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1. INTRODUCTION

TRG's program calls for thzoretical and experimental
work on resistance and resistance reduction, and on improved flow
to the grousers. We began by examining the data in [2], including
the components of resistance and the dependence of resistance on
test conditions. Also, in order to establish a connection with
test data other than thiat on LVIP5 models we correlated that
mcdel test data wirh the extencive tests of Hay [1] on
parallelopipeds. This work is described in Section 2. We then
attempted to find a mathematical model (source or dipole distri-
bution) of the LVTPS, such that the calculated resistance and
body shape would agree sufficiently well with LVTP5 data to serve
as a basis for studying shape moéifications and their effect on
resistance and flow. This work is described in Sections 3 and 4.
We have begun to investigate bow shape modifications. We are
aiming at the design of compatible devices for bow modification,
which may be deployable, inflatable or useable for fuel or other
fiuid storage, and which perform their.hydrodynamic tasks without

degrading vehicle functions. This work is described in Section 6.
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2. ANALYSIS OF LVTP5 MODEL TEST DATA

Figure 2.1 shows 1/4-scale model resistance in pounds
versus model speed, full-scale speed and Froude number for:
a) LVTP5 model X-100, 1250 1bs: displacement
(80,000 1bs: full scale) level trim, tracks
run at zero slip, as reported ian [2]. The

curve is slightly faired from test points.

b) LVIP5 model built and tested by Davidson Labora-

- tory, full scale displacement 82,500 lbs., embody-
ing tread envelope but no treads or grousers.
Model built to 1/12-scale, data expanded to
1/4-scale by Froude scaling neglecting fric-
ticiial resistance. Data supplied by Davidson

Laboratory.

c) LVTP5 model X-100, as in a) above, with tracks

stationary.

We use Froude scaling neglecting frictional resistance because
frictional resistance is estimated to be less than 10% in all
relevant cases while resistance is not uniquely defined to within
10% because of varying test conditions. The difference between
the three curves in Figure 2.1 is believed to be due mainly to the
different treatment of the tracks. Scale effect and minor model
shape differences are believed to be unimportant. The difference
between the curves is substantial. Tests at other displacements,
reported in [2], also show a substantial variation of towing

resistance with track slip.
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RESISTANCE, LBS
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Figure 2.1

Total Resistance of Three LVTP5 Models
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Figure 2.2 shows drag coefficient CD = R/%pva, where
A 1s static submerged frohtal area, for

a) LVTP5 model X-100 as described in a) above,

b) LVTP5 model built by Davidson Laboratory, as
described in b) above,

c¢) LVTP5 model X-100 as described in c) aboye,

d) a fully submerged flat plate whose aspect ratio
is that of the LVIP5 (single or double model, C being
insensitive to aspect ratio in this range),

e) a surface-piercing flat plate whose static
submerged aspect ratio is that of model X-100 (B/H = 2.40),

f) an unrounded block, interpolated and Froude
scaled from the report of Hay [1], B/H = 2.40, L/B = 3.

g) a block having rounded forefoot (forefoot
radius/static draft = .6 ), interpolated and Froude-
scaled from (1], B/H = 2.40, L/B = 5 ,

h) as f) above but with forefoot radius/static
draft = 2.4 , L/B= 5

Wwith reference to e), f), g) we note that the data

depends weakly on L/B in this range of L/B. Also a), b), c) use
the same value of A.

Examining Figure 2.2 we see

a) all the coefficients are speed-dependent,

b) rounding a block in varicus ways reduces the

resistance by a factor cf 2 or more.

We tentatively identify the quantity Cp - CgERO SPEED

H

the speed-dependent part of CRs with wave resistance, keeping in
mind that the coefficients of friction and separation drag are

independent of Reynolds number in this range of Reynolds number
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Figure 2.2
Total Resistance Coefficients of
Three LVTP5 Models and Various Blocks



We are encouraged te make this identification by the fact that
the low-speed asympiote of CD for a flat plate is in fact equal
to G, in the absence of a free surface. This quantity is plotted
in. Figure 2.3, for three LVIP5 models. We see that the result

is almost identical for the X-100 models with the tracks run at
zero slip and held stationary, which is plausible. The-Stevens
results are much lower. We are unable to account for the
difference in test results on the basis of differences in con-
figuration and test conditions. Since we are attempting to

predict the wave resistance theoretically the difference is wvital.
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ZERC SPRED 2 ESTIMATED WAVE RESISTANCE COEFFICIENT

Cy= Cp~Cp

o
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Figure 2.3

Wave Resistance Coefficients of Three LVTP 5 Models
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3. RESISTANCE CALCULATIONS

The objective of these calculations is to help determine
the validity of mathematical models (scurce or dipole distributions)
of model X-100, as regards wave resistance. The validity of the
models as regards the shape of model X-100 is discussed in
Section 4. Estimated wave resistance coefficients from LVIP5
model tests were plotted in Figure 2.3

We are looking for dipole distributions whose calculated
wave resistance approximates the measured model wave resistance.
Since ¢he theoretical model does not allow for tracks and since
the waves made by this blunt vehicle may be nonlinear and therefore
not calculated correctly we do not seek a very close approximation.

Before proceeding further we mgntion the result of an
examination of the effect of varying beam on the wave resistance
of blocks, keeping drafit, length and speed fixed. 1In thin-ship
theory the wave resistance varies as B2, while for ships the
measured data varies like Bn, where n varies but is generally
batween 1.5 and 2. The data in [1] indicates that for blocks
having L/H = 5.72 the resistance is roughly proportional to Bl'o
at full scale speeds above 4 MPH, in the range 1.5 < B/H < 3.0 or
.263 < B/L < .526 (see Figure 3.1). This is a measure of the
extent to which we are out of the thin-ship domain.

Wave resistance calculations were made for the LVTP5

model X-100, having the following characteristics:

Displacement (pg¥) 1250 1bs. (fresh water)
Length (L) 7.5'

Beam (B) 3.0

Draft (H) 1.25' (to hull bottom)
5 = H/L .167

B/2L = .2

IQ[’/A SUBSIDIARY OF CONTROL DATA CORPORATION
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2 . . . .
The value of A/2L", a quantity which appears in the calculations,

was

At = 8 s

2RL cg

In the first set of calculations the model was represented
by a constant-strength velume distribution of horizontal "dipoles.
The region occupied by the dipoles was a box. The length Ly and
draft HD of the box were fixed equal to the model length and model
draft H, while the beam BD of the box was varied (the subscript D
denotes dipole). The constant strength was chosen to make linearized
volume equal to model X-100 volume.

Case 1: Box 1length = model length

Box beam = 0 (Centerplane distribution, Michell theory)

Case 2: Box length = model length
Box beam = 1/2 model beam, B = BD/ZL = .1

Case 3: Box length = model length
Box beam = model beam, B = .2

These three calculations show the effect of spreading the dipoles
laterally. The next set of calculations were the same except that
the stern waves were eliminated by extending the model to infinity
downstream. A possible justification for this is that the X-100
is blunt and has a strong wake, so that stern wave generation is
small.

Case 4: Box length = semi-infinite downstream

Box beam = 0

Case 5: Box 1length = semi-infinite downstream

Box beam = 1/2 model beam, B = .1

Tp{]/A SUBSIDIARY OF CONTROL DATA CORPORATION
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Case 6: Box 1length = semi-infinite downstream

Box beam = model beam, B = .2.

The resulting wave resistance in pounds is plotted in Figure 3.2,

together with the total resistance from model tests.

The calculated results for Cases 1, 2, 3 are much too
high, and also display oscillations not present in the measured
data. The calculated results do decrease as the distribution is
spread laterally, as a result of increased wave interference.

The calculated results for Cases 4, 5, 6 show that by eliminating
stern waves we have reduced the mean resistance and eliminated
the oscillations, as expected. Also, resistance again decreases
as the distribution is spread laterally. Nevertheless, the
numerical values of the calculated wave resistance are still too
high, even for 8 = .2. Also, comparing against total measured
resistance the trend at high speed appears wrong.

When we examine calculated wave resistance coefficients
the picture darkens somewhat (Figure 3.3). First of all
there are the inevitable problems at very low speed. For B = 0
the calculated resistance coefficients approach non-zero constants
as the Froude number goes to zero, the limiting value being twice
as great with stern waves as without. If g > 0, the resistance
coefficient vanishes like f4 as £ > 0. Also, the calculated
coefficients are too high and have the wrong trend at high speed.

The six dipole distributions tried above are quite
rough. In the course of studying the flows generated by them
(see Section 4) it was found that it is not a good idea to spread
the distribution too much laterally since after some spreading

the flow no lomger generates a closed body. While it may turn

out that resistance can be calculated with useful accuracy using

Tn{]//\ SUBSIDIARY OF CONTROL DATA CORPORATION
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distributions which almost or approximately generate a closed
body we prefer not to pursue this approach till we know more .
about it, especially since the functional form
{£(x,y,z) = constant in a box) of the dipoie distribution is
itself a gross approximation.

In Section 4 we say how we have used the Douglas Program
(3] to calculate the flow past an LVTP5 model. Part of the
Douglas Program output, namely the quadrilateral descriptions
and source strengths, can be used as inputs to our wave resistance
program. Wave resistance calculations of this type are described

in Section 5.
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4. STREAMLINE CALCULATIONS FOR LVTP5 MODEL

4.1 Preliminary Discussion

Among the simple dipole distributions which are
czndidates for representing the LVTP5 model are those defined

by functionms

£(%,5,2) = £,(x)g(y,2) (4.1) "
where
£(x) = 1 for |x| <3
= 0 elsewhere )
or
fD(x) =1 for X‘S‘%
= 0 elsewhere (B)
while

g(y,=) = constant if y,z in the region Ag in the
yz-plane
= 0 elsewhere.

(A) represents a model of finite length, whose stern waves are
undiminished by the wake. (3) represents a semi-infinite body
having no stern waves. The product form (4.1) implies that the
body wili tend to have constant vertical sections except near
its ends. The form of this vertical section depends on the
region Ag and the function g(y,z). A completely equivalent

description is via a source distribution

£5(x,y,2) = [6(x - %)-6(x + ) )a(y,2) (4)

or

I

£5(x,7,2) = 6(x - 3) &(y,2) ()

)
Wb//\ SUBSIDIARY OF CONTROL DATA CORPORATION
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where g(y,z) is as above and 6(x) is the Dirac b-function.

We have evaluated resistance using both (A) and (B),
and discussed the results in Section 3. We now consider the choice
of suitable regions AS and functions g(y,z) so as to approximate '
the LVIP5 model. Since the dipole distributions introduced above
are too simple to represent the details of the LVTP5 model we

introduce an equivalent box by requiring

E

L =L =7.5' (E denotes equivalent)
BE/HE = B/H = 2.40

vE = v = 1Es%E = 20 £¢3

B® = 2.530

HE = 1.054.

The equivalent box has the same length, beam/draft ratio and
displacement as the LVTP5 model.

A box-like dipole distribution is appropriate to approxi-
mate a box-like body, so we choose the regicn AS to be a rectangle.
We intend to compute the body from the dipole distribution, using
the streamlines of the zero-speed flow (i.e. th: flow satisfying
0/dz = 0 on the free surface). In effect this gives us the
double body (body plus image in the free surface). Keeping this
in mind we are led toc an interesting constraint on the choice of
the rectangle AS on which a constant-strength source distributicn
is to be placed. Considering the sternless or semi-infinite

situtation, the time rate of fluid addition is QWUSAS and far

Tgh/ﬁ\ SUBSIDIARY OF CONTROL DATA CORFPORATION
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downstream where the flow speed is uﬁity the area A_ required

to transmit this fluid is
Ano = 4WGSAS

There are two £low possibilities depending on the value of
Og ='i%'(Am/AS)’ as shown in Figure 4.1. The x-velocitj u. on

the upstream face of AS is given by

= 70
u+ 7 S

1f u, = Zvcs < 1 then at every point in space the total x-velocity
is downstream, and there is no stagnation point or closed body.
If u, = ZFGS > 1 then there is a stagnation point and & closed
body, since the total x-velocity on the upstream face of AS is
upstream. Hence

ZFUS >1
or

A > ZAS
is a necessary and sufficient condition for the generation of a
closed body (ignoring the border line case ZWGS = 1). This means
that if we wish tc approximate the fiow past an LVIP5 model
(with or without stern) by a flow of the type constructed above,
and with the approximate flow to generate a closed body, then
approximately we must require AS < % A, where for A we use the
LVTP5 cross-section area at the central station. Recalling the
resistance calculations of the previous section, B = .2 would
mean that no closed body is generated, while B = .1 is borderline.

As stated elsewhere, the requirement that a closed body be

generated may not be mandatory.
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Figure 4.1
Possible Flows Generated by a Constant
Source Density on a Rectangle Normal
to & Uniform Flow.
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We have calculated some streamlines of flow past a
normal rectangular source sheet, as described above, which
generated a closed bedy. They are described below in Section 4.2,
In additiorn, surface source distributions were obtained for
box-1like bodies approximating, in two steps, the LVTP5 vehicle

configuration. These are described in Sections 4.3 and 4.4.

4.2 Normal Rectangular Source Sheet

We have run some streamlines which confirm that if
Zvas < 1 no closed body is generated. For illustration we show
some streamlines for a case in which there is a closed body. The
bow rectangle AS is at x = 0.5 and is defined by |y| < .113,
1z] £ .0942, AS = 0.01065. We have o, = 0.177, so that

S
A =2.22 AS. The stagration point was found at x = + 0.5116278.

e
Figure 4.2 shows the y-z projecticns of streamlines starting at
this value of x and at a distance of 0.001 from the x-axis at
various indicated angles from the y-axis. It shows that all
such body streamlines are tangent tc the x-y plane at y = 0.0.

Figure 4.3 shows sections through the half-body generated at

various values of x.

4.3 Simple LVTPS

A simplified body close in shape to the LVIP5 was drawn
up. The surface was divided into 59 quadrilaterals of about
uniform area (for 1/4 of the submerged body) and the constant
source strength over each quadrilateral was found (via the

Douglas Program [3]) which satisfied the boundary condition at
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Normal to a Uniform Flow.
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23.
one point on each quadrilateral. Using a Douglas Program Post
Processing Program developed by TRG, and TRG's Streamline Program,
various streamlines were calculated for the resulting singularity
distribution. These streamlines were poor approximations to the
true flow field in that they passed through the body. This was
caused by negative sources on the front of the body. These
negative sources are thought to be the erroneous result caused
by using too few quadrilateral elements to approximate the body
surface. These results indicated the nature of the refinement
necessary to obtain reasonable streamlines from approximate
surface singularity distributions determined using the Douglas

program and our programs.

4.4 TRG LVTPS Model

A surface singularity distribution was calculated for
the LVTP5 hull shape (with the tracks and wheels removed and the
well filled in). Figure 4.4 shows the assumed body surface
which was divided into 223 quadrilaterals (over 1/4 of the sub-
merged body). The quadrilaterals were smaller in the bow region
than towards amidships. The Douglas Program was applied to this
input body surface and calculated the source strength for each
cuadrilateral element, uniform over each element, which satisfied
the boundary condition at one point on each element. This
singularity distribution was used to calculate the streamlines
of the flow. A saddle stagnation point (see Reference [4]) was
found on the x-axis at x = 14.230'. This type of stagnation point
is believed to be due to the indented V-bow. Figures 4.5 and 4.6

show the x-y and x-z projection respectively of various calculated
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28.
streamlines in relation to the LVIP5 body surface. BHere it is
seen that streamlines very close to the body, such as the
waterline or keel line, can be obtained without difficulty. The
skew streamlines, which are also very close to the body suriace,
indicate the predominant lateral flow on the bow ramp of the
vehicle. Since the streamlines for the generated singularity
distribution are reasonable, a calculation of linearized volume
was made based on the resulting 223 source strengths. The result
is a linearized volume of 447 cubic inches (per 1/4 of submerged
model). The actual volume is 395 cubic inches. This ratio of
linearized to actual volume (447/395 = 1.13) is about what we
expect, based on the known relation between true volume, linearized
volume or dipole moment, and added mass in the forward directionm,
and is a partial check on the accuracy of the calculation of the
source strengths.*

A sample of computer input data and a sample of computer
output, for streamline calculations, is given on the following two

pages.

* Previous experience with shiplike forms generated by singularity
distributions also indicates that a ratio of 1.13 is
reasonable.
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5. DOUGLAS RESISTANCE CALCULATIONS

The application of the Douglas Program to the idealized
LVTP5 was described in Section 4. The resulting source distri-
bution has a wave resistance which can be calculated using the
point souxce approximation, in which each quadrilateral carrying
constant source strength is replaced by a point source (having
the same total strength) at its centroid. We calculated the
wave resistance in this way, without stern waves. The result
is plotted in Figure 5.1. At full-scale speeds above about 3 MPH
the calculated resistance rises rapidiy and beccmes about twice
the block resistances (B = .0,.1,.2 in Figure 5.1). At lcw
speeds this calculated resistance falls below the previous
calculations for B = .0, .1. The high values can be explained
on the basis of the factor of 2, discussad in Section 4, which
relates the source density generating a stagnation point and
the source density generating the proper volume. We expect to
find the higher value ¢ =-§; = .159, in the case of the Douglas
output, near the bow of the vehicle, and inspection of the
printed source strengths reveals that indeed the values of o are
in the range .13 - .17. According to this reasoning the Douglas
resistance shouid be roughly four times the resistance plotted
for p = .2 in Figure 5.1, and it is. At low speeds the sources
over the sides and bottom of the vehicle, which are present in
the Douglas calculation but not in the block calculations, cannot

be neglected and the reascning becomes incomplete.
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On tae basis of a comparison made on a Series 60 hull,
for which wave resistance based on the Douglas Program was
calculated exactly and using the point-source approximation, we
believe that the point-source approximation is adequate except
at the lowest speeds of interest. In view of the unpromising
nature of thé calculated results based on the point-source
approximation, and the anticipated cost of the exact calculations,
we decided not to make the exact calculations.

It appears that wave resistance calculations based on
the Douglas Program do not provide useful results for éhe
idealized LVTP5. One possible explanation is that wave velocities
are not used in the Douglas program which determines the source
strengths, so that the source strengths are not right. Another
possible explanation is that a theory in which the free surface
is linearized, even with the proper source strength, is not a
useful approximation for bodies as blunt as the LVTP5S.

The block resistance calculations give the best
resistance predictions, even though they do not represent the
shape of che hull as accurately as the Douglas source distribution

does.
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6. THE EFFECT OF HULL MODIFICATIONS ON RESISTANCE

. Using the block model of the LVIP5 resistance we have
considered bow modifications intended to reduce resistamce. Not
a great deal was done in this direction but some interesting
results were obtained. 1In Figure 5.1 the curve —o0—0—0—
is calculated wave resistance without stern waves for the block
representation of the LVIP5 (with B = .2), modified by a

bulb. The bulb is generated by a horizontal line of hurizontal
dipoles, the dipole strength being given by a quadratic function
of x whose coeificients were determined by digital optimization
at a Froude number f£f = .35. We see that the calculated wave
resistance is indeed reduced at £ = .35, and also at other
Froude numbers. The dipole distribution representing the bulb
is rather wild, and we did nct have time to verify that a closed
body is in fact defined. If a closed body is not defined the
next step would be to determine what resistance penalty is
incurred by restricting the optimization to realistic dipole

distributions. The large calculated resistance reduction

suggests that the subject is worth pursuing.
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7. CONCLUSIONS ANLD FUTURE WORK

The practical aims of the project are to produce new
configurations which will have increased speed in the water.
We have begun by seeking an improved theoretical understanding of
the measured data obtained to date. Some points to be established
are:
1) what fraction of the vehicle drag or power
consumption is attributable to wave resistance,
2) what fraction of the vehicle drag or power
consumption is attributable to poor flow to the
foremost grousers.
Regarding 1) we have found (in Section 2) that the estimated wave
resistance lies between 15% and 50% of the total resistance at
full-scale speeds in the neighborhood of 7 MPH. This uncertainty
is large. The total resistance is itself uncertain to the extent
of some 30%. Regarding 2) we know from Figure 277 of [2] that
at model displacements of 938 1lbs. and 1095 1lbs. the power
requirements rise very sharply at model speeds of 3.3 and 3.25 MPH
respectively, and this sharp rise is correlated with the appearance
of a void at the vehicle shoulder and attendant poor flow to the
leading grousers. At a mcdel displacement of 1250 1bs. (80,000 1bs.
full scale) this phenomenon occurs at a model speed of 3.9 MPH.
For a model displacement of 1400 1bs. the power rises sharply at
lower speeds for another veason, namely that the bow of the vehicle
is completely covered with water at 3.25 model MPH. It is curious
that for a 1250 1b. model the onset of poor flow to the grousers
is not reflected in curves of nominal propulsive efficiency n,

defined by
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o = HPTOWING ;i TRACK

Figure 7.1 shows two curves of n based on HPLOW

with tracks
running at zero slip and stationary, for 1250 lbs. model displace-
ment. 1 rises steadily with the tracks at zero slip, and rises
steadily but levels off at 3 model MPH with tracks stationary.
With 938 1b. model displacement we find a sharp drop in Aominal
efficiency at a model speed of 3.2 MPH, which correlates well with
the appearance of a shoulder void and a sharp rise in track horse-
power at 3.3 MPH (see above).

We may summarize by saying that on the basis of data
used in preparing this report neither of the questions 1), 2)
above can be answered in a satisfactory way.

The nominal efficiency defined above differs from the
efficiency based on the propulsive force exerted by the tracks
on the model. Reference [2] states that the efficiency (undefined)
is of the order of 10-13% using the best grousers. This is of
the same order as what we show in Figure 7.1 but the data in {2]
is less variable with speed.

Given the present vehicle as a starting point it is
clear from Figure 7.1, in spite of the inaccuracy of the data,
that there is more to be gained by improving propulsive efficiency
than by reducing resistance. However, if propulsive efficiency
is increased the relative importance of reducing resistance will
increase. This increase in the importance of reducing resistance

will be rapid since the top speed of the vehicle will increase
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for constant installed power, and hence the drag will also
increase.

We believe that it would be appropriate to continue
our development of theoretical models of resistance and flow.
At the same time, the development and test of improved
configurations, following the bulb whose calculated performance

is shown in Figure 5.1, should be actively pursued.
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