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ABSTRACT 

This report is concerned with two large-scale simulation experiments on 

probabilistic information processing (PIP) systems.   One, a very large and prolonged 

study of four systems, yielded the conclusion that PIP is indeed an efficient philos- 

ophy for information processing systems — at least twice as efficient as its next- 

best competitor, and four times as efficient as a representative of current processing 

techniques.   The second PIP experiment was concerned with whether likelihood 

estimators in PIPs should be allowed to know the state of system opinion; the data 

confirm the suggestion that it might be undesirable.   These experiments required 

the use of an on-line computer system. 

This comparison of PIP and its competitors clearly indicates that PIP is su- 

perior, but does not indicate how PIP compares with theoretically optimal perform- 

ance since no objective model of the data-gene rating process was available.   A 

smaller-scale laboratory experiment is reported that compares PIP with a posterior- 

odds estimation system (POP) in a task sufficiently complex to be difficult for sub- 

jects and yet allowing an objective standard of correct performance.   PIP was far 

superior to POP.   PIP and calculations of optimal performance were roughly com- 

parable, with PIP sometimes more extreme than optimal performance and some- 

times less extreme.   Another small laboratory study, concerned with the develop- 

ment of a response mode in which subjects report on probabilities by making choices 

among bets, is reported.   Its original purpose was to develop a response mode for 

one group in the first PIP experiment, but it proved to be considerably more impor- 

tant than that.  A study is also reported in which the fact of human conservatism in 

information processing, the fact with which PIP is designed to cope, is again demon- 

strated under conditions of realistic complexity that have a military flavor. 

People are shown to be conservative information processors.   To cope with this 

it is appropriate to design information processing systems in which human estimates 

of likelihood ratios are followed by computer aggregation of these into posterior 

distributions by means of Bayes's theorem.   Such procedures extract information 

from data more efficiently than any other way of exploiting human judgment yet 

tried, and produce data roughly comparable with theoretically optimal calculations 

when such calculations are possible. 
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NONCONSERVATIVE PROBABILISTIC 
INFORMATION PROCESSING SYSTEMS 

1 
INTRODUCTION 

This is the final report of Contract AF 19(628)-2823, concerned with research on probabi- 

listic information processing systems.   The research program reported here overlapped in 

time and content with the program of a previous contract, AF 19(604)-7393.   Since originally 

this was planned to be a more extended program than it turned out to be, it has not been possible 

to complete all studies that were begun under the present contract.   Of those completed, not all 

are reported here.   Some are published or in press as journal articles; a list of these is given 

in appendix I.   Others require additional data before they will be ready for publication; this is 

particularly true of two experiments on purchasing information.   Work on these experiments 

will continue under other Air Force sponsorship, and will eventually be reported in journal 

articles. 

The main effort under this contract was concerned with large-scale simulation experiments 

on probabilistic information processing (PIP) systems.   Two experiments were completed during 

the life of the contract.   One, a very large and prolonged study of four processing systems, was 

the heart of the work and is the heart of this report; it is reported in section 2.   The main con- 

clusion to be reached from it is that PIP is indeed an efficient philosophy for designing informa- 

tion processing systems — at least twice as efficient as its next-best competitor, and five times 

as efficient as a system representative of those currently used.   The second PIP experiment, 

reported in section 3, was concerned with a technical problem of PIP design:   whether likelihood 

estimators in PIPs should be allowed to know the state of system opinion.   Theory suggests that 

it might be undesirable, and the data confirm the suggestion. 

The comparison between PIP and its competitors, though it clearly indicates that PIP is 

superior, does not indicate how PIP compares with theoretically optimal performance, since 

no objective model of the data-generating process was available.   Section 4 reports a smaller- 

scale laboratory experiment that compares PIP with a procedure for estimating posterior odds 

(POP) in a task sufficiently complex that it was difficult for subjects and yet allowed an objec- 

tive standard of correct performance; PIP proved to be far superior to POP.   PIP and calcula- 

tions of optimal performance were roughly comparable, with PIP sometimes more and some- 

times less extreme than optimal performance. 



Section 5 reports a small laboratory study concerned with the development of a response 

mode in which subjects report on probabilities by making choices among bets.   The original 

purpose of the study was to develop a response mode for the PEP group (personal processing) 

of the first PIP experiment, but it turned out to be of considerably more general import than 

that. 

Section 6 reports a study initiated under an earlier contract (AF 19(604)-7393), in which 

the fact of human conservatism in information processing, with which PIP is designed to cope, 

is again demonstrated, this time under conditions that are realistically complicated and have a 

military flavor. 

The conclusions from this program are simple.   People are conservative processors of 

information.   Practical information processing systems that cope appropriately with human 

conservatism can be designed so that computers aggregate human estimates of likelihood 

ratios into posterior distributions by means of Bayes's theorem.   Such procedures extract in- 

formation from data more efficiently than does any other way of exploiting human judgment yet 

tried, and produce data roughly comparable with theoretically optimal calculations when such 

calculations are possible. 

2 
THE DESIGN AND EVALUATION OF PROBABILISTIC 

INFORMATION PROCESSING SYSTEMS* 

This section has two parts.   The first is a discussion of the notion of a probabilistic infor- 

mation processing system.   The information in it extensively overlaps the information in 

Edwards (1962, 1963), and is included here both to make this report self-contained and to explain 

the second part of the section.   The second part is the first report of a large experiment com- 

paring a Bayesian information processing system (designed according to the principles presented 

in the first part) with three competitive systems. 

2.1.   INFORMATION PROCESSING AND BAYES'S THEOREM 

The bare outlines of a formal system for processing information and making decisions have 

been apparent for some time.   They start, of course, with a payoff matrix.   In order to obtain 

such a matrix, one must specify acts, one of which will ultimately be executed; states of the 

world that influence the payoffs obtained by means of these acts, exactly one of which will even- 

tually obtain; and a quantitatively specified payoff for each combination of a state and an act. 

If any information is available concerning the probabilities of the various states, it is processed 

by means of Bayes's theorem into a posterior distribution over these states.   This posterior 

*Research reported in this chapter was conducted under Contracts AF 19(628)-2823 and 
AF 19(604)-7393. 



distribution is used to calculate an expected value for each act and the act with the highest ex- 

pected value is chosen. 

The sketch contained in the preceding paragraph raises many problems of implementation, 

most of them unsolved.   If this approach to the process of making optimal decisions is to be 

applied to real-world decision-making situations of substantial importance and complexity, at 

least 13 steps must be taken.   Table I summarizes these tasks; identifies whether they are best 

performed by men, by machines, or by both; and specifies whether, when a system intended to 

make decisions is being designed, these tasks can be performed ahead of time or must be done 

at the time the decision is to be made. 

The experiment reported here deals with steps 10 and 11.   It assumes, therefore, that the 

prior steps have been executed, and it is not primarily concerned with how to go about executing 

subsequent steps.   It is concerned, then, chiefly with the diagnostic part of the problem of 

TABLE I.   A FUNCTIONAL ANALYSIS OF DECISION MAKING 

Function Performed by When Performed 

1. 

2. 

3. 

4. 

7. 

8. 

9. 

Recognize the existence of a decision 
problem 

Identify available acts 

Identify relevant states that determine 
payoff for acts 

Identify the value dimensions to be 
aggregated into the payoff matrix 

Judge the value of each outcome on each 
dimension 

Aggregate value judgments into a composite 
payoff matrix 

Identify information sources relevant to 
discrimination among states 

Collect data from information sources 

Filter data, put into standard format, and 
display to likelihood estimators 

10. Estimate likelihood ratio (or some other 
quantity indicating the impact of the datum 
on the hypothesis) 

11. Aggregate impact estimates into posterior 
distributions 

12. Decide among acts by using principle of 
maximizing expected value 

13. Implement the decision 

Men Ahead of Time 

Men Ahead of Time 

Men Ahead of Time 

Men Ahead of Time 

Men Ahead of Time 

Machines Ahead of Time 

Men Ahead of Time 

Men and Machines Now 

Men and Machines Now 

Men 

Machines 

Machines 

Men and Machines 

Now 

Now 

Now 

Now 



diagnosis and action selection.   The emphasis is on the design of systems intended for diagnosis 

and action selection, in part because such systems are interesting and important and in part be- 

cause they provide a convenient focus for orderly thought about how to make real-world decisions. 

However, these ideas are not only or even primarily appropriate to military command systems. 

They are relevant to any setting in which formal diagnosis is important—medical, legal, gov- 

ernmental, and business settings included.   In all such settings, the decision-maker must come 

to grips with uncertainty.   He typically feels that he has too little information.   Much of the effort 

spent on uncertainty, therefore, has been spent in providing decision-makers with more and 

more information.   Unfortunately, it has become increasingly clear that more information, while 

nice to have, is not the answer all by itself.   Some way of providing better information would be 

ideal, of course—in military settings, a copy of the enemy's battle plans would often be just 

right.   But such information is not often available.   Abundant and often accurate information 

about questions only peripherally related to what the decision-maker really wants to know must 

somehow substitute.   The problem of diagnosis is in large part that of making quantity of infor- 

mation substitute for quality. 

Why is there no well known technology of diagnosis?  A possible answer is that during most 

of the period in which managerial techniques became responsive to scientific and technological 

advance, science was under the misapprehension that uncertainty cannot be measured.   Recent 

recognition that uncertainty can be measured in a way that depends on expert human judgment 

has led to the beginnings of a technology of diagnosis.   This paper first presents that technology 

abstractly and then indicates a possible application to the problem of diagnostic information 

processing in command-and-control systems.   The point of view underlying that technology, 

based on the personalistic view of probability, has come to be called the Bayesian viewpoint. 

Although the Bayesian viewpoint has developed rather recently within mathematical statistics, 

none of the applications considered in this paper are statistical. 

2.1.1.   THE MEASUREMENT OF UNCERTAINTY.   Probabilities quantify uncertainty.   A 

probability, in the definition appropriate to this paper, is simply a number between zero and 

one that represents the extent to which a somewhat idealized person believes a statement to be 

true.   The reason the person is somewhat idealized is that the sum of his probabilities for two 

disjoint (i.e., mutually exclusive) events must equal his probability that either of the events will 

occur.   This additivity is the essence of probability theory; its ramifications extend so far that 

it is quite difficult always to behave consistently with respect to it.   It is convenient, both for 

exposition and as an operational definition of probability, to point out that the probability of 

event A for you is the amount of money that you will pay me now in return for my trustworthy 

promise to pay you one dollar if event A happens.   (A more precise statement would replace 

dollars with a measure of utility.) 



This simple definition makes the idea of probability as applicable to the task of describing 

uncertainty about the next heavyweight champion's identity (a unique event) as it is to the result 

of the flip of a coin (also a unique event, but one for which a relevant relative frequency may be 

more easily identified).   Most of the hypotheses encountered in command-and-control environ- 

ments are about unique states; probabilities can be assigned to these states only by means of a 

definition like that in the preceding paragraph.  Since that definition makes probability a matter 

of opinion, probabilities so defined have come to be called personal probabilities (see Savage, 

1954). 

The hypothesis that the object just seen by BMEWS is a satellite being launched rather than 

a missile is either true or false; it cannot have a meaningful relative frequency (other than zero 

or one).   But a commander's opinion about which it is may well be describable by a personal 

probability other than zero or one.   If so, the mathematically appropriate rule for revising that 

opinion on the basis of new information is Bayes's theorem. 

2.1.2.   BAYES'S THEOREM AND BAYESIAN STATISTICS.   The mathematical definition of 

conditional probability of an event (D) given another hypothesis (H) is: 

P(DlH)=« (1) 

unless P(H) = 0.   Although the events D and H are arbitrary, the initial letters of data and 

hypothesis are suggestive names for them.   The probability P(D D H) is the probability of the 

simultaneous occurrence of two events regarded as one event. 

A little algebra now leads to a basic form of Bayes's theorem: 

p(H|D)=P(DlH)P(H) (2) 
P(D) 

provided P(D) and P(H) are not zero. 

In equation 2, P(H) is the prior probability of some hypothesis H.   Though not so written, it 

is a conditional probability; all probabilities are really conditional.   It is the probability of H 

conditional on all information about H available before D is learned.   Similarly, P(HID) is the 

posterior probability of H conditional on that same background knowledge together with D. 

P(D|H) is formally the probability that the datum D would be observed if the hypothesis H were 

true.   For a set of mutually exclusive and exhaustive hypotheses H., the P(D|H.) represent the 

impact of the datum D on each of the hypotheses.   Obtaining the values of P(Dlrl) for each D and 

H is the key step in applying Bayes's theorem to scientific or military information processing. 

In statistical applications, P(D|H) typically is obtained by computation from a so-called statistical 



model (like the assumption that a set of observations is normally distributed); in the applications 

of Bayes's theorem that are of interest to this report, P(D|H) typically will be obtained from 

direct human judgment. 

The probability P(D) is usually of little direct interest.   Ordinarily it is calculated, or 

eliminated, as follows.   The hypothesis H is one of a list, or partition, of mutually exclusive 

and exhaustive hypotheses H..   Since the definition of probability requires that DP(H. |D) = 
1 i        1 

13P(H.) = 1, equation 2 implies that P(D) = SP(D|H)P(H.).   The choice of the partition H. is of 
i       i i I I 

practical importance but largely arbitrary.   For example, tomorrow will be "fair" or "foul," 

but these two hypotheses can themselves be subdivided and resubdivided.   Equation 2 is true for 

all partitions, but is more useful for some than for others.   In principle, a partition should al- 

ways leave room for some other explanation.   Since it would be difficult to obtain P(Dlrl) for 

the hypothesis that "some other explanation" is the true one, the catch-all hypothesis usually is 

handled in part by studying the situation conditionally on denial of the catch-all and in part by in- 

formal appraisal of whether any of the explicit hypotheses fit the facts well enough to maintain 

this denial. 

A particularly convenient version of Bayes's theorem for some of the applications to be 

discussed in this paper is the odds-likelihood ratio form.   For two hypotheses, H    and H   , and 
A D 

the datum D, Bayes's theorem may be written twice as follows: 

P(D|H   )P(H   ) 
P(HAlD>= PTD)-^ (3) 

P(DlH   )P(H   ) 
P(H

B
ID)

 = —pfor^ <4) 

It is convenient to divide equation 3 by equation 4, which yields 

P(HAlD)     P(D|HA)P(HA) 

P(HBlD) = P(D|HB)P(HB) (5) 

or 

«! = L«0 (6) 

In equation 6, Q. , the prior odds, is simply the ratio of the prior probability of H    to that of 

H   .   The ratio L = P(DlH   )/P(DlH   ) is called the likelihood ratio.   The word odds here means 

exactly what it does at the racetrack, and the notion of likelihood ratio is just what it was in 

classical statistics.   Equation 6 is as valid and appropriate a way of writing Bayes's theorem 

as is equation 2 — and in some applications is considerably more convenient. 

It is worthwhile to notice that in equation 6 multiplication of P(D|H   ) and P(DIH  ) by any 
A i > 

constant would make no difference to the posterior odds.   To put it another way, P(D|H) need 



be defined only up to a multiplicative constant.   This fact, which is of far-reaching importance 

for all applications of Bayes's theorem, is known as the likelihood principle (for a fuller dis- 

cussion, see Edwards, Lindman. and Savage, 1963).   Only likelihood ratios, not values of P(D|H) 

itself, are required in applications of Bayes's theorem.   This fact is the basis for the procedure 

used by the PIP group in the experiments reported in sections 2 and 3. 

Resistance to application of Bayes's theorem in scientific contexts has focused on the dif- 

ficulty of estimating P(H), the prior probability of the hypothesis before the data have been 

collected.   Without examining the reasons why Bayesian statisticians consider that resistance 

to be misguided, for the purpose of this paper it is enough to point out that in almost any military 

information processing system, the process of interpreting incoming information is continuous 

and progressive.   Whatever the initial probabilities that the system may have entertained at the 

beginning of the day, week, or month over which observations are being taken, those probabilities 

will very quickly (e.g., in five minutes) be swamped by the mass of incoming information, and 

so can be chosen arbitrarily (so long as the arbitrary choices are not too close to 0 or 1).   In 

any application of equation 2 or equation 3 to the design of information processing systems, P(H) 

will simply be the output of the previous calculation, P(H ID).   Since P(D) can be treated simply 

as a normalizing constant, it follows that the only information that must be supplied in order to 

use equation 2 or equation 3 in such a cumulative information processing system is P(D|H). 

2.1.3.   BAYES'S THEOREM IN DIAGNOSTIC INFORMATION PROCESSING.   There are two 

ways of substituting quantity for quality of data in the diagnostic processing of information. 

The cumulative character of Bayes's theorem makes it easily applicable to both.   If the data 

are inherently poor so that repeated observations are used to refine estimates, each new ob- 

servation can simply be processed as it arrives, with the output of the previous calculation being 

used as the necessary prior probability.   The result of each calculation will be the current 

posterior distribution over the hypotheses with which the inference is concerned, based on all 

the data so far available.   Exactly the same statement applies to inference from several lines 

of evidence.   It makes no difference in the use of Bayes's theorem whether one item of informa- 

tion is qualitatively like or unlike the preceding item; in either case it can be used to modify 

the current distribution into a new one that represents the appropriate impact of the new infor- 

mation, when it is combined with the old, on the hypothesis under consideration.   The usefulness 

of Bayes's theorem for information processing, then, arises because it is formally an optimal 

way of aggregating information, whether from one source or from many. 

That the items of information reaching a system may be correlated rather than independent 

has not been explicitly taken into account in the preceding discussion.   The topic is important 

for many applications and difficult; this discussion must be sketchy and incomplete.   A correla- 

tion between two items of information ordinarily implies that the two are related to some under- 



lying fact or process that produces them both.   From the point of view of Bayes's theorem, two 

different cases can be distinguished.   One, much the more common, occurs when the underlying 

fact is the truth of one of the hypotheses being considered.   Thus cancellation of all furloughs 

in the Russian army and recall of all Russian diplomats stationed in the United States "for con- 

sultations" are events that one well might expect to see more often simultaneously than at un- 

related times, and yet their separate impacts on the hypothesis that Russia is about to start a 

war are not in any sense diminished by that correlation.   Formally, the impact of each is given 

by a number of the form P(D|H), and in this example P(DjH,D2)= PCD^H), and P(D   IH, D ) = 

P(D   I H).   In this case, it is entirely appropriate to treat the data as independent, even though 

they are correlated. 

The other and more difficult case arises when the correlation between D. and D„ reflects 

something other than the truth of one of the hypotheses being considered.   That the suspect in a 

murder investigation is left-handed and that the fatal blow was delivered frombehindand to the left 

jointly have much more influence on the posterior probability of interest than might be expected 

from either item of information considered alone.   The correlation reflects the fact that left- 

handed people find it easier to strike from the left than do right-handed people.   In the example, 

the impact of the two items of information taken together is greater than that of both taken se- 

parately; it is also possible to construct examples in which the two items taken together have 

less impact, not more, than both taken separately.   If observations are not independent in this 

way, then the effect of the nth item of information must be considered in the light of all the pre- 

ceding information with which it interacts.  Formally, the number that must be supplied to Bayes's 

theorem is not P(D   |H) but P(D   |H; D    ,, D    „, . . . D ).   When such a lack of independence 
n n n-1      n-^ 1 

among observations must be taken seriously, provision must be made to ensure that the nature 

of the dependence is taken into account — usually by human judgment.   Fortunately, it often will 

be possible to ignore such dependencies, especially when one is interpreting data obtained from 

technical sensors like BMEWS and MIDAS or similarly quantitative data from nonmilitary 

sources. 

Bayes's theorem integrates the output from different sources of information into a single, 

coherent, orderly picture of what is happening.   If the question of interest to the system is an 

abstract one, such as whether or not the system is being attacked, and if so by whom, that picture 

will be correspondingly abstract, perhaps as abstract as a table of numbers, a bar graph, or a 

pie diagram.   If the question of interest is more concrete, such as the current location of a 

missile-launching submarine, the display can be similarly more concrete; a map showing an 

ellipse within which the system is 90 percent sure the sub is located might be appropriate (Herman, 

Ornstein, & Bahrick, 1964).   When the question is abstract, displaying some of the information 

on which the system's opinion is based, as well as displaying that opinion itself, may help 

intuition. 
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In addition to the central advantage of being able to accept and combine data from as many 

different sources as seems desirable, Bayes's theorem has several peripheral advantages.   One 

is that it automatically screens information for relevance, filtering out noise, retaining useful 

information, and automatically weighting each item according to its relevance and importance. 

If the probability of a datum given any hypothesis with which the system is concerned is exactly 

equal to its probability given by any other hypothesis, that datum is irrelevant to the system's 

posterior opinion, which will then be exactly the same as its prior opinion.   The extent to which 

the likelihood ratio P(D| H1)/P(DI H„) differs from one is a measure of the effectiveness of D in 

changing opinion about the relative probabilities of H   and H_.   A second peripheral advantage 

is that Bayesian processing of information requires a minimum of record-keeping.   Once a datum 

has been processed by equation 2, or 6, or some other version of Bayes's theorem, it may be 

discarded (so far as its use in Bayes's theorem is concerned); its impact on the hypotheses with 

which the system is concerned has been registered, and it is not required for any future calcula- 

tions.   As this statement suggests, the order in which different data are processed makes no 

difference to their impact on system opinion; the posterior opinion obtained by observing first 

D   and then D„ is exactly the same as that obtained by observing first D„ and then D...   (These 

statements require modification if violations of conditional independence may occur.)   A third 

peripheral advantage is that the output of the system is exactly what is required for choosing a 

course of action on the basis of maximizing expected value; this report returns to this point 

much later. 

No elementary discussion of Bayesian statistics that highlights its relevance to processing 

qualitative information can be found, though Edwards (1962) has discussed the topic briefly.   In 

1962 Herman et al. presented an example of a military application and Dodson (1961) speculated 

on the topic.   The only available elementary presentations of Bayesian statistics are two intro- 

ductory texts by Schlaifer (1959, 1961) which discuss it from the point of view of applications to 

business problems.   There is a small but rapidly growing literature in the statistical journals, 

but the only technically sophisticated book on the topic, by Raiffa and Schlaifer (1961), is a 

compendium of Bayesian distribution theory combined with an extensive discussion of Bayesian 

statistics applied to problems where economic issues are important.   An expository paper by 

Edwards, Lindman, and Savage (1963) is intended primarily for psychologists and concerned 

primarily with the Bayesian version of null-hypothesis testing.   The present report covers some 

of the same ground as papers by Edwards (1963) and Edwards and Phillips (1964). 

2.1.4.   A PROBABILISTIC INFORMATION-PROCESSING SYSTEM.   Enough has been said 

above to specify abstractly how Bayes's theorem and Bayesian statistics could be used to process 

fallible military information.   But it is instructive to consider a block diagram that might repre- 

sent a system intended for that purpose.   For specificity, a much-simplified version of a part 

of the task of the NORAD COC will be used as an example. 



As has already been indicated, the prior probability for each Bayesian calculation after the 

first in any probabilistic information processing system (PIP) will simply be the output of the 

next previous calculation, and so need not be supplied to the system.   Therefore the only number 

that must be supplied in order to permit application of equation 2 are the P(DIH), likelihood 

ratios, or similar numbers.   The heart of the problem of designing an effective PIP is the prob- 

lem of obtaining these numbers for the data entering the system.   Sometimes such numbers can 

be calculated, either on the basis of past experience with similar information, or on the basis 

of some model of the information-gathering process, or both.   More often, however, such "objec- 

tive" procedures are unlikely to be acceptable.   Calculation might be entirely acceptable as a 

basis for inferring the probability that nothing is actually there when BMEWS reports 30 events 

with low reliability and one event with high reliability.   But calculation alone is clearly inadequate 

to assess the probability that Russia would have launched 25 reconnaissance satellites in the 

last three days if she planned to attack within the next hour.  Interpretation of such information 

is obviously a matter for human judgment; PIP is a proposal about how to obtain such judgments 

systematically and how to use them once obtained.   Specifically, the hypothesis underlying PIP 

is that men can serve as transducers for P(D|H); that is, they can be taught to estimate such 

probabilities (or rather, quantities related to them) with accuracy sufficient to serve as a basis 

for making decisions even when the probabilities cannot be calculated by any other procedure. 

In effect, just such judgments must be made in any deterministic system.   How can one 

judge the impact an item of information has on opinion about the truth of a hypothesis without 

asking, implicitly or explicitly, such questions as "How likely is it that I would see D if H were 

true ? And how likely is it that I would see D if H were not true ?"   PIP in effect fragments the 

task of interpreting data into small, manageable pieces.   The system must be provided with one 

number, P(D|H) or a close relative, for each item of data and nearly each hypothesis considered. 

Actually, if likelihood ratios are being estimated when five hypotheses are being considered and 

100 items of data reach the system, 400 likelihood ratios are needed.   Making each such estimate, 

then, is a relatively small and hopefully a manageable task.   It is, of course, a task for experts. 

They must be expert about the source of data, expert about the hypotheses being considered, and 

sufficiently expert about likelihood ratios that they know what it means to estimate one.   It is an 

interesting question for experimental study whether one expert on a given source should process 

all data from that source, estimating its likelihood ratio for each pair of hypotheses with which 

the system is concerned, or whether an expert on a given hypothesis should process all the data 

reaching the system, judging its probability given that hypothesis, or whether some intermediate 

organizational principle might be better than either extreme.   This question is an instance of a 

far more general question, pervasive in modern theory of organizations, about whether an or- 

ganization should be structured around its inputs, around its outputs, or in some compromise 

configuration. 
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Once it is assumed that likelihood ratios will be supplied to the system by means of human 

judgment, the details of a sample PIP are easy to work out.   Figure 1 presents an appropriate 

block diagram, one of many that might be considered. 

The first group of human operators exists only to filter out obviously irrelevant information 

from the sensor returns, to put what is left into standard and economical format for further 

processing, and in general to perform low-level data-processing functions of a type familiar in 

present-day systems.   There is no requirement that these functions be performed by men, if 

appropriate automatic techniques can be used instead.   Nor should these functions be performed 

within the ultimate information processing system.   In fact, filtering for irrelevancy should be 

performed at the sensor site in most instances, in order to reduce the demands on information- 

transmission facilities. 

The second group of operators, called likelihood ratio estimators in figure 1, are the heart 

of the system.   They provide the Bayesian processor (which in all probability would be a large 

digital computer) with likelihood ratios, or in some systems P(D|H), for each incoming item of 

information and for each hypothesis with which the system is concerned.   Of course, it is not 

necessary that they provide these judgments in explicitly numerical form; any form from which 

the computer can perform Bayesian calculations is perfectly acceptable.   Identification of the 

best techniques for extracting such probabilities from operators is an important researchable 

problem, and some suggestive research is available. 
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FIGURE 1.   A PIP FOR THREAT EVALUATION 
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Estimates of likelihood ratios or P(D|H), perhaps accompanied by specific information 

from the sensor itself for some PIPs, are the inputs to the Bayesian processor.   The output of 

that block is a display of the system's current opinion about the hypotheses with which it is con- 

cerned— the processed display of figure 1.  That display may be any of a number of things, de- 

pending on the natures of the system and of the hypotheses to be considered.   If the set of hypo- 

theses is finite and small, bar diagrams, pie diagrams, or direct displays of numbers are 

appropriate.   If the set of hypotheses is a continuous, one-dimensional distribution, an ordinary 

graph is likely to be appropriate.   If it is a two-dimensional distribution (location of submarines, 

computed impact areas), one or more contour lines of equal probability would be appropriate 

displays.   Choice of the best display for a particular kind of hypothesis is clearly also a re- 

searchable problem. 

The processed display is looked at by the likelihood estimators, so that they can interpret 

each new item of information in the light of the system's current opinion.   This feedback loop 

makes it possible for the system to be unstable if the estimators pay more attention to the trend 

of the system's current opinion than to the specific content of the new information coming in. 

If so, breaking the feedback loop by preventing the likelihood estimators from looking at the 

processed display is perfectly feasible.   In principle, they need only to observe D and to know 

what hypotheses the system is considering to estimate P(DIH) or likelihood ratios.  That is 

why figure 1 has a question mark above that feedback loop. 

The other person who looks at the processed display is an officer of long experience, desig- 

nated in figure 1 as the commander.   It is assumed that he is expert about enemy intentions, 

tactics, and capabilities.   If the system's opinions are patently absurd in the light of what he 

knows about the enemy, he can tell the Bayesian processor so and thus exercise a sort of veto 

power over the system's opinion. It is hoped, of course, that this veto power will seldom be used, if 

ever.   Another way of thinking about this man would be to put him into the system as another 

source of information.   In practice, his function in the system may be difficult or impossible to 

distinguish from the function of the intelligence system's input, and perhaps he should be a part 

of that block.   At any rate, there must be some arrangement for overall human supervision of 

the system's opinions; he is it. 

The output from the system might be the processed display itself, repeated to a location in 

which action selection is performed. Or it might be a set of decisions made by the commander. 

Or in very advanced systems, it might be a set of decisions or recommendations generated by 

the Bayesian processor. The question of exactly what the output is need not be important to the 

evaluation of a PIP. If the system makes if possible to keep close track of the hypotheses with 

which it is concerned, any action-selection technique based on its outputs is bound to reflect its 

effectiveness in processing information — though some reflections may make less use of the 
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special properties of a probabilistic system than others.   At any rate, action selection need not 

be explicitly studied in research on PIP; it is a separable problem. 

2.1.5.   ARTICULATION OF DIAGNOSIS WITH ACTION SELECTION.   For most risky deci- 

sions, the only formal principle that deserves to be taken seriously for the selection of an opti- 

mal act is the principle of maximizing expected value.   (The minimax principle frequently en- 

countered in the theory of games is so absurdly conservative, and therefore often so severely 

suboptimal, that it does not deserve serious consideration as a basis for real-life decisions 

even in games against a hostile opponent except under very unusual circumstances of a sort not 

worth examining here.   For amplification of this controversial assertion, see Edwards, 1954.) 

Four kinds of information must be available in order to apply the principle of maximizing ex- 

pected value.   First, a well-defined set or list of acts to be considered must be specified.   Sec- 

ondly, an exhaustive set of well-defined mutually exclusive states of the world (hypotheses, 

diagnoses) must be specified.   Thirdly, for each combination of a state and an act, a single num- 

ber called a payoff must be specified; that payoff is simply the decision maker's judgment re- 

garding the attractiveness of the particular combination of an act and a state.   Fourthly, the 

probability of each state must be specified.   If w.. is the utility associated with the jth act when 

the ith state in fact obtains, then the expected value of the jth act is defined as 

EV. = 2P(H. lD)w.. (7) 
J      i        i ij 

If the set of states being considered is continuous, the equation is essentially the same; the 

summation over the H. is replaced by an integration.   Equation 7 is nothing more than the equa- 

tion for an average, and the principle of maximizing expected value says nothing more compli- 

cated than that you should calculate the average payoff for each act and choose the act for which 

the average payoff is largest. 

Equation 7 makes obvious the close relationship between the output of a PIP and the task of 

action selection.   PIP considers the list of hypotheses relevant to selecting action, and it con- 

tinuously provides as its output the probabilities of each of these hypotheses, on the basis of the 

data at hand.   These probabilities can be combined with payoffs for each of a list of possible 

acts, and thus the best act can be identified. 

Unfortunately, this formally simple picture conceals immense practical complexity.   First, 

PIP cannot invent hypotheses, it can only evaluate their probabilities.   The hypotheses it should 

consider must be supplied to it, presumably by unaided human judgment.   Secondly, no mecha- 

nism other than unaided human judgment can invent acts to be considered.   Of course, these 

problems of invention also exist with current systems; in these two respects, PIP is neither 

better nor worse than they.   The third and most difficult practical problem is the determination 

of the entries in the payoff matrix.   In typical cases, the problem is not one of too few numbers, 
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but rather of too many.   In every interesting real-life case, the payoff for any particular com- 

bination of act and state will be complex and multidimensional, much more easily represented 

by many numbers than by one.   It is a matter of judgment to reduce those many numbers to one, 

but the judgment need not be unaided.   Yntema and Torgerson (1961) showed that a simple linear 

combination of the dimensions, which neglects their interaction, often will nevertheless be en- 

tirely adequate for the purpose of selecting action.   When it applies, this simplification can 

make the task of filling out a payoff matrix relatively tractable. 

The problem of action selection needs much research.   Fortunately, that research can be 

separated substantially from research on diagnosis.   For that reason, this report concentrates 

on diagnosis, and considers action selection only in a derived and secondary way.   Still, it would 

be sterile to study diagnosis without keeping always in mind that diagnosis by itself is futile.   It 

is worthwhile to figure out what is going on in the environment only if, at least under some cir- 

cumstances, one contemplates doing something and needs the diagnosis in order to decide what 

to do. 

2.1.6.   RESEARCH REQUIREMENTS FOR PIPs.   The research required to translate the 

general idea of PIP into a specific working system is large in amount and diverse in topic.   It 

ranges from basic laboratory and theoretical research intended to advance the states of several 

arts on which the designer of a semiautomatic probabilistic system must draw, to applied simu- 

lation work intended to establish that such a system will work. 

Some previous experiments bear on aspects of the idea.   Robinson (1962) showed that in a 

very simple task in which subjects were required to track probabilities displayed by means of 

two flashing lights, they performed very well, almost as well as an optimal machine.   Similarly, 

Shuford (1961) showed that in a simple static situation subjects are able to estimate relative fre- 

quencies very accurately.   A review of much research on choices among bets has led Edwards 

(1954, and 1961, 1962b) to conclude that men perceive displayed probabilities very accurately, but 

fail to use them properly when making decisions.   Among the most important reasons for this 

failure seems to be that men consistently prefer some probabilities to others and are willing 

to pay undue amounts to gamble at their preferred probabilities (see Edwards, 1953, 1954a, 

1954b).   This suggests the hypothesis that men should not be permitted to combine probabilities 

with payoffs in selecting action if that function can be automated. 

Phillips, Hays, and Edwards (1966) have performed an experiment in which untrained college 

students were required to estimate the posterior probabilities of four mutually exclusive and 

exhaustive hypotheses on the basis of direct statements of prior probabilities, displayed evidence, 

and displayed numerical values of P(DIH).   All subjects produced estimates that were far indeed 

from the appropriate Bayesian posterior probabilities.   Furthermore, all deviations from these 
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theoretical values were of the same general kind:   subjects were unable to extract from the in- 

formation all the certainty that was in it.   Thus, when Bayes's theorem indicates that an estimate 

of 0.95 would be appropriate, subjects will produce estimates in the range 0.50-0.75; when 0.01 

is right, the estimate may be 0.15.   Phillips, Hays, and Edwards conclude that subjects are un- 

able to extract from information all the impact on opinion that is in it, regardless of whether 

that information changes opinion in the direction of greater or less certainty.   The conclusion 

implies that gains can be made by automating the task of reaching conclusions from uncertain 

evidence.   (Furthermore, once P(D|H) is available, it makes no sense not to automate the re- 

mainder of the task of finding posterior probabilities; only arithmetic is required, and arithmetic 

should never be done by men when there is a machine handy to do it.) 

The Phillips-Hays-Edwards experiment is very complex, and it seemed possible that the 

conclusion might be different for simpler tasks.   So Phillips and Edwards (1966) performed the 

simplest possible experiment that still contains the essence of Bayes's theorem.   They told sub- 

jects that each of several bags contained 1000 poker chips.   Some bags contained Np blue and 

N(l - p) red chips, where N is the number of chips in the bag and p is the proportion of blue 

chips; other bags contained N(l - p) blue and Np red chips.   For example, five bags were 60-40 

blue to red, five others were 40-60.   A bag was randomly chosen, chips were drawn from it 

randomly and replaced, and after each draw the subjects were required to estimate the posterior 

probability that the bag was one in which blue chips exceeded red.   In this very special case 

only the difference between the number of blue and the number of red chips drawn is important 

in modifying the prior probability that the true proportion of blue chips in the bag is p into the 

posterior probability of that hypothesis.   Thus the task is exceedingly simple.   Nevertheless, 

subjects performed little better than they did on the task of the Phillips-Hays-Edwards experi- 

ment, and made exactly the same kinds of responses as in that experiment.   Even values of the 

difference between number of red and number of blue chips as large as 25, enough to change a 

prior probability of 0.5 into a Bayesian posterior probability greater than 0.9999, induced sub- 

jects to make estimates in the region 0.80-0.90. 

Phillips and Edwards also found that various kinds of rewards for accurate probability esti- 

mation do improve performance over time, but not enough to eliminate the systematic failure to 

extract as much certainty as the data permit.   Similarly, they compared posterior estimates ex- 

pressed in probability with those expressed in odds.   Estimates expressed as probabilities were 

more extreme when the response device displayed the probabilities with log odds rather than 

linear spacing.   Odds estimates expressed either verbally or by setting a pointer on a log scale 

were more extreme than both kinds of probability estimates, but still less extreme than Bayes's 

theorem.   The same kinds of findings appear in experiments conducted at the University of 

Colorado by Cameron Peterson and his associates (1965a, 1965b), and in much more complex 
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and system-like experiments performed in the Laboratory of Aviation Psychology at Ohio State 

University by Feallock and Briggs (1963), Southard, Schum, and Briggs (1964a, 1964b), and 

Schum, Goldstein and Southard (1966). 

A number of experiments and studies bear more directly on Bayesian systems.   By far the 

most extensive study of Bayesian systems to date is that now in progress at the Laboratory of 

Aviation Psychology by Feallock, Briggs, Southard, Schum and their colleagues. 

The major differences between the kind of system they study and the kind discussed here is 

that they are interested in situations that repeat themselves often enough that it is possible to 

gather relative frequencies relating D to H for each D and H.   In such situations there is no need 

for an operator to estimate P(D|H), since the relative frequencies are the estimates.   Clearly 

objective counts, when available, are preferable to subjective estimates; equally clearly such 

objective counts of repeated situations are unlikely to be widely available in military command 

and control settings.   They are, however, widely available in medical diagnosis situations; there 

is some reason to argue that the results being obtained by Briggs and his colleagues are most 

directly relevant to medical diagnostic problems.   Those results, incidentally, are highly favor- 

able to Bayesian systems, though relatively complex and far too extensive to review here. 

Both Ornstein, Herman, and their collaborators at North American Aviation in Columbus 

and Eady and his collaborators at Naval Electronics Laboratory, San Diego, have been concerned 

with Bayesian systems in anti-submarine warfare settings.  The details are classified, but they 

too are producing results highly favorable to Bayesian systems.   Finally, Kaplan, Newman, and 

Lichtenstein at System Development Corporation in Santa Monica have studied very simplified 

situations in which subjects estimate P(D|H) or P(H|D).   They have confirmed that posterior 

probability estimates are conservative, and have found some data that suggests Bayesian calcu- 

lations based on estimates of P(D|H) produce better values of P(HID).   But their data are equiv- 

ocal, and they have a number of reservations about their own techniques (see Kaplan and Newman, 

1963, and Kaplan, Lichtenstein, and Newman, 1963). 

Research on the PIP idea is in progress in several other industrial, military, and academic 

settings. 

2.2.   EVALUATION OF AN EXPERIMENTAL PIP 

The remainder of this chapter reports an experiment intended to evaluate the idea of PIP. 

What constitutes good performance of a diagnostic system?  The question is trickier than 

it appears.   A diagnostic system is not directly responsible for making decisions, so it is not 

appropriate to apply the criterion that the system should make what later turns out to be the 

correct decision.   (Nor would it be wise to apply such a criterion even if it were appropriate. 
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What action should be taken depends not only on diagnosis, but also on what is at stake.   The 

diagnostic aspects of a decision-making system should be evaluated independently of evaluation 

of its methods for combining diagnosis with judged or measured values in order to select action.) 

The next most obvious thought is that a doctor who says "Chicken pox" when looking at a case 

of chicken pox is doing a better job of diagnosis than one  who looks at the same case and says 

"Measles."   A diagnostic system should come up with the objectively correct diagnosis. 

This idea has an appealing simplicity.   Moreover, it is readily translatable into language 

appropriate for an explicitly probabilistic system like PIP:   that system is best which gives the 

highest posterior probability for the hypothesis that eventually turns out to be correct. 

But what does "objectively correct" or "eventually turns out to be correct" mean?   How 

can one know that it is actually a case of chicken pox ?   This can mean only one or the other or 

both of two things.   Either there is some other diagnostic system, presumably more effective 

than the one being studied, whose diagnoses are being taken as the criterion, or else later, more 

definitive information is obtainable that, for some diagnostic system or systems we are willing 

to trust, leaves the proper diagnosis beyond reasonable doubt.   That is, in the last analysis all 

evaluation of diagnoses reduces to agreement between different systems given the same infor- 

mation, or agreement between diagnoses based on earlier and on later information, or both. 

Moreover, this criterion of "truth" by agreement with the ultimate diagnosis is slippery. 

Consider a situation in which the subject must determine which of two bookbags, one containing 

70 percent red and 30 percent blue poker chips and the other containing 30 percent red and 70 

percent blue, has been selected by tossing a fair coin.   Actually the predominantly red bookbag 

was chosen, but of the first six chips sampled (with replacement) five were blue and one was 

red.   One subject, given the data, estimates that the probability that the predominantly red book- 

bag was chosen is 0.45, the other estimates that it is 0.05.   Bayes's theorem would say that it 

is 0.03.   Which subject is doing the more effective job of diagnosis?  The 0.45 subject assigns 

higher probability to the truth, and yet few would argue that he is in fact making better use of 

the data available to him. 

A more nearly sensible criterion would assert that that diagnostic system performs best 

which, in situations in which all systems end up in agreement about the right diagnosis, reaches 

that diagnosis on the basis of least information — provided that that system finds it no more 

difficult to change its opinions in response to a change in the trend of the data than do its 

competitors. 

This criterion can be applied in situations in which definitive information is eventually 

available, and in situations in which it is not.   But situations in which the evaluator establishes 

by fiat the truth of some hypothesis, and then evaluates diagnostic systems by the extent of 
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their agreement with his fiat, present a special problem.   When the true-by-fiat hypothesis is 

linked with the data by means of some objectively specified and well-understood data-generating 

process (as in the bookbag and poker chip example), only the possibility of bad luck in the oper- 

ation of that process need be worried about.   But in the far more numerous and more interesting 

cases in which the data cannot be generated by an objectively specified data-generating process, 

the link that the evaluator supposes to operate between the true-by-fiat hypothesis and the data 

may not exist for any eyes but his — or, worse yet, may exist only in the opinions of those whose 

biases, theories, or other opinions happen to agree with those of the evaluator.   This argument 

suggests that in the absence of an objectively specifiable data-generating process the criterion 

of agreement with the "truth" is a potentially misleading criterion of performance for judging 

a diagnostic system.   Comparison of the diagnostic efficiency of competitive systems that even- 

tually agree about which hypothesis is favored by the evidence is a more humble but less prob- 

lematic and far more often applicable method for evaluating diagnostic systems. 

These considerations interacted with the basic idea of PIP to specify the broad outlines of 

the experiment.   We sought a situation of great complexity, in which data that could not be asso- 

ciated with any quantitative model of the data-generating process could be obtained in quantity. 

The data should be quite inconclusive; any diagnostic system worthy of the name should do well 

with good data, so to tell good systems from bad ones you should study how they do with poor 

data.   We did not want to spend large amounts of effort simulating information-gathering sys- 

tems; we were interested only in processing information.   To avoid troubles with lack of condi- 

tional independence, we wanted successive observations to be relatively unrelated to one 

another; this implied that we wanted each scenario (sequence of data) to cover only a short 

period of simulated time.   We wanted interpretation of data to depend on expert judgment — yet 

we could not use pre-existing experts, since in that case we could not control what they knew. 

Finally, we wanted to compare the best competitive systems we could dream up with PIP.   We 

ended up studying three competitive systems, POP, PEP, and PUP (a small experiment added 

for comparison with PEP).   We devoted at least as much attention to the design of each of them 

as to the design of PIP, in the attempt to ensure that each was the best representative of its 

philosophy of processing information that we could devise.   The design of PEP, which was in- 

tended to be the nearest we could come to the way diagnostic information processing is done 

now, gave us a lot of trouble, and required almost six months of pretesting. 

2.2.1.   METHOD 

2.2.1.1.   Setting and Hypotheses.   The experiment was set in 1975.   The world of 1975 is 

much simplified compared with that of 1964, when the experiment was begun.   Only six nations 

play significant political and military roles in it — China, Japan, North America, Russia, the 
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United Arab Republic, and the United Confederation of European States (UCES).   China is an 

aggressively expansionistic Stalinist dictatorship.   Russia has Stalinist and more peaceful fac- 

tions; the latter currently but uneasily rule, but Premier Balinin has worked with both factions 

in the past.   Russia and China fought a border war in 1969; China won, and took some Mongolian 

territory.   Informal communications exist between Russian Stalinists and the Chinese govern- 

ment.   During the 1969 war, the former Russian satellites joined with the rest of Europe (except 

Scandinavia and Ireland) to form the UCES, a loose economic and military confederation with a 

premier and parliament and a unified military command over nationally segregated units.   The 

old national rivalries create continuous unrest within the UCES; only economic and military 

necessity keep it together.   The military necessity results from the death of NATO in 1968, and 

the resulting need to keep the UCES together for protecting the former Russian satellites 

against Russia's possible reversion to a hard Stalinist line.   Japan is a fat target:   the richest 

trading nation in the East, with no military forces whatever.   North America, an alliance of the 

U.S.A. and Canada, has unified military forces and is politically dominated by Washington and 

Republican President Goldneyfeller.   The UAR, which reaches from the Atlantic to India, is 

dominated by the activities of Hadj Bey, a Moslem prophet, evangelist, and religious reformer, 

who has sparked a Moslem revival accompanied by pro-UAR civil unrest in the Islamic commu- 

nities in countries surrounding the UAR, especially southern Russia.   The UAR also covertly 

encourages semi-piratical interferences with UCES Mediterranean shipping. 

The 50-page summary of the history of the world, 1964-1975, of which the preceding para- 

graph is a condensation, was designed to make eight hypotheses plausible, and to make it appro- 

priate to treat them as mutually exclusive.   They were: 

HI. Russia and China are about to attack North America. 

H2. Russia is about to attack the United Confederation of European states. 

H3. Russia is about to attack the United Arab Republic. 

H4. China is about to attack Japan. 

H5a. Russia and China are about to embark on a major conflict with each other. 

H5b. A revolution is about to break out in the United Confederation of European States. 

H5c. The United Confederation of European States is about to attack the United Arab 

Republic. 

H6. Peace will continue to prevail. 

Actually, the subjects never heard of H5a, H5b, and H5c.   Instead they were presented with 

H5:   Some other major conflict is about to break out.   Thus the scenario writers could prepare 

scenarios that looked markedly different from one another and yet that favored H5, the catchall 

hypothesis.   In all of these hypotheses, "is about to" means that the event will occur within 30 

days. 
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The information-processing system, located in the basement of the Pentagon, serves the 

Joint Chiefs of Staff.  The six hypotheses are supplied to it by the Joint Chiefs, who specify that 

only these possibilities are to be considered and that they are to be treated as mutually exclusive. 

The subjects are the duty operators for the 3 PM to 6 PM shift on April 5, 1975. 

Military technology in 1975 much resembles that of 1964, as a result of the depression of 

1966-1970, which throughout the world nearly terminated research relevant to military purposes. 

For the same reason, armed forces are generally smaller in 1975 than in 1964, though not much. 

In particular, neither anti-missile missiles nor military applications of space technology have 

advanced since 1964, except for the development of a photo-reconnaissance satellite system. 

2.2.1.2.   Sensors and Data.   Three sensors deliver data to the information processing system: 

the Ballistic Missile Early Warning System (BMEWS), the intelligence system, and the recon- 

naissance satellite system. 

BMEWS is a very large computerized radar system with three sites, one at Clear, Alaska; 

one at Thule, Greenland; and one which is actually located at Fylingdales Moor, England, but 

which we moved to Drogedde, Ireland (not a part of the UCES) after the breakup of NATO.   The 

overlapping coverage of these radars permits detection of any ballistic missile fired from any- 

where inside Russia or inside the Arctic Circle toward any part of North America or western 

Europe.   The real BMEWS is too reliable a system for our purposes.   We degraded it, both in 

order to avoid revealing classified figures and in order to prevent it from giving information 

that was too conclusive. 

A BMEWS report from Clear or Thule (Drogedde works on a slightly different basis, but 

produces the same sort of information) consists first of G (green), Y (yellow), R (red) or R-M 

(red-maintenance).   Green means that the system at that site is working properly.   Yellow 

means that the site is producing peculiar results; they may be attributable to environmental 

radio interference or to a malfunction within the system.   In any case, the site is still producing 

somewhat meaningful, though less reliable, data.  Red means that the data obtained from the 

site are worthless and will not be passed on, either because of severe environmental noise, 

enemy jamming, or malfunction.   If a malfunction is detected, the classification is changed from 

red to red-maintenance until it has been corrected.   BMEWS cannot distinguish between natural 

environmental noise and jamming, and it is not known whether or not the Russians are doing any 

jamming.   The Russians have not attempted to spoof BMEWS (that is, to fool it into thinking that 

missiles are coming when they are not), but it is known that they have appropriate equipment to 

do so if they wish.   Following a G or a Y, there is a number ranging from 0 to about 30 (there 

is no formal upper limit).   This is the number of low-reliability events the system has detected 

in the last 15 minutes.   A low-reliability event could be anything; meteors, satellites, (though 
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these are removed from the count if recognized as such), environmental noise, or an ICBM. 

Following the low-reliability events is a listing of high-reliability events, along with computed 

impact areas.  A high-reliability event is an event that looks as if it is an ICBM, as the result 

of complicated radar sensing techniques and highly sophisticated information-processing.   Ac- 

tually, because we found in pretests that high-reliability events were completely disruptive to 

the simulation, we used none in the experiment itself.   Pretest subjects, given a high-reliability 

event with New York at the center of the impact area, couldn't accept the fact that the next item 

from the intelligence system did not report the obliteration of New York. 

A typical BMEWS report would look as follows: 

I. G3 

n. GO 

m. Gl 

Such a datum would be essentially neutral with respect to all hypotheses, since while it indicates 

that nothing warlike is happening, it cannot preclude the possibility of a rain of missiles fifteen 

minutes from now.   BMEWS cannot decrease the probability of any hypothesis except Peace, 

and cannot increase the probability of any hypotheses except HI and H2. 

The intelligence system consists of spies, military attaches in U. S. embassies abroad, 

readers of foreign newspapers, experts on foreign affairs, and the like.   Each datum from this 

system is passed on in the form of a short paragraph. 

Report of any event is usually accompanied by a brief qualitative statement about the degree 

to which the event is surprising and about what it might mean. 

A typical intelligence system report might look as follows: 

Judging from a careful study by our agents of the production of Soviet parachute 
factories and military boot shops, our military panel estimates that Soviet paratroop 
units have been increased by about 20 percent in the last eight months. 

The photo-reconnaissance satellite system consists of some large but unspecified number 

of satellites, renewed sufficiently often that every spot on the globe is photographed at least 

once every six hours.   The photographs have admirable resolution:   an automobile can be easily 

discriminated from the road on which it is moving.   But the system cannot see through clouds 

and can only photograph lights at night.   More seriously, it is plagued by a severe shortage of 

photo-interpreters.  At least 99.5 percent of all photographs taken are never looked at.   Almost 

all satellite reports include background information of the kind that might be obtained by com- 

paring a recent photograph with previous ones, or that in some similar way might be available 

to a photo-interpreter.   A great many of the satellite data items were reports of naval move- 

ments— mostly because the man who wrote them happened to be a former Navy officer. 
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A typical satellite system report might look as follows: 

At 0630 this morning, two squadrons of conventional submarines sailed from 
Vladivostok.   They steamed in a southerly direction until they were clear of the 
harbor and then submerged.  Evaluation:   Probably routine exercises, though this 
is an unusually large force. 

2.2.1.3.   Scenarios.  A total of 777 data items were prepared.   Of these, 240 were from 

BMEWS, 250 were from the intelligence system, and 287 were from the satellite system.   The 

item writers were instructed to make sure that no item was conclusively for or against any of 

the hypotheses, and to make every effort to ensure that any item could appear with any other in 

either order without violating logic.   (Thus, for example, an intelligence item reporting assas- 

sination of President Goldneyfeller would have been excluded, since it might be followed by an 

item reporting a meeting between him and Premier DeBerry of the UCES.)   All proposed items 

were screened for such contradictions, for plausibility, and for intelligibility of wording; at 

least a third of those originally proposed were discarded or drastically rewritten. 

We set out to assemble 18 scenarios, each consisting of 60 items of data.   Of course some 

items were used in more than one scenario, and some were never used; a training scenario was 

prepared from the latter.   We wanted to have six nondiagnostic scenarios (that is, scenarios 

that did not strongly point toward any hypothesis), six mildly diagnostic ones, and six strongly 

diagnostic ones.   We used our intuition to assemble them.   It turned out that the nondiagnostic 

scenarios were indeed nondiagnostic; most of the mildly diagnostic ones seem, in the light of 

the data, to have been nondiagnostic also.   The strongly diagnostic scenarios were, in the light 

of the data, mildly to strongly diagnostic, and in each case favored the hypothesis that we had 

intended to favor.  We set out to make sure that no scenario was really conclusive; we succeeded 

too well.   Later experiments should use less ambiguous scenarios, and perhaps fewer utterly 

meaningless items. 

2.2.2.   DESIGN OF THE FOUR INFORMATION-PROCESSING SYSTEMS.   When the situation 

and data items were developed, we thought that the PIP subjects would simply estimate P(D| H) 

for each D and H.  So six of the experimenters tried it, for all 777 data items.   We soon found 

that we could not do the task at all.   The difficulty was that the level of detail with which a datum 

was specified was of greatest importance in controlling P(D|H), regardless of whether the detail 

was diagnostically relevant or not.   Thus, an intelligence system datum reading "The cake served 

at Mme. DeBerry's reception for members of the diplomatic corps last night was decorated 

with a UCES flag surrounded by candied flowers" would be more probable on any hypothesis 

than one that read "The cake served at Mme. DeBerry's reception for members of the diplomatic 

corps last night was decorated with a UCES flag surrounded by candied eidelweiss," even though 

the extra detail has no diagnostic significance whatever.   Contemplation of the likelihood princi- 
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pie of Bayesian statistics should have led us to predict this fact, and did lead us to cope with it. 

That principle says that such diagnostically irrelevant information, though it controls P(D|H), 

is irrelevant to Bayes's theorem.   Since likelihood ratios are not affected by such irrelevancies, 

the obvious solution is to estimate them rather than P(D|H). 

For six hypotheses, there are fifteen pairs, and so fifteen likelihood ratios per datum. 

However, only five of these are independent of one another; given any five involving all six hy- 

potheses, all others can be calculated.   Obviously H6, Peace, has a special status in the list of 

hypotheses.   So we tried estimating likelihood ratios comparing each war hypothesis with H6, 

found that this worked well, and so settled on it as standard procedure for PIP.   The three other 

groups also worked with five pairs of hypotheses, in which each hypothesis was paired with H6. 

The four groups had other characteristics in common.   Each was a one-man system.   Each 

made five responses per datum.   Each started each scenario with odds of 5:1 in favor of Peace 

compared with each of the other hypotheses — or 16.7 and 0.1667 (the equivalent numbers) for 

PEP and PUP respectively.   (PIP operators, of course, needed and had no prior distribution, 

but the computer required it in order to use the likelihood ratio judgments.)   Each subject saw 

each datum by projection from behind the computer display and controlled the slide projector 

by means of a button.   Any subject could look at any datum as long as he wished, but each slide 

remained on the screen for at least a minute.   Thus, a 60-item scenario could not be finished 

in less than an hour; 80 to 90 minutes was typical.   A subject completed one scenario per session, 

and had no more than one session per day. 

2.2.2.1.   PIP Task and Instructions.   Subjects in the PIP group estimated five likelihood 

ratios per datum. 

Training of course was extensive.   The key points in about two hours of instructions were: 

Suppose you are at the moment considering a datum and are estimating the first likelihood ratio, 

which compares HI with H6.   First ask yourself whether this datum is more likely to have 

occurred if Russia and China were about to attack North America, or if peace were to continue 

to prevail.   After you have decided that, then ask, in a ratio sense, how much more likely.   These 

questions may be difficult if the datum is obviously linked with a third hypothesis.   But when 

working with, say, HI and H6 you must pretend for the moment that these are the only two pos- 

sibilities.   Thus, if the datum is that Russian troops have crossed the UAR border in force, and 

you are estimating the H1-H6 likelihood ratio, you must ask yourself if they would be more 

likely to have crossed the UAR border if Russia and China were about to attack North America, 

or if peace were continuing to prevail.   The linkage between the datum and H3 is irrelevant until 

you are considering the H3-H6 pair.   Remember, you are not interested in whether the hypothesis 

is unlikely or likely; you should never allow yourself to get confused and think about the relative 
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likelihoods of the hypotheses instead of the relative likelihoods of the datum in the light of the 

two hypotheses. 

H5, the catchall hypothesis, presented a special problem for the PIP group.   They had to 

be told qualitatively the quantitative fact that the current probability of each hypothesis within 

the catchall affects the likelihood of the datum given the catchall.   Thus if the datum is relatively 

highly likely given some possibility included within the catchall, but that possibility is itself 

highly unlikely, then the datum is not very likely given the catchall.   This took a lot of explain- 

ing, but the subjects seemed to catch on finally. 

As had been anticipated, the other major problem within the PIP group was to teach the 

two points emphasized in the instructions:   that they should not think of the probabilities of the 

hypotheses, and that they should treat the pair of hypotheses currently under consideration as 

the only possibilities while estimating the likelihood ratio associated with them.   It took a fair 

amount of talk and practice, but both points did prove communicable. 

The PIP group used as apparatus aPDP-1 computer with a cathode-ray-tube display.  At 

the bottom of the display were five levers, each of which slid along a scale.   Figure 2 shows 

the layout. 

FIGURE 2.   PDP-1 COMPUTER WITH A CRT DISPLAY 
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The scales are in likelihood ratio, taken as numbers equal to or greater than 1, and log- 

arithmically spaced.   For each scale, the subject could turn a knob to select one of six different 

ranges of likelihood ratios.  The first range extended from 1:1 to 10:1.   Five more logarithmic- 

ally spaced ranges were available, running from 10:1 to 100:1, 100:1 to 1000:1, and so on up to 

1,000,000:1.   No subject in the PIP group, however, ever used any of the higher ranges.   Asso- 

ciated with each lever was a switch.   In the left position, it indicated that the datum was more 

likely on the other hypothesis than on H6; in the right position, it indicated the opposite.   The 

subject pushed a button to the right of the levers to indicate to the computer that he was satisfied 

with his judgments; at that point, the computer recorded them and changed the slide, provided 

that a minute had elapsed since the last slide change. 

The display on the cathode ray tube (CRT) above the levers was a display of posterior prob- 

ability based only on the current estimates and equal prior probabilities.  Thus it was simply 

a transformation on the current set of likelihood ratio judgments.   It changed dynamically as 

the subject moved the levers, reset the switch indicating in which sense the likelihood ratio was 

to be interpreted, or changed scale range.   A trial number also appeared on the screen.   The 

subject compared that with the number that appeared on the slide showing the current datum in 

order to make sure that computer and slide projector were in agreement.   Of course nothing in 

the basic idea of PIP requires such a display; it served primarily to give the subject two differ- 

ent ways to visualize the meaning of his responses. 

2.2.2.2.   POP Task and Instructions.  The POP task somewhat resembled the PIP task, and 

used the same apparatus.   Subjects were instructed that after each slide they were to estimate 

the posterior odds in favor of each hypothesis on the basis of all the data in the scenario so far. 

However, they left their levers in place after each judgment, so that instead of actually re- 

estimating the odds, they revised them up or down after each new datum.   This was more nearly 

in the spirit of PIP than of POP, but was the only reasonable way to run such a system, since 

otherwise the subjects would simply remember or note down their previous judgments.   Subjects 

started each scenario by setting levers (and so the display) to 5:1 in favor of peace compared 

with each of the other hypotheses.   Since they did not reset levers to zero between trials, the 

display was always of the system's current posterior probabilities. 

Two problems stood out in training POP subjects.   One, as with PIP subjects, was to em- 

phasize that when working with HI and H6, say, they were to pretend for the moment that those 

were the only two possibilities, and estimate the odds between them.   The other was to make 

clear to subjects that data sufficient to change odds from 1:1 to 2:1 would also be sufficient to 

change them from 100:1 to 200:1; that is, that data affect odds in a multiplicative way.   (From 

this statement alone, a mathematically minded subject could have deduced Bayes's theorem; 

none did.)   The logarithmic spacing of the scales helped communicate this idea; it was easy to 
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understand that a given item of evidence should produce the same amount of change in lever 

position regardless of where that position started.   POP subjects did make extensive use of the 

10:1-100:1 scale, but not of any of the higher ranges. 

2.2.2.3. PEP Task and Instructions.   The PEP group was by far the hardest to design.   We 

wanted it to be as near as we could come to a system in which the commander looks at the data 

and decides what to do.   Originally we intended to present subjects with a payoff matrix, have 

them choose an act, and from that infer their probability distribution over the hypotheses.   Un- 

fortunately, choice of an act from a payoff matrix is a very information-destroying transforma- 

tion on a vector of probabilities.   We calculated that in order to recover six probabilities with 

acceptable accuracy we would need to have subjects rank-order several hundred bets—an ab- 

surd task. Our thinking about the problem went through many phases and many pretests; some of 

this work is detailed in section 5 of this report.   The task we finally used was relatively simple. 

Subjects were told to imagine that any war, if it broke out, would cost them 100 in some arbitrary 

unit of value.   Peace costs nothing.   What would the subject consider to be a fair price for an 

insurance policy that would pay the 100 in the event of a particular war, and nothing in the event 

of peace?   That number was his response.   Of course he made five such responses per datum, 

and was required when making each one to pretend that either the war he was considering at 

that moment or else peace were the only two possibilities.  The PEP and PUP subjects did not 

use the computer; they wrote their responses on pieces of paper and had no display. 

The only new problem that arose during the instruction and training of the PEP group was 

to explain that a datum that would produce a relatively large change of price for insurance when 

the prior price was near 50 would produce far less change when that prior price was near 0 or 

100.   No actual numbers were given to illustrate the extent of the difference, but enough practice 

was given to ensure that the principle was qualitatively clear. 

2.2.2.4. PUP Task and Instructions.   The PEP response, of course, is a disguised proba- 

bility estimate:   it is 100 times the probability of war, given that a particular war or peace are 

the only two possibilities.   For comparison a fourth group, PUP, was run, more or less as an 

afterthought.   PUP subjects had the same task as PEP subjects, except that it was presented as 

a probability estimation task rather than as an insurance pricing task.   Their training and pro- 

cedures were essentially identical to those of PEP subjects.   Table II summarizes the character- 

istics of the four systems. 

2.2.3.   SELECTION AND TRAINING OF SUBJECTS.   Our goal was to have subjects who 

were intelligent experts about the world, the sensors, and their own information-processing sys- 

tems.   We started by obtaining (by advertisement) 75 male juniors, seniors, or graduate students, 
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TABLE II.   CHARACTERISTICS OF PIP, POP, PEP, AND PUP 

System Response Display Aggregation by 

PIP 5 likelihood ratios per datum Posterior probabilities Computer 
based on uniform prior 
and current datum only 

POP 5 posterior odds per datum The system's current Man 
posterior probabilities 

PEP 5 fair prices for insurance None Man 
against specific war per 
datum 

PUP 5 probabilities of war given None Man 
that only war or peace are 
possible   per datum 

with at least B averages, who were not majors in mathematics, experimental psychology, history, 

or political science.   (We paid at the rate of $2 per hour throughout the experiment, so that we 

could be very selective about subjects.)   We spent about ten hours training them in the history 

and current political and military characteristics of the world of 1975, and in the characteristics 

of the sensor systems.   After that, we administered the most difficult two-hour objective exam- 

ination that we could devise, covering all aspects of their training.   However, some of the sub- 

jects did not complete the training and did not take the test.   We reduced the number of subjects 

to the 36 top scorers on the examination.   We later lost two subjects from the PIP group, so the 

final number of subjects was 34.   We assigned ten subjects each to the PIP, POP and PEP 

groups, and six to the PUP group.   Each subject received about six hours of additional instruc- 

tion in the characteristics of his own information-processing system, including the opportunity 

to work through one 43-item training scenario.   For all subjects, much effort went into assuring 

them that in our experiment as in real life most data are just about meaningless.   For example, 

the PIP subjects were told that a likelihood ratio as big as 2:1 is produced only by a rare and 

relatively diagnostic datum.   All subjects were taught to expect that by far the most frequent 

judgment would be that the datum does not change the status of the pair of hypotheses. 

Of the many problems that arose during training, perhaps the most severe concerned the 

lack of sequential structure in the data.   Subjects found this unnatural and unfamiliar.   They 

found it helpful, however, to be reminded that on a news wire the successive stories are typically 

unrelated, and it is necessary to watch such a sequence of stories for a long time before one 

comes along that develops out of an earlier one.   The shortness of the period of simulated time 

during which they would be working was emphasized to them. 

All subjects found the situation and task interesting and demanding in the early stages. 

After they had become familiar with their tasks, the minute wait between one datum and the 

next became annoying to them; 30 seconds or less would have been better. 

27 



2.2.4.  RESULTS.  The basic finding of the experiment can be presented in three scatter- 

plots.  They show the final odds in favor of each war; that is, the five odds after the 60th datum 

in each scenario.   For the POP, PEP, and PUP groups, each individual's response after the 

60th datum was converted from whatever metric it was in to log odds; here and elsewhere in 

this experiment, all means of probability-like numbers over subjects, scenarios, or data items 

within scenarios were taken in log odds or log likelihood ratios, regardless of the nature of the 

numbers being averaged.   Figures 3a, 3b, and 3c are scatterplots comparing final odds for PIP 

with final odds for the other three groups.   Though they differ in detail, the main finding is the 

same for all three comparisons.   Note first that the correlation between final odds for PIP and 

final odds for each of the other groups is 0.85 or higher.   This means that the qualitative agree- 

ment between PIP and the other groups is excellent; evidence that leaves a hypothesis favored 

or unfavored for PIP does so for POP, PEP, and PUP also.   Next note the slopes of the regres- 

sion lines.  The largest of them is 0.422.  This means that quantitatively, PIP is responding 

more vigorously to the scenarios than is POP, PEP, or PUP.   Evidence simply moves PIP 

more than it does the other groups.  In other words, as was predicted, PIP extracts more cer- 

tainty from the data than do the other groups. 

The final point to be made from figures 3a, 3b, and 3c has to do with the origin.   Actually, 

the origin of each graph is at 5:1 in favor of peace, since those were the prior odds.   But none 

of the regression lines pass through that point; instead, they all pass to the left of it.   In other 

words, by comparison with the other groups, PIP has a bias in favor of peace.   There is no way 

of knowing whether this is a result of individual differences, or whether when the hypotheses 

are as value-laden as are these, PIP and the other groups will exhibit bias to different extents. 

Indeed, in the absence of some criterion for objective correctness, it is impossible to tell which 

group is most nearly unbiased.   At any rate, it is obvious from inspecting the graphs that al- 

though PIP is biased in favor of peace, its efficiency is so much greater than that of the other 

groups that it has already passed them by the time they reach 1:1. 

That the axes of figure 3 are logarithmic implies that the effects seen there are very sub- 

stantial.   Table m is calculated from the regression equations.   Suppose a scenario led PIP to 

give certain odds for or against war; what odds would the other groups give?   (Remember that 

the origin is at 5:1 in favor of peace, so that 99:1 in favor of war is a much larger distance from 

the origin than is 99:1 in favor of peace.) 

Figure 3 and table III combine to point out that POP is next in efficiency to PIP — a fact 

slightly concealed because POP has a peace bias relative to PUP.   PUP is almost as efficient 

as POP.   PEP, our attempt to simulate the way diagnostic information-processing is done now, 

is a poor last.   For completeness, table IV summarizes the correlations, regression coefficients, 

and intercepts for the POP-PEP, POP-PUP, and PEP-PUP scatterplots.   Each regression co- 

efficient uses the first-named group as the X, or predictor, group. 
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TABLE m. ODDS OF EACH WAR 
HYPOTHESIS TO THE PEACE 

HYPOTHESIS 

PIP     POP     PEP    PUP 

99:1 4.0:1 1.9:1 4.6:1 
19:1 2.0:1 1.2:1 2.4:1 

1:1 1:1.7 1:1.9 1:1.3 
1:5 1:3.4 1:2.9 1:2.4 
1:19 1:6.0 1:4.2 1:4.0 
1:99   1:11.9    1:6.6   1:7.7 

TABLE IV.   COMPARATIVE EFFICIENCIES OF THE 
FOUR SYSTEMS 

Regression 
Correlation Coefficient Intercept 

POP-PEP       0.93 0.63 1:1.36 
POP-PUP       0.91 0.84 1.15:1 
PUP-PEP       0.93 0.67 1:1.64 

A total of 206 items of data were used more than once.   Of them, 82 were repeated once, 

46 twice, 30 three times, 21 four times, 26 five times, and 1 six times.   As a measure of reli- 

ability, standard deviations of the log likelihood ratios for each item were calculated.   Using 

logarithms to the base 10, those standard deviations ranged from 0.0031 to 0.0236.   For 27 of 

the 34 subjects, the mean standard deviation was less than 0.0115.   These numbers are all very 

small, and indicate a relatively high degree of test-retest reliability for all groups. 

A natural question for any sequential information processing task is whether the current 

state of the odds (or price of insurance, or whatever) influences judgments.   To examine this 

question, we calculated regressions of log likelihood ratios associated with each datum on the 

log odds preceding presentation of that datum.   The range of these regression coefficients is 

from -0.147 to 0.082.   For 28 of the subjects, that range was between -0.03 and 0.03.   These 

numbers are gratifyingly close to zero.   Not surprisingly, these regression coefficients were 

closer to zero for PIP, which had no display of current odds, than for the other groups. 

The way in which PIP produces its superiority over other groups is most clearly exhibited 

by the distribution of likelihood ratios.  Table V shows that distribution.   For all groups, likeli- 

hood ratios near (in fact, at) one are in the overwhelming majority.   But PIP produces six to ten 

times as many likelihood ratios above two as do the other groups. 

Table V also highlights an experimental flaw.   We set out to produce relatively undiagnostic 

scenarios — and we succeeded far too well.  As a result, we know little about how these groups 

might perform in the presence of highly diagnostic data.   While it seems unlikely that PIP 

would be actually inferior to other groups in the presence of such data, we have no evidence to 

exclude that possibility. 
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TABLE V.   DISTRIBUTION OF LIKELIHOOD RATIOS AVERAGED OVER 
SUBJECTS WITHIN GROUPS 

Value of the Likelihood Ratio 
1.1:1 to 1.4:1 to 2.0:1 to 
1.4:1 and 2.0:1 and 2.5:1 and 
1:1.1 to 1:1.4 to 1:2.0 to Over 2.5:1 

1.1 :1 to 1:1.1 1:1.4 1:2.0 1:2.5 Under 1:2.5 

GROUP 

PIP 4875.0 274.9 145.1 56.2 49.0 
POP 5018.0 302.4 63.5 9.5 6.6 
PEP 5006.1 331.0 52.9 4.7 5.3 
PUP 4979.6 340.6 65.5 8.2 6.2 

We calculated intercorrelations of log likelihood ratios for individual items between all 

pairs of groups.  As figure 3 would lead us to expect, the groups agreed very well, in a qualita- 

tive sense, about which way a datum pointed.   If all data are considered, the lowest intercorre- 

lation is 0.68 and the highest is 0.84.   If only those data items for which at least one subject 

gives a likelihood ratio different from 1:1 are considered, the number of items entering into 

the intercorrelation is reduced from 5400 to about 4800 for comparisons including PIP and 

about 3600 for other comparisons, but the intercorrelations remain unchanged. 

2.2.5.  DISCUSSION.  The data say overwhelmingly that the original expectation that PIP 

would extract more certainty from information than do its competitors is correct.   They show 

the effects of some minor bias, but of course cannot show whether PIP, the other groups, or all 

of them are biased.   They also show that the other two probabilistic groups, POP and PUP, are 

next to PIP in efficiency, while PEP, the attempt to approximate what is done now, is in last 

place. 

The magnitude of the difference between PIP and the other groups surprised all experiment- 

ers.   We had hoped that PIP might be 10 percent or 20 percent more efficient; instead, it is 

more than 100 percent more efficient than its nearest competitor, and close to 400 percent more 

efficient than PEP.   (These percentages are obtained by finding the percentage by which the 

slope of the regression line would have to be increased to make it one when PIP is compared 

with another group).   On no clearly defined basis, some of the experimenters believe that with 

scenarios that are more diagnostic the difference between PIP and the other groups should be 

even larger.   This prediction seems intuitively likely for PEP and PUP. since they have diffi- 

culty with prices of insurance, or probabilities, near one or zero.   It seems less likely for POP. 

which has no similar boundaries on its response scale. 

The two points at which this experiment most severely departs from realism are in the 

arbitrary listing of hypotheses and the nonsequential nature of the data.   The listing of hypotheses, 
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though arbitrary, is quite plausible as a structuring procedure in a military setting.   Of partic- 

ular interest is what should be done when the catchall hypothesis achieves high posterior prob- 

ability.   A later experiment should explore the problem of differentiating specific hypotheses 

out of the catchall and then reprocessing the data in terms of these specific hypotheses.   Of 

course, the nonsequential nature of the data is by far the least realistic feature of this experi- 

ment.   Moreover, an argument can be made that PIP, a system built around nonsequential pro- 

cedures, is especially well suited to processing nonsequential data.   The experiment should be 

repeated with progressively unfolding scenarios.   If it were, evidence collected in a PIP simula- 

tion at Ohio State University suggests that PIP would still look best, though perhaps not by so 

overwhelming a difference as in the present experiment (Schum et al., 1966). 

A lot of somewhat arbitrary decisions went into the design of our experiment.   Among them 

are the logarithmic response scales for PIP and POP, the use of probability as a display, the 

decision not to let the PIP subjects know the current state of the system's opinion, and so on. 

None of these decisions are discredited by the result of the experiment or by experience gained 

in running it, except the decision to require at least one minute between successive items. 

Similar comments apply to the essentially ad hoc training procedures used.   But all of these 

variables could be studied experimentally, and some of them certainly deserve to be.   The next 

section reports one such study. 

3 
PROBABILISTIC INFORMATION PROCESSING SYSTEMS WITH 

CUMULATIVE AND NONCUMULATIVE DISPLAYS* 

In figure 1 the feedback loop from the processed display of the system's current opinions 

to the likelihood estimator was marked with a question mark, to indicate uncertainty about whe- 

ther or not such feedback is a good idea.   The argument in its favor is simply that operators 

are curious about the meaning of their responses.   With a real system, it might be difficult to 

prevent their obtaining access to information about the system's current opinions.   The argument 

against such feedback is that it might turn the PIP task into a POP task.   That is, the operator 

might change his likelihood ratios until he got the effect on the system's opinion that he wanted, 

rather than simply estimating likelihood ratios.   The purpose of this experiment was to compare 

a noncumulative PIP like that studied in the preceding section with a cumulative PIP in which 

the system's current posterior opinions were displayed to the subject. 

3.1.   METHOD 

3.1.1.   TASK AND DISPLAY.   The noncumulative PIP was in all respects like that described 

in the previous section.   The response mechanism, instructions, and training for the cumulative 

*Research reported in this chapter was conducted under Contracts AF 19(628)-2823 and 
AF 19(604)-7393. 
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PIP were also like those described.   Only the display that appeared on the CRT was different. 

Before trial 1, the display showed a posterior probability of 0.10 for each of the war hypotheses 

and 0.50 for the peace hypothesis.  When the subject moved the levers, the display changed dy- 

namically, as for the noncumulative group.   When the subject was satisfied with his estimates, 

he pressed the button, and then reset the levers to 1:1.  After that, the display reappeared, with 

the posterior distribution implied by the combination of his estimates with the prior odds.   This 

in turn changed dynamically with new estimates of likelihood ratios.  Thus the display at any 

moment combined the probabilities prior to the current lever settings with these settings. 

3.1.2. SUBJECTS.   Eleven of the original 34 subjects used in the earlier experiment were 

used in this one; three PIP, four POP, three PEP, and one PUP.   They were assigned to the 

new groups equally, so far as possible; six went into the cumulative and five into the noncumula- 

tive group.   They were all re-instructed in the characteristics of the information-processing 

system they were to operate; this involved some relearning for those who had not originally 

been in the PIP group.   They worked through the 43-item training scenario again. 

3.1.3. SCENARIOS.   The nine most diagnostic of the original 18 scenarios were used in 

this experiment.   Two of the nine were left unchanged.   The remaining seven scenarios were 

altered.   Each one was to favor a different hypothesis.   Thus some peaceful items and some 

nondiagnostic items (no more than ten) were removed from the original scenario, and items 

that favored the particular hypothesis were inserted.   These items varied in diagnosticity and 

either were obtained from the original set or were generated for particular scenarios. 

3.2.   RESULTS 

The basic finding of this experiment is given by the scatterplot in figure 4.   As usual, the 

points are geometric mean final odds for each scenario.   The correlation coefficient is 0.907, 

indicating high qualitative agreement between the two groups.   The regression coefficient is 

0.647, indicating that the noncumulative display group does indeed respond more sensitively 

than does the cumulative display group.   For comparison, the PIP-POP regression coefficient 

from the previous experiment was 0.422, indicating that the PIP with cumulative display is in- 

termediate in sensitivity between the optimal PIP without cumulative display and POP.  This 

does suggest that the subjects are to some extent using their levers to set the display to the 

values they desire, rather than directly estimating quantities on the levers and letting the dis- 

play fall where it will. 

As in the previous experiment, the same conclusion obtained by looking at final odds can be 

reached also by looking at individual likelihood ratios. The inter cor relations in mean log likeli- 

hood ratio for each datum and pair of hypotheses between the two groups was 0.80.   The distri- 

33 



U 
tn 

o 

o 
K 
O 

< 

23 
G 
w 
> 
H 
< 

i-J 
u 

§ 

c 
Q 
O 
J 
<c 

200:1  - 

100:1 

50:1   - 

20:1 

10:1 

5:1 

2:1 - 

1:1 - 

1:2  - 

1:5 

1:10 

1:20 

1:50 

1:100 

1:200 

r = 0.907                                                1 
~ Slope = 0.647 
- When Cumulative Final Odds = 1:5 j 

Noncumulative Final Odds = 1:4 

i           • 

• 

! *   »J • 

-    /    *               ! 
i   iii   iii   iii   i   

1:5000     1:1000    1:200      1:50 1:10 1:2 2:1 10:1 50:1      200:1      1000:1    5000:1 

FINAL ODDS FOR NONCUMULATIVE DISPLAY GROUP (on log scale) 
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bution of likelihood ratios is given in table VI and looks like the corresponding distribution in 

the preceding study.   It is apparent that the main reason the cumulative group is less effective 

than the noncumulative group is the smaller number of likelihood ratios of modest size.   This 

fact highlights the point that diagnosis in these experiments is entirely a matter of putting to- 

gether items that individually are fairly meaningless. 

TABLE VI.   GEOMETRIC MEANS OF DISTRIBUTION OF LIKELIHOOD RATIOS 

Cumulative 
Display 

Noncumulative 
Display 

1.1:1 through 1:1.1 

2462.0 

2393.2 

1.1:1 through 1.4:1 
and 

1:1.1 through 1:1.4 

150.2 

204.6 

1.4:1 through 2.0:1 
and 

1:1.4 through 1:2.0 

52.5 

73.8 

2.0:1 through 2.5:1 
and 

1:2.0 through 1:2.5 

12.7 

14.0 

Over 2.5:1 
Under 1:2.5 

22.6 

14.4 

It is instructive to examine these distributions subject by subject, as they are displayed in 

table VII.   It is also interesting to examine the correlations between each subject's performance 

on the training scenario during the first experiment, and his performance, using his new response 

mode, during the second experiment.   With two exceptions, those correlations are satisfyingly 

high.   But Subject Two in the cumulative group had a correlation between first and second run- 

throughs of the training scenario of only 0.119.   And he is responsible for by far the largest 
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TABLE Vn.   INDIVIDUAL LIKELIHOOD RATIO DISTRIBUTIONS 

Practice 1 .1:1 to 1.4:1 to 2.0:1 to 
Group in Group in Scenario 1 .4:1 and 2.0:1 and 2.5:1 and 

1st 2nd Correlation 1 :1.1 to 1:1.4 to 1:2.0 to Ove r 2.5:1 
Subject Experiment Experiment Coefficient 1.1:1 to 1:1.1 1 :1.4 1:2.0 1:2.5 Under 1:2.5 

PIP Cumulative 0.919 

DISTRIBUTION OF LIKELIHOOD RATIOS 

I 2502.0 141 42 10 5 
2 PIP Cumulative 0.119 23.6 123 116 32 113 
3 POP Cumulative 0.994 2660.0 38 2 0 0 
4 POP Cumulative 0.445 2515.0 157 28 0 0 
5 POP Cumulative 0.802 2541.0 137 IB 4 2 
6 PEP Cumulative 0.949 2238.0 305 111 3D 16 

7 PIP Noncumulative 0.895 2640.0 42 6 (1 12 
B POP Noncumulative 0.999 2230.0 341 98 17 14 
9 PEP Noncumulative 0.827 2457.0 143 73 17 10 

10 PEP Noncumulative 0.977 2244.0 24 6 141 33 36 
11 PUP Noncumulative 0.810 2395.0 251 51 3 0 

number of large likelihood ratios in the cumulative group.   Thus this erratic subject worked 

against the conclusion that the cumulative group extracted less certainty from the data than did 

the noncumulative group; exclusion of his data from the group's would have led to a larger dis- 

parity in favor of the noncumulative group than was in fact found. 

3.3.   DISCUSSION 

It seems clear that the noncumulative display is preferable to the cumulative one.   Subjects 

who have access to the system's current opinions take those opinions into account in estimating 

likelihood ratios.   They thus turn the PIP task into something like a POP task, to its detriment. 

The moral for designing systems is obvious, though it may prove hard to enforce in real PIP 

systems. 

Retraining of subjects originally trained in other systems to use the PIP response turned 

out to be easy.   Apparently most of the effort devoted to original training was devoted to estab- 

lishing general familiarity with situation and task.   Actual estimation of likelihood ratios is not 

particularly difficult. 

CONSERVATISM IN ESTIMATING PROBABILITIES* 

This section reports one experiment that is addressed to two issues that arose in the pre- 

vious section.   All of the laboratory studies on inference show that subjects are conservative; 

they fail to extract from the data all the certainty that is theoretically available.   The experiment 

reported here attempts to determine whether conservatism is a failure to combine optimally 

all the data that are available, or is a failure to understand properly the probabilistic relation- 

ship between the hypothesis and the datum.   To make these distinctions clearer, recall the odds- 

likelihood ratio form of Bayes's theorem: 

*This section was a doctoral dissertation by Lawrence D. Phillips. 
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«x = n0 nL (8) 

This form of Bayes's theorem suggests that the process of inductive inference can be broken 

down into two major components, deductive inference and data combination.   The deductive com- 

ponent is the process of determining likelihood ratios.   Usually the ideal person assumes that 

some mathematical model is descriptive of the process that generated the data, as, for example, 

one would assume that a binomial probability law describes the outcomes of successive flips of 

a coin.   The second component is the combining of individual likelihood ratios with themselves 

and with the prior odds.   Strictly speaking, determining the prior odds should be included as a 

third component of inference.   However, in nonlaboratory instances of inductive inference, 

prior odds are usually the posterior odds of some previous inference, and so need not be given 

the status of a separate component.   Thus, in order to understand the process of inductive in- 

ference, it is necessary to understand both the deductive process that leads to individual likeli- 

hood ratios and the process that combines likelihood ratios and prior odds. 

The second issue is that of validation.   As was mentioned in section 2, comparison of diag- 

nostic systems that process probabilistic information would be much easier if some separate 

criterion of truth were available.   No such criterion was available for the experiments reported 

in sections 2 and 3, so alternative systems were compared with one another.   This approach 

has been taken by a number of experimenters; their experiments are reviewed here briefly. 

The first evaluation of a Bayesian man-machine system for making inferences was reported 

by Kaplan and Newman (1963).   They told their subjects that enemy bombs are being aimed at 

exactly one of three possible targets.   Some bomb impacts are shown as data, and subjects have 

to decide which target is the intended one.   In the "PIP" condition, subjects estimated for each 

datum three values of P(DIH), one for each hypothesis:   values of P(H!D) are then calculated by 

applying Bayes's theorem.   In the "non-PIP" condition, subjects estimated P(HID).   Comparing 

the estimated values of P(H|D) with the calculated values showed PIP superior to non-PIP in 

that it achieved higher posterior probabilities for the correct hypothesis more quickly.   Also, 

performance of non-PIP subjects deteriorated as the sequences of data became more ambiguous. 

No differences in performance were seen among the PIP group as a function of task difficulty. 

The next study by this group of experimenters (Kaplan, Lichtenstein and Newman, 1963) 

complicated the basic bombing model to the point where subjects apparently were forced to 

adopt a much simpler model than the experimenters had intended, so that the effects of the in- 

dependent variables became obscured.   PIP performance was not superior to, and in fact, was 

slightly worse than non-PIP performance. 

In the meantime, the Laboratory of Aviation Psychology at Ohio State University was con- 

ducting some Bayesian experiments.   The first report of some of their work (Southard, Schum 
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and Briggs, 1964a) did not investigate human ability to estimate likelihoods but did give some 

support to Edwards' contention (1962a) that computer-generated posterior probabilities are 

superior to subject-estimated posterior probabilities when the probabilistic relationship between 

datum and hypothesis is specifiable in terms of a mathematical model. 

In the next three studies (Schum, Goldstein and Southard, 1966), conducted at Ohio State 

University, posterior odds calculated from Bayes's theorem using the subjects' estimates as a 

source of P(D|H) were compared to the subjects' estimates of P(H|D).   Here again, calculated 

posterior odds were higher for the correct hypothesis than were the estimated posterior odds. 

In another study, Fox and Hackett (1964) examined the question of conditional independence 

of data.   They presented subjects with two sequences of data; in one sequence the items were 

identical to the items in the other sequence, but occurred in reverse order.   When the investi- 

gators found subjects' estimates differing for identical items of data even after one sequence 

had been mathematically reversed to make it comparable to the other sequence, they rejected 

the hypothesis that subjects make conditionally independent estimates.   Unfortunately, the authors 

did not realize that they were placing their subjects in a task that presented a null hypothesis 

and a diffuse alternative hypothesis.   As Edwards, Lindman and Savage (1963) have shown, data 

cannot be conditionally independent when point and diffuse hypotheses are considered simulta- 

neously.   Thus the behavior of Fox and Hackett's subjects is not inconsistent with the Bayesian 

model. 

In a recent study by Schneider (1965) a Bayesian approach to medical diagnosis is tested. 

Nurses are first given items of data (signs, symptoms, and other information) and asked to make 

likelihood estimates for pairs of hypotheses that concern the possible post-operative states of a 

patient.   After the subject observes a datum and makes likelihood estimates, she makes posterior 

probability estimates for the two hypotheses being considered.   The data show that if the esti- 

mated likelihood ratios are multiplied according to equation 6, the resulting posterior odds are 

considerably greater than the posterior odds calculated from the estimated posterior probabilities. 

In the first task, the nurses make only deductive inferences — they estimate likelihood ratios. 

In the second task, the subjects perform a deduction and then combine the resulting likelihood 

ratios in order to complete the inductive process.   In other words, only one component of infer- 

ence is involved in the first task, but both components are involved in the second.   If it is assumed 

that the deductive inferences are the same in both, then the discrepancy in the posterior odds 

for the two tasks must be related to the added requirement for combining data in the second 

task.   Imposing this additional requirement on subjects may cause them to extract less certainty 

from the data than they would if they only had to estimate likelihood ratios. 

This finding supports Edwards' basic contention that in a Bayesian diagnostic system men 

should serve as transducers for likelihoods or likelihood ratios, leaving to the computer the 
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task of combining these likelihoods according to Bayes's theorem.   However, in most studies of 

systems it is not possible to assess the amount of conservatism shown by subjects because an 

adequate criterion for validation is absent.   Recall that conservatism is defined as the reluctance 

of subjects to revise posterior probabilities as much as is prescribed by Bayes's theorem.   In 

other words, Bayesian revision is the criterion by which conservatism is judged.   If to calculate 

the amount of Bayesian revision the experimenter assumes an arbitrary model for determining 

the likelihoods, then the finding of conservatism is only as valid as is the arbitrarily chosen 

model for P(D|H). 

In the experiments conducted by Kaplan and his associates, a plausible but debatable model 

was chosen for the bombing task.   The Kaplan, Lichtenstein, and Newman study (1963) was un- 

successful because subjects chose a different and simpler model than the experimenters adopted. 

The Ohio State University experiments are based on a paradigm that emphasizes counting pro- 

cesses in arriving at P(D|H), so their work is perhaps not applicable to systems having to deal 

with unique events for which no relative frequencies are available.   In the Fox and Hackett 

studies (1964), P(D|H) was arrived at by judgments from a panel of "experts."  Schneider (1965), 

however, makes no attempt to find a criterion; he does no more than compare two different in- 

ferential processes, so nothing can be said about conservatism except in a relative sense.   In 

fact, all of these studies can make only relative statements about conservatism because conser- 

vatism is relative to the validity of the model for P(Dlrl).   In a sense, of course, all models for 

P(D|H) are of relative validity, but, to use the words of Edwards, Lindman, and Savage (1963), 

"some models are more public than others."   Most people would agree that a binomial probabil- 

ity law describes the outcomes of successive flips of a coin, but any bombing model is open to 

considerable debate.   In the experiment described in the next section, a public model for the 

likelihoods is used, and while the parameters are known to the experimenter they are not known 

precisely to the subject.   Thus, like the bookbag-and-poker-chip experiments, a standard for 

validation is available, but, as in the PIP studies, the values of P(DlH) are not displayed to the 

subjects.   This experiment, then, serves to bridge the gap between bookbag-and-poker-chip 

studies and the studies of systems, for it allows PIP and POP conditions to be compared to 

optimal or Bayesian performance. 

4.1.   THE EXPERIMENTAL PROBLEM 

Psychological studies of probabilistic inference use models of P(D|H) obtained from models 

on which mathematicians agree, and the parameters of these models, are displayed to the sub- 

jects.   No separate measurements are made of the subjects' perceptions of the displayed values 

of P(D|H) for single items of data.   Consequently, it is not possible to determine whether con- 

servatism is caused by failure to combine the data adequately or failure to understand the prob- 

abilistic relationships between the data and the hypotheses. 

38 



The experiments to be described attempt to cope with these problems.  The subjects are 

given both inductive and deductive inferential tasks.  In the inductive task, the subjects are pre- 

sented with two hypotheses, H   and H  .   One hypothesis is chosen at random with equal proba- 

bility, and data are sampled.   After each observation, the subject is asked to state his current 

opinions, in odds, about the truth of each hypothesis.   This condition is identical to the POP con- 

dition described in section 2.   In the deductive task, the subject is asked to give estimates of 

the likelihood ratios for each of the possible items of data, and these likelihood ratios are com- 

bined by using Bayes's theorem to give posterior odds.   This condition is identical to the PIP 

condition in section 2. 

The deductive task can be described by a multinomial probability law; on this there should 

be no disagreement.   Thirty different data are possible, so there are thirty parameters of the 

multinomial law.   The data are two-letter combinations (bigrams), and the parameters are based 

on the subject's use of these bigrams in his writing.   The parameters are known precisely to 

the experimenter because the frequencies with which the bigrams were used was determined by 

counting.   No such counting process is available to the subject so he must rely on his intuition 

about how frequently he uses particular bigrams.   Thus, the parameters of the multinomial 

process are not known precisely to the subject.   Each subject is asked to perform the task so 

that the experimenter can assess the degree to which the subject's understanding of the param- 

eters of the multinomial process agrees with the veridical values.   ("Veridical" is used in this 

report in the sense of "objective" or "criterion.") 

The effects on conservatism of the two components of inference are determined in several 

ways, but the most important is based on comparisons among three sets of posterior odds.   In 

the first case, the posterior odds are calculated from Bayes's theorem, where the values of the 

likelihood ratios (LRs) are based on the veridical values of the parameters of the multinomial 

probability law (these veridical likelihood ratios will be abbreviated VLRs).   In the second case, 

Bayes's theorem is again used, but the LRs are based on the subject's estimates of them (these 

estimated likelihood ratios will be abbreviated ELRs).   In the third case, posterior odds will 

simply be those values estimated by the subjects in the inductive inferential task.   Notice that 

each of these three cases involves a different combination of the two components of inference; 

these combinations are summarized in table VIII. 

The logic of the experiments to follow can be seen by comparing the cases in table VHI. 

Comparing veridical odds with ELR-based odds enables determining the effects on conservatism 

of nonveridical understanding of the multinomial probability law (the data-generating, or d-g, 

process).   The comparison between estimated odds and ELR-based odds will allow the effects 

from combining the data to be assessed.   The effects from both components of inductive infer- 

ence can be determined by comparing estimated odds with veridical odds. 
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TABLE VIII.   REFLECTION IN DIFFERING POSTERIOR ODDS OF OPTIMAL 
COMBINATION OF DATA AND/OR VERIDICAL DEDUCTIONS REGARDING 

THE DATA-GENERATING PROCESS 

Veridical Understanding 
of d-g Process?* 

Yes 

No 

Case 
Basis for 

Posterior Odds 

Bayesian calculation; 
veridical likelihood 

ratios 

Optimal Combination 
of Data ? 

I 
Veridical 

odds 
Yes 

n 
ELR-based 

odds 
PIP 

Bayesian calculation; 
estimated likelihood 

ratios 
Yes 

III 
Estimated 

odds 
POP 

Estimates No No 

The term d-g process is an abbreviation for data-generating process — in this use, 
the sampling process described by the multinomial probability law. 

4.1.1.   METHOD 

4.1.1.1. Subjects.   Eight men on the editorial staff of the daily student newspaper at The 

University of Michigan were asked to participate.   One declined and one was unable to serve 

beyond the training session because his workload increased when he was promoted to a more 

responsible position on the editorial staff.   The subjects were chosen solely on the basis of the 

quantity of their editorial output in the fall term, 1964; only editors who had written at least 

4000 words were asked to participate. 

4.1.1.2. Procedure and Design.   This experiment consists of four parts:   training, deductive 

task, inductive task, and replication of the deductive task. 

The purpose of the training session was to familiarize the subjects with the response device 

used in the inductive task.   With this device the subjects could express their uncertainty in odds, 

the range of possible values extending from 1:1 to 1,000,000:1.   Each subject was told that the 

device was a general-purpose apparatus and not designed solely for this experiment.   Conse- 

quently, the range might be too great, and so not all of it need be used, or it might be too small, 

and so could be extended by verbal estimates. 

Odds, rather than probabilities, were chosen as the response mode because Phillips and 

Edwards (1966) found that the subjects' estimates were more nearly veridical when the subjects 

made verbal estimates of odds or responded on a logarithmically-spaced odds scale than when 

they responded in probabilities.   Although the numbers may not be the same, the form of poste- 
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rior odds is identical to likelihood ratios, namely, x:l, where x £ 1.   Thus, training in the esti- 

mation of posterior odds is also relevant to the estimation of likelihood ratios. 

The training task was similar to Phillips and Edwards' experiment III (1966).   The subject 

was told to imagine two bags, each of them containing 100 poker chips, with red chips predomi- 

nating in one bag and blue chips predominating in the other.  He was shown a bag and told that 

it was just as likely to be the predominantly blue bag as the predominantly red one.   To indicate 

that each of the two bags was equally likely to be the chosen one, the subject was told to set his 

response device at 1:1. 

The subject was told that the predominantly red bag contained the percentage p of red chips 

and percentage q of blue chips, while the predominantly blue bag contained the inverse percent- 

ages, p blue chips and q red ones.  The percentage values of p and q were either 85-15, 70-30, 

or 55-45.   Ten chips were then shown one at a time; the subject was told that the sequence of 

chips was the result of random draws, with replacement, from the chosen bag.   After each new 

chip was shown, the subject stated which bag he thought was the more likely to be the chosen 

one.   He then revised, on the odds apparatus, his previous intuitive estimates of the odds in 

favor of the stated bag.   This process of selecting one bag at random from two and then drawing 

ten chips from the bag was repeated 15 times, five for each of the three pairs of bag composi- 

tions. 

After the subject made each estimate, the experimenter told the subject what his payoff 

would be if the predominantly blue bag were the chosen bag, and what it would be if the predom- 

inantly red bag were the chosen bag.   The subject then recorded both his odds setting and his 

two possible payoffs on a data sheet, a separate sheet being used for each sequence. 

After each sequence of ten draws, the subject was told which hypothesis was correct.   The 

subject then read the ten payoffs corresponding to the correct hypothesis to the experimenter 

who determined the total on a calculator.   This total was shown to the subject and it was con- 

verted to money at the rate of five cents per 100 points.   The subject was told the running total 

of winnings, in cents, after each sequence was completed.   Total winnings after the 15 sequences 

were the only pay the subjects received for the training task.   Winnings varied from $2.63 to 

$3.86 for a session that lasted from 1-1/2 to 2 hours. 

The use of payoffs follows the suggestion of Phillips and Edwards (1966) and of Edwards 

(1961b) that payoffs serve not only as motivators, but also as instructions.   Payoffs with a log- 

arithmic relationship to P(HID), and so to ^ pr, were used because Phillips and Edwards 

found that the subjects' probability estimates were more nearly veridical with fewer overesti- 

mations under this payoff scheme than when linear, quadratic, or no payoffs were used. 

Specifically, when fi is set equal to the odds estimated in favor of the correct hypothesis, 

and v(S2) equal to the payoff for the estimate Q, 
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v(R) = 100.00 + 332.19 log (j-^lj 

This is the payoff, in points, the subject received if he named the correct hypothesis.   Since 

lim  v(fi) = 100, the most the subject could win was 100 points.   If the subject was wrong he re- 
ft— oo n\ 
ceived payoff vU   , where 

v(i) = 100.00 + 332.19 log (j^j (10) 

for which the maximum loss is -oo.   As a practical limitation, payoff calculations were rounded 

off to two decimal places.   At odds of about 29,000:1, the winning payoff is precisely 100.00; so 

several subjects reported they did not feel it was worthwhile to exceed odds estimates of 

29,000:1.   (The possible loss at this value of odds is -1382.39.) 

For this payoff scheme the optimal strategy is for the subject to estimate his subjective 

odds rather than any others.   This strategy is optimal in the sense that it maximizes subjectively 

expected value (SEV).   Specifically, letting co represent the subjective odds in favor of the cor- 

rect hypothesis, the SEV function, as given by 

has its maximum at the point where SI = u>, i.e., when the estimated odds are equal to subjective 

odds.   Further discussion of this class of payoffs can be found in Toda (1963), van Naerssen 

(1962), and Phillips and Edwards (1966). 

Prior to the first deductive task, the subject was told that ail his editorials that appeared 

on the left side of the editorial page (which had undergone minimal editing) during the fall semes- 

ter had been typed into a computer.   The computer had counted the number of times he began 

his written words with a particular bigram (a two-letter combination) and the number of times 

his words ended with the bigram.   The computer ignored single-letter words and counted two- 

letter words as both a beginning and an ending bigram.   The following example was given.   In 

the sentence "'My hero!1 he roared," these bigram counts would be obtained: 

No. Times No. Times 
Begun Ended 

MY 1 1 

HE 2 1 

RO 1 1 

ED 0 1 

Bigram 

The subject was not given the counts on his editorials.   For a selection of 30 bigrams he was 

asked to specify whether a given bigram was more likely to have occurred in his editorials at 

42 



the beginning of words or at the end of words, and then how much more likely (in a ratio, not a 

difference, sense).   In other words, based on his experience with using the language, the subject 

was asked to make a probabilistic deduction concerning a specific bigram.   The subject wrote 

all responses in this task. 

For the inductive task, the subject was told to imagine that all the beginning bigrams appear- 

ing in his fall editorials had been placed in one bag, Bag B, and all the ending bigrams of his 

editorials in another bag, Bag E.   The number of bigrams in each bag depended on the frequency 

counts made previously.   Thus, if the computer counted beginning/ending frequencies of 20/40 

for the bigram MY, then 20 MY bigrams were placed in Bag B, and 40 in Bag E.   Next, the sub- 

ject was told to imagine that one of the two bags had been chosen by flipping a fair coin.   The 

contents of the bag were mixed and one bigram was drawn at random.   It was recorded, returned 

to the bag and the mixing-and-drawing process was repeated nine more times.   This process of 

selecting one bag at random from two and then drawing ten bigrams from the bag was repeated 

40 times. 

The subject was shown the results of each draw and asked to tell the experimenter which 

bag was the more likely to have been the one from which the sample was drawn, and to estimate 

on the log odds device how much more likely.   After each sequence of ten draws, the subject 

was told which bag was correct.   Actually the bags contained the bigrams of a composite sub- 

ject, who will be explained later, so that the same 40 sequences could be shown to each subject. 

After all 40 sequences were completed, the subject was asked to repeat the probabilistic 

deductive task. 

4.1.1.3.   Apparatus.   Sequences used in the training task were displayed by lighted bulbs 

mounted on an upright panel (this device is fully described by Phillips and Edwards, 1966).   Bag 

compositions were shown on a separate display. 

In the training and inductive inference task, each subject estimated odds by first selecting 

a scale that contained his odds estimate and then moving a pointer to the desired value on the 

selected scale.   Six 13 1/4-in. scales were available to the subject; they encompassed the range 

1:1 to 1,000,000:1 in six log     cycles.  Each cycle was mounted on one side of a six-sided bar. 

The subject could choose any cycle by rotating a knurled knob attached to the bar. 

Payoffs for the training task were displayed on a 6 x 6-cycle graph 20 in. square.   A black 

line indicated winnings in points as a function of estimated odds, and a red line indicated losses. 

In addition to this display, whose accuracy was limited to two or three significant figures, the 

experimenter used a table to determine the exact payoff to two decimal places, so that the sub- 

ject could record it on the data sheet. 
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4.1.1.4.   Stimulus Sequences.   The 15 sequences used in the training task were generated 

by a repeated Bernoulli process but were constrained to have the proper error characteristics. 

This means that if a perfect Bayesian subject selected the more probable hypothesis as the cor- 

rect hypothesis after n draws (or flipped a fair coin to choose between equally probable hypo- 

theses), he would be wrong the expected number of times over each block of sequences generated 

with the same Bernoulli probability. 

The 30 bigrams used in the deductive and inductive tasks were selected from the 576 possi- 

ble bigrams by an informal heuristic procedure.   A large number of bigrams was chosen so that 

the subjects would see many different data and so the correlation analyses based on these data 

would have a reasonably large n.   The particular bigrams used, shown in table EX, occurred in 

each subject's writing as both beginning and ending bigrams at least ten times.   Thus, no bigram 

was chosen that was used very infrequently by any subject. 

TABLE K.   BIGRAMS USED IN THE INFERENCE TASKS 
AND THE GEOMETRIC MEANS (ACROSS SUBJECTS) 

OF THEIR VERIDICAL LIKELIHOOD RATIOS. 
The direction of the VLRs is beginning 

to ending 

Bigram VLR Bigram VLR Bigram VLR 

ad 1.21 hr 0.10 of 1.10 
al 0.50 ho 1.63 on 0.45 
an 2.34 if 0.99 or 0.30 
al- 2.04 in 1.52 re 0.95 
as 0.61 is 0.62 se 0.72 

at 0.46 it 1.15 so 3.97 
be 2.13 le 0.46 St 1.14 
by 0.94 me 0.61 te 0.30 
ch 0.34 ne 1.21 th 12.25 
en 0.43 no 4.29 to 1.09 

After frequency counts for the seven subjects who started the experiment had been made by 

the computer, a composite subject was invented whose frequency counts for a given bigram were 

defined as the sum of the frequencies for the seven subjects.   Hypothetical beginning and ending 

bags were then filled on the basis of the frequencies for the composite subject.   Forty sequences 

of ten draws each were then generated by random draws (with replacement) from the two bags, 

20 sequences per bag.   Thus, the data-generating process is described by a multinomial proba- 

bility law, the values of p , p„, . . . , p„„ being determined from the frequency counts of the 

composite subject. 

In order to compute posterior odds for each sequence of data, it was first necessary to 

determine veridical likelihood ratios (VLRs) for each subject.   The VLR for a given bigram was 

obtained by dividing the beginning frequency count by the ending count for each subject.   The 
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2 3 4 5 6 

0.95 0.83 0.91 0.94 0.94 
-- 0.87 0.92 0.96 0.96 

-- 0.84 0.81 0.89 
-- 0.90 0.91 

0.93 

geometric mean of the VLRs of the six subjects who completed all experiments is shown for 

each bigram in table DC. 

The VLRs for a given bigram are generally very similar from one subject to the next.   This 

can be seen by examining the intercorrelation matrix shown in table X.   Each cell represents 

the linear correlation of the logarithm of the veridical likelihood ratios (LVLRs) of subject i 

with those of subject j where i ^ j.   Log VLRs rather than VLRs were correlated in this and 

subsequent analyses because the log transformation preserves the symmetry about VLRs of 1:1. 

TABLE X.   CORRELATIONS OF EACH SUBJECT'S 
LVLRs WITH ALL OTHER SUBJECT'S LVLRs 

Subject 1 

1 
2 
3 
4 
5 
6 

Posterior odds were computed, by applying Bayes's theorem, for each data sequence for 

each subject.   Median posterior odds for each subject were then determined separately for be- 

ginning and ending sequences.   Because the correlations given in table X are very high, the 

between-subject differences in median posterior odds are fairly small. 

4.1.2.   RESULTS FROM THE TRAINING TASK.   Performance of the subjects in the training 

task was analyzed by using the power function model suggested by Phillips and Edwards (1966). 

Assuming that the sampling is best described by a binomial process, define a success as the 

drawing of a chip with the same color as the predominant chips in the chosen bag, and a failure 

as the drawing of a chip of the other color.   The variable s - f is defined as the difference be- 

tween the number of successes and failures in a given sample.   Then, let SI   represent the poste- 

rior odds estimated by a subject for a given value of s - f, ft    represent the stated prior odds, 

and L represent the corresponding theoretical likelihood ratio for all the data presented to the 

subject since the prior odds were stated.   The power function model states that 

«1 = LCftQ (12) 

where c is a fitted parameter dependent only on the bag composition, and where 

L.(«)-' ,13, 

The constant c has been termed an accuracy ratio (Peterson et al., 1965). 

Accuracy ratios were determined for each subject and for each bag composition by the fol- 

lowing procedure.   First, median posterior odds were computed as a function of s - f.   Then, a 
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regression line for predicting log estimated posterior odds from s - f was computed under the 

constraint that it had to pass through the origin.   (Since this analysis was done graphically, it 

was not convenient to use the least-squares criterion in fitting the line of regression.   Instead, 

the signed deviations of the medians from the regression line add to zero.)   Taking logs of 

equation 12 and rearranging gives 

c = 
log «1 - log SlQ 

log L 

or, since J2n = 1 for this experiment, 

log 9, 
c = 

1 
(14) 

log L 

Thus, equation 14 can be solved for c by substituting the regression-line prediction, at any value 

of s - f, for log fi , and the corresponding theoretical value for log L.   Accuracy ratios calcu- 

lated from equation 14 are a function of both s - f and p, but Phillips and Edwards (1966) found 

that c is a constant function of s - f. 

Accuracy ratios computed from the training data are shown in table XI.   Values less than 

one indicate that the subjects revised their odds less than the amount prescribed by Bayes's 

theorem; this is conservative performance.   Values greater than one result when the subjects 

revise their odds more than does Bayes's theorem.   To facilitate comparison with the Phillips- 

Edwards data, the performance of their group of 12 subjects who estimated odds on a log-odds 

device is shown in the right column.   The numbers shown are the values of c averaged over 

s - f and subjects.   All of the subjects except one were generally conservative.   The estimates 

from subjects in the present experiment were more veridical than were those from subjects in 

the Phillips-Edwards experiment. 

TABLE XI.   VALUES OF C FOR THE TRAINING TASK AND FOR THE DATA 
OBTAINED BY PHILLIPS AND EDWARDS (1966) 

Bag 
Composition 

0.55 
0.70 
0.85 

SI S2 S3 S4 S5 S6 

0.55 
0.79 
0.89 

0.49 
0.87 
0.77 

1.00 
0.89 
0.63 

1.35 
2.27 
1.20 

1.68 
0.74 
0.40 

0.27 
0.38 
0.40 

Mean 

0.89 
0.99 
0.72 

Phillips- 
Edwards 

1.42 
0.52 
0.32 

Accuracy ratios were also determined for the inductive task to facilitate comparison with 

performance in the training task.   Median veridical posterior odds were determined for each 

subject separately for beginning and ending sequences.   Then a group's veridical performance 

was determined by computing the medians, across subjects, of these medians.   With the number 

of draws as the independent variable, a regression line was computed for the beginning sequences 

and another one for the ending sequences, using the same procedure employed in the training 
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task.  This procedure was repeated for the estimates of posterior odds.   Equation 14 was then 

solved to determine accuracy ratios for beginning and ending sequences.   The accuracy ratio 

for beginning sequences was 0.29, and for ending sequences, 0.08.   (Data to be reported later 

in this paper suggest that the inequality of the accuracy ratios reflects a bias.)   No subject's 

estimates were more extreme than the theoretical values, though this was not true in the train- 

ing task.   It is apparent that the subjects were very conservative in estimating posterior odds. 

4.1.3.   RESULTS FROM DEDUCTIVE INFERENCE TASKS.   In order to determine the extent 

to which the subjects misunderstood the d-g process, and, more importantly, the nature of this 

misunderstanding, analyses of linear regression were made on the data from the deductive task. 

For convenience, the estimated likelihood ratios in the first and second deductive tasks will be 

designated by ELR. and ELR0, respectively; their logs will be referred to as LELR   and LELR 
1 1 

Veridical likelihood ratios are again abbreviated VLR; their logs, LVLR.   Linear correlations 

between LELR   and LVLR and between LELR„ and LVLR were obtained for each subject and 

the slopes and intercepts of the regression lines (for predicting estimates from veridical values) 

were computed.   These correlations and regression parameters are shown in table XII and the 

corresponding scatterplots are shown in figure 5.   The mean LELR   by LVLR correlation is 

0.50; the mean LELR„ by LVLR correlation is 0.60.   The increase of 0.10 suggests that per- 

formance improved slightly, perhaps reflecting the experience the subjects gained in the induc- 

tive task.  A Bayesian analysis was carried out to estimate the true difference between the 

correlations obtained in the first deductive task and those in the second. 

An independent normal process, with neither mean nor variance known, was assumed to 

have generated the random variables d., d., . . . d , where d. = z    - z.„, with z    representing 

the Fisher z-transformation of the LELR1 X LVLR correlation coefficient and z.„ representing 

TABLE Xn.   COEFFICIENTS AND REGRESSION PARAMETERS OF 
THE LINEAR CORRELATIONS BETWEEN LOG ESTIMATED 
LIKELIHOOD RATIOS (DEPENDENT VARIABLE) AND LOG 
VERIDICAL LIKELIHOOD RATIOS (INDEPENDENT VARI- 

ABLE) FOR THE FIRST AND SECOND DEDUCTIVE 
INFERENCE TASKS 

LELRj X LVLR LELR2 X LVLR 

intercept, intercept, 
in odds, in odds, 

Subject r slope at 1:1 r slope at 1:1 

SI 0.56 0.55 1.20 0.57 0.76 1.32 
S2 0.61 1.36 3.68 0.80 1.49 1.08 
S3 0.50 0.66 3.04 0.60 0.74 1.72 
S4 0.22 0.14 1.21 0.36 0.25 1.00 
S5 0.44 0.38 1.38 0.51 0.44 1.18 
S6 0.69 0.44 1.02 0.68 0.33 1.00 

47 



100 

10 - 

1 - 

0.1 

g   0.01 

1 

Subject 

i 

1 

i— 

• 

• 

• 
- 

M     •       • • 
<* • 

• - 

/          i i 
r = 

i 

0.57 

• -i 1  

Subject 2 • 
•   • 
• •• 

•      • 
• 

* 

/ 
.« •• 

- / *•* - 

/ • 
i    i 

r = 0.80 

100 

10 

< 
K 
Q 

8 
X 
I—I 

W 1 
B 
w    o.i 

«: 

H    0.01 
W     100 

10 

 1 r 

Subject 3 

* *-i 
:%* 

r = 0.60 
j i  

Subject 4 

•   •• ••• 

r = 0.36 
 i  

0.1- 

0.01 

Subject 5 

•  •• 
• • •  • 

... • 

r = 0.61 
_i  

1 

Subject 6 

i            i 

• 

• 

•/ 

/          i 

r 
i 

= 0.68 

0.01    0.1 1 10       100 0.01    0.1 1 10        100 

VERIDICAL LIKELIHOOD RATIOS 

FIGURE 5.   SCATTERPLOTS OF ESTIMATED LIKELIHOOD RATIOS FROM THE 
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the same quantity for the second deductive task.   For purposes of the Bayesian analysis the 
2 

process mean, n, and variance, a , were treated as random variables.   The prior joint distribu- 

tion over the two variables was taken as a normal-gamma distribution because it was reasonably 

descriptive of the form of the author's prior opinion and because, as a natural conjugate to the 

independent normal process, it simplifies analysis.   Table XIII presents the parameter (m1, n', 

u1, v') of the prior distribution, the sufficient statistic (m, n, u, v) of the sample, and the param- 

eter (m", n", u", v") of the posterior distribution.   The parameters m' and m" are equal to the 

means of the prior and posterior marginal distributions of \x, m is the sample mean, n is the 

number of observations in the sample, and u and v are related to the variances and degrees of 

freedom of their corresponding distributions.   (The parameters and statistics are defined in 

Raiffa and Schlaiffer, 1961, Chapter 11C.) 

TABLE XIII.   PARAMETERS AND 
STATISTICS OF THE BAYESIAN 

ANALYSIS DESCRIBED IN 
THE TEXT 

Prior Sample Posterior 

m 0.05 0.155 0.112 
n 4.16 6.00 10.16 
u 0.52 0.0198 0.221 
V 4.00 5.00 10.00 

Since Phillips and Edwards (1966) observed a modest amount of learning in their experi- 

ments, it was assumed that performance would improve in the present experiment.   This would 

be shown in the higher correlations between estimated and veridical LLRs on the second deduc- 

tive task than obtained in the first task.   However, the learning in probability inference experi- 

ments is usually small, so the prior mean of the marginal distribution of /x was made to be 

small but positive (specifically, 0.05).   The variance assigned was large, indicating uncertainty 

about JL.   The 95 percent prior credible interval centered on 0.05 extends from -0.92 to 1.02. 

(Correlations of 0.72 and 0 on the first and second deductive task, respectively, will yield a 

difference in z-coefficients of -0.92.   Correlations of 0 and 0.77 will give a z-difference of 

1.02.)   The mean of the posterior marginal distribution of Ji is 0.11, with a 95 percent posterior 

credible interval of -0.33 s £ s 0.55. 

But what does this analysis say about the hypothesis that performance improves from the 

first deductive task to the second? The hypothesis "performance improves" can be character- 

ized by values of /i from 0 to oo while "performance degrades" is characterized by values of /i 

from -oo to 0. Prior odds favor the hypothesis "performance improves" by about 1.23 to 1 (as 

calculated from the prior marginal distribution of /i), while the posterior odds favor the same 

hypothesis by about 3.28 to 1. This result moderately favors the hypothesis that performance 

improves from the first to the second deductive task. 
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The nature of the subjects' deductions concerning the d-g process can be inferred from the 

results of the LELR by LVLR regression analyses. Table XII shows the slopes of the linear 

regression and also the intercept (expressed as an LR, not LLR) at VLR = 1.0. For five of the 

six subjects, the slope of the regression line is less than one. One interpretation of this is that 

these subjects interpret the d-g process as being less diagnostic than it really is, an underesti- 

mation. One subject does not show the underestimation effect; he overestimates, i.e., he inter- 

prets the d-g process as being more diagnostic than it really is. 

Another kind of nonoptimal deduction of the d-g process can be inferred from the intercept 

of the regression line on the ordinate that corresponds to an LR of one.   For all subjects this 

intercept is at a value of LLR for which the LR is greater than one.   Since the LR is defined 

with the beginning bigram count in the numerator, intercept values for which the LR is greater 

than one indicate a bias in favor of the beginning bookbag. 

To summarize, these data show the effects of three subcomponents on the deductive compo- 

nent of inductive inference:   an error subcomponent, as measured by the correlation coefficient; 

an underestimation or overestimation subcomponent, as measured by the slope of the regression 

line; and a bias subcomponent, as measured by the intercept of the regression line.   The sub- 

jects show a modest ability (r = 0.60) to estimate the parameters of the d-g process, they usually 

underestimate the parameters, and they do so with a bias in the beginning direction. 

4.1.4.   RESULTS FROM THE INDUCTIVE INFERENCE TASK:   INFERRED LIKELIHOOD 

RATIOS.   A hypothetical d-g process was inferred from the estimates the subjects gave in the 

inductive task.   Inferred likelihood ratios were computed for each estimate from 

a 
L = ^- (15) 

n    1 n-1 

th where Q.   is the posterior odds estimated by a given subject at the n    draw of a given sequence, 
_ n „ 
ft    . is the previous odds estimate and ft   = l.   The 400 values of L were reduced to 30, one 

n-1 0 
for each bigram, by taking the geometric mean of the repeated measures of L on a single bigram. 

Since equation 15 is simply a version of Bayes's theorem, likelihood ratios inferred from its 

application are determined under the assumption that the subjects are combining data optimally. 

The strength of this assumption can be assessed, then, by comparing the mean log inferred LR 

(LILR)-by-LVLR correlations and the regression parameters with the LELR-by-LVLR correla- 

tions and the regression parameters.   This can be done by referring to table XIV.   Scatterplots 

of the LILRs by LVLRs are shown in figure 6.   The major difference between the LELR by 

LVLR analyses in table XII and the LILR by LVLR analyses in table XIV is the set of values 

for the slopes of the regression lines.   Underestimation is considerably more marked in the 

LILR-by-LVLR analyses. 
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TABLE XIV.   COEFFICIENTS AND RE- 
GRESSION PARAMETERS OF THE COR- 
RELATION BETWEEN LOG INFERRED 

LIKELIHOOD RATIOS AND LOG 
VERIDICAL LIKELIHOOD RATIOS 

LILR X LVLR 
intercept, 
in odds, 

Subject r slope at 1:1 

1 0.62 0.20 1.14 
2 0.67 0.22 1.27 
3 0.14 0.01 1.06 
4 0.57 0.31 0.91 
5 0.62 0.16 1.10 
6 0.73 0.05 1.00 

The difficulties with a linear regression analysis of the LILR data can be seen by examining 

the scatterplots in figure 6.   It is obvious that for Subjects One and Four a straight line is not 

the best fit to the data.   The bigrams TH and HE do the most violence to the straight-line fit. 

These data confirm the effect that was predicted by Edwards and Phillips (1964); when the 

subjects estimate posterior odds and are confronted with many different data, they will tend to 

ignore all but the most highly discriminative data.   Figure 6 shows that the subjects treat most 

data as being relatively undiagnostic:   most ILRs are near one.   The word "THE" is used fre- 

quently and words beginning with TH are used much more frequently than words ending in "HE." 

Thus, "TH" appears frequently in beginning sequences, and "HE" frequently in ending sequences. 

All the subjects reported that they looked for these bigrams as important cues.   Figure 6 shows 

that three subjects tended to assign higher LRs to these bigrams than to any others. 

4.1.5.   RESULTS FROM THE INDUCTIVE INFERENCE TASK:   POSTERIOR ODDS COM- 

PARISONS.   Median posterior odds estimated by the subjects are shown separately for beginning 

and ending sequences in figure 7.   These medians are actually medians of medians:   first, me- 

dians were determined across the 20 beginning sequences and also across the 20 ending se- 

quences for each subject, then the medians of these medians were determined across the six 

subjects.   This same approach was applied to the posterior odds calculated from Bayes's 

theorem using VLRs; the resulting median posterior odds are shown by the "veridical" plots in 

figure 7.   Medians based on posterior odds calculated from Bayes's theorem using ELRs are 

shown by the ELR-based plots in figure 7.   The group data are representative of individual data 

for only the estimated and veridical plots; "ELR-based" plots show very great individual differ- 

ences, some being higher than the veridical plots, and others being lower. 

Estimated posterior odds for the beginning sequences are about one-twentieth as large as 

the veridical odds, while posterior odds for the ending sequences are less than one-thousandth 
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as large as the veridical odds.   Comparison of the ELR-based odds with the veridical reveals 

some strange effects.   One plot shows odds that are in the wrong direction, and another plot 

shows odds that are more extreme than are the veridical odds. 

These effects can be attributed to the bias subcomponent of the likelihood-ratio estimates. 

In order to show the effects of only the other two subcomponents (error and underestimation- 

overestimation), the ELR-based odds were corrected for bias in the following manner.   Each 

ELR was considered to consist of two multiplicative parts, in symbols: 

ELR = ELR' xb (16) 
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where ELR' represents the estimated likelihood ratio uncontaminated by bias and b represents 

the bias.  The value of the bias was set equal to the value of the intercept given in table V.  This 

procedure assumes that for each subject, bias is the same for all ELRs given within one of the 

deductive tasks, but differs in the two deductive tasks.   Substituting equation 16 into equation 8 

gives 

j=n 
ft    = Q. bn n ELR'. (17) 

j=l J 

Thus, bias in the posterior odds was corrected for by dividing the posterior odds at the n 

draw by the n     power of the intercept.   This was done for the median ELR-based odds.   The 

medians, across subjects, of these corrected posterior odds were determined and are plotted 

in figure 8.   Now the ELR odds fall between the veridical and the estimated odds. 
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PLOTS CORRECTED FOR BIAS.   Posterior odds are in the begin- 
ning-ending direction. 
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The comparisons suggested by table VIII can now be made using the data in figure 8.   Com- 

paring the ELR-based odds with the veridical shows that some conservatism can be ascribed 

to the error and underestimation subcomponents of the deductive inferences.   Comparing the 

estimated odds with the ELR-based odds shows that some conservatism is attributable to the 

requirement that the data be combined.   In short, conservatism can be found in both the deduc- 

tive and combinative components of inductive inference. 

4.2.   DISCUSSION 

Because the subjects in this experiment were not randomly chosen from the student popula- 

tion at The University of Michigan, there is a question of the extent to which these results may 

be generalized.   The data from the training task indicate that the performance of these subjects 

is less conservative than that of the more representative subjects in the Phillips-Edwards (1966) 

study.   However, most of the subjects in the Phillips-Edwards study were conservative, as were 

the subjects in the present experiment.   (The nonconservatism shown by the Phillips-Edwards 

subjects in the sequences where p = 0.55 is typically found when the data are not very discrim- 

inative.   Most of the veridical likelihood ratios in the present study are greater than the low- 

discrimination likelihood ratios that lead to nonconservatism.)   Thus the conservatism effect is 

a general one, but the degree of conservatism shown by the subjects is not necessarily repre- 

sentative of the student population.   In fact, it is possible that the great amount of conservatism 

shown in the inductive inference task is an underestimate of the amount of conservatism that 

would be shown by a more representative sample of students. 

The most striking finding of this experiment is the large amount of conservatism shown by 

all subjects in the inductive inference task. One reason for more conservatism in the inductive 

task than in the training task may be the greater number of possible data (30 instead of 2). The 

only experiment (C. R. Peterson, personal communication with the author) that has investigated 

this variable shows that conservatism increases as the number of possible data increases. 

Phillips, Hays, and Edwards (1966) also make this suggestion, though their data are not conclu- 

sive on the point. The greater vagueness of the d-g process in the inductive task than in the 

training task may also account for the greater conservatism in the inductive task. 

Two components of conservatism emerge from the present study.   One, nonoptimal deduc- 

tions regarding the d-g process, has three subcomponents whose effects can be seen in the 

LELR-by-LVLR regression analyses:   random error, bias, and underestimation-overestimation. 

The other component, the combining of data, apparently imposes an additional information- 

processing load on the subjects beyond that required in a deductive task, causing the data to lose 

some of their discriminative impact for the subjects. 
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4.3.   IMPLICATIONS 

These findings have several implications for the controversy in psychology concerning 

clinical vs. actuarial prediction, for medical diagnosis, for the design of military diagnostic 

systems — in short, for any attempt to systematize the inferential process.   The implications 

are seen best in the clinical vs. actuarial controversy, for here the battle lines have been drawn 

most clearly.   Prior to 1954, lines were not so clearly drawn; Meehl's book (1954) changed this 

situation.   To him the question was this:   Is clinical or actuarial prediction best?  He surveyed 

the literature on the topic and found 20 studies were relevant.   In all but one, actuarial predic- 

tions were equal to or better than clinical ones.   His book was valuable in raising some basic 

issues that had not been previously well-understood—such questions as what is a datum, how 

should hypotheses be formulated, and how should data be combined. 

Later, Gough (1962) claimed that the locus of the controversy was in how the data were to 

be combined.   He reviewed actuarial methods, clinical approaches, and briefly surveyed the 

history of the controversy.   He concluded that the problem of validating either procedure is a 

major drawback to resolving the controversy, that neither procedure has done very well, and 

that the proper use of a clinician's skills could be a supplement or addition to the actuarial 

methods. 

Sawyer (1963) has attempted a further formulation.   He suggests that a distinction has to be 

made between methods of data collection and methods for combining data.   He applies this dis- 

tinction to 40 clinical-statistical studies and finds that mechanical methods are still generally 

superior.   However, he suggests that "the clinician's potential contribution to increasing validity 

may be not so much as a combiner of data, but rather as a sensitive measuring instrument. 

"To devise measurement methodology capable of more fully capturing, in an objective fashion, 

the broad range of subtle behaviors which the clinician perceives, should be a prime goal of 

those interested in improving prediction."   (Italics his.) 

The present study suggests that clinicians may be able to act as sensitive measuring 

instruments when they perform deductive inferential tasks on individual observations, and 

that when these inferences are combined optimally the resulting inductive inferences may be of 

better quality than the inductive inferences made by the unaided clinician.   Thus, the real issue 

is not clinical vs. actuarial prediction, but rather the proper roles for the clinician's intuition 

and the actuary's statistics or mechanical methods when both work together in making infer- 

ences, a point that is implicit in Edwards' (1962) suggestions for a man-machine diagnostic 

system. 

One implication for system designers is that training should aim to familiarize estimators 

of likelihoods with the d-g process.   One type of training would be to expose the subject to many, 

many instances of data generated by a particular d-g process.   The efficacy of this approach 
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has been amply demonstrated in studies conducted at the Laboratory of Aviation Psychology at 

Ohio State University (Southard, Schum, and Briggs, 1964; Schum, Goldstein, and Southard, 1965). 

Another type of training might rely on plausibility arguments.   For example, Warner, Toronto, 

Veasey, and Stephenson (1961), in a study on diagnosis of congenital heart disease, estimated 

values of P(D|H) for the rare diseases, on which adequate statistics were not available, by con- 

sidering the pathologic physiology of the symptom.   In a similar vein, Edwards and his associates, 

in the study reported in section 2, trained subjects to estimate likelihood ratios by first famil- 

iarizing their subjects with the logical structure of the experimental environment and then giving 

practice data to their group of subjects.   Likelihood ratios were estimated for these practice 

data and the values were discussed by the group.   Arguments of plausibility were used by the ex- 

perimenters to convince the subjects that their estimates should have been greater or lesser. 

Let us return, now, to the question of validity.   How can one assess the degree of validity 

in the conclusions reached by one method or the other?  This same problem is, of course, also 

found in scientific inference, and, ultimately, there is only one answer:   it is not possible to 

ascertain with certainty which of a set of possible theories is true.   This philosophic answer, 

however correct, is unsatisfactory, and so various devices, discussed in section 2, have been 

invented that substitute some kind of reliability for the unattainable goal of validity. 

The methodology of the experiments reported here deals with the problem of validation by 

employing an experimental task in which the experimenter knows which hypothesis is true. 

Furthermore, the d-g process was completely specified mathematically, and was known pre- 

cisely to the experimenter but imprecisely to the subject.   Imprecise knowledge of the d-g 

process is characteristic of most real-life situations in which people must make inferences on 

the basis of inconclusive data.   But when the d-g process is known imprecisely to an experi- 

menter (as has been the case for most of the studies cited in the clinical vs. actuarial contro- 

versy), then the only way to check on validation is to count the number of times the hypothesis 

that eventually turns out to be correct (if ever this can be determined) is identified as the true 

hypothesis.   But this approach may lead to erroneous conclusions, as was indicated in section 2. 

For the inductive inferential task of the experiment, both the d-g process and the correct hypoth- 

esis are known to the experimenter; for the deductive inferential task, the d-g process is known 

to the experimenter, thus allowing an analysis of the components of the inferential process. 

However, this approach trades one set of problems for another.   While it is true that the exper- 

imenter knows the parameters of the d-g process precisely, this is only possible because the 

d-g process was defined as relevant to the fall editorials of the subjects, not to all their written 

material.   It is quite likely that the subjects relied heavily on their knowledge of all their written 

editorials and news articles, or even on their general use of English in both writing and speak- 

ing.   If this is true, then the VLRs are really only estimates, though probably good estimates, 
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of the LRs that characterize each subject's general use of English.   Looked at this way, reliabil- 

ity has been substituted for validity in this study, too.   The experiment reported here, then, 

can be considered as another, and successful, attempt at the convergent validation of PIP. 

CHOICE AMONG BETS AND REVISION OF OPINIONS* 

Men usually fail to extract as much information from inconclusive data as is latent in those 

data; compared with Bayes's theorem, men are conservative.    This conservatism is a function 

of several variables.   It depends on response mode; subjects are more conservative when esti- 

mating probabilities than when estimating odds.   Knowledge of results and appropriate payoff 

matrices decrease conservatism.   Conservatism increases with the diagnostic impact of the 

data; that is, the larger the likelihood ratio, the greater the conservatism.   This is true whether 

the likelihood ratio is increased by making the populations that might be sampled easier to 

discriminate, and thus affecting the diagnostic impact of the individual datum, or by increasing 

the number of data included in a single observation.   (For data supporting these generalizations, 

see Edwards, 1965; Edwards and Phillips, 1964; Peterson and Miller, 1964; Peterson, Schneider, 

and Miller, 1964; Phillips and Edwards, 1966; Phillips, Hays, and Edwards, 1966.) 

The dependence of conservatism on response mode introduces into decision theory a prob- 

lem familiar to psychophysicists.   When several different kinds of responses that ought to be 

tapping the same internal process disagree, which most faithfully reflects that internal process? 

In the case of subjective probabilities, the situation is still more complicated because there are 

two other classes of experiments to consider.   A number of psychophysical experiments on the 

direct estimation of relative frequency have found excellent agreement between actual and esti- 

mated relative frequencies (Shuford, 1961; Robinson, 1962).   It is not entirely clear what rela- 

tion, if any, such experiments have to the estimation of probabilities; at any rate, they clearly 

indicate that circumstances can be found in which men can estimate numbers between zero and 

one that closely match some normative external criterion.   Perhaps most important, however, 

is the rather large and rather inconsistent body of experiments in which subjective probabilities 

have been inferred from choices among bets (for reviews of this class of experiment, see Ed- 

wards, 1954 and 1961a; for the best recent examples see Tversky, 1965, and Lindman, 1965). 

These experiments agree unanimously that subjective probability so inferred is not linear with 

relative frequency (or whatever other external standard seems appropriate to the particular 

experiment) but disagree about the form of the nonlinearity.   None of these experiments, how- 

ever, has been conducted in a setting to which Bayes's theorem is relevant. 

This study compares several response modes in a Bayesian setting, including one that is 

intermediate between estimating probabilities and choosing among bets.   Its original motivation 

*This section represents work done by Andries F. Sanders. 

58 



was an attempt to find a choice-among-bets response from which probability estimates could 

be recovered with precision.   Such a response was needed for use in the PEP group of the first 

PIP experiment.   It was apparent that to recover probabilities from choices among bets with 

precision, it would be necessary either to have the subject rank-order a very large group of 

bets, or else to have him pick one bet from an even larger group.   The former was impractical, 

so various versions of the latter were explored.   In order for the subject to be able to pick one 

from a large group of bets and have the response be meaningful, the bets must be arranged in 

an orderly way; the natural ordering principle is, of course, the probability that the choice of 

each bet would imply.   But the task of choosing a bet from a list ordered in probability is very 

similar to the task of estimating a probability; indeed, it can be made identical by appropriate 

choice of the payoffs and form of the bets. 

Toda (1963) and van Naerssen (1962) have pointed out that the most natural payoff scheme 

for probability estimation, linear payoff, is completely inappropriate.   In such a scheme the 

subject would win $0.75 if he estimated the probability of the event that turned out to be the 

truth as 0.75, would win $0.90 if his estimate was 0.90, and so on.   In such linear schemes, the 

optimal strategy is to estimate the probability of the most likely event as one, all others as 

zero.   There are, however, nonlinear payoff schemes that make it optimal to give your true 

opinion as your estimate.  The one with the most attractive mathematical properties, the log- 

arithmic payoff scheme (whereby your payoff is proportional to log p), unfortunately implies 

the possibility of losing near-infinite amounts of money, which makes it impractical in many 

contexts.   For two-hypothesis situations a quadratic payoff scheme (whereby your payoff is 
2 

proportional to p ) is more satisfactory.   Moreover, it turns out to be possible to develop 

choice-among-bets responses that look linear with probability but are in fact quadratic.   Such 

a response looks somewhat like a probability estimate, and yet is a choice among bets, and has 

the formal properties of a quadratic payoff scheme; one such response was studied in this ex- 

periment, and a very slightly different version was used in the first PIP study (without the real- 

gambling feature). 

5.1.   THE INFERENCE TASK 

Subjects were told that there were two urns, one with 60 percent red and 40 percent blue 

poker chips in it, and the other with 40 percent red and 60 percent blue.   (The actual number of 

chips was not specified, but was implied to be large.   Since samples were drawn with replace- 

ment, it was formally irrelevant.)   The subject was told that one of the urns had been chosen by 

tossing a fair coin, and a sample had been drawn from it, randomly, with replacement.   The sub- 

ject was told the number of reds and blues in the sample, and then made a response indicating 

which urn he thought likely to have been chosen.   Then the subject was asked to imagine that a 
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new choice between the urns had been made, was given a new sample from the chosen urn, and 

made a new response. 

5.1.1. RESPONSE MODES.   Three response modes were used in the four subexperiments. 

The simplest is the verbal odds mode.   In this mode, the subject simply states verbally the odds 

in favor of the more probable urn; odds are always taken as a number equal to or greater than 

one.   In the quadratic gain mode, the subject is presented with a table of bets like the one illus- 

trated in table XV, and must choose one.   To encourage subjects to take the task seriously, they 

were informed that their pay would depend on the number of points earned as a result of what 

bet was chosen and what urn had been used to generate the sample.   In the table presented to the 

subject, there were 100 bets rather than ten, and the column headed "Implied Probability of Red 

Urn" was absent.   The final response mode was a bidding mode, using a pseudolinear payoff 

scheme.   The subject stated how many points he would bid for a bet that paid 100 points if the 

urn sampled was the red urn, and zero points if it was the blue one.   They were told that their 

payoff would be determined as follows.   The experimenter would draw a random numberbetween 

zero and 100.   If the number drawn was higher than the bid, the subject earned a number of points 

equal to the number drawn.   If the number drawn was not higher than the bid, the subject earned 

100 points if the red urn had generated the sample, and zero points otherwise.   It can be shown 

that this is formally equivalent to a quadratic payoff scheme, and that the subject's best strategy 

is to bid a number of points equal to his probability that the red urn was chosen. 

TABLE XV.   QUADRATIC GAIN BETS 

Implied Probability of Red Urn 

1.0 
0.9 
0.8 
0.7 
0.6 

0.5 
0.4 
0.3 
0.2 
0.1 
0.0 

5.1.2. SUBJECTS AND EXPERIMENTAL CONDITIONS.   All subjects were male University 

of Michigan undergraduates.   There were four subexperiments.   In subexperiment 1, seven sub- 

jects used the quadratic gain and bidding modes.   There were two blocks of 40 trials each; stim- 

uli in the second block were identical with stimuli in the first except that the colors were re- 

versed.   Four of the subjects used the quadratic gain mode in the first block and bidding in the 

second; the other three reversed this order.   The stimuli in the first block are shown in table 

XVI. 
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Red Urn Blue Urn 

100 0 
99 19 
96 36 
91 51 
84 64 

75 75 
64 84 
51 91 
36 96 
19 99 
0 100 



TABLE XVI.   SAMPLES IN FIRST BLOCK OF 
SUBEXPERIMENT ONE 

Blue     Red       Blue     Red       Blue      Red       Blue     Red 

13 3 12 11 6 10 16 12 
6 10 10 2 6 8 11 9 
2 9 7 5 18 12 11 10 

13 7 10 10 12 12 10 1 
7 9 11 12 13 16 4 11 

6 11 9 6 12 11 5 9 
12 7 17 11 11 13 13 14 
3 11 10 3 14 11 7 12 

12 10 14 15 10 15 10 11 
4 7 11 13 6 6 10 8 

In subexperiment 2, quadratic gain was compared with verbal odds.   Of the six objects, 

three used quadratic gain first and then verbal odds; the other three reversed this order.   Table 

XVII shows the 30 samples in the first block.   An attempt was made to include more relatively 

unbalanced (highly diagnostic) samples than had been used in subexperiment 1. 

TABLE XVII.   SAMPLES IN FIRST BLOCK 
OF SUBEXPERIMENT TWO 

Blue      Red       Blue      Red       Blue     Red 

6 10 7 5 12 11 
2 9 14 5 16 8 

13 7 17 11 14 11 
7 9 3 10 10 15 
6 11 6 15 16 12 

12 7 7 9 10 1 
3 11 6 10 4 11 
4 7 6 8 5 9 

12 11 18 12 7 12 
10 2 13 16 12 10 

In subexperiment 3, the response modes were again quadratic gain and verbal odds.   How- 

ever, in this experiment the samples were not summarized.   Instead, they were presented one 

poker chip at a time to the subjects.   Of the seven subjects, four saw six sequences of 20 chips 

each using quadratic gain, and then three more using verbal odds.   The remaining three subjects 

got the two conditions in reverse order. 

In subexperiment 4, the urns were 70-30 and 30-70 instead of 60-40 and 40-60 (this changes 

only the instructions to the subjects, since no actual urns were used).   Of the eight subjects, 

four saw five sequences of 20 chips each using the quadratic gain mode, and then saw them 

again with reversed colors using the verbal odds mode; the other four subjects used the same 

response modes in reverse order. 
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5.2.   RESULTS 

In symmetric binomial Bayesian tasks like this one, the number of chips in a sample is not 

diagnostically relevant; the only relevant aspect of the sample is the difference between the 

number of red and the number of blue chips in it.   This is the appropriate independent variable 

against which to plot the data.   Moreover, if there are no response biases in favor of red or 

blue (and there were none), it does not matter whether the data favor the red or the blue urn. 

Consequently the independent variables will be called successes minus failures, or s - f, where 

a success is a chip of the color predominant in the sample. 

Bayes's theorem can be written 

log L = log fi1 - log nQ (18) 

where fin is the prior odds (in this case, one), fl.. is the posterior odds, and L is the Bayesian 

likelihood ratio (for this symmetric binomial task, the logarithm of the likelihood ratio is 

(R - B) log (p/q), where R and B are the number of red and blue chips in the sample and p is 

the probability of drawing a red chip from the predominantly red urn). 

Peterson, Schneider, and Miller (1965), Phillips and Edwards (1966), and others have found 

that if the correct prior odds and the posterior odds calculated from a subject's estimates are 

used to infer a log likelihood ratio according to equation 18, that a log likelihood ratio typically 

will have an approximately constant ratio to the Bayesian log likelihood ratio.   The constant by 

which the Bayesian log likelihood ratio should be multiplied to obtain the subject's inferred log 

likelihood ratio has been called the accuracy ratio.   It is a useful dependent variable for sequen- 

tial Bayesian experiments.   Typical accuracy ratios in previous experiments have ranged from 

0.2 to 0.6, for 70-30 urns.   The accuracy ratio is the dependent variable used in data analysis in 

this experiment. 

Mean accuracy ratios for all values of s - f used in subexperiment 1 are presented in 

table XVIII, along with 1 percent confidence intervals.   It is apparent that performance was con- 

siderably more Bayesian for the bidding response mode than for the quadratic gain mode.   The 

variability appears to be somewhat larger for the bidding mode, but this is probably a byproduct 

of the fact that the transformation from bid to log odds expands the upper end of the probability 

scale far more than the region near 0.5, and thus apparently larger variability is bound to be 

associated with a larger mean.   (Note:   separate log posterior odds were calculated for each 

observation and then averaged; it is very important not to average probabilities, since a mean 

probability is usually uninterpretable.) 

Table XVIII also shows the results of subexperiment 2, comparing quadratic gain with verbal 

odds.   There are no major differences between quadratic gain for the two subexperiments, or 

between quadratic gain and verbal odds in subexperiment 2, until an s - f of 7 is reached.   Then 
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TABLE XVin.   ACCURACY RATIOS AS A FUNCTION OF s - f 

Subexperiment One Subexperiment Two 

s - f Quadratic gain Bidding Quadratic gain Verbal odds 

1 
2 
3 
4 
5 

0.39 ± 0.26 
0.53 ± 0.17 
0.62 ± 0.20 
0.59 ± 0.19 
0.60 ± 0.14 

0.67 ±0.33 
0.63 ± 0.31 
0.67 ±0.27 
0.72 ±0.31 
0.70 ±0.29 

0.25 ±0.19 
0.37 ±0.27 
0.45 ±0.26 
0.53 ± 0.22 
0.65 ± 0.18 

0.30 ± 0.20 
0.41 ± 0.23 
0.62 ± 0.22 
0.63 ±0.19 
0.72 ± 0.23 

0 
7 
8 
9 

0.57 ± 0.17 
0.91 ±0.34 
0.98 ± 0.35 
1.10 ± 0.28 

0.69 ± 0.33 
1.12 ±0.45 
1.00 ± 0.32 
1.16 ±0.17 

0.56 ±0.17 
0.88 ± 0.26 
0.86 ± 0.24 
0.92 ± 0.21 

0.56 ±0.18 
0.67 ± 0.21 
0.62 ± 0.15 
0.62 ± 0.20 

all other response modes rise to very Bayesian levels of performance, while verbal odds stays 

down in the 0.6 region. 

The results of subexperiments 3 and 4 are not worth presenting in detail.   They show good 

agreement between verbal odds and quadratic gain for the sequential procedure at all levels of 

s - f.   They also show remarkably good agreement between the results of the verbal odds mode 

in this experiment and the results of the same mode in the Phillips and Edwards (1966) ex- 

periment.   They thus establish comparability between this and previous experiments.   A number 

of other data analyses concerned with the order of presenting response modes and similar issues 

produced no interesting results. 

5.3.   DISCUSSION 

All response modes and all groups were conservative, as is usual in such experiments. 

There seemed to be little important difference between verbal odds and quadratic gain as re- 

sponse modes, except for the anomalous behavior of the quadratic gain groups at s - f of seven 

and higher.   It remains to be seen whether that finding is reliable; nothing comparable occurred 

in subexperiments 3 and 4.   The bidding method produced considerably more nearly Bayesian 

performance than any other studied; it is clearly the method of choice when a choice-among- 

bets response mode is needed.   However, the bidding method is complex and hard for subjects 

to understand.   Had this experiment been longer, so that subjects could have the chance to be- 

come more experienced with it, it seems entirely possible that they might have become more 

conservative, not less, in using it. 

These data offer no support whatever for the idea that choices among bets lead to probability 

estimates different from those obtained by direct estimation.   However, these choices among 

bets are of rather special form.  The possibility remains that in other choice-among-bets situ- 

ations, differences not found here might emerge. 

On the basis of these data, the bidding method (or rather, a variant of it) was adopted for 

the PEP group of the first PIP experiment. 
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6 
ESTIMATION OF PROBABILITIES IN MILITARY AND ABSTRACT SETTINGS* 

Phillips, Hays, and Edwards (1966) have found in a complex task requiring evaluation of 

simulated threats that subjects are unable to extract as much certainty from data as is implied 

by Bayes's theorem.   Indeed, no amount of evidence seemed to be able to induce their subjects 

to estimate high posterior probabilities. 

The aims of the present study were various.   One major interest was to see if subjects 

could be induced to give a high-probability assessment to one hypothesis by presenting sufficient 

data to indicate overwhelmingly that this hypothesis was true.   A second was to compare a task 

with a military setting comparable to the air-defense threat-evaluation task, with the same prob- 

lem in an abstract setting. 

The remaining aims were derived from consideration of the way a subject should behave if 

he were a perfect Bayesian operator.   Two features of the perfect Bayesian that were selected 

for examination were the irrelevance of order, and the ability to combine data from different 

sources.   Irrelevance of order means that the total influence of a number of data should be un- 

affected by the order in which these data were received.   A subject may weigh early data more 

heavily than recent or vice versa.   No prior expectations were held except that a subject may 

well differ from the perfectly Bayesian.   The combination of data from different sources is a 

most useful feature of the Bayesian process and is clearly demanded in many practical situations. 

It was studied for this reason.   The basic strategy was to compare the efficiency of subjects 

when handling data from two sources with their efficiency in handling data from one.   To make 

this comparison as general as possible the two sources were made to behave in one case as 

though their indications were complementary while in another case they appeared to be discor- 

dant.   The detailed manner in which these different conditions were achieved is described below. 

6.1.   METHOD 

6.1.1. MATERIAL.   A conditional probability distribution relating each of five possible 

events (el-e5) to four possible states of the world (S1-S4) was constructed (see table XDC). 

This distribution has certain special properties:   it neatly fits the military cover story; and if 

SI and S3 are considered, it is possible to fractionate the conditional probabilities so that evi- 

dence from two sources can appear to have either similar or dissimilar implications (see table 

XX). 

6.1.2. DESIGN. All subjects received 60 items of evidence. These came from six blocks 

of ten items. The events represented in each block corresponded exactly in their relative fre- 

quency to the conditional probability distribution of either SI or S3.   The sequence within an 

SI  block was always:   e4, el, e3, el, el, e3, e2, e5, el, e4; and that for S3 was always:   el, el, 

*This section represents work done by Harold Dale. 
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TABLE XK.   THE CONDITIONAL PROBABILITIES AND 
CODING OF EVENTS 

(a)   Conditional Probabilities 

Possible states 
of the world 

and corresponding 
 hypotheses 

51 (HI) (Frontal Attack) 
52 (H2) (Flank Attack) 
53 (H3) (Parachute Attack) 
54 (H4) (Pincer Movement) 

Possible Events 

f,l e2 e3 64 °5 
0.40 0.10 0.20 0.20 0.10 
0.10 0.40 0.10 0.10 0.30 
0.20 0.10 0.10 0.40 0.20 
0.30 0.30 0.10 0.10 0.20 

(b)   Coding of Events 

Possible Events 

*1 e2 e_3 eJ ^5 

Military 

Agent reports he 
has sighted .. . 

Tank Armored 
Personnel 
Carrier 

Light 
Artillery 

Aircraft Heavy 
Artillery 

Task 
Radio activity de- 

tected in area ... 
B D A E C 

Abstract 
Task 

Color of matchstick 

Number of stripes 

Red 

2 

Green 

4 

Black 

1 

Yellow 

5 

Blue 

3 
on matchstick 

e4, e5, e4, e4, e5, e3, e4, e2.  The blocks were in order A (Q = 1) SI, S3, SI, SI, SI, SI; or B 

(Q = 2) S3, SI, S3, S3, S3, S3, so that for Ql at the end of the run the evidence indicated that SI 

was true, whereas for Q2, S3 was true. 

The items were attributed to either or both of two sources, referred to as 01 and 02.   When 

both were employed, the items were allocated either symmetrically (so that the evidence from 

both sources appeared to be similar) or asymmetrically (so that evidence from both sources 

conflicted).   Since with the asymmetrical split more items were attributed to one source than 

the other it was desirable to counterbalance and remove any bias this inequality might introduce. 

This led to a basic design employing 16 subjects (each subject being given only one problem): 

Order of blocks A(Q1) B(Q2) 

Sources 01 02 Both 01 02 Both 

Split Sym.     Asym. Sym.     Asym. 

Counte rbalanc ing - - 
1             1 

c    c      c    c - - 
1             1 

c    c      c    c 

No. of Subjects 2 2 1111 2 2 1111 

The task was given either as a military or an abstract setting.   Two sets of 16 subjects 

were given each. 
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TABLE XX.   SPLITTING THE CONDITIONAL PROBABILITY DISTRIBUTIONS FOR 
SI AND S3 

Number of Events in each Block of Ten Events 

Event 

Asymmetrical Split 
(Evidence is conflicting) 

Symmetrical Split 
(Evidence is consistent) 

State Resembles SI          Resembles S3 Resembles SI Resembles SI 

el 
3                                  1 2 2 

e2 1                                  0 1 0 

SI e3 
2                                 0 1 1 

e4 
0                                  2 1 1 

e5 
0                                  1 1 0 

Resembles SI          Resembles S3 Resembles S3 Resembles S3 

el 
2                                 0 1 1 

e2 
0                                  1 0 1 

S3 e3 
1                                  0 0 1 

e4 
1                                  3 2 2 

e5 
0                                 2 1 1 

6.1.3.   APPARATUS.   For the military setting, a 2 ft x 3 ft map of the enemy territory 

within the battle area was provided (fig. 9).   It was covered with plexiglass and clamped to a 

mill board.   Large charts, in the form of histograms, showed the relative probabilities of the 

different possible reports coming from the two sensors.   A response board was provided on 

which the subjects displayed their assessment of the probability of each form of attack.   This 

3-1/4 in. x 19 in. x 1 in. board had four 14 in. pegs (1/2 in. in diameter), one corresponding to 

each state.   One hundred 1-1/2 in. square (by 1-1/8 in.) anodized aluminum washers were pro- 

vided and the subject had to distribute these on the four pegs so that the height of each pile 

corresponded to the probability of the associated state.   A back board had a scale marked on it 

so that the number of washers on each peg could be read off readily. 

A pad of paper, lead pencil, and colored grease pencils were provided so that the subject 

could make notes or calculations and keep records.   The grease pencils could be used to mark 

the map. 

Printed cards, 1-3/4 in. x 2 in., were used to provide evidence.   Those from the Agent 

were white and carried messages of the form "AGENT REPORTS LIGHT ARTILLERY."  Those 

indicating detections of radio activity were blue and were of the form "RADIO ACTIVITY RE- 

PORTED IN AREA A."   The general setup is shown in figure 10. 
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FIGURE 9.   MAP OF ENEMY TERRITORY WITHIN BATTLE AREA 

FIGURE 10.   EXPERIMENTAL SETUP 
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For the abstract setting, the conditional probabilities were displayed in the form of histo- 

grams as they were for the military setting.   The same response board was also employed, and 

pad and pencils were again available.   Colored and/or dotted matches were used as evidence. 

6.1.4. SUBJECTS.   64 male students of The University of Michigan between the ages of 18 

and 24. 

6.1.5. PROCEDURE.   For the military setting, the subjects were settled in the experi- 

mental room and given the following instruction. 

This task has been designed to see how well persons can handle information in 
a military intelligence assessment situation.   You have to imagine you are an intel- 
ligence officer in a unit which is defending this front line.   Thus most of your land 
is off the map.   The enemy is in this country shown on the map.   (The features of 
the map are then described.) 

The enemy is about to attack you.   This you know for certain.   What you are 
unsure about is the form the attack will take.   However, the constraints of the sit- 
uation limit the possibilities to four.   These are: 

(i)   Frontal attack.   The enemy will marshall a force of tanks in area B. 
He will then soften up your front line areas with light artillery which he 
will deploy behind these low hills and by shooting you up with pursuit 
planes which he will fly from this field (E).   He will then move across 
here (i.e., between B and the front line) with his tanks.   Infantry will 
ride on the tanks and run behind them and will infiltrate once a break- 
through has been made. 

(ii)   Flank attack:   For this the enemy will marshall a force of armored 
personnel carriers in area C, his aim being to strike around your left 
flank.   (I must explain that the terrain on this flank is good enough for 
wheeled vehicles whereas on the right hand side of the front line it is 
suitable only for tanks.)   Before he strikes he will soften up your rear 
areas with his heavy artillery which he will deploy behind the higher 
ridge of hills (area C). 

(iii)   Parachute attack.   For this the enemy will build up a force of trans- 
port planes on the field.   Then he will soften up the dropping area (which 
is behind the line in the center of the front) with heavy artillery.   He will 
also build up his tank force to some extent, to be ready to join up with the 
airborne forces once they are established and to worry the front line 
troops before them. 

(iv)   Pincer movement.   This is rather like a combination of the first two 
possibilities.   The enemy will strike round both flanks simultaneously, 
using armored personnel carriers on the left and tanks on the right.   Re- 
member that the terrain prevents the use of faster vehicles on the right. 
His two forces will aim to link up with each other somewhere in your 
rear.   Before moving off you can expect bombardment in your rear 
areas—those he will try to occupy — from his heavy artillery. 

(It is stressed that the order in which these four possibilities are described is 
of no significance.) 

You will get information about what the enemy intends to do from two sources. 
Firstly, there is an agent.   He is hiding just off your map on a position where he 
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can observe movement on the road, and this is the enemy's sole supply route, and 
also aircraft over the airfield.   He cannot communicate at any great length about 
what he sees or he would be detected.   In fact, he is restricted to a rather crude 
form of communication.   He has an equipment with five keys which connect with 
five different tones in your receiving equipment.   If he sees a tank moving up the 
road he presses one key and you hear the corresponding tone.   If he sees an ar- 
mored personnel carrier, he presses a second and you hear a second tone and so 
on.   While these messages are crude, the system is reliable. 

The second source of information is provided by a mechanism operated from 
your side of the line which can detect enemy radio transmissions.   If some tanks 
are assembled here (area B) and one uses radio to talk with another, this device 
will detect the transmission and pinpoint the position of the transmitter.   It will 
not be able to pick up the message.   This detection provides a way of judging the 
size of forces deployed in any particular area.   The more frequent the reports of 
radio activity the larger the forces deployed in any particular area.   The more 
frequent the reports of radio activity, the larger the forces.   You can expect the 
enemy command to impose some restrictions on the use of radios, but the rela- 
tionship will still hold.   If enemy forces are preparing for attack they will have 
to communicate with each other. 

The charts (i.e., the conditional probability displays) show you what to expect 
with each form of attack. 

(E then ran right through the conditional probability distributions.) 

You can see that regardless of the form the attack will take some reports of 
every kind can be expected.   This is because the enemy will have all kinds of 
units deployed in the area and day-to-day replacements will be needed for those 
becoming defective.   In determining the nature of his preparations you have to 
pick out those movements which are extra to this day-to-day activity. 

A point which must be emphasized is that as intelligence officer you are offer- 
ing a service to the commander.   It is his job to decide what defensive action to 
take and how to deploy his forces.   Your job is solely to tell him as best you can 
what the enemy is doing. 

In the real-life situation you could expect the general to call you at any mo- 
ment demanding to know what the current situation is.   When he does this he won't 
want to know what reports have come in.   He will want to know the chances that a 
frontal attack is being launched rather than a flank or parachute or pincer attack. 
In other words, he will want to know the relative probabilities associated with each. 

We do not have a general on the telephone here.   Instead we have this device 
(the response board) on which I want you to display the probabilities.   You see 
there are four pegs, one corresponding to each form the attack might take, and 
exactly one hundred washers.   I want you to distribute the washers among the pegs 
so that the height of the pile corresponds to the probability you associate with that 
alternative.   To give an example of the way you should use this:   If at some point 
the evidence led you to become absolutely certain that a pincer attack would take 
place, the other three possibilities being completely out of the question, then you 
should have all one hundred washers on this peg.   Contrariwise, if you felt from 
the evidence that pincer was impossible, the remaining three being equally likely, 
then these washers should be removed from here (pincer) and distributed equally 
among these other three columns. 

You have to imagine the settings of these columns represent the estimates 
which would be reported to the general if he were to call. 

The information will come to you in the form of printed cards.   (These were 
then briefly described.) 
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In this experiment you will work under rather ideal conditions.   Whereas in a 
real military situation reports might come in quickly at times and you might be 
expected to make a very rapid assessment of them, here you will have as long as 
you like to consider each one.   I shall hand you a card, which you will keep.   You 
will then decide in your own time what it implies and then take any necessary ad- 
justment to the heights of these four columns of washers.   When this has been done 
I will record the levels and hand you the next report. 

You have pad and pencil in case you care to make any notes.   There are also 
grease pencils.   You may use these to write on the map. 

Any questions? 

One final point must be settled before we begin.   As you can see, there are 25 
washers on each column.   This implies that all four forms of attack are equally 
likely.   If either from your interpretation of the military situation, or from your 
expectations because this is an experiment, you feel that one possibility is more 
likely than another, I want you to display this fact by adjusting the piles according- 
ly.   I am not trying to induce you to have hunches, I simply want to know what they 
are if you've got them. 

Once any necessary adjustments were made, the time was noted and the first report was 

handed to the subject.   The session was run without interruption.   At the end comments were in- 

vited and if the subject wanted to know what he should have done the normative probabilities 

were shown to him.   The time was recorded at each tenth trial, so a rough indication of his rate 

of working was obtained. 

For the abstract setting, four large imaginary urns were substituted for the four forms of 

attack the enemy could employ in the military task.   Each urn supposedly contained a large num- 

ber of matchsticks, which were coded by being painted at one end with one of five colors or by 

having from one to five stripes around them.   Each matchstick corresponded to an intelligence 

report, colored ones corresponding to agent's reports while striped ones corresponded to re- 

ports of radio activity.   The content of each urn was mixed according to the conditional probabil- 

ity distribution in table XIX.   The subjects were handed matchsticks which they were told all 

came from one urn and their task was to assess the probability that each urn was the source, 

adjusting their assessments as each additional matchstick was added to their sample. 

The design of the experiment was precisely the same as that of the military task.   When 

two sources of information were required subjects were told the urns contained both colored 

and striped matchsticks.   With one source, they were all colored or else all striped.   Conditional 

probability distributions were displayed according to the condition being run, and paper and pen- 

cils were available to the subjects.   At the beginning the subjects were questioned about their 

a priori beliefs but without the elaborate cover story of the military task there were no grounds 

for expecting one urn rather than another to be used as the source. 
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6.2.   RESULTS AND ANALYSIS 

6.2.1.   THE MEASURES EMPLOYED.   The subjects were required to make trial by trial 

adjustments to the four probabilities.   Their efficiency can be assessed by computing the dis- 

crepancy between their settings on any given trial and the settings that would result if Bayes's 

theorem had been applied.  Root mean square errors have been calculated on this basis.  The 

normative solutions properly depend upon the a priori settings the subjects made before receiv- 

ing any data.   In fact all but nine of the 64 subjects began with equal settings.   The prior proba- 

bilities for these nine are in table XXI.   It can be seen that they were generally included to 

favor H2 and H4, but not very strongly.   (Throughout this section reference is made to the four 

hypotheses H1-H4.   HI is the hypothesis that SI is the state of the worlds, H2-4 similarly 

corresponds to S2-4.)   Root mean square error has been calculated both with allowance for the 

subjects' prior settings (E_) and without (E   ).   In addition error has been calculated for each 
D Lt 

move separately.   With E    and E   , the subjects' error on all but the first trial is the cumulative 
13 Li 

result of a number of adjustments.   To assess the accuracy of each trial independently, E    was 

computed by assuming the subjects' settings on trial N-l to have been correct and comparing 

his adjustment on trial N with the appropriate adjustment calculated from Bayes's theorem. 

To provide a simple graphic indication of performance, response to the critical hypothesis 

alone has also been singled out.   The critical hypothesis is the one that the evidence eventually 

indicated to be true.   For sequence 1 this was HI (Frontal); for sequence 2 this was H3 (Para- 

chute). 

TABLE XXI.   A PRIORI PROBABILITIES FOR THE 
NINE SUBJECTS WHO DID NOT RATE THE 

HYPOTHESES AS EQUALLY LIKELY 

HI H2 H3 H4 
Subject Frontal Flank Parachute Pincer 

1* 0.33 0.33 0.17 0.17 
2* 0.30 0.20 0.30 0.20 
3* 0.35 0.35 0.15 0.15 
4* 0.10 0.25 0.25 0.40 
5* 0.25 0.31 0.09 0.35 

6* 0.20 0.25 0.19 0.36 
7* 0.11 0.20 0.08 0.61 
8* 0.15 0.30 0.15 0.40 

9^ 0.23 0.23 0.23 0.31 

Mean 0.22 0.27 0.18 0.33 

Military cover story 

Abstract cover story 
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Finally, the time was recorded at the beginning of the test and subsequently after every 10 

trials so that the rate at which subjects worked could be determined. 

6.2.2.   THE GENERAL PATTERN OF RESPONSE.   Figure 11 shows the subjects' response 

to the critical hypothesis throughout the run.   This follows the pattern of the normative response 

fairly closely but with diminished amplitude.   The amplitude is reduced both when the probability 

of the hypothesis increases and when it decreases.   This lack of response to the evidence also 

showed at times as a failure to make any adjustment whatever to the probabilities.  During the 
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FIGURE 11.   RESPONSE TO THE CRITICAL HYPOTHESIS:   MEAN FOR ALL 64 
SUBJECTS 
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first 20 trials substantial changes should have been made after each datum was received.   Ex- 

aminations of the protocols reveals that on average subjects made no response at all on 3.34 

trials (a = 3.46).   The histogram in table XXII, which summarizes this analysis, shows that 73 

percent of the subjects failed to respond on at least one trial and one made no adjustment on 15 

of the 20. 

TABLE XXII.   FREQUENCY WITH WHICH THE EVIDENCE LED 
TO NO ADJUSTMENT OF THE POSTERIOR PROBABILITIES 

DURING TRIALS 1-20. 

Number of Trials with no Responses 

0      1     2    3    4    5    6    7    8    9   10  11   12  13  14  15 

Number of      17     117531     5443200001 
Subjects 

Each subject's record has been examined on trial 10 and again on trial 20 to check the 

direction rather than the magnitude of their response to the critical hypothesis.   On trial 10, 57 

of the 64 correctly gave it the highest probability estimate.   Six of the seven errors were made 

by subjects given the abstract task setting.   On trial 60, 63 of the 64 were correct, the one error 

being made by a member of the "abstract" group. 

The variability between subjects was considerable.   Table XXIII shows the distribution of 

estimates of the probability of the critical hypothesis on trial 60, while figure 12 illustrates the 

range of variability by contrasting the behavior of one of the most responsive subjects with that 

of one of the least responsive.   A total of 13 subjects put all 100 chips on the critical hypothesis 

on trial 60. 

TABLE XXIII.   FREQUENCY DISTRIBUTION OF SETTINGS OF PROBABILITY OF 
CRITICAL HYPOTHESIS ON TRIAL 60. 

Probability 

0-20      20-30     30-40     40-50      50-60     60-70      70-80      80-90      90-100 

Number of 0 2 4 5 10 8 9 5 21 
Subjects 

E    decreased steadily throughout the run, the means for successive blocks of 10 trials being 

0.093, 0.089, 0.088, 0.074, 0.067.   This is largely because the normative calculations fairly 

rapidly indicated that the evidence supported one hypothesis and the subjects gradually accepted 

the same conclusion.   In other words this decreasing error is a consequence of the lag illustrated 

in figure 11. 

In addition to a failure to make a sufficiently high response to the critical hypothesis subjects 

showed lack of responsiveness in failing to adjust all four hypotheses when they should have 

done so.   To demonstrate this failure each subject's response was examined on just one trial. 
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FIGURE 12.   PROBABILITY OF THE CRITICAL HYPOTHESIS INDICATED BY THE MOST 
RESPONSIVE AND THE LEAST RESPONSIVE SUBJECTS 

The data were sampled in the following way:   For each subject one trial on which all four hypoth- 

eses should have been adjusted has been selected at random from trials 1-30.   This meant that 

trials for which a particular subject's a priori probabilities included at least one value of zero 

or unity had to be excluded.   The result of this count was as follows:   8 adjusted zero probabili- 

ties, 23 adjusted two, 10 adjusted three, and 23 adjusted all four. 

Although by trial 10 nearly all the subjects correctly put the highest setting on the most 

probable hypothesis the relative settings on the remaining three could be in error.   One problem 
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that arises in analyzing all four settings is that the probabilities of both H2 and H4 rapidly 

approached zero so that by trial 10 they did not differ appreciably.   In order, therefore, to make 

the examination at a point where there were relatively large differences in all four normative 

probabilities only the very early trials are relevant.   In fact, substantial differences between 

all four hypotheses existed only on trials 2 and 3.   Of these, trial 3 has been selected for exami- 

nation.   The normative settings on this trial were:   HI, 57; H2, 04; H3, 28; H4, 11 for sequences 

1 and HI, 55; H2, 02; H3, 28; H4, 15 for sequence 2.   Thus the correct rank order was the same 

for both sequences.   On this trial 47 subjects correctly put most chips on HI.   Of these 47, 27 

correctly ranked H3 as second and 22 also ordered the remaining hypotheses correctly.   Only 

34 percent of the subjects, therefore, correctly ranked all four hypotheses whereas 73 percent 

had correctly selected the most likely one.   In this aspect of performance the setting of the task 

had no effect.   Data from those subjects given the military setting were almost identical to those 

from subjects given the abstract setting. 

6.2.3.   THE EFFECT OF THE EXPERIMENTAL VARIABLES.   Analyses of variance were 

computed separately on E   , E   , and E    for trials 1, 10, 20, and 50; on the means for each block 

of ten trials; and on the overall mean for all 60 trials.   Apart from a significantly greater re- 

sponse (p < 0.01) leading to reduced error with the abstract setting on trial 1, these analyses 

failed to reveal any statistically significant differences for any of the variables.   And this one 

finding is misleading, since the general trend throughout the 60 trials was for subjects to re- 

spond to the critical hypothesis more with the military setting.   The trends for the other varia- 

bles are shown in table XXIV.   Where the response to the critical hypothesis was greatest, the 

root mean square errors were least. 

TABLE XXIV.   THE EFFECT OF EXPERI- 
MENTAL VARIABLES ON RESPONSE TO 

THE CRITICAL HYPOTHESIS 

Variable Condition Trial 10 Trial 60 

Setting 
Military 

Abstract 

0.54 

0.46 

0.73 

0.71 

Number of 
Sources 

1 

2 

0.54 

0.46 

0.78 

0.66 

Division of       Biased 0.39 0.59 
Information 
Between 
Sources 

Normal 0.52 0.73 

6.2.4. RECENT vs. OLD INFORMATION. Sequences Ql and Q2 presented the same evidence 

in trials 1-20. With Ql the first block (trials 1-10) were consistent with HI and the second block 

was consistent with H3.   With Q2 the order of these blocks were reversed.   If subjects were in- 
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fluenced differentially by old data or by new data this should lead to differences in their settings 

on trial 20.   Thus if they were influenced more strongly by the early data they would favor HI 

with Ql and H3 with Q2.   The relevant results were as follows:   with Ql, mean response to HI 

on trial 20 was 0.4381 and to H3 it was 0.3425; with Q2 the mean response to HI was 0.3775 and 

to H3 0.4094.   Thus there is an indication that early data exerts more influence than recent. 

Analysis of each subject's bias shows that 39 were most influenced by early data, 17 by recent, 

while 8 showed no bias in either direction.  A "t-test" shows the differences to be significant 

(t = 27.2, 63 df p < 0.01). 

6.2.5. THE RATE OF WORKING.   Most subjects worked rather slowly but the variability 

was considerable.   Mean time for the 60 moves was 53 min., and a, 23 min.   The extremes were 

19 min. and 137 min. 

6.2.6. GENERAL FEATURES OF THE SUBJECTS' REACTION TO THE TASK.   Most sub- 

jects arranged the reports they received to form a histogram and matched this against the con- 

ditional probability histograms.   Their responses therefore indicated the relative similarity be- 

tween the pattern formed by the data and each of the conditional probability distributions.   With 

two sources of data they had two separate comparisons to make, but those given the military 

cover story marked the map with grease pencils as reports were received and in doing so most 

detected the equivalence between the "agent's" reports and the "radio activity" reports.   This 

enabled them to behave as if only one source were involved.   With the abstract task, collating the 

data from two sources caused obvious difficulty to some subjects.   Thus one, who had to deal 

with the asymmetric division between sources, made this remark at the end of the experiment: 

"The numbers show it couldn't possibly be II.   Colors show it couldn't possibly be IV and it 

certainly isn't I or III." 

Many subjects were obviously at a loss to know what magnitude of response was appropriate, 

and some said so.   To quote one such subject (trial 4), "It's hard to know what weight to give 

these various movements."   This same subject on trial 37, when he had assessed the probability 

of the critical hypothesis at 0.38 (normative setting 0.98), remarked "Getting mighty high!" 

Reluctance to change away from the null setting at the beginning of the urn was correlated in 

some cases with remarks to the effect that the data were insufficient to lend support to any hy- 

pothesis.   Thus subjects while making no adjustment to the probabilities made remarks such as 

"It could come from any one of them." 

It has been noted in the formal analysis of the data that subjects were also unwilling to re- 

duce their settings on a given hypothesis when contrary evidence arrived.   Some made comments 

that illuminate this reluctance.   Thus one who had the sequence that indicated parachute attack, 
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then frontal attack, then parachute attack, commented on trial 24 when the data were again be- 

ginning to indicate parachute, "Everything seems to concur with a frontal attack at the moment. 

May I have more information?  I hate to change my opinions." 

A solution that some subjects appeared to adopt to the general problem of how large an ad- 

justment was appropriate on each trial was always to move a constant number of chips.   Thus 

several usually moved five at a time, while others moved just one. 

Fifteen of the subjects made some form of paper and pencil calculation.   This number in- 

cludes some who calculated on every trial and others who made occasional calculations.   Some 

of these did no more than work out the percentages of reports of each kind to facilitate pattern 

matching.   One subject, a mathematician who was planning to major in statistics, laboriously 

worked by hand a calculation very similar to the correct Bayesian procedure except that he 

added each prior probability to the appropriate conditional probability instead of multiplying 

them together.   Sometimes abrupt changes of strategy were made by subjects.   Some began by 

calculating and then gave up and proceeded thereafter intuitively.   Others changed their system 

of calculation.   In some cases this led, through reconsideration of all the data received, to a 

large change in their assessments.   This change was not the response to the datum received on 

the particular trial when the reconsideration was made. 

6.2.7. FALLACIES EXHIBITED.   A combination of behavior and comments made by some 

subjects revealed two fallacies that at least one subject committed.   One of these was a failure 

to respond when data were received that reinforced the conclusions already reached from pre- 

vious data.   Thus one subject in such a situation made no adjustment of the probabilities and 

remarked "This seems to concur with what I have so far." 

The second was to infer that a perfect match between the data and our distribution of condi- 

tional probabilities implied that this distribution was definitely the source.   Such an inference 

led some subjects to put all 100 chips on the critical hypothesis on trial 10 when the normative 

level was 0.80 for sequence 1 and 0.86 for sequence 2. 

A related fallacy was committed by the experimenter in planning the experiment.   The per- 

fect match between data and conditional probability was used with the intention of presenting the 

strongest possible evidence in favor of the critical hypothesis.   In fact the strongest possible 

indication of a frontal attack over ten trials would have been ten reports of light artillery.   With 

these the normative probability would be nearer to 100 than to 0.99, whereas the normative prob- 

ability given a perfectly matching distribution was 0.89. 

6.2.8. WAYS IN WHICH INSTRUCTIONS WERE DISREGARDED.   Some subjects found it 

difficult to evaluate evidence without making a decision on the basis of that evidence.   With the 
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military task this was revealed in some cases by questions about the defensive forces.   In other 

cases it was revealed by comments at the end of the session, such as "And now I suppose you 

want me to make a decision."   Some thought a high assessment on one hypothesis meant that a 

choice had been made, as the subject who said at the end:   "I guess I should have decided 

sooner — meanwhile 10,000 men would have died."  Another reaction was in the opposite direc- 

tion:   another subject commented afterwards "I thought:   what would I tell the general right now. 

What if I said 'parachute' and it turned out to be wrong?"  Thus subjects are concerned with 

both types of statistical error. 

Some subjects given the military task failed to consider the four hypotheses as exclusive. 

One commented specifically that he was not convinced that there were four discrete forms of 

attack.   A related phenomenon was a refusal to use the conditional probabilities in a simple- 

minded way.   Subjects believed the enemy would be elusive and that some movements he made 

would be deliberate attempts to upset the intelligence system.   Thus one who was reluctant to 

make a substantial change in his assessments when the evidence was apparently strong said that 

he did not want to be more extreme in his settings because "an enemy wouldn't display all that 

clear a picture of his movements." 

6.2.9. AFFECTIVE REACTION. Finally it might be added that the subjects enjoyed the 

experimental task—so much so that one remarked "It's more fun than chess" while another 

suggested it should be patented as a game. 

6.3.   DISCUSSION 

Although the evaluation of uncertain evidence is an ingredient of much everyday behavior, 

as was pointed out in the Introduction, it would appear from the results of this experiment that 

most persons do it rather badly.   The subjects generally underrated the significance of the data 

they received and were unable to rank the probability of the four hypotheses correctly.   Thus 

they erred in both the direction and the magnitude of their probability assessments. 

There are at least two explanations of this apparent contrast between the experiment and 

everyday behavior.   One is that, although they are very inefficient, persons are not usually 

troubled by their inadequacies because everyday situations are undemanding.   The other is that 

the experimental results are artifactual and persons are not necessarily as inefficient outside 

the laboratory. 

Some hints that the experimental data could contain magnitude errors were given by the sub- 

jects in their comments.   At times it was clear that they did not fully express their opinions by 

their settings because they were waiting for more information.   In the experiment they expected 

rather a large number of reports, and although instructed to keep their assessments up to date, 
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they did not always do so.   If the experiment had been stopped at an intermediate stage and the 

subject had been told that all the information which would ever be available was already before 

him, it is conceivable that he would have been willing to make more extreme settings of the 

probabilities. 

Another exercise that might reveal the extraction of more information from the reports 

would be to demand that the subjects should base a decision upon it.   But although this approach 

is superficially attractive, it would appear difficult to infer the subjective probabilities from 

the resultant choices with any precision. 

From the comments made by some subjects given the military version of the experimental 

task it is clear that some felt they were in fact controlling a decision by their settings.   It is 

interesting to note that in the comments mention was made of both type I and type n errors. 

Some subjects would not wish to precipitate too hasty a decision, whereas others would not wish 

to delay unnecessarily. 

Despite the poor performance of most subjects, there were a few whose response to the 

critical hypothesis was extremely close to the normative solution.   A question raised by their 

performance is whether or not it should be attributed to chance.   The test, of course, would be 

to check their performance in other situations.   Unfortunately this is not possible, but a separate 

study could be run with the sole purpose of checking on the consistency of individual differences 

with particular interest in those who perform well. 

Another way of regarding the few good performances is to seek remedies for the poor per- 

formance of the majority of subjects — in other words, to train them.   The way in which many 

were obviously at a loss to know the appropriate magnitude of response suggests that guidance 

on a few trials might provide the scale they need.   But there were many subjects (66 percent on 

trial 3) who failed to set the four probabilities in the correct rank order of magnitude and these 

need more than a guide to the scale of response.   Simultaneous adjustment of four hypotheses 

might exceed the information-processing capacity of the human subject.   But it is conceivable 

that a way of breaking down the task, perhaps by successive binary comparions, could be evolved 

and the appropriate procedure successfully taught. 

The variability between subjects was extremely great in this task.   Training can be regarded 

as one way of reducing variability.   Other less elaborate procedures could possibly contribute 

as well.   The subjects varied noticeably in the way they tackled the task.   To mention two facets 

of their behavior:   they varied in the way they sorted out the reports they were given and also 

in deciding whether or not to attempt to work intuitively or to calculate on paper.   All this vari- 

ability could possibly have been reduced by additional instructions. 
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In allowing subjects paper and pencils the procedure employed here differed from that 

generally used in studies of intuitive statistics.   The reason for providing these aids was pri- 

marily to optimize performance.   If subjects thought some explicit calculation appropriate and 

endeavored to carry out the calculation in their heads, their performance would differ from the 

subject given paper and pencil only in the addition of an error introduced through their inability 

to carry out the mental calculation correctly.   Viewed in this way, intuitive statistics are con- 

taminated by unnecessary error.   But there could be a case for insisting that subjects should 

work without calculating aids in that there is an interest in generalizing from artificial sit- 

uations where conditional probability distributions can be specified precisely, to real-life in- 

telligence tasks where the conditional probabilities are only known intuitively by the subject. 

In these there is no possibility whatsoever of formal calculation. 

The nature of the calculations subjects carried out was always false.   Not being statisticians, 

they were unaware of the appropriate procedure.   This raises the point that without formal 

training or a great deal of thought the rules of probability theory are not apparent.   This is not 

surprising, since the origins of probability theory lay in the awareness of the perceptive gam- 

bler that his intuitions were faulty and his consequent employment of a mathematician as 

advisor.   In the present study it would appear that the wheel has been turned a full circle. 
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