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ABSTRACT 

A Monte Carlo technique is described for simulating the 

high-speed flow of a rarefied gas around a cylindrical body. 

The method uses a hard-sphere model, or, alternatively, the 

"Maxwellian" model to compute collisions between particles.  A 

representative "test particle" is scattered in such a way that 

its statistical behavior approximates that of a random particle 

chosen from the actual gas.  This requires knowledge of the 

distribution function of "target" particles, which is estimated 

from observations of the behavior of the test particle. 

The method is applicable to any collision model and to any 

model for the interaction between the gas and the surface of 

the body. 

Accepted for the Air Force 
Franklin C. Hudson 
Chief, Lincoln Laboratory Office 
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I.   INTRODUCTION 

Many attempts have been made to solve analytically the 

problem of high speed flow of a rarefied gas around various 

simple aerodynamic bodies.  Although some progress has been 

made, exact solutions are not yet available even for very sim- 

plified boundary conditions and gas models.  When the physics 

of the problem is described more realistically, it becomes very 

difficult to get even approximate solutions which agree with 

experimental observations. 

One technique which may be used to circumvent the analyt- 

ical difficulties is the "direct" Monte Carlo simulation.  In 

such an approach, the gas is modeled by a collection of 

"particles", generally much fewer in number than the number of 

particles in the actual gas.  These particles are made to be- 

have as actual gas particles would, that is, they are affected 

by the same statistical laws that govern the actual distribution 

of particle velocities and positions.  By observing these "test" 

particles for a sufficiently long time, one can then deduce 

their distribution function, which when properly normalized 

should be the distribution function for particles in the actual 

gas.  Since all aerodynamic properties can be deduced from the 

distribution function, it constitutes a complete solution to 

the problem. 

An "incident" particle can be made to behave statistically 

as if it were a typical member of the actual gas only if one 



knows: 

(1) the mechanism governing collisions between particles, 

(2) the interaction between gas particles and any solid 

surface which they may strike, 

(3) the density and velocity distribution of the "target" 

particles which scatter the incident particle. 

The first requirement is easily met by postulating a 

collision model, either based upon empirical data or upon some 

repulsive force law chosen for analytic simplicity.  Similarly, 

a model for the particle-surface interaction may be chosen. 

The third requirement, however, requires knowledge of the dis- 

tribution function, which is the object of the calculation. 

Thus, the simulation envisioned here must be iterative in nature, 

hopefully converging to the correct answer after a sufficiently 

long run under constant conditions.  The test particles must be 

scattered by a collection of particles distributed in velocity 

space according to the latest estimate of the true distribution. 

In turn, it must be possible to improve this estimate by incor- 

porating information gained by observing the behavior of the 

scattered particles. 



II.  REVIEW OF PREVIOUS MONTE CARLO GAS SIMULATIONS 

Only a few attempts have been made at solving problems in 

gas dynamics by direct simulation.  One of the earliest was by 

Alder and Wainwright , who followed the exact motion of about 

2 
100 rigid elastic particles.  Bird  solved by a Monte Carlo 

method for the relaxation to thermal equilibrium of about 1000 

hard sphere particles, starting with all the particles moving 

at the same speed but in random directions.  A similar calcu- 

lation, using two different collision models, has recently been 
3 

performed here. 

The calculations described above were essentially zero- 

dimensional (in position space), since all the particles were 

in effect located at a single point. 

4 5 6 Lavin and Haviland ' '  treated two more significant 

problems by the Monte Carlo method:  heat transfer between two 

parallel planes, and the one-dimensional shock wave.  Both 

problems are one-dimensional in position space, and symmetry 

allowed the problem to be posed in a three-dimensional phase 

space consisting of the position along the line normal to the 

planes, the velocity along this same line, and the magnitude 

of the velocity component parallel to the planes.  With only 

three dimensions, it was feasible to divide all of phase space 

into cells of appropriate size.  In each cell was stored a 

single scalar number giving the value of the distribution func- 

tion.  A single test particle was introduced at one surface 



with a random thermal velocity corresponding to the temperature 

at that surface.  It was then advanced ballistically from cell 

to cell in phase space.  If it struck a surface, it was re- 

emitted randomly at the temperature of the surface.  When neces- 

sary, collisions were computed.  This could easily be done, 

since an approximation to the distribution function was always 

available.  By observing the single test particle for a long 

time, the current approximation to the distribution function 

could then be improved.  This method attempts an exact solution 

to the problem (i.e., the distribution at all points in space) 

and is limited by the coarseness of the grid of cells and by 

the computing time required for statistical fluctuations to 

average out.  It is also evident that if the Knudsen number (the 

ratio of mean free path to some characteristic length) were too 

small, an excessive number of collisions would have to be com- 

puted.  Finally, one would prefer an initial distribution which 

is somewhere near the expected true distribution.  Otherwise, it 

is not clear that the test particle would be scattered in such 

a way as to yield an improved estimate. 

While the method of Haviland and Lavin produces good results 

for one-dimensional problems, it is not easily extended to prob- 

lems lacking the symmetry needed to reduce phase space to three 

dimensions.  To divide a five- or six-dimensional phase space 

into a grid of cells, even if the grid is very coarse, would 

exceed the storage capacity of most computers.  Furthermore, 



the distribution function (which is proportional to the frac- 

tion of the time a given particle spends in a particular cell 

in phase space) is estimated by averaging the behavior of the 

test particle for a very long time.  Thus the test particle 

must enter each cell a large number of times before meaningful 

averages can be obtained.  Thus not only the storage require- 

ments but also the computation time increases by many orders 

of magnitude in going from three- to five- or six-dimensional 

phase space. 

Fortunately, in most gas dynamics problems, only certain 

averages of the distribution function over all velocity space 

are required, e.g., density, temperature, mean velocity, etc., 

rather than the velocity distribution itself.  Such averages can 

be obtained quite accurately even from a rather crude approxi- 

mation to the distribution function, provided that the approxi- 

mation is not biased.  Thus a Monte Carlo method may provide 

useful information even when there is not enough symmetry to 

reduce phase space to three dimensions. 

Probably the greatest success in this direction has been 

7 
achieved by Bird , who applied a novel method to problems with 

either axial or cylindrical symmetry.  In these problems (which 

include gas flow around cylinders, spheres, flat plates, cones, 

etc.) phase space is reduced to five dimensions by ignoring one 

position coordinate.  Bird stores the two positions and three 

velocity components of a small number of particles (about 1000) 



to represent his model gas, and does not divide phase space into 

cells.  In order to determine whether or not a given "incident" 

particle collides at a particular location, one must have some 

representation of the distribution function of "target" particles 

at that point.  Bird uses as this representation the particles 

which, at the given instant, happen to lie within a sphere cen- 

tered at the would-be collision site.  This sphere is large 

enough to give a reasonably large choice of collision partners. 

A large number of such collisions are calculated (the details 

of this process are described in Bird's paper) using the "hard 

sphere" collision model with the entire collection of particles 

frozen in position.  Then all the particles are advanced ballis- 

tically (without collisions) for a time equal to the accumulated 

mean waiting times for each of the collisions which were calcu- 

lated.  The procedure is done in such a way that each particle 

has the prescribed mean free path.  Samplings are made at inter- 

vals long enough to permit decorrelation, and the desired aero- 

dynamic quantities are obtained from ensemble averages of many 

samples.  Bird presents density profiles, drag coefficients, 

and various other aerodynamic quantities of interest for various 

Knudsen numbers, stream speeds, body temperatures, and body 

geometries. 

While Bird's method produces impressive results, the proc- 

ess by which convergence occurs is a subtle one whose validity 

is not easy to eastablish.  Thus it seems desirable to find some 



alternative Monte Carlo technique whose results could be com- 

pared with Birdfs. Such a method will be described in detail 

below. 



III. BRIEF DESCRIPTION OF THE PRESENT CALCULATION 

The model used in this calculation may be regarded as a 

compromise between the technique of Haviland and Lavin and 

Bird's method.  Haviland and Lavin divided all of phase space 

into cells.  Bird used no cells but rather a single list of 

particles to represent his distribution function.  For this 

calculation, position space is divided into a two-dimensional 

grid of cells, while the velocity distribution in each cell 

is represented by a list of four-vectors.  The first three com- 

ponents are the velocity components of a "target particle", 

while the fourth component is a weighting factor. 

In a given cell, the true continuous velocity distribution 

is thus replaced by a collection of delta functions whose loca- 

tions are given by the first three components and whose areas 

are given by the fourth component.  When calculations of colli- 

sion rates and selection of collision partners call for a veloc- 

ity distribution, this collection of "spikes" is normalized by 

dividing by the sum of all the fourth components.  It may then 

be treated mathematically as if it were the true continuous 

velocity distribution.  The"particles" on this list (a different 

list for each cell) have no purpose other than to serve as a 

local representation of the velocity distribution.  They are 

not moved ballistically from cell to cell, as are Bird's par- 

ticles. 

8 
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Figure 1.  The grid of cells in position space.  The radius of the 
cylinder is /45.  The lower left corners of some typical 
cells are listed below, in order to illustrate the num- 
bering system. 

Cell ( 1, 1) at (-22, 0) 

Cell ( 1, 12) at (-22, 11) 

Cell (24, 12) at (  1, 11) 

Cell (25, 1) at (-40, 0) 

Cell (33, 12) at (-24, 22) 

Cell (34, 6) at (-22, 22) 

Cell (34, 12) at (-24, 22) 

Cell (40, 1) at (  2, 0) 

Cell (46, 12) at ( 14, 22) 

Cell (47, 1) at (-84, 0) 

Cell (57, 12) at (-44, 44) 

Cell (58, 6) at (-40, 44) 

Cell (58, 12) at (-36, 44) 

Cell (64, 7) at ( 12, 24) 

Cell (65, 1) at ( 16, 0) 

Cell (67, 12) at ( 24, 44) 

There are a total of 804 cells, 



The formation of the lists and their statistical justi- 

fication will be described later.  The actual grid of cells 

used is shown in Figure 1.  Because finer structure and higher 

density are expected near the cylinder than far away from it, 

three different cell sizes are used in the grid.  The stream 

velocity is in the x-direction* and the axis of the cylinder is 

in the z-direction.  The entire grid is bounded by the plane of 

symmetry (y = 0) and by upstream, downstream, and side boundaries 

far from the cylinder.  It is assumed that collisions outside 

these boundaries will not appreciably affect conditions near 

the cylinder. 

Like the calculation of Haviland and Lavin, this method 

used only one "test particle" which wanders from cell to cell. 

The process begins by generating a test particle at a random 

position along an end or side boundary with the free upstream 

velocity plus a randomly generated thermal velocity. 

The test particle then enters the first cell, and the time 

required to traverse the cell is computed.  The collision rate 

(which depends on the collision model, the test particle veloc- 

ity, the local density and the local velocity distribution) is 

calculated, and a random "time-to-collision" is then drawn from 

* 
A component of stream velocity in the z-direction could also 

be added without destroying symmetry, but this has not been 
done in the first calculations. 

10 



the appropriate distribution.  If this time is greater than 

the time to traverse the cell, no collision occurs and the test 

particle is advanced to the beginning of the next cell.  (The 

traversal of the cell by the test particle clearly provides in- 

formation about the distribution function; this information is 

incorporated into the current estimate for the cell by a process 

to be described later.)  If the time to collision is less than 

the time to the cell wall, a collision will occur.  The test 

particle is then first advanced ballistically to the site of the 

collision, and the information gained from this portion of the 

trajectory is incorporated into the current estimate for the 

cell.  Then a velocity for the "collision partner" is drawn 

randomly from the list (the actual drawing depends on the colli- 

sion model) and a pair of collision parameters (again dependent 

on the collision model) is drawn.  The new velocity of the test 

particle is then calculated.  The list of velocities representing 

the distribution function is not directly affected by the colli- 

sion. 

Using the new velocity, the time to the wall and the time 

to the next collision are recalculated, and the process continues, 

There is no inherent limitation on the number of collisions which 

may occur during one passage through a cell, but multiple colli- 

sions during one passage will be rare due to the long mean free 

path.  The number of updatings (the incorporation of information 

from a straight segment of the test particle trajectory) 

11 



corresponding to a single passage through a cell is one greater 

than the number of collisions occurring during that passage. 

Thus the test particle wanders from cell to cell, occasion- 

ally undergoing a collision which changes its velocity.  Whether 

or not it collides in a particular cell, the fact that it passed 

through contains information about the local density and veloc- 

ity distribution.  This information must be added to the current 

local estimate to produce an improved estimate.  One way to do 

this would be simply to add one more velocity to the list, 

namely the test particle velocity.  The weighting factor would 

be the time the particle spent in the cell during its passage. 

This is necessary in order that particles which remain in the 

cell a long time contribute more to the density than those par- 

ticles which go through very quickly.  This also takes proper 

account of trajectories which barely cut across the corner of 

the cell. 

This procedure would eventually produce lists which would 

be too long for the storage capacity of the computer.  Even if 

this were no problem, the distribution function represented by 

a very long list would not be appreciably changed by the addi- 

tion of one more four-vector, so convergence would be very slow. 

Thus, the actual procedure followed is to let the list grow to 

a maximum length (not more than 22 in this version).  After the 

maximum length has been reached, an entry is deleted every time 

a new entry is added.  Thus an entry remains on the list for 

12 



n passages of the test particle, where n is the length of the 

list.* 

While the deletion of entries from the list destroys some 

of the information, the features of the distribution function 

of greatest interest, e.g., density, mean velocity, temperature 

and certain other higher moments of the distribution, are accu- 

mulated in positions on the list reserved for this purpose. 

Thus the current estimates of mean velocity and density are not 

based merely upon the small collection of four-vectors currently 

on the list, but upon all entries which have been on the list 

since the last time the velocity and density accumulators were 

reset to zero. 

When the test particle strikes the body, it is absorbed 

and re-emitted at the same point according to the model chosen 

to represent the surface.  A procedure often used for analytic 

work, and also used here, is to re-emit a fraction a diffusely, 

and the rest specularly.  Diffuse emission is equivalent to 

having a small hole in the surface at the absorption point, 

behind which is a gas in equilibrium at some temperature T.. 

When a particle is absorbed, a shutter in front of the hole is 

opened and a single particle is allowed to pass outward.  This 

sort of emission follows the usual cosine law, and the velocity 

An alternative representation of the velocity distribution is 
described in the appendix. 
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of the emitted particle is uncorrelated with that of the ab- 

sorbed particle.  Specular reflection simply reverses the normal 

component of velocity.  The fraction a which is emitted diffusely 

is called the accommodation coefficient. 

This surface model, with a near unity, is considered rea- 

sonable for the low densities of interest in this problem.  How- 

ever, it would not be difficult to use a more complicated model 

based on experimental observations. 

When the test particle strikes the plane of symmetry, it 

is reflected specularly.  When it crosses a side or end boundary, 

it is lost.  A new test particle is then generated with position 

and velocity uncorrelated with those of the old test particle. 

A certain fraction of the particles must be generated along the 

side boundary in order to compensate for downstream depletion 

through the sides (which would occur even if the body were ab- 

sent) .  This fraction depends upon the ratio of the stream speed 

to the thermal speed and is calculated at the beginning of the 

computation. 

The velocity of the newly generated test particle is then 

formed by adding a random thermal velocity to the x-directed 

stream velocity.  If a particle is to be generated at an end 

boundary (a result of drawing a rectangular random number greater 

than the fraction to be introduced at the side), it is given a 

random y-coordinate along the upstream or downstream boundary, 

14 



depending on the sign of the x-component of velocity. If it 

is introduced at the side boundary, its y-velocity is always 

negative. 

After a predetermined number of particles have been lost 

through the end and side boundaries, a sample is taken.  Only 

the "cumulative registers" in the individual cells contribute 

to the sampling.  From these cumulative registers are formed 

arrays showing the density (normalized to free-stream density), 

the mean velocity, the thermal velocity spread and the energy 

flow vector (normalized to free-stream energy flow) correspond- 

ing to the center of each cell.  The net momentum and energy 

transfer to the body is also stored, and from this the drag 

coefficient and other aerodynamic quantities can be calculated. 

The contents of various other counters showing the progress of 

the calculation are also printed, e.g., number of collisions, 

average free path between collisions, etc. 

After the sampling has been completed, one could simply 

resume the calculation.  However, if this is done, observations 

on the test particle taken long ago will be weighted equally 

with the latest observations, even though the latest are pre- 

sumably based on an improved estimate of the distribution func- 

tion of the scatterers.  On the other hand, the cumulative 

registers may not be reset to zero, since then all information 

based on earlier calculation would be lost.  The procedure 

15 



adopted here is to decide (perhaps somewhat arbitrarily) the 

relative weights to be attached to prior and new data.  The 

cumulative registers in every cell (but not the numbers of the 

list representing individual particles) are multiplied by some 

number less than unity, such that they will appear to have been 

generated by a smaller number of particles than actually was 

used.  The details of this "downgrading of prior information" 

will be explained later. 

Generally, it is desired to perform the calculation for a 

series of Knudsen numbers at a fixed stream speed.  The calcu- 

lations are performed in decreasing order of Knudsen number, 

always starting with the free molecular case (infinite Knudsen 

number).  At the start, all cells are empty, and there is thus 

no estimate of the distribution function available, and no 

collisions can be calculated.  This poses no difficulty for free 

molecular flow, since the particles do not interact and the 

collision calculations can be bypassed.  When the free molecular 

solution has been found, it serves as a first approximation to 

the solution for the highest finite Knudsen number, etc.  As the 

Knudsen number is lowered, the convergence will become slower, 

since more collisions will be calculated, and eventually limita- 

tions on computer time will force a halt to the computation. 

The program is written to compute collisions by either the 

hard-sphere or the "Maxwellian" (inverse fifth power repulsion) 

16 



molecular model.  A subroutine could also be written to compute 

collisions by some empirical model, if the two simple models 

are considered too unrealistic. 

Provision is made for writing all variable values on a 

tape, so that the computation could be continued at a later 

time after examination of the data. 

The mathematical basis of the calculation is presented in 

Section IV.  When results are available, they will be presented 

in a subsequent report. 

17 



IV.  MATHEMATICAL BASIS OF THE SIMULATION 

In this section the mathematical basis of the various 

parts of the simulation will be presented.  Much of the same 

material is presented somewhat more generally elsewhere, es- 

pecially by Patterson , Haviland , and Lavin .  The treatment 

here is intended as a derivation and explanation of the method 

used in the program and thus follows it closely in order and 

in nomenclature. 

(1)  Dynamics of elastic collisions 

Consider two particles of equal mass and velocities v, 

and V« which collide elastically.  Their velocities after 

collision are v,' and v«■.  Their relative velocity before 

collision is 

vr = vx - v2. (1) 

From conservation of momentum, 

71 + 72 = V + V' (2) 

and from conservation of energy, 

2     2     .2     t2 ,Qv vl  + v2  = V  + V ' (3) 

where v, * |v,|, etc.  Combining equations (2) and (3), we obtain 

18 



V  '  = V 
r    r 

vx' = l/2(vx + v2) + 1/2 vr' (4) 

v2» = l/2(vx + v2) - 1/2 vr'. 

Note that equations (4) are seven scalar equations in nine un- 

knowns. The remaining two unknowns correspond to the direction 

of the new relative velocity.  This depends on the particular 

collision model, on the collision parameters and on v . 

(2)  Collision mechanics for a_ general repulsive 

force law 

Assume a repulsive force K/r per unit mass between the 

two molecules, where r = x, - x«.  Then the equation of motion 

is easily shown to be 

r = 2Kr/rn+1. (5) 

In polar coordinates these equations may be written (see 

Figure 2) 

l/2(r2 + r292) + -^r r1 n = const = 1/2 v 2 (6) n-l r 

r 9 = const = bv , r 

19 
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Figure 2.  The coordinate system in the collision plane 
for a repulsive force law. 

20 



where b is the distance by which they would miss each other if 

no interaction occurred. 

Eliminating time from (6), 

4     „     4Kr5"n 

if = -\ h ~ r 2-2   • (7) 
b2 (n-l)b2v 2 

Introducing the dimensionless coordinate 

W = b/r, (8) 

vr
2 1/n-l 

and letting WQ = b(-^-)      , (9) 

equation (7) takes the form 

$ - V1 - "2 - A- <f >"_1 

Now at the point of closest approach 

dW  dW  dr   Q 
de   dr  ae 

This is the intersection with the apse line, and corresponds to 

the angle <() in Figure 2 and to W = W .  Thus we can integrate 

(10) to get 

21 



Wl r     O w n-1 -1/2 
♦-I' t1 "W2 "A:  (f> dW = ct,(Wo),      (11) o o 

where W (W ) is a positive root of 

1 - W2 - ^  (J-)*   = 0. (12) 
o 

The collision angle (the angle between the new and old relative 

velocities) is then 

x(Wo) = rr - 2(|)(Wo). (13) 

(3)  Maxwellian molecule 

When n = 5, the above equations assume a simple form.  A 

molecule with this force law is called a "Maxwellian" molecule. 

Note that W is a function of the magnitude of the relative 

velocity and of the collision parameter b (the "miss distance") 

Setting n = 5, equation (11) can be integrated.  The colli- 

sion angle then is 

X(Wo> * n 2 4 1/4  K[l/2 - 1/2(1 + -^-r1/2],  (14) 
°        (l+2/WQ

4)i/4 WQ
4     J 

where K(a) is the complete elliptic integral of the first kind: 

22 
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Figure 3.  Collision geometry for hard sphere molecules, 
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rr/2 

K(a) = J    — dy (15) 
. 1   - asm y 

(4) Hard sphere molecule 

The Mhard sphere" molecule is a limiting case of the in- 

verse power molecule.  The scattering angle x then becomes inde- 

pendent of the speeds of the particles, depending only on the 

"miss distance" b.  It is easily seen from the diagram of the 

collision in Figure 3 that 

b = R cos(x/2) (16) 

(5) Calculation of velocities after collision 

For both Maxwellian and hard sphere molecules, it has been 

shown above how to calculate X, the angle between the new and 

old relative velocities, given the magnitude of the relative 

velocity v  and the "miss distance" b (only the latter is re- 

quired for the hard sphere molecule).  In addition to the scatter- 

ing angle X, there is another angle, e, which must be known before 

the collision is completely specified.  It is the angle between 

the plane containing the new and old relative velocities and some 

arbitrary plane containing the old relative velocity.  The range 

of x Is from 0 to rr, while e varies from 0 to 2TT.  The calcula- 

tion of e is very simple for any central force law.  With any 

24 



isotropic scattering model, all values of e from 0 to 2n are 

equally likely. 

Once e and X are known, the new velocities can be computed 

as follows: 

Form a set of three unit vectors z,, zL, and z such that 

z-, is parallel to the old relative velocity. The new relative 

velocity is then 

v ! = v (z, cosX + z0 sinX cose + zL sinX sine)      (17) r    r  1        z o 

The unit vectors z,, zL, and zL may themselves be expressed in 

terms of z , z , and z , and equation (4) may then be used to x   y      z 

compute the new velocities v ' and v2
?.  This applies to any 

scattering model. 

An even easier procedure is available for the hard sphere 

molecule, based on the peculiar fact that in a hard sphere 

collision the direction of v ' is independent of the direction 

of v , and hence may be chosen randomly. 

(6)  Selection of collision parameters 

Suppose b Ä  is the maximum miss distance for which colli- max 

sions are to be calculated.  Then, in the plane containing the 

target particle and normal to the trajectory of the incident 

particle, let a circle of radius 2b   centered at the target max 

25 
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CIRCLE   OF   RADIUS   t>, max CENTERED AT TARGET PARTICLE 
AND NORMAL TO  VELOCITY OF  INCIDENT   PARTICLE 

Figure 4. Geometry of collision parameters for binary 
collisions. Orbit lies in plane containing 
target particle. 

26 



particle be drawn (Figure 4).  If it has been decided that the 

two particles shall collide, then the trajectory of the incident 

particle (in the coordinate system of the target particle) must 

intersect this infinitesimal circle.  Clearly there can be no 

variation in the distribution function over such a small circle, 

so all intersection points are equally likely.  If R, and R2 

are two rectangular* random numbers, a random point inside the 

circle is given by 

e = 2nR1, 

b2 = b2  R0 max 2 

(18) 

This is the procedure for choosing collision parameters. 

(7)  Calculation of collision rates 

In the Monte Carlo scheme, a test molecule enters a cell, 

and we must decide 

(1) whether or not a collision will occur, and 

(2) in the event of a collision, the velocity of 

the collision partner. 

To make these decisions we must know the scattering model, the 

"Rectangular" random numbers are uniformly distributed between 
0 and 1. 
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velocity of the test molecule, and the density and velocity 

distribution of "target" molecules in the cell. 

Now consider two beams of particles of velocities v, and 

v2 which intersect such that their collision parameters are 

within the element area b db de, in the coordinate system of 

the target beam.  Then in a time interval dt, all the particles 

in the incident beam lying within the volume element v  b db dt de 

will collide.  Summing over both collision parameters gives us 

the collision integral: 

X(vx, v2) = J   de J 
max  vr b db (19) 

o      o 

This is the volume per unit time of the incident beam which 

collides with the target beam. 

For the hard sphere, b   is obviously twice the radius of max 

the sphere.  For other collision models, the choice is not ob- 

vious, since collisions can occur for any value of b.  Normally 

we do not wish to waste time computing grazing collisions, so 

we choose b    such that collisions with deflection angle X less max 

than some minimum value (usually about 11 ) will be ignored. 

This generally makes b m     a function of velocity.  For the max " 

Maxwellian molecule, equation (14) shows that it is W  which 

has a fixed maximum value (independent of velocity) for a fixed 

minimum scatter angle.  Thus instead of choosing b = b    Rn, as &      max  1' 
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in (18), it is more convenient to choose W = W  „  R,. o   o max  1 

The collision rate CT(V,) is then obtained by integrating 

over the distribution f(v2) of target particles: 

a(vx) =  J   dv2 f(v2)X(v1, v2). (20) 

all v2 

For hard sphere molecules, the collision rate is easily 

found from equations (19) and (20): 

a(vx) = rrr2       vpf(v2,x) dv2, (21) 

all vx 

where r is the radius of the hard sphere. 

For the Maxwellian molecule, we use equations (9) (with 

n = 5) and equations (19) and 20) to obtain 

CT(72> = P"Wo2max ^^' (22) 

where p(x) = f(v0,x)dv0 is the local number density. 
Jall v± 

5 
It was shown by Haviland  that a value of W     of about 1.5 o max 

gave good results (this corresponded to a cut-off of about 11 

for the scatter angle). 
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(8)  Mean free path 

In the Monte Carlo simulation, the stream speed and the 

Knudsen number are specified, and parameters such as K in 

equation (22) and r in equation (21) are not meaningful.  To 

eliminate these parameters from our equations, we consider the 

mean free path X. 
Q 

Patterson shows that the mean free path for hard spheres 

of radius r is 

X =    2 (23) 
V2nr n 

while for Maxwellian molecules, 

2 kT   1/2 

*   =  "W^   <?> " (24) 
n

        pWo max 

Now, since W     is arbitrary, this gives an arbitrary o max 

mean free path.  Haviland  shows that the "effective mean free 

path" (based on comparisons of viscosity and heat conduction 

with other collision models) is 

(kT}
1/2. (25) 

Aeff   2TT(0.436)P 
V
K 

Thus, if we want to specify a certain mean free path (for com- 

parison with other models) Xeff> 
w© choose 
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kT 1/2 (^-)    = 2n(0.436)pXeff. (26) 

The mean free path in the computation process then is (for the 

Maxwellian molecule) 

4(0.436)X 
X =  * ^ (27) 

rr\T o max 

(9)  Representation of the distribution function of a_ 

finite collection of particles 

In the present Monte Carlo scheme the velocity distribution 

is represented by a set of N "particles" with velocities v. and 

associated weighting factors w..  At a given instant, this is a 

crude representation, but in the long run an ensemble average 

of these collections should give a good approximation to the 

true distribution function. 

Assuming a collection of particles has been "correctly" 

selected, we focus our attention on computation of the collision 

rate, and when necessary, the selection of a collision partner. 

At any instant, our estimate of the distribution function 

is a finite collection of "spikes": 

^st y wi6(7 - V 
f  +(v) =     iKl  (28) est      fl— 

y 
i=l 

w. 
l 
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where 6(v) is the usual Dirac delta function, i.e., 

dv dv dv 6(v) = 1. JJJ    x  y  z 
all v 

Using (28) the collision rate for hard sphere molecules, 

when the test particle has velocity v, is 

N 

) w. Iv - V. L    i1     i' 

■<*> - "^pest1^  (29) 

i=l 

Far away from the body (free stream conditions) we can write 

(23) as 

r2=   1 

XN/2TTPO 

where X is the free stream mean free path, and (2) can then be 

written 
N 

) w. v - V. L    i '     l' 
p^«t     l     i=1 

a(v) = -^t  .  -i-  .   __ (30) 
Or - ^ W \yß 

I«i 
i=l 

This is the collision rate for hard-sphere molecules.  If K  is 

the free stream Knudsen number and d is the body diameter, then 
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X =Knd 

and all that is lacking is a means for estimating the ratio of 

the local density to the free-stream density. This last point 

will be taken up later.  (See equation (40).) 

The collision rate for Maxwellian molecules is independent 

of all velocities (this is the motivation for the Maxwellian 

collision model) and is obtained by combining equations (22), 

(24) and (27): 

w2     (ov\^/2 fkTvl/2 
CT = 0est nWo max (2K) (kf} 

9 (31) 

(^est, .     o ^x     X/2ÜF 
" C p  ;   2(0.436)\     V^kT 

One of the normalizations used in the Monte Carlo calcula- 

tion is to set the mean thermal speed (the root-mean square 

deviation from the mean speed) equal to 3/2.  This is equivalent 

to setting 

kT = 1 (32) 

and when (32) is substituted into (30), the collision rate (per 

"incident" molecule) for Maxwellian molecules becomes 
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w2 

a  =   (^st)      2_Jüax  (33) 
po (0.436)Xeff x/if 

It should be remembered that the "mean free path" is not a well- 

defined quantity for all collision models.  It is readily vis- 

ualized for the hard-sphere models, but for any inverse power 

law molecule (such as the inverse 5th power "Maxwellian") the 

definition is quite arbitrary.  For the Maxwellian molecule, 

the effective mean free path, defined in (25) is used exclusively 

here.  With this choice, for a given Knudsen number and with all 

other parameters identical, the hard sphere and Maxwellian models 

will have the same heat conduction and viscosity in the limit of 

continuum flow.  One must be very careful not to attach any other 

significance to the mean free path or to the "Knudsen number" 

when comparing calculations based on different collision models. 

(10) Deciding when the next collision will occur 

For any binary collision model, the probability that a 

given molecule of velocity v does not suffer a collision in time 

interval t is exp [-a(v)t] where a(v) is the local collision 

rate, assumed constant over the small distance vt.  The proba- 

bility density function for the next collision occurring at t 

is then 

p(tc) = a  exp(-atc). (34) 
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We now (with some foresight) make the transformation 

t  = - - In R. (35) 
c     a 

The probability density function for R is then easily seen to 

be 

q(R) = p(tc)|-5|-j = 1. (36) 

Since the range of t  is 0 < t  < «, the range of R must be 
c t> 

0 < R < 1, and thus R is a "rectangular random number".  Thus 

we can draw a collision time t  by simply drawing a rectangular 

random number and using (35). 

(11) Choice of a_ collision partner 

If the collision time t  turns out to be less than the c 

time t  required to traverse a given cell, then a collision will 
w 

occur in that cell.  It is then necessary to select a collision 

partner, so that the new velocity of the test molecule may be 

computed.  Given the collision model, the local velocity distri- 

bution and the velocity of the incident particle, one can always 

write the distribution function for the velocity of the colli- 

sion partner, conditional on the fact that a collision does 

occur.  One then draws a collision partner from this distribution, 

(This does not in any way alter the distribution function.) 
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Now the probability of the test particle colliding with 

a particle of velocity v. (given that a collision occurs) is 

clearly proportional to the contribution of the velocity v. to 

the total collision rate.  Thus we arrive at a simple rule for 

selecting a collision partner: 

(a) choose a rectangular random number R ; 

(b) choose the velocity v, which satisfies the inequality 

k-1 N k 

y Wjv - vJ<R  Y w, |v - v. |^ 7 w. |v - v. I   (37) 

i=l i=l i=l 

for the hard-sphere molecule; or 

(c) for the Maxwellian molecule, 

k-1 N       k 

y w, < R  y w, < y w. . os) 
_<  l    n _,  l   I_J  i 

i=l i=l      i=l 

By this procedure, the test particle will be scattered in the 

same way as would a particle in the real gas, provided that the 

delta function representation of the velocity distribution is 

an unbiased sample from the true distribution. 

(12) Estimation of the distribution function 

So far we have calculated the behavior of the test particle, 

assuming that the distribution function is correctly represented 
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by a set of weighted delta functions in velocity-space, and 

that some reasonable estimate of the local number density is 

available. 

We now reverse this view and assume that the test particle's 

behavior is representative of particles in the actual gas, i.e., 

that the true distribution function can be deduced by observing 

the test particle for an infinitely long time. 

Now, each cell in the x-y grid can be regarded as a window 

which occasionally observes the test particle.  If on the ith 

passage through the cell in question the test particle has veloc- 

ity v. and spends time w. in traversing the cell, then clearly 

the best estimate (given no other information) that the cell can 

make of the velocity distribution is a sum of delta functions at 

positions v. with areas w..  This is simply all the cell "sees"; 

any other representation would involve some prior notion of the 

form of the distribution function. 

The estimation of the ratio of local number density to 

free-stream number density (hereafter called normalized density) 

must also be based on observations of the test particle.  For 

this estimate we take 

Q 

est (time test particle has spent in given cell)   (39) 
o (time it would have spent in same cell under 
° free stream conditions) 

37 



The numerator in (39) is just the sum of all w..  The denom- 

inator is not so obvious.  One can not use the total test par- 

ticle time, as this would force the average density over the 

x-y grid to be the free-stream density, which is obviously in- 

correct.  Instead, we count the number of particles N . which pi 

have entered at the ends (upstream or downstream) and multiply 

by the expected time that a random upstream particle should 

spend in the given cell.  Letting 1,1  be the integer coor- 

dinates designating the given cell in the grid, our estimate of 

the number density is then 

N 

( Y  w.) L L 
Li       i   x y 

P    *. 1=1 TT 

— N . AÜ ,1 )      IT (40) M
o     pi  x' y       x 

where U is the stream speed, L  and L  are the over-all dimen- 
x     y 

sions of the grid, and A(I ,1 ) is the area of cell (I ,1 ). 

It was mentioned in Part III that the list of delta func- 

tions in a given cell was never allowed to grow beyond some 

ma ximum length, (hereafter called Ij.  However,  V w^ is also 

accumulated in a register for each cell, so that    density is 

estimated from all the times the test particle has entered the 

cell (since the last time the register was reset to zero), not 

just from the current members of the list. 
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Similarly, the moments of the distribution function which 

are of special interest, namely the velocity and energy, are 

accumulated in registers.  These are not involved in the calcu- 

lation of collisions but are printed out whenever a "sample" is 

taken. 

The "normalized velocity array", which is printed in tabu- 

lar form, is simply 
N 

I  Vi 
7(Ix>V - ^r— (41) 

i=l 

where N represents all the particles which have entered the cell 

(I ,1 ), not just the number on the current list.  The normalized x  y 

temperature is 

N    2 

I l-il \ 
T(Ix'V = Hr i^w1 (42) 

y -t L-l 1 

i=l 

The normalized stagnation temperature is 

N       2 

21 I    wivi' 
TS(1«'V "    1=1   N (43) 

(U2+ §) I  w. 
i=l 
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It is also possible to accumulate other moments, if they should 

be of interest. 

(13) Deletion of entries from the lists of delta functions 

Every time the test particle traverses the cell, informa- 

tion is gained about the local distribution function.  This is 

added to the prior information as described in Section (12). 

When the list of delta functions has reached maximum length 

I n   , an entry must be deleted to make room for each new entry. max        J J 

Each entry spends the same time on the list, regardless of its 

weighting factor.* 

(14) Boundary conditions 

When the test particle crosses the symmetry plane x = 0, 

it is reflected specularly, i.e., the signs of y and v  are 

changed. 

When it crosses the end or side boundaries, it is lost and 

a new test particle is generated by the method described in 

Section (15). 

When it strikes the body, it is absorbed, and a new particle 

is emitted at the same point by the procedure described in Sec- 

tion (16) . 

* 
See the alternative procedure described in the Appendix. 
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(15) Generation of new test particles 

a.   generation of position 

When a new test particle is to be introduced, its position 

is chosen at random along the wide or end boundary.  A certain 

fraction (3 must be introduced along the side boundary to com- 

pensate for outward diffusion.  Otherwise, even without the body, 

the density would decrease in going from the upstream end to the 

downstream end.  It is clear that the particles introduced at 

the sides must compensate only for the free-stream diffusion, 

not for particles deflected sidewards by the body.  The side 

boundary is not a rigid wall.  The only approximation caused by 

the nearness of the side boundary is the neglect of collisions 

outside this boundary.  In free-molecular flow, the boundary has 

no effect at all. 

The fraction ß is calculated as follows: 

s 
J^ ■ . flow thru side =  —^     dv|v lexp -[(vx~ U)

2 

(n)    vy<0 

+ vy + vz ] (44) 

J = flow thru ends = — 
L 

372  J 
(TT) 

all v 

dv|v lexp -l[(v - U)2 

x1 

2    2-, 
+ v  + v y    z J 
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Integrating equation (44), 

J --L- L 
S  2^      x 

(45) 

J = L { — exp[-u ] + uerf(u)} 

Thus,   the  fraction of particles entering at  the  sides  is 

P  -   jrW    =   L —9 L       <46> 
l +  2j^    exp(-u^)   +  2A? j^    uerf(u) 

X X 

ß  « -  7-     if  u ^  3. 

1  +  2^ jS.    u 
X 

The position of the new test particle is then determined as 

follows:* 

(1) draw R ; 
R 

(2) if R < ß, introduce at side, a distance ~  L  from n ß  x 

the upstream end; 

(3) if R > ß, introduce at upstream end if velocity is 

positive, downstream if velocity is negative, at 

* 
This procedure will be replaced by a stratified sampling pro- 

cedure, designed to reduce the effect of uneven flow of particles 
across the upstream end. 
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V = —  L y       1-0 V 

The new velocity must be drawn from the free stream veloc- 

ity distribution: 

f(v) = (i)3/2 exp{-[(vv - u)
2 + v 2 + v 2]}.        (47) 

TT A y       z. 

To choose a normal random deviate, we use a very efficient method 
9 

suggested by Kahn: 

(1) choose random numbers R-. , R2; 

(2) let A = -InR  B = -In R2; 

(3) if (A - l)2 > 2B, go back to 1; 
2 

(4) if (A - 1)  <: 2B, accept A, which is then a normal 

deviate, with variance 1. 

(5) Choose at random the sign to be affixed to A. 

To show that this procedure does indeed yield a normal random 

variate, we compute the probability density function for A, 

given that A is accepted.  By Bayes1 rule, 

P[A|(A - I)2 * 2B] - Pf(A - I)2 * 2B|A1P(A) (4g) 

P[(A - 1)Z ^ 2B] 

where P(C|D) denotes the "probability of event C, given event 

DM, and P(C|D) denotes the "probability density function for 

quantity C, given event DM. 
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The denominator of the right side of (48) need not be 

evaluated as it is not a function of A, but only a constant 

which normalizes the density function.  From Section (10) and 

from step (2) above, we recognize that A and B have exponential 

distributions: 

P(B) = exp (-B), P(A) = exp (-A). (49) 

Finally  the  remaining factor  in  (48)   is easily  evaluated as a 

function of A: 

2 p P[(A   -   1)*   ^  2BA]   = exp   (-B)dB 
J p 

II2- Pi0-] (50) 

Combining (48), (49) and (50): 

2 
p[A|(A - l)2 < 2B] = C1 exp [- 

(A^X) ] exp (-A) 

A2 C2 exp (- fL.) (51) 
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This is the desired normal distribution for A, and C2 is the 

usual normalization constant.  This method for generating normal 

variates is 76 percent efficient (i.e., it rejects only 24 per- 

cent of the pairs of rectangular random numbers) and is probably 

the fastest method for most digital computers. 

Since we want the variance of each of the three components 

to be 1/2, we multiply the numbers obtained by Kahn?s method by 

1/V2.  The stream speed U is then added to the x-component of 

velocity. 

The number of particles introduced at the ends and the 

sides (N . and N ., , respectively) are recorded by a counter. 

N  is used to determine when to print out and when to end the 
pi 

computation.  Other counters record the energy and momentum of 

the newly generated particles. 

(16) Interaction of particles with the aerodynamic surface 

This section describes the way in which the test particle 

is re-emitted when it strikes the body.  In the present calcula- 

tion the body is a right circular cylinder, but any body with 

cylindrical symmetry (i.e., no variation in the z-direction) 

could be treated by this method.  Similarly, other surface inter- 

action models could easily be substituted for the present model. 

In the present calculation, a fraction of the particles 

striking the surface are reflected specularly (i.e., the compo- 

nent of velocity normal to the surface is reversed), and the 
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rest are replaced by new particles emitted diffusely at a tem- 

perature such that the thermal speed is S, times the free stream 

thermal speed. 

One may conceptually visualize a small hole in the surface 

at the impact point, behind which is a gas in equilibrium with 

thermal speed S,.  A stream of particles diffuses outward from 

this hole.  We then select at random one of these particles to 

be the new test particle.  Clearly the probability density 

governing this selection must be proportional to the flux of 

particles of a given velocity through the hole.  This flux is 

proportional to the velocity distribution times the velocity 

component normal to the hole. 

Let the normal and the two tangential components of veloc- 

ity be v , v..., v,2, respectively.  The density function for 

particles passing through the hole is then 

P(vn'VtrVt2)   = Vn exp  {ft [vn    +  Vn    +  vt22]}       (52) 
S
b 

where A  is the normalization constant, and v  > 0. 

The normal component is then selected according to the 

following procedure: 

2 -v 
P(vn) = A2 exp [-£-] . 

Sb 
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2 
v 

Let u = 

■7' 
Then the probability density function for u is 

q(u) - P[vn(u)^] 

= A3 exp(-u). 

But we have already seen in Section (10) how to draw from this 

distribution, given a rectangular random number R,. We simply 

take 

u = -InR, 

and the normal component of velocity then becomes 

vn = SM - lnRl (53) 

The two tangential velocity components v., and v 2 could be 

chosen by the method of Section (15).  However, it is more con- 

venient to choose the magnitude of the tangential velocity vector, 

vt = \/Vtl  + Vt2  ' 
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and then, recognizing that all angles in the tangential plane 

are equally likely, choose a random angle between 0 and 2TT . 

Expressed in these polar coordinates, the probability density 

for v. is then 

2 

P(vt) = A4vt exp [- ~y (54) 
Sb 

i.e.. v^ and v  have the same density functions.  Thus we derive 9     t n J 

v.   from two rectangular  random numbers: 

vt  =  Sb v7-   lnR2 

(55) 

<|>   =   2rrR3. 

where it is convenient to measure from a line parallel to the 

cylinder axis.  The new velocity components in x-y-z coordinates 

are then obtained by a straightforward transformation. 

(17) Sampling 

After a pre-assigned number Z     of test particles has * pisam        * 

been generated at the end boundaries, a sample is taken. 

The current values of the arrays described in Section (12) 

equations (39) - (43) are printed in such a way that the flow 

field may be visualized.  The contents of the various counters 

are also printed. 
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Various aerodynamic coefficients are also calculated and 

printed out: 

The drag coefficient CD is the total momentum per cross- 

section area transferred to the cylinder, divided by the total 

momentum per unit area which has entered upstream since the 

previous sampling.  A factor 2 is added to conform to the con- 

vention that CD = 2 if all the stream momentum over the cross 

section of the body is absorbed by the body. 

The energy spread of the entering particles is calculated, 

mainly as a check on the generating process. 

The average free path for all test molecules since the 

previous sampling is also calculated.  This may be expected to 

be somewhat lower than the free-stream mean free path, due to 

increased density in front of the body. 

The energy transfer to the cylinder, normalized by the 

energy that would be absorbed under free stream conditions if 

all particles within the cross section of the cylinder were 

absorbed. 

Finally the three components of force, per entering par- 

ticle, exerted on the cylinder are calculated, mainly as a check 

on statistical fluctuations. 

After the sampling is completed, the calculation may be 

continued at the same or at a lower Knudsen number, until the 

number of particles entering upstream Z . exceeds the next 
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pre-assigned number Z .   .  However, if this process were con- & pigam '        * 

tinued, the quantities which have been accumulated in each cell 

would soon become insensitive to changes in Knudsen number, 

since the amount of information derived from a single passage 

of the test particle would become very small in comparison with 

the information already stored in the cell.  To remedy this 

situation, the following procedure is followed immediately after 

completing a sampling: 

(1) One "pretends" that the latest sample (which 

was actually based on Z     entering particles) J pisam 

was based on only Z   „« particles, where Z . __ < J     pieff ^       '       pieff 

Z     .  (Both these numbers are from lists sup- 
pisam 

plied on data cards.) 

(2) Then Z . and all the current accumulated values 

in the array of cells are multiplied by Z . „„/ J pieii 

Z . pisam 

(3) The new (lower) Z . is now considered to be the 

number of particles upon which all present esti- 

mates are based. 

(4) The calculation then proceeds in the normal way. 

Note that by this procedure we can attach any desired 

weight to information gained prior to the latest sample. 

The lists of individual delta-functions ("particles") 

in each cell are not affected by this procedure. 
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V.   CONCLUSIONS 

Most of the main features of this simulation have been 

described in Part IV.  Results are not yet available; they will 

be presented in subsequent reports.  It is also probable that 

other features will be added to the program to make the model 

gas more realistic and to consider other bodies with cylindrical 

symmetry, such as a flat plate.  It is also planned to perform 

a similar simulation for problems with axial symmetry, such as 

a sphere or a cone.  All such refinements will be described in 

subsequent reports. 
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APPENDIX 

An Alternate Representation of the Velocity Distribution 

In the model described above, the velocity distribution was 

represented in each cell by a fixed number of weighted delta 

functions: 

I 
max 

f(v) = A Y  w. 6(v - v.) (A-l) 

i=l 

The weighting factors w. were necessary to take proper account 

that different entries v. represent different intervals of time 

during which the test particle was observed.  By making w. pro- 

portional to the time the test particle spent in the cell during 

the associated passage, the contribution of each v. to the cur- 

rent estimate is properly accounted for.  Each entry v. remains 

on the list for I   passages of the test particle, after which max ^    & Mr t 

it is deleted to make room for a new entry.  We shall refer to 

this scheme as Version I in the following discussion. 

An alternate representation of the velocity distribution is 

to let all the w. in A-l be unity, so that all the delta func- 

tions have equal area.  If this is done, the length of time 

(number of passages of the test particle) an entry stays on the 

list must be proportional to the time the test particle took to 

traverse the cell.  We refer to this method as Version II. 
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Figure 5.  Schematic comparison of two representations of 
the velocity distribution.  (The histograms were 
not actually calculated»)  The small circles 
indicate spikes which were also present at the 
last sampling. 
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It is clear that in both versions, the contribution made by 

entry v. to the "total representation" is proportional to the 

weighting factor w. times the length of time the entry v. is on 

the list.  (By "total representation" we mean the approximation 

to the true velocity distribution obtained by averaging the 

lists over a long time interval.)  Thus, in the long run, both 

versions are statistically correct representations of f(v). 

However, at a given instant, the lists in the two versions will 

have rather different appearances.  To illustrate this difference, 

Figure 5 shows a hypothetical one-dimensional velocity distribu- 

tion with two peaks, and possible appearances of the lists (con- 

sisting of eight entries) at successive passages of the test 

particle are shown for the two versions.  The "histograms" would 

be calculated by dividing the v-axis into small intervals and 

taking the average of all spikes which fall within an interval. 

Note that in both versions the high velocity peak is represented 

in better detail than the low velocity peak.  This is simply be- 

cause most of the oncoming particles belong to the high-velocity 

peak, so more information is obtained in a given time about that 

part of the distribution. 

It would appear at a given instant that Version II better 

represents the slow particles (i.e., treats all particles 

equally) while Version I favors fast particles, giving a very 

crude representation of the low-velocity peak.  While this is 

true, it is misleading.  In Version II, the "slow" entries must 
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stay on the list a long time (compared to the fast ones) so the 

collection of spikes (usually about four) representing the slow 

particles is not changed often.  In Version I, the instantaneous 

representation of the low velocity peak is very crude (about one 

spike on the average) but the entire membership of the list is 

changed after eight passages of the test particle.  Thus, after 

four complete changes of the list (32 passages) the low-velocity 

peak has been equally well represented in the two versions. 

Thus it is difficult to choose between the models, and the choice 

must depend on the details of the computation.  It is planned to 

try both versions.  Version II may possibly be preferable because 

of its better instantaneous representation of the low velocity 

part of the distribution. 
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