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ABSTRACT

A stiffened steel hemisphere with a nominal yield strength of 150,000
psi was designed, fabricated, and tested to explore the structural efficiency of
stiffened spherical shells. Test results show that the collapse pressure was
approximately 80 percent greater than that predicted for an unstress-relieved,
monocoque shell of equivalent weight with the same out of roundness. The
collapse pressure approached that of a near-perfect, machined spherical shell.
Thus, it appears that the detrimental effects of initial imperfections and resid-
ual stresses arising from fabrication processes for monocoque spherical shells
may be at least partially overcome through use of properly designed stiffening
systems. Based on the test results, it is estimated that an HY-150 stiffened
steel spherical shell designed for a collapse depth of 10,000 ft would weigh
43 percent of its displacement.

ADMINISTRATIVE INFORMATION

The work described in this report was conducted under the sponsorship of the Naval
Ship Systems Command, Project S-F013 02 03, Task 1960.

INTRODUCTION

Demands for more efficient end closure configurations for conventional submarines,
the requirements of increased operating depths for hydrospace vehicles, and the needs of the
aerospace industry have generated considerable interest in spherical shell structures in re-
cent years. Interest at the David Taylor Model Basin has been directed toward establishing
design criteria for spherical shells with hydrospace applications. To date, investigations
have been primarily experimental and have resulted in rather reliable design procedures for
unstiffened spherical shells.! These are based on experimental results of tests on both
machined models and models manufactured according to feasible full-scale fabrication pro-
cedures. Thus, it is possible to predict collapse pressures of spheres with initial imperfec-
tions and residual stresses as well as to predict collapse of near-perfect specimens.

Relatively little experimental data exist for stiffened spherical shells. However, suf-
ficient experimental work has been conducted to indicate that potential weight savings can
be achieved if stiffeners are spaced at relatively close intervals and distributed in a particu-
lar array or grid-like pattera.?»3 On the other hand, when the unsupported arc length between
stiffeners is large, stiffening systems may be ineffective and may even weaken the shell.

1Re!‘ex-ences are listed on page 13.
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This report describes the design congiderations and the results of an exploratory test
of a grid-stiffened, high strength steel hemisphere designed for a collapse depth of 10,000 ft.

DESCRIPTION OF THE MODEL

For the purposes of this explorstory study, the following characteristics and require-
ments were assumed:

Configuration ~ Internally stiffened spherical shell
Size - 10-ft OD

Design Collapse Depth — 10,000 ft

Material — Steel

Compressive Yield Strength — 150,000 psi
(0.2 percent offset)

The initial design criteria for this assumed prototype were established from unpub-
lished experimental results on stiffened HY-100 (o y = 100,000) steel hemispheres tested at
the Model Basin. These data indicated that for particular shell-frame parameters, a grid-
stiffened HP-150 (oy = 150,000 psi) steel hemisphere with a margin of stability in the general
instability mode of approximately 3.4 could be expected to collapse at approximately 85 per-
cent of the yield pressure, Py, of an equivalent thickness, near-perfect shell. (The margin
of stability is defined as the ratio of the elastic general instability pressure to the yield
pressure. The elastic general instability pressure P___ was determined from the work of
Crawford and Schwartz* in the present case. The equivalent shell thickness was calculated
by distributing the cross-sectional area of a single stiffener over a typical bay spacing.)

Stiffener dimensions and spacings were determined from one of the HY-100 steel hemi-
spheres; tests of that model had indicated that the contribution of bending stresses to total
stress levels was not excessive for area-of-frame to area-of-shell ratios of less than G.2.
The stiffener depth and width were determined by requiring that the elastic buckling stress
calculated from plate theory (for the case in which the plate is loaded in uniaxia! compres-
sion and where three sides are simply supported and the fourth, parallel to the direction of
loading, is free) be twice the yield strength of the material. The resulting depth to width
ratio of the stiffener was approximately 7. The HY-100 tests also indicated that the stiffen-
ing was effective in preventing local shell buckling at values of the geometric parameter 8
(defined in Table 1) of approximately 1.4. Final dimensions, geometric parameters, and cal-
culated pressures for the assumed prototype are shown in Table 1.

v Modeling of the particular design presented in Table 1 was hampered by the availa-
bility of plate material in the thicknesses and yield strengths recuired. In addition, the
cylindrical test adaptors which were available for the 4-ft tank test facility fixed the diameter
of the model. Geometries, significant geometric parameters, and calculated pressures for the

I
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TABLE 1

Design Parameters, Dimensions and Collapse Pressures for
a High Strength Stiffened Hemisphere

Model
Symbol Prototype (as fabricated)
Radius to the middle surface of the shell, in. R 60 15.155
Average shell thickness, in. ¢, 0.88 0.273
Arc length of typical sheil element, in. b, 11 2.726
Frame thickness, in. t, 0.50 0.125
Frame height, in. b, 3.50 0.900
Cross-sectional area of shell element, sq in. A, 0.7442
Cross-sectional area of frame, sq in. ‘4/ 0.1125
Area of frame to area of shell ratio (stiffener area :1_/ 0.182 0.151
in one direction for typical shell element) A
Equivalent sheil thickness (in.) defined by:
t 1.192 0.357

25 ¢ A
T=t 14— ‘)= t, (1+2—f—)
bsts AS

Nondimensional geometric parameter defined by:

0.91 5, 0 1.4 1.24

§ = ——— for Poisson's Ratio of 0.3
[Rt\] 172
i

Volume of frame to volume of shell ratio 7 0.300
Weight to displacement ratio W/D 0.43 0.52
Yield strength, psi a, 150,000 169,000
Elastic general instability buckling pressure, psi P 17.600 19.800

(see Reference 4) = ! '
Yield pressure for shell of equivalent thickness, psi Py 5120 7,000

. . . . P._.

Ratio of elastic general instability pressure to the - 3.44 2.83

yield pressure P, ) )
Calculated collapse depth, ft (0.85 P, x 2.25) (CD.), 9,800 13,400
Experimental collapse depth, ft (C-D.)g 13,750

It is noted that bs' 6, 4 A,V /Vs, and 7 refer to a typical shell element in the third circumfer-

ential tier from the boundary of the hemisphere.




model are also presented in Table i. The plate available for fabrication of the shell elements
was thicker than that specified by the initial design criteria. The substantial increase in
shell thickness is reflected by the ratio of weight to displacement shown in Table 1 and by
differences between various nondimensional parameters. In addition the average yield
strength of the steel used in the manufacture of the model was 169,000 psi, with a maximum
variation of less than 2 percent among numerous specimens taken to evaluate the strength
properties of the plate material. (A typical stress-strain curve is presented in Figure 1.) It
should be noted that the ratio of the elastic general instability pressure to the yield pressure
was higher for the assumed prototype than for the modeled geometry. Thus, the increased
thickness of the shell was offset by the increase in yield strength. The unpublished results
for the stiffened HY-100 steel hemispheres indicate that the margin of stability for the as-
sumed prototype geometry against local shell buckling is sufficiently large to preclude failure
in this mode. Thus, it was assumed that the modeled geometry would also be sufficient to
preclude failure in the local skell buckling mode. The test adaptor utilized for the model did
not provide realistic end conditions for the hemisphere. Thus, additional stiffeners were pro-
vided on the external surface at the boundary of the hemisphere to preclude premature failure
due to high bending stresses. A schematic drawing of the model is presented in Figure 2.

The stiffened hemisphere was manufactured from HP-150 steel according to feasible
full-scale fabrication procedures. The skin of the model was obtained by welding together
six formed, 60-deg spherical segments and a formed spherical cap. Frames were cut from
plate material and rolled for welding installation normal to the shell inside surface. None of
the material for the skin or frames was stress relieved following the forming operation or
fabrication of the model.

Deviations from a spherical radius were measured at close intervals over the surface
of the hemisphere. These data serve as the input for a computer program which determines
the mean radius, the center of the hemisphere, and the corrected departures from sphericity.
The departures from sphericity are plotted in the form of 2 contour map as presented in Fig-
ure 3. Flat spots may be identified from examination of the figure as described in Reference
5. (The area between the circles in the figure represents that portion of the surface of the
sphere where external stiffeners were provided.)

TEST PROCEDURE

The model was instrumented with Budd wire-resistance strain gages. These were con-
centrated in an area with large departures from sphericity as determined from examination of
Figure 3. Strain gage locations are shown in Figure 4.

The pressure tests were carried out in the 4-ft tank, using oil as the pressure medium.
Four tests were run to minimize nonlinearity of the strain data. The model was hydrostatically
loaded to collapse on the fourth run.
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Figure 1 ~ Typical Stress-Strain Curve for Steel of Model 83
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PLAN VIEW EXPANDED
INTERIOR OF MODEL

CIRCUMFERENTIAL GAGES

MERIDIONAL GAGES

Localion Qulside inside
Gage Strain Gage ° Strain
Rumber Seasilivily Humbet Sensilivily

A 164 0.61
B 100 0.63 200 0.57
[ 102 0.60 2 0.64
4] 104 0.55 204 Qut
3 108 0.58 208 0.52
F 110 0.65 210 0.63
[} 112 0.53 2 Out
H 114 0.69 b3zl 0.62
i 115 0,72 216 0.64
J 118 0.67 28 0,62
L 120 06.63 220 0.68
L 122 0.60 22 Out
] 124 Out 24 0.61
N 1% 0.49 226 Out
0 128 0.61 228 0.82
4 136 0.68 230 0.72
Q 132 0.55 3 6.61
R 13 0.72 23 Out
S 166 0.53 206 0.60
7 136 9.58 236 0.57
u 138 0.57 236 0.65
v 140 0.5% %0 0.5%
L] 169 0.62
X 142 0,59 242 0,56
Y 154 0.66
2 152 0,55

AA 150 0.60

BB 158 0.64

cc 1% 0.56

1])] 148 0.63 18 0.56

EE 145 0.58 M5 Out

FF 144 0.52 u4 054

GG 162 0.50

Locaticn Outside Inside
Gage Stain Gage Strain
Nueber Sensitivity Number Sensitivily
A 155 0.62
B 101 0.57 201 Out
C 103 Out 203 0.55
0 H) 0.56 205 Out
E 10 0.56 209 0.45
F H 0.9 21 9.54
G 13 0.48 213 Qut
H 115 0.61 215 Out
i 11 0.63 m 0,54
J 19 Out 219 0.50
K 121 0.61 22! 0.5%
L 122 Out 223 0.6%
'] 125 0.62 225 0.4¢
N 127 0.50 21 Out
0 13 0.6 229 044
P 131 Out 31 0.55
Q 133 0.57 233 0.71
R 135 0.61 238 Out
S 107 0.56 07 Oul
T 137 0.60 231 0.53
U 13% Out 239 0.57
v 141 0.40 u1 0.30
w 161 0.66
X 143 8.2 243 Out
Y 155 0.7
Z 53 .62
AR 151 0.60
88 158 0.5
ce 157 Out
0D 143 0,74 b ] 0,62
33 14 0.69 il Out
FF 145 0.63 5 0.60
GG 163 0.64

Figure 4 —~ Strain Gage Layout Diagram and Strain Gage Sensitivities for Model 83
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RESUL TS AND DISCUSSION

Strain seusitivities for each gage are presented in the strain gage layout diagram of
Figure 4. Typical pressure versus strain plots are presented in Figure 5.

Model 83 collapsed at 6150 psi. Photographs of the collapsed model are shown in
Figure 6.

Comparison of the collapse pressure of Model 83 with the initial design criteria
showed that the model failed at 88 percent of the yield pressure Py. Thus, the experimental
result compared favorably with the initial design criteria even though the margin of siability
was reduced from 3.4 to 2.8 because of properties and dimensions of available material.
Thus, the estimate of the collapse depth for the assumed prototype should be conservative
provided the margin of stability against local shell failure is sufficient. As mentioned pre-
viously, the test results of the HY-100 steel hemispheres indicate that this margin is
sufficient.

The strain gage sensitivities presented in Figure 3 and the typical pressure versus
strain plots shown in Figure 5 indicate the relatively minor effect of bending on total stress
levels both adjacent to and away from the hemisphere boundary during that portion of loading
where the relationship between pressure and strain remained linear—roughly 70 percent of
the collapse pressure. There were only two cases in this load range where the total stress
was greater than 12 percent of the membrane stress at locations where strain was measured.
The largest contributions cf bending to total stress levels were measured at Locations M and
O (see Figure 3). In the first case, measurements were probably affected by discontinuity of
the meridional stiffener in the adjacent bay; in the second case, they were probably »ffected
by the presence of the external boundary stiffener. In both instances, the stress due to
bending amounted to 17 percent of the membrane stress at that location.

Thus, it is reasonable to assume that for the geometry of this model (0 = 1.24, Af/As =
0.151), the effect of bending stress would be of littie consequence in considerations of fatigue
life. It is also probable that modest increase of the area-of-frame to area-of-shell ratio would
increase the structural efficiency of the model design w thout significantly affecting bending
stress levels. In addition, it is apparent that boundary effects did not materially affect the
strength of the model.

To evaluate the test results reported herein, it is most meaningful to compare the
strength of this stiffened hemisphere with that predicted for an unstiffened hemisphere of
equivalent weight, i.e., equivalent shell thickness. To determine an equivalent shell thick-
ness in this case, the stiffener volume can be considered, in effect, to be uniformly distrib-

uted over the surface area of a typical shell element. In this manner, the equivalent shell
thickness is conveniently determined from
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Figure 6 — Model 83 after Collapse {
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Elastic and inelastic collapse pressures for an equivalent thickness hemisphere with and
without geometrical imperfections may be predicted from the analysis in Reference 6. As
described therein, the collapse strength of shells with initial imperfections depends primarily
on the local radius B, as determined from the deviations from a nominal radius and the out-of-
roundness A over a critical arc length. Use of this local radius together with reduction fac-
tors derived from Model Basin test results on unstiff>ned spherical shells constructed ac-
cording to full-scale fabrication procedures allows for prediction of collapse pressures for
both a stress-relieved and an unstress-relieved sphere of equivalent thickness.

With the aid of the departures from sphericity plotted in Figure 8, tis ratio of the local
radius B to the nominal radius R was found to be 1.13 for a shell of equivalent thickness
(determined from the geometry of Model 83). This value of B /R is in good agreement with
those values determined for other HY-150 steel, 30-in. diameter, unstiffened hemispheres
tested at the Mcdel Basin.

Comparison of the strength of Model 83 in accordance with the procedures outlined
above showed that the experimental collapse pressure of the stiffened hemisphere was 1.34
times greater than the predicted failure of a fabricated unstress-relieved monocoque shell
of equivalent weight.* Thus, it is apparent that a considerable saving in weight can be
achieved through efficient stiffening of spherical shells. It is important to note also that
the collapse pressure of the stiffened hemisphere was only 14 percent less than would be
expected for a machined (near-perfect) stress-free, unstiffened shell of the same weight.
This is particularly significant considering that the structural efficiency of the model could
probably be improved by increasing the frame area and decreasing the thickness of the shell.

CONCLUSIONS
The following conclusions are drawn from the test results for the stiffened hemisphere
reported herein:

1. Collapse pressures approaching those of near-perfect machined ‘spherical shells may
be obtained for particular stiffener-shell parameters.

*This comparison is based on typical bay geometry. It may not be practical nor desirable from local shell
stress considerations to achieve a constant ratio of stiffener area to shell area over the entire surface. However,

with an internal stiffening configuration, the effect on efficiency should be small since in the present model, for
L example, the W/D ratio for the complete sphere was only 1 percent greater than that calculated using typical bay

geometry.

12




2. The detrimental effects of initial imperfections and residual stresses arising from

fabrication processes for monocoque shells may be at least partially overcome through use

of properly designed stiffening systems.

3. The contribution of bending stress to total stress levels is small for the geometry of
Model 83. Thus it is reasonable to assume that the effects of bending stress could be of
little consequence in consideration of fatigue life for stiffened spherical shells with low

values of 4 [/A s and the geometry parameter 0.
4. It is estimated that a stiffened spherical shell fabricated from HY-150 steel and de-
signed for a collapse depth of 10,000 ft would weigh approximately 43 percent of its

displacement.
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