2.20) with the use of the 

approximation (4.12c), one obtains: 

“b s a(^-D1/2 (*¡55?)lA (b.isa) 

,r(Pb) S 4¿Ij (5¾ ' ^ (U-1Sb) 

(4.12a) 

(4.12b) 

(4.12c, 
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(4.13c) 

It is noted th&t these relations are Independent of the prestress and 

membrane radius a . Also, the maximum stress In the membrane, which 

occurs at ß « 0 (l.e., r * 0 ), Increases with P . Then for P * PT , 

the maximum stress In the membrane, evaluated with the use of Eqs. 

(4.13a,c) and (4.6), Is 

8r(0) (4.13d) 

Before considering the second limiting case, we will derive an exact 

expression for w(c ) with the use of Eq.(l.lO). We substitute y * € 

Into the right-hand side of Eq.(1.10) and write It as 

* VrCn a o 
.1^/2 

cf2(l-C2) (t.KO 

Por positive C0 , the definite Integral In Eq.(3.11) can be evaluated 

In closed form [Ref. 1, Eq.(4.17)), and l(^0>C0) can be written as 

In view of Eq.(3.12), (l-€^) 

right-hand side of Eq.(4.15). 

simplifies to 

In Eq.(4.14) can be replaced by the 

With this substitution, Eq.(4.14) 
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In the second limiting case, the exact solution of Section 3 is 

approximated for small values of P and for fixed prestress a . If 
ro 

P is sufficiently small, so that 

F » 1 , 
o * (U.17n) 

then it can be shown with the use of inequality (3.28) that 

(1+. 17b) 

In view of Eqs.(3.10) and (U.lTb), sufficiently large values of F0 

are considered such that the order relation 

FgCo » 1 or, equivalently » 1 (4.17c) 

holds in addition to (4.17a). This latter inequality, with the use of 

Eqs.(l.8a) and (3.4), implies that 

Brilhc 
« 1 (4.17d) 

The above inequality then gives the restriction on the values of P 

for the approximate solution derived below to be valid. 

In view of the first inequality of (4.17c), the right-hand side of 

Eq.(3.9) san be written as 

(4.18a) 

2 
This approximation for 6 

(3.4) reduces to 

with the use of Eqs.(4.17b), (l.8a) and 
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iiMiiiiiiii'KWiH» r"jfinmiiiwinr|-''i¡i^.nr i.i.n '.Nrw '«»i 
. (iw 1¾¾ 

2 ~ _£ £ 

■ Po » 
(*L) (U,l8b) 

Again, in view of (4.17c), the right-hand side of Eq.(U.i6) is written 

as 

VÍ¿1 
,1/2 vl/2 

■2IfIco) “ft) + 0. . c +0lF¡2c¡2 
O O € O 

(f;2c;2)+o(f;2c;2) 

(4.19a) 

This approximate expression for w(c ) is then written in terms of the 

indenter load and the prestress by using Eqs.(4.17b), (l.8a) and (3.4). 

á-4! PW] (4.19b) 

The central deflection w^ß-O) is obtained from Eq. (2.l8e) as 

w(°) » - § + w(g2) (4.20a) 

This is approximated, with the use of Eqs.(4.19b), (4.l8b) and (4.2b) 

as 

w(0) 2-i^-[1+i*(t^r2)j (4.20b) 

Finally, approximate expressions for s^ß^) and s (0) are 

obtained for small P by using Eqs.(4.l8b), (4.2b), (2.20) and (2.18a): 

* Eh (4.21a) 

H 
o P + —— 

sr^0^ * Eh T 32ttcH (4.21b) 
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Equations (U.19b) and (4.21a) can also be obtained from the familiar 

linearized membrane theory in which it la assumed that sr(r) * constant 

= (Eh) 1Ho for the free portion of the membrane b S r £ a . Hence, the 

order relation (4.17d) is necessary and sufficient for linearized membrane 

theory to be a valid approximation to nonlinear membrane theory. As is 

also well-known from linearized membrane theory, the deflection of the 

membrane under a point load has a logarithmic singularity under the load; 

this behavior is demonstrated in the right-hand side of Eq.(4.19b) when 

c/a tends to zero for fixed P and Hq . However, it will be shown in 

the development to follow that nonlinear membrane theory predicts a 

markedly different behavior in this limiting case, and the logarithmic 

singularity is not correct. 

In all of the results obtained in this paper up to this point, it 

has been assumed that the radius c of the indenter is greater than zero. 

The dependence of the solution upon the parameter c/a has not been 

investigated. In particular, although existence of a solution has been 

proven for all (c/a) > 0 , the existence of a limit solution for c/a 

going to zero has not been shown. 

In the third limiting case, expressions for the stresses and the 

displacement component w are now obtained from the exact solution in 

the limit when radius of the indenter c tends to zero for fixed values 

of indenter load P and prestress Hq (and, consequently, for fixed 

Fq ). Equation (3.4) shows that 

lim F€ * 0 (4.22s) 

P fixed 

Furthermore, since e £ c/a , it is clear that 

11m c * 0 (4.22b) 

It will be shown that for all Fo obeying 

(4.23a) 
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Cr^O approaches a finite and positive limit C with the bounds 
w U Q 

0 <, Î1” Co s < ^ (,l-25b) (1)- 
F fixed o 

Let us first review some previously obtained results which apply for 

c/a positive but arbitrarily small. In Appendix A it is shown that 

when tc satisfies (3.1Ö) there exists a unique F = F* < (3/2)2^3 for o o 
which CQ » 0 . Furthermore, for small values of k which satisfy (3.19a), 

C (F ) is a monotone increasing function of F for all F fc F* . as o o o o o 
was shown in Section 3. Hence, if FQ satisfies (4.23a) and k satisfies 

(3.19a), then Co(Fq) is positive. Furthermore, in view of the right- 

hand inequality of (3.28), C0(F0) has an upper bound value for small 
(c/a) . 

Therefore, it is clear that CQ remains bounded as (c/a) 0 for 

a fixed Fq which satisfies (4.25a). Hence, in view of (4.22a), there 
is obtained 

lim (FeCo) - 0 (U.2U) 

(tb° 
F^ fixed o 

It is qow shown that the limiting value of CQ as (c/a) -* 0 exists. 

For a fixed HQ , we write C0(FQ,q) as an implicit function of Fq and 

T) for Fq in (4.23a) and tj > 0 , where 

n = f (4.25) 

The partial derivative of C with respect to n for fixed F is o o 
determined by taking the partial derivative with respect to tj of both 

sides of each of the Eqs.(3.9), (3.10), (3.11) and (3.12) and evaluating 
as follows: 
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and 

(U.29) 

Upon substitution of the right-hand sides of Eqs.(U.26) and (4.28) into 

Eq.(4.29), there is obtained 

(4.30n ) 

In view of (4.24), Eq.(4.30a) is approximated for small (F C ) , with 

use of Eq.(3.9): 
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! 

* £ <w*«| / K) -3/2 

U(3-2>fe) 

n/2(>/2-1)F^2|i- i^-1) (F6Co) + 0 

ÒF. 
r F_ 

»J2(Z~2>Í2)Y1^ T-“ 
€ 5rf” 

P ® -3/2 

/ (7 >Co) dv + «É(Æ-l)F5/2 

^ € 

-1 

(4.30b) 

The right-hand side above being always positive, 

>0 for T| > 0 , (4.30c) 

C0 decreases monotonically with decreasing tj for fixed FQ . Further¬ 

more, since the Integral term on the right-hand side of Eq.(4.30b) is 

intrinsically positive, then from (4.22a) and Eqs.(4.27) and (4.30b) 

there is obtained 

dC 
lim 5— » 0 

(!)-° ^ 
F fixed 0 

(4.30d) 

Since, for each FQ in (4.23a), C0(F0,ti) is bounded and monotone, 

then C (F ) exists [Ref. 5] and is continuous [Ref. 6]. With the use 
0 0 

of Eqs.(3.1l) and (3.12), C0(Fq) as an implicit function of Fq is 

given by 

(4.31) 

From this, we get 
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1 

The right-hand side above is positive, which shows that C0 is positive 

(cf. (U.23b)), and the same expression is also obtained from Eq.(3.32) 

in the limit. 

A limiting finite value for the displacement component w(e^) is 

now obtained from Eq.(U.lU): 

F fixed o 

It is important to note that the right-hand side of Eq.(4.32) is finite, 

and so the deflection of the membrane at the point of tangency remains 

finite as c/a tends to zero. 

From geometrical considerations, it could be expected that w(0) 

would approach w(c ) as c/a tended to zero for fixed F , and that 
o 

the right-hand side of Eq.(4.32) would also represent the limiting value 

of w(0) . However, this limit cannot be taken even with the exact 

solution obtained in Section 3. To understand why this is, we look 
p 

first at Eq.(2.20) and replace there by the complete expression 

sin ^ . It is apparent then that as c/a tends toward zero, with the 

value for P fixed, <^(0^) becomes infinite. Thus, the small strain 

assumption will be violated underneath the indenter for sufficiently 

small c/a , and this in turn would invalidate our analysis in 

Section 2. In this case we could not show (2.11), and, indeed, it is 

easily shown that the limiting value of from the exact solution 

is infinite. 

With use of (4.24), the right-hand side of Eq.(3.9) can be expanded 

as 
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e2 - 2(Æ-l)F^/2[l - ^ + o(^)] 

With neglect of higher-order terms, this expression can be used in 

Eq.(4.2b) to obtain 

pg S 2(^2-1) F*/2(|)2 

/ h /eia3/1* , >l/2 
. ^-2-) (|) (U.35) 

Although Eq.(4.33) does lead to the unacceptable conclusion that 

-* «o as c/a -* 0 , this expression is correct so long as sr(0) « 1 . 

Furthermore, with use of Eq.(U.33) we have 

lim 

(Ö- 

[-H] 

F fixed 
o 

o 
so that Eq.(4.20a) do^s show w(0) » w(c ) in the limit, 

In conclusion, we remark that it is evidently not correct to take 

the limit, as (c/a) -* 0 , of the linearized membrane theory expressions 

for stress and displacement which were obtained in the second limiting 

case above [Eqs.(4.19b), (4.20b) and (4.21a,b)]. The reason is that 

these linearized expressions were obtained by assuming that 

(F€Co) » 1 , whereas the limit of (F€C0) as (c/a) 0 is zero 

(4.24). The results of passing to the limit as (c/a) 0 in the 

linearized and nonlinear membrane theory are compared as follows: 

Linearized 

lim w(e) = « 

lim w(0) * » 

lim 8r(Pb) - H0/Eh 

lim 8.(0) « « 
r 

nonlinear 

lim w(e^) is finite 

lim w(0) * w(s^) 

lim sr(ßb) « • 

lim s (0) « «• 
r 
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2 
It is remarkable that the limiting values for w(e ) and 

obtained with the use of the linearized theory are exactly opposite of 

the limiting values obtained from the nonlinear theory. 



SECTION 5. NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENTS 

Experimental results have been reported [Ref. 2] for the central 

load-transverse deflection characteristics and the deflection profile 

of a mylar sheet*) stretched in its plane by dead-weight loading. This 

load is referred to as the platen load. The sheet was supported by a 

ring of inner radius a * 5 inches. The transverse load P was applied 

at the center of the sheet by a load probe, or indenter, having a hemi¬ 

spherical tip of radius c = l/l6 inch. The membrane deflections were 

measured both by a dial gage and, in the immediate vicinity of the 

indenter, by measurements from photographic enlargements. Stresses 

were not measured directly, but was calculated from an equilibrium 

equation [the present Eq.(2.1b) with P = 0 ], and values of ß were 

obtained by numerical differentiation of the deflections. 

A comparison is now made between predictions of the present theory 

with the experimental data of Ref. 2. To determine the displacement w 

and stresses o , oe from the theory, it is first necessary to compute 

C for each value of F . Since for these experiments 
o o 
c/a = 0.0125 « 1 , inequalities (3.19a), (3.22) and (3.2k) are sat¬ 

isfied, and hence there exists a unique positive value of CQ for each 

F > F* , as was shown in Section 3. The value of F* is very nearly 
O O p y— O 

equal to (3/2) ' » 1.310371 , as is shown by the right-hand side of 

Eq.(3.19b). If o. is taken as the uniaxial yield stress a , then 
íj y 

for these experiments PT « O.O70I+ lbs as computed from Eq.(U.6). The 
Jj 

prestress used in the experiments was sufficiently large so that the 

condition F > F* is satisfied not only for P £ PT but also for 

a significant range of values for P > ?L . Hence, Co remains pos¬ 

itive in this range, and the definite integral in Eq.(3.1l) is given 

explicitly by Eq.(U.I5). 

We note that for F < F* in the allowable domain (3.13), values 
0 0 

of Co < 0 are possible and can be computed for the indenter problem 

*)Properties of mylar sheet: Thickness h » 6.0 X 10 ^in., 
E * 6.7 X lO^psi , Poisson's ratio v * 0.3 * Yield stress in uniaxial 

tension oy S lO^psi . 



of these experiments. However, the existence and uniqueness of C (F ) 

**or Fo < Fo no*' ^een 

The procedure used to compute the numerical resultF is now described 

For given values of P and c ^ f and hence for a given F > F* . the 

root Co of Eq.(3.12) is computed with the use of Eqs.(3.9), (3.10) and 

(^+.15)- Since (c + I - l) is monotone decreasing with C , and further 
p o 

since Cq is bounded as 0 < < Fq t then the root is easily 

computed by the methc4 of bisection. With C known. € * g(F C ) 
o ' 'o' o' 

follows immediately. 

With the use of these values of e and Cq , and with application 

of Eqs.(l.7c), (l.k)^ (1.3), (1.2; and (l.lO), stresses o , and 

deflections w, u in the free region of the membrane are calculated. 

Stresses and deflections in the constrained region of the membrane are 

then determined with the use of Eqs.(3.3), (2.18) and (2.20); note that 

* (a/c)€ , and that w(e2) from Eq. (1.10) is equal to w(^) in 

Eq.(2.l8e). 

The values of oro could not be obtained experimentally to within 

less than 15* error (see Pef. 2, Table Al), probably because of friction 

between the sheet and the outer supports. Even for constant platen loads 

in the experiment, aro is a weak function of P . To compare predictic¡ 

of the present theory with the experiments, the numerical value of a 
ro 

for each value of P is determined by adjusting a in the theory so 
ro w 

that the predicted deflections near the outer edge r * a are in agree- 

ment with the experimental deflections. The values of o thus found 
ro 

agree roughly with the experimental estimates. 

In Figs. 3 and 4 are shown curves for the principal stresses and 

the transverse deflection w as predicted by theory for P * 0.66 lbs 

(300 grams) and a calculated value of aro * 85O psi; for these values, 

F0 » l.W* and . 6.1» . Also - 7.S X 10‘S , so that, in 

view of inequality (4.10b) and Eq.(l*.13d), the menbrrfne is below yield 

if and only if P < PL . However, P * 0.66 was the smallest value 

of P for which experimental data on deflection profiles were reported, 

although central deflection data were given for P as low as 0.11 lbs 
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(50 grams). Even for this value, P > Pr and F < F T , and the 

stresses in the neighborhood of the indenter as predicted by the theory, 

exceed the yield limit of the material (see Figs. 3 and 4). This indi¬ 

cates that plastic deformation of the membrane in the neighborhood of 

the indenter must have occurred in the experiments, causing larger 

transverse displacements w than these predicted by the elastic theory. 

In Fig. 5, central loaci-deflection characteristics are shown in 

curves 1, 2, 3 — each for a fixed prestress. The values of o 
ro 

used are those determined as mentioned above for platen loads of 10, 2G 

and Uo lbs with the respective indenter loads of 0.66, 0.77, 0.88 lbs 

(300, 350 and UOO grams). Limiting value of load P a O.O70L lb is 
Li 

also indicated. Although computations for negative Co were made, they 

are not included on this graph for the reason given" above, and the graphs 

shown are terminated at Co = 0 . Since experimental data were not 

available for loads below P^ , no direct comparison between theory and 

experiments was possible. However, discrepancy between theory and 

experiment decreases for smaller loads. In the neighborhood of limit 

load PL , theory and experiments show good agreement. 

Numerical results on the P vs. w relation obtainable from the 
0 

theory in Ref. 2 are also obtained from the present theory by taking 

the limit as c/a goes to zero (see Eq.(U.32)). Better agreement is 

then obtained between theory and experiments (see Fig. o of Ref. 2), 

but this agreement is misleading. Since central displacement w is 
0 

a decreasing function of indenter radius c for fixed P , then the 

error in neglecting the finite size of the indenter radius tends to 

balance the error in neglecting plastic flow. 
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APPENDIX A 

It will now be shown that, if * is sufficiently small, there exists 

a unique value of T* which satisfies Eq.(3.l6) and lies in the allow¬ 

able domain (’S.lSa^). Equation (3.16) is rearranged after substitution 

for F* from Eq.(3.10): 

W V‘ ■ » (1A) 

This can be expressed as a cubic equation in if both sides of 

this equation are multiplied by F*3^ . For convenience, the following 

quantities are defined: 

where, xL is the lower bound on x in the allowable domain [Eq.(3.13b)], 

viz: 

x > *1, > 0 (UA) 

Therefore, Eq.(lA) becomes 

x3 - I x + = 0 (5A) 

To show under what conditions Eq.(5A) and inequality (Ua) are both 

satisfied by a unique value of x , we look at the graph of the quantity 

Q — _| plotted first as a function of w , with the use of 

Eq-(5A), and then as a function of x,^ . It is observed that if (5A) 

has a root x = x^ > 0 , then 

(6A) 

Hence, x^ is the point of intersection of the two curves on the graph 

as is shown in Fig. 6 . It then follows from the graph that for a 

given value of there exists a unique value of x which satisfies 

^ (bA) and (5A), if and only if 
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0 <xL<xi (7A) 

Furthermore, x lies In the corresponding interval 

/ 3 N1/2 
[2) >x>\ 

C8A) 

Therefore, Eqs.(2A), (3A) and (6a), and inequalities (7A) and (ÔA) show 

that Eq.(3.l6) has a unique root F* , bounded as 

,2/3 

(if > -. > (¥) '. (9A) 

if and only if 

(10A) 0 < K < (%i)2/3 

If F* = * = , then with the use of Eqs.(3.9) and (3.10) 

there is obtained 

F* = F* = K 
€ O -(¥) 

2/3 
( 11 A) 

and 

= 1 (12A) 

vn 
In this case, therefore, the indenter is resting on the outer edge of the 

membrane when F = F* . o o 

If k exceeds [V2+I)/¿]2/3, tnen the curve Co(Fo) cannot contain 

the point C = 0 . The existence and continuity of C (F ) has not been r 0 00 

shown for this case. 
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PART II 

FINITE INDENTATION OF AN ELASTIC-PLASTIC 

MEMBRANE BY A SPHERICAL INTENTER 
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NOTATION 

a Outer radius of membrane, 

b Radius at point of tangency. 

c Radius of hemispherical head of indenter. 

d Radius of elastic-plastic boundary. 

Co Integration constant, see Ref. 1. 

E Young's modulus. 

F 

r 

u 

w 

w 
o 

y 

ß 

ßb 

/ a/3 1/2 
Up) y ' 

r47rEha\2/3 

ctn ß . 

, combined loading parameter. 

Thickness of elastic-plastic sheet. 

= h<yro i Horizontal component of stress resultant at 

r = a. 

Central indenter load. 
2 

= UîrEhc sL , upper bound on P at elastic limit. 

Transverse pressure on the elastic-plastic sheet under the 

indenter. 

Radial co-ordinate. 

= (Oj/E), (o^E), (Oy/E) . 

Horizontal displacement. 

Transverse (vertical) displacement component. 

= -w(o) ; Central deflection. 

Angle of tangent rotation. 

Angle of tangent rotation at r = b . 
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Notation (Continued) 

Angle of tangent rotation at r = d 

Radial and circumferential midsurface strain components. 

Elastic and plastic components of radial midsurface 

strain. 

Elastic and p3.astic components of circumferential mid¬ 

surface strain. 

Poisson's ratio. 

Radial and circumferential stress comoonents. 

Applied prestress 

Yield stress. 
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SECTION 1. INTRODUCTION 

The problem of finite, rotationally symmetric deformations of a 

prestressed circular elastic membrane, or sheet, subjected to transverse 

loading by an indenter has been considered in Ref. 1. It was shown that 

for indenter loads greater than the limit load P_ , stresses in the 

neighborhood of the indenter, as predicted by theory, exceed the yield 

limit of the material. For indenrer loads greater than P , a compari- 

son of deflections from theory and from experimental data of Jahsman, 

Field and Holmes [Ref. 2] showed good agreement except in the immediate 

neighborhood of the indenter. 

In the present paper, which is a continuation of Ref. 1, elastic- 

plastic analysis of the indenter problem is considered. Figures 1 and 

2 show the indenter problem geometry and nomenclature. The constrained 

region of the membrane is assumed to be in frictionless contact with the 

indenter. Since, in the elastic analysis, maximum stress in the membrane 

occurs under the indenter, it is reasonable to assume that yielding and 

plastic deformation of the membrane is incipient under the indenter and 

propagates outward as load increases. It is assumed that the plastic 

region is separated from the elastic region by a distinct circular 

elastic-plastic boundary of radius d . This elastic-plastic boundary 

may either lie in the constrained region of the membrane [Fig. l] or, 

when the indenter load is sufficiently large, it may lie in the free 

region of the membrane [Fig. 2]. Both cases are considered. 

The membrane is assumed to be of an ideal, elastic-perfectly plastic 

material obeying the Tresca yield condition and the associated flow rule 

[see Eqs.(2.17a,b) below] that is derived from the generalized plastic 

potential [Refs. ^,5]- Subject to subsequent verification from the 

solutions obtained, it will be assumed that positive increments in the 

indenter load P produce no unloading in the plastic portion of the 

membrane. Thus, the radius of the elastic-plastic boundary is assumed 

to be non-decreasing with P . Moreover, the components of the plastic 

strain rate and in the plastic region are assumed to be non¬ 

negative. The total strain components € and €a , and the elastic 
r o 
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e 6 
strain components er and e@ , are thus, in general, continuous func¬ 

tions of the two independent variables r and P , except on the elastic- 

plastic boundary, and are related to one plastic strain components as: 

e 
r 

e 
e 
r 

+ € P (1.1a) 

'6 '0 
+ € 

0 (l.lb) 

The solution for the constrained plastic region is obtained in 

Section 2. The solution for the constrained elastic annular region was 

obtained in Ref. 1, and the solution for the free elastic annular region 

was obtained in Ref. 3. In Sections 3 and h, respectively, complete 
solutions are obtained foi the two cases of Figs. 1 and 2. 

It is convenient in the development to use three representations 

for the independent variable. These also serve to identify regions of 

applicability of the analysis. The tangent rotation angle ß is used 

in the constrained regions, the parameter y is used in the free 

annular elastic region, and the radial distance coordinate r is used 

in the free plastic region. Whenever the obtained results are to apply 

equally to all regions, the independent variable r is signified. 
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RIGID INDENTER WITH 
HEMISPHERICAL TIP 

FREE ELASTIC REGION (bSrSa) 

CONSTRAINED ELASTIC REGION (d:WSb) 

CONSTRAINED PLASTIC REGION (o<rSd) 

ELASTIC-PLASTIC BOUNDARY UNDER INDENTER. 

Fig. 1. Deformed Elastic-Plastic Membrane: Elastic-Plastic 
Boundary under Indenter. 
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(T)FREE ELASTIC REGION (dSrSa). 

(2)FREE PLASTIC REGION (bsrld). 

CONSTRAINED PLASTIC REGION (o<r<b). 

ELASTIC-PLASTIC BOUNDARY IN FREE REGION OF MEMBRANE 

Fig. 2. Deformed Elastic-Plastic Membrane: Elastic-Plastic 
Boundary in Free Region of Membrane. 
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SECTION 2. PLASTIC DEFORMATION OF MEMBRANE 
IN FRICTIONLESS CONTACT WITH INDENTER 

Finite deformation, small strain equations for an initially flat 

sheet are given in Ref. 1. The equations of equilibrium for contact 

without friction are: 

(r s cos ß) - s. + §2 sin ß = 0 
dr r 0 Eh 

(r s sin ß) - I? cos ß = 0 
dr r Eh 

When p is eliminated between Eqs. (2.1a,b), there is obtained 

(r s ) = s_ cos ß . 
dr r 0 

Elastic components of strain are given by 

ee = s -vs (2.2a) 
r r 0 

£e = se ' v sr (2-2b) 

(2.1a) 

(2.1b) 

(2.1c) 

For a membrane undergoing elastic-plastic deformation, total strain 

components are given by Eqs. (l.la,b). 

Strain-displacement relations for total strain components are 

(l+€r) sin ß = (2.3a) 

(l+€r) cos ß = 1 + (2.3b) 

€e (2.3c) 

and the compatibility relation for strains is 

(r €e) + 1 - (l+er) cos ß = 0 (2.k) 
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The yield condition of Tresca is imposed. In the elastic analysis 

[Ref.1] it was shown that s > s for r > 0 . If this inequality is 

assumed to hold for plastic regions, Tresca's yield condition would 

Then, by Eq. (2.1c) s cos ß=s , which indicates 
V y 

This contradicts the initial assumption. It is there- 

become s =s 
r y 

that s. > s 
e y 

fore assumed that 

s. > s > s = 0 
e r z (2.5) 

in the entire plastic region, and therefore 

s = s 
e y (2.6) 

at yield. It will be shown that Eq. (2.6) implies (2.5) both for the 

constrained plastic and the free plastic regions [see Eqs. (2.10) and 

(4.6b)]. 

For the constrained region, 

sl„ P = -LHki , £ (1+se) (2-7) 

follows from geometry and Eq. (2.3c). With the use of Eqs. (2.3b,c), 

the derivative of both sides of Eq. (2.?) is 

= c’1 (l+c ) 
dr v r (2.8) 

Since the differential operator transforms as [Eqs. (2.7) and (2.8)] 

“ ■ (1¾) » S1 dr 

Eq. (2.1c) can be written with ß as independent variable: 

ds /l+e^\ s /1+«: 
cos ß 

r/ " \ Tj 

For small strains, this equation is approximated as 

ds s 
-rr— + —:   = s ctn ß 
dß sin ß y (2-9) 
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The solution of Eq. (2.9) which is finite at ß = 0 is 

s = s 
r y tan(ß/2) -*] (2.10) 

Note that sr is decreasing with increasing ß . An expression for 

contact pressure p between the membrane and the indenter is obtained 

by using Eqs. (2.1b), (2.1c), (2.?) and té.«):' 

p(ß) = Eh s -p 
y c y tan ß/2 

È. 
(2.11) 

The contact pressure p decreases with increase in ß . It is observed 

from Eqs. (2.10) and (2.11) that sr and p for the constrained plas¬ 

tic region are independent of the indenter load P . 

The displacement component w(ß) is obtained from Eqs. (2.3a) and 

(2.8) by one integration; for the case of Fig. 1, 

w(ß) = v(ßd) - c(cos ß-cos ßd) , r S d S b (2.12a) 

and for the case of Fig. 2, 

v(ß) = w(ßb)- c (cos ß-cos ß^ , r $ b £ d (2.12b) 

The results to be obtained next are valid for all elastic-plastic 

boundaries whether in the constrained or free regions. At the elastic- 

plastic boundary r = d (or equivalently ß = ßd and y = ), con¬ 

tinuity of stress component ar and displacement component u is 

required. These conditions are satisfied if 

sr(d -) = sr(d + ) (2.13a) 

and 

e0(d - ) = e0(d +) (2.13b) 

where the use cf arguments (d -) and (d+) refers to limiting values 

for stresses and strains in the plastic region and elastic region, 

respectively, at the elastic-plastic boundary. With the use of Eqs. 

(2.2b), (2.6) and (2.13a), Eq. (2.13b) reduces to 

Sy - S0(a+) = - c|(d-) (2.lUa) 
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Also, using Eqs. (2.2a) and (2.14a), 

€r(d-) - €r(d+) = (d-) + V (d-) (2.14b) 

Since stresses in the elastic region must satisfy the condition 

8e(a+) 5 By (2.15a) 

then, 

'Î (a-) < o 
# 

Positive plastic work requires, however, 

(2.15b) 

ce (d-) > 0 

Inequalities (2.15b,c) therefore imply that 

ejjj (d-) = 0 

and hence 

Se(d+) = By 

(2.15c) 

(2.16a) 

( 2. l6b ) 

Thus, at a general elastic-plastic boundary, 

and vanishes. 

s and 
r 

s@ are continuous, 

To determine the plastic strain components the flow rule for loading 

(2.17a) 

0 < r < d 

él>° 
is used, where, at a fixed r , 

o 

(2.17b) 

(2.17c) 

The plastic 

plastic region, 

pressure p are 

oro [Eqs. (2.6), 

strain components are now determined for the co^trained 

In this region, the stresses a , a and contact 
r 0 

independent both of indenter load P and prestress 

(2.10) and (2.II)], and thus is independent of P . 
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It will be shown next that these conditions imply e^=0 and indeed 
P ^ 

€e^ ’ in the 2onstraitîed plastic region. Therefore, the deformation in 

this region is statically determined. 

Since the strain components € and e are independent of P , 

• -P j ~ 
€û = and €=0, 
6 6 r (2.18) 

the partial derivative with respect to P of the compatibility condition 

(2.4) yields, 

^ (r è^) + (1+e ) ß sin ß = 0 (2.19a) 

An equation for (¼ is obtained from the derivative with respect to P 

of both sides of Eq. (2.?), 

£ cos ß = - é 
r .p 
c 6 

or 

$ = tan ß 
¿P 

Then Eq, (2.19a) becomes 

'l+e 

tsf + 

(2.19b) 

1 + L-Ji) 1ÍB.. è 
l+€-/ COS ß U/ ée = ° (2.19c) 

The last two terms on the left-hand side above are nonnegative for 

ß < tt/2 (see inequality(2.22)), and therefore 

òèp 
6 

'ST 5° 0 < r < d (2.19d) 

By symmetry 

llrar = 0 ’ 

and so, with the use of Eq. (2.18), 

(2.20a) 

lim 
ée = 0 (2.20b) 
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(2.20c) 

Then, Eqs. (2.17b), (2.19d) and (2.20b) together imply that 

= 0 0 < r < d 

and so 

€0 = 0 < r < d (2.20d) 

Now f(r) must satisfy Eq. (2.16a), so that f(d) = 0 . But, for 

loading, d is a continuous, nondecreasing function of P , while f(r) 

is independent of P . Therefore, it is easily shown that f = 0 , and 

hence, from Eqs.(2.20d) and (2.16b) 

e0=° 0 < r á d (2.21a) 

Substitution of expressions for e® and c® from Eqs. (2.2a,b) 

into the compatibility relation (2.4), and the use of Eqs. (2.6), (2.10), 

and (2.21a), determine ep as a function of ß * 
r ^ ■ 

1 - cos ß Sy /. _ 
Cr(ß) “ ~ cos ß + tan p/2 (tan ^ (2.21b) 

This equation shows that €®(ß) >0 for P > 0 . Thersfore, Eq. (2.lUb) 

implies 

er(d -) > er(d -»-) 

This inequality indicates that has a positive jump from the elastic 

into the plastic region. 

Equation (2.21b) shows that the small strain assumption is violated 

as ß - tt/2 , and further, that €P « 1 if and only if ß2 « 1 , This 

latter conclusion is significant. It shows th*t even though no assumption 

of moderate rotation is made in obtaining the solution for the constrained 

plastic region, the solution is valid only when rotation remains moderate. 

It is shown in Section 4 below [see Eq.(4.6a)] that maximum rotation of 

the membrane occurs at ß = ß^ . Consequently, 

ßb <<: 1 (2.22) 

is necessary to satisfy the small strain assumption. 
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SECTION 3. ELASTIC-PLASTIC BOUNDARY UNDER THE INDENTER 

In this section the growth of the plastic region under the indenter 

is considered for increasing indenter loads, and it is assumed that 

0 S d á b (3.1a) 

The three regions of the membrane, viz. constrained elastic-plastic 

region, constrained annular elastic region, and free annular elastic 

region are shown in Fig. 1. In this case it is clear that 

0 ^ (3.1b) 

The proof given in Ref. 1 for the necessity of moderate rotations 

in the constrained elastic region [and, in consequence, for the entire 

membrane - see Ref. 3, Eq. (3.19)] does not hold for an annular elastic 

region of the present problem. However, inequality (2.22) does follow 

for ßd = 0 , and it is shown in Appendix A that for positive values of 

Co , the solution obtained is consistent with inequality (2.22). 

The solution obtained in Ref. 1 for the constrained elastic region 

is now modified for the present problem. With use of assumption (2.22), 

the integral of Eq.(2.8) of Ref. 1 can be written as 

s(ß) = s(ßd) + ç (e¿ - p2) ßa s ß s ß^ 

Upon comparison of this relation to Eq.(2.12b) of Ref. 1, it is ob¬ 

served that the integration constant s(0) in the latter equation is 

replace by 

s(ßa) + ; 

for the present analysis. With this replacement substituted into 
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Eçi* (2.l4a) of Ref. 1, the relation 

I [8(pd) + ï Pd] “ Pb 

is formed. With this and Eqe. (2.lUa,b), (2.15) and (2.16) of Ref. 1, 

the solution for d s r S b is 

sr(P> - 8r<Pb> + C2(¡2 - ¡2) + B («b - P 

»e(P) “ sr(ßb) - C2^2 + ÿ + ig ^ . 3p‘ 

f = (1-v) [sr(Pb) - ^ (ß^e2)J ß - § ß3 - 
ß 

(3.2a) 

(3.2b) 

(l+v) + (i-v)ê 
2 

ß b J 

and 

P 
2Eh 
c '’riPbi - 72 + 

'1 
p! 

(3.2c) 

(3.2d) 

At the elastic-plastic boundary ß=0d , continuity of stress a 

and displacement u is required. Continuity of u is satisfied by the 

continuity of stress components [Eqs. (2.13a) and (2.16b)] and by Eq. 

(2.16a). With the use of Eqs. (2.6) and (3.2b), continuity of s^ is 

expressed as 

(3.3a) 

Inequalities (2.22), (3. lb) imply « 1 . Hence, with tte use cf Eqs. (2.10) 

and (3.2a), the condition for continuity of sr is approximated as 

s ll - 
8r(Pb) + C (3.3b) 
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Upon subtracting (3-3b) from (3.3a), 

C2 (3.U) 

Eqs. (3*3a) and (3**0> we then obtain an equation quadratic in 

ßd i viz. 

i+4 s 
-2-JC— @4 - P?ß? + 
2(1- ! s ) d b d 

I_«Vi _ iá 
2(1- I 8,.)- b ] 

3 r 3 "y 

Since ßd < ßb , the only allowable root of Eq. (3.5a) is 

[V8r(pbjj} * 0 
J (3.5a) 

Pd = i1'28,) - 1 - (1+ 4 8 ) 
3 y' (l- f [va]} 

1/2 

(3.5b) 

Substitution of Eq. (3*^0 into Eqs. (3*2a,b,c,d) then give exprès- 

sions for the constrained elastic region ß, < ß < ß : 
d — — b 

8r(ß) = Sr(Pb) - (1+ > 8y) ^ (ß2-ß2) 

s0(ß) = 8r(pb) + (1+ sy) + igj + ig (p^-3p2) 

I - (1-v) Sr(Pb) + I5(ßb-p2) 

Pb. 

1 .3 ß - g ßJ + (!+ 3 s ) ig d 
ß 

and 

P = 
2Eh 

sr(Pb) + (1+ I ^ ^ + Ï5 ( 
P». \ 

1-2 fif' 

ßi 

(3.6a) 

(3.6b) 

(l+v)+(l-v)Ê 

ß 

(3.6c) 

(3.6d) 

In view of Eq. (3.5b), the unknown quantities remaining to be determined in 

Eqs. (3.6a,b,c,d) are and sr(ß-b) « Conditions to determine these 

quantities will be developed next. 
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Eqs. (2.20), (3.2) and (3.4) At the point of tangency ß = , 

of Ref. 1 apply: 

/_ \ _2 c P 

sr Pb a = 2TTEha 

P 
€p = 2rEha 

Equation (2.7) and inequality (2.22) are used to obtain 

(3.7a) 

(3-7b) 

(3.7c) 

and 

ed ? WSJ 
where 

e = b/a and e = d/a . 

Also, from Eqs. (l.3)i (1*4) and (l. 

(3.7a) 

(3.7e) 

of Ref. 1 , 

(3-7f) 

(3.7g) 

= (F"1«: )1^2 (3-7h) 
dy v o' 

2 
for the free elastic region e < y < 1 . 

At the point of tangency continuity of sr and u are again 

imposed. Continuity of sr is already implied by Eqs. (3-7a,b,c,f). 

Continuity of u is implied, therefore, by continuity of sQ , and 

this condition can be expressed with use of Eqs. (3*6b) and (3.7g»h) 

as 
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s (ßv) + € 

2 

With use of Eqs. (3*7&jbj'C,d,e), the above equation simplifies to 

(3.8a) 

2 
which has two roots for e . But t.>ince € must be real, the only- 

allowable root is 

All the relations necessary to determine a solution for both con¬ 

strained and free regions have now been obtained. If P and H are 
0 

regarded as the independent variables, then both F and F are known 
e 0 

functions of these independent variables only. The remaining unknown 

quantities ßfe , ßd , s^ß^) and Cq are determined by the following 

four equations: Eqs. (3-5b); (3-7a); (3-8b); and Eq. (I.9) of Ref. 1. 

The latter equation appears below as Eq. (3.16). Determination of these 

four quantities enables the solution to be specified for the constrained 

regions by means of equations given here, and for the free elastic region 

by the equations given in Sec.. 1 of Ref. 1. 

The uniqueness and the continuity with respect to P of solutions 

to the above mentioned set of equations are now considered. To facili¬ 

tate this development, some useful inequalities and bounds are now 

considered. Equation (3*5b) and inequality (3*lb) together imply that 

0 < 1 - <1+ I V < 1 

Upon neglect of terms of order s1- , this simplifies to 

(3.9a) 
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or equivalently, with the use of Eq. (3-7^)> 

> €2 . f£isM > _£ 
lés (-)2 

y a7 
6(|)2 

(3.9b) 

Equation (3.8a), together with inequality (3*la), implies that 

0 < + k^J2 (l+F.Cj1/2 g2 - < 6^(1+ I sy) 
€ O' € — 

With the use of Eq. (3*7c), this is rearranged to obtain 

4 

16s (-)2 - 
yva7 

> — ■ \ 1/2 (1+F c )1/2 €2 + €?(c/a) > 

\Hz)eÎJ 

e o' 
8y - 12(f)2 

(3.10) 

Then, by adding the corresponding sides of the two inequalities (3*9¾) 

and (3.IO), there is obtained 

8s (£)2 ~ 
y a7 

1 - 
ep 

\l/2 

K va7 y/ 

(l+F C ) 
' g 07 

1/2 

12(f)2 

(3.11a) 

Finally, this is rearranged and written as 

1 - 
8s (-)2 
y a7 

\ ! (l-^F C )1^2 < 
C\ 2 V 6 07 -- 

H-)s 
a7 y 

1 - 
12(-)2 a 

.J 

(3.Hb) 

Since s « 1 , Eqs. (3*5b) and (3.8a) are approximated and 
y 

expressed as 

-2 2 
6 = G il - [sy - ar(c2)]l/2J (3.12a) 

and 

^ + 4F3/2 (l+F C )1^2 g2 - UF3 = g^ 
6 0 

(3.12b) 
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Upon substitution of g2 from Eq. (3*12a) into Eq. (3*12b), there 

is obtained 

:2 = CP (c/a) + ks (£)2^ . 
s N 

V. 

cp 

i 2 / c * 
4s (-) 
y a7 

1/2 (l+F C )1^ 
€ O' 

(3.13a) 

With use of Eq. (3.7c), this is also expressed as 

,3 r f3/2 
0 F 
2 G 

c. = - 

Us (-) 
ya' 

0 + Us (^)2 
C\2 y a 

1 - 
Us (-) 

y a' 

—5 (l+F C ) 
Cv2 e o 

1/2 
(3.13b) 

Since F. is expressible as a function of Fq and Ho [Eqs. (l.8a) 

and (3-10) of Ref. l], 

/H N1/2 
F = 2 £ F’1/2 

\Eh/ a o 
(3•lU) 

Then, for fixed H , F may be regarded as a function of F only. 
o 

viz. F.(F ) . Hence, Eq. (3.13b) with substitution from Eq. (3*lU) 
G O 

yields the function e = e(Fo>0o) . Furthermore, when the right-hand 

side of Eq. (1-9) of Ref. 1 defines the function I1(F0>Co) 

F 

I, ( F . C ) = A v'-i + C r1/2 dv • (F ,c ) = C (- + c y1/2 
1 r (F ) v 0 

G o' 

(3.15) 

then Eq. (l-9) of Ref. 1 is written as 

\to,co) * 1¿?0,C0) -1-0 (3.16) 

The left-hand side of Eq. (3.16) is considered in the Fo,Co plane 

within the allowable domain which is determined by inequalities (3.13a, 

b) of Ref. 1, viz. 

4- + C >0 
Fo ° 

(3.17a) 
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(3.17b) O < F < 
€ 

2/3 
< F 

Equations (3.13b), (3-1^) and (3.15) show that €(Fo,Co) and Ii(F0>c0) 

are continuous functions of F and C in the allowable domain. The 
o o 

partial derivative with respect to of the left-hand side of Eq. 

(3.16) is 

d / 2. _ , \ 
-55-(e 'rIr1) = • 

0 

J5/2 
€ 

(1+F C ) 
V G O/ 

f3/2(i+f C ) 
e go 

4s (-) 
y a. 

1 
2 Í C r3/2 dv 

O 
(3.18a) 

The right-hand inequali-ty of (3.11a), with Eq. (3*7c) used, implies 

1 

¡<3/2 ^1+F c jl/2 
G GO7 

Its (¿)2 
y & 

> 0 . 

Therefore, in the allowable domain, the right-hand side of Eq. (3.18a) 

is negative, and so 

Ic- (c2 + ïj. - i) < 0 
0 

(3.18b) 

This partial derivative is a continuous function of Fq and Cq . 

Inequality (3.18b) is sufficient to insure that if C0(F0) exists, 

then it is the unique root of Eq. (3*16), and if it exists in a sub- 

domain of the allowable domain, then it is continuous there (cf. Pef. l). 

However, as was the case in Ref. 1, we have had to restrict attention to 

positive values of CQ only, in order to prove the existence of 

C (F ) . Existence of C (F ) under this restriction is shown in 
c'o' CO 

Appendix A for the problem of the present section. With existence and 

uniqueness of Co , the existence and uniqueness of , ßd and 

s (ß,) follow from Eqs. (3.7a,d,e), (3*12b), and (3.I6), and thus 
r d 
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existence and uniqueness of stress and displacement also follow. 

Finally, the monotone dependence of C on F will be shown. 
o o 

The partial derivative with respect to F of the left-hand side of 

Eq. (3.16) is 

b 2 âF 

0 0 
"N 

1 - 
¡¿/2 

<1+ f ^=0) - 2 ) 

Us (^) 
y'a' 

j¿/2 

‘—x (l+F C )1^2 
C\2 c O 

where, with the use of Eq. (3.IU), 

(l+F C ) 
00 

1/2 (3.19a) 

ÒF 
e 

0 
2 F 

Then Eq. (3.19a) becomes 

F372 
(e2+I -1)= y----yo < 3 

0 1 Fo (l+F C )1/2 
€ O/ 

p3/2 

(3.19¾) 

1 - 
Us (^) 
y a7 

cT2 
1/2 

p3/2 (l+F c )1^2 

(1+ -1 + p/i (-:,7)1/2 
€ O O' 

(3.19c) 

In the allowable domain, the last term in the curly brackets is seen to 

be greater than 1. Furthermore, the term in square brackets is shown 

above to be positive. Hence the right-hand side of Eq. (3.19c) is posi¬ 

tive. Therefore, 

|p- (e2+Irl) > 0 (3.19a) 

in the allowable domain (3.17a,b). 

The differential of Eq. (3.I6) yields an expression for the deri¬ 

vative of C with respect to F : 
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dC 
o (3.20) 

dF 
o le- (£2+vd 

o 

In view of inequalities (3.18b) and (3.19^), this derivative is positive 

in the allowable domain. This implies that Co(Fq) is a monotone in¬ 

creasing function. Therefor^ for the case of small indent.er radii, 

Co(Fo) is a continuous, monotone increasing function (see Appendix A). 

Remark: 

In the equations and inequalities obtained in the present section 

up to Eq.(3.11b), no terms of order s are neglected, although, 
y 

sy « 1 . If we neglect such terms, the right-hand sides of inequalities 

(3.9a>b)> (3.10) and (3.11a,b) become zero, and the inequalities are 

written as: 

(3.21a) 

k 
2 _ çüíç/al js 0 

2 s 

€ 
(3.21b) 

y 

ê 0 (3.22) 
s 
y 

(3.23a) 

(3.23b) 
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SECTION 4. ELASTIC-PLASTIC BOUNDARY IN FREE REGION OF MEMBRANE 

It is now assumed that the elastic-plastic boundary lies in the 

free region of the membrane for sufficiently large indenter loads. This 

assumption is expressed by the inequality 

Hence, the increase of d under increasing indenter loads is considered 

in this section. 

The membrane is separated into three regions which are shown in 

Fig. 2. The solution for the constrained plastic region ( 0 < ß < ß ) 

was obtained in Section 2. The solution is obtained in this section for 

the free plastic region ( b < r < d ). No assumption of moderate rota¬ 

tion is made in obtaining this solution, but the solution obtained is 

valid only when rotations are moderate, as is discussed at the end of 

Section 2. 

For the free annular elastic region, rotations are assumed to remain 

finite but moderate, that is 

2 
ß « 1 for d i r £ a (^.lb) 

Thus, the elastic solution obtained in Ref. 2 can be used here. Since 

for an elastic region, it has been shown that ß(r) is monotone decreas¬ 

ing [Eq.(3.19) of Ref. 3], inequality (4.1b) is necessary and sufficient 

for 

^ ^r=d ^d <<: 1 (4.1c) 

Numerical solutions (Fig. ?) show that (4.1c) is satisfied if c/a is 

small compared to unity. 

For the solution of the elastic region, e and p , as defined 

in Ref. 1 [Eq.(l.lc)], are replaced by i and p which are defined as 

€ = d/a and p = P/2ïïEhd . Hence, ep = ep = P/2ïïEha . 
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Hence, in vxew of these relations, the quantity (e p) will be written 

as (cp) for convenience. 

The solution for ßb(P) is obtained by using the conditions that 

sr and €0 are continuous at the point of tangency. An expression for 

sr(r=L+) is first obtained by considering the equilibrium of the inden- 

ter with the free plastic region of the membrane. The equilibrium is 

expressed by 

2Tibhar(b) sin ßb = P (4>2a) 

At the point of tangency r=b , sr and are required to be 

continuous. Furthermore, se=sy in the plastic regions, and s^ is 

continuous at r=b . Thus, €* and are required to be continuous 

independently. Therefore, in view of Eq. (2.21a) 

e£(r) 0 < r < b (4.2b) 

and so, at r=b , Eq. (2.?) can be approximated as 

sin eb = ! [i + £*(b)] 
(4.2c) 

With the use of Eqs. (4.2a,b), sr(b) is then expressed in terms of 

P and ß, as 
o 

sr(b) = 

PrrEhc sin¿ ß. 
( U. 2d ) 

At the point of tangency, continuity of s^ is given by s (ß^) = 

= sr(b) . This, with the use of Eqs. (2.10) and (4.2d), is written as 

- 1 
27rEhc sin ß. 

Tl.is equation is rewritten as a transcendental equation for ß : 

sin ßb (ßb cos ßb + ßb - sin ßb) - P = 0 (^•3a) 
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where the normalized load parameter P is defined as 

P - 2ïïhco (4.3b) 
y 

Equation (4.3a) indicates that P(ß^) is a continuous function of 

in the interval 0 S ß < tt/2 , and that it has a maximum value of P 
D u 

at ßb = ßbu * Furthermore, P(ßb) is strictly increasing for 

0 < Pb < V ’ ('••‘•a) 

and strictly decreasing for ^ < ßb < tt/2 . For bounded strains, 

ßb < * as is shown Qt end of Section 2. Thus, Pu is the absolute 

maximum of P(^) in the interval 0 < ß^ < tt/2 . Therefore, it is 

concluded that a static solution to^the indenter problem exists only for 

0 < P < P 
u (4.4b) 

Since the indenter problem is being considered for the case of positive 

loading only, ß^ is therefore bounded by the inequality (4.4a). Then 

by the inverse function theorem, ^(F) is a continuous, monotone 

increasing function in the domain defined by inequalities (4.4a,b). 

The graph of Eq.(4.3a) is shown in Fig. 7. It is seen that 

Pu ^ 0*6599 and ß^ = 1.257 radians ( = 72° ). Therefore, ß.^ 

clearly violates the moderate ß assumption, (2.22), and, in view of 

Eq.(4.8) below and of the remarks made at the end of Section 2, the 

small strain assumption is also violated at P = Pu . Consequently, 

it cannot be asserted with rigor that P^ is an upper bound for P ; 

however, see discussion below in Section 5. 

The solution is now obtained for the free plastic region. In this 

case, p = 0 in equations of equilibrium (2.1a,b). Inequality (2.5) 

and yield condition (2.6) are assumed to hold. Thus, Eqs.(2.1a,b) are 

integrated, and appropriate integration constants determined with the 

use of boundary conditions at r = b , to obtain 

s 
r cos ß = s y 

s (b) 
r' ' 

cos (4.5a) 
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and 

6 sin ß * (^*5^) 

(f) 
With the use of Eqs.(U.5a,b), expressions for ß(r) and sr(r) are 

obtained: 

-1 

(4.6a) 

and 

(4.6b) 

Therefor 5, 

s 
(cr ) + tan2ß) 

1/2 

/£\ tan ß 
(4.6c) 

Equation (4.6a) shows that ß is a monotone decreasing function of r 

in the free plastic region. Hence ß < ß^ for the complete membrane. 

The expressions for the total strain components in the free plastic 

region are obtained next. It is shown in Appendix B [Eq.(B.5)] that 

€^=0 bSrád (4.7a) 

Hence, = e® ; then with the use of Eqs.(2.2b) and (2.6) 

e„ = s - Vs (4.7b) 
6 y r 

where sr is given by Eq.(4.6b). 

Then € can be determined by substituting €„ from Eq.(4.7b) into 
r ^ 

the compatibility condition (2.4) and using Eqs.(2.2b) and (2.1c): 

c 
r 

1 + s (1-V cos ß) 
y 
cos ß 

1 (^.8) 
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With the use of Eq. (4.8) , Eq. (2.3a) becomes 

dv 
dr [1 + s (1 - V cos ß)] tan ß * tan ß y (4.9a) 

Substituting into this the expression for tan ß from Eq. (4.6a) and 

integrating, we obtain 

v(r) = v(d) - ¿n 
6 
y 

~ • 
tan ß(r) 
tan ß(d; (4.9b) 

Equations (4. 8) and (4.9b) show that strain €r and displacement w 

become unbounded as ß -* tt/2 . 

Since we have previously assumed for Eq. (2.9) that e is small 
r 

compared to unity, and since it can be seen from Eq. (4.8) that e is 
, 2 r 

not small at ß^ unless ß^ « 1 , then the deflection profiles calcu¬ 

lated from Eq. (4.9b) will become inaccurate for large ß because of 

this inconsistency. 

The solution to the indenter problem is now completed by considering 

the elastic portion of the membrane. At the elastic-plastic boundary 
_2 

r = d (or y = € ), continuity of displacement u and stress 

is required. This is equivalent to satisfying Eqs. (2.14a) and (2.17b). 

The continuity of s^ is equivalent to having ß continuous. Then, 
« 

tan ß(d) = tan ß(c2) (4.10a) 

With the use of Eq. (4.6a), and Eq. (l.ld) of Ref. 1, this becomes 

s 
f d b 

V& ” a 

€P 

sr(b) 
1 - 

S 
COS ß. 

(4cp) 1/3 

F(£2) 

Therefore, 

Continuity of s0 yields 

8r(0 
1 - “i- cos 

(4.10b) 

(4.10c) 
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Sy - <! CP, 
+co, 

F(c ) 

which is written conveniently as 

l2/3 p/-2 

e 

1//2 F(e2) 
-2 
€ 

(4.11a) 

(¾ * ^ f(72) 
(4.11b) 

With the use of Eq. (4.10c), Eq. (4.11b) becomes 
r r- 2 

P P P V3 
c (72) = s2 — / i - — 
° y €D S 27 

8rU) 

1 - “7— cos \ 
F(e2) 

(4.11c) 

Equations (1.8a) and (1.9) of Ref. 1, for the present case, become 

= Fo s a (¾) 
2/3 

(4.12a) 

F(e2) . F. (4.12b) 

and 

1-72 

F 

= f ^ + C i ' ° 

y1/2 dv (^13) 

With the use of Eqs. (4.12a,b), (4.10c) and (4.11c), F. and C 
d o 

are expressible as functions of Fo , Hq and € : 

*\ 

F = F — €2/ 1 - € 
d o /HqN ( 

1 Eh 

and 

C = 1 - 

s..(€) 
1--- cos ß, 

s b 

2e 
1 - 

sr(0 

s 
y 

cos ß 

(4.14) 

(4.15) 
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Equations (4.13), (^14) and (4.15) are used to determine "e and 

C0 Fo and Hq considered as independent variables. Moreover, 

for fixed H , F and C may be regarded as functions of F and 
— ° a ° o 

g only, viz. ani^ ^0^^ ^o^ * Consequently, the right-hand 

side of Eq. (4.13) can be considered as a known function of g 

and F , 
o 

(4.16) 

and Eq. (4.13) is written as 

G2 + I2(c,Fo) - 1 = 0 (4.17) 

Equation (4.17) will now be shown to determine implicitly a unique 

function g(Fq) , by means of which solution to the indenter problem can 

be determined. Since 0 < g < (c/a) and s < g < 1 are geometrical 

constraints, then, by Eq. (4.17), 0 < I (g,F ) ^1-62. It is neces¬ 

sary to consider the left-hand side of Eq. (4.17) in the F ,0 plane 
o o 

within the allowable domain which is determined by the two inequalities 

1T+Co>0 (4.18a) 
o 

0 < F < F 
d o (4.l8b) 

It is evident from Eqs. (4.14), (4.15) and (4.16) that I2(e,Fo) 

is a continuous function of g and F in the allowable domain. The 
_ ° 

partial derivative with respect to g of both sides of Eq. (4.14) is 

S' 's 

ÒG 
(4.19a) 

With the use of Eq. (‘‘•is). this becoiûes 

(4.19b) 
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In the allowable domain, the right-hand side above is positive. There¬ 

fore 

dF. 
_c 

ÒC 
> 0 (4.19c) 

The partial derivative of Eq. (4.15) is 

dc 

Ò€ 
° ='f + Cc 

1/2 s 
F 
o H 

o 
Eh 

s (e) 

1 - -f— oos \ 

(H.20a) 

In this case again 

ÒC 
> 0 

Ò€ 
(4.20b) 

Then the partial derivative of the left-hand side of Eq. (4.17) is 

F 

— (e2 + I - 1) = 2c 
Ò7 2 l,F« 7 s s s i, ^ ” 

dv 

With the use of Eq. (4.19b), this reduces to 

F 

4 (72 + I2 - l) = - ! 
Ò6 2 2 Ò6 

f '1 * dv (4.21a) 

Therefore 

— (72 + I„ - 1) < 0 , (4.21b) 
àc 2 

and is a continuous function of e and Fq . Therefore for a given value 

of Fq , Eq. (4.17) can have only one root. The existence of é(Fo) as 

a function of Fq to satisfy Eq.(4.17) is not shown, but for a particular 

case for which numerical results were computed, e(^0) seen exist 

for values of P > P , where P is defined in Appendix A. 
m m 
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SECTION 5. NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENTS 

A comparison is now made of the present theory with the experimental 

results of Ref. 2. The procedure used in the experiments was summarized 

in Ref. 1. Numerical results from the present theory are computed for 

the two cases discussed in Sections 3 and k. However, for small indenter 

radii, the results of Section L are of prime interest, since this case 

covers a wide range of indenter loads and includes all indenter loads for 

which the experimental data of Ref. 2 was available. For brevity, only 

details of the procedure used to compute numerical results from the theory 

for the case of Section 4 will be described. 

The value of yield stress o for the mylar membrane is determined 
*/ 

from the indentation data as follows. For various indenter load values 

used in the experiments, corresponding values of radius b at the point 

of tangency are obtained from the photographic data [Ref. 7]. The radial 

stress in the membrane at the point of tangency is then calculated 

by considering vertical equilibrium. For various indenter loads, this 

value is found to be almost constant and in the range 11,000 to 13,000 

psi. Therefore, since a is slightly less than yield in our analysis 

(Eq.(2.10) at r = b ), we take a = 13,000 psi . This value is in y 
good agreement with the value o è 12,000 psi obtained in uniaxial 

y 
tension tests of strips of the mylar membrane material [Ref. 7l* 

However, since it was difficult to hold the strips tightly in the grips 

of the testing machine, this data was not relied upon exclusively. The 

solution obtained here is affected only slightly by this degree of 

uncertainty in a 
y 

For a given value of P , values of and e are obtained with 

the use of Eqs.(U.3a,b) and (4.2c). Then for a given Fq , or equiva- 

lently given P and oro , the root e of Eq.(4.17) is determined with 

the use of Eqs.(4.l4) and (4.15), and Co follows immediately. With 

the use of these values of e , e and CQ , and with application of 

Eqs.(l.7b), (1.4), (l.3), (l.2) and (l.5) of Ref. 1, stresses , 

Og and displacements w , u are calculated for the free elastic 

region of the membrane. Stresses and displacements in the plastic 
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regions are then calculated with the use of Eqs,(4.6b,c) and (4.9b) for 

the free plastic region and Eqs.(2.10) and (2.12) for the constrained 

plastic region. 

In order to make a valid comparison between theory and experimental 

data, values of P and aro used in the experiments should be known 

with good accuracy. The values of P do satisfy this criterion, but 

the values of o could not be obtained to within less than l^lo error 
ro 

(see Ref. 2, Table Al), whereas the membrane deflections were measured 

to within ± 0.002 inches. Therefore, to compare the predictions -of the 

present theory with the experiments, the numerical value of arQ for a 

given value of P is determined by adjusting o in the theory so that 
ro 

the predicted deflections near the outer edge r = a are in agreement 

with the experimental deflections. The values of oro thus found agree 

to within ±15^ of the experimental estimates (Ref. 2, loc. cit.). 

The values of prestress orQ are then determined as described 

above for various platen loads and the corresponding indenter loads and 

these are shown in the following table: 

Platen Load 
Indenter Load 

P 
Calculated Prestress 

°ro 

10 lb./Platen 

20 lb./Platen 

40 lb./Platen 

0.66 lbs. 

0.77 lbs. 

0.88 lbs. 

850 psi 

1310 psi 

25IO psi 

For each value of platen load, the experimental deflection profiles 

were available only for two values of indenter load. Hence, it is 

assumed in the present calculations that, for a given platen load, a 

remains constant for the complete range of indenter loading. The solu¬ 

tions for deflections and stresses are then obtained for all values of 

indenter loads with the use of the above values of o 
ro 

In Figs. 3a,b and 4a,b are shown curves for principal stresses 

o~ and a and for transverse deflection w for prestress of 2510 psi 
Or 
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and 1310 ps!, respectivelyand for various values of the indenter load 

P . Theoretical deflections w are found to compare very well with the 

experimental data, except for the case P = I.SU lb. and a = 1310 psi 
ro 

shown in Figs. 4a,b. This particular curve shows that theoretical 

deflections are considerably greater than the experimental deflections 

for the complete membrane and in particular along the outer edge of the 

membrane. This indicates that the prestress in the experiment must be 

greater than 1310 psi. It appears likely that the prestress has in¬ 

creased with load during indentation. 

In Fig. central load-deflection characteristics are shown in 

curves 1, 2, 3 - each for a fixed prestress. A comparison is made of 

the elastic theory (Ref. 1, Fig. 5) and the elastic-plastic theory with 

the experimental data. Both theories agree well with the experimental 

data for small indenter loads, but for large loads, the elastic-plastic 

theory shows a far better agreement with the experiments. For curve 1, 

wrinkling limit predicted by the theory is noted and wrinkles were ob¬ 

served in the experiments for loads larger than this wrinkling limit 

load. The theory and experimental data do not agree for loads larger 

than this wrinkling limit load, since the theory is valid only for the 

case of axisymmetric deformations. For curves 2 and 3, theory and ex¬ 

periments show very good agreement for loads lower than about 1.6 lbs., 

but for larger loads a significant difference is observed. Possible 

reasons for this discrepancy are summarized at the end of this section. 

In Figs. 6 and 7, theoretical values of e, € and ß^, are 

shown as functions of indenter load P for the prestress c = 2510 
ro 

psi. The values of €, ê and ß^, ßd are at the most only weak 

functions of a . The curves for a = 85O and 1310 psi differ from 

these by less than 2% and hence are not shown, The upper bound value 

for the indenter load, corresponding to P = 0.6599 [Eq.(4.3b)1, is 

Pu “ 2*021 lbs. This value of indenter load is found to be in good 

agreement with the two values of experimental rupture load in Fig. 5. 

The reasons for the remaining discrepancies between this theory and 

the experiments of Ref. 3 are now summarized. The first reason is that 

calculated values of oro were assumed to remain constant during indenter 
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loading for a fixed platen load, whereas aro is actually a weak function 

of ß(r=a) and consequently of P . Furthermore, aro was probably 

affected by friction between the membrane and the outer supports when 

ß(r= a) is nonzero. The second reason is that the value of yield stress 

a used in the theory is only approximately the yield stress of mylar. 
y 
The third reason is the use of Tresca's yield criterion and the associ¬ 

ated flow law of Tresca. Since directly under the indenter, ar= o0= ay , 

we are at a corner of the Tresca yield surface where there is the largest 

discrepancy between the Tresca flow law and the Mises flow law. It is 

possible that the Mises flow law would give better results, but it is 

much more complicated. Finally, for large loads, tangent rotation angle 

ß^ becomes large (see Fig. 7) and thus the assumption of small strain 
b 
is violated [see Eqs.(2.21b) and (4.8) ]. 
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APPENDIX A 

PROOF OF CONSISTENCY *JD EXISTENCE OF SOLUTIONS 
FOR PROBLEM OF FIG. 1. 

In Section 3, the order relation (2.22) is assumed in order to 

obtain a solution for the case when the elastic-plastic boundary is under 

the indenter. In the present appendix, order relation (2.22) is shown 

to be satisfied by the solution for CQ positive and for arbitrary 

c/a . Also, the existence of C (F ) as a function of F is shown 
0 0 o 

for this problem. 

In Section 1, certain assumptions are made regarding the solution 

for the plastic portion of the membrane. These assumptions are now 

stated explicitly for the problem of Fig. 1 for which solution is obtained 

in Section 3. The first assumption is that loads P. and P can be 
l m 

defined such that i = 0 when P = P. and ë = e = e when P = P . 
i m m 

The second assumption is that the radius ë of the elastic-plastic 

boundary increases from zero to e- as indenter load P increases from 

to Pm and such that € and € are in the interval 

o s c Í c S cm (A.l) 

when P is in the interval 

h S P * Pm (A.2) 

The proof of validity of the above assumptions is not given, but 

these assumptions çire found to be valid for a particular case for which 

numerical results are given in Section 5, Figs. 6 and 7. 

An expression for P^ is now determined. With ë = 0 and P = P^, , 

left-hand equalities of (3.9b) and (3.10) are satisfied, and these are 

» 

(eP)c/a 

P=P 
l 

(A.3) 

100 



p=p 

- (^i) ' (1 +F€Co)1/2 c2 + i£Ê^ij (A.4) 
- \ y a ' y J p_p 

Adding and subtracting (A.3) to (A.4), we obtain, respectively 

8s 

1 - ( 
.££. 

1/2 

4s2 £ 
(1+ F C ) 

€ O7 
1/2 

y a< P=P 

(A.5) 

and 

1 + 
1/2 

4s2 —, 
( 1 + F C ) 
v e o' 

1/2 

y a, 
'P=P 

g.(€p)c/a 

P=P 

(A.6) 

Finally, € is substituted from (A.5) into (A.6), to obtain 

y a 
,4s2 ^ 

p=p y a. 
p=p 

which is rewritten as 

12. 

2s2 — 
L y a 

1 + 
F C , 
€ o 

= 1 

P=P 

This equation, with the use of Eq. (3.7b), becomes 

p,’ = 

o 
47TEhcs 

X 
/ F C \ 

P=P 

(A.7) 

Note that the numerator of the right-hand side of Eq. (A.7) was 

defined as P^ in Ref. 1, Eq. (4.6), for Co positive only. Hence, 

for positive Cq , Eq. (A.7) shows that P^ < P^ . Therefore, for 
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P = PT and C positive, yielding and plastic deformation of the mem- 
L o 

brane has occurred. This conclusion is consistent with definition of 

P_ given in Ref. 1, Section k. 
Li 

The expressions for P and ß are obtained next. With 

€ = € = €m and P = Pm , Eq. (3.12a) shows that sr^raj - sy ^ where 

a term of order s is neglected in comparison with unity. Then, Eqs. 
y 

(3.7a,b) are used to obtain 

= a2 = rm 
M Pbm 2ïïEhcs 

m 

(A.8) 

With use of Eqs. (A.8) and (3.7d), Eq.(3.12b) at c = e simplifies to 

_££. 

sy I 
P=P 

Us 

(1+ FC) e o p_p 
(A.9) 

m 
m 

In this equation again a term of order s is neglected in comparison 
y 

with unity. 

Finally, with the use of Eqs. (A.8) end (A.9), there is obtained 

Us 

p^= <i+vyP=? (A.10) 

m 

ana 

P = 
m 

SírEhcSy 

(l+F C ) 
€ 0 P=P 

(A.11) 

m 

In view of (A.l) and (A.2), 

Pbs m 
for P £ P_ 

m 
(A.12) 

where the equality holds only for P = Pm . Hence, for Co positive, 

Eq. (A. 10) and (A.12) show that « 1 for P £ Pm < Therefore, solu¬ 

tion obtained in Section 3 is consistent with (2.22). 
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We now prove the existence of C (F ) as a function of F , which 

would satisfy Eq. (3.l6). However, as was the case in Ref. 1, we restrict 

attention to positive Co case only. Furthermore, since P is in the 

interval (A.2) for the solution of Section 3, Fo must satisfy the 

inequality 

£ F 
om 

where 

and 

F 
om 

(A.13) 

(A.lU) 

(A.15) 

At P = and €=0, the elastic solution obtained in Ref. 1 

holds. For the elastic solution, existence of Co(Fq) was shown in 

Ref. 1. Hence, for the solution of Section 3, C (F ) exists for 
o o 

F0 = Foi ' and Eq* is satisfied. Therefore, in view of (3.l8b) 

and (3.19d), there exists a unique Co(Fq) in some neighborhood of 

Fo = ’ and in for Fo < Foi (see Ref. 6.). Furthermpre, 

since (3.l8b) and (3.19c) are satisfied for all C > 0 , C (F ) exists 
o ’ o ' o, 

for all Fq satisfying (A.13). 

As a final topic in this Appendix, approximate expressions for 

Fi' Fm * and ^im are ottained f°r case °f small indenter radii. 

In this case, under the further restriction (4.10b) of Ref. 1, (4,11a) 

of Ref. 1 is satisfied. Therefore, with use of left inequality (A.13), 

F C 
€ o 

PSP, 
§ F _C T « 1 

€L oL (A.16) 

Therefore, Eqs. (A.?), (A.11) and (A.l6) are approximated as 
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P. = P_ = UïïEhcs2 (A. 17) 
* ±j y 

P = 2PT = ÔTffihcs2 (A. 18) 
m L y 

and 

ß? a 4b (A. 19) 
njm y 

Equation (A.17) shows that yielding begins approximately when P = P^ , 

as was shown in Ref. 1. 

- 104 - 



APPENDIX B 

In this Appendix, it is shown that = 0 for the free plastic 

region ( b S r £ d ) of the membrane (see Fig. 2). In the free plastic 

region, €^(r,P) is, in general, a function of the radial coordinate 

r and of the indenter load P . 

It is shown in Section 2 that = 0 at r = d and for 0 < r S b . 

Thus, 

€g(b,P) = 0 (B.la) 

and 

6e(d,P) = 0 (B.lb) 

Moreover, Eq.(2.17b) shows that must satisfy the condition 

5p ce(r'P) * 0 » b * r í d (B.2a) 

This condition and the assumption that the elastic-plastic boundary 

radius d is an increasing function of P show that 

e|(r,P) i 0 , b s r í d (B.2b) 

We also know, from Eq.(4.3a) with the use of Eq.(U.2c), that the radius 

b of the point of tangency is monotone increasing function of P (see 

Figs. 6 and 7). 

With the use of these conditions on , it is now shown that 
p _ “ 

€e = 0 in some finite right-hand neighborhood of b . We consider any 

two values of indenter load P. and P„ , such that P, < P < P . 
12 1 2 u 

Then the corresponding values of b satisfy ^ < b2 * Hence> with 

the use of (B.la) and (B.2b), respectively, there is obtained 

€0^1,^1^ = e0^b2,P2^ = ^ (B.3.a,b) 
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and 

r 

€e(Vpi> s 0 
Therefore, 

€9(b2'P2)_ eP(b2'Pl> 

ÎVP75 Tv^rS0 

(B.3c) 

(B.3d) 

If the strict inequality iign held, this implies òe^/òP < 0 for 

some r is ^ r < ^2 ' w°uld contradict (B.2a).. Therefore, 

the strict equality holds in both (B.3c) and (B.3d) and it is easily 

shown to follow from (B.3a) and (B.3d) that 

€P(r,P1) = 0 for b1 S r á b2 (B.U) 

Thus Gg vanishes identically in an interval of finite length (bg • 

However, €q(t,P^) must be an analytic function of r for b^ < r < d , 

since it is the solution to differential equations with analytic 

coefficients. Therefore, if vanishes identically in a finite part 

of this range, it vanishes identically everywhere, viz. for any P < P^ 

and its corresponding b : 

€P(r,P) 3 0 , b S r S d (B.5) 

* 
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