AD647339

AFFDL-TR-66-121

DEMONSTRATION OF A TRANSONIC BOX METHOD
FOR UNSTEADY AERODYNAMICS OF PLAINAR WINGS

J. J. OLSEW

TECHNICAL REPORT AFFDL.-TR-66-121

OCTOBER 1566

{?f"-f:-‘"'g‘:v -
Distribution of this document U j i
is unlimited i MAR 1 1967 I
VLJ\_JI__JU o L‘h U

C

AIR FORCE FLIGHT DYNAMICS LABORATORY
RESEARCH AND TECHNOLOGY DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

ARCHIVE GOPY




NOTICES

When Government drawings, specifications, or other data are used for any
purpose other than in connection witk a definitely related Government procure-
ment operation, the United States Government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the Government may have
formulated, furnished, or in any way suppliedthe said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as in any
manner licensing the holder or any other pcrson or corporation, or conveying
any rights or permission to manufacture, use, or sell any patented inventiorn
that may in any way be related thereto.

[ ————
2 A e ————

orSh ¥
[ '

UH"»"‘O'H{Q:D b
3! 3600y

114

Copies of this report should not be returned to the Research and Tech-
nology Division unless return 18 required by security considerations,
contractual obligations, or notice on a specific document.

200 - January 1967 ~ C0192-19-393



AFFDL-TR-66-121
ABSTRACT

' 'I‘ht{i report presents and interprets the piedictions of an unsteady aerodynamic prediction
method known as the Sonic Box method. Illustrations are given on how the program interprets
input modal data, the program’s techniques for smoothing certain input and output data,
convergence of the numerical results, and comparisons of predicted results with experiments,
It is shown how the present program requires the user to devot? some care to defining input
mode shapes, however this problem can be removed by a simple modification. Generally
speaking, the program’s current limit of fifty boxes in any one direction is sufficient to obtain
satisfactcry convergence, with the exception of pitching moments on cropped deltas, In this
respect other modifications are apparent which could improve convergence at the cost of
increased complexity. Agreement with experiment was generally quelitatively good, but
illustrated the need for further optimization of the method as well as the lack of experimental
data of the type and quality desired for correlation,
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NCMENCLATURE

Aspect Ratio

Free stream speed of sound
Coefficients in a polynomial

Wing root chord

Wing mean geometric chord b

Section lift coeffictent, & [ Ap(x)dx

(o} .
Section lift coefficient per unit ay

Ap/q per unit ay,

Wing root chord
Wing tip deflection

Imaginary part of the complex quantity ( )

Reduced frequency, bw/V
Reduced frequency, bw/ V

Generalized force coefficient

Value of "generalized force" printed out by the Sonic Box program
Integers

Pitching moment, nose up

Pitching moment coefficient, Real (M)/2 qSba

Pitching moment coefficient, Imag (M)/2qSka(B)?

Mach number

Pressure on lower, upper surfaces respectively

(p‘c - pw/q

Value of "pressure" printed out by the Sonic Box Program
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Dynamic pressure, —%— ,ov2

Powers

Real part of the complex quantity ( )

Ratio of root chords in two successive computer runs
Ratio of lifts in two successive computer runs
Ratio of moments in two successive computer runs
Wing span

Wing area

Velocity

Dimensional coordinates

Location of rotation axis

Angle of attack, positive nose up

wh.r/ v

Number to represent some value of ¥
Air density

Velocity potential

Frequency, radians/sec
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SECTION I
INTRCDUCTION

The development of a numerical method for calculating the aerodynamic pressures and
generalized forces on vibrating, planar lifting surfaces at My, = 1.0 is found in Reference 1.

The solution was based on the linearized transonic equations of Reference 2 which were
satisfied by a distribution o. velccity potential doublets over the wing surface and its wake.
Generally speaking the linearized equation holds only for ‘high’’ frequency motions of a
wing with ‘‘highly’’ swept leading edges. The problem was further simplified by restricting
attention to wings with straight, unswept trailing edges which then allowed the wake effects
to be neglected.

By covering the wing with a fine grid of square boxes and assuming that the velocity poten-

tial, ¢b, was constant in each box, the integral equation for the velocity potential was replaced
by a system of linear algebraic equations for the constant value in each box.

ﬂﬁlfﬂrj://// 777TITITT]

SKETCH OF WiNG AND APPROXINATING CRIDWORK

Although Reference 1 contained a complete summary of the development of the equations
and a resulting FORTRAN IV ¢computer program, it did not fully demonstrate the application
and usefulness of the computer program. The purpose of this report is to accomplish that
demonstration.
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SECTION 11
INTERPRETATION OF MODE SHAPE INFORMATION

The primary purpose of the ‘“‘Sonic Box’’ computer program is to generate generalized
forces for use in flutter or gust response calculations for surfaces in transonic flow, It is
very important that the user understand the various non-dimensionalizing and normalizing
factors that are in the program, The userthen can be assured that the mode shapes applied to
generate the aerodynamic forces are identical in every respect to those used to generate
generalized mass terms for flutter calculations. For instance, the sonic box program accepts
mode shape information in either of two ways:

a. Coefficients of modal polynomials
b. Discrete deflections at various coordinate peints
Questions naturally arise in the user’s mind as:

“‘Are the modal polynomials in terms of dimensional, non-dimensional or mixed variables?
When I put in a deflection of 1.0, does it mean one unit of length or one root chord??”

Appendix I presents a method of answering these questicns for the user of this or any similar
aerodynamic computer program who may notbe totally familiar with the program. The method
of Appendix I will be used in the remainder of this section to determine exactly the forms
required for the proper interpretation of modal data.

To apply the method a dimensioral (ft, meters, and so forth) coordinate system X, ¥, 7 is
adopted,

~
z

{b

k)
=7
/ /
— p] _k’i'
L4
\\\ /
~7

COORDINATE SYSTEM

A computer program will be employed which uses coefficients A mn of a polynomial surface

to define mode shapes, but it is uncertain whether the independent or dependent variables are
divided by the root chord. Therefore the equation is used for the polynomial surface in terms
of two unknowns r and t.

= ¥ Ap, (X /bt (y/oh)" ()
m,n

|

For instance, if the powers r and t are both zero, then the coefficients Amn should be deter-

mined by using the dimensional parameters X, ¥, z. On the other hand, if r and t are both 1.0,
then A should be determined using the non-dimensional forms ¥/b, ¥/b, Z/b. It should .iso

be pointed out that it may be possible for r and t to be unequal or even to be fractions.

2
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The generalized forces from two successive computer runs on the same wing at zero
frequency can be used to determine r and t. In the first run a plunge mode is defined by the
coefficient A 00 being nonzero with all other A mn - 0.0, In the same run a rotation mode is

also defined by making the coefficient A,, nonzero with all the remaining A = = 0.0.Ina
second run all input is kept the same, except the dimensions of the wing are scaled by a factor
of Ry = bM/b®). 1 the relationship of the lifts and moments is made known between the two
= (1) 2 = (1 (2) the unkno wers
runs by R, = L,, /L21( )andRM Lo )/L22 , it then turns out that the u wn po

r and t must be:

1 R log R
r= /2 (142 9 7L __°9°M ) (2)
log Rp log Rpg
fog R logR
¢ = 9L _ 097w (3)
log Ra log RB

In deriving the above forms only steady state motior is considered, k = 0.0. It turns out,
however, that the Sonic Box computer program cannot accept a frequency of zero so that the
following runs for a 63.5 delta wing were made for nonzero (but very small) frequencies. Run
number 1 was made with w = 0.0001 CPS, Run number 2, with a wing one tenth as large, was
run with w = 0,001 CPS to keep k the same for both runs. Table I contains the important input
and output information. Appendix I and Reference 1 contain explanations of the input format.

Table I reveais that Rp = 10.0, RL = 10.0, and, RM = 100,0, Therefore, Equations 2 and

3 give r = 0.5 and t = 0. Then when the user furnishes the computer program with coeffi-
cients A mn the generalized forces are printed out as if the user is actually supplying a

polynomial surface of the form:

L
z

= Z Amn }'m 7" (4)

v/ b m,n
where b, X, ¥, Z are dimensional quantities

Having answered the question about the meaning of the coefficients A mn when they constitute

the modal input data, it should be determined how the computer program interprets modal
data when deflections are furnished at discrete coordinate points. That is, certain questions
must be answered:

“When coordinates are put in should they be dimensional coordinates %X, ¥, or the non-
dimensio;ml coordinates X/b, y/b? When a number is put in for the deflection, is it entered
in Z or Z/b?"

To answer the questions the technique shown in Appendix I must be used and two more
computer runs made which are similar to the runs made to determine the meaning of the
coefficients A mn’

For the first run at a frequency of 0,0001 CPS b = 100.0 was put in to represent the rcot
chord and 1.0 to represent the deflection (plunge) at the apex (X = 0.0) and at some other X
coordinate (say X =/3). In the same run a rotation mode was also put in by placing a deflection
of 0.0 at the apex and 1.0 at 3. For a second run at a frequency of 0.001 CPS and b = 10.0 a

3
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deflection of 1.0 was first put in at the apex and at 8 to simulate a plunge mode, In the same
run a deflection of 0.0 was then put in at the apex and 1.0 at 3 to simulate a rotation. Table II
contains the important input and output information.

Table II reveals that RB = 10, RL = 10, and RM = 100, Therefore Equations 2 and 3 give

r = 0.5 andt = 0.0, Then when the user furnishes numhers for a set of coordinates and de~
flections, the generslized forces are printedoutas if he is actually supplying data of the form:

Coordinates: X,¥
Deflections: Z/vb

where b, X, ¥, Z are dimensional quantities.

It is important to note that similar analyses can be performed to show that , pressures are

printed out by the program as if the modal data were furnished in the form -:— as a function
of X and ¥.
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SECTION III
SMOOTHING OF INPUT AND OUTPUT

The Sonic Box computer program uses smcothing techniques in two ways. First, when modal
deflections are given by the user in terms of discrete deflections at coordinate points the
program automatically fits a least squared error polynomial surface to the deflection data,
Secondly, when the program calcvlates velocity potentials at the center of each box it again
automatically fits a least squared error polynomial surface to the data. The equation of the
polynomial surface for 4> is then used to evaluate the unsteady pressures on the wing.

Figures 1-4 illustrate the smoothing of deflection data. Figure 1 is a sketch of a 70° delta
wing which will be referred to extensively in later sections of this report and which was
subjected to various rigid body and flexible mode shapes. Figure 2 illustrates the results of
applying a mode shape of a half sine wave in the chordwise direction. Discrete deflections
were specified at 0, 25, 50, 75, and 100 percent of the root chord. The least squares polynomial
was plotted at various locations and can not be distinguished froin the desired half sine wave
for all practical purposes. Figure 3 is a similar plot for a full sine wave in the chordwise
direction. Here the least square fit is less adequate and is seen to distort the mode shape
slightly. Figure 4 is a similar plot for 3/2 sine waves in the chordwise direction and reveals
a progressively less accurate approximation with proportionately greater number of deflection
points given. Table Il summarizes the important input data,

Figures 5-15 illustrate the smoothing of calculated velocity potentials. Figure 5 is a sketch
of an aspect ratio 1.5 delta that was the subject of calculation for modes of plunge and
rotation. Figure 6 is a plot of the chordwise distribution of Im (¢) for a spanwise station of
1.0 ft or 26 2/3 percent of the semispan for a plunging motion. Figure 6 is drawn for suc-
cessively increasing the number of boxes along the root chord from 5 to 45. The dots on the
figure represent the initially calculated values of the velocity potential, whereas the lines
represent the least squares polynomial fits. For as few as fifteen boxes along the root chord,
the curve fitting procedure gives reasonable predictions for ¢. Figure 7 is a similar plot
for Real (q’>) in rotational motion. The same progression is evidert, and fifteen boxes along
the root chord appear to be a sufficient number to get reasonable behavior for 4) Figure 8
is merely a blown up presentation of the bottom curve in Figure 6 and is a good illustration
of the behavior of ¢ near the leading edge. Note that, for the chordwise line selocted, the
leading edge is at 26 2/3 percent of the root chord. Figure 9 gives an isometric view of the
initially calculated values for Im (¢) in the piunge mode, and Figure 10 gives an isometric
view of how ¢ is smoothed by the program. See Table IV for the input data.

Figure 11 is a sketch of an aspectratio 3 rectangular wing which was the subject of analysis
and experiment reported in Reference 3. Figure 12 shows the first bending mode which has
been normalized to give a tip deflection of 4.098 for reasons of convenience which will be
discussed in Section V. See Table V for the input data, Figure 13 is a plot of the chordwise
variation of Im (¢) at a 50 percent semispan station for increasing numbers of boxes along
the root chord. Figures 14 and 15 are similar plots for larger numbers of boxes. Note that,
for eleven or more boxes along the root chord, the velocity potential shows erratic behavior
near the leading edge which actually grows more severe as the number of boxes is increased.
This is probably due to the basic assumption of this Sonic Box method that ¢> is constant over

any one box, whereas, near the leading edge 3 actually should approach infinity. A correc-
tion factor is applied for rectangular wings in the existing program by multiplying ¢ in the
first row of boxes by % (Reference 1). However, apparently this correction is inadequate,

A revised method should be generated which allows ¢ to vary within any hox, particularly
near the leading edge.
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Figure 16 iliustrates the smoothing of ¢ for a plunge motion of the 70-degree delta wing of
Figure 1; see Table III for a summary of the input data.
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SECTION IV
CONVERGENCE

One of the crucial properties of any numerical method is that the answers converge,
Figures 17-53 reflect an exhaustive study of the convergence of the Sonic Box program for
the aspect ratio 1.5 delta wing of Figure 5, the aspect ratio 3 rectangular wing of Figure 11,
the aspect ratio 2 delta wing of Figure 27, the cropped deltas of Figures 30 and 31, ..nd
particularly the 70-degree delta of Figure 1.

In Section II it was shown that when the user employs polynomial coefficients A mn for mode

shapes or gives coordinates and discrete defleciions, the generalized forces are printed out
as if Z/./ b is a function of X and §. By a similar analysis (Appendix I) it can be shown that
the programs print out pressures as if the user wrote Z/b as a function of X and ¥,

In this report the actual pressure coefficient will be denoted by Ap/q and the value of
‘‘pressure’ printed out the program by (Ap/q)*. Similar differentiations with respect to the
generalized force coefficients will be made.

1. THE ASPECT RATIO 1.5 DELTA

The wing considered is shown in Figure 5. The important input data is summarized in
Table IV. Figure 17 is a plot of the behavior of the absolute value of the generalized force

coefficients ij as the number of boxes along the root chord varied from §, 15, 25, 35, and

45. In this report the notation of Reference 1 was adopted:

L = q_'s_ jj; Op; T ds (5)

where:

Ap. = the pressure difference ;h

Z 3 = the deflection in the ;|th mode

~P, in the it'h mode

Figure 17 shows fairly rapid convergence when at least fifteen boxes are used along the root
chord and that twenty boxes are probably sufficieut for reasonable accuracy. Figure 18 is a
chordwise plot of the imaginary part of thepressure,Im (Ap/Q*, at a spanwise station of
26 2/3 percent for varying numbers of boxes along the root chord. Even though the generalized
forces seemed tobe reasonably well converged for twenty or more boxes, there is considerable
variation of the pressure near the trailing edge as the number of boxes is changed. Figure 19
is a similar plot for Real (Ap/q)* for the rotational mode with similar results for the trailing
edge pressures. The oscillatory behavior of the trailing edge pressures leads one to doubt
the true convergence so that a second computer run was made, varying the number of boxes
in increments of 1.0, Figure 20 illustrates the results which indicate that perhaps as many

as thirty boxes are required along the root chord for convergence of Lil and that the oscilla~-

tory behavior of the trailing edge pressures does not influence the generalized forces to any
great extent. The second computer run also revealed that the trailing edge pressures can
change drastically when the number of boxes along the root chord is changed by only 1.0,
Figure 21 plots Im (Ap/q)* in the plunge mode for 14, 15, and 16 boxes along the root chord,
Note the rapid oscillation in (Ap/q*. The results in Figure 22 are similar except the data
are identical for 24 and 25 boxes with a large jump in the predicted trailing edge pressure




AFFDL~TR-66-121

as the number of boxes is increased to 26. Figures 23 and 24 show that predicted pressure
finally begins to settle down as the number of boxes is increased to 36 and then 46,

2. THE ASPECT RATIO 3 RECTANGLE

Figure 25 is aplotcfthe chordwise pressure distribution over the aspect ratio 3 rectangular
wing of Figure 11 for the wing bending mode of Figure 12, See Table V for input data, The
Im (Ap/q)* is plotted at a 50 percent spanwise station for 6, 11, 15, and 19 boxes along the
chord, The pressures in Figure 25, as well as those in Figure 26 for larger numbers of boxes,
appear to be well converged. However, for later reference, note the apparently spurious
behavior of the pressure near the trailing edge. In the absence of numerical problems, one
would not expect this method to predict increasing pressures over the aft 10 percent of the
chord, Also note that the predicted pressures in the vicinity of 10 - 30 percent chord are
probably too low. Other theoretical and experimental results indicate bigher pressures near
the 1/4 chord.

3. THE ASPECT RATIO 2 DELTA

Figure 27 is a sketch of an aspect ratio 2,0 delta wing which was the subject of unsteady
1 'essure measurements reporied in Reference 4. The model was oscillated in rotation about
an axis at approximately 71 percent of the root chord. The important input parameters are
summarized in Table VI.

Figure 28 is a plot of the moment due to rotation versus the number of boxes along the
root chord. Note that the predicted values are converging to a final answer, but not partic-
ularly rapidly. Figure 29 is a plot of the chordwise pressure along a 36 percent semispan
station in the form used in Reference 4. There is a slight oscillation in the pressures with
increasing numbers of boxes. Note the fairly good agreement with these results and those
from the Jones’ low aspect ratio theory taken from Reference 4,

4, THE CROPPED DELTAS

Figures 30 and 31 are sketches of two ‘“cropped’’ delta wings which were the subject of
oscillatory rotational measurements reported in Reference 5. Eachof the wings was oscillated
about a forward-and an aft axis, as shown in Figures 30 and 31, The significant input data is
summarized in Table VII.

Figure 32 presents a plot of the coefficient Lh (in this case, moment due to rotation)

versus the number of boxes along the root chord of the aspect ratio 1.5 cropped delta, Al-
though the data for the aft rotation axis is somewhat more converged than for the forward
rotation axis, it is apparent that forty boxes along the root chord is not sufficient for con-
vergence here. The same comments apply for the aspect ratio 2.0 wing in Figure 33, the
least converged being the real part of the moment for the forward rotation, axis.
§. THE 790°
Extensive convergence checks were performed for the 70° delta wing of Figure 1, using
four modes: plunge, rotation about the apex, a half sine wave flexible mode in the chordwise

direction, and a full sine wave flexible mode in the chordwise direction, Table Il summarizes
the input data.

Figures 34-38 are for the plunge mode. Figure 34 shows the behavior of the lift due to
plunge versus the number of boxes along the root chord. It appears that thirty or more boxes
are required to obtain convergence within about 10 percexnt of the final answer. To show
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that the velocity potential has settled down, Figure 35 was prepared to show the chordwise
variation of ¢ near the root chord for 48, 49, and 50 boxes along the root chord. The results
for the three cases could not be distinguished. The imaginary part of the pressure near the
root chord is shown in Figure 36. The results are certainly converged for 48, 49, and 50 boxes,
except for some -light oscillation at the trailingedge. When one moves cutboard to 50 percent
span the pressure results in Figure 37 are still well converged with twenty boxes giving at
least qualitative agreement. Figure 38 is a spanwise plot of the pressure in plunge, taken at
X = 2/3 of the root chord. Again, the convergence for 48, 49, and 50 boxes and the qualitative
agreement for twenty boxes are apparent.

Figures 39-44 are for the rotation mode. Figure 39 is a plot of the moment due to rotation
about the apex. As has been characteristic so far of rotation modes, the moment is not
particularly well converged. The program’s upper limit of fifty boxes does not give assurance
of a converged sclution. Figure 40 illustrates that, even though the integrations which result
in generalized forces have not converged for fifty boxes, the predicted values of the velocity
potential near the root are reasonably well predicted for as few as twenty boxes. In fact, the
¢ results for 48, 49, and 50 boxes could not be distinguished. The same comments apply at
the 50 percent span station as shown in Figure 41. One would certainly say that the velocity
potential results are convergent. The pressure results near the root are shown in Figure 42
to be fairly well converged with the usual oscillation near the trailing edge. The pressures
at 50 percent of the semispan in Figure 43 are slightly less converged but still acceptable,
Again the results for as few as twenty boxes along the root chord give qualitatively accurate
results. The spanwise pressure distribution at ¥ = 2/3 of the root chord is given in Figure 44
and reilects the same trends.

Figures 45-49 refer to a mode of a half sine wave in the chordwise direction. The conver-
gence of the generalized force is shown in Figure 45 and is seen to be far better than the
moment due to rotation (Figure 39) or the lift due to plunge (Figure 34). Figure 46 presents
the velocity potential distribution near the root chord and shows excellent convergence for
large numbers of boxes and fairly good results for as few as twenty boxes. Figure 47 compares
the velocity potential results for twenty and fifty boxes at midspan and again shows good agre-
ment. The pressure distributions near the root and at midspan for twenty and fifty boxes
are shown in Figure 48 and it also shows that using as few as twenty boxes probably gives
reasonable agreement with the results for greater numbers of boxes. Figure 49 gives the
spanwise pressure distributions at two different X locations and shows that the results for
twenty and fifty boxes are in fair agreement, but that using as few as twenty boxes causes
some discrepancies near the leading edges.

Figures 50-53 refer to a mode shape of a full sine wave in the chordwise direction. The
generalized force results in Figure 50 appear to give excellent convergence. The velocity
potential and pressure results in Figures 51, 52, and 53 give results similar to those for the
one half sine wave, except that the spanwise pressure plots in Figure 53 show better agreement
at X = 50 percent of the root chord rather than 75 percent, as was the case for the half sine
wave,
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SECTION V
COMPARISON WITH EXPERIMENT

As noted earlier in this report the input and output data of the Sonic Box prugram can be
interpreted in either of two ways, both ultimatety giving the correct results.

Apjz;dS
(1) Pressure coefficients »/q) and generalized force coefficients ( f --p::—é———) can
be taken directly from the output data if the input data is understood to be

~
Z

(a) b as a function of X, ¥ fcr pressures

(b) ]% as a function of X, ¥ for generalized forces.

(2) If the input data is understood to be Z as a function of ¥, ¥ then both the output for
‘“pressures’’ and ‘‘generalized forces’’ must be divided by the root chord b to give proper
magnitudes for Op/q and [ ApjZjdS respectively.

L=

The second interpretation in this section will be used denoting the input data Z as a function
of X and ¥, to compare predicted results with experimental data for the aspect ratio 3 rec-
tangle of Figure 11, the aspect ratio 2delta of Figure 27, and the cropped deltas of Figures 30
and 31.

1. THE ASPECT RATIO 3 RECTANGLE

Figure 11 presents the model used for unsteady pressure measurements reported in
Reference 3. Figure 12 presents the first bending mode shape which was excited at 26 CPS
and used for the measurement of unsteady pressures at the root, 50, 70, and 90 percent of the
span. The pressure measurements were actually done over a Mach number range from 0.24 to
1.30, but can be compared with ihe Sonic Box program only for Mach 1.0.

Reference 3 presents a spanwise plot of the section lift coefficient Cea , defined by:

h
c "fb (pp = py ) d¥ 'fb (Pp=py) d%
.Cah A qbay o ab (why/ V)

b -
j; (ge-pu)dx

= (6)
qkhy
In the bending mode, the generalized force coefficient, L,,, is defined to be:
s b s N
I [ og-e 1% nexay [T [[ in,-p, 0x] a5
L = 0 (¢ = 0 (7)
" pS S
In terms of C,  this is:
)
khy 5 -
Ly = e jo' ¥ y) Cgy d7 (8)
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Now, for a given mode shape Z(y), the Sonic Box program prints out a generalized force
coefficient L’{l which is equal to b L11 Therefore:

bkh s kh S, ~
:=bL|| = S . f'i'(y)CI d7= sT f z(y)Cl dy (9
[o]

Using the mode shape of Figure 12 for Z(y) and the data of Reference 3 for C.O. () a numerical

evaluation of the integral gives f 7(y) cz dy = 4.0 ft. Then the e:q:enmental value of
@

Lil is i%lt = (4.0 (24;9)4 098 = 1.75. Figure 54 plots this number against the various

values of L"‘1 printed out by the program for varying number of boxes along the root chord.

1
The predicted value is roughly 50 percent higher than the experimental value.

Reference 3 gives experimental pressures in the form:

R ~P (pp =P, ) b
Cp = h uv R (10)
ay, qw T/ qk hy
Py -P kh
Therefore: £ v . TT c
) o A A
Again, for a given mode shape 2(¥) the Sonic Box program prints out(——)= b (—qp)= khy a'
h
Since k = 0.244 and h = 4.098 was selected, (Ap/Q* = < was obtained. Therefore the
. ay,

quantities printed out as ‘pressure’ are directly related (by a convenient choice of ht) to

c . Figure 55 is a plotof the theoretical and experimental chordwise pressure distributions

Dah

of midspan. The predicted values are of the correct order of magnitude, but are considerably
in error over the forward part of the chord. Figure 56 shows a similar comparison for other
spanwise stations.

The discrepancies between theory and experiment appear to be the result of two major
factors (aside from thickness and boundary larger effects):

a. The linear differential equation is not strictly applicable for rectangular wings, but
instead should be applied to low aspect ratio, highly swept wings, at ‘“high reduced frequen-
cies.”

b. The basic assumption in the Sgnic Box method of constant 4: within any one box is not
applicable at the leading edge where 3 —®, Figures 13-15 illustrate how this error causes

the predicted values of ¢ to be exaggerated near the leading edge. When these values are in
turn ‘“smoothed’’ by a least squares process, the initial error causes a waviness which can
distort the slope of ¢ over the chord. This effect is particularly noticeable near 10-30 percent
chord and near the trailing edge.

2. ASPECT RATIO 2.0 DELTA

Figure 27 is a sketch of an aspect ratio 2.0 delta wing which was the subject of unsteady
pressure measurements reported in Reference 4. The model was oscillated in rotation about

11
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an axis at approximately 71 percent of the root chord. Pressure measurements were taken
along a line at 36 percent of the semispan on one surface only.

Reference 3 presents the data in the form:

|cp| = | —Reok ~Pmeon | ()

In termnr of (pz - pu)/q it is shown to be

-p A *
ool & [ 222 - 5 152 2)

where (Ap/q* = b(Ap/q) is the value of “pressure’’ printed out bY e Sonic Box program,
The experimental results are shown in Figure 57a in the form |Cp,| = ICp4l, @ in degrees.

These values should be represented by the Sonic Box program by

IcPa|= 2II:a I(qu)*l (13)

In the calculations for this case, the modal polynomial was given by:

(14)
7 = -0.006I79 + 0.017446 X (dimensions, ft)

Therefore a = % = =0.017446 radians = =1°, Also, since in this case b = 0,5 ft it is shown

that Z—'bi = -1.0 and the experimental values of lc“al willbe directly comparable to (Ap/p)‘t

printed out as ‘“‘pressure’’ by the program. The comparison of predicted and experimental
values is shown in Figure 57a and is seen to be poor. Figure 29 shows a similar comparison
between the Sonic Box method and Jones’ low aspect ratio theory. The comparison between
the two theoretical methods is seen to be quite good.

Figure 57b sheds some light on the disagreement between theory and the experimental data
of Reference 3. The experimental data shown in Figure 57a were taken by a slender probe
which traversed the right hand, upper surface of the experimental model. Those results are
also shown (for 50 percent chord) as the empty circles in Figure 57b. One is inclined to suspect
considerable interference between the probe and the model, particularly at Mach 1.0, Other
datd were taken with the probe on the upper surface; however, in this case a slender ‘‘fuselage’’
section was added to the lower surface of the model. Those results are shown as the solid
circles in Figure 57b. Finally, a third set of data were taken with orifices within the model
itself. Those results are shown as the triangles. A prediction of the Sonic Box is also shown
in Figure 57a for comparison.

The considerable uncertainty within the experimental data leads one to minimize the im~

portance of the difference between theory and experiment by questioning the accuracy of the
measurements themselves while continuing to accept the limitations of the analytical method,

3. THE CROPPED DELTAS

Reference 5 reported the measurement of oscillatory moments on a family of cropped delta
wings. Two of the test cases, the aspect ratic 1.5 and 2.0 wings, will be used here for

12
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comparison with the Sonic Box program. The twowings under consideration are shown in Fig-
ures 30 and 31, Reference 5 presents the experimental data in the form:

Real (M)

m. = imag (M) [Imoq (M)]b (16)
@ 2q5bak, 2qSak (b)®

where: kT) ==y b = mean chord, w = frequency in radians/sec. Now, for a given rotational
mode shape, Z(X) = A * A X , the Sonic Box program can print out & generalized force
coefficient defined to be

*- - b Py Lo d e e oy T Ay Lad L ") L d
Ly=bly= o5~ pr(x,y)z(x,y)dS:-alls-pr (X, ¥y KA go+ALX) dX dY
S S
=107 A - 7
L j; p(X,7) (F=%o) ds (17)

where 'i‘o is the location of the rotational axis, given by ?(o = <A oo/AIO' Finally if, in accor-
dance with Reference 5, the nose up pitching moment is called M, it is related to Lh by:

-A_bM
* 10
L, = —as (18)
Noting that a = 'AIO' m, and m , are obtained:
+ Real (L%)
m, = 3 (19)
2A,5bB
#*
m, = —Simag L)) (20)
a 2k (b)° A
For instance for the aspect ratio 1.5 cropped delta calculations input data are:
’ b = ,5833 ft
b = .3333 ft
AlO = 1,832
k = 0,0953
Therefore
mg = + Real(L}] ) /1.305 (21
m. = +Imag (L) /0.07106 (22)

13
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For the aspusct ratio 2,0 cropped delta similar calculations yield:

mg = Real (L}}} /1.305 (23)
ms = Imag (L) / 0.0649 (24)
where
b = .5104 ft
D = .2917 ft
Ay = 2.094
k = 0.087

The results are presented in Figures 58-51,

Figure 58 is a plot of the moment coefficients m, and m ; versus Mach number. The open

circles represent experimental data from Reference 5. Also shown are the Sonic Box predic-
tions for Mach 1.0. In Figure 58 the Sonic Box predicts values for m, and m 4 which are

approximately 20 and 70 percent higiier than experiment, respectively, for the aspect ratio
1.5 cropped delta rotating about its forward axis. The experimental data shown was generally
taken with an amplitude of 2°, however, the dashed line for m a represents data taken for

1° amplitude. The large discrepancy between predicted and experimental data for m ; is typical
of other linearized analysis (Reference 5).

Figure 59 is a similar plot for the aspect ratio 1.5 cropped delta rotating about its aft axis.
The predicted m , coeffici.nt is still roughly 2C percent higher whereas, agreement on m &

has improved from the forward axis case.

Figure 60 refers to the aspect ratio 2.0 delta rotating about its forward axis. Again, the

m coefficient is the right order of magnitude, whereas, m, is off by 100 percent. The same

comments apply for the aft rotation axis, Figure 61.

14
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SECTION VI
CONCLUSIONS, RECOMMENDATIONS

1. CONCLUSIONS
a. Interpretation of Mcde Shape Information

The existing Sonic Box computer program contains normalizing and non-dimensionalizing
factors which may not be apparent to the user. When mode shapes are fed into the programs
as coefficients A mn or as deflections at discrete coordinates, there are two interpretations

which yield correct results, adopting a dimensional coordinate system X, ¥, Z.

(1) To obtain pressure coefficients Ap/q directly from the program, put in modes in the
Pi
form & 288 function of Xand¥. To obtain generalized force coefficients f ——g—— directly

S
from the program, put in modal data in the form ¥/./ b as a function of X and ¥.

(2) If modal data is assumed to be in the form 7 as a function of ¥ and ¥, then both the
pressures and generalized forces must be divided by the root chord b.

b. Smoothing of Input and Output

The Sonic Box program uses smoothing procedures in two ways; first, to fit polynomial
surface to modal deflection data which has been put in at discrete coordinates on the surface;
and second, to fit polynomial surfaces to the calculated values of velocity potential.

In putting in deflection data, one coordinate point is sufficient for plunge motions; two points
are sufficient for rotation or roll motions; and five points are sufficient for a chordwise half
sine wave. In putting in a full sine wave and 3/2 sine waves it was found that proportionately
more coordinate points were required. That is, using nine points on a full sine wave and
thirteen points on a 3/2 sine wave did not give the same input accuracy as five points on a
half sine wave.

The smoothing technique for calculated velocity potentials works quite well. It can, however,
be distorted by large local errors in ¢ near the leading edge which are reflected over the
whole surface.

7

c. Convergence

For the aspect ratio 1.5 delta wing at least thirty boxes along the root chord are required
to obtain convergence of lift due to plunge and other generalized forces. Even for large
numbers of boxes, there was some oscillation of the pressures near the trailing edge.

For the aspect ratio 3 rectangular wing in its first bending mode, as few as fifteen boxes
along the chord gave converged pressures, but that the converged solutions were inaccurate
at the trailing edge and from 10 to 30 percent of the chord.

For the aspect ratio 2.0 delta wing more than forty boxes along the root chord would be

required to obtain a converged solution for momentdue to rotation. Predictad pressures were
in fair agreement with Jones’ low aspect ratio theory.

15
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For the aspect ratio 1.5 and 2.0 croppeddeltas more than forty boxes along the chord would
be required for converged solutions for moment due to rotation. Since the moments for aft
rotation axes were more easily converged than those for forward axes the greatest uncertainty
lies over the aft part of the surface.

For the 70-degree delta about thirty boxes are required to converge pressures and lift due
to plunge. For higher numbers of boxes the results could not be distinguished, For moment
due to rotation about the apex, fifty boxes were not sufficient for convergence. This implies
the oscillation of pressures near the trailing edge. In rotation, the velocity potential seemed
to be reasonably well converged for as few as twenty boxes, leading one to conclude that the
uncertainty is introduced after the calculation of potentials, For a mode shape of a half sine
wave in the chordwise direction potentials, pressures and generalized forces were reasonably
well converged for as few as twenty boxes. Similar conclusions hold for the mode shape of a
full sine wave in the chordwise direction.

d. Comparison with Experiment
For the aspect ratio 3 rectangle in its first bending mode, the predicted values of the
generalized force, T'§ f Aplxy)Z(%,¥) dx dy was50percenthigher than the experimental
S

value. The predicted pressures were of the proper order of magnitude over most of the aft
part of the wing, but were inaccurate at the leading edge, trailing edge, and the forward
quarter of the surface. Strictly speaking, the theory does not apply to this unswept planform.
While part of the error is inherent in the linearized analysis, the planform treated, and
disregard of thickness and boundary layer effects, part can also be attributed to inadequacies
in the assumed form of the velocity potential near the leading edge.

For the aspect ratio 2.0 delta, agreement with experimental pressure measurements was
poor, whereas, agreement with Jones’ low aspect ratio theory was fairly good. There is some
evidence to indicate a certain amount of uncertainty within the experimental data,

For the aspect ratio 1.5 and 2.0 cropped deltas, the in phase moment coefficient, m o Was
generally fairly well predicted. The out of phase coefficient, m g’ was anywhere from 20 to

100 percent high in magnitude. These results were typical of other linearized analyses, for
instance, those in Reference 5.

2. RECOMMENDATIONS

a. The existing Sonic Box program should be modified to print out pressures and general-
ized force coefficients which eliminate dimensional confusion and do not require further
adjustments by the user. Simple revisions to automatically divide the pressure and géneralized
forces by the root chord would require the user to always put in modal data in the form Z as
a function of X and ¥, where X, ¥, and 7 are dimensional quantities.

b. More complicated revisions should be undertaken to improve convergence. These
would include improved representation of the geometry of leading edge of the wing (now
jagged) and improvements in the allowable form of the velocity potential in any one box (now
assumed constant).

c. Since there is considerable doubt about the value of existing experimental data and
improved measurement and data analysis techniques are rapidly coming available, unsteady
pressure measurements should be made on oscillating wings in transonic f’ow. This would
result in a fair test of existing methods and provide impetus for improvements.

16
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TABLE III
INPUT DATA, 70° DELTA WING

Mode Aoo A]_0 w (cps) b(in) a4 (in/sec)
Plunge 0.02 0.0 12.0 50.0 13675. 0
Rotation 0.02 -0. 0006 " " "
x(in) Defl
1/2 Sine 0.0 0.0 " " "
12,5 0.01414
25.0 0.02
37.5 0.01414
§0.0 0.0
Sine 0.0 0.0 " " "
6.25 0.01414
12,5 0.02
18.75 0. 01414
25.0 0.0
31.25 -0.01414
37.5 -0.02
43.25 -0.01414
50.0 0.0
3/2 Sine 0.0 0.0 " " "
4,167 0.01414
8.333 0.02
12,50 0.01414
16.67 0.0
20.83 -0. 01414
25.00 -0. 02
29.17 -0.01414
33.33 0.0
37.50 0.01414
41,67 0. 002
45,83 0.01414
50.0 0.0
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TABLE IV
INPUT DATA, ASPECT RATIO 1.5 DELTA

Mode Ao 0 A1 0 w(cps) b(ft) ay
Plunge 1.0 0.0 3.183 10.0 1000. 0
Rotation 0.0 0.1 " " "
TABLE V
INPUT DATA, ASPECT RATIO 3 RECTANGULAR WING

Mode v (ft) Defl w (cps) b(ft) amn(ft/sec)
Bending 0.0 0.0 26.5 1.5 1023. 5

0.229 0.143

0.457 0. 389

0.616 0.738

0.915 1.15

1.14 1.6

1,37 2.09

1.60 2.58

1.83 3.11

2.06 3.61

2,2866 4.098

TABLE VI
INPUT DATA, ASPECT RATIO 2 DELTA WING

Mode Aoo Ao w{cps) b(ft) a, (ft/sec;
Rotation -0. 00617 0.017446 33.7 6.5 1000, 0
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TABLE VII

INPUT DATA, CROPPED DELTAS

AR Mode Axis Ago Ao b(ft) 8 (ft/seC)
1.5 Rotation Fwd -0.4034 1,832 0.5833 1000.0

1.5 " Aft -0. 7852 1.832 0.5833 "

2.0 " Fwd -0. 3761 2.094 0.5104 "

2.0 " Aft -0.8125 2.094 0.5104 "
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APPENDIX I

A METHOD FOR INTERPRETATION OF MODE SHAPE INFORMATION

Adopt the convention

deflection with units of length
cwmmte ” 124 2 2"

1 2] ” ’” ” ”

@M
nowon

The coefficients A define a polynomial in ‘X and ¥ which in turn defines a mode shape.

But suppose it is not known if our deflections and/or coordinates have been normalized by
dividing by the root chord or some power of the root chord, b. Then the correct form of the
polynomial must be found.

The way to proceed is to make two successive runs with the computer program. In each
run a plunge mode and a rotationare put in about the leading edge. Keep the modal coefficients
constant between the two cases; keep geometric similarity; but change the root chord. By
comparing the pressures and generalized forces obtained in the two runs the correct form of
the polynomial is determined.

1. GENERALIZED FORCES
a. Method for Polynomial Coefficients

Suppose the coefficients A mn define a polynomial:

z_ . Y Y
b’ '...Z.. A"‘"( b') ( bt )

The powers r and t are unknowr but must be found. Define mode 1 as a plunge mode by:
Z,
br

Define mode 2 as a rotation about the leading edge by:

= Ago

"~
Zy ~
— X

= A
v 0 pt

Now evaluate the generalized forces L21 and L22. the lift and moment due to the rotation
respectively.

r r
e L f gs = Bodt _ Bootl_

Ay b cLz=Aoob' S

L2I

' r-t+1
Cu, = Ao b Crg %

85

r-¢
U ~ | r-t ~ enb . Alob
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Now

Q=22 .pa, o f
2 4% = A0 or zero frequency
So
- r r-t 2r=t
Loy “Roo b CLgA,eb =8,,4, CL, b
-a fotH r-t_ 2 2r-2t+1
Loz 2Agb  Cy A b =A, b My
Thus, the generalized forces have been found in terms of the coefficients A and Ao the
root chord b, C andC and the unknown powers r and t.

Lg M,

Two successive runs are made on the computer with zero frequency. In each run the geomet-
ric similarity (CL and CM constant). is kept while the coefficientis A 00 and A10 are held
a a

constant; only the root chord b is varied.

Compare the generalized forces for runs I and II.

(1), (I _ (1), (T) 2r-t
2 /Ly = (b7 )

L
(1), (m _ (D, (§),27-2t+I
Lyg /LG8 = (oWt

Abbreviate the above equations by:

2r—-t
RL- RB
- por-2t +1
RM- RB

r and t are:

log R log R
(|+2 g"-g"‘)

l R i
og B 0g R8

log RL log RM

log Rp log RpB

For example, R 10, R 10, and R,, = 100, thenr = 0,5 and t = 0. So the correct form

B~ L M
of the modal polynomial is:
~m~n

Amn Xy
m, n

U'

b. Method for Discrete Deflections
Numbers to represent coordinates and deflections are used, for instunce
Deflection: Z/b*

Coordinate: X/b‘
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The powers r and t are unknown, that is, it is unknown if the deflection, coordinates, or both
are interpreted by the program to be divided by the root chord or some power of the root
chord. To answer these questions zero (or very small) frequency piunge and rotation modes
were put in by using discrete deflections at two coordinates for each mode,

Plunge: %,/b =8, ot X /bt =00

=8, =R
Rotation. %,/b* 0.0 at %X/b! =0.0
= 82 = B

Now evaluate the generalized force coefficients L21 and L22. where 1 refers to plunge and 2
refers to rotation.

4

bL,
2 r
S = S =& b Ce,

- ¥ !
Co a5 2% 95 =35
S S

it

3t CLy @28, b CL, d? = 8,0 C__, 8,0/t = 8,3, L Al

s/ 5 7,055 (a7 s (B8 )y o BT
LZE- -ES_SQ szs-?s-j; Pa(Szb/B )de—'as'(-é—g‘,—) Mz-""—‘—" MZ

3 bHH dz 2r =2t +1|
-2 2 _ r=

Two successive runs were made on the computer keeping geometric similarity (C and C

G

remain consta.nt) keeping the same numbers 8, s 8 and 3 ; but changing the root chord from
I

b” to b . The relationship between the generalized force for the two runs are
I -

L(zl) /L(II) - (b(” (n))er

L(ZIZ) / ,_(glé) = bu),-b(n),ar-zwl

These are the same equations used for the polynomial coefficient case and the same equations
can be used to solve r and t.

2., PRESSURES
a. Method For Polynomial Coefficients

Suppose the coefficients A mn define a polynomial

z - m _ ,n
T = 2 Ap, (K70t (70N
b m,n
Define mode 1 as a plunge mode
?l
b’ = Ao
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Define mode 2 as a rotation about the leading edge

|

n

>
°:.l =

Now at some point on the surface evaluate the downwash in each mode.

w Ad g T
- d: + ik2
\' dx b
wy_ . r-l
(V)‘- ik Aoob

LAY coret . .~
(—V-)z- AP {(I+ ik x/b)

dp
With the assumption that ~5+-was known at this point, evaluate p.

T —Q 5 —— =
P da da (V
In each mode there is
dp r-I|
pl = -Ta-(lkA b )
d - ~
P, = —;%(A,ob' ") G+ ik ¥/b)

Now if two successive runs are made with the computer, keeping geometric similarity,
keeping the same k, and keeping the same coeificients A and A10 it is found that the ratios
of the pressures betweenthe runs are:

/UI)"I

(Iy (m I) (mr—t

/P, (b /b))

(b

Mode 2: P,

Abbreviating these equations,

D o
>
(1] (1]
0
o= 0
i

rand t are:
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b. Method For Discrete Deflections

Again plunge and rotation modes are defined

r ~ t
=3, ot X/b =00 and B

z,/b" =00 o x/bt =0.0

:82 :B
such that
_ dp . r-l
P * 3a (ikd b )

r-t %
2 %(_82;_.) (H-'k b )

Again two successive runs were made, I and II. The geometric similarity is kept and 3, &
and 8 are held constant; and only b is changed.

o
"

Rp|= RB
r-¢

R, = R

Pz 8

These are the same equations found in part 2.9.. therefore

log R

r = | <+ ___p_'_.
log RB

v =« log Rp, log Rp,
log R log Rp
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TABLE Vi

INPUT DATA SHEET FOR THE INTERPRETATION OF MODAL POLYNOMIALS -

72

1.0

60

1.0

coco o lcoco
S-S wm lomw
S » 2
S
- -
o oo o oololoocoolo
SN S HlHIS NS S|~
S S -
-
+
~
-4
o -
S o
Soocoololdecoolo
T & e o
S0 o~ Holow S e
Yl oo weloln o ol
NN D P O NP
_ i Il
[~} -]
Q ol|©
2 |3 8
— puasf
a |8 al 8

TABLE X

INPUT DATA SHEET FOR THE INTERPRETATION OF MODAL DEFLECTIONS

[+ o
N
~
1)
*
L]
(o]
(D)
=)
-
k4
cooococoojooojlocoocooococo
CrHO MM A S O A8 m ]~ S
© v =
S o
L) -t
[T}
Mloococoocoojoocojloooooo|lcoo
cdorNcoldcoloncdodass
© o -
i i
<
N
-
o -
S o
Scoocooooocoldococoooleco
® @& 9 & & & o ° ¢ o] 8 2 e & o M 2 + @
OCWOHNOMNOwOBONOHINO ~
~N
l370781581537081@815
NNMmMoIoSnodoaNMmMBodao S
v v vd =i i vl i
- | | I |
=] =]
(=4 Py O
B3| B 3
— 1 [=]
a, m o, ¥
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TABLE X

INPUT DATA SHEET FOR THE 70° DELTA WING

12 24 36 a8 60 72] 80|
23 12.0 50.0 13675.0
27 20.0 4.0 1.0
30 0.0 50.0 18,198
87 1.0 1.0 1.0 1.0 1.0
_blunge 46 0,02 0.0-
46 | 0,02 -0. 0006 (Rotation about 2/3 Root Chord)
98 5.0 5.0 1.0
1/2 Sine 101 0.0 0.0 0.0
Wave 105 12.5 0.0 0.01414
in x 109 25.0 0.0 0.02
113 37.5 0.0 0.01414
117 50,0 0,0 0,0
98 9.0 9.0 1.0
101 0.0 0.0 0.0
105 6.25 0.0 0.01414
Sine 109 12.5 0.0 0.02
Wave 113 18.75 0.0 0.01414
in x 117 25.0 0.0 0.0
121 31.25 0.0 -0.01414
125 37.5 0.0 ~0.02
129 43.75 0.0 ~0.01414
133 50.0 0.0 0.0
TABLE XI
INPUT DATA SHEET FOR THE ASPECT RATIO 3
RECTANGLE IN FIRST WING BENDING
12 24 36 48 60 72 80
23| 26.5 1.5 1023.5
27| 32.0 1.0 1.0
30 0.0 0.0 2. 2866
87 0.0 1.0 1.0 0.0 1.0
98! 11,0 1.0 11.0
101 0.75 0.0 0.0
105 0.75 0.23 .14
109 0.75 0.46 .39
113 0.75 0.69 .74
117 0.75 0.92 1.15 First bending mode
121 0.75 1.14 1.60
125 0.75 1.37 2.09
129 0.75 1.60 2.58
133 0.75 1.83 3.11
137 0.75 2.06 3.61
141 0.75 2. 2866 4.098

(=}
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TABLE XII

INPUT DATA SHEET FOR THE ASPECT RATIO 2,0 DELTA WING IN ROTATION

{1 12 24 36 48 60 72| 80
23| 33.7. 0.5 1000, 0
27 | 20.0 1.0 1.0
30| 0.0 0.4 0.25
46 | -0.00617 | -0.017446
- 87| 0.0 1.0 0.0 0.0 0.0
TABLE X1
INPUT DATA SHEET FOR THE CROPPED DELTA WINGS IN ROTATION
! 12 24 36 48 60 72| 80
23 26.0 0.5833 | 1000.0
27 30.0 2.0 1.0 AR 1.5, forward axis
30 0.0 0.5 0.25
46 -0.4034 1.832
- 87 0.0 1.0 0.0 0.0 0.0
— 46 -0.7852 1.832 | (Aft Axis)
23 | 27.0 0.5104 | 1000.0
27 30.0 2.0 1.0
30 0.0 0.4376 0. 2917 AR 2.0, forward axis
— 46 -0, 3761 2. 094
- 46 -0.8125 2.094 (ATt axds)
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