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ANALYSIS AND PREDICTION 

METHOD FOR IMPROVING A DYNAMIC MODEL USING 
EXPERIMENTAL TRANSIENT RESPONSE DATA 

Ching-u Ip, Eli P. Howard and Richard J. Sylvester 
Aerospace Corporation 

San Bernardino, California 

A rational method is developed for improving the mathematical dy- 
namic model of a linear system by utilizing experimental results.   The 
di-:a. required as input to the method consist of measurements of the 
applied load and some limited response information.   Two examples 
demonstrate the improvement in the mathematical model of a six- 
degree-of-freedom system when the loading and limited response in- 
formation is known without experimental error.   Future efforts are 
outlined to study effects of error in experimental input data and fea- 
sibility of application to systems of many degrees of freedom. 

E. P. Howard 

INTRODUCTION 

The dynamic analyses performed to deter- 
mine the responses of a structure subjected to 
dynamic loads involve the formulation of a 
mathematical model that represents the physi- 
cal structure.  When the structure and loading 
are particularly complex, confirmatory experi- 
ments are devised to gain confidence in the re- 
sults of the mathematical model or to demon- 
strate structural Integrity, or both. 

A certain degree of confidence in the math- 
ematical analysis can be achieved by a ground 
vibration test in which the ent're structure Is 
vibrated at a low level and the resonant fre- 
quencies are identified. However, limitations 
in this experimental technique usually preclude 
obtaining the mode shapes of the structure with 

the same accuracy as the resonant frequencies. 
In addition to a ground vibration survey, dy- 
namic load teste are often conducted that sub- 
ject full-scale reentry vehicles to a blast wave 
in a large shock tube. A facility currently 
being utilized for this purpose is the Sandia 
Corporation 'Thunderpipe" facility at Albu- 
querque, New Mexico. 

It is the purpose of this paper to present a 
method or technique for utilizing experimental 
results from such facilities^as the "Thunder- 
pipe" to improve the mathematical model rep- 
resenting the structure that was tested.  The 
improvement is achieved by revising the the- 
oretically computed mode shapes to be in better 
agreement with experimental results. 

LIST OF SYMBOLS 

[c]    Square matrix, damping matrix 

{FU)} Column matrix giving forces act- 
ing on various stations (nodes) of 
system 

i    Subscript 

[I]    Identity matrix 

j    Subscript 



(kl   Square matrix, süffneu matrix 

Im.    Square matrix, maas matrix 

n   Nomber of modes 

{qCt»   Column matrix of generalized dis- 
placements 

»   Laplace transform variable 

IT]   Transformation matrix relating 
strains to displacements 

T   Superscript, transpose of a matrix 

(x>. {x}. {x}   Column matrices representing dis- 
placements and their time deriva- 
tive 

a   Scale factor 

ß( t)   Parameter associated with input 
forces and defined as quantity in- 
side large parentheses of Eq. (11) 

yKy   Shear strain 

iy(t)}   Parameter associated with input 
forces and defined by Eq. (15) 

le)   Column matrix of strains 

ß   Diagonal matrix of generalized 
modal damping 

ii)]    Modal matrix normalized so that 

v'i    Function to be minimized and de- 
fined by Eq. (2) 

[<ü
2
]     Diagonal matrix of squares of cir- 

cular frequencies 

DESCRIPTION OF METHOD 

Thunderplpe Tests 

The "Thunderpipe" test series subjects a 
full-size reentry vehicle structure to blasts of 
conventional explosive, confined in a closed-end 
tube.  One objective of the tests is to compare 
the measured dynamic response with the the- 
oretical predictions to verify the analytical ap- 
proach.  Specifically, the pressure-time his- 
tories at various stations on the reentry vehicle 
are measured and are used as the forcing 

functions in the analytical model.  Measure- 
ments by strain gages and accelerometers at 
selected locations on the vehicle constitute the 
measured responses, 'vhese are used to com- 
pare with the calculated response of the pre- 
selected mathematical model of the dynamic 
system subjected to the measured forcing 
function. 

Comparison of Expei iment 
and Theory 

An exact duplication of measured and com- 
puted response never occurs in practice.  Henc 
a quantitative assessment of the degree of cor- 
relation is desired to assess the validity of the 
mathematical model used in the dynamic anal- 
ysis. This study was conducted to determine 
the feasibility of improving the dynamic model 
using measured data from 'Thunderpipe" ex- 
periments.  This study assumes that the instru 
mentation and experimental technique are ade- 
quate, and that dlscrepaacles are due to errors 
in formulating the mathematical model or es- 
tablishing values of parameters for use in the 
model. 

This feasibility study is idealized by con- 
sidering linear mass-sprlng-dashpot mechani- 
cal systems subjected to transient response 
experiments In general, rather than the specif! 
problem of the response of a reentry vehicle In 
a shock tube. 

Summary of Method 

In analyzing the continuous structure to 
which the shock Is applied, the structure Is 
approximated by a system of finite elements 
consisting of masses, springs, and dashpots. 
Since the structure Is assumed to experience 
small vibrations due to the shock loading, the 
finite elements are considered to behave lin- 
early.  Hence, the linear response of the struc 
ture at the mass locations can be determined 
by the solution of the equations of motion of the 
system of finite elements if the system Indeed 
represents the structure correctly.  The prob- 
lem Is formulated utilizing matrix notation to 
facilitate the treatment since the mathematical 
aspects of the problem usually Involve solving 
a large number of differential equations simul- 
taneously. The large number results from the 
large number of finite elements used to repre- 
sent the continuous system.  The finite element 
are represented by (n x n) square matrices with 
n being the number of degrees of freedom. Tht 
shock or external disturbance Is represented 
by a column matrix of forces, with each force 



element being a function at time acting on a finite 
element or mass. 

Ja the discussion that follows, a formal so- 
lution of the equations of motion is derived in 
matrix forr*.  The responses of the system, 
calculated and measured, should agree with one 
another. S these do not agree, one has to adjust 
the values of the 3n2 elements in the mass, 
spring, and dashpot matrices until agreement 
between calculated and measured response is 
reached. Since the system is assumed to be 
linear, the response can be assumed to be a 
linear superposition of its normal modes. 
Hence, by filtering the measured response by 
adjusting the filter to the measured resonant 
frequencies (obtained from a vibration survey), 
its modal comionents can be obtained.  This 
can be compared with the normal mode solution 
obtained analytically and has the advantage that 
one has to adjust the vUues of only n elements 
at one time. This was done in this report with 
the aid of a method developed and computerized 
at Aerospace Corporation. In this method, the 
difference between the calculated and measured 
values of the response in a particular mode, i, 
constitutes an error.  The 0 function derived in 
the body of this report represents the sum of 
the squares of all the errors in the ith mode. 
This function is to be minimized so that the ex- 
perimental data and the calculated 1 esults agree 
as closely as possible. By adjusting the values 
of the n modal elements in the neighborhood of 
the calculated values in a random manner and 
choosing the better set after each adjustment, 
one can find the values of the modal elements 
for closest agreement.  Tue method described 
in this report accomplishes this result in a 
systematic way. 

Derivation of Method for a Mass- 
Spring-Dashpot System 

The equations of motion of a linear system 
with viscous damping can be written concisely 
in the form of a matrix equation: 

[tnHJa +   EcHi} +   [kHx}   =   {F(t)} , (1) 

where 

[m] = square matrix called the 
mass matrix, 

[c] = square matrix called the 
damping coefficient matrix, 

[k] « square matrix called the 
stiffness matrix, 

{xMiM*} * column matrices represent- 
ing displacements and their 
time derivatives, and 

{F(t)} - column matrix giving the 
forces acting on various 
stations (called nodes) of the 
system. 

The solution to this equation will be derived 
in terms of the normal modes of the system. 
Not only (xft)}, the displacement, but {x(t)}, 
the velocity, and {x(t)}, the acceleration, were 
derived in terms of the normal modes ami are 
given, respectively, in Eqs. (11), (12), and (13) 
which appear later. 

It is convenient to treat the transient re- 
sponses of the dynamic system as the summa- 
tion of the responses of its normal modes. For 
a linear dynamic system with damping, the 
existence of normal modes is given by a the- 
orem of Caughey [1] which can be stated as fol- 
lows:  "A necessary and sufficient condition 
that a linear clamped dynamical system possess 
classical normal modes is that the damping 
matrix be diagonalized by the same transfor- 
mation which uncouples the undamped system." 
However, if the transformation matrix l<t>], 
which diagonalizes the [m] and [k] matrices of 
the undamped system, is found, it will not nec- 
essarily diagonalize the [c] matrix of the 
damped system; but, for a realistic vibrating 
system, the off-diagonal terms of the trans- 
formed [c] matrix will be small compared with 
the diagonal terms.  Hence, the calculated re- 
sponses by considering the system possesses 
classical normal modes would not differ much 
from the actual responses, and the generally 
accepted procedure is to ignore the off-diagonal 
terms of the modal damping matrix. 

Consider the modal transformation as de- 
fined by 

{x(t)}    =    Wiq(t)) . (2) 

where [<£] is the modal matrix, normalized 
such that [^]T[m] [<t>] =  fij , and {q(t)} is a 
column matrix representing the generalized 
displacements. 

Substituting Eq. (2) into Eq. (1) and pre- 
multiplying by [<t>]T results in 

(q)  +   Mlq)  +    M (U)   =    WT{F(t)}.      (3) 

where [n] and f^J are diagonal matrices 
representing the generalized modal damping 
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and the normalized stiffness (or the square of 
circular frequency), respectively. [*r is the 
transpose of the [<*>) matrix. Thus, we obtain 

[*.1T[»H«)  -   [1], 

l4>]rlV]l*]   --    t^J. (4) 
and 

where  [i] is the identity matrix. 

Talcing the Laplace transformalioa of Eq. 
(3), we obtain the transformed equation, after 
using the following notations: 

f 
•'A 

{q(s)}   - {q(t)}e-stdt 
'o 

a CD 

{F(s)} -  j     {F(t)}e-Stdt . 
Jo 

(5) 

{»(s)}  =   l^]{q(s)} 

and 

+   (sfl J   +   tMj^CO)))   +   {q(0)>. 

Premultiplying Eq. (2) by [<;]T[m] and using the 
normalization property given in Eq. (4), we ob- 
tain the following equation: 

{q(l)}    -     Wr[ml^x(t)> . 

where the initial conditions are given by 

and 
{q(0)}   =    [0lT[mHi(O)} . 

From Eq. (5) we obtain 

{x(s)}    =    [^]{q(s)} 

(6) 

(7) 

!/>! 

+  W 

+ [0] 

r !  
S   +    Mj 

2 2 
S      +    ^i   +   "'i 

E2   ^    SM;   +   .^i2 

r*]TiFfS)} 

UMT[mHx(0)} 

[0]T[mlli(O)} , 

(8) 

where i is the index for the i th row of the 
diagonal matrix.  Now we observe that 

u) [~2— j] U]T -- L  -2   
1    ; w.^yl 

L J 0) 

where <*}j is a column matrix formed from the 
ith column of the [(/>] matrix or the ith mode of 
the dynamic system.  Hence, Eq. (8) becomes 

Us^ - 2] WiWi ( 
\ S     +   s/x •   + a. 

(F(s)} 

s  +   M: 

2 2 
S       +    S/l •   +   W- 

[ni){x(0)} 

+ —i r [m]{x(0)} 1 (10) 

Taking the inverse Laplace transform of 
Eq. (10) and differentiating the resulting func- 
tion, we obtain the displacement, velocity, and 
acceleration matrices of the linear dynamic 
system as follows: 

Wn) 
[Jo    OJ./l    -   ^2 

«   sin  fu-jd - 7) 71 -  r.,A  {F(T)}  dr 

+   [ni]{x(0)}  e     '   ' 

^^7 

+   [tn]{i(0)} 

n  (^t /l - ^.2) 

-C:«:t 

^v^T? 
^n ^.tyi-^n, 

(ID 

{id)} . 2] <^i<^iT I ■C.O,.   (t-T) 

{F(T)>  Jcosv/l  - ^i2 ^.(t-T) 

«nx/l- <;i
2 ^(t-r)' /rr? 

(12) 
(Cent.) 



.-je     '   * / . \ 
-   lm]<x(0)}     '. =    sin   •u.jt /l - ;.2 

♦   [ra]<ii(0)' e     ' (v ^77) 

>^rTT 
(12) 

and 

'i(t) 

. tF{.)\ 

* 2 ^i'i cos (-(t-^yi- q5) dr 

-C —   t 

-  im]{x(0)>c     ' ^cos^tyr^) 

^in^yrriT) 
yr^ 

+   lrm]{i(0)} 

-^'^-D 

v/T 
•nfv/W?) 

2^.^  cos  (-ttv/TT^) (13) 

where ' j     ^. 2 ..'j. 

Equations (11), (12), and (13) represent the 
displacement, velocity, and acceleration re- 
sponses of the total system of finite elements 
in terms of its normal modes.  Considering, for 
example, Eq. (13), one may interpret that the 
elements in {x( t) > are obtainable from acceler- 
ometer readings, those in {F(O) are obtainable 
from pressure measurements, the values of ^ 
arc obtainable from a vibration survey, and <» i 
are the unknown quantities needed to satisfy the 
equation. 

Also, it may be observed from Eq. (13) that 
the acceleration signal» consist only of compo- 
nents of the damped frequencies '^x - Zf*  It 

is then feasible that a narrow-band filter 
(whether it is an electronic circuit or a digital 
computer filter) may be used to separate the 
components.  The filtered acceleration compo- 
nents are derived below and given in Eq. (19). 

Filtered Signal - Consider the acceleration 
column matrix, Eq. (13), which can be written 
as 

«"ml - Z] {*}i(*}i
T{xt))i (14) 

where {y(t))i  is the column matrix represent- 
ing the quantity inside the braces in Eq. (13). 
For an undamped system where C j = 0, 

{/(t)};    -    {F(n}  -  j     {F(T)}  OJJ  sin a).(t-T)dT 
■'o 

- (m]{x(0)} ^j2 cos ^t 

- ImHx'O)} a),   sin oi-t . (15) 

Let the acceleration column matrix be de- 
composed into its modal components, 

{x(t))   =   £  {i(t))i . 
i 

which gives, from Eq. (14), 

Writing Eq. (17) in detail gives 

(16) 

(17) 

'2i 

>    =    < 

?2i 

v. "w 

where 

l^\ 1*2»        yji        ^mJ 

<t   . eni 
(18) 

n is the number of degrees of freedom, 
j denotes the j th mass, and 
i denotes the ith mode. 

From Eq. (18), 



which is the filtered acceleration response at 
station i (filter set at the -th frequency). 

Prior to the transient response experiment, 
a vibration survey (frequency response experi- 
ment) is made to determine accurately the natu- 
ral frequencies (actually the damped frequen- 
cies) of the system.  The applied forces (F( t)) 
are measured during the transient response 
experiment. (It is assumed that the applied 
forces at each mass point representing the ex- 
ternal structure are measured or can be extrap- 
olated.)  Then the quantities yki(t) can be de- 
termined from {F( t)} and the initial conditions 
of the system.  Hence, on examining Eqs. (15) 
and (19), it would appear that a set of i<t>) j could 
be determined if the values of xji(t> and yki(t) 
are computed for a sufficient number of instants 
of observation. 

In general, however, Eq. (19) will not be 
satisfied exactly for all instants of observation, 
due to inaccuracies in the formulation of the 
mathematical dynamic model.   Consequently, a 
least squares criterion was generated for the 
determination of the best (;>}; that would satisfy 
Eq. (19). 

For the ith mode, this least squares cri- 
terion may be written 

response at various locations un the structure, 
we are able to construct ,-i.  This function ex- 
presses in a general way the difference between 
the computed and measured responses.  Hence, 
minimizing this function wilt result in a set of 
mode shapes that will fit the experimental data. 

The minimization of Eq. (20) was accom- 
plished by means of a method developed by 
Brooks [2].  This method is described in the 
following paragraphs. 

Brooks] Monte Carlo Method for Finding a 
Maximum - A customary method for determin- 
ing maxima is the gradient method, which re- 
quires determining the direction of maximum 
change of the function by evaluating its partial 
derivatives with respect to its independent 
variables.  One then proceeds along the direc- 
tion of the gradient until a local maximum is 
determined.  At this point, another gradient 
direction is established. 

Because of the amount of computation in 
derivative determination, a more efficient 
method is to maximize along a line in a random 
direction.  One can show that the expectation of 
the change is in the gradient direction, yet the 
partial derivatives associated with the gradient 
need not be determined. 

^i(^,i,02i----^ni^ 

V 
t -1 

(20) 

or 

where 

k = 1,2,.. .,n; 
i = 1,2,..., m, number of responses meas- 

ured; and 
t = 1,2,..., p, number of instants of ob- 

servation. 

It should be pointed out that the number of re- 
sponses measured, m, can be less than n, the 
number of degrees of freedom. 

Recapitulating, we have shown that, on the 
basis of a dynamic analysis, an estimate of the 
natural mode shapes (/) could be made.   To- 
gether with this information and the natural 
frequencies   ^ obtained from a ground vibration 
survey of the structure and the measured 

To simplify the discussion of the method, 
we consider 4>i to be a function of a two- 
dimensional space (*,|,02i) ^ig. 1).  Starting 
with an initial guess of /^ .*2i. which corre- 
sponds to the point 0 in the space, one evaluates 
-0J.   From 0, a random direction is chosen.  A 
point 1 in the vicinity of 0 in the chosen direc- 
tion is then »elected and the corresponding value 
of -0j is evaluated.  The second value of -$. is 
compared with the first.   If the second value is 
higher, select point 2 in the direction of 0-1 at 
twice the step size.  H point 2 is still higher, 
select point 6 at again twice the step size.  If 
point 2 is 4till higher, select point 3 at again 
twice t^.e second step size.  If point 3 gives a 

l/i. = MAX 

*ri 

Fig. 1.   Monte Carlo method 



lower value ai -T,.  than point 2, a parabolic 
curve is drawn through points 1, 2, and 3. 
Point 0' corresponds to the highes, point on the 
parabolic curve, which should be cJ^se to the 
position of a local maximum in that oie direc- 
tion.  From 0', another random direction is 
chosen and the process is repeated   The proc- 
ess terminates when an exhaustive seaich of a 
vicinity yields no better -; j. 

It may be seen that this method has some 
of the characteristics of the method of steepest 
descent, but seems to be more efficient in that 
the gradients in n-dimensional space need not 
be evaluated for each step. 

EXAMPLE PROBLEMS AND 
DISCUSSION 

Two problems were solved to illustrate the 
method of this report.   Both of these problems 
considered a lumped parameter model having 
only six degrees of freedom, but it is felt that 
the essence of the method was demonstrated 
nevertheless.  In the absence of test data, the 
mass and stiffness parameters in the problems 
were arbitrarily changed in an attempt to intro- 
duce errors due to shortcomings of the dynamic 
analyst who formulated the problems.  The mode 
shapes computed from this erroneous formula- 
tion were obviously different from the true mode 
shapes one would obtain from an experimental 
modal survey if this could be accomplished 
accurately. 

In the first problem, it was assumed that 
there was measured disturbance or response 
information at all points corresponding to the 
degrees of freedom Ci the mathematical model. 
In the second problem, this was not true.  In 
fact, no information was available at two of the 
stations used in the mathematical formulation. 

the second example, improvement in the com- 
puted mode shapes was shown as a result of 
processing the "experimental data" according 
to the method of this report, although the im- 
provement was not as dramatic as in the first 
example.  These results seem to imply that one 
can anticipate considerable improvement in a 
poorly formulated mathematical dynamic model 
when a large amount of experimental data are 
available. 

Example Problem Number 1 

Statement of Problem - To illustrate the 
application of the previously derived results, 
an example was constructed that contains the 
main featiires of a typical problem.  The prob- 
lem might represent the case in which it is de- 
sired to determine the transient response of a 
reentry vehicle subjected to a blast loading. 
Based on the physical properties of the struc- 
ture, a spring-mass analog was constructed, 
consisting of 6 masses and 5 springs (Fig. 2). 
The applied force is represented by a triangu- 
lar pulse with a peak of 1000 lb and a duration 
of 0.001 sec that travels over the reentry vehi- 
cle at a speed of 12,000 ips. 

Let the true (actual) masses and springs 
be of the following values: 

mlR = 28.309 1b 

m2g = 19.709 lb 

mj-, - 16.110 lb 

m4g = 14.919 lb 

msg = 19.319 lb 

m.g = 19.427 lb 

The convergence to the true mode shapes 
was excellent in the first example despite the 
fact that the analytically derived mode shapes 
differed considerably from the true ones.  In 

k, = 1.251 x 104 lb/in. 

k2 = i.528x 104 lb/in. 

1000 LB 

m 

-0.001 
SEC 

L_ 4"    .   .      6"    J.     6,■    '   ■     6"    ■   ■     6" —-J 

Fig. 2.   Spring-mass system subjected 
to traveling pulse 



r 

k, = 1.063 x 104 lb/in. 

k4 = 1.144 x 104 lb/in. 

k, = 1.012 x 104 lb/in. 

Let the dynamicist who formulates the dy- 
namic model calculate these values to be 

«, = 25.000 lb 

w2 = 19.709 lb 

»3 = 16.110 1b 

w4 = 17.000 lb 

w( = 19.319 lb 

w6 = 19.427 lb 

k, = 1.25 x 104 lb/in. 

k2 = 1.300 x 104 lb/in. 

k3 = 0.900 x 104 lb/in. 

k4 = 1.144 x 104 lb/in. 

ks = 1.012 x 104 lb/in. 

which are different from the true values; i.e., 
some errors were made in formulating the 
values due to limitations of the theory employed. 

An eigenvalue analysis would furnish the 
following frequencies and mode shapes. 

a. "True Frequencies and Mode Shapes - The 
true frequencies and mode shapes are based on 
actual masses and springs of the system. 

"'i 
(rigid body mode) IP) i ~ < 

''2 
2 - 5.6617794xl04 

(1st flexible mode) 
,(./>}, 

2.5711003x10s I-/.}. 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

'2.1832192 
1.4587241 
0.5896454 
-0.7540531 
-1.8584049 
-2.5865483 

r 1.7488900^ 
-0.8866337 
-2.2827900 
-2.6291799 
-0.6677005 
2.3984586 

> , 

r > 

.,2 =4.5687757x10" ■;>4 = ■< 

■s2 = 7.5677902 x10 s {/K = V 

1.4134544^ 
-2.3715559 
-1.8505419 . 
1.2^03420 f * 
2.2175386 
-1.7438144 

^ 0.5546950^ 
-1.9057222 
0.8981284 

and 

3.0055750 r 
-2.7191541 
0.9841980 

r 0.3159087^ 

2 = 1.2522949 x 10 6 W< = < 

-2.0028400 
4.4781486 
-2.0715276 
0.6050650 

-0.1157667 

>■ 

b. Calculated Frequencies and Mode Shapes - 
The calculated frequencies and mode shapes are 
based on masses and springs estimated by 
analysis. 

r 
= 0 {0}, = < 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

>, 

5.3594196 xlO4 
</•) >, 

2.4823731x10s Up}- 

2.2822298^ 
1.6491218 
0.6928123 

-0.8125969 
-1.8292985 
-2.4938566 

r 1.7012653^ 
-0.4846835 
-2.1157792 . 
-2.7167839 ?' 
-0.5938498 

v 2.5348854 
r 1.8014632^ 

2 _ 4.4476042xl05 
{7)4 

-2.3457125 
-2.2398130 
1.2419185 
.8550571 
.5313187 J 

7.0651811x10s 
(0), 

1* 
r 0.6474993^ 

1.7204015 
0.7739617 
2.M97223 
2.9868394 
1.1885990 

>, 

< > 



and 

1.06 75415 xlO6 

0.4804274 
-2.1742601 
4.38567381 

''» = Vl.7835363f 
0.6914416 

-0.1605030 

It should be noted that the true and calcu- 
lated values of the frequencies and mode shapes 
are different and that, after a hypothetical fre- 
quency survey has been performed, the set of 
true   j2 in case a is found.  The sets of it)i in 
case a are not known, however, whereas those 
in case b have been calculated by the dynamicist. 
It is assumed that, during the frequency survey, 
either the mode shapes were not measured or 
they were not obtained with the same accuracy 
as the measured frequencies.  A computer pro- 
gram has been written to compute tne quantities 
x'j^t) andern using Eqs. (14) and (15).   The 
values of the quantities for 3 time instants and 
the 5 flexible modes are given in Table 1. 

Example Problem Results - The numerical 
values from Table 1 were entered as inputs to 
the "Creeping Random Computer Program," 
previously discussed, which minimizes ^ in 
Eq. (20).  This computer program requires as 
input an initial trial value for p-, -, •  Instead of 
using the calculated values of <Pi ■l only (the re- 
sults of the dynamic analysis), two cases of ini- 
tial trial values of --i 
calculated values of 

j • 
were attempted:  (a) the 

(from the dynamic 
analysis), and (b) all elements of 4>-. j equal to 
1.0. 

a.   Calculated  ; ^ as initial Values 
J i 

[./.]   :    [^}2{;fe}3. ..{0>6] 

2.1832193 1.7489067 1.4134545 
1.4587253 -0.88650611 -2.3715565 
0.58964542 -2.2828123 -1.8505421 
-0.75405318 -2.6292058 1.2903421 
-1.8584052 -0.6677963 2.2175393 
-2.5865485 2.3984812 -1.7438146 

No. of  (71,001) (245,000) (81,002) 
Trials 

No. of 
Trials 

0.55469529 
-1.9057233 
0.89812871 
3.0055761 

-2.7191556 
0.98419836 

(139,002) 

0.32092342 
-2.0454205 
4.5181893 

-2.0922921 
0.59756558 

-0.11567424 

(285,000 not 
yet converged) 

b.  All Elements of 
Initial Values 

</>.. Equal to 1.0 as 

[<p\ - [{*}j{*}jW4t</'>s] 

-2.1832198 
-1.4587201 
-0.58964556 
0.75405333 
1.8584022 
2.5865490 

-1.7464479 
0.90395607 
2.2796787 
2.6254416 
0.65576761 
-2.3956199 

-1.4134545 
2.3715562 
1.8505420 

-1.2903421 
-2.2175390 
1.7438145 

No. of 
Trials 

(108,002)   (186,002)  (152,001) 

0.55469514 
-1.9057231 
0.89812867 
3.0055761 

-2.7191556 
0.98419835 

No. of 
Trials 

(177,002) 

Discussion of Example Problem Number 1 
Results - Comparing the results obtained with 
the true mode shapes, it may be observed that 
the computer results are accurate and repeat- 
able as they converge to the values known to be 
correct a priori. 

It is interesting to note that 4>-} ■1 converges 
to the same numerical value, but with a minus 
sign for i = 2, 3, and 4 in the case of the initial 
values of 1.0.  For i = 5, the obtained result is 
the same for cases a and b.  For our physical 
problem, the mode shape -{<*>> j Is the same as 
the mode shape {4>) ■l. 

Not every set of *, j which minimizes Eq. 
(20) is necessarily a modal vector.  If only a 
few response measurements are made and if 
there are many more unknowns than are repre- 
sented in Eq. (20), more than one set of 4>i i will 
render ^ equal or close to zero.  An additional 
mathematical constraint is required to produce 
an acceptable solution.  This restraint is sup- 
plied by confining in some manner the mode 
shape {</>}; to a neigfiborhood of the theoretically 
calculated mode shape. 

If the Im] matrix is chosen somewhat arbi- 
trarily, as is often the case in the original 
model formulation, a test to evaluate whether 
the correct set of '</>) -, is obtained is that the 
vectors should be orthogonal with respect to the 
[ml   matrix.  After the correct [<£] matrix, 
[>/>] = [{*} j{0} 2... {0}6], is obtained from the 
Monte Carlo computation, the correct mass and 
stiffness matrices can then be evaluated from 
the following equations: 
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-1 

and 
(ml   --    {WT)      W-' 

(21) 

Example Problem Number 2 

Statement of Problem - Referring to Ex- 
ample No. 1 and Eq. (20), we note thai if neither 
a forcing function measurement nor a transient 
response measurement is made on any node in 
the dynamic model, then the modal value at that 
node does not appear in thu equation.  Hence, 
its value can then be arbitrary.  In this example 
problem, we shall investigate methods for over- 
coming this deficiency. 

When a dynamicist first formulates a math- 
ematical model, the choice of nodes is perfectly 
arbitrary and is subject solely to his judgment. 
To a lesser degree, the assignment of the 
masses at the nodes is also arbitrary. For 
most dynamic analyses, knowing the correct 
frequencies and mode shapes should be suffi- 
cient to describe the system analytically.  In 
this example we shall assume that the correct 
mass matrix is formulated; hence, the mass 
matrix is not going to be changed in the im- 
provement of the model. 

The same transient loading as that in the 
previous example is used except that the travel- 
ing pulse hits the first two particles only. The 
acceleration measurements are made on parti- 
cles 1, 3, and 6.  No experimental data are 
available for particles 4 and 5.  This may cor- 
respond to the case In which there are internal 
components 3, 4, 5 and 6, and 1 and 2 represent 
the external structure of a vehicle subjected to 
a blast loading.  Compared with the 6 lorce 
measurements and 4 acceleration measure- 
ments of example 1, this example presents a 
more restrictive requirement. 

It is noted here that the orthogonality prop- 
erties of the modal matrix normalized with re- 
spect to the mass matrix might be used as a 
supplemental restraint in addition to the com- 
parison of analytical results with experimental 
data.  The following equation is chosen for mini- 
mization in the Monte Carlo method: 

+  c, 2,, *(f 4'(2 - 386.08401 

for i t 2, the first flexible mode. 

p r- /      <    x2! 
t=l[j = «\                        k-»                  /  _Jt 

♦Cl 

rn          2                     -i2 

Z! *ff 4>ti - 386.08401 
[f-i                                   J 

r-              i2 

+
 CJ = minimum, 

(23) 

minimum,   (") 

where 

k * 1,2,... q, number of forces 
measured; 

*ll = diagonal element of weight matrix 
("correct" set); 

j  s 1,2,..., m, number of accelera- 
tions measured; 

CpCj ■ weighting constants; and 

t = 1,2,..., p, number of instants of 
observation. 

Table 2 constitutes the input data to the 
"Creeping Random Computer Program" for the 
improvement of the first three flexible modes. 
For initial trial values of the 4>'s, the calculated 
values mentioned previously are used.  Values 
of 1.0 are taken for the constants c, and c2, 
giving equal weights to the experimental data 
and conditions of orthogonality. 

Example Problem Results - Results from 
the computer program are9 given in Table 3. 
The true values of ^'s are repeated for com- 
parison in the same table. 

Discussion of Example Problem No. 2 
Results - The results show that improvement of 
the modal values, at nodes where there are no 
experimental data, can be obtained by the use of 
the orthogonality properties of modes. 

The orthogonality property introduces one 
additional equation (in the case of {0)2) to 
equations containing experimental data when 
there are n unknown ^'s to be found.  The value 
of n can be much larger than m.  The question 
remains whether the orthogonality equation can 
improve all the 0's in a somewhat uniform 
manner. 

To investigate this question, a value of ID6 

is taken for c, in Eq. (22), thus magnifying the 
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TABLE 2 
Creeping Random Computer Program Input Data 

Flex- 
ible 

Mode 

t, » 0.0028 t2 =0.0032 t3 = 0.004 

»»ear Strain Acceleration Shear Strain Acceleration Shear Strain Acceleration 

Ist 
{i«2) 722 

-65.00842 
-52.74640 

X62 

-477.84119 
-129.05569 
566.11783 

>I2 

722 

-74.16420 
-62.62416 

*12 

«32 
X62 

-552.93978 
149.33837 
655.09017 

>12 
y12 

-90.38496 
-80.59479 

i12 -687.48634 
X32 -185.67680 
xt2    814.49294 

2nd 
(i=3) 

>13 -237.7336 
-209.2545 

«13 

»33 

»63 

-402.66076 
525.58478 

-552.21607 

>I3 

^23 

-249.6289 
-233.2089 

*I3 

«33 
X63 

-401.89947 
524.59108 

-551.17202 
y» 

-242 6493 
-251.8453 

5,3 351.65368 
.X33 459.00629 
563 -482.26407 

3rd 
(i=4) 

>I4 -333.157?. 
-322.5316 *34 

X64 

415.55418 
-544.05747 
-512.67969 

>I4 

^24 

-314.4325 
-334.0710 

«14 

«34 

«64 

491.64481 
-643.67788 
-606.55462 

>14 

>24 

-211.4668 
-285.2581 

x„ 533.72985 
X34 -698.77702 
x64 -658.47600 

TABLE 3 
Comparison of Computed and True ^'s for Example 2 

*2a *.b ^C 

Computed True Computed True Computed True 

2.1823435 
1.4613510 
0.58940554 

-0.76325231 
-1.8548189 
-2.5855092 

2.1832192 
1.4587241 
0.58964540 

-0.75405312 
-1.8584049 
-2.5865483 

1.7488908 
-0.88663371 
-2.2827910 
-2.6339910 
-0.65287925 
2.3984598 

1.7488900 
-0.88663372 
-2.2827900 
-2.6291799 
-0.66770054 
2.3984586 

1.4134613 
-2.3715563 
-1.8505515 

1.3490425 
2.1903482 

-1.7438244 

1.4134544 
-2.3715559 
-1.8505419 

1.2903420 
2.2175386 

-1.7438144 

a294,002 trials. 
^170,002 trials. 
C106,001 trials. 

effects of orthogonality in comparison to those 
of the experimental data. 

Table 4 shows the results of computed {$) 2 
compared with the starting values and the true 
values.  A general inprovement of W 2 is 
noted. 

MIXED RESPONSE DATA FROM STRAIN 
GAGES AND ACCELEROMETERS-AN 
EXTENSION OF THE METHOD 

In the preceding examples it was implied 
that only acceleration measurements were 
made.  In practice, however, both acceleration 

TABLE 4 
Effects of Orthogonality Equation (C, = ID6) 

Calculated (^} 2 
a Computed {^}2

b True {i>}2 

2.2822298 2.1391473 2.1832192 
1.6491218 1.5925472 1.4587241 
0.69281230 0.57770646 0.58984540 

-0.81259693 -0.81575419 -0.75405312 
-1.8292985 -1.8758526 -1.8584049 
-2.4938566 -2.5343082 -2.5865483 

aStarting values. 
From random program. 
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and strain measurements are used.  In formu- 
lating the dynamic mi Jel, we postulate that the 
dynamicist uses a finite t- ement approach of 
some kind where masses are concentrated at a 
network of stations called nodes.  The displace- 
ment and acceleration responses are also 
measured at the nodes.  U the strains of the 
structure between the nodes are measured by 
strain gages, these measurements can be re- 
lated to the relative displacements of the two 
nodes.  The exact nature of this relationship 
would have been determined by the dynamicist 
in his original stress analysis. 

Before proceeding with the development of 
the method for handling strain data, we will di- 
gress briefly to derive some strain-displacement 
relationships that will be needed in the subse- 
quent derivation. 

Let the transformation matrix [T] relate 
the strains ie) and the displacements M of the 
system.  The matrix [T] is called the "strain 
transformation" matrix.  This relationship may 
be expressed as follows: 

Fig. 4. Example 2, 
triangular membrane 
element 

e 

>  -   Ö 

xy 

where 

2A 

(»,. y,) 

vas    0    vai    0    yi2    0 

0      x23      0      xil      0      x 12 

x32      Vli     X   3      Vai      X21      Vli 

>. 

(26) 

u) -- mix) (24) 

As an illustration of the form of [T], two ex- 
amples are shown.   Example 1 is the case of an 
axially loaded bar of varying cross section (Fig. 
3).  For this case, Fq. (24) takes the form: 

r -\ 
VI, Vi, 

■l/ly !/-£, 

r ^ 

< X, 

X 

(25) 

e%,ty,y%y - strains in x- and y-directions 
and shear strain, respectively, 
considered to be uniform in 
small triangular element; 

A = area of triangle; 

y23 = vj -yi, etc., where x and y are 
coordinates from reference 
point; and 

u.v = displacements in the x- and y- 
directions, respectively. 

U n 
L^«, - 0 

cb 
Fig. 3. Example 1, 
longitudinal bar of 
varying cross section 

Now, proceeding in a manner analogous to 
the treatment of acceleration data, we have 
from Eq. (11), the filtered signal for the dis- 
placement. 

<x(t)}i    =    {0}i{0}i
T^(t)}i (27) 

where {^(t)); are the terms included in the 
braces in Eq. (11). 

Substituting Eq. (24) into Eq. (27) gives 

The second example (Fig. 4) is slightly 
more complex and considers the case of a tri- 
angular membrane element subjected to In- 
plane forces.  The strain-displacement rela- 
tionship is expressed by Eq. (26): 

{e>i   -•    [T]Wi{0}.T{y3}i . (28) 

which, when written out in expanded form, be- 
comes 
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^ 

2i 

<<ti>   = 

^ry 

Tll TI2   •••   Tln 

Tr.Tr2 . 

0   ^ 

•  T. 

li 

*2i 

<    ■    Y    teH*2i   •••   ^niJ   < 

4> ■ /3-i 

(29) 

where «, j is the strain measurement filtered 
to the ith mode between nodes I and -f + !, and 
there are r strain measurements. 

It follows that t f is given by 

^   ^E^p^j^E^^i)-    ^30) 

Hence, the ^ function to be minimized for 
mixed measurements of strain and acceleration 
responses will be given by 

H (''ji - *ji L ^i TJi) + a E 

..-g^^g^a 
(31) 

where there are m acceleration and r strain 
measurements, m + r 1 n and a = scale factor, 
which is introduced because the strains, nu- 
merically, are so much smaller than the 
accelerations. 

Similarly, one can gather together the ex- 
perimental data of more than one transient 

response experiment to form the ^ function to 
be minimized.  The subsequent dynamic model 
obtained from a single computing operation will 
best fit all the experimental data so treated. 

CONCLUSIONS 

This report demonstrates that it is feasi- 
ble to improve an analytically derived linear 
structural-dynamic model based on transient 
response experiments.  Although th^ data used 
in this report were "manufactured" from anal- 
yses and were not actual measured data, the 
basic concept has been demonstrated. 

In the example? presented, attempts were 
made to represent typical transient response 
experiments, albeit on a smaller scale; i.e., 
only a six-dfcgree-of-freedom model was used 
although it is recognized that most practical 
problems in the aerospace industry require 
many more degrees of freedom for adequate 
simulation.  In addition, the essence of the 
transient response experiments was maintained, 
especially in the second example, where the 
forcing function was assumed to be applied at 
only the first two particles and acceleration 
measurements were made on particles 1, 3, and 
6.  This example typifies the expeviroent in 
which the external structure, represented by 
particles 1 and 2, is subjected to a load, and 
response measurements are made on the exter- 
nal structure and on some, but not all, of the 
internal components.  (No measurements were 
made on particles 4 and 5.) 

The basic logic of the method has been es- 
tablished, even tnough feasibility was demon- 
strated only on a six-degree-of-freedom system 
with input data (loading and response) known 
exactly.  A study of the effect of errors in data 
should form a next step in the evolution of the 
method. 

FUTURE EFFORT 

Although this report, in its present form, 
can be utilized for assessing the validity of a 
structural dynamic analysis based on experi- 
mental results, certain questions have arisen 
during the course of this study that require ad- 
ditional effort to find the answers.  In an effort 
to demonstrate the principles of the method in- 
volved, relatively simple examples were chosen 
in the report.  To obtain a better simulation of 
the physical system, more complex analytical 
dynamic models involving more than six degrees 
of freedom are often generated.  It is planned 
to demonstrate that the methods of this report 
are feasible and economical (in terms of 
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computer time) in handling systems represented 
by many degrees of freedom. 

In the simple examples given, it was as- 
sumed that four, and then three, accelerometer 
measurements were made during the tests. An 
investigation is planned in which it is hoped that 
general criteria for the number and location of 
transducers required for successful application 
of this method can be achieved.  These criteria 
will then serve as a guide for future planning 
of experiments. 

Measurement inaccuracies due to trans- 
ducers and associated circuitry always arise 
due to factors such as manufacturing tolerances 
or noise in the system,  ft is planned to employ 
statistical concepts in the representation of the 
loading am' response measurements obtained 
from experiments. This study should result in 
a "best fit" solution to the dynamic model based 
on test data.  In addition, it is hoped to formu- 
late a criterion for measurement accuracy to 
yield adequate results for revision of the ana- 
lytical model. 
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DIGITAL ANALYSIS OF FATIGUE DAMAGE TO A MULTI- 
MODAL SYSTEM SUBJECTED TO LOGARITHMICALLY 

SWEPT SINUSOIDAL VIBRATION SPECTRA 

Seymour  Fogelson 
The Marquardt Corporation 

Van Nuys, California 

To qualify a component for use in missiles of space vehicles, it is nor- 
mally required that its fatigue strength be demonstrated by test.   Such 
a test generally requires that the component be subjected to a random 
vibration input for a specified time awd to a sinusoidal vibration spec- 
trum that is swept linearly or logarithmically at a given rate.   One of 
the functions of the stress analyst is thus to verify that the component 
has a fatigue life sufficient to pass these tests without failure.   The 
purpose of this paper is to present the analyst with a digital computer 
program that will predict the fatigue damage done to a structure with 
up to six degrees of freedom that is subject to logarithmically swept 
sinusoidal vibration spectra. 

A method for calculating the fatigue damage of structures subjected to 
sinusoidal vibration spectra that are swept logarithmically at a given 
rate was developed and programmed for analysis by digital computer. 
It is assumed that the structure is a damped spring-mass system with 
each mass having three translational and three rotational aegrees of 
freedom.   Only lumped mass structures are considered.   It is further 
assumed that the resonant amplification factors and the overall damp- 
ing ratio of the structure are known. 

Based on this analysis, the resulting digital computer program yields 
the damage accumulated in each mode of response for each axis of ap- 
plied excitation, the total damage accruing for each input axis, and the 
total damage caused by sweeping the spectrum a given number of times. 

Fogelson 

INTRODUCTION 

times these stresses are repeated are there- 
fore readily determined. 

The "allowable" number of times this in- 
duced stress may be repeated is obtained from 
the S-N curve of the material and the resulting 
damage to the structure is directly obtained. 

When a number of sinusoids differing in 
both amplitude and frequency are applied to the 
structure in sequence, the resulting damage is 
the sum of the damage caused by each resulting 
stress level, i.e.. 

When a damped resonator is subjected to a 
sinusoidal excitation of a given amplitude and 
frequency, its response peak acceleration and 
frequency is constant with time.  The stresses 
induced in the structure, which are functions of 
the response accelerations, and the number of 

L*  N. (1) 

according to the Palmgren-Miner hypothesis of 
cumulative damage. 
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It is often required to determine the dam- 
age done to a structi're when a frequency range 
is swept at a given rate.  Within this range the 
magnitude of the applied excitation may remain 
constant for all frequencies or only over speci- 
fied frequency ranges, as shown .n Fig. 1. 
When this range of frequencies is swept, the 
response accelerations and, therefore, stresses 
are now time dependent and Eq. (1) is no longer 
applicable. In short-lived structures, such as 
missiles and space vehicles, the rate of sweep 
is adjusted to provide equal time increments 
for each frequency band [1, p. 24-22]. In this 
type of sweep the frequency varies logarithmi- 
cally with time as shown in Fig. 2. 

MPUT 

item 

Fig.  1.   Input spectrum 

The response of a damped resonator sub- 
jected to a logarithmic swept sinusoidal spec- 
trum was investigated by Grumman Aircraft 
Engineering Corp. [2],  This investigation re- 
sulted in an equation for predicting the number 
of times a specific amplification factor and, 
therefore, stress is exceeded when a spectrum 

such as that shown in Fig. 1 is logarithirically 
swept at a given rate.   This paper describes 
the utilization of that equation, and the resulting 
digital computer program, for predicting the 
fatigue damage in a lumped mass system having 
six degrees of freedom. 

LIST OF SYMBOLS 

b   Slope of material S-N curve 

D  Damage 

An   Number of applied cycles occurring be- 
tween two specified stress levels 

f   Frequency of applied acceleration (cps) 

fn   Natural frequency, simple resonator (cps) 

fr   Natural frequency in mode r, multi- 
modal system (cps) 

F.T Force, torque (lb, in,-lb) 

> Damping ratio 

H Linear or generalized magnification factor 

I Weight moment of inertia (psi) 

K   Percentage of maximum magnification 
factor 

m Mass 

M Generalized weight (lb) 

ü Response acceleration (in./sec2) 

n Number of applied cycles 

LOG t ICPS) 

200 

Fig. 2.    Frequency-time relationship 
for  logarithmic sweep 
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N   Number of allowable cycles from material 
S-N curve 

0   Generalized force (lb, in.-lb), "quality" 
factor = l 2/, single-degree-of-freedom 
system 

R Applied load factor (g) 

S Stress (psi) 

SR Sweep rate (octaves/min) 

T Sweep period (sec/octave) 

w Weight (lb) 

x Applied acceleration (in./sec2) 

P Torsional mode magnification factor 

Subscripts 

i   General index, response coordinate 

j   Input coordinate 

k   General index 

L   Subincremental index 

r   Mode 

Matrix Notation 

[A]T   Transpose of matrix A 

t  J   Diagonal matrix 

FAILURE CRITERIA 

A typical material S-N curve is shown in 
Fig. 3. If a stress of intensity S; is cyclically 
applied n. times, the resulting damage is 

LOG 

Fig. 3.   Typical material S-N curve 

D -   T ni (4) 
i    > 

whore m is the total number of different stress 
intensities applied to the structure. In a piece- 
wise fashion the S-N curve shown in Fig. 3 may 
be expressed as 

where 

log (lyN,) 

loR (S2/S,) 

(5) 

(6) 

By substituting Eq. (S) into Eq. (4), the damage 
is expressed as 

-tm*- (7) 

(2) 

Equation (7) demonstrates that, for a given ma- 
terial, the damage depends on the magnitude of 
the applied stress si and the number of times 
dj that it is applied. According tc test data 
[1, p. 24-12], failure of a multiple-loaded mate- 
rial occurs when 

D > 1/2 . (8) 

and the fatigue margin of safety may be ex- 
pressed as 

M.S.    .  - 1 . (3) 

If the peak stress intensities vary during the 
life of the structure, the damage, according to 
the Miner hypothesis, is cumulative and is ex- 
pressed as 

»•-litt) 
r—y 

fi. £ 
L-A 

Fig. 4.    Stress-time history 
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For clarity, the calculation processes for -le- 
termining S; and ni will be illustrated for a 
single-degree-of-freedom system. 

SING LE-DEGREE-OF-FREEDOM 
SYSTEM 

S»,,       Ss<?N. (17) 

the stress at any nonresonant condition can be 
expressed as 

S.        K. S i i     max (18) 

Determination of Stress 

A resonator, such as shown in Fig. 4, re- 
sponds to an excitation with the acceleration of 

"i   ^  M, (9) 

where H, the magnification factor, is given by 

^   =    {[1     (fi'f^V  +   ^iU    fn)2}'   2   ■ (10) 

x(t)   -    xo sin   .A , (11) 

and U| = response acceleration.  When 

fi fn- (12) 

Eq. (10) reduces to 

Determination of Applied Cycles 

The number of times the stress S; (Eq. 
(18)) is equaled or exceeded was found by 
Grumman [1, p. 24-22] to be 

n;    -    2.041 Tfn   /l-yTlw2)   [l-dKiQ)2]   . 

(19) 

in which T is the sweep period in seconds per 
octave. 

Since ni counts all of the peak stresses 
greater than Sj, it also includes the number of 
times the stress Sk is exceeded (where sk   Sj), 
as illustrated in Fig. 5. 

W = 0. 

When f; | fn, the magnification factor can be 
expressed as 

Hj   = KjO, (13) 

where Ki is some fraction less than unity.  The 
stress on section A-A (Fig. 4) of the mass is 
given by 

S; 
"A-Aui 

AA-A 
(14) 

where 

mA.A   is the mass to the right of section 
A A, and 

AA A   is the cross-sectional area at A-A. 

Substitution of Eqs. (9) and (13) into Eq. (14), 
setting mA.A    wA.A K, yields 

&PSI! 

Fig. 5.   Simple resonator 

To preclude counting sk and all higher 
values of S more than once, the increment be- 
tween n. and nk is used and the number of 
times the peak stress level is between S; and 
Sk is counted.   Thus, the quantity 

An; (20) 

is used in Eq. (7) in lieu of nj.   The stress 
magnitude now used in Eq. (7) is the average of 
S;  and sk, i.e.. 

or 

S.        _il* K. Q ^ 
AA.A 8 

si        SsKi^N 

(15) 

(16) 

where Ss is the stress due to a 1-g loading and 
N is the applied load factor.  If 

-2-(Si + sk). (21) 

If Kk - K; is small enough, the resulting error 
will also be small.  Since the greatest damage 
is done at the higher stress levels, this differ- 
ence should be initially small, e.g., 2.5 percent, 
increased to 10 percent for K - 0.6. 
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INPUT DATA 

H^.k 

INPUT DATA 

H S MAX, Q, N 
♦.. T, MS- 

DEFINE 
HVALUES OF 

•NS = NO. OF SWEEPS 

DETERMINE 

». 
(EO.17) 

DETERMINE 

«>. 
PER SWEEP 

(EQ. <) 

DETERMINE 
O^XDj 

PER SWEEP 

DETERMINE 
TOTAL DAMAGE 
D * D* x NS 

(I) IF S-N DIAGRAM IS NOT A STRAIGHT 
LINE WHEN PLOTTED ON LOG-LOG 
PAPER, THEN ASSUME STRAIGHT UNES 
BETWEEN AVAILABLE DATA POINTS 
AND USE SEVERAL VALVES OF «,,$,,*«. 

Fig. 6.   Flow diagram for single-degree-of-£reedom system 

The procedure to be used to determine the 
damage factor D for a single-degree-of-freedom 
system is outlined in Fig. 6, and will now be 
adapted to a multi-modal system. 

MULTI-MODAL SYSTEM 

Discussion 

This analysis is limited to a lumped mass 
system, supported on lightly damped springs, 
with each mass having three translational and 
three rotational modes of vibration.  This sys- 
tem may be typified by equipment supported at 
various points on a space framework with struc- 
tural damping. A sinusoidal excitation, such as 
shown in Fig. 1, is logarithmically swept and 
applied to the system along each of the three 
orthogonal system axes in succession.  This 
input excites all six modal responses as the 
frequency range of the spectrum is swept, as 
shown in Fig. 7. 

As in the simple resonator, the procedure 
to be followed is (a) determine the applied 
stress intensity; (b) determine the number of 
times each stress intensity is applied; (c) de- 
termine, from the S-N curve, the number of 
times each stress intensity may be applied; and 
(d) compute the damage. 

In a weakly coupled system, the damage 
from each mode must be computed separately 
and then summed. Each of the procedures out- 
lined above will now be discussed in detail. 

Fig. 7.    Response Inertia 
forces and moments 

Determination of Stress Intensities 

Each inertia load shown in Fig. 7 is de- 
rived from the mass properties at its centroid, 
the corresponding amplification factor, and the 
applied excitation.  These loads are expressed 
as 

rt) 
WH      R n j     r 

-\ 

and > . 

Trii    =    V;
rijRr 

Let each load be indexed as 

(22) 
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r.. 
rxj 

'Vl 
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«•yj 

r»J 
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Or» 

«raj 

«Mi 
Orij 

where 

r  is the mode, 

i   is the response coordinate, and 

i   is the input coordinate (j = 1 on x-wds, 
j = 2 on y-axis, and j = 3 on z-axis). 

Similarly, let 

M4 N 

H.^   Hlyj   HIZ.   elxi   0lyj   0lti 

'Jxj 

■3x 

H4xj     H4yj      H4.j      ß4xj      0iyj      '94z) 

"Sxj 

'6x 

'11 

'21 

Mj 

H2yj   H2zj   o2xi   e2yi   elt. 

H3yj      H3zj      eixi      eiy\      0iZi 

H5yj      HS«j      05xj      öSyj      0Szj 

"6yj     H6lj      06xj      ö6y.      ö6lj 

•l2j       • H16j 

■       •       H26j 

'66] 

[Hrijl 

R, 

.   IRJ 

Let the full force matrix be 

K?rijl '- [{Q.ii><Q2ij>--<Q6ii>]T. 

which, from Eq. (22) and the matrices defined 
above is 

N - NNIN •   (23) 

At any point In the structure, the stress induced 
by one of the Qrij forces is 

Srij    =    OriiAj (24) 

where A. is the coefficient relating Srij to 
Qrij as found by stress analysis.  If Eq. (24) is 
written as a matrix, with the columns corre- 
sponding to the response axes and the rows 
corresponding to the modes, 

NT = MM'    (25, 

and using Eq. (23), these stresses may be ex- 
pressed as 

where 

and 

,1,    =   [(SuiHS,,,).-.^)]' 

%i? 
'r2j 

<Srij>    =    < 

^ 

and 
For the nonresonant frequencies, as in Eq. (18), 
Eq. (26) becomes 
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Determination of Applied Cycles 

It is shown by Eq. (19) »hat, for a simple 
resonator, the number of times a stress of in- 
tensity Sk is exceeded is a function of the cor- 
responding magnification factor KkQ.   In a 
multi-degree-of-freedom system, however, the 
maximum magnification factor is H, which is 
different from o = 1/2 y.   Equation (19) is, 
therefore, expressed as 

(28) 
where 

rr = rth modal frequency, and 

SR = sweep rate (octaves/min) = 60/T. 

Equation (28) indicates that for a given mode 
and sweep rate, the stress components Skrij 
will each be exceeded a different number of 
times, depending on the magnitudes of the cor- 
responding magnification factor (KkHrij). 

Consider a two-degree-of-freedom system 
with response directions q, and q2 and the 
corresponding resonant amplification factors in 
mode 1, H,, and K12, for an input in direction 
1, and assume that H,, > H12.   Equation (28) 
indicates that as (KkHri) diminishes, the num- 
ber of times the stress corresponding to 
fKkHri^ is exceeded increases.  Thus 

"k I 1   *   "k12 • 

The number of times the peak stresses fall in 
the intervals 

and 

is given by 

Skll   <  SI1   <  S(k + Ak)ll 

c <   c       < c 
k l 2 12 ( k + Ak ) 1 2 

AnkU    '    "kll  _   n(k + Ak)M 

and 

Since 

and 

Ankl2    =     nkl2   "   n(k+ ( k + Ak ) 1 2 • 

nkll   <   nkl2 

"(ktfik)!!   " n(k»ak)IJ 

Ankll< ^k- 

(29) 

Since Eq. (29) must hold for all values of k, 
it is inferred that, on a time basis, the stress 
sk, 2 is applied to the structure before the stress 
sk,,. This means that the stress Sk,2 is applied 
to the structure a number of times equal to 

AAn, kll AnkI2   '  Ankll (30) 

more than skll.   Also, since Skll and skl2 are 
applied symmetrically about a central frequency, 
Ankl2/2 and AnkI1/2 must occur simultaneously. 
The total stress 

Sk   "   Sk 11 + Sk 12 • 

is thus applied to the structure a number of 
times equal to 

AAnkl2   =  Ank,I (31) 

This reasoning has been extended to cover the 
six-degree-of-freedom problem under consid- 
eration. 

This concept is best illustrated in Fig. 8 
where the dni and si values are chosen arbi- 
trarily. In this figure, Anj/2 is plotted against 
Sj to emphasize the temporal relationship be- 
tween the various response directions. 

It is seen from Fig. 8 that the initial stress 
intensity applied to the structure is S,,. = s, = 
5 ksi, which is appUed (2) (300 - 200) (lO*) » 
200 x 10* times. Since the total stress applied 
to the structure is the sum of the component 
stresses, the stress S( 2) = S, + s4 = 5 + 10 = 
15 ksi is applied to the structure (2)(200 - 150) 
(103) = lOOx 103 times before s, is applied. 
The summation of stress versus cycles contin- 
ues until the maximum stress is reached. This 
method is illustrated in Table 1 which lists the 
total number of applied cycles for each s(L) 
value. 

The stresses, S(Lx, as found in Table 1, 
are then used in Eq. (5) to determine the corre- 
sponding allowable number of cycles, N.. 

Allowable Cycles and Total Damage 
In any interval of stress, where 

SU<-S<  Sk + Ak ■ 

it is assumed that sk may be used as the ref- 
erence stress to determine the allowable number 
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Fig. 8.    Example relationship 
between An.   and S. 

TABI.E  1 
Total Stress vs Number of Applied Cycles* 

Increment, L No. of Applied Cycles, An(L) Total Stress, s(L) (ksi) 

1 

2 

3 

4 

5 

(2) (300-200) (103) = 200X103 

(2) (200-150) (103) = lOOxlO3 

(2) (150 - 100) (103) = 100x103 

(2) (100-50) (lO3) = 100x103 

(2)(50)(103) = 100x103 

5 

10 + 5 =    15 

20+15 =    35 

15 + 25 + 35 =    75 

30 + 75 = 105 

'Sec Fig. 7. 

of cycles, as given in Eq. (5).  By using the sub- 
scripts k, r, and i as before, and introducing 
the subscript L to denote the subincrements as 
illustrated in Table 1, Eq. (5) is written as 

i w 
NkrLj MS, 

(32) 

The total damage per spectrum per sweep is 
then, from Eq. (7), 

3 6      m+1       n / \ 

i*i t'i k'i t*\     '    \   > / 

(33) 

where 

m   is the number of nonresonant stress in- 
tensities. 

n   is the number of subincrements result- 
ing when the component stresses are 
summed, and 

b   is the slope of S-N curve (see Eq. (6)). 

PROGRAMMING 

The calculations indicated in this analysis 
were programmed, in Fortran IV, for the IBM 
7040 digital computer. A flow chart of the pro- 
gram is shown in Fig. 9.  A listing of the main 
program, with the subroutines SORT and SUM, 
is given in Appendix A.  A sample problem 
based on the LEM Propulsion System/Thrust 
Chamber Assembly (PS/TCA) analysis [3] is 
given in Appendix B. 
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Fig. 9.   (a) Fatigue program input-output flow chart, and (b) computation of damage 
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Appendix A 

PROGRAM LISTING 

5 i«C;   i   KbtLSi-fc        ICC«-0v>-0116 FURTRAN  SCUMCE   LISI C9/26/66 
Kh SüO«C£   SI»ltwtM 

0 fIBfIC   1«» 
k PKCCKAK -MllCbt  AIHAlVSIS.C.A.e.C.   rElHCO 
C btfcO   19 *PftlLtlte6 
C AMALVSIS  AK3  PttCu<U»>   «V   S.FCCfcLSCN 
C 

1 bIMENSIUM  SSI».IO).VVkfi,iOI.SBSMi$.10I.NAHt2l«.tOI.N«niOI.Aei6. 
210I.MKE3l«,lOI./ZRI10I.XXNSI10t.XXRI6.10l 

2 OIKfNSICN  *m.HI6.6.JI.FM6I.TIUEim.riUE2UI.IITL£3l«lt 
2 XMI6I.S0Xi6.6I.S0VI«.6ltS0ZI6t6i.AKllTI.$F0XI6.|T,6ltSIUVI6.l7 
3.6l,SF0/l6.1Tt«)tEK(itT«6.6l,EMVIl7,6.6I.EN<(l7.6.6l.0ELENXIIT,6.6 
4).0tLENVII7.e«6l.l>ELEIlZU7.6.6i.««l6I.BI6I.CI6I.SUNMXi6.IT.6I.FS0X 
%U 7,6.61.   SUM*l6. 1?.61,SUflk2l6.17*61.FSOTI 17,6.61 .FSUZI 17.6.61. 
6fc0X(17,6.6l.ROVI17,6.6l.R0Zll7,6.6l.0EL00Xll7.C. .OELDOVI17.61. 
70tLOOZI 17.61.SONOXI61.S0M>V(6I.S0N0ZI61.0011161.XXX161.XMI6I 

3 oinEksiüN stsi.vNist.esimsi 
4 UlPEKSICK XUI.TI*).Zi6l 
b REAL  MCEZ.hRHES 
6         SO REWCS.lOCITlTLEl.kPS.kCS.hMTS 

12 IOC F0RN«fl4A6.2X.3l3i 
C 
C IIILEI*  ASSEMBLY  fcAOE.   UPS«  DO.   OF  PARTS  TC  BE CHECKED.   NCS'NO. 
C OF   LCAu CCMITIOMS.   NPATS   IS THE  NUMBER  OF  DIFFERENT MATERIALS   IN 
C THE  ASSEPBLV 
C 

13 lit  REA0IS.12CIIIIHII.J,KI.J«1.6I.I-1.6I.K>1.3I 
30 120 F0RMATI6F6.3I 

C 
C HII.J.KI'PAGMFICATION FACTOR   IN  NCOE   I.FOR   A RESPONSE   IN OIRfcCTI- 
C Oh J.TO AN  INPUT  LOAD FACTOR   IN OIRECTIOK It 
C 

31 REA0i;.13CMFNIII.1-1.61 
36 130  FORMAT 16E12.61 

C 
C fMI »«NATURAL   FREwLENCV   IK  HCOE   I 
C 

37 i<fcAim,120IIXM|j)>j<1.6l 
C 
C XMIJI.J>I,3   '   ASSEMBLY  DEICHT.   XPIJt.J««.6  «IIXI,IIVI.IIZ I 
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3*c2  i   tCCtLStN 
ISN 

lCC*-CO-0Ufe 
SOURCe   ST«fei>ENT 

FCRIOAk   SCUftCC  Li SI   1402 

112 

S* Re*U().13»>m&(N.M.ft«l.SI.I»I.NH«TSI 
IS RE«UI%tl)iiHVVN|lt.f>.Mi#il.l»I.NDikTSI 
46 RcAül%ii}5llla0SM^.I>ltl««l<i)tM«l,NMATSI 
17 13»  F0RIUTISE12.CI 

C 
C SSN   IS   THE   CKOIMTE  OF   Iht   f«Tt:RI«L   S-k  CURVE 
C VVN   IS   THE   ABSCISS* OF   IHE   PAfERUL   S-N  CUVE 
C ÜSSN  IS  THE   SLCPE   CF   IHE   MtTERIAL   S-N CURVE 
C 

ICO RE«OI5.l40MIMP£2fI.M>I.I«1.4i.MTINPI.NP'l,krSi 
111 1*0  FORMAT(4A6t2X.m 

kAPE2   IS  THE  MAMt  OF   THE   PART  BEING  ANAUIEO.   PAI   IS  THE  NATERIAl 
CODE  NUPBER 

REAOI5.1)OII(ABIJ,kPi,J>l,6i,NP«l.kPSI 
ABIJ.KPI IS THE STRESS IkFlUENC*: COEFFICIENT FC« A RESPONSE IN 
DIRECTION J FOR PART MIMBER NP. 

12)      HfcAUlStlSOIIINAHEill,NCI.1*1.41.22RiNC>.XXNSIKC).NC*l.NCSi 
134   ISO F0RMATI4A6.2X.F6.).2X.F«.9I 

NAHtS IS THE NAME OF THE NCITHI CONDITION BEING CHECKED. 

REA0IS.13CI(UXRII.NCI.I«1.6I«M>1.NCSI 

XXKII.NCI IS THE 1KPUT CF NCOS I OURINC CONCITION NC. 

146 CO 2000 NP«1.NPS 
147 PsMATINP) 
15C      00 155 I'1.4 
151 155 TI?LE2II)«KAPE2II.^PI 
153 CU 160 Ml,5 
154 SIM'SSIK.Ht 
155 VNINIoVVNIN.PI 
116 Itf   BSNINi*BBSNIN,M) 
16C 00   165   J<1.6 

133 

34C^  I   ffCttSCN 
UN 

1C04-00-0136 
SOURCE   SIATEPENT 

FORTRAN  SCURCE   LIST   3402 09/26/66 

161 165   «IJI'ABIJ.KPI 
163 üO   1UU0 NC'l.NCS 
U4 00   167   1 = 1.4 
165 167   TITLE3II>«NAHE3II.KCi 
167      2R*ZZRINCI 
170 XNS'XXNSINCI 
171 00   170   l«1.6 
172 170  XRIII'XXRII.NCJ 
174 00   180   I-1.6 
175 OC   180  J-1.6 
176 SDXII.JI«XR(IMH(I,Jtll*AIJI*XP(JI 
177 S0YII.JMXRIII*HII.J.2I*AIJI«XMIJI 
2CC IdC   S02II.JI«XRn!*H(I.J.3l*A(Jt«XMIJI 

C     SCX.SOY.SUZ ARE PART STRESSES FOR LOACING IN X.Y.Z AXES ÜIRECTI0NS 
C 
C AK«PERCENT  CF   ("AXIPUP   STRESS  LEVEL 
C 

2C3 AMIIM.C 
2C4 00   192  N«2.5 
205 192   AK|NI«AMN-1I-0.025 
2C7 00   194   N«6.13 
<10 IS4  AKINI«AKIN-1I-0.05C 
212 OC 1V6 N>14,17 
213 196 AKiN|«AKU-li-C.lC 
215      00 200 J«l.t 
<U       00 200 IM.6 
ill DO 200 N»1.17 

C 
C SFOX.SFCV.fcTC.AHE   MAX. STRESSES.   FOR  X.Y.ANC   I   LOADING.TIMES   AX 
r 

221 
ill 

SFOX(ItK,ji>AK(M*SCXII.JI 
SFOYII.N.JI-AKINMSOYII.J) 

2CC   SFU(I.fwJl«AMM«sa«I.JI 

ENX.CNY.EN; AMt THE APPLIED CYCLES FUh X.Y.ANC 2-AXES LOADING.SUB- 
SCKIi'TS N'PERCENr LOADING I<MOUE J*fttSPONSt AXIS. I. t.. l^X-TRANSLA- 
T10N  2«V-T«ANSLAriCN   5»Y-AXIS  ROTATIQS   6«Z-AXIS   ROTATION 
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3*C<   2   FCttLSCK 
ISN 

1CC*-00-OIJ6 
SOUftLt   SIATiHENT 

rCHlKAK   SCLRCE   (.IST   J402 09/26/66 

?2e OC   ICO   I»lt6 
ill «JixlU»Ui.«»FMI)»»KS//ft 
2)0 SO   300  J«l,6 
231 CQ   300  K>l.t? 
23? i-HX '«KiKI*Hll,J,t) 
233 FHV <*K(kl*hl I.J,2I 
23« ^H2 «M(MI*Hll.J.3l 
3ii H-«»<!Sl^nt).lt.UC»GO  TC  225 
240 tNTIN,l,J»-!i)iX(I l»SChHl.0-SCt«I(l.00***»(l.0-1.0/lfhr»»2»)n 
241 CC   IC  230 
242 225 tMrlh.l.JIOXXIII 
243 23C   II-UBSIFH2I.IE.I.0ICO  TC  250 
246 EN2lk,I,JI'XXXIll*SU)tT(1.0-S:Kril.00444*II.C-1.0/lf-H2**2ll)l 
247 CC   TC 260 
250 25C  ENZIN.I.JI'XIXIII 
251 260   IFUbSlfhXI.LE.l.CiGl)   TC  270 
<%4 EI«XIN,I,JI>XXXin*SgRTIl.O-S>.KTI1.0O444*ll.0-|.O/IFHX«*2nil 
255 GO   TO  300 
kit 27C   EKXlk.I.JI'XXXIII 
257 3C0 CCMINUE 

C 
C    UtLEhXIN.I.JI'INCREfEKT OF ENX BETkEEM ft PERCEftT AftO 1N-1) PERCENT 

263 CO 310 IM.6 
264 00 310 J«l,6 
265 OELEkXIl.l.JI'ENXll.l.Jl 
266 Utltkril.l.JI'fcNYIl.l.JI 
267 i)ELEK2il.I.JI*ENZIl.l.JI 
270 00   310  K'2.17 
/7I utLEKXCK.I.Jl'EftXIN.I.JI-trNXIft-I.I.JI 
772 OELEhVlft.l.JI'ENVIN.I.Ji-EKYIft-l.l.JI 
27J        310  OELEhZIK.l.JI*EN2IK.I,Jl-EN2IN-l.l,Jl 

C 
C SUHNX'TCTAL   hC.   CF   TIPES   *   PAHTtCULAR   STRESS   LEVEL   IS   APPLIED  DUE 
C LOAÜIKG  ON   X-AXIS,AI   K   I   CF   MAX.,IN   NCOi   I. 
C FSCX«STRESS   LtVtL   APPLIEC   SLiPftX   TIMES  CUE   TC   X-LCAulNt> 
C 

3402 FCtELSC« 1004-00-0130 
ISN SOURCc   STAItHtNT 

ill UO   322   IM.6 
300 CC   322   KM.6 
301 ÖÜ   322  KM.6 
302 SLPNXlK.h.l)<U.0 
30 3 SüPi*¥ix,N,n»o.o 
3C4 SUPft2<K.ft.ll<0.0 
305 FSÜXIN.K.II'C.O 
306 FSUVIN.K.D'O.O 
307 FSüZIN.K.II'O.O 
210 322 CLNTIME 
314 OC   400  ft<l.l7 
J15 OC   400   Mi.6 
316 DC   320  JM.6 
3U AAIJ)«OkLENXlft.I,J) 
i20 320 BIJIMFOXI I.lk.JI 
322 CALL   SCRTIAA.B.fcl 
3i3 CALL   SUN|AA.e.C.6.JX X.Y.Z) 
3i4 OC   340   K'l.JX 
325 bUFNX(H,N,It'XIKI 
326 FSOXIN.K.II'YIK) 
327 34C CCNTINUE 
331 00   350   J*l,6 
332 AA(JI>OELENYlN.I,Ji 
333 350 äUl'SFOYlI.K.J) 
335 CALL   SCHTIAA.t>.6l 
336 CALL   SUMIAA.H.C.ö.JY X.Y.2I 
337 UU   37U   KM.JY 
J4C SCHNYIK.N.D'XIK) 
541 FSOYIN.K.II'YIKI 
342 37C CCNTIMLE 
344 OC   380   JM.6 
345 AA(J)'UELbNm.l.J) 
34b 360 BIJ» = SF02II.K..JI 
ibC CALL   SCrtrUA.e.bl 
)bl LALL   S0H(AA,ä.C.6.J2< X.Y.I) 
352 OC    m   KM,J2 
Ji3 Sl-fNifK.N.Il'KUl 
354 FSWIN.K.II'VtKI 

FL'KTRAN   SOURCE   LIST   3402 09/26/66 
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J<iW  i   l^fCtliCN        ICC*-J(J-01i6 fChlKAN  SCURCE   11ST   3*02 09/?6/*« 
ISN SUCACt   SIAIi^tM 

?ii 3SS  CONIINtE 
JSr 4JC  CLNTINUf 

C 
t NUXIN.K.I I'MKlPftCCM.   CF   ALLCMAdlt   CVCLtS  ■»-EN   X-MIS   IS   LUAOtO.At 
C N   PEftCEM   Lu«OING   CCKRE SPCKUINb   TO   THE   KCIHI   STRESS   LtVfl.IN   «CUf 
C I. 
C 

3t? DC   6CC   1-1,6 
it} DC   6CC  N'1,17 
3*4 >iO   S30   K'1,6 
»45 IFIABSifSOMN.K.ni.Lf.SIIIICL   TO  «20 
3TC ROXIK,R,n<l.0/VKIll 
311 OC   TC  «30 
37? <>;C   IEMHSIFSLiXIK.ll,III.LI.SI3liCC   TC  «21 
it'» KOXIN.K,! I<IIF>ÜXIN.K,||/SI2II**BSK(1II/Vftl2l 
376 tC   TC  «30 
377 «<l   IFIAl»SiFSUXIN.K,Ilt.LT.SI«l)liC   TC  «22 
«02 MUXlN.K.I I«IIFS0X|N,K.I|/SI3II**6SM3H/VNI3I 
«C3 CC   »0  «30 
«0« «22   IFIABSIFSOXIK.K.III.IT.SISIIGC   TC   «2% 
«0 7 KOXl N.K.I 1*1 fFSUXIN,K,ll/SI«ll**aSKI«n/VN(«l 
«10 CC  TC  «30 
«II «25 tCDxIN.R.II'O.O 
«12 «30  CCMINUE 
«1« 00  «SO  K'1,6 
«IS IFIAaSIFSOVIN.K.III.LT.SIlllCC   TC  ««0 
«2U «OtIN.K.I »«1.0/VNUI 
«21 GC   TO  «50 
«22 ««0   l'l*dSIFS0VIN.K,lll.lT.SI3llSC  TC  ««I 
«25 RUrlN,K.II<l|FS0YlN.K.II/SI2l)*«aSMlil/VNI2l 
«26 CO  TC  «50 
«27 ««1   IrlAlJSIFSbVIN.K,l)I.Ll.SI«IICC   (C  ««2 
«32 «l)T(N,K,Il«UFSOY(N,K,l J/SI3n»»BiM3n/VNl:J. 
«33 CO   TC  «50 
«J« ««2   IMAdSIFSuriN.K.lM.LT.SISilGC 'TC  ««5 
«37 RUH KtK.I ><((FSOr<K.K.II/SI«lt**SSNI«li/VNI«l 
««C GC  TC  «50 
««1 ««5  ftuTIN.K.It'O.C 

3«0<   2   FCCtLSCN        100«-00-Ol36 FCRTRAN   SOURCE   LIST   3«02 09/26/66 
ISN SCURLt   STATEMENT 

««2 «50  CONTINUE 
««« DC   «70   K'1,6 
««5 IHABSIFSbiZIN.K.IIJ.LT.SmiGC  TÜ  «60 
«50 R0ZiN.K,l)>1.0/VN<ll 
«51 GC   TC  «70 
«52 «60   IFiABSIFS02<N.K.Itl.LT.SI3IIGO   TO   «61 
«55 Rü2IN,K,I)'l<FS0Z(N.K.II/SI2ll**BSMIil/VNI2l 
«5b GO  TC  «70 
«57 «61   IFIABSIFSU2lN.KtIII.LT.SI«IIGC   TC  «62 
«62 R0Z(N.K.II*MFSOZIN,K.II/$l3ll**BSM3li/VNt3l 
«63 CC  TO «7C 
«6« «62   IF(A9SIFS02IN,K,III.LT.SISHC0  TO  «65 
«67 RDZIN.K.n«! (FSUZU.K. ! I/S{«l }**BSN(«I }/VN(«l 
«7C GC  TO  «70 
«71 «65  RDZIN,K,ll<0.0 
«72 «7C  CLNTINUE 
«7« 60C  CONTINUE 

C 
C 0ELO0XIK,)TCT«L   PART   CAPACE   FCM   X-AXIS  LOADING.AT  N  PfcRCtNI  OF 
C MCüE   I. 
C 

«77 CU 650   1*1,6 
500 JO  650 N«1.I7 
5C1 0ELO0XIN,U<C.O 
5C2 0£LOOriN,II>0.0 
5C3 LELJUZIN,II«0.0 
5t« DO  650  K>1,6 
5C5 OELDDX(N.II«CELOOXIN,II*ROX|N.K,ll*SUf<NXIK,K.II 
5C6 OELODrlN.II>OELUOy(N.II«RurIN,K,ll*SUmviK.N.II 
SC7 0£LOCZ(N.I)>CELOOZIN.II«ROZtK.K,ll*SUnNZIK.N.I) 
510 650  CLNTINUE 

C 
C SUMUXIII'TOTAL   PART   DAMAGE   IN MODE   1   FOR   X-AXIS   LOADING. 
C 

51« CO  675   I>1,6 
515 SuMUXdl'O.O 
*16 SUMDY(ll«0.0 
517 SOMOZIII'O.O 
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3*^  2  fXCtLSCft        lC0*-0ü-ülJ6 FC*1l«Ah  SOURCE   LISI   1*02                                             09'.6/66 
IS». SUUKCE   SIATkKENI 

5iC JC  bTi  Ml.IT 
£21 SOMOC. i I* &ON0KI II •GlL00lllt.il 
bdi SOMDViII'&OPCYill*OfLOOTIK.11 
Si 3 SUNJZ III« St/HCZ I i I «Utl. '.-'m , II 
52* tT5 COMIKtt 

c 
C OtX«   ICTAL   PART   C«X««.E   VUt   TC   X-AXIS   ICALINC.     UHKINC   THt   HOUAl 
C UAHAbE. 
C 

52? COx-U.O 
530 UOY>0.0 
531 CD2»0.0 
532 00   700   l»l,4 
533 CCX<C0X«SOMOXIII 
53* CCV«dOV*SO*>OYIIi 
575 002'OüZ*SOHUZil} 
53t. 7J0  CLKflKUt 

C 
C COt'lli« TOTAL PART CAHACE PER MODE, SUPHINb THE LCAO AXIS DAMAGE. 
C 

:*C UC 710 i<1.6 
5*1 OOHdl'C.O 
5*2 710 CCMTINUE 
5** DC 720 1-1.6 
5*5 OCMII l«OOMI I t»SOPC«l I MSCMCTII l*S0M02111 
5*6 720 CONTINUE 

C 
C DO« TOTAL OF ALL PART CAPAGE OUE TC SPECTRUM. 
C 

550 O0'OUX*0OV*I)CZ 
551 ■RITEI6.800ITIUEI.TITLE2 
552 dUC   FGRMAIIlHl.*7X,*At/51X,16HFATIbUE   ANALVSIS/*7X,*A6/52X.1*HFATIGUE 

2 DAMAGE   /t 
553 ■RITEi6.l'C5WR.4NS 
55* 805  FüRMATMX.ilHSMEEP  RATE*.F5.2.iax. 3HNUHBER   OF   SWEEPS   (UP   AHO   OOMN 

2)«>F5.2   /I 
555 ■•RITEI6.lilC>TITLE3.(PC0E.PC0E'1.6l 
562 810  FUMMATI/*TXt*A6///57X,*hPC0t/3X,7HLCAOING/*X.*HAXlS.6I12.1lX.)HSUM 

3*C2   2   »^CtLStK        ICC*-CO-01S6 FCRTKAK   SCliRCE   LIST   3*02                                                09/26/66 
ISK SOURCE   STATEMENT 

21 
St3 MRITtl6.e2ül<ISOM0Xlll.l<l,6).0OXI 
57* 820   FORMAT(6X.lHX,TX.7E12.3   ft 
5 75 aKlTCI6.830MISOP0YII I . I < I .61 .OOYI 
tC6 tJO   >:0MM*TI6X.1HY>7X.7E12.3   /I 
tC7 MR ITE16.8*0111SOPOlI It.'':.^■,0011 
62C 8*0   FOHP*II6»,lM7,7X,7El2.i   /) 
621 «t«ITtl6,ä50M«UüK( 11, l»l ,o) ,ÜC) 
632 b50 F0RM*TI/5X.3HSUP.6X,7Et2.i/lH-l 
633 1000 CONTINUE 
635 2CCC CONTINUE 
637 GO TO 50 
6*C ENO 

i<.C2   2   FfttLScN ICC*-0C-0136                                          FCK 
ISN SOLRCE   SIATfcPENT 

0 »ISFTC   SCHT 
SUSMCUTINE    SCRUA.e.NI 
UIPENSICN   Al 11.Bill 
OC   1000   1*2.N 
JL   1000   J«2.I 
JJ=I*2-J 
IFIAUJ-II.ÜE.AIJJII   GC   TC    1000 
AOUMAUJI 
BCUP'BIJJi 
AIJJI'AIJJ-II 
BIJJt'BIJJ-ll 
»( JJ-1I«ADUM 
eiJJ-l»=30UM 

ICüO CCNTINUE 
KETUMN 
ENO 

FCKTHAN SCURCE LIST C9/26/66 
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I'.C^;   2   fLULSCr. 
ISN 

lCC*-00-01i6 
bCuMCE   SiAftFfM 

rCATHAN   SCL^Ct   lIST C4/?6/66 

0 »!t:l-lt   SLH 
1 SLSButrUt   SLH(»,rt,C.»,JC.<,r,2» 
^ JIKEKSICN «iii.eiii.ciii.Jiin.nii./iii 
3 MIMAIU 
<• T(ii»B(n 
5 /lll'CIII 
6 JC»I 
7 DC   2000   X'l.h 

IC IFI«ll-II.EC.«tIII   CC   IC   1000 
U JC«JC«1 
14 MJCi'AIII 
\b riJL)«tijc-ll*dlli 
U ZIJC)'/IJC-1I*CIII 
17 GC   IC  2000 
;c icco viJU'ViJCMBni 
i\ iiJC»«2tJCI*C(ll 
t7 2000 CCMIM/E 
2« HEIUKN 
25 tKD 

IBM 7040 INPUT FORM - 80 COLUMN 
rO«M TMC tMt   •€«   >-• 

psar ICKTCwilO« BIW: [»SOT  

J_ 1    } .^   } 
Lota. -sn 

12 3 « 5t » iVun 17U14B Kim ii0);i2?z»2»me»3i33»zs ^p^gjS^^^^^^^S^^^Mi^^^^OT nv^iOrMifk 

1(111 
TITLE I 

i i i i i 
Hd.l.l)      H(I.3,1) 
t    1     '    '     i    I     I    1    t    i    ■*    1    1    t  - 

MPS  MCS ?s 
Md.«, I) 
i i i i i 

i i i i i i i i i ^i_' 

i i i i i i 

i i i i i i 

-L  1   I    1    I    1    I 

I   I   »   t   t   I   I   A   I i   i    I   i   i    t    I    1    t 

X   1    I    I    I    t 

■■'■■' I    1    1    I    I    I    I    I    I    * 
II CARDS. 

i i i i « i i i i < i i 
, AMPLIFICATION FACTORS 

i i i i i > i i i i i i i i i i i i i i i i 

i i i i i i i i i i I i i i i i i I i i I i i i < i i i i i i 
H(«,1.3) H(4,2,3) H(«,3,3) M(6.4,3) 

I I I 
H (6,5,3) 
I I I i I. 

H (6,6,3) 
i i i t i i i i i | | ■'■■■■ ' 

i i I i i i i i i 
FK(I) FM(2) 

« ' * ■ ■ i ■ ' ' ' ' 

mm 
i > i 11 

FMM) fHd) FN(6) 

WEICHT •'. •'. •'., WEICHT t WEIGHT MOMENTS OF INERTIAS 
I i  I  r I i i i 1 I I I 1 I I 1 I ■  ' ' ■  i  ' '  ' 

SSd.I) 
 iiii 

ssa.i) 
■ 11111 11 

»(3.1) 
'■ii' 

T i i ) i 

SS(4,t) 
i i i i i i i i i i 

SS(5,I) 
i i II i i i 

NMATS CARDS 
i i I i i i I i i i 1 J-t- 

i i ■ i i i i i i i i i, i ,i t i i i ■ i ' ' ' i ' 
OROtNATES OF S-N 

■ i i I I i i i 
SSd.M) SSQ.M) 

i i i 
SS(3,M) 

i i i 1 i 1 i i i 
SS(4.M) 

i  ' i i i  i i ' ' ' ' 
SS(5,Mi 

I I i i i i i 
CURVES 

i i i I i i ' i i ' i ' i i 
WH(I,)) 

i I I I i I i i I I i i I I i I i ■ ' i  ' ' i ' i i i i r-Li i i i i 
WN(S,J) 

'■■'■■ | 

i i i i i i i i ■ ' ' i i ' i i ' I I I I i i i i i i t, 

NM/TS CARDS 
i-i     I I I 

AISCISSAS 0 
I I 1 I I 

S-N CURVES 
■ ■■■■'■ | ■ 

-J-I i i i i i i i i i i-t i i I I | ' | i | | ' ' 
WN (5,M) 

I I I I 1 I I 
CURVES 
■■■■■■ ■ '■'■■ii' 

MSN (1,1) 

-i-i- 

■ i ■ ■ ■ i ■ ■ ■ ■ i I I I i i. i I I I 1 I 
(5.1) 

I i i i i i I 
NMATS CARDS 
■■■■■■ 

'''■■i'''' i i i I i i i i -t  I    I    t    4    I   i 
SLOPES OF 
Mil 

a_i-i-l I i i I I 
m 

11 11 i i 
C>SN(I,M) 

■'■■'■■'■ I I 1 I I I > I I I I 
MSN(S.M) 

I i i i I. I I 
CURVES 

i I I i i i ■ ■■■■■'■■ 
NAME 2 

IIII 
MAT NFS CARDS 

I I I i I i I i i 
At d.D 
i i i I i i i I i I I i.i I I I  I  I I I I I 1 I I i i I I I i 

■  ' '  ■*' ' ' 

Al'AD 
■ i > i i i 

I NFS CARDS 
Ii I i i i I 

i i i i i i i i i i '''''■■I'' i I i i i i x 
STRESS 

At(I.NF) 
-i i i i i i i i i i i I i i i I 

AB{6, MF) COEFF. 
-LJ   I   I   I   I   I   I   I 

NAME 3(1) 
* '  ■ '  ■ '  i i ' ' ' ' i i t i i i i 

IZR(l) 
i i i i i 

XXNSd) 
i 1 1.1 I. i I I i i i I i I i  i 

■ i ■ ^ I ' ' ' | ■ | ■ ■ | | | ' 
NCS CARDS 
■  * ■ ' I ■  ■ ■ ■ | |  ' ■  | ■  ■■■■■■■  | 

NAME3(NC) 
■ ' ■ ■ ■ ■ | ■ ■ ■ ■ ■ 

7.ZR(NC) XXNS (NC) 
I   I   I   I   I   1"!   I   I   I   I  I I  I  I   I   I  I   I ''''■'''■ 

■   i   i   i   i   '''''''''''■'■'''''■'■'''''   i   '   ■   '■■   i   '''■   i   ''   '   i 

i'   ''■'   i  ''■■''■'■■'■'■■  ■''ll   '''''■'  i   ''■   i   i  ''   i   ''  I   '   ' 

1  >  I   I   I  I   I 

I   II. 

I   I  I  I   I   I   I   I   I 

I   I  I  I  IJ, XJ_ JmimLJJL. 
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IM 7040 INPUT FORM • 80 COLUMN 

EU US.             'M ESa                                              !«•«                                                                  Jl.»l»i.6«         jBi»T.                 ]».ui 

i      2      o,     2 

1 ? 3 4 5-t 7 U 9t! iroi41b»17MlWn2?2»B»77Jia(MI3n«»iniP«««0<«<MM7««^                                                                              ^7»)« | 

1           "•«.!)         | XX« (6.1) 
i  i  ,  i i i i i i i » X J i.   i.  J-JL    t    i     j 

NC CAIDS      A                                         i    IMPUT LOADING 

1           XKI(I.NC) XXR («.MC) 
.     i     I     1    i     ■     ■     1     1     1     1 >   4   &   i   t   i 

1     t     1     1     |     1     1 

*    1    .............    1    ...........     1     .     .     .     .     1     ^     |     .     1    !     .     1     1     1     I            1     1     1     .     j     |     |     !     |     I     '     >     •     1     >     •     •     ■     >    ■     > 

,    '    1     1    i     •    ■     •     •    •    1     ■     >     .     ■    1     1    1    1    .     .     1     1     1     .     .     .     ■     1     1     i     1     1     1     •    1     1     i     1     1     j     1     :     ^     f l     |    |     l     l     l     l     I     i     |     |     .     1     .     >     >     ■     i     •     <     >     > 

^  ''''*''''   1  '*      i  ■   '■*'''''   '   i-i-i-i-i i i 1 i i i i 1 i   i   i  i  i  i  t   i   i   i  i i   i  i i  i   i i i i i 1 i 1 J-i   1   I   1   I   1   I   1 

Appendix B 

EXAMPLE   PROBLEM 

This analysis was conducted on the LEM 
PS/TCA, Reaction Control System aft engine 
support structure.  In this structure, static 
stress analysis indicated that the most highly 
stressed points were on adjacent pieces of 
structure loaded simultaneously by a single 
bolt.  While the stress of one of the parts was 
only 94 percent of the stress in the other part, 
they were of different materials and, therefore, 
both were analyzed.  A schematic of this as- 
sembly, with the critical loading, is shown in 
Fig. B-l. 

MAGNIFICATION FACTORS 

Since the inpvit is applied sequentially along 
each of the three reference axes, three matrices 

of magnification factors result, one for each 
axis of loading: 

X-Axis Loading 

+2.£9 -0.52 +0.46 -0.33 -0.13 -0.09 

1.10 -1.17    0.76    0.73 -1.12 -0.74 

+1.65 +2.40 -2.77 -0.63 +0.36 +0.31 

2.70 -0.81 1.71 0.25 0.99 0.63 

+0.31 -0.15 -0.14  - +0.04 -0.03 

0.21 0.12 0.07  - 0.03 -0.05 

!Hrili 
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■J TUK (221* TtSlO) 

Fig. B-l.   Schematic of LEM 
PS/TCA cluster mount 

Y-Axis Loading 

f«ri2J   = 

-0.52    2.43 -1.86    1.42    0.07    0.08 

-1.17 +1.02 -0.20 -0'.38 +0.12 +0.08 

+2.40 +4.32 -4.84 -1.10 +0.20 +0.33 

-0.80 +0.50 -1.79 -0.18 -0.30 -0.20 

-0.13    6.37 6.03 -0.11 -0.66   0.68 

0.10   2.87 1.88 -0.10   0.60 -0.99 

Z-Axis Loading 

[H ri3J 

+0.46 -1.86 +2.24 -1.32 -0.06 -0.07 

0.76 -0.20    1.18   0.37 -0.08 -0.05 

-2.77 -4.85    5.84    1.29 -0.24 -0.38 

1.72 -1.79    1.46   0.29 0.66   0.43 

-0.13 6.03    5.70 -0.11 -0.63    0.65 

0.06 1.88    1.60 -0.06 0.35 -0.58 

NATURAL FREQUENCIES 

The six calculated modal frequencies are 
listed below. 

Mode Fn (cps) Mode Fn (cps) 

1 57.1 4 113.3 

2 69.6 5 173.6 

3 96.7 6 200.8 

MASS MATRIX 

In this problem, the input spectra are in 
units of g.   The mass matrix is, therefore, 
written in terms of the cluster weight and 
weight moments of inertia: 

W =   25 lb, 

lx = 318 psi, 

ly = 592 psi, and 

and 

N 

lz = 591 psi. 

25 

25 

25 

318 

592 

591 
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STRESS COEFFICIENT MATRIX 

A static stress analysis yielded the follow- 
ing stress coefficient matrices for the two parts 
(see Eq. (26)): 

-15 Spacer 

Ü.1339 

•14.6 

0.3842 

18.86 

1.653 

2.423 

-3 Tube 

0.1258 

-13.71 

0.3608 

17.71 

1.55 

2.275 

INPUT SPECTRA 

Three sinusoidal spectra, shown in Fig. 
B-2, are applied sequentially in x-, y-, and 
z-axis directions.  These spectra are logarith- 
mically swept at the rates, and for the number 
of times, shown in Table B-l. 

LOAD 
FACTOR     9- 

(6-Sl 

u 
MFOCMCf 

—I 1 -T—■    1           t           I 
LSP llO-iaMNMOiKNT J. TMU VI 

i          i          i          i          i          l 

1 i 
i   t   i 

UtMCtt MO MMT . 

/I    i 
•'" 

(/ 
tr* CIHJCMT 

£fc0 / / 

i s s 
! / > 

s 
/ / r , > <r 

n f s 
i / 

IUUM EXCUUMW 
1       1 

7 
■ a 100 200           300 

ricpsi 
400 900 

Fig. B-2.   Sinusoidally applied 
load factors  qualification test 

TABLE B-l 

Spec- 
trum Condition 

Sweep 
Rate 

(octaves/ 
min) 

No. of 
Sweeps 
Up and 
Down 

1 

2 

3 

Launch and boost 

Space flight 

Lunar excursion 

3 

1.5 

0.5 

2 

2 

2 

DATA SHEETS 

Completed data input sheets are shown In 
Fig. B-3. 

RESULTS 

The damage resulting from the three load- 
ing conditions for the -15 spacer and the -3 tube 
are shown in the following printout.  The total 
damage for the -3 tube is 

D = 0.01925 + 0.00104 + 0.00002 = 0.02031, 

and for the -15 spacer, 

D = 0.04758 + 0.00197 + 0.00004 = 0.04959. 

I 
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IBM 7040 INPUT FORM    80 COLUMN 
'txm THC IM*   • 

ZiOZ 
Tsram—  s.WiLse* 

WmSBtm          BfPT. —pm 1 

iij?J|4S«|7l ,^^i^^#M^# 

ten rs/ru A/r CL^T^ 2.3..^  i   i   I-J  ■  i   i J-l J j 
/ 

.2..^. rP.-Fl. P.-Xk rP..>y rP..*\ rfisfil  i  i.i. i X-i. 
1 

.i..fl.. r.i.'J.l. J0..U. . A.P.I -I...I1 rA'.l*  •. • i. 111 J ■  .! 

.l..jtS.. ZA . -2...77. rA.Al. A.M . /-A«  1_J   i   i   1   1   1  1  1   1 i  i   a   i  I   i i_u 
< 

Z..7 . rt..Mi.. J..M . A.M.. A-M . P,-t?  1   i   i   1   1   J   I   1   i 1 1 I1 

P..XK rfi.JZ r*..M A-M rA'fi.1  ■   i   ii 1 ..< 
A-zi.. A.'.*.. fi.-P.l *.-*?. r.*, *fi  i   i   i   i   I   . 1 .7 
-P.-??.. 2...V. rJ.'A'.. J.'M . A-Al. P..P*  i   ■   i   a   f   | 1 J 
-J.-JX . J.P.'. rP.-t.. rP.-M . A-M . P,.pe.  ,,,,., 1 

t..Al. .f •.« -f...«*. r./.-y... .^... PM  .'." 
^.Ä .. Ä./. .-/.-.^ r^..^ rA.f . .-?.-.*  J-J-J • i i i i i 1 ,/,! 
^•.'.3.. .f ..i7.. /...^. -<•./.'. .^../A . PsM  i   i   i   i   ■   i   ill 1 .'.2 

PsJA. Ml. J.'M r*,.'... P.-A . rPstt  <   «  U!   1    •   ■    (   i 1 ./^ 
A-M. rL-BP.. l-X*. rJ..?* rA.PA rP.-fi.l  I   I   i   i   i   I   I   1   i 1   1   1   I   I   1 1 I'I4 

Ä..7>. rP..M . J,M,. fi.-M rP.-P* rP.-P/.  1 ■M 
'.1:7.1 r.i.fr.. f.-A*.. J.-tf. rP.-tf. rP.-M  .'.f 
J.-M ri...V.. J,.*.'.. P..M.. P.M . P,..V.  ,/,> 
'P.'J*. ß.-PA . ?.'?.». rP.-JJ. rP.-t?.. f.-tf...... Li,.,, iV 
ASA . .K'ßß., JAP. rP.-PA . P.-}?. .'.'.'&.  i   i   i   i   i   i   i   i   i 1 .M 
^•./. M-A ^.7. /./.J...5, ... JXK-k  ^ cp.3y i . .V 
Z*..jl>..?JjB..p.fK.fi.™j.-A. ,  1    i    1     1     L    1 i^1 

t.'A.... W?.'*.\... fMt.'P +P*t..J.. fP<\ I'fi.. . . fPfl 1 .V 
4.-P. .... .^, .5/*^ ,. **. t.'7 /*< Z-JA _i J_- .^, I-?.* . . .^. 
?,**.... tph },A .... fp?. J,P. m. J,P.. HP. J.-P.. . . tPf. i I»]'' 

l.ff6l,,tp>l'A....m.X.P....W.t.A. ,^7, J.-P.. . , M LJ_ UJL 

Fig. B-3(a).    Completed data input sheet» 
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IBM 7040 INPUT FORM - 80 COLUMN 
ramm IMC iwt •»». >-M 
bU'UK mum fsiBi cmsiias  SIWT: FIST' 

j      2     or 
^n 4 S|IM .*w#s# *m¥m¥m*m*wm^m*mm'*< ̂k^f^mp^VK,%p n n i 

1 Ä-fAK .... ..Z-fAi....... «.-.tV... 1^. 7^2 
i i i i j i i * > i i i i 

^. o 

?.ßU 7..Ä^  .. M.W. .. i^.^ir O.O 

ris sfAte.*..    . l 

 '.sjyßß.  2 
i   i   l   |   i   i   i    i   i    i   i ■ i i i j i i i i t i i i 1   1   1   1   1   1   1   1   1   1   1 

'W. -U.-t  .. .-Attf ... ... M-erx.., .,^,^^7.., , « . .2 ^/  
. .U5Ä -U..7.J  .. ..HPA .,. .., 17...7U .,, . .i^a... M.iZl VA  
. . . MuACH AW flA'tf. .,  >-A. . ■ . .2...0  

. .5^.^ KM*?......  i.'?.. ... ^'  1     1    1     i     1    1    1    1     1     1     i 

i   i   i tm* mmw....  ^.-.f. ... .?•*  
?t'A ' Z'X  ..A'5:  ...^..r,  , . ,3,.,*  l s , ,3,. X.  
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DISCUSSION 

Mr. Holland (Allied Research Associate s): 
Fatigue damage is sensitive to the response 
amplitude, and you have determined damping 
analytically. Have you tried to find the effect 
different values derived from the damping ma- 
trix have on the cumulative fatigue damage? 

Mr. Fogelson: The greater the damping, 
of course, the lower would be the applied stress 
and, therefore, the damage would be less. 

Mr. Holland: How sensitive is it to this 
matrix? Since it is analytically determined, 
would small errors create a large difference in 
response? 

Mr. Fogelson: We haven't found that. We 
aoplied various damping ratios differing by as 
much as 10 percent, and the difference was less 
than 10 percent, less thai, a 1:1 relationship. 

Mr. Holland: What is your damping ratio? 

Mr. Fogelson: We use 10 percent. 

Mr. Holland: What is the critical damping; 
is it modal damping? 

Mr. Fogelson: Yes. 

Mr. Bratkowski (Westinghouse Research 
Laboratories): How were you measuring modal 
damping? This has been a problem for most 
dynamicists in the past, but it seems that you 
have solved it. 

Mf. Fogelson: I haven't solved the prob- 
lem. The program has been used only in the 
design and analysis stage in which we have as- 
sumed a certain amount of modal damping. We 
have run a test on the system, but the data are 
not yet reduced. 

Mr. Bratkowski: How have you correlated 
the results of your theory and experimental re- 
sults as far as damage is concerned ? 

Mr. Fogelson:  That, too, is waiting for 
completion of the test now under way. 

Mr. DiTaranto (PMC Colleges): Why were 
you using each of the three stresses at a point 
individually, instead of the combined stresses? 

Mr. Fogelson: I did not make myself clear. 
I do combine the stresses. There are six stress 

components, one for each response direction. 
But I combine them based on the number of 
times each of these stress levels is applied. 
The stress level with the greatest number of 
cycles is used only for the number of cycles 
that it is applied minus the number of cycles 
that the next greatest stress is applied. Then 
the next two stresses are added together to get 
a new total stress which is applied only for the 
difference in the number of times these stresses 
are applied. All stresses are finally added to- 
gether, but only for the minimum number of 
cycles. 

Mr. DiTaranto: These are not added 
linearly? 

Mr. Fogelson: Yes, they are. 

Mr. DiTaranto: Rather than using a more 
circular approach ? 

Mr. Fogelson: No, because this stress was 
uniaxial and, therefore, the individual stress 
components, since they were all acting in the 
same direction, were added linearly. 

Mr. Ip (Aerospace Corp.): Miner's hypoth- 
esis is based on a simple fatigue test. Is there 
any question of how well it applies to three- 
dimensional fatigue ? 

Mr. Fogelson: I cannot answer that. 

Mr. Stallard (AVCO Corp.): A test was run 
about ten years ago using random vibration as 
the load on pieces of metal. This again ap- 
proaches the idealized test. By performing that 
test using Miner's hypothesis of   1 (n/N) equal 
to 1, we found that 2 (n/N)  varied between 3/10 
and 5 and 6, which makes me wonder aI>out this 
test. Of course, you are using sinusoidal rather 
than random vibration. In the last two or three 
years, most of the papers in the Shock and Vi- 
bration Bulletins Indicated that Miner's I (n/N) 
ratio holds for a sinusoidal flexing load pro- 
duced by a small round beam with a wheel in the 
center and a weight hanging on the end of it. 
However, 2 (n/N)  is not equal to 1 fof random 
loading; It varies over a wide range. I am sure 
that anyone else in this audience who has seen 
this type of test has found the same answer. 

Mr. Rubin (Aerospace Corp.): This is very 
true. I think a paper was presented a few weeks 
ago at a Society of Automotive Engineers' 
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meeting which pointed out that the choice of the 
criterion of failure will affect the result.  For 
example, if you define a 1 percent change in the 
natural frequency as failure for a small beam 
specimen, you will get one result. If you then 

want to call failure a 2 percent change in the 
natural frequency, you will get an entirely dif- 
ferent result. So your failure criterion is also 
very important in establishing the exact fatigue 
hypothesis. 
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This paper is intended to serve as an introduction to the "statistical 
energy analysis", approach, which provides one with a relatively simple 
means for understanding and estimating the most significant properties 
of multi-modal random vibrations of complex structures.   The theoret- 
ical basis for this approach is summarized, some insights resulting 
from its use are presented, and some applications of it to spacecraft 
vibration analysis and testing are discussed. 

E. E. Ungar 

INTRODUCTION 

Recent technological trends have brought 
with them more powerful sources of high- 
frequency random vibrations, and simultane- 
ously have led to lighter, smaller, and more 
delicate structures and equipments which are 
susceptible to damage from such vibrations. 
As these trends have developed, vibration ana- 
lysts have found that the various techniques 
that served them so well in the low-frequency 
domain (near the fundamental resonances) could 
not deal realistically with high-frequency 
problems. 

To be sure, the time-honored classical 
analysis techniques are also theoretically valid 
for high frequencies; however, one encounters 
difficulties in their application to practical 
problems. The classical techniques generally 
involve determination of the lowest few mode 

shapes, calculation of the response of each 
mode to a prescribed excitation, and superpo- 
sition of these responses to obtain the total re- 
sponse. Since only the lowest few modes re- 
spond significantly to low-frequency excitation, 
computations based only on these modes   uffice 
for low-frequency analyses.  This is not the 
case for broadband high-frequency excitations. 

In analyzing the responses to high-frequency 
excitations, particularly where the excitations 
have broad frequency band spectra, one finds 
that one mufit take infoaccount a large number 
of modes. Determination of all of these mode 
shapes, of tho associated natural frequencies, 
and of the modal responses generally requires 
an excessive amount of computation. 

Further, and perhaps more significantly, 
one finds that one cannot calculate the high- 
frequency mode shapes of practical structures 
meaningfully.  To perform such calculations 
one would need to have available complete and 
precise mathematical descriptions of the ge- 
ometries, boundary conditions, and elastic 
properties of all structural components. Since 
such descriptions are usually not available, one 
is tempted to perform the required calculations 
for a fictitious structure which is similar to 
the actual one.  Unfortunately, however, at a 
given location on the structure the responses 
associated with the higher modes tend to be 
much more affected by small changes in 
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geometry and boundary conditions than those 
associated with the lower modes   Analysis of 
a fictitious structure thus gives results which 
are devoid of meaning for the higher modes, 
although a similar analysis may be useful where 
only the lower modes are involved. 

If one could somehow perform adequately 
the multi-mode calculations required for high- 
frequency response predictions, one would still 
be faced with interpreting the large volume of 
data generated by such calculations. Generally, 
one would desire to perform further computa- 
tions, e.g., to determine various response av- 
erages, to reduce these data to more easily in- 
terpretable form. 

An approach, which has come to be known 
as statistical energy analysis, has been devel- 
oped in the past few years to circumvent the 
aforementioned problems. This approach per- 
mits one to calculate average responses and 
their distribution over complex structures with 
relative ease, being concerned with the details 
of the various modes. 

This paper is intended to serve as an in- 
troduction to "statistical energy analysis." The 
theoretical basis for this analysis approach is 
summarized in the first of the following sec- 
tions. Some applications of this approach to 
two coupled systems are indicated in the sec- 
ond section, whereas the third section discusses 
some practical applications to more complex 
systems. 

THEORETICAL BACKGROUND [1,2] 

Modes 

Modes describe a special class of free vi- 
brations of undamped elastic systems where all 
points move in unison sinusoidally in time. 
Accordingly, one may describe a modal vibra- 
tion of an extended (one-dimensional'4') system 
by 

W(x.t)     =     0n(x) (D 

Here w denotes a deformation of the system 
from equilibrium and is a function of the spa- 
tial coordinate x and of time t.   The function 
•//„fx)  is called the "mode shape" and is inde- 
pendent of time.  The time dependence of w(x, t) 

is embodied in the sin ^nt term, where .> de- 
notes the (radian) frequency associated with the 
mode. 

Continuous systems have an infinite num- 
ber of modes, each with an associated modal 
(natural) frequency.  The modes are usually 
numbered, beginning with the lowest (i.e., the 
fundamental) mode. The subscript 'V in 
Eq. (1) indicates the mode number. The mode 
shapes *„ and modal frequencies satisfy the 
system equations of motion (in the absence of 
damping and excitation) and the boundary 
conditions. 

f 
The mode shapes also satisfy 

0     for    n i  k 
0n(x) ^(x) m(x) dx   =    • (2) 

M    for    n ^ k 

where m(x) denotes the distribution of mass 
per unit length, L the total length, and M the 
total mass of the system.   (M is, of course, 
equal to the integral of IB(X) over the entire 
length.) The property that the product of two 
different mode shapes integrates to zero is 
called "orthogonality," and only holds for sys- 
tems whose boundaries are clamped, simply 
supported, and/or elastically restrained. Inte- 
gration of 0n

2(x)m(x) to M is a "normalization" 
condition (one of many possible ones) which is 
imposed on the mode shapes to define them 
uniquely (since the differential equations of 
motion define them only within an arbitrary 
multiplicative constant). 

The mode shapes are useful functions for 
studying the responses of systems, since they 
permit one to expand any physically realizable 
system deflection w( x, t) or velocity v{x. t) and 
most excitation distributions p(x.t) in series: 

w(x, t) 

v(x,t) 

00 

00 

(t) ,// (x) . 

(t) ^„(x) 
n>l 

(3) 

and 

P(x.t) 

OD 

n= 1 

(t) 0n(x) 

*The discussion is here presented only for a 
one-dimensional system, such as a beam or 
shaft. Results for two- or three-dimensional 
systems  may  readily  be  obtained  by analogy. 

Tor constant or small damping, each displace- 
ment coefficient Wn and velocity coefficient vn 
depends only on the corresponding force coeffi- 
cient F , according to 
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«"fn + CnWo . Kn*n   =   Fr 

(4) 

Here Cn is a modal viscous damping coefficient, 
and Kn r M . n

2 is a modal stiffness; Fn is called 
the modal force. 

the first and one to the second system. In ac- 
cordance with the previous discussion, one may 
visualize each mode as a mass-spring-dashpot 
system, so that one may study the interaction 
of two modes in terms of a system like that di- 
agrammed in Fig. 1. 

Equation (4) may be recognized to be com- 
pletely analogous to the relation which governs 
the displacement wn of a mass M to a force Fn , 
where the mass is mounted on a parallel com- 
bination of a spring (of stiffness Kn) and a dash- 
pot (with viscous damping coefficient cn).  Thus, 
one may study the responses of modes simply 
by studying the responses of analogous single- 
degree-of-freedom mass-spring-dashpot sys- 
tems. 

M, 

COUPLING 
ELEMENT 

 1                    1  M» 

Kb       t 

-G- 
c. 

Fig. 1.   Schematic representation 
of two coupled modes 

One may also show that the kinetic energy 
of a vibrating elastic system and its (spatially 
averaged) mean square velocity is simply re- 
lated to the modal coefficients.  By use of Eqs. 
(2) and (3), one finds that the total kinetic en- 
ergy TT of the system obeys 

Keeping in mind that the present objective 
is to develop an "energy balance" approach to 
replace the more complex detailed dynamic 
analyses which are commonly used, one may at 
once note that the time-average power Da dissi- 
pated by mode a is given by 

JL 

n 

x) v2(x, t) dx c. <v. 
2C. 
—5 <T > 
y        'a   ■ (1) 

dx (5) 

'(t) 
n«l 

and that the (mass-weighted) mean square ve- 
locity v 2( t)  is given by 

v2(t> MJ m(x)  v2(x, t)  dx = £>» (6) 

Equation (5) shows that the system kinetic en- 
ergy is equal to the sum of all modal kinetic 
energies Mvn

2/2, and Eq. (6) indicates th-t the 
system mean square velocity is equal to ihe 
sum of the squares of all modal velocities vn. 
These important results will be put to use later. 

Energy Analysis of Two 
Coupled Modes 

Before studying the interaction between 
two coupled elastic systems, one may do well 
to develop an understanding of the interaction 
between two modes, where one mode belongs to 

where the brackets <• • •> indicate time aver- 
ages; <va

2> thus denotes the mean square veloc- 
ity and <TB> the average kinetic energy of 
mode a. 

If one knows the time-average power in- 
puts AB and Ab to the two modes of Fig. 1, then 
one still cannot perform an energy balance 
analysis unless one ran describe the time- 
average net power f'^ow Pab from mode a to 
mode b.   It turns out, fortunately, that under 
some conditions ttui are often encountered in 
practice the net mode-to-mode power flow is 
proportional to the difference between the time- 
average modal kinetic energies; that is, 

ab **<<*, 
<Tb>) (8) 

Equation (8' has been shown to hold, at 
least approximately, if (a) the coupling between 
the two modes is linear (giving rise to a linear 
differential equation), conservative (neither 
supplying nor dissipating mechanical energy), 
and light and/or purely springlike and/or gyro- 
scopic, and {}}) the forces acting on the two 
modes are ui correlated and have spectra that 
are flat (compared to the systems admittance 
spectra) within the frequency band encompassed 
by the resonances of the coupled system. 
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The proportionality coefficient * b may be 
calculated if the coupling element is defined. 
For example, for coupling that may be repre- 
sented in Fig. 1 by a spring of stiffness Kc, one 
finds 

^b 

where 

(9a) 

<T.> 

J- po»*^[<Ta>-<Tb>] 
» I   < T0> 

D. Ob 

Fig. 2.   Power flow diagram 
for two coupled modes 

and 

C.Kb I CbK. 

K   + K 

2   hi Kc ^ = —s— 

(9b) 

mode. In the absence of coupling (or for loose 
coupling) one may express the power received 
by mode a as 

A. % TTS.H. (11) 

in terms of sa, the value of the mean square 
spectral density (also called power spectral 
density) of the force Fa at and near the reso- 
nance of mode a.   (sa is again assumed to be 
a relatively flat function of frequency.) 

One may show for any type of "loose" coupling 
(i.e., coupling that has relatively little effect on 
the average response of a mode to a force act- 
ing directly on it) which satisfies the aforemen- 
tioned conditions, that 

2C r a"-b 
ab 

J - T 

Yab(^r d^ (10) 

where Yab is the transfer admittance, that is, 
the ratio of the velocity (phasor) vj .) of 
mode a to the force (phasor) Fh( *) which acts 
on b to produce V (^. 

By use of Eqs. (7} and (11) one may then 
directly arrive at the following expression for 
the steady state mean square velocity of an un- 
coupled mode: 

<'v. S. MC (12) 

As one may visualize with the aid of Fig. 2, 
if mode b has no force acting on it directly 
(Ab - o), then this mode receives power only 
through the coupling element.  In the steady 
state this power must be equal to the power 
dissipated by mode b, so that if Eq. (8) holds, 
then 

It is of interest to note that Eq. (8), Eq. (7), 
and an analogous relation pertaining to mode 
permit one to analyze the two coupled modes 
problem in terms of energies, and to visualize 
it in terms of a diagram like Fig. 2.  One may 
also recognize that Fig. 2 is analogous to a di- 
agram one may draw to represent the heat 
transfer between two systems; then <Ta> and 
<Tb^ are analogous; to the system temperatures, 
Pab is analogous to the heat flow between the 
systems, Aa and Ab are analogous to heat sup- 
plied from sources, and oa and Db are analo- 
gous to heat rejected to sinks. 

W <T
e <V) *.b 2 a 2 " 

r <v J" 
^b  Vb (13) 

From the foregoing relation one may readily 
determine that the velocity ratio between the 
two modes may be written as 

<v^ 

<Vb3> ;abMa 

(14) 

If one, for example, considers the mode a 
in absence of any coupling, then one may deter- 
mine that Aa r Da; that is, that the average 
power received by a mode is in the steady state 
equal to the average power dissipated by the 

Energy Analysis of Two Mode Sets 

The previously discussed expression per- 
taining to power flow between two individual 
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Fig.   3.    Power flow diagram 
for two coupled sets of modes 

modes may be extended to apply to the power 
flow between two sets of modes (Fig. 3), where, 
for example, the two sets of modes may be 
groups of modes of two different structures. 
One finds that the time average power flow PaS 
from a mode set a to a mode set ß may be 
vritten as 

=   «WT.-V. (15) 

analogously to Eq. (8). Here Ta represents the 
average kinetic energy per mode of the a set; 
thus, if TTa represents the total kinetic energy 
of all modes of the set, and if there are Na 
modes in the set, then 

T   . Iiü = -i y <T.> (16) 
) = « 

A corresponding expression applies also for T^, 
of course. 

(b) the mode-to-mode coupling coefficients and 
modal kinetic energies are statistically inde- 
pendent, and (c) the modal kinetic energies in 
the ensemble average are uniformly distributed 
within a set. However, here Ta, T^, and *a. 
must be taken as the corresponding ensemble 
average parameters. 

Under the aforementioned conditions the 
set-to-set coupling factor <paS turns out to be 
the sum of all possible mode-to-mode coupling 
factors between the sets, or 

"aß LL <*>. «j.4k NBNfl*, aa.^b (17) 
■l   k'l 

where A», ab denotes the average (over all 
mode pairs) of the mode-to-mode coupling fac- 
tors and <^, j *■, denote» the factor pertaining to 
power from the jth mode of the a set to the ktfc 
mode of the ^ set. 

The total power TJa dissipated by mode set 
a is equal to the s«»» o:. all the dissipation con- 
tributions of the individuiü modes. Therefore, 

£ Cj^i > = <v. (18) 

where <va
2> represents the total mean square 

velocity of system a due to the N^ modes; ac- 
cording to Eq. (6), <va

2> id equal to the sum of 
all the individual modal velocities, since all of 
the a modes belong to the same elastic system. 
ca is an "effective" viscous damping coefficient 
for the whole set a and may be seen to obey 

ZCj<V.2> 

s<v,2> 
Sci<Ti> 

Tta 
(19) 

where all summations are implied to extend 
from j -1 to j = N^.   The second form of Eq. 
(19) follows from Eq. (5) and from the equality 
of all modal masses in a set of modes of the 
same system, as evident from Eq. (2). 

Equation (15) may be shown to hold if (a) 
the mode-to-mode power flow from all modes 
of the a set to all modes of the ß set satisfies 
Eq. (8), and (b) either the mode-to-mode cou- 
pling is the same for all mode pairs composed 
of one of the a and one of the ß modes, or all 
modes in a set have equal time-average kinetic 
energies. Equation (15) also applies for the en- 
semble average power flow from one mode set 
to another mode set of an ensemble, if (a) the 
first of the foregoing conditions is satisfied, 

Loss Factors 

It is useful to restate some of the previ- 
ously given results by introducing loss factors 
as measures of energy dissipation and conduc- 
tion.  Loss factors may be defined in terms of 
energy quantities and thus have greater gener- 
ality than viscous damping coefficients. In addi- 
tion, use of loss factors for both dissipation and 
conduction of energy serves to draw attention 
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to the fact that both of these mechanisms may 
have the same effect on a system. 

The loss factor is related to the viscous 
damping coefficient c and the critical damping 
coefficient cc as 

7, = C/Mo,, = OS/IE =  2Ccc. 

The less factor n of a mode a oscillating in 
steady state may be expressed as 

7,.   --   D/2a,,<T.> (20) 

where Da denotes the time-average power dis- 
sipated by the system, <Ta> the time-average 
kinetic energy of the mode, and «, the modal 
frequency [3]. An expression like Eq. (20) may 
also be applied to a set of modes. The loss 
factor T)a of a set a may be written as 

% * Da/2"0TTa ^.^.y/KX.y, (21) 

where "o here represents the center frequency 
of a band which encompasses all modal fre- 
quencies of the set, and where the summations 
on j extend from 1 to Na.   The right-hand ex- 
pression of Eq. (21), which is similar to Eq. 
(19) and shows that ^ is a weighted average of 
the modal loss factors, follows from Eqs. (16), 
(18), and (20). 

"Coupling loss factors" 7jab and ■r)<iß) which 
are indicative of power flow in the same way 
that the loss factors of Eqs. (20) and (21) are 
indicative of power dissipation, may be defined 
by expressions which are the same as Eqs. (20) 
and (21), except that Da and Da are replaced by 

•b <Tb>=0 taH^a and    P afl T =    <M 

From the appropriately modified Eq. (21) and 
from an analogous expression pertaining to the 
mode set ß, one finds that the coupling loss 
factor ■naß (which refers to power flow from 
set a to set ß) and the loss factor T^ (which 
refers to power flow from the ß to the a set) 
obey 

,N„ ^flaN/J    =    *a/
2£do (22) 

The usefulness of this notation will become ap- 
parent in the illustrations which follow. 

determining the power flow from modes of one 
system which have their resonances in a given 
frequency band to a set of modes of another 
system which have their resonances in the 
same band. One may in general choose any 
convenient bandwidth, and «me may often wish 
to use different bandwidths for different calcu- 
lations. The number of modes which fall within 
the various sets depends on the bandwidths one 
chooses, so that it is useful to introduce the 
concept of modal density, in terms of which the 
dependence of some of the previous results on 
bandwidth can be stated more explicitly. 

The modal density of an elastic system is 
defined as the average number of modes per 
unit frequency interval. If a system exhibits 
Na modes whose resonances fall within a fre- 
quency interval ACJ, then the modal density of 
the system at the center frequency 
terval is defined as 

na(0   =   Na/Aa,, 

na(f)   =   Ha/2nhi 
(23) 

The modal densities of systems may be 
determined from their "frequency equations," 
i.e., from the equations which give the system 
resonance frequencies as a function of the sys- 
tem parameters.  For simple systems these 
calculations may be carried out without great 
difficulty [4]. 

Table 1 lists the modal densities of some 
uniform elastic systems, obtained largely from 
Smith and Lyon [4] and from related calcula- 
tions. The expressions listed in the table apply 
strictly only for frequencies considerably above 
the system fundamental (by perhaps at least two 
octaves), where boundary conditions have no 
important effects on the natural frequencies; 
however, these expressions generally also pro- 
vide reasonable estimates for the modal densi- 
ties at frequencies only slightly above the 
fundamental. 

The modal density of a composite system 
is approximately equal to the sum of the modal 
densities of the component systems. Thus, for 
example, the modal density of a plate with at- 
tached beams is roughly equal to the modal 
density of the plate by itself, plus the modal 
densities of all of the beams by themselves. 

Modal Densities 

One usually studies the interactions of 
elastic systems on a band-by-band basis by 

APPLICATIONS TO SIMPLE SYSTEMS 
Two Coupled Plates 

Consider two coupled systems, as repre- 
sented by two irregularly shaped plates, joined 
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TABLE 1 
Modal Densities of Some Uniform Systems 

System Motion Modal Density, n(o>) Auxiliary Expressions 

String Lateral L/Vc, c,  = A/PA 

Shaft, beam Torsion L/ncj CT   =   y/Gk/pJ 

Shaft, beam Longitudinal L/ncf Cf    -    yjt/p 

Beam Flexure l/2n(v*bCf)-1/2 *hct   = -„/EI/pA 

Membrane 

Plate 

Lateral 

Flexure 

A, oVTrrcJ c,  =  -/S/ph 

Kft^JV/fk   =   yJt\t/\2p(\-V
7) 

Room 
(acoustic volume) 

Sound 
(compression) 

y^/Tn2 c,3 

Cylindrical shells [5] Flexure 
* np                     for oi/wr >  1 

[ * np(a/wr)
2/3  for v/wT <  1 np   =   A,/4Tr«pc£ 

Doubly curved shells Flexure Expressions are complex, 
see Ref. 6 

Symbol Definitions 

A = cross-sectional area 

At = surface area 

a = mean radius of cylindrical shell 

ca = acoustic wave velocity 

c^  = longitudinal wave velocity 

c,,, = membrane wave velocity 

c1 = string wave velocity 

cT = torsional wave velocity 

D = plate rigidity 

E = Young's modulus 

G  = shear modulus 

h = thickness 

I  s centroidal moment of inertia of A 

J = polar moment of inertia of A 

K = torsional constant cf A 

L s length 

S s membrane tension force/unit edge length 

T = string tension force 

V B volume 

*b = radius of gyration of A 

*p » radius of gyration of plate cross section 

v - Poisson's ratio 

in - frequency (rad/time) 

p = material density 

by a reinforcing beam (Fig. 4). If plate a is 
exposed to a broadband excitation of bandwidth 
hu> (considerably above the plate fundamental) 
so that it vibiates a given amount, how much 
will plate ß vibrate? This is clearly a difficult 
(or at least a tedious) problem to solve by clas- 
sical means. However, one may obtain an esti- 
mate very easily and rapidly by the statistical 
energy approach. 

The beam of Fig. 4 is likely to result in 
loose coupling between the modes of plate a 
(which have their resonances in the band of in- 
terest) and the corresponding modes of plate ß. 
If one assumes all modes of a set to be uni- 
formly excited, so that the previously outlined 
concepts apply, one may write an energy bal- 
ance for set /d as 
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BEAM 

Fig.   4.     Two 
coupled plates 

*«^Ta-T3) - Dä z vB2u>0HeTe 

and from it determine 

"^ ^flo 

*«fl  +   fooVßNg    "    ^Ba   *   T'S 

(24) 

(25) 

From Eqs. (16), (23), and the expression of 
Table 1 for the modal density of plates one finds 
that if the plates are made of the same mate- 
rial, then 

na M;3<V/> 

n3Ma<Va'> 
(26) 

where h and As denote the thickness and area, 
respectively, of the plate indicated by the sub- 
script. 

By combining Eqs. (25) and (26), one may 
obtain an expression for the ratio of the mear 
square velocities in terms of only the gross 
geometric parameters of the two plates, the 
dissipation loss factor ^ , and the coupling 
loss factor laß' The loss factor nB generally 
can be estimated from available data, or it can 
be determined from some simple measure- 
ments, e.g., of the rate of deoy of free vibra- 
tions of plate ß by itself. As yet there is 
available no adequate means for estimating the 
coupling loss factor v3ll.   However, ■rlBa + T)a 
may also be deduced from some simple meas- 
urements, e.g., of the rate of decay of free vi- 
brations of plate P when it is attached to piate c 
as in Fig. 4.  (Note that the coupling loss fac- 
tor T;,a which appears in Eq. (25) refers to 
power flow from plate .: 
flows from a to 3 when 

to plate a, but power 
is excited.) 

The grouping of the loss factor terms ap- 
pearing in Eq. (25) permits one also to make 
some observations concerning the effectiveness 
of adding damping to the indirectly excited 
plate ß.   If the damping of the ß plate is small 
initially, that is, if nß « vBai then added damp- 
ing will reduce the system vibrations only if 
this added damping is large enough so that the 
resulting v3 is no longer insignificant com- 

On the other hand, if 
-n0 and any in- 

pared to V 
J&en <v ,> varies inversely as  ,,,   
crease In r^ will result in a corresponding de 
crease in <v^>. 

From an energy balance on the directly 
excited plate a one may determine that 

2«. =  va 
(27) 

The "apparent loss factor" Va      introduced in 
the foregoing equation corresponds to the value 
of the dissipation loss factor which one would 
ascribe to set a (on the basis of measurements 
performed on set a) if one were not aware that 
this se* is coupled to set ß.   It is evident from 
Eq. (27) that the apparent loss factor rlatp    * 
never smaller than the actual dissipation loss 
factor rla.   Thus, if one is unaware that a sys- 
tem whose loss factor one is measuring is cou- 
pled to another system, then one always obtains 
a loss factor value which is too large, an "obvi- 
ous" result. The error is insignificant, how- 
ever, if the coupling is poor {va3, vga % 0) 
and/or if the coupled set is relatively lossless 
(v3 « TJ. 

From Eq. (27) one may also deduce that the 
response <\^> of plate a to a given excitation 
Aa is not controlled by the actual dissipation 
loss factor va of that plate, but rather by the 
apparent loss factor va 

Interaction of Sound and Structures 

The statistical energy approach may. also 
be applied to cases where one of the elastic 
systems considered is an acoustic volume. 
Thus, the approach may be used for estimating 
the sound field produced by structural vibra- 
tions or tor predicting the structural vibrations 
induced by sound. 

It is of interest to note that the aforemen- 
tioned result reduces to a particularly simple 
one if the plate .: is lightly damped (r,3 « rj3a), 
so that the right-hand side of Eq. (5) reduces 
to unity. 

Consider the case where a structure S is 
direci'y excited by random forces acting on it, 
and where these structural vibrations produce 
noise in a room R in which the structure is 
located. Here the structural modes in a 
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frequency band of interest correspond to a di- 
rectly excited mode set s, the modes of the 
acoustic space R correspond to the indirectly 
excited set    . 

The total energy ER in a diffuse acoustic 
field within a fluid volume v in a frequency 
band   .■ is related to the mean square acoustic 
pressure -pi> measured in the same frequency 
band as 

pJ- V (28) 

where . a denotes the density and c., the sound 
velocity of the fluid.  This total energy is, on 
the average, half potential and half kinetic, 
hence the average total kinetic energy TTR is 
one half of the total.  The average modal kinetic 
energy TR may be obtained by dividing TTR by 
nK«.: ;, the number of modes in the interval. 
With the modal density expression given in Ta- 
ble 1 for acoustic volumes, one finds the aver- 
age kinetic energy of an acoustic mode of a 
room to be given by 

(29) 
2nRv. 

If one applies Eq. (16) to the structure un- 
der consideration and replaces the number of 
modes Ns by ns >< l^, then one finds that the av- 
erage kinetic energy of a structural mode may 
be written 

2n *_Vv 
M   <a.2> (30) 

- - ;2 n. S. 

where ^t' represents the mean square veloc- 
ity and <a.'> 

2<V 2> the mean square accel- 
eration of the structure, as measured in the 
frequency band Aw with center frequency ^. 
From an energy balance on the indirectly ex- 
cited system, i.e., the room, one may then 
obtain 

<P2> 

<a  '> 

M. ;RS 
,..2, RS 

(31) 

In most practical cases the room-to-structure 
coupling loss factor will be much smaller than 
the dissipation loss factor of the room. Then, 
if one uses Eq. (22) to replace r,RS by ngRng nR 
and replaces the loss factor rSR by an equiva- 
lent viscous coefficient CRS, one obtains 

M32> a CSR (32) 

where the last form is obtained by substituting 
for nR the appropriate expression from Table 1. 
The structure-to-room coupling coefficient CSR 
may be shown to be the same as the rather 
well-known acoustic "radiation resistance" of 
the structure, which may be estimated reason- 
ably readily [4]. 

One may also readily develop an expres - 
sion which describes the response of a struc- 
ture to sound.  For the cass where sound in an 
acoustic enclosure excites a structure, one may 
write an energy balance for the (here indirectly 
excited) structure, and from it determine that 

<a 2> 
SR (33) 

Cp^ ^SR + 

'R 

PRACTICAL APPLICATIONS 

Rationale 

In applying "statistical energy analysis" 
one takes advantage of properties which largely 
are peculiar to high-frequency random vibra- 
tions. Calculations involving structural and 
excitation details are avoided by averaging over 
possible excitation and measurement positions, 
since at high frequencies the vibration of uni- 
form structural regions is usually insensitive 
to details of the excitation or measurement 
positions. By considering a complex structure 
as composed of a number of simple, lightly 
coupled substructures, one may often study the 
vibrations of each substructure in terms of the 
vibration characteristics of that substructure 
considered as completely isolated from adjacent 
substructures; the power flow between the sub- 
structures then can be calculated from simple 
power balance relations similar to Eq. (24). 

Coupled structures may be shown to exhibit 
a certain tendency toward assuming equal av- 
erage modal energies, and one often finds it ad- 
vantageous to use this "equipartition" tendency 
in estimating vibration distributions in com- 
posite structures. Since the coupling and dissi- 
pation loss factors are always positive, one may 
deduce from Eq. (25), for example, that the 
average modal energy T, of the indirectly ex- 
cited system is always less than that of the 
directly excited system Ta.   The two modal 
energies are essentially equal in those cases 
where the loss factor TJ, of the indirectly ex- 
cited system is much smaller than the coupling 
loss factor r/3a.   One may use the fact that 
T, < Ta to determine a simple upper bound to 
the vibration levels that result in various 
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components of a complex structure due to lo- 
calized random excitation. 

Vibration Responses of 
Space Vehicles 

The statistical energy approach has been 
applied to a number of problems involving vi- 
bration response and transmission in space ve- 
hicles. The approach has proven particularly 
useful for evaluating the relative importances 
of various excitation sources and transmission 
paths.  For example, statistical energy calcu- 
lations have shown, in agreement with recent 
experimental work, that over a significant fre- 
quency range turbulent boundary layer excita- 
tion is more efficient in exciting mechanical 
vibrations than is acoustic excitation [7]. The 
use of the statistical energy approach to calcu- 
late the response of a launch vehicle to acoustic 
and aerodynamic excitation sources is discussed 
by Chandiramani and Lyon [8]. 

Figure 5 shows a schematic diagram of the 
OGO spacecraft and the energy paths that have 
been considered in calculating the vibration 
distributions that result from the action of the 
exterior acoustic field [9], The "acoustic path" 
involves the exterior acoustic space, shroud, 
interior acoustic space, and spacecraft panels; 
the "mechanical path" involves the exterior 
acoustic space, shroud, ring frame, mounting 
trusses, and spacecraft panels.  Calculations [9] 
predict 10 to 20 db greater vibration levels due 
to transmission via the acoustic path than via 
the mechanical path. An experimental investi- 
gation of vibration transmission in the OGO 
spacecraft is in progress. 

The relative importance of various vibra- 
tion transmission paths in the Surveyor space- 
craft are currently under study.  As indicated 
in Fig. 6, this study considers a direct acoustic 
path from the interior acoustic space to com- 
partment A, in addition to a mechanical path 
which involves transmission from the adapter 
to the spacecraft trusses and then to compart- 
ment A.  The adapter is excited by three 
sources:  the interior acoustic space, the vented 
acoustic space, and the tank dome. 

The statistical energy calculations indicate 
that high-frequency vibration transmission in a 
wide class of complex structures depends 
largely on a few characteristic properties of 
the structure, such as length of transmission 
path, mass of typical elements, average modal 
density, and internal damping.  Some preliminary 

COMPONENTS 

1  tittrier Acoustic Sjjct 

7  Shroud 

3   Inttrior Acoustic Sp«ct 

i  Sptctcrift Pjntls 

5 Ring Frame 

6 Mounlin? Trusses 

TRANSMISSION PATHS 
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Acoustic 

Mechanical 

"*) 

Fig. 5.   Vibration transmission 
in the  OGO spacecraft 
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Mechanical 

Fig. 6.   Vibration transmission 
in the  Surveyor spacecraft 
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work has been done, which indicates that vibra- 
tion transfer functions experimentally deter- 
mined on Ranger, Mariner and Surveyor space- 
craft can be reduced to a common form by 
scaling the frequency axis with respect to a 
transmission length [10]. 

Implications Relative to High- 
Frequency Vibration Testing 

In present practice one generally attempts 
to obtain very st'ff test fixtures to set the first 
fixture resonance at a relatively high frequency. 
Howevtr, the first bending resonance of conven- 
tional fixtures often occurs within the fi equency 
range of interest in random vibration tests, 
fixture resonances result in amplification of 
the vibration level, for which one usually must 
compensate by using expensive equalization 
equipment) and in spatial variations in the fix- 
ture vibration, which complicate the problem of 
excitation control. 

As a possible means of avoiding the prob- 
lems associated with stiff test fixtures, the 
statistical energy view suggests the use of light, 
flexible, multi-modal test fixtures. Such a fix- 
ture would have many resonances in any meas- 
urement bandwidth, and would result in a vi- 
bration field quite uniformly distributed over 
the fixture. (It has been demonstrated [11] that 
the spatial variation in mean square response 
of a structure excited wivh noise is inversely 
proportional to the number of structural modes 
which contribute to the response. Therefore, 
v/hereas the spatial variation in the response of 
a very rigid fixture vibrating in a low mode 
may be quite large, the vibration field of a thin 
panel-like fixture responding in many modes 
generally is quite uniform.) 

Multi-modal test fixtures also have the 
added advantage that they usually can simulate 
the impedance of typical aerospace mounting 
configurations much better than conventional 
fixtures.  Conventional rigid test fixtures pro- 
vide a coherent excitation source and, there- 
fore, severely overtest equipment which in 
practice is attached to lightweight structure 
and subjected to an incoherent excitation source. 
Some preliminary tests with multi-modal test 
fixtures have been rather encouraging. 

By use of the multi-modal test fixture 
approach one also may avoid the conceptual, 

instrumentation, and computation problems as- 
sociated with interface vibration measurements 
and specif, nations. One merely needs to use 
in-flight measurements of the reverberant vi- 
bration on mult i-modal structures to set the 
reverberant test levels on the multi-modal fix- 
tures. This method of specifying the vibration 
teat levels is analogous to specifying the sound 
pressure level for acoustic tests in a reverber- 
ant chamber. 

CONCLUDING REMARKS 

The ideas which underlie the statistical 
energy analysis approach have been summa- 
rized to give the reader some insight into the 
range of validity <uid applicability of this poten- 
tially very useful approach. Extended discus- 
sions of these ideas and a more complete list 
of references appears in Ref. 1. 

A number of cases have been indicated 
where the statistical energy analysis approach 
lias led to a better qualitative understanding of 
this behavior of coupled systems.  Practical 
applications of the approach to the prediction of 
vibration levels and to the comparison of the 
relative importances of parallel vibration 
transmission paths have also been discussed. 

Statistical energy analysis provides one 
with a simple and powerful means for obtaining 
a qualitative understanding and quantitative es- 
timates of the most important aspects of multi- 
modal random vibrations of complex structural 
systems. At present the lack of information on 
power-flow coupling coefficients often limits 
the validity of the quantitative response esti- 
mates one desires to make for practical sys- 
tems, but related further work is in progress. 
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DISCUSSION 

Mr. Bookstein (Jet Propulsion Laboratory , 
Have you made any comparison between your 
method and the so-called stone-age method for 
computing responses ? 

Mr. Ungar:  No.  The problems we have 
attempted by this method are completely im- 
possible by any other method. So ours is the 
best. 

Mr. Kaplan (General Electric Co.):  It ap- 
pears that you still have to go through the cum- 
bersome stone-age procedures, namely, getting 
the modes of vibration of the subsystems or the 
portions of the structure. 
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Mr. Ungar:  I was not careful enough to 
point out the savings which we make.  We do not 
have to determine the mode shapes.  All we 
need to know is the average number of modes 
per frequency interval and this is a very dirty 
number which depends only on gross system 
properties. 

Mr. Kaplan:  But here again, for an exam- 
ple such as you postulated, a complicated 
spacecraft structure, there would be resonances 
within the various higher frequency bands that 
might be attributed to local breathing, second- 
ary resonances on the equipment support struc- 
ture, and the like. Therefore, wouldn't you 



still have to know the content within each of the 
frequency bands to associate the various phe- 
nomena in terms of what is happening physically, 
and wouldn't you still nted the mode shapes? 

Mr. Ungar: We do not need to know the 
mode shapes. We need to know only the type 
and number of modes. 

Mr. Lyon (Bolt Beranek and Newman): A 
few of the more difficult modes to calculate, 
for example, in-plane motions or extensional 
modes of the structure, may be missed by tho 
simpler ways of counting the number of mot'.es 
in a band.   Fortunately, there is a tendency for 
an equal amount of energy to exist in all modes. 
Therefore, if you miss 5 percent of tham, you 
have only missed 5 percent of the energy or 2 
percent of the motion. 

Mr. Smith (Bell Aerosystems Co.): Clas- 
sical or statiscical, you are still faced with the 
last step, aren't you? If you are handling % 
fatigue problem, you want stresses in the struc- 
ture, not modal displacement. Neither the clas- 
sical attack, with the shortcomings you outlined, 
nor the statistical will indicate whether you 
have a well or a badly designed structure. 

Mr. Ungar: That is certainly true to some 
extent. We are, incidentally, working on an ap- 
plication or extension of this method in which 
we calculate, from the mean square response 
obtained, the maximum stresses near the edges. 
Incidentally, we are doing this by applying the 
dynamic edge condition principle discovered by 
Bolotin. I realize this is only a partial answer 
to your question, but it is the best I can give. 

Mr. Crocker (LTV Research Center): Can 
you tell me how good your method is at low fre- 
quencies ? I suspect that the classical method 
might be more accurate for the lower modes. 

Mr. Ungar: If you can use the lowest 
modes, you should. The method is well estab- 
lished. However, to do a reasonable analysis 
involving the lowest 20 modes, you need to deal 
with the lowest 14 modes and a 40x40 matrix, 

and so on up. You very quickly run out of com- 
puter space. If you have a program and you 
want to worry only about the lowest three modes, 
by all means use classical methods. 

Mr. Crocker: I did a problem by computer 
where we took into account 400 modes. It wo> Id 
have taken me 20 years by hand; the computer 
did it in about 20 minutes.  The method seems 
fairly accurate at low and high frequencies, and 
is quite quick once the program is set up. 

Mr. Ungar: I am glad you went through 
this stone-piling procedure. I recently saw 
some similar calculations where people calcu- 
late transmissibilities of structures when they 
were really only interested in the transmlssi- 
bility peaks at reasonably high frequencies.  So 
they did something very similar, based on an 
assumed value of damping. I think if you had 
assumed the value of damping, using the simple 
method, you would have had the answer, without 
the use of a computer, in l/10th the time, per- 
haps at half the cost. 

Mr. Himelblau (North American Aviation): 
I would like to come to your defense because I 
believe it is very difficult to get any kind of a 
computer solution for the higher modes that will 
adequately describe the modes and the modal 
responses. If you are averaging over several 
modes, the statistical energy method is very 
effective for problems not particularly suscep- 
tible to a narrow-band type of failure.  For ex- 
ample, whether fatigue occurs in the 40th or 
the 43rd mode generally does not determine 
that a different lifetime exists. However, in 
certain problems involving subsequent narrow- 
band oscillators which provide an input to a 
particularly narrow-band resonant structure, 
you would not want to know what would happen 
in the 43rd mode. Taking the average response 
over a range involving, say, the 40th to the 50th 
mode, would not give assurance that your de- 
sign was adequate. Any comment on that? 

Mr. Ui   You covered a lot of ground, 
and I think I agree with you in just about every- 
thing, particularly in coming to our defense. 

ngar: 
Tub 
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Problems frequently encountered in the field of structural dynamics 
require an analysis of structures having complex geometry and non- 
homogeneous materials.   A method is presented for dynamic analysis 
of complex continuum bodies by extension of the finite element method, 
to circumvent the severe oversimplification often required in treating 
these problems by classical methods.   Axisymmetric and plane stress- 
strain formulations, with th    associated computer programs, have been 
developed.   The analysis w   < developed using viscous damping and the 
assumption that classical modes exist.   The undamped frequencies and 
mode shapes are first calculated, then used to uncouple the damped 
equations of motion by diagonalization of the mass, damping and stiff- 
ness matrices.   Thus, single-degree-of-freedom modal response equa- 
tions are formed and solved for the response contribution of each 
mode.   Through superposition of each modal contribution coupled with 
a transformation back to the original coordinate system, the response 
to an arbitrary forcing function is determined.   Theoretical develop- 
ment, correlation studies, applications and some of the limitations of 
the analysis are discussed. 

>. E. Baker 

INTRODUCTION AND SUMMARY 

In the field of structural dynamics, prob- 
lems frequently encountered require an analysis 
of structures having complex geometry and non- 
homogeneous material properties.  This is par- 
ticularly true in the solid rocket motor field, 
where the propellant grains often have irregular 
internal surfaces.  Classical methods of analy- 
sis are somewhat limited, particularly where 

irregular geometries and nonhomogeneous 
materials are involved; often severe over- 
simplifications are required to obtain classical 
solutions. 

Recent achievements In finite element 
methods, accompanying the continuing advances 
In speed and capacity of digital computers, have 
enhanced the scope and detail practical In 
structural analysis. The finite element method, 
which has been found to be a powerful and ver- 
satile tool in the static analysis of complex 
structures, Is being extended into the field of 
dynamics to allow a whole new realm of dy- 
namic problems to be solved at minimal cost. 
Some of the problems that may be solved are: 

1. Dynamic elastic analysis of thick-walled 
vessels, including spheres, cylinders and gen- 
eral axisymmetric shapes.  Both longitudinal 
and radial modes may be analyzed. 

2. Plane stress and plane strain analyses 
of arbitrary configuration and material property 
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distribution, subjected to transverse dynamic 
loading. 

3. Analysis of elastic half spaces in which 
pressure waves emanate radially from a point 
source acting on the surface. 

4. Longitudinal waves in rods of varying 
nonuniform cross section. 

5. Analysis of circular plates of   arying 
nonuniform general thickness subjected to axi- 
symmetric loading. 

A major portion of the dynamic analysis, 
the stiffness matrix, had already been formu- 
lated in the development of the static analysis 
[1-4]. A recent study has extended the two- 
dimensional plane stress finite element method 
to include dynamic effects [5]; and at Rocket- 
dyne the method has been extended to axisym- 
metric bodies. The extension of the finite ele- 
ment method to dynamic analysis required the 
development of a mass matrix.  Initially, a 
lumped mass method was used, but later a dis- 
placement consistent mass matrix suggested by 
Archer ■ 6] was developed to improve the accu- 
racy of the program. Comparisons of the two 
mass expressions showed that the consistent 
mass method generally provided greater accu- 
racy, especially in the higher raodes. 

With the computer programs developed, a 
large number of sample problems have been 
solved, the majority of which involve bodies of 
regular shapes such as spheres, cylinders, and 
thick plates.  The accuracy of the method is 
shown by comparison of the calculated natural 
frequencies and mode shapes with results avail- 
able from experiments and classical theoretical 
solutions.  Agreement was very good, especially 
in the lower modes. 

THEORETICAL PROCEDURE 

Direct Stiffness Method 

Details of the development of the stiffness 
matrbpfor a solid body are not presented here, 
except to the extent necessary for a general in- 
troduction to the concept; the missing details 
may be found in Refs. 1 through 4.  Due to the 
similarity between the plane stress and axisym- 
metric formulation, only the axisymmetric case 
will be discussed. 

The finite element concept is the idealiza- 
tion of an actual continuum body as an assem- 
blage of discrete elements (Fig. 1) connected 
at their nodal points.   The basic element is 

triangular in cross section, as shown in Fig. 2. 
For compatibility to be maintained at the edge 
of the elements, linear displacement functions 
were assumed: 

t ♦ 

and 

u(r. z) 

v(r.z) 

a  -   br 

(1) 

By assunr .g the displacement functions and 
knowing the strain-displacement and the stress- 
strain relations, the energy function may be 
calculated for the element.  The element stiff- 
ness coefficients are then obtained by minimi- 
zation of the energy function.  The coefficients 
relate nodal displacements to nodal forces; for 
a triangle having six degrees of freedom, a 6 x6 
element stiffness matrix is formed. 

0 2 4 6 8   r'in- 

Fig. 1.    Typical axisymmetric model 

The complete assembly stiffness matrix is 
then formed by superposition of the appropriate 
stiffness coefficients of the elements connecting 
each nodal point, and the matrix will be equal in 
size to twice the number of nodal points. Bound- 
ary conditions that impose displacement con- 
straints are accounted for by removal of appro- 
priate rows and columns in the matrix.  The 
assembly stiffness matrix relates the nodal 
forces to nodal displacements and the relation- 
ship expressed in matrix form is 

{Fl   -■:   [KHul (2) 
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(a)   ElMBMit  for the plane  etreg» 
or plane ■train case 

(b)   Element  for  the am- 
BVimetric case 

Fig. 2.    Finite elements used in dynannic 
stiffness method 

Dynamic Analysis 

The equations of motion ir. a damped finite 
element system may be expressed in matrix 
form as 

[MHÜ)  +   [DHu) +   [KHu)   -~    (F(t)} (3) 

where 

K is the nodal stiffness matrix as de- 
scribed in the previous section, 

[M]  is the mass matrix, 

[C]   is the equivalent viscous damping 
matrix, and 

{F(t)} is the dynamic force vector. 

The mass matrix used in these programs is 
defined by one of the following methods: (a) one- 
third of the mass of each element is lumped at 
each of its nodal points, or (b) mass distribution 
is based on the assumed displacement shape of 
the element.  The displacement-consistent mass 
matrix (method b) will be discussed later. 

The general procedure followed in the 
method presented in this paper is (a) to solve 
the characteristic equation of an undamped sys- 
tem for the natural frequenciesand mode shapes, 
and (b) to evaluate the forced dynamic response 
by mode superposition.  The eigenvectors of the 
characteristic equation are used to form a 
transformation matrix that will uncouple the 
equations of motion, forming single-degree-of- 
freedcm modal response equations.  These 
equations are then solved for the response 

contribution of each mode; and, through super- 
position of the mode contributions combined 
with a transformation back to the original co- 
ordinate system, the structural response is 
calculated. 

The method used to decouple the equations 
of motion required the assumption of the exist- 
ence of classical modes. This assumption re- 
quires the damping matrix to be diagonalized 
by the same transformation that diagonalizes 
the mass and stiffness matrix. In general, this 
is not entirely true for many practical prob- 
lems, and the error introduced remains to be 
proven.  Another approximation which may in- 
troduce error is the use of only the first 20 
modes to evaluate the transient response plus 
the loss in accuracy in calculating some of the 
higher mode shapes. 

The effective forcing function is determined 
using the assumption that all displacement con- 
strained nodal points are rigidly attached to the 
body supplying the external force to the system. 
Thus, the effective force becomes the difference 
of the applied external force and the resulting 
internal force.  No provision has been made to 
provide for absolute fixity of a nodal point. 

Displacement Consistent Mass Matrix 

It has been shown by Archer [6] that im- 
proved accuracy in dynamic analysis may be 
attained by a mass distribution consistent with 
the assumed element displacement function. 
Because of computer storage limitation, it was 
of interest to develop a method whereby accu- 
racy could be improved in a manner other than 
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by increasing the number of elements used to 
define a structure. Therefore, a mass matrir 
consistent with the displacement field within the 
element was developed.  The resulting element 
mass matrix is similar to the element stiffness 
matrix.  Use of the consistent mass method re- 
quired some additional matrix manipulation and 
was somewhat of a disappointment in that it re- 
quired a prohibitive amount of computer stor- 
age space, thus limiting the grid size.  Im- 
provements in frequency and mode shapes were 
not suificient to warrant use of the consistent 
mass method; no studies have been made to de- 
termine the effects on the forced response. 

CORRELATION STUDIES 

Discussion of Correlation Studies 

During development of this new application 
of the finite element method, various structural 
dynamics problems were analyzed to serve as 
checkout runs to evaluate the numerical accu- 
racy and scope of the method. 

For every example analyzed, excellent 
correlation was achieved with data available 
from other sources.  Most of the examples 
studied were cnosen for availability of both the- 
oretical and experimental correlated data. 
These examples include structures of simple 
geometrical shapes, such as flat circular 
plates, spheres, rods, and rectangular beams. 

The agreement has been excellent, as indi- 
cated in the examples presented in this section. 
The high degree of accuracy is especially im- 
pressive, since in most instances relatively 
coarse element models were used to expedite 
the gathering and reduction of data and to limit 
the total computer time required throughout 
development and checkout of the computer 
program. 

In addition to simple examples used for 
evaluation of the accuracy of the method, rocket 
motors of complex shapes were analyzed.  The 
utility and power of the dynamic stiffness 
method becomes apparent in the analysis of 
structures of complex shape.  The same finite 
elements that form a thick-walled sphere, flat 
circular plate or uniform cantilever beam can 
readily be reassembled to represent a pressure 
vessel,    'Cket motor, or irregular piece of 
hardware.   For such cases, there exists no 
other known practical approach to calculating 
the dynamic structural response, without the 
introduction of grossly simplifying assumptions. 

Examples 

In the examples presented, natural frequen- 
cies and mode shapes calculated by the dynamic 
finite element method-have been compared with 
results from other methods.  In all instances, 
excellent agreement as to both frequencies and 
mode shapes has been achieved.   Following de- 
termination of frequencies and mode shapes, 
overall structural response to a forcing function 
is calculated using the mode superposition 
method. 

Examples presented to illustrate accuracy 
of the method are: 

1. Flexural and extensional (radial) vibra- 
tions of thick circular plates; 

2. Radial vibrations for spherical bodies; 
and 

3. Longitudinal and radial vibrations of 
hollow tubes and rings. 

To illustrate typical rocket motor grain struc- 
tural response calculations, examples of 
stresses, displacement, velocities and accel- 
erations throughout the body, varying with time, 
are presented in Example 4. 

Even for the first three seemingly simple 
examples, solutions by classical theoretical 
methods are extremely difficult.  For several 
of these three classes of problems, satisfactory 
theoretical solutions have been developed only 
in recent years. 

The first three examples are problems in 
three-dimensional elasticity that may be for- 
mulated in two parameters.  Further compli- 
cating the classical theoretical approaches is 
the fact that separate solutions may be involved 
for flexural vs extensional modes of vibration, 
for a given body.  In contrast, the dynamic 
analysis of these and many other classes of 
structures may be performed by a single dy- 
namic finite element method program. 

Example No. 1, Circular Disk —A particu- 
larly useful series of cases were analyzed for 
vibrations of thick circular disks.  Vibrations 
of bodies of this class have been intensively 
studied, providing good data for comparison; 
both experimental and theoretical results are 
available. 

Theoretical solutions for flexural modes of 
vibration have been published by Deresiewicz 
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and Mindlin [7], and corresponding experimental 
results have been published by Sharma [8]. 

Theoretical solutions for extensional (or 
radial) modes of vibration have been developed 
by Gazis and Mindlin [9], and experimental re- 
sults obtained by Shaw [10] have been compared 
with the theoretical. 

Table 1 summarizes a comparison of fre- 
quencies of extensioiuJ (or ra'Ual) modes of 
vibration.  Figure 3 shows the model used in 
this analysis. As noted, the finite element 
method agrees very well with the theoretical 
results.  In the range of disk diameter-to- 
thickness ratio of 10:1 used in this example, 
the theoretical results of Gazis and Mindlin [9] 
and experimental results of Shaw [10] were in 
close agreement..  For smaller diameter-to- 
thickncss ratios, about 5:1, results from these 
two sources differed by about 12 percent for 
several modes. In this region, the finite ele- 
ment results were about 4 percent below exper- 
imental results, and about 8 percent above the- 
oretical results, which seems very good 
correlation, considering the discrepancies in 
the data available. 

Good agreement is also shown in Table 2 
for flexural vibrations of the same circular disk. 

Deflected mode shapes as calculated by the 
finite element method show clearly extensional 
and flexural modes of vibration.  Extensional 
mode shape data are presented in Fig. 4.  Some 
flexural mode shapes are shown in Fig. 5. Little 
has been published as to predicted mode shapes 

TABLE 1 
Comparison of Natural Frequencies 
Obtained by Finite Element Program 

and Theoretical Results 

Funda- 
mental 
Mode 

No. 

Normalized 
Frequency, ß 

Diff. (%) Finite 
Element 
Program 

Theoretical 
Results [9] 

1 

2 

3 

4 

5 

6Ab 

6Bb 

7 

8 

0.221 

0.568 

0.872 

1.115 

1.271 

1.369b 

l,385c 

1.472 

1.58 

0.220 

0.570 

0.880 

1.143 

1.290 

1.47d 

1.31e 

1.5 

1.61 

0.4 

-0.4 

-1.0 

-2.5 

-1.6 

-5.8 

+5,7 

-2.0 

-1.9 
aOf   radial   vibration  for   thick  circular disk, 
diameter:thickness ratio of 10:1. 

"Apparent shear-extensional mode. 
cEdge mode. 
"Experimental edge mode. 
eTheoretical edge mode. 

—    100 in.   —• 
Thr Circular Diak 

Z 

No.  of Elenrnvs    »    9« 

No.  of Nodal  Point«    -    65 

Axisynnrtric  Finite  f.lement   Aasembly 

Fig. 3.   Circular disk and axisymmetric finite 
element model 
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TABLE 2 
Natural Frequencies in Flexural Modes of Vibration 
of Thick Circular Disk by Finite Element Program 

Fundamental 
Mode Number* 

Normalized Frequency 
Max. Diff. 

(%) Finite Element 
Program 

Theoretical [7] Experimental [8] 

1 

2 

3 

0.0533 

0.205 

0.400 

0.0515b 

0.197 

0.371 

0.0515b 

0.194 

0.371b 

3.5 

5.7 

7.8 

* Applicable results for first three modes only are given in the references. 
"Approximate —curve extended beyond range given in Refs. 7 and 8. 
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Fig. 5.   Deflected shapes for disk 
vibrating in flexure 1 modes 

for circular plates, but efforts will continue to 
determine the accuracy of the calculated shapes. 
The accuracy of these shapes directly influences 
the accuracy of calculated stresses and strains 
in forced vibration, when using the mode super- 
position method. Based on the present study it 
seems reasonable to assume tentatively that 
accuracy of the mode shapes will be of the 
same order as that attained in calculating the 
natural frequencies. 

A review of data in Tables 1 and 2 reveals 
the maximum error in natural frequency to be 
about 7.8 percent. Also, it can be seen that 
much higher accuracy is obtained in the exten- 
sional than in the flexural modes, as might be 
expected from consideration of the basic as- 
sumptions of the finite element method.  The 
relevant assumption is that each element under- 
goes extension or compression and shear, but 
not pure flexural distortion [1, 2, 3]. 

A better grid system than the one chosen 
would perhaps give better flexural results, al- 
though this particular finite element method 
would not be recommended for dynamic analy- 
sis of, for example, thin shell structures where 
flexural modes predominate.  However, the 
method is ideally suited for analysis of rela- 
tively thick bodies, such as solid rockei motor 
grains encased in relatively stiff cases where 
case bending is neglected. 

Example No. 2, Spherical Bodies — Addi- 
tional correlation of the finite element program 
was made with the theory for vibration of spher- 
ical bodies.  Three bodies were analyzed: a 
soliu sphere, a hollow body with a wall thickness 

50 percent of its outer radius, and a hollow 
sphere with a wall thickness equal to 33.3 per- 
cent of the outer radius. 

Theoretical solutions for the fundamental 
radial frequency are given by Love [11]. With 
this approach a computer program was written 
to find the theoretical natural frequency, using 
an iterative procedure on an IBM 1401 com- 
puter. Table 3 summarizes and compares the 
results obtained by the finite element method 
and by Love's theory [11].  The models are 
shown in Fig. 6. 

TABLE 3 
Natural Radial Frequency of Spheres 

Natural Radial 
Frequencies 

JSphere (rad/sec) Dlff, 
(%) 

Finite Theoreti- 
Element cal [11] 

Solid (90 element 729 726 0.41 
model) 

Hollow, wall thick- 605 605 0 
ness 50% (51 ele- 
ment model) 

Hollow, wall thick- 535 533 0.37 
ness 33.3% (98 
element model) 

Hollow, wall thick- 539 533 1.13 
ness 33.3% (48 
element model) 

Example No. 3, Tubes, Rings, and Cylin- 
ders — A variety of tubes, rings, and cylinders 
were also analyzed by the finite element method. 
Several hollow cylinder models were analyzed 
and checked against applicable theories.  Sim- 
ple classical theories for vibrations of finite 
length, hollow cylinders do not include this im- 
portant physical parameter. Therefore, to pro- 
vide a basis for correlating the finite element 
analyses with theory, Poisson's ratio was per- 
mitted to approach zero in correlation data for 
this example.  Results of including Poisson's 
ratio are also given to demonstrate the effect 
of varying the ratio in the analysis. 

Table 4 presents the natural frequencies 
for a long hollow cylinder, with an element 
model a« shown in Fig. 7.  Mode shapes are 
calculated by the dynamic finite element pro- 
gram and plotted as shown in Fig. 8. 
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Solid Sphere 

90 Qeaeiita 
58 Nodal Point« 

Hollow Sphere 

Wall Thickne«» 
0u7«ide Radius 
51 Elewnta 
16 Nodal Point» 

■50* 

Hollow Sphere 

Wall Thickne»» 
Outside Radiu» 
98 Elenent» 
65 Nodal Points 

TV?« 

!t b 

Hollrw Sphere 

Wall  Hiicknys» 
Outside Radius 
48  Elenent» 
■56 Nodal  Point» 

T5.1« 

Fig. 6.   Axisymmetric finite element models for solid and 
hollow spheres 
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TABLE 4 
Natural Frequencies of Longitudinal Vibration for a Koilow Cylinder 

Mod-. 
No. 

Natural Frequencies 
(rad/sec) 

Theoretical Finite Element Program, 
Poisson's Ratio- 0.0 

Diff.a (%) Finite Element Program, 
Poisson's Ratio = 0.45 

1 

2 

3 

4 

48.25 

144.75 

241.25 

337.50 

48.23 

144.30 

239.16 

331.64 

-0.04 

-031 

-0.87 

-1.74 

48.15 

142.19 

228.97 

302.72 

'fercent difference = (program frequency - theoretical frequency)/theoretical frequency < 100 per- 
cent; theoretical frequency calculated by 

where   n = mode number,  1, 2, 3,4; 
f = unit weight, 0.065 pci; 
E - elastic modulus, 1000 psi; and 
L = length, 80 in. 

'"-»■"£ l/f 

The Hollow Tylindor 

No. of KlementB = HO 

No. of Nodal Points  * (i"5 

Boundary TonditiOR.« are bane 

nodnl points restrained only 

in nxinl direction, free in 

rndial direction. 

0      "5      t>      ') 

Finite  Klement  Asnembly 

Typical  Section of 
Repeating Pattern 

Dimensions  in  inches 

Fig. 7.    80-in. long hollow cylinder and finite 
element assembly 
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1.0 0.5 

Noiaaliccd z Ks- 
placMMnt for 
Nsdc* 1 and 2 

0-0.9-1.01.0 0.5  0-0.5-' 

Neiaalixed z Dia- 
placcacnt for 
Mode* 5 and I 

Fig. 3.   Mode shapes of longitudinal 
vibrations for 80-in. cylinder 

TABLE 5 
Natural Frequencies of Longitudinal 

and Ring Extenslonal Vibrations 
for Short Hollow Cylinder» 

Mode Type 

Natural Frequency 
(rad/e«c) 

Diff. 
(%) Theo- 

retical 

Finite Element 
Program, 
Poisson's 

Ratio = 0.0 

Extenslonal 

65.6 66.7 1.5 

Longitudinal 

1 
2 

182.7 
548.0 

180.5 
573.9 

1.2 
4.7 

»See Fig. 9. 

Theoretical mode shapes are calculated 
by the equation 

Sz   -   C,  sin ivy) (4) 

where 

n = 1,3,5,7..., the number of quarter 
waves per length of cylinder; 

s z = axial displacement; 

Z = axial location; 

i = length, 80 in.; and 

Cj = amplitude of maximum displacement, 
a constant not defined for free vibra- 
tions. 

Table 5 summarizes the results for a thick 
ring, illustrated in Fig. 9.  The ring chosen has 
a very coarse model of eight elements, yet re- 
sults appear satisfactory for the ring exten- 
slonal (radial) modes and for the lower order 
longitudinal modes.  Theoretical frequencies of 
longitudinal vibrations are calculated as for a 
long cylinder. 

Ring extenslonal (or radial) frequency is 
calculated by 

"R 

where 

^ - »= ^ 35.355 in. 

E = elastic modulus, 910 psi; 

g = acceleration of gravity, 32.2 x 12 in./ 
sec2; 

e = unit weight, 0.065 pel; 

I - moment of inertia of ring; and 

a = cross-sectional area of ring. 

Example No. 4 — Figure 10 summarizes the 
information available from the dynamic finite 
element analysis.  The problem is defined as 
follows: 

Grain outside diameter = 3.960 in.; 

Case thickness = 0.064 in.; 

Grain modulus = 1000 psi; 

Poisson's ratio = +0.48; 

Boundary condition: outer boundary rigidly 
fixed to forcing body; 

Load resonant acceleration: 

Px   =    1 (g)   sin  (a;(1) t) . 

where 

l (g) = the assumed maximum amplitude 
of load, 

"(i) = the first resonant frequency (rad/ 
sec), and 

t  = time (sec). 
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Fig. 9.    Short hollow cylinder and finite element model 

The element model and curves shown are re- 
produced from cathode ray tube plots, automat- 
ically drawn by the computer to aid in rapid 
interpretation of the data from the computer 
run, as well as to provide documentation of the 
analysis as shown in Fig. 10: 

Part (a) pictures the element model of a 
section of a typical grain, to be analyzed for 
transverse accelerations. 

Part (b) is a trace of acceleration loads 
input to the grain through the case, mounted on 
a vibrating fixture. 

Part (c) shows traces of acceleration and 
displacement of the tip of the grain during load- 
ing. Maximum displacements and accelerations 
asymptotically approach a maximum value dur- 
ing resonant load of constant maximum ampli- 
tude.  Accelerations and displacements quickly 
die out due to energy absorption of the propel- 
lant following removal of the applied load. 

Part (d) is a plot of stresses in a critical 
element of the grain, at the side of the filleted 
star point.  Stresses also approach a maximum, 
to die out quickly after removal of load. 

Comparison of Program Versions 
Using Lumped Mass and Consistent 
Mass Matrix Representations 

A comparison is made of natural frequen- 
cies and mode shapes calculated by the lumped 
mass program (AXDY) and by the consistent 
mass program (AXMQ) for identical finite ele- 
ment models. All solid bodies analyzed to 
compare the two approaches were treated in 
the preceding paragraphs; only those additional 
data required for comparison are now introduced. 

The results presented in Table 6 show that, 
in general, for a given element assembly the 
two programs agree about equally well with 
correlated data. An exception was sbc*n in the 
case of Example 1, a very coarse model of a 
short hollow cylinder. 

In evaluating accuracy of the results, con- 
sideration of the effect of the stiffness matrix 
is also pertinent.  From the fundamental as- 
sumption of constant strains through an element, 
a limitation is placed on the displaced shape the 
body can take. As a result, the finite element 
model is invariably stiff er than the real struc- 
ture, tending to produce calculated frequencies 
that are higher than the correct value. Fur- 
thermore, use of the displacement-consistent 
mass matrix approach yields frequencies that 
represent an upper bound to the true frequen- 
cies [6]. 

In general, lumped mass representation 
may yield frequencies either higher or lower 
than the correct value. However, in most of the 
cases analyzed by the lumped mass program, 
the calculated frequencies were below the cor- 
rect values. In these cases, errors introduced 
by the mass representation were apparently 
larger and of opposite sign from those intro- 
duced by the stiffness representation. Thus, 
the errors tended to be canceling, improving 
the agreement with theoretically correct re- 
sults for the lumped mass program. 

Results of previous work have indicated 
the consistent mass matrix can be expected to 
yield results superior to those obtained using a 
lumped mass approach. However, results of 
this study show that, for those element models 
finely enough divided to represent the stiffness 
characteristics uf the structure, the lumped 
mass approach gives results with about equal 
accuracy. 
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TABLE 6 
Natural Frequencies Calculated by Programs AXDY and 

Compared with Theoretical Values 
AXMQ 

Example Theoretical 

Program AXDY Program AXMQ 

Natural 
Frequency 

(cps) 

Diff. 
(%) 

Natural 
Frequency 

(cps) 

Dili. 
(%) 

1. Short hollow cylinder:             j 

Ring extensional mode, wr 

Longitudinal mode -1 

-2 

66.3 

182.7 

548.0 

62.5 

160.0 

701.0 

-5.7 

-12.6 

+27.9 

66.6 

185.0 

601.0 

+0.3 

+1.2 

+8.8 

2. 44-in. long cylinder: 

Longitudinal mode -1 

-2 

-3 

-4 

-5 

-6 

83.03 

249.1 

415.15 

581.2 

747.3 

914.0 

83.0 

248.2 

411.1 

570.0 

723.0 

867.6 

-0.035 

-0.36 

-0.967 

-1.93 

-3.25 

-5.07 

83.01 

249.9 

419.6 

593.4 

764.7 

961.4 

-0.02 

+0.32 

+1.06 

+2.1 

+2.34 

+5.19 

3. Hollow spheres: 

t/r0 = 0.50, 

radial mode 

t/r0 = 0.333, 

radial mode 

576.5 

532.0 

581.6 

539.0 

+0.71 

+1.12 

584.1 

545.0 

+1.32 

+240 

DISCLSSION AND CONCLUSIONS 

Dynamic analyses using the finite element 
method have been applied to a variety of test 
cases on elastic bodies of regular shape. Cor- 
relation with available natural frequency and 
mode shape results of theoretical and experi- 
mental solutions has been excellent. It appears 
that with some refinement, this method of anal- 
ysis will provide an excellent tool for analyzing 
bodies of complex geometry and nonhomogene- 
ous materials. 

The forced response portion of the analysis 
has several shortcomings, which may make the 
results questionable for many classes of prob- 
lems.  Attempts to allow for arbitrary forcing 

function and transient response calculations led 
to the use of the mode superposition method. 
For many problems, the assumption of the ex- 
istence of classical modes, used in the mode 
superposition method, does not hold and the 
deviation from the actual response, in many 
cases, is now known. Making the forcing func- 
tion less general (steady-state sinusoidal) would 
allow the use of better solution techniques and 
improve the results in steady-slate vibration 
probitras. 

With modification the method could be ex- 
tended to include analysis of bodies with ortho- 
tropic material properties, analysis of bodies 
encased in thin shells, structural damping, and 
three-dimensional analyses.  Structural damp- 
ing in steady-state sinusoidal vibration may be 
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liichided i>y multiplying the stiffness by a factor 
of (l * ig), where i is ^l and g is the damping 
proportionality factor. Isothermal viscoelastic 
analyses may be performed with a program of 
this type for calculation of the stiffness matrix 
using the storage modules and letting g become 
the loss tangent. 

In many problems a three-dimensional 
analysis would be most appropriate.  The for- 
mulation of such a program is fundamentally 
easy but because of computer storage limita- 
tions it does not appear feasible at this time. 
However, the two-dimensional program may be 
used to obtain good approximations. 
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DISCUSSION 

Mr. Howard (Aerospace Corp.): Do you 
use a solid or a two-dimensional element in 
your model? 

Mr. Baker:   This is a two-dimensional ele- 
ment and the plane-stress plane-strain formu- 
lation is a triangle of unit thickness.  In the 
axisymmetric formulation it is a segment of a 
ring.  Actually we eliminate the whole ring and 
use a one-radian segment, triangular in cross 
section.  This can be done in three dimensions 
by using a tetrahedral solid element, although 
this may cause trouble with computer storage 
capacity. 

Mr. Langland (Naval Ordnance Test Station, 
China Lake):  You mentioned earlier that you 
assume a linear displacement function for these 
elements.  Would you care to elaborate ? 

Mr. Baker:  It has generally been found that 
ihe linear displacement function is satisfactory 
for this type of analysis. It is the easiest one 
to use. The displacements are set along the two 
coordinate directions and are written in terms 
of either the rz or the xy coordinates, e.g., 
A + Br   Cz.   By using this displacement, the 
forces are determined in terms of nodal point 
displacement.  We minimize energy by using 
these linear displacement functions, writing an 
energy function and then using a Rayleigh-Ritz 
procedure to minimize it for the lower values. 

Mr. Langland:  Is the tetrahedral element 
you mentioned the one Gallagher developed and 
described in some papers ? 

Mr. Baker: There are several papers about 
it.  I think some one at General Dynamics pub- 
lished a paper using the tetrahedron. 
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MIN-MAX RESPONSE PROBLEMS OF DYNAMIC SYSTEMS 
AND COMPUTATIONAL SOLUTION TECHNIQUES 

Eugene Sevin and Walter Pilkey 
1IT Research Institute 

Chicago, Illinois 

Analysis and design problems of dynamic systems are considered in 
which the system and/or disturbances are not completely prescribed 
and the extremal peak responses are of interest.   Discussions are pre- 
sented of mathematical techniques of linear and nonlinear programming 
and dynamic programming which can be used to solve these so-called 
min-max problems.   These techniques serve to determine not o.ily the 
extremal responses but also the unknown properties of the system (the 
optimum design problem) and/or the disturbance (the extremal re- 
sponse analysis problem) which generate these responses.   Detailed 
consideration is limited to single-degree-of-freedom dynamic systems. 

E. Sevin 

INTRODUCTION 

Various analysis and design-oriented prob- 
lems in dynamics are concerned with achieving 
some minimum-maximum deviation of the re- 
sponse, though they may not always be stated in 
this form.  For example, it may be desired to 
design a shock isolator for which either the 
maximum transmitted acceleration or the max- 
imum relative displacement is to be minimized. 
Or perhaps the response of a system to the 
"worst" loading of a prescribed class is sought. 
This might correspond to finding the particular 
loading among the class for which the system's 
maximum displacement is itself a maximum. 
The problem may be of a compound type in 
which, ior example, an isolator is desired hav- 
ing a minimum-maximum response under the 
"worst" loading.  Still another possibility is a 
design for minimum response sensitivity where 
the system is sought for which the spread be- 
tween the maximum responses, corresponding 

to the "worst" and the "best" loadings, is 
minimized. 

This paper deals with min-max problems 
for which the properties of the system and/or 
disturbances are not completely prescribed. 
Computational techniques are discussed which, 
under these circumstances, serve to determine 
both the maximum (or minimum) system re- 
sponse as well as the unknown system and/or 
disturbance characteristics.  Consideration is 
limited to single-degree-of-freedom dynamic 
systems. While the methods are easily gener- 
alized to higher dimensions, in some instances 
the associated computational burden appears to 
be a formidable one. 

CLASS OF PROBLEMS 

By way of introduction, consider the single- 
degree-of-freedom shock absorber and sh^ck 
isolator shown in Figs. 1 and 2, respectively. 
For unit mass the equation of motion for a 
shock absorber is 

x   f   ufx, x)    -    g(t) 

and for a shock isolator is 

x t  u(x,x) g(t), 

(la) 

(lb) 

where ufx, x)  denotes the system function and 
g(t) the disturbance (input) function.  The sys- 
tem function generally is expressed in terras of 
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Fig. 1.   Single-degree-of- 
freedom shock absorber 

We n»ay nc» consider three types of mln- 
max problems, the first two being a simple type 
and the third a compound type. 

Problem 1 

Given a system u( x) and a class of disturb- 
ances g(t), find 

Moving Base 

Isolator 

Fig. 2.  Single-degree-of- 
freedom   shock   isolator 

3—^(0 

the state variables, i.e., for a linear spring- 
dashpot system 

u{x,x) kx + 

and is only an implicit function of time. In 
some instances, however, it is more appropri- 
ate to treat u as an explicit function of time. 

It is convenient to introduce a state vari- 
able notation where the symbol x denotes the 
vector {■•}, whose elements are displacement 
x and velocity x.  Then the types of systems 
we will consider are those covered by a set of 
first-order ordinary differential equations of 
the vector form 

f(x,u,g) (2) 

x(0) = prescribed.  Equations (1) are merely 
special forms of Eq. (2). 

We will define the response function h as 
being that aspect of the system response whose 
maximum deviation is to be either minimized 
or maximized. Th"s, for the isolator whose 
relative displacement is to be minimizec', h - x,, 
however, for the absorber we may wish to min- 
imize the maximum transmitted force, so that 
h = u. In general, then 

h      h(x,u) 

and we will seek to determine the maximum 
deviation of h from some preassigned quantity 
in a time interval of interest, o < t <_ T.   This 
is designated 

mix h(x,u) • 
t 

or 

min max h(x) 
R      t 

max max h(x) 
g       t 

(3a) 

Ob) 

and the associated g(t).  This is the analysis 
problem of determining the upper and lower 
bounds to the system response for incompletely 
prescribed disturbances or, equivalently, the 
problem of finding the response to the "best" 
and "worst" disturbances among a specified 
class.  A way of prescribing the class of g(t) 
might be to specify total impulse and duration 
and/or to specify a band within which g(t) must 
lie.  This problem can be generalized immedi- 
ately to multidegree-of-freedom systems, for 
example, for the study of stress and displace- 
ment bounds on continuous structural members 
for incompletely prescribed loadings. 

Problem 2 

Given constraints L(x,u) < o 
response and a disturbance g( t), 

min max h(x,u) 

on the system 
find 

(4) 

and the associated u(t). (In this problem u can- 
not be found directly as u(x), unless a class of 
u(x) is first prescribed [1],  The latter ap- 
proach would represent a less general minimi- 
zation of h.  Therefore, in the present formu- 
lation the determination of u(x) is considered a 
separate problem which ultimately requires that 
some class of u(x) be specified.)  This is the 
design problem of determining a system whose 
response is optimum in a prescribed sense.  At 
the same time, 

max h(ji,u) 
t 

represents optimal performance specifications 
against which the "efficiency" of any suboptimal 
system can be measured and the raarpfin for im- 
provement determined.  The ability to establish 
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the optimal u( t) also suggests improved tech- 
niques for determining the best u( %) from 
among a prescribed class, since what has here- 
tofore been treated as a constrained minimiza- 
tion problem now can be viewed as the much 
more simple problem of approximating u[x(t)] 
to u(t), e.g., by the method of least squares. 

where H(t - tj) is the unit step function, uj is 
a constant In the interval t j < t < t. + At, 
t. = (i - i)At, and u   = o. A continuous rep- 
resentation Of u( t) iS 

u(t) £ (uj-uj.,) Hft-tiKt-t.),   (7) 

Problem 3 

Given constraints Ltx.u) < o on the system 
response and a class of disturbances g( t), find 

where 

or 

min min max h(x,u) 
g  u  t 

max min max h(x.u) 
R  u  t 

(5a) 

(5b) 

and the associated ur t) and g( t).  This type of 
compound problem corresponds to designing a 
system which is optimum for either the "best" 
or "worst" possible disturbances among a pre- 
scribed class. A problem of this sort related 
to the design of space vehicles is discussed by 
Blair, Lovingood and Geissler [2].  Examples in 
terms of shock absorbers and isolators are 
obvious. 

It might be noted that these problems have 
tl.tr ir counterparts in the theory of differential 
games.  Roughly speaking, Eq. (5b) corresponds 
to a player g whose goal is to maximize max h 
while an opposing player u is seeking to mini- 
mize it. 

DISCRETE FORMULATION 

Since we Intend to seek computational pro- 
cedures utilizing high-speed digital computers, 
it is essential that a discrete formulation of the 
min-max problems be developed.  Various ap- 
proaches are possible, depending on the dis- 
cretization of u(t) and g(t). 

Let the total time interval T be divided into 
n subintervals At;, i = 1,2,..., n.  Denote the 
value of x at the beginning of the ith interval by 
X;.  If the subintervals are of equal length At, 
then 

X;    =    %[(i-   1) At]    . 

A piecewise constant representation of the 
system function uf t) is 

u(t) E (iij-uj.,) H(t- t.) (6) 

u'(t)   -    2]  fui-ui-i> ^t-ti) 

with u- constant in t; < t < tj + At, 

Possible representations for the disturb- 
ance function include a series of a discrete im- 
pulse applied at the beginning of each interval, 
i.e., 

g(t) E   «i ^t-tj) (8) 

where S (t - t j) is the Dirac delta function, and 
the piecewise constant form 

Km = Z] (Ki- gi.i) Hft-tj) (9) 

The solution to Eq. (2) provides, in effect, 
a transformation of state variables fro^t the ith 
to the (i + 1) st state. That is, we rriy write 

'iti   =   FUpUj.gj) (10) 

where the function F may be either an exact 
expression if a closed form solution to Eq. (2) 
is available or an approximating difference 
equation. 

Finally, we represent the response function 
h in discrete form, so that the maximization 
over time t is equivalent to maximization over 
all stages i, i.e.. 

max h(x,u) - max hfXj.uj), i = 1,2 n+ 1 .    (il) 
t 

COMPUTATIONAL TECHNIQUES 

Linear and Nonlinear Programming 

The general problem of linear and nonlinear 
programming is the selection of the set of pa- 
rameters y. which minimizes (or maximizes) 
some objective function (performance index) 
qfVi) subject to certain conditions of constraint 
on the parameters, p(yi) < 0.  When both the 
objective function and each of the constraining 
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functions are linnr in the yj, the problem is 
one of linear programming; otherwise, it is one 
of nonlinear programming.  The solution tech- 
niques and relative ease of computation are far 
more advanced for linear programming prob- 
lems. Thus, while we will consider the problem 
"solved" when reduced to either a linear or 
nonlinear programming formulation, a numeri- 
cal solution in the latter case may not be easily 
obtained. 

For the min-max problems, the maximiza- 
tion over time of h(x.u) is placed in a form 
leading to mathematical programming formula- 
tions by setting 

8j  *0,   j-1,2    n+l (non-negative loading), 

Rj  -  0,   i>i\*2 {pulse of duration    T - nAt) , 

and 

J     6(t)dt    S   ^gi 

-   R (prescribed total   iiupulse.   R) . 

From Eqs. (12) and (15/, 

4>   -   max   I x • (18) 

max h( «j, u j) (12) 

The problem is now to extremize i-, subject to 
the prescribed constraints, with the addition of 
the requirement 

hCxj.iij)  <4>,      i ^ 1,2 n + 1 . (13) 

As a first example, consider a problem 1 
situation in which the bounds to the maximum 
displacement of a clamped linear absorber are 
sought for a class of disturbances character- - 
ized by total impulse and duration. 

Here, the specific form of Eq. (2) is 

1 
(14) 

L-kx  -   CX   +   R{t)J 

where the disturbance will be represented by a 
series of impulses as given by Eq. (8).  The 
response function is merely the displacement, 
so that 

!•.(«;.": ) (15) 

An exact solution of Eq. (14) is possible and the 
state transformation, Eq. (10), can be extended 
for zero initial conditions to the form 

2> 
-/Mt. -t , ) 

where 

ß 

- 1 

{l-/^!/2, 

c/cc < i, and 

2a.        2  Jk . 

sin   lÄ.,'i)(t: tj)] (16) 

The class of disturbance functions is char- 
acterized by 

Then the mathematical programming problem 
is one of finding the set of gj satisfying the 
conditions set by Eqs. (17) such that / is a 
minimum (or maximum), where the xi are 
given by Eq. (16).  In the form stated, the prob- 
lem is one of linear programming since /. and 
the constraints of Eqs. (17) are all linear func- 
tions of the unknown g,.  However, we have yet 
to state an explicit condition for insuring that 
the max i x j |, found in 0 i t i T, is not exceeded 
at some t > T.  One approach is to recognize 
that there exists a functional relationship be- 
tween x and x (i.e., a region of the phase plane) 
which insures that max UJ is not exceeded at 
some later time.  In general, this will be a non- 
linear relationship among the g,, destroying 
the linearity of the problem.  In the present ex- 
ample, this relationship is easily shown to be 
quadratic for Eq. (16).  To retain the linear ity 
it is necessary to either approximate the non- 
linear function by a polygonal path in the phase 
space or, more simply, to extend sufficiently 
the time interval of interest.  Clearly, the lat- 
ter approach would be followed here. 

A second example is the problem 2 type, in 
which we seek to design an isolator whose rel- 
ative displacement does not exceed a prescribed 
value and whose maximum transmitted acceler- 
ation is minimized.  The disturbance function is 
specified. 

The system function, u( t), will be taken to 
be piecewise constant as in Eq. (6), and the 
state transformation obtained from the solu- 
tion of 

x  +  u(t) 

x(0) 

■R(t) 
(19) 

is 

1 ^ "i-iHtj- tj)2 " ftftj). (20) 
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The response function is hdj.uj)     -ui and, 
hence, ;     ma*  ui . The linear programming 
problem is the determination of the set of i^ 
lor which 

X; Xi (21) 

(prescribed displacement bound) and .- is a 
minimum, the xi and u; being related through 
Eq. (20).  The solution to this problem is re- 
ported by Liber and Sevin (Ij; typical results 
are shown in Fig. 3. 

Problem 3 is considered as a final examole 
of the linear programming formulation.  The 
example is interesting in its own right and also 
serves to indicate that not all such problems 
admit to a linear, or even nonlinear, approach. 
We want to design an isolator whose response, 
for the "best" of a given class of disturbances, 
is such that the maximum acceleration does not 
exceed a prescribed value and the maximum 
relative displacement is minimized.  That is, 
we seek to determine 

min min max h 
",     ft.     ' 

(22) 

where the response function is hiij.Uj) - xä. 
We specify the class of disturbance functions to 
be of prescribed duration, total impulse and 
bounded intensity.  Both the system and disturb- 
ance functions will be represented as piecewise 
constant, as in Eqs. (6) and (9), respectively. 
The state transformation now is 

(23) 

Again, with 

the linear programming pivulem is to find the 
set of u; and the set of ^ satisfying Eq. (23) 
for which 

(prescribed acceleration bound), 

(prescribed force bound), 

I] (Rj-Ki-.Ht^.-tj) - R 

(prescribed total impulse), and such that ^ is a 
minimum. 

Examination of Eq. (23) will indicate that 
the problem yields to a linear programming 
formulation simply because we are minimizing 
$ with respect to both the u; and g;.  Were we 
instead to attempt to construct 

min max ; , 

Isolator 

'- - Prescribed 
(Constraint) 

w/mi^ 

u is Sought Such That 

Ma« / Acceleration\ 
t    VOf Moss    } 

is Minimized. 

Optimum Ouontities bie Starred. 

Fig. 3.   Optimum shock isolator 
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where an order of minimization and maximiza- 
tion has to be preserved, an alternate approach 
would be necessary.  In this instance, the -nat- 
ter of linearity is of no consequence, so non- 
linear programming offers nothing new. We are 
forced tu turn then to dynamic programming. 

DYNAMIC PROGRAMMING 

The computation. 1 technique of dynamic 
programming can be used to solve all three 
classes of min-max problems, and hence is a 
more general formulation than either linear or 
nonlinear programming.  The method is com- 
putationally quite straightforward; there is 
more of a problem in getting lost in a sea of 
notation.  We will first illustrate the technique 
with respect to a problem 2 example considered 
earlier and then generalize to cover all three 
classes. 

We want to establish the system function 
u( t), characterized by the set of ui, for which 
Ixjl  i Xj (x. specified) and ; = max u^ is a 
minimum.  The state transformation is' given by 
Eqs. (10); note that the system starts from res«, 
i.e., s, = o    Assume for the moment that at 
time t  (< tntl), the system is in state %. and 
that the min-max solution for the subsequent 
motion is known.  Moreover, assume that this 
solution is known for M different values of the 
state %.. That is, we know 

t(xp nun max j » 1 in- 1 . 

m= 1,2. (24) 

In this notation m = 1, j = l corresponds to the 
value of the initial state originally prescribed. 
Thus, the desired min-max value is represented 
by ^(x,1) - .VO). 

We seek now a means for computing ;(»"_,). 
Consider the system to be in the state Xj., at 
time t j., and investigate its response under 
the choice of some value of u j., consistent with 
the constraint of Eq. (21).   At time   t later, 
i.e., at t j, the system will be in state Xj, as 
determined from Eq. (10), corresponding to 
which can be found the value of ; (»j).  The 
maximum of the two quantities   u j.,   and :(x^ 
is recorded.   This process is repeated for a 
range of admissible u-  j, so that 

min max       u ; . i'■   '(* i M 

of r..  The entire process must be repeated for 
a sufficient range of m so that subsequently, at 
any stage j-1, the resulting state *, will be 
close enough to some x" in the matrix of known 
;(x") values to permit accurate interpolation. 
The process is easily started at j = n ♦ l since 
at »n.i.    n.i     0 for all x",,.  We recognize 
that with dynamic programming the n • 1 dimen- 
sional minimization required in the linear (or 
nonlinear) programming formulation has been 
replaced by a sequence of n • i unidimensional 
minimizations.  Since dynamic programming 
does not consider linearity, it represents a 
most powerful approach. 

The notation is improved somewhat if we 
distinguish better between the subscript denoting 
the stage of the computational process and the 
state of the system response.  Thus, the com- 
putational algorithm becomes 

'nO-jfV h- *nO-j^jtl>j 

j = n,   n - 1. (25) 

with 

^Un<1) = o 

where subscript j represents the state of the 
system and the subscript on : denotes the stago 
of the computational process.  The minimiza- 
tion, of course, is only with respect to admissi- 
ble values of u, as determined from the system 
constraints of Eq. (21).  The optimal choice of 
the Uj is retained in the computer memory at 
each stage.  Once the desired :„,,(()) is deter- 
mined, knowledge of u, permits the process to 
be repeated forward in time to select the appro- 
priate set of u j. 

Equation (25) follows directly from Bell- 
man's principle of optimality, which in essence 
says that regardless of the decisions made in 
reaching a particular state, subsequent deci- 
sions must constitute an optimal policy with re- 
spect to this state.  This permits us to general- 
ize the formulation immediately.   Let 

extrem 

represent any of the minimizations, maximiza- 
tions or min-max combinations appropriate to 
the three types of problems considered earlier. 
That is. 

can be determined.  Clearly, this value then 
corresponds to ;(x".,) for the particu'ar choice 

extrem - min or min or max or min max or min min 
5i     l,i     8,     R,     u,  g.     u.  K, 
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Then, if at the f n ♦ i - j) th stage of the process, 
corresponding to the system being in its (j o ) st 
state, we denote the min-max value by 

-   (»j,,) extrem max hfXj.Uj) .        ^gv 

the next stage in the process is given by 

;n.2./V       extrem naxjWSj.Uj).   ^n< , . ^(Xj , , )j 

The process starts with 

if«. max h(x,iii 
t 

(27) 

(28) 

and is conducted for j = n. n-1 i. The ex- 
tremes are taken only with respect to admissi- 
ble values of sj as determined by the stagewis« 
constr?ints 

< s, 

In the dynamic programming formulation it 
is necessary to distinguish between stagewise 
and process (overall or terminal) constraints. 
In the linear programming formulation, these 
appeared either as inequalities (stagewise con- 
straint) or equalities (process constraint), and 
both could be handled automatically.  It is usu- 
ally said that the greater the number of con- 
straints, the easier is the dynamic programming 
solution since the space to be searched is re- 
duced accordingly.  This is true enough with 
respect to stagewise constraints, but the com- 
putational burden is increased in the presence 
of process constraints.  Specifically, the proc- 
ess constraint enters the problem as an addi- 
tional state variable.  Consider, for example, 
the case in which the disturbance function is to 
have a prescribed total impulse. 

r(R.T) g(t)dt   -  R . (29) 

We define a new state variable z. as 

r«i 

rrg.t,) r(R,t.) 

(30) 

where rf K. t,) is the value of the constraint at 
time t,.  The additional state transformation 
needed to supplement Eq. (10) is 

r(B. t^,)    =    rfg.t:)  - Arj . 

where -T l is the change caused in the constraint 
variable r by application of u.) • 

Unfortunately, the addition cf another state 
variable increases the already bothersome bur- 
den of dimensionality. An alternate approach 
possessing the original dimensionality is avail- 
able for some system >.  It has been shown [3] 
for a certain class of absorbers, including lin- 
ear systems, that the response function and 
process constraint can be interchanged without 
increasing the dimension of the dynamic pro- 
gramming formulation.  In the case of min-max 
displacement for an absorber with prescribed 
total impulse and time duration, the equivalent 
problem becomes that of finding the g(t) of 
duration T, such that  ; x<  < x (x prescribed) and 
the total impulse rCg.T) i j maximized.  Here 

'n.l-j   fVl)    =    maX £ 8i .        (31) 
.*)♦! 

and in accord with the principle of optimality 

is computed for j ^ n, n - l l.  Typical re- 
sults for this problem are shown in Fig. 4. 

SUMMARY 

A number of practical problems of a 
minimum-maximum deviation, or min-max, 
sort have been described and classified as three 
types.  These have been represented by discrete 
lormulations amenable to solution by such gen- 
< ral mathematical programming techniques as 
linear and nonlinear programming and dynamic 
programming.  Where applicable, linear pro- 
gramming constitutes the most efficient com- 
putational approach.  Dynamic programming is 
the most general technique but presents the 
greatest computational burden for higher order 
systems.  The method is eminently practical, 
however, for single-degree-of-freedom dynamic 
systems. Certain of the more interesting prob- 
lems formulated have not as yet been solved 
numerically.  These will be the subject of future 
publications. 
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STRAIN RESPONSE OF SIMPLY SUPPORTED BEAMS 
TO POINT AND ACOUSTIC LOADING 

Tony L. Pariott and Joseph A. Drischlsr 
NASA Langley Research Center 
Langley Station, Hampton, Va. 

Although dynamic strain response is the basic ingredient in fatigue life 
estimation schemes, there is a lack of documented comparisons of 
measured and predicted strains for responses of either complex or 
simple structures.   Many investigators have been concerned with 
measurements of strain responses on structural components under op- 
erational conditions for which calculations are impractical to perform. 
On the other hand, theoretical investigations have been carried out for 
relatively simple structures for which few experimental strain re- 
sponse tests have been conducted, perhaps primarily because of the 
difficulty of obtaining a sufficiently close approximation to a set of 
classical boundary conditions. 

It is the purpose of this paper to present a comparison of measured and 
predicted strain responses for carefully controlled experiments on 
beams whose boundary conditions approximate, to a high degree of ac- 
curacy, those of a simple support.   The simply supported boundary 
condition was found to be readily amenable to mathematical analysis 
and characterized by low damping.   Considerable development work 
was required in perfecting beam boundary attachments having satisfac- 
tory simple support behavior.   Dimensions of the beams were chosen 
so that significant vibration amplitudes (in excess of the beam thick- 
ness) could be obtained in the fundamental mode.   The beams were tx- 
cited by sinusoidal and random loadings applied both acoustically (uni- 
formly distributed along beam) and mechanically (at a point location). 
In addition to strain measuremeiits, both the total equivalent viscous 
damping and the magnitude of the exciting force were obtained. 

In general, good agreement between measured and predicted dynamic 
bending strain was obtained; however, for sinusoidal point loading the 
theory ov?rpredicted, and for sinusoidal acoustic loading it underpre- 
dicted the dynamic strains.   For random loading the theory and experi- 
ment were in close agreement.   The total equivalent viscous damping, 
measured by the log decrement technique, was found to have amplitude 
and modal dependence. 

J 

T. L. Parrott 

INTRODUCTION 

Present-day strain response prediction 
schemes are intended tu provide engineering 

estimates of the strain levels at critical loca- 
tions in complex structures loaded by spatially 
distributel forces characterized by continuous 
spectra with or without discrete frequencies 
superimposed.  The prediction of strain re- 
sponse is useful for the purpose of estimating 
fatigue life and for determining noise trans- 
mission characteristics. The dynamic strain 
response of an aircraft or space vehicle struc- 
tural component to various types of complex 
dynamic loading depends, in addition to the 
detailed characteristics of the loading, on the 
geometry of ehe structure, the distribution of 
the structural mass and elasticity, the ability 
of the structure to dissipate vibrational energy, 
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and the boundary conditions imposed on the 
particular structural component of interest by 
the remaining struct ire. 

Many investigators have been concerned 
with measurements of strain responses on 
structural components under operational condi- 
tions for which calculations are impractical to 
perform. On the other hand, theoretical inves- 
tigations have been carried out for relatively 
simple structures for which few experimental 
strain response tests have been conducted, 
perhaps primarily because of t'ie diÜAculty of 
obtaining a sufficiently close approximation to 
a set of classical boundary conditions. 

It is the purpose of this paper to present a 
comparison of measured and predicted strain 
responses for carefully controlled experiments 
on beams whose boundary conditions approxi- 
mate those of a simple support. It was found 
that the simply supported boundary condition 
was readily amenable to mathematical analysis 
and was characterized by low damping. Consid- 
erable development work was required, how- 
ever, in perfecting beam boundary flexure at- 
tachments having satisfactory simple support 
behavior. 

TEST MODEL 

Illustrated in Fig. 1 are the boundary con- 
ditions associated with the various idealized 
models used in the classical description of 
beam behavior. The free-free beam was elim- 
inated from consideration in the present inves- 
tigation because of the practical difficulty of 
supporting it in such a manner as to permit the 
excitation of the higher modes, as well as the 
infrequent encounter with anything approaching 
this type of support in existing hardware. The 
clamped-clamped support was also eliminated 
frori consideration because of the unwieldy 
mathematics needed to describe the response 
to random loading and also because of the in- 
herently high joint damping.   Finally, the sim- 
ple support (hinged-hinged) was chosen because 
of the ease with which the mathematics could 
be handled, the low damping that could be 
achieved, and because this type of boundary 
condition is not too far removed from some 
practical situations.  The last entry Illustrates 
an idealized model of the beam boundary con - 
ditions which actually existed.  The development 
work centered around attempting to make the 
spring stiffness, which governed the vertical 
displacement, very stiff without introducing an 
appreciable resistive bending moment [1].  This 
resistive bending moment is represented by the 
tcrsional springs.  By using a combination of 
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Fig.  1.   Boundary conditions 
of end   supported beams 

analytical and empirical methods, a very close 
approach to true simple support conditions was 
achieved. 

A schematic diagram of the beam geometrv, 
including flexure support details and strain 
measuring locations, is shown in Fig. 2.  The 
analytical work indicated that the resisting 
bending moment would be negligible if the beam 
thickness to flexure thickness ratio were on the 
order of 25.  The flexures were spot welded to 
the beam as close as possible to the right-angle 
bend.  Observations indicated that the best per- 
formance could be obtained if the flexures were 
clamped approximately 0.032 in. from the beam. 
Apparently, this clearance minimized the tor- 
sional spring compliance. 

As criteria for evaluating the success to 
which simply supported conditions were 
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Fig. 2.    Schematic diagrams of 
test beam  and   support  system 
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approached, both natural frequencies and mode 
shapes were measured.  Figure 3 shows a 
comparison of the measured and calculated 
frequencies for the firsi five symmetric modes 
for a typical beam installation.  In this plot the 
ratio cf calculated to measured frequencies is 
plotted as a function of mode number.  It will 
be seen that the measured frequencies are 
within 5 percent of the calculated frequencies 
for all measured modes.  However, the agree- 
ment is not quite as good at the higher frequen- 
cies.  This is probably due to the spring action 
of the flexures, which calculation indicates 
should become predominant at the higher 
frequencies. 
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12        3       4        5       6       7       8 
MODE NUMBER 

Fig. 3. Comparison of calculated 
and measured resonant frequencies 
of test beam 

As a further test for the closeness of ap- 
proach to the simple support condition, the 
measured mode shapes for the first three sym- 
metrical modes are compared to the theoretical 
mode shapes in Fig. 4. In these plots the meas- 
ured strain at two off-center locations on the 
beam is ratioed to the strain measured at the 
mldspan location and plotted as a function of 
the beam length.  The theoretical mode shape 
for the simply supported beam is a sinusoid of 
the appropriate wavelength as shown lor the 
first three symmetric modes.  Note that the 
measured strain ratios are very close to their 
proper relative magnitudes.  Thus, it appears 
that a close approximation to simple support 
conditions has been attained based on measured 
frequencies and mode shapes. 

A number of beams, constructed to be as 
nearly identical as possible, were tested in 
this experiment to evaluate individual differ- 
ences of behavior.  It was found that as far as 
frequencies were concerned, the deviation from 

Fig. 4. Comparison of calculated 
and measured beam flexural mode 
shapes 

calculations did not exceed 10 percent. Also, 
nodal patterns were in excellent agreement with 
calculations. By far the greater part of the 
differences in behavior between beams was in 
the dynamic strain response which, in turn, was 
due to relatively large differences in the damp- 
ing between the beams. 

ANALYSIS 

The test program and the data acquired 
were directed toward the comparison of the 
measured and the predicted strain response 
taking into account the detailed nature of the 
modal damping and the driving force.  The 
equation of motion for a beam undergoing a 
general time varying distributed loading is 
given by: 

EIWxxxx + P* + /3W   -   P(x,t) (1) 

where 

E = modulus of elasticity (lbf/in.2), 

I = moment of inertia (in.4), 

w s= deflection (in.), 

P = mass per unit length (lbm/in.), 

3 = damping coefficient. (lbf-sec/in.2), 

P(x,t) = ioad distribution along beam 
(lbf/in.), 

Wx = aw/Sx, and 

W =  3W/9t. 
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This equation was solved for the four cases 
corresponding to the type of driving force used 
in the tests: 

t. Sinusoidal point load, 

2. Random point load, 

3. Sinusoidal acoustic load with normal 
incidence, and 

4. Randorr acoustic load with normal inci- 
dence. 

The normal mode technique used to solve 
Eq. (1) made use of the characteristic functions 
for a simply supported beam to express the 
beam displacement response as a series [2]. 
The strain response was then obtained by taking 
the second space derivative of the displacement 
response.  For the point load cases, use was 
made of the Dirac delta function to express the 
loading as an idealized point load. 

The solutions of Eq, (1) for the rms strain 
at the midspan location for the above four cases 
are as follows: 

P(fJ 

1. Point sinusoidal load 

2. Random point load 

/        6L      \   \':^l    
Pri 

''""*   =   \Ebh2v2j    n2 i 

(2) 

ms 

h 
(3) 

3. Sinusoidal acoustic loading for normal 
incidence 

P(fn) 

\Ebh2rW \n3/ h 

4. Random acoustic loading for normal 
incidence 

(4) 

-12/2Lw/fnNPrml (5) 

where 

(f.) = root mean square strain re- 
sponse for pure mode excitation 
Onn/in.), 

L  = length of beam (in.), 

b  = width of beam (in.), 

h  = thicknetf. of beam (in.), 

n  = mode number, 

= ratio of damping to critical 
damping, 

^ = angular frequency (rad/sec), 

fn  = normal mode frequency, and 

P( f n)        = sinusoidal loading at a normal 
mode frequency (lb). 

MEASURED DAMPING 

The ability to predict the absolute strain 
magnitude at a given location on a beam under- 
going dynamic excitation depends in part on an 
exact knowledge of the total equivalent viscous 
damping for each mode of interest as well as 
how it changes as a function of the response 
amplitude. Damping was measured by the free 
decay technique since this was believed to be 
the most expedient technique available. In 
Fig. 5, a sample of the measured damping is 
shown for the first three symmetric modes of 
a beam as a function of the rms value of the 
driving force. In this plot, the damping is given 
on the vertical scale in percentage of critical 
damping and the driving force is plotted on the 
abscissa in millipounds of force.  Note that the 
damping in the first mode is essentially inde- 
pendent oi response amplitude, having a value 
of approximately 0.35 percent.  However, the 
higher modes are seen to be dependent on re- 
sponse amplitude; the second mode damping 
varies from 0.10 percent to about 0.24 percent 
for the driving force range applied, and the 
third mode damping varies from about 0.09 to 
0.20 percent. 

COMPARISONS OF EXPERIMENTAL 
RESULTS AND THEORY 

As indicated previously, a knowledge of the 
damping and driving force enables prediction of 
the strain response at any location on a given 
simply supported beam. Measured strain re- 
sponses have been obtained at the midspan lo- 
cation of the beam for the four types of dynamic 
loadings for which analytical expressions have 
been derived.  Comparisons of these measured 
responses with the analytical estimates are 
given below. 
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Fig. 5.    Measured damping for three modes 
of  test beam   as function of  driving force 

Sinusoidal Point Loading 

In Fig. 6, the strain response in micro- 
inches per inch is plotted as a function of the 
driving force in millipounds.  The measured 
and predicted strain by use of Eq. (2) is shown 
for the first three symmetric modes at the 
midspan of the beam.  Predicted strain is shown 
by the dashed curves and the experimental 
strain values are indicated by the symbols. 
The driving force in this case was sinusoidal 
point loading with a frequency corresponding to 
that of the particular mode of the beam being 
driven.  Note that the agreement between theory 
and experiment is quite good. 

Random Point Loading 

The frequency spectrum of the |x>int load- 
ing applied to the beam midspan is shown in 
Fig. 7.  Note that the spectrum is flat from 
20 Hz to approximately 800 Hz.  Strain re- 
sponses of the beam have been measured for 
the first three symmetrical modes to such a 
spectrum of force for various levels of force 
input.  These measured strain responses are 
shown in Fig. 8 along with the predicted strain 
response of Eq. (3) (modal theory) as a function 
of the mode number. Also included for compar- 
ison is the strain predicted for the first mode 
response by the well-known Miles theory [3]. 

12 5 K)        ?0 

DRIVING FORCt, RMS MIULITOUNOS 

Fig. 6. Comparison of calculated and 
measured modal strain responses of 
test beam as function of sinusoidal point 
driving force 
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Fig. 9. Comparison of calculated and 
measured modal strain responses for 
sinusoidal acoustic loading 

Note that the Miles theory is overpredicting as 
expected, being approximately 25 percent high. 
The modal theory is also overpredicting and 
varies from 7 to 15 percent above the experi- 
mentally observed strain response. 

involved because of the inherent lack of preci- 
sion associated with extrapolating an acoustic 
pressure measurement from a rigid surface to 
a nearby vibrating surface. 

Uniform Sinusoidal Acoustic Loading 

In Fig. 9 is shown the measured strain re- 
sponse and strain response predicted from Eq. 
(4) for acoustic loading of the sinusoidal type 
where the acoustic loading is expressed in milli- 
pounds of force. The acoustic loading was meas- 
ured by microphones flush mounted into a surface 
in which the beam was also mounted to provide 
baffling.  In the first mode, theory and experi- 
ment are again in good agreement, with theory 
overpredicting.  In the two higher modes, how- 
ever, this trend is reversed.  Here the theory 
seems to be underpredicting, although the gen- 
eral trend of the strain response is still pre- 
dicted very well.   Greater discrspancies will 
probably be encountered between theory and 
experiment when acoustic measurements are 

Uniform Random Acoustic Loading 

The frequency spectrum of the random 
acoustic loading is shown in Fig. 10.  A flat 
spectrum cannot be obtained with the means 
available for producing acoustic loading.  The 
beam resonance frequencies of 20, 200, and 
500 Hz are indicated on the plot by the vertical 
lines.  Note that the beam frequencies are lo- 
cated at points on the spectrum where there is 
a local minimum or where the spectrum is 
changing rapidly.   Hence, it was surmised that 
this type of spectrum would provide a severe 
test for the theory since the assumption was 
made that the excitation for each mode consisted 
of white noise with a level corresponding to that 
of the actual spectrum .'evel at the resonant 
frequency of the particular mode of interest. 
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Fig. 11. Comparison of 
calculated and measured 
strain responses for ran- 
dom acoustic loading 

The results in Fig. 11 indicate the devia- 
tion of experiment from theory for the input 
spectrum shown in Fig. 10. The data are plotted 
as the ratio of calculated to measured strain 
response as a function of the mode number. 
Note that the theory predicts the strain responst 

to within about 40 percent. The greater devia- 
tion of experiment from theory for the third 
mode may somehow be related to the fact that 
the spectrum was changing rapidly with respect 
to frequency for this mode; however, for the 
most part the discrepancies are believed to be 
due to experimental error. These results indi- 
cate that the present assumptions and approxi- 
mations used in the modal analysis schemes 
for predicting strain levels are adequate for 
strain response estimates for the simple struc- 
tures used in this experiment. 

CONCLUDING REMARKS 

A technique has been employed for the de- 
sign of simple structures to approximate sim- 
ply supported boundary conditions characterized 
by low damping.  The use of this technique on a 
simple beam has established confidence in 
modal analysis methods for providing good en- 
gineering estimates of strain levels for loadings 
ranging in complexity from simple sinusoidal 
point loading to random acoustic loading. 
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DISCUSSION 

Mr. Smith (Bell Aerosystems Co.):  Did 
you investigate how the damping of the speci- 
men «as distributed between the joints at the 
two ends, the material itself, the internal mate- 
rial damping, and the basic acoustic damping? 
I assume the test was not conducted in a vac- 
uum. Second, when you compared the responses 
for the random point loading, the analysis of 
this spectrum appeared to be coarse.  Tnis 
might account for the differences between the 
experimental and theoretical results.  Third, 
how was the random acoustic loading correlated 
along the length of the beam? It obviously plays 
a vital part, again, in the comparison between 
theory and experiment. 

Mr. Parrott:  I did not try to distinguish 
between the various components of clamping; I 
only measured the total equivalent viscous 
damping, using the logarithmic decrement, ex- 
citing the specimen sinusoidally, letting it de- 
cay, and taking the first 3 db of the record. 

Mr. Smith:  In the spectral analysis of the 
point random loading, the points on your graph 
appear to be quite wide apart in frequency. You 
are playing with three lightly damped modes, 
and your spectrum might not be as flat as you 
think it is. 

all modes of the strain resjxjnse except one and 
looked at it. 

Mr. Smith:  I assume that spectrum was 
your inp'it spectrum of the point loading. 

Mr. Parrott:  Yes,  This is a 1/3-octave 
band analysis of the force leading. 

Mr. Smith:  Your modes are very much 
less damped than a 1/3-octave analysis of your 
input spectrum could handle.  Your spectrum 
might not be flat, and this could account for the 
scatter between theoretical and measured re- 
sponses. 

Mr. Parrott:  Right, but in the experimen- 
tal analysis we centered the filter of the 1/3- 
octave band analyzer on the beam resonant 
frequency and looked with several other widths 
of filters.  It seemed that we were getting all 
the strain response in that particular mode. 
Damping may have played a part in some of our 
analysis scatter here because we measured 
damping using a sinusoidal excitation and had 
to extrapolate back to the approximate ampli- 
tudes at which we felt the specimen was re- 
sponding under random loading.   Perhaps the 
damping values are off in the region in which 
we are interested for random loading. 

Mr. Parrott:  We assumed in the calcula- 
tions that the spectrum was actually white noise 
at the point where the beam was resonating. 
We thought we could do this because with the 
low damping, less than 1 percent of critical for 
this beam, there was no intermodal coupling. 
We simply assumed all the strain response to 
be due to that particular mode; we filtered out 

Mr. flr.Uth:  The third question was the 
spatial correlation of the acoustical loading on 
the beam. 

Mr. Parrott:  The loading was normal im- 
pirgement, and we have no reason to believe 
that it was anything but unity throughout the 
total length of the beam. 
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PREDICTION OF FLIGHT VIBRATION LEVELS 

FOR THE SCOUT LAUNCH VEHICLE 

Robert B. Bost 
LTV Aerospace Corporation 
LTV Astronautics Division 

Dallas,   Texas 

A widely used technique for establishing random vibration criteria is 
based on scaling of measured vibration data by such factors as acous- 
tic sound pressure level, mass loading, and surface weight density. 
This paper pri   ents a prediction procedure developed in the process of 
establishing random vibration criteria for the Scout launch vehicle. 
The prediction procedure was designed to define the acoustically in- 
duced random vibration environment throughout the Scout vehicle by 
using the limited data sample from six vehicles. 
A transfer function relating the internal vibration level to the external 
noise level was established by use of the measured vibration data and 
the calculated external nois" levels at the point of measurement.    This 
transfer function was then used to calculate the expected vibration 
levels in each area of the vehicle from the noise level at each location. 
Statistical methods were used to establish confidence levels for these 
calculations. 
The success  jf the prediction procedure is demonstrated by comparison 
of the predicted vibration levels with measured data obtained on subse- 
quent Scout flights.   In addition, the applicability of the procedure to 
üt.;-..?r vehicles is demonstrated by comparison of predicted and meas- 
ured vibration levels for the Atlas-launched fire velocity package. 

R. B. Bost 

INTRODUCTION 

The prediction of environmental vibration 
levels for a new vehicle is a problem continu- 
ally lacing the vibration engineer.  The diffi- 
culty of this problem is only slightly mitigated 
when the engineer is subsequently required to 
modify the predicted environment on the basis 
of limited measured data obtained in the vehicle 
flight test program. 

Several methods of predicting environmen- 
tal vibration levels have been formulated by 

various investigators in the dynamics field. 
These methods are, in general, based on em- 
pirical information.  Some of the methods have 
been employed with considerable success, par- 
ticularly wl ?re the vibrations are induced 
solely by acoustic excitation.  In this case, a 
strong correlation usually exists between the 
external noise level and the induced vibration 
level, so a transfer function may be defined 
which reflects the observed correlation. 

It is the purpose of this paper to present a 
transfer function method for the prediction of 
acoustically induced random vibrations.   This 
method was developed for the Scout launch ve- 
hicle to aid in revising the vibration test re- 
quirements to simulate better the actual flight 
environment.  The method was developed from 
analysis of measured vibration data obtained 
during the boosted flight phase of six different 
Scout vehicles.  These vehicles were equipped 
with 19 vibrometers located in three of the four 
vehicle interstage structures and with sensitive 
axes in both the longitudinal and transverse 
directions. 
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The success of the prediction procedure is 
demonstrated by comparison of the predicted 
vibration levels with measured data obtained at 
different locations on subsequent Scout flights. 
In addition, the applicability of the procedure to 
other launch vehicles is demonstrated by com- 
parison of measured and predicted vibration 
levels for the fire velocity package launched by 
the liquid-propellant Atlas booster. 

REVIEW OF SCOUT FUGHT DATA 

An examination of the flight vibration data 
from the six Scout vehicles indicated that the 
maximum random vibration levels occur at a 
flight time corresponding to maximum dynamic 
pressure and are induced by the turbulent 
boundary layer surrounding the vehicle at this 
time.  These vibrations are broadband random 
in character and approximate a stationary 
Gaussian random process for several seconds 
of flight time.  These characteristics were ver- 
ified by amplitude probability density analyses 
and by autocorrelation analyses. 

Since the Scout vibration environment at 
maximum dynamic pressure arises solely from 
acoustic excitation, it was elected to devise an 
analysis procedure whereby all vibration data 
arising from this source could be considered 
as a single statistical sample.  This was ac- 
complished by the transfer function approach 
[1] which consists of relating the external sound 
pressure level to the internal vibration level 
through a transfer function.  Since the vibration 
data currently available for the Scout are quite 
limited for some portions of the vehicle, this 
was considered to afford the best estimate of 
the overall vehicle vibration environment con- 
sistent with the current data sample. 

PREDICTION OF EXTERNAL 
NOISE LEVELS 

The application of the transfer function 
method required a knowledge of the external 
noise levels existing at maximum dynamic 
pressure.  Since measured data were not avail- 
able, a prediction procedure was used to esti- 
mate these levels. 

External sound pressure fluctuations in- 
duced by turbulent boundary layers have been 
shown by several authors [2,3] to be strongly 
correlated with the free-stream dynamic pres- 
sure.  The correlation is represented by a re- 
lation of the form 

Kq (1) 

pressure, and K is a factor which may vary 
over a wide range depending on the aerodynamic 
"cleanliness" of the vehicle.  Measurements on 
the Scout vehicle [4] indicate a value of K on the 
order of 0.005.   Equation (1), written in terms 
of the overall sound pressure level (OASPL), for 
a K value of 0.005 is 

OASPL      20  IOR PR      20 lou q    .  82 du .     (2) 

relative to 0.0002 dynes/sq cm.  This equation 
is shown graphically in Fig. 1 by the curve 
labeled "conventional." 

Experimental data indicate that the corre- 
lation represented by the above equation tends 
to overestimate the magnitude of the external 
pressure levels in the supersonic region of 
flight.  The deviation from the conventional 
curve suggested by Van Houten [3] for higher 
dynamic pressures is shown in Fig. 1 super- 
imposed on the conventional curve.  This curve 
was used to estimate the Scout boundary layer 
noise levels at maximum dynamic pressure. 

The spectrum of sound pressures have 
been correlated with the Reynolds, Strouhal, 
and Mach numbers as a combined parameter 
[2] (Fig. 2). The parameters defining the co- 
ordinates of the graph in Fig. 2 are as follows; 
Co is the speed of sound at sea level; v is the 
free-stream velocity; . o and i , are the kine- 
matic viscosities at sea level and at the altitude 
of operation, respectively; and     is the thick- 
ness of the boundary layer. 

The boundary layer thickness was deter- 
mined by the flat-plate approximation [5], 

0.37L(:     VU1 (3) 

where L is the distance from the leading edge 
of the structure initiating the disturbance, and 
the quantity within the parentheses is the in- 
verse of the Reynolds number.   For these cal- 
culations, the nose of the vehicle was assumed 
to initiate the disturbance. 

The one-third octave band soand pressure 
level (1/3 OBSPL) was calculated from the sound 
pressure spectrum level (SPL) by the relation 

1 3 OBSPL     SPL  f   10 log Af (4) 

where PK is root mean square (rms) boundary 
layer pressure, q, is the free-stream dynamic 

where the SPL was established at the geometric 
mean frequency, fM   (fL f^,)1 2,and Af " fH - 'L 
is the one-third octave bandwidth. 

The application of this procedure to a 
typical Scout vehicle operating at a free-stream 
dynamic pressure of 2600 psf at an altitude of 
35,000 ft is shown in Fig. 3. 

86 



z >- 
Q 

a: 
3 

a 
z 

> 

20 SO 100 300 500 

DYNAMIC PRESSURE (PSF) 

1000 2000 

Fig.  1.    Boundary layer nc;gc external overall sound pressure level 

3 

~      -TO 

>      -30 - 

o 
o 

MODIFIED STROUHAL NUMBER (Weov<)0/v2„<>) 

Fig. 2.   Normalized boundary layer pressure spiectrum 

87 



r 

ISO 

I« 

130 

a. 

o 
5  i» 

S   „o 

100 

WTEKTAGC 
SECTION ^ ̂

: 

0 -^'^ 

1       i       ! 1        1 1       1 1       1       1 1       1 1       1 1       1       1 1       1 
SO 100 200 S00 1000 

1/3 OCTAVE BAND CENTER FREQUENCIES (CPS) 

2000 5000 
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maximum  dynamic  pressure   for  typical  Scout vehicle 

DEVELOPMENT OF TRANSFER 
FUNCTION 

The transfer function approach to the pre- 
diction of random vibration environments in- 
duced by acoustic excitation is limited prima- 
rily to the prediction of the broadband 
characteristics of the vibration.  Some authors 
[6] have used a transfer function to define the 
octave band vibration levels, while others [1] 
have attempted a finer definition by considering 
one-third octave band levels.  Both approaches 
apply an arbitrary "correction factor" to ac- 
count for possible narrow-band peaks in the 
vibration spectrum. 

The transfer function considered here is in 
terms of one-third octave band levels, but the 
appropriate correction factors are obtained by 
correlation with measured narrow-band data 
rather than by specifying some arbitrary factor. 

Details of Transfer Function 
Definition 

The one-third octave band external sound 
pressure levels in decibels relative to 0.0002 
dynes/sq cm were calculated by the procedure 
outlined in the preceding paragraphs for each 
measurement location on each of the instru- 
mented Scout vehicles.  The corresponding 

measured one-third octave band rms vibration 
levels were extracted from the acceleration 
time histories and converted to decibels rela- 
tive to 1 g rms. The difference of these two 
quantities, 1/3 OBSPL - 1/3 OBGRMS, was defined 
as the transfer function relating external sound 
pressure level at maximum dynamic pressure 
to the internal vibration levels.  These data are 
shown as a function oi the one-third octave 
band center frequencies by the scattered points 
in Fig. 4. 

A regression analysis was performed on 
these data to provide a "best fit" in the least 
squares sense.  This analysis was conducted to 
smooth the data and to provide a statistical 
basis for establishing confidence in predictions 
made from it.  Quartic regression was found to 
provide the minimum standard deviation of er- 
ror about the regression line, and this fit is 
shown superimposed on the data points of Fig. 4 
along with the corresponding 80 and 95 percent 
confidence limits. 

The external sound pressure levels shown 
in Fig. 3 were used in conjunction with the 
transfer function shown in Fig. 4 to predict the 
one-third octave band g rms vibration levels 
for a typical Scout vehicle.  The resulting levels 
were then converted to an acceleration power 
density spectrum by assuming the spectrum 
was flat within each one-third octave band. 
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Fig. 4.   Structural response to acoustic loading in one-third octave band levels 

The calculated acceleration power density 
spectra for the three Scout interstage sections 
designated "B", "C" and '15" are shown in 
Figs. 5 through 7. These spectra are based on 
the transfer function defined by the regression 
line and by the upper 80 and 95 percent confi- 
dence lines of Fig. 4. The spectra presented 
represent a smooth envelope of the spectra 
calculated by assuming a flat spectrum in each 
of the one-third octave bands. 

the measured narrow-band data. On this basis, 
the upper 95 percent confidence line of Fig. 4 
was chosen as the appropriate "transfer func- 
tion" relating the external noise levels and the 
.nduced vibration levels for each of the Scout 
interstage sections. 

APPLICATION TO OTHER 
VEHICLES 

CORRELATION WITH MEASURED 
DATA 

The calculated acceleration power density 
spectra of Figs. 5 through 7 were compared 
with measured narrow-band data to establish 
the appropriate correction factors to be placed 
on the vibration levels predicted on the basis of 
the regression line of Fig. 4.  This comparison 
is shown in Figs. 5 through 7 in terms of an en- 
velope of all of the measured data from each of 
the three interstage sections. As can be seen, 
the upper 95 percent confidence line provides 
a satisfactory envelope of all of the peaks in 

While the data presented here were col- 
lected from the Scout launch vehicle, these em- 
pirical curves have been used to predict vibra- 
tion levels for other launch vehicles where 
vibration data are available. The predicted 
levels fit the measured data with about the 
same degree of accuracy as they do the Scout 
data.  This is illustrated in Figs. 8 and 9 by 
comparison of measured and predicted vibration 
spectra at two locations on the fire velocity 
package launched by a liquid-propellant Atlas 
booster. As for the Scout data, the upper 95 
percent confidence level provides a satisfactory 
envelope of all of the peaks in the measured 
spectra. 
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Fig. 9.   Measured and predicted acceleration power density 
spectra  for fire velocity package -- aft separation ring 

CONCLUDING REMARKS 

By choosing the desired risk level (confi- 
dence line), the transfer functions presented in 
Fig. 4 may be used with reasonable success on 

other launch vehicles.  In particular, the 95 
percent level should satisfactorily envelop most 
narrow-band peaks and, hence, provide a good 
first estimate of the vibration environment of a 
new vehicle. 
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DISCUSSION 

Mr. Whiteley (Ampex Corp.): Did you de- 
velop a transfer function from acoustical noise 
to mechanical vibration? 

Mr. Bost: Yes, that is correct. 

Mr. Whiteley:  Is this felt applicable to 
various space vehicles? 

Mr. Bost:  I think it is definitely applicable 
to aerodynamically generated noise. We have 
tried it in a few cases for engine-generated 
noise, and it seems to give a fairly good corre- 
lation there also. We have tried it on other ve- 
hicles where measured data are available, and 
generally it gives a pretty good prediction of 
the maximum level. 

Mr. Whiteley:  This acoustic coupling, then, 
is felt to come through the skin.  Is it structur- 
ally or acoustically coupled on the inside ? 

Mr. Bost: It is structurally coupled. It is 
transmitted through the skin to the basic struc- 
ture. All these measurements were made on 
primary structure which was fairly heavy and 
stiff. 

Mr. Franken (Bolt Beranek and Newman): 
What is the typical diameter of the Scout 
vehicle on which the empirical procedure was 
based ? 

Mr. Bost:  It varies from about 40 to 30 in. 

Mr. Franken: With this diameter of about 
2-1/2 to 3 ft, the ring resonance would be 
somewhere around 1500 cycles.  Perhaps the 
peak in your transfer function is due to some 
cylindrical behavior which ought to be scaled 
by the diameter of the vehicle you are dealing 
with. 
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RESPONSE OF STRUCTURAL COMPONENTS OF A LAUNCH VEHICLE 

TO IN-FLIGHT ACOUSTIC AND AERODYNAMIC ENVIRONMENTS 
Khushi L. Chandiramani and Richard H. 

Bolt Beranek and Newman Inc. 
Cambridge, Massachusetts 

Lyon 

A unified system of procedures is developed for estimating some im- 
portant classes of iu-f)ight noise environments and the resulting sur- 
face vibration on a typical launch vehicle.   Noise environments are 
classified according TO the nature of the spatial and temporal corre- 
lations of the associated fluctuating pressure fields.   The structural 
elements considered are a cylinder and a flat plate.   The presentation 
is general enough to apply to orthotropic and liquid-loaded structures. 
Some numerical examples are presented for estimates ol frequency 
spectra of acceleration on the vibrating structures. 

R. H. Lyon 

INTRODUCTION 

This paper summarizes a recent study [l] 
undertaken to establish a system of procedures 
for estimating some importint classes of in- 
flight noise environments and resulting surface 
vibration levels experienced by skin segments 
of a typical launch vehicle.  The in-flight noise 
environments are estimated empirically, based 
largely on available laboratory and field data 
and well-accepted similarity arguments.  The 
procedures for response estimation draw heavily 
on the available pool of completed analyses, 
wliich have been modified to apply to vehicle skin 
segments that are orthotropic because of string- 
ers and stiffening rings or filled with liquids. 

The study results in a basic system of simple 
procedures and solutions that are comprehensive 
enough to establish some preliminary design 
specifications and intelligible enough that an in- 
tuitive understanding of t le results can be gained. 

The study was undertaken with the follow- 
ing objectives in mind: 

1.  The final estimates should be in more or 
less closed form, so that the effect of various input 

parameters can be easily appraised, and so that 
detailed calculations (such as numerical inte- 
gration or numerical solution of a differential 
equation) are not necessary for final predictions. 

2.   The input parameters themselves should 
be as few as possible and should relate easily 
to trajectory and geometric parameters. 

The above objectives dictated certain com- 
promises — for example, ignoring of variations 
in convectio." velocity and eddy decay in the 
mathematical muM for pressure fluctuations 
under a turbulent boundary layer, use of thin- 
shell theory, and ignoring of flutter-type inter- 
action between the vibrating structure and the 
exciting pressure field. 

IN-FLIGHT ACOUSTIC AND 
AERODYNAMIC ENVIRONMENTS 

Classification cf K>ise Sources 

Figure 1 presents a summary of environ- 
mental noise sources in terms o^ vehicle con- 
figuration and Mach number.   The letters in the 
figure refer to different types of noise sources. 

The noise sources can be broadly classified 
into two categories:   the acoustic noise associ- 
ated with rocket jet exhaust stream which domi- 
nates during or shortly after vehicle lift-off, 
and the aerodynamic noise which dominates 
during the rest of the trajectory. Table 1 shows 
the classification and coding of these noise 
sources.  Table 1 and Fig. 1 broadly define the 
range of trajectory and geometric parameters 
over which a particular type of environment is 
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TABLE 1 
Classification and Coding of In-Flight Acoustic 

and Aerodynamic Environments 

Flight 
Environment Mach 

No. 
Code 

Acoustic noise during lift-off — A       i 

Unperturbed and attached turbulent 
boundary layer — B 

Reparation aft of flares at subsonic 
speeds C 

Shock oscillation aft of flares at 
transonic speeds D 

Separation aft of transonic shock 
oscillation (D) E 

Shock oscillation forward of flares 
at supersonic speeds F 

Separation aft of supersonic shock 
oscillation (E) G 

Wake impingement — H 
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manifested, and the associated overall root 
mean square level pTmi of fluctuating pressure 
in terms of free-stream dynamic head q. Here 
the detailed procedures for estimating the en- 
vironmental parameters are omitted; they may 
be found in Ref. 1.   Extensive use of available 
laboratory and flight data was made for this 
purpose. 

Grouping of Noise Sources for 
Response Estimation 

For vibration analysis, it is convenient to 
group the environments in accordance with the 
nature of the spatial and temporal correlations 
of the associated fluctuating crcssure fields. 
The environments are, therefore, grouped and 
modeled mathematically. 

Environment A.  Acoustic Noise During 
Lift-Off — The sound pressure field surrounding 
a segment of the vehicle is modeled approxi- 
mately by a diffuse sound field; that is, at any 
frequency, uncorrelated plane sound waves are 
assumed to impinge with equal intensity from 
all possible directions exterior to the structure 
surface.   The pressure field acting on the struc- 
ture surface is statistically homogeneous and 
stationary in space and time, and its spatial 
correlation is Isotropie. 

The sound pressure levels of the noise field 
exciting the structure are estimated by dimen- 
sional scaling of field data; the scaling parame- 
ters are the total lift-off thrust, jet exhaust ve- 
locity, effective nozzle diameter, and overall 
dimensions of the vehicle. 

Environments B, C, E, G and H.  Turbulent 
Boundary Layer and Similar Noise Sources — We 
can assume the fluctuating pressure fields asso- 
ciated with these environments to be statistically 
homogeneous and stationary in space and time. 
However, unlike a diffuse sound field, these pres- 
sure fields show dominant propagation only in 
the direction of the mainstream flow.  An ade- 
quate representation of these environments is 
given by a simple mathematical model of a con- 
vecting and decaying fluctuating pressure field 
completely defined by the following:   a constant 
convection velocity Uc; normalized wave number 
spectra *,(!«,) and *3rk3), in the directions pa- 
rallel and transverse to the main flow; and the 
normalized "temporal" or "moving-axis" spec- 
trum *„,(•).  The combined wave number and 
frequency spectrum <Pp(k.  ) is given by 

where k is the wave number vector (kpkj), 
and P rm s is the overall mean square value of 

the pressure fluctuations. The familiar fre- 
quency spectrum measured by means of a fixed 
microphone is then p^ ♦,-(.), given by 

P^s v-) 
X (T u ♦„(k.Odk (2) 

The flow parameters that must be estimated 
for calculation of structural response are the 
bou'idary-layer displacement thickness h*, the 
convection velocity uc, pt   t and the spectra 
<t>f( o and ♦jfkj).  The displacement thickness 
: *  can be related to the distance from the lead- 
ing edge, uc can be related to the Iree stream 
velocity, and prnis ciax be related to the free 
stream dynamic head.  The shapes of ♦f(w) and 
<i>3(k3) can be obtained in terms of .' and uc. 
A dominant component of the structural response 
of airborne vehicles, as a -»suit of the excitation 
by the environments under discussion, occurs at 
"coincidence" which is the match between the 
spatial patterns of vibration on the structure 
surface and those of fluctuations In the exciting 
pressure field. In such a case, details of eddy 
decay become unimportant and one can bypass 
the necessity for specifying the spectra ♦jfk,) 
and <t>J <>)  separately [l]. 

Environments D and F.  Shock Oscillation — 
The oscillation of shock fronts is a result 
of shock/boundary layer interaction.  It is a 
relatively low-frequency phenomenon.  At 
transonic speeds the shock oscillation occurs 
downstream of the flares; at supersonic speeds 
it occurs upstream of the flares.  The empirical 
evidence for shock oscillation is obtained by 
noting that the static pressure measured near 
the mean shock-front location consists of a 
random rectangular wave with a dominant fre- 
quency [2,3]. 

For the purpose of estimation of structural 
response from environments D and F, we idealize 
the environment in the following way.  The pres- 
sure in front of and behind the shock front has 
constant values.  There is a discrete jump A   in 
the pressure across the shock front.  The shock 
front oscillates in the direction x, of the main 
flow and always remains straight in the trans- 
verse direction X3.  The displacement y(t) of 
the shock front from its mean position is repre- 
sented by a narrow-band random Gaussian proc- 
ess with zero mean, centerband frequency w     , 
and rms value a.  The statistical properties"0! 
y( t) are identical to those of the displacement 
of an oscillator of resonance frequency w   c, 
when excited by white Gaussian noise.  Note that 
the random pressure field, assumed to be asso- 
ciated with an csclUating shock front, is statis- 
tically homogeneous in time but not In space. 



For estimation of response, the parameters 
AP> 'W aiMl -' o* t*16 exciting environment are 
determined empirically by relating them to the 
flow and geometric parameters such as Mach 
number, dynamic head, ambient static pressure, 
and flare geometry. 

STRUCTURAL COMPONENTS 

We have studied various dynamic properties 
of two simple structural elements, a flat plate 
and a cylinder. To handle most situations of 
interest, these structures have been studied in 
both their finite and infinite form, and in their 
Isotropie as well as orthotropic form. We have 
considered also the case where a liquid (inside 
the cylinder or on one side of the plate) forms 
an integral part of the structure.  Here we pre- 
sent some of the major results. 

Infinitely Extended Structures 

When the exciting pressure field is statisti- 
cally homogeneous over the surface of the re- 
sponding structure and when the structure bound- 
aries or the discontinuities on the structure 
surface do not play a significant role, it is 
worthwhile to exploit these simplifications by 
considering an infinitely extended model of the 
structure. 

Infinitely Extended Isotropie Cylinder or 
Plate — Consider vibration (in the radial direc- 
tion) of an infinitely long, Isotropie, thin cylin- 
drical shell of radius a, thickness h, and sur- 
face mass density Let i3 be the axial 
and circumferential coordinates.  The resonance 
frequency - for a vibration pattern with wave 
number k = (kj.kj) on the cylinder surface is 
found to be given by the resonance condition, 

accounted for in the simplest possible way; the 
influence of shear deformation and of axial and 
tangential inertias is neglected.  In spite erf 
these approximations, the final result has been 
found to be quite accurate, especially for thin 
cylinders with thickness-to-diameter ratio of 
10 2 or less [4]. 

If we think of the resonance condition of 
Eq. (3) in terms of energy functions, the kinetic 
energy of the vibrating structure is propor- 
tional to v2, the contribution to the potential 
energy from the bending stresses is propor- 
tional tor4, and the contribution to the potential 
energy from the membrane stresses is propor- 
tional to cos4- . The resonance condition for an 
infinite flat plate can be obtained by simply 
omitting the term cos4e in Eq. (3), since the 
effect of curvature and resulting membrane 
stresses is absent in a flat plate. 

The loci of constant resonance frequency v 
in the wave number plane (t.e) are shown in 
Fig. 2. In the membrane region of the (r.f) 
plane, cos 0 is larger than r; hence membrane 
stresses dominate and the resonance condition 
becomes approximately 

.2.: (8) 

The resonance loci in the membrane region are 
thus radial straight lines.  In the bending region 
of the (r.r) plane, r is larger than cos t1; 
therefore, bending stresses dominate, the cylin- 
der responds like a flat plate, and the resonance 
condition becomes approximately 

(9) 

The resonance loci in the bending region are, 
therefore, circles. The boundary between the 
membrane and bending regions is given by 

(3) cos  0 (10) 

where ^ and (r.O) are the dimensionless fre- 
quency and wave number defined as 

and 

Here, 

va c f , 

kC-a)1   2 , 

!kl . (k.^k/)' 

tan (' kj/k, 

(4) 

(5) 

(6) 

(7) 

h \l2 is the radius of gyration and 
Cf is the velocity of longitudinal waves in the 
cylinder material. In deriving Eq. (3), the in- 
fluence of bending and membrane stresses is 

Infinitely Extended Orthotropic Cylinder or 
Plate — For analyzing an orthotropic structure, 
the inertial, extensional, and bending properties 
of the structure are averaged over the sources 
of its orthotropy, such as axial stringers and 
circumferential stiffeners in the structure. The 
average properties thus defined are valid for 
vibration with wavelengths larger than the spa- 
tial extent over which the structural properties 
are averaged. 

The averaged surface mass density enters 
into the kinetic energy of vibration.  The aver- 
aged extensional and bending rigidities of the 
structure (these can be different in the axial and 
circumferential directions) enter, respectively. 
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Fig. 2. Loci of constant resonance frequency in the 
dimensionless wave number plane (T.G), isotropic 
cylinder 

into the components of potential energy con- 
trolled by the membrane and bending Presses. 
The description of the resonance loci in the 
wave number plane is qualitatively the same as 
that for the corresponding isotropic structure 
[1]. 

Infinitely Extended, Liquid-Loaded Cylinder 
or Plate — We consider only the liquids whose 
sound velocity exceeds the phase velocity of vi- 
bration on the structure surface.  For such 
cases, no net energy is radiated from the vi- 
brating structure into the liquid, and the im- 
pedance offered by the liquid pressure to the 
structural vibration is inertlal.  The mass 
loading m f per unit surface area owing to the 
liquid is approximately given by 

p0/k (11) 

where pn is the liquid density and k is the mag- 
nitude of the wave number of vibration on the 
structure surface. 

This additional mass loading effect can 
easily be incorporated into the dynamic prop- 
erties described above for the "empty" struc- 
tures.  This liquid mass loading, in general. 

tends to reduce the resonance frequencies and 
suppress the membrane effects induced by the 
curvature.  For example, if the isotropic cylin- 
der shown in Fig. 2 were filled with a heavy 
liquid, the resonance loci in the membrane 
region of the (T.O) plane would no longer be 
radial straight lines; the loci would tend, rather, 
to be extensions of the circular resonance loci 
in the bending region, thus reflecting the sup- 
pression Os. the curvature-induced membrane 
effects. 

Structures of Finite Extent 

When the excitation field is not statistically 
homogeneous ever the surface of the responding 
structure, or when the discontinuities such as 
the structure boundaries are expected to play a 
significant role, it becomes necessary to con- 
sider the modal representation of the finite 
structure.  Often, the analyses performed on 
highly idealized structui es with simple bound- 
ary conditions yield concepts (and answers) 
powerful enough to find application in more 
general situations. 

Modal Representation for Finite Cylinder 
or Plate — Consider a rectangular plate of 
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dimensions ( i»  "-a» simply supported along its 
edges. The flexural vibration at the plate can 
be resolved into a double infinity of its orthog- 
onal modes.  The spatial pattern 4m„(x) of the 
mode (m.n) of this series is given by 

^(K)  -   sin (ovrjc,/^,)  sin (nvx^lj) ,      (12) 

ll» »3 are the coordinates parallel to /,, 
The 

where 
and ti, and m.n are positive integers. 
modal wav"? number k associated with the mode 
(m.n) is gi ?nby 

k   -   (k^kj)   -   (mWlt, nv/l3) (13) 

This is the dominant wave number correspond- 
ing to the spatial pattern of Eq. (12). la other 
words, the spatial Fourier transform of Eq. (12) 
would peak at the wave number k given by Eq. 
(13). The larger the dimensions -t, and l3 of 
the plate, the sharper this peak in the Fourier 
transform will be, until in the limit the peak 
approaches a Dirac delta function for an infinite 
plate. 

For a cylinder, odd numbers of half- 
wavelengths of vibration along the circumfer- 
ence are not possible.  However, for every even 
number 2n of half-wavelengths along the cir- 
cumference, two independent modal shapes must 
be specified.  Thus, for a cylinder of length ', 
and circumference t3t simply supported along 
its edges, the modal shapes 4'mn(%) are 

;<mn(») sin (niTTx,  ^j)   sin (2nrT\}/ij). 

and (14) 

•l'~J*) sin (HITTX.   M  cos (2nTTi,   '   ) 

The structures we have considered are 
simply supported along their boundaries.  The 
resonance frequencies of their modes are, 
therefore, related to the associated modal wave 
numbers by the resonance conditions (such as 
Eqs. (3), (8), (9)) for the corresponding infinite 
structures. 

Modal Densities for Finite Structures — 
Modal density n(w) is defined as the numbe   of 
modes whose natural frequencies lie in a unit 
radian frequency bandwidth around frequency «. 
The simplest way of calculating modal densities 
is to represent the structural modes as a lattice 
of points in the wave number plane k, where the 
location of each mode is determined by its as- 
sociated modal wave number.  By considering 
the geometry of the resonance loci in the k plane, 
we can easily calculate the modal densities [1,5]. 

Calculations show that for an Isotropie cyl- 

modal density increases with frequency.  It at- 
tains its peak value at the ring frequency and 
maintains a constant value, roughly two-thirds 
of the peak value, above the ring frequency. 
This constant value of modal density above the 
ring frequency applies also to a flat plate of the 
same area as the surface area of the cylinder. 
As noted before in connection with Eqs. (3), (8), 
(9) and Fig. 2, above the ring frequency  »t (i.e., 
i  > l), a cylinder is dynamically equivalent to 
a flat plate. 

Detailed calculations of the modal density 
for orthotropic and liquid-loaded structures 
are reported in Ref. 1. 

STRUCTURAL VIBRATION INDUCED 
BY ACOUSTIC AND AERODYNAMIC 
ENVIRONMENTS 

Response of Cylinder or Flat Plate to 
Turbulent Boundary Layer Pressure 
Field (Environments B, C, E, G, or H) 

Consider a turbulent boundary layer (TBL) 
pressure field over an Isotropie cylinder, the 
pressure field being convected along the gen- 
erators of the cylinder.  Figure 3 shows the 
geometry of the situation in the wave number 
plane k for three different frequency ranges. 
At each frequency ^, most of the excitation 
from the TBL pressure field is shown to be 
concentrated in a narrow strip centered around 
k, = fVlJc, where k, is the wave number in the 
flow direction and Uc is the convection velocity. 
The width of this strip in the k, direction de- 
pends on the eddy decay time or the temporal 
spectrum *m(^) (see Eq. (1)).   As shown in Fig. 
3, this "excitation strip" divides the wave num- 
ber plane into regions of hydrodynamically 
slow (HS), hydrodynamically coincident (HC), 
and hydrodynamically fast (HF) modes.   These 
modes are defined by the tra^e in the axial di- 
rection of the phase velocity of vibration at 
frequency w.  The trace velocity for a HS mode 
is less than Uc.  The HF and HC modes are 
defined similarly. 

The three frequency ranges represented in 
Fig. 3 are defined by the two critical frequen- 
cies, the ring frequency , rJ and the hydrody- 
namic critical frequency MK , defined as "-h > 

UJVKC (15) 

inder, below the ring frequency Cf/a, the 

Almost invariably, the hydrodynamic critical 
frequency is higher than the ring frequency for 
structures of current interest.   For ■•> < oh, the 
strip of excitation in the wave number plane 
intersects the resonance locus (Figs. 3b and 3c); 
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VARIATION OF <I>pik.w) 

IN  THE k   DIRECTION 

BENDING 
CONTRIBUTION 

(O 5 

Fig. 3. Resonance loci and domain of 
excitation in the wave number plane, 
isotropic cylinder,   TBL pressure field: 
(a) -o -   .h, (b) .r <   j <   ,h, and (c) „• < -^ 

for "-h» it does not (Fig. 3a).  For V 
only the bending stresses are dominant and the 
cylinder behaves like a fiat plate (Fig. 3b); for 
M < üT, both the bending stresses and the mem- 
brane stresses become important (Fig. 3c). 

In the wave number plane, the domain of 
excitation at any frequency is quite narrow and 
sharply defined; therefore, the HC modes find 
the best spatial match or coincidence with the 
excitation field.  The excitation of the HS and 
HF modes arises from relatively secondary ef- 
fects.  The first of these effects is the result of 
the extension, or "tail," of the excitation field 
beyond the narrow strip defining the coincident 
region in the wave number plane.  These tails 
of the excitation field (see the variation of 
<!y k.  o in Fig. 3a) are governed by the tem- 
poral fluctuations, that is, the spectrum <t>m( J), 
of the pressure field in the TBL.  The second 

effect is due to the finite extent of any real 
structure.  If the structure Has many edges and 
discontinuities (i.e., a small mean free path), 
the edge effects will contribute to some coupling 
with the excitation field. 

For the situation considered in Fig. 3a, the 
frequency * is higher than the hydrodynamic 
critical frequency.  Any resonant response of 
the structure at this frequency must arise from 
the secondary effects described above.  In this 
frequency range, most of the resonant response 
is controlled by the temporal spectrum Qjv), 
the contribution from the edge effects being 
relatively negligible [6].  Below the hydrody- 
namic critical frequency vh, the dominant struc- 
tural response is not only resonant but also 
coincident, and is caused by the interaction be- 
tween the exciting pressure field and the struc- 
tural modes that lie in the wave number plane 
near the intersection of the resonance locus and 
the excitation strip (Figs. 3b and 3c). 

For the noncoincident and resonant re- 
sponse above  -h where response is controlled 
by 4>j ■), as well as for the coincident and 
resonant response below ^ , the interaction be- 
tween the pressure environment and the appro- 
priate structural modes is characterized by the 
matching of the wave numbers in the pressure 
field and the modal wave numbers.  This inter- 
action takes place over the entire surface of 
the structure and is more or less independent 
of the edges.  Therefore, we can simplify the 
calculations for power transfer and vibration 
response by considering a corresponding struc- 
ture that is infinitely extended or "edgeless." 

The following general procedure is used to 
calculate the vibration response of structures 
excited by a TBL or by similar convecting-and- 
decaylng pressure fields.  Consider the corre- 
sponding edgeless structure.  In different fre- 
quency bands, find the mechanical power that 
the fluctuating pressure field transfers to the 
structure via the matching wave numbers of 
vibration at resonance.  Equate this power input 
to the power dissipated as a result of the struc- 
tural vibration.  (The power can be dissipated 
inside the vibrating structure as well as into 
the surroundings.) Solve for the velocity spec- 
trum of structural response.  The resulting 
estimate pertains to resonant vibration aver- 
aged over the surface of the structure.   Thij 
technique has been successfully applied to 
isotropic, orthotropic, and liquid-loaded cylin- 
ders and plates [1]. 

We omit the mathematical details and pre- 
sent only the results of a typical calculation. 
Figure 4 shows the spectrum for resonant ac- 
celeration of an isotropic cylinder excited by 
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Fig. 4.   Response of cylinder to  TBL pressure field 

a TBL pressure field.   The cylinder is 25 ft in 
diameter, 200 mils thick, and has a dissipation 
loss factor of 0.01.  The boundary layer pres- 
sure fluctuations have a mean convection veloc- 
ity of 1250 fps with a free-stream velocity of 
1800 fps.  The boundary layer displacement 
thickness is 0.25 ft.  The response spectrum is 
calculated up to the hydrodynamic critical fre- 
quency fh.  For the empty cylinder, the re- 
sponse is seen to peak at fh and at the ring 
frequency f r.  When the same cylinder is filled 
with a liquid of specific gravity (, the liquid 
mass loading brings down the response levels 
and suppresses the membrane effects as well 
as the peak at the ring frequency. 

Response of Cylinder or Flat Plate to 
Diffuse Sound Field (Environment A) 

Consider a diffuse sound field impinging on 
the exterior of an isotropic cylinder.  Figure 5 
shows the geometry of the situation in the wave 
number plane k fcr three different frequency 
ranges.  At each frequency w, the excitation 
from the diffuse sound field is shown to be re- 
stricted to wave number magnitudes ranging 
from 0 to ka - Wc, where c is the sound speed. 
This region is shown as a shaded quarter-circle 
in the wave number plane.   The structural modes 
situated in the wave number plane inside this 
shaded circular region are acoustically fast (AF) 
modes, those situated outside are acoustically 
slow (AS) modes.  The magnitude of the phase 
velocity of vibration at frequency M of an AF 
(AS) mode is higher (lower) than the sound ve- 
locity c . 

The three frequency ranges represented in 
Fig. 5 are defined by the two critical frequen- 
cies, the ring frequency ■JT , and the acoustic 
critical frequency ^ , defined as 

-c     c
2.cf. (16) 

For most structures of interest,   ,    > ,J . 
At a frequency w > üC (Fig. 5a), all the resonant 
modes of the structure find a good spatial match 
or coincidence with some wave number compo- 
nents of the impinging sound field.  The resonant 
vibration here is controlled by the bending 
stresses or the flat-plate behavior of the struc- 
ture.  At a frequency .> < ,;r (Fig. 5c), only some 
of the resonant modes that are controlled essen- 
tially by membrane stresses are coincident. 
Thus, for the situations depicted in Figs. 5a and 
5c (namely, u > a;c, and w < a>r}, the dominant 
structural response arises from the surface 
interactions between the environment and the 
resonant and coincident modes.   The vibration 
analysis in these frequency regimes can, there- 
fore, be performed equally well on an infinitely 
extended or edgeless structure.   In the inter- 
mediate frequency range, ^ < , < ^r (Fig. 5b), 
a fairly important frequency range, no coinci- 
dence or surface interaction is possible be- 
tween the resonant modes and the sound field. 
Any interaction causing resonant response in 
this frequency range must arise from the effects 
due to the boundaries and discontinuities on the 
structure surface.  The analysis on the corre- 
sponding infinite or sd^elers structure would 
give zero resonant response in this frequency 
range. 

f 
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— AF RESONANT  MOOES 

AS RESONANT MOOES 

AS RESONANT MODES 

Fig. 5. Resonance loci and domain of 
excitation in the wave number plane, 
isotropic cylinder, diffuse sound field: 
(a) ■•      .   , (b)   ■ ■        . and (c) , ■   , 

Response calculations for excitation Irom 
a diffuse sound field are based on a modal ap- 
proach, so the size, boundaries, and discon- 
tinuities of the structure can be taken into con- 
sideration.  The interaction between the sound 
field and different classes of modes over the 
surface, perimeter, edges, and corners of the 
structure can be expressed in terms of coupling 
parameters, which, in turn, can be related to 
the radiation efficiencies of modes.  These cal- 
culations have been successfully completed for 
isotropic, orthotropic, and liquid-loaded cylin- 
ders and plates [1,7,8].  The vibratlonal energy 
of a structure is dissipated partly by radiation 
into the surrounding acoustic medium; there- 
fore, the radiation efficiency, in addition to de- 
termining the extent of coupling between thv. 
structural modes and the sound field, modifies 
the total dissipation loss factors of modes.  Our 
approach is to calculate the response of a single 
mode to a diffuse sound field, and then extend 
the concepts to include groups of structural 
modes resonating in different frequency bands. 

Again, we omit the mathematical details 
and present only the re&ults of a typical calcu- 
lation.  Figure 6 shows the spectrum for reso- 
nant acceleration of an isoiropic cylinder ex- 
cited by a diffuse sound field.  The cylinder is 
30 ft long, 25 ft in diameter, 200 mils thick, and 
has a structural dissipation loss factor of 0.01. 
In the response calculations, this loss factor of 
0.01 is increased slightly by the addition of the 
effective radiation loss factor.  The accelera- 
tion spectrum for a cylinder with discontinuities, 
shown in Fig. 6, is calculated for the case where 
line sources of discontinuities are spaced 5 ft 

40 63 100        160       250       400      630       1000      1600     ?SOO    4000    6300     IQjOOO   16000 
32 50 80 125        200       320       500       800       1250      2ÜO0      S200     5000     800O     12,505 

ONE-THIRD  OCTAVE  BAND CENTER  FREOUENCy  IN  Hz 

Fig. b.   Response of cylinder to diffuse sound field 
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apart, along the axial and circumferential direc- 
tions of the cylinder.  As we noted before, the 
response at frequencies above the acoustic criti- 
cal frequency fc and below the ring frequency 
f r  is dominated by the surface interactions and 
is, therefore, hardly influenced by the presence 
or absence of structural discontinuities, edges, 
or boundaries.  However, between the ring fre- 
quency and the acoustic critical frequency, the 
edge coupling is important and the response 
level depends on the mean free path of vibration 
or on the ratio of sti uctural surface area to 
total length of the edges.   The discontinuities 
reduce the mean free path and increase the 
resonant response. 

Response of Cylinder or Flat Plate to 
Oscillating Shock Front (Environment 
Dor F) 

As explained before, the pressure field as- 
sociated with an oscillating shock front is not 
spatially homogeneous.  When a shock front 

over a structure surface undergoes a random 
oscillatory motion, the portion of the structure 
near the mean shock position experiences a 
fluctuating pressure field.   Consequently, energy 
flows from the environment into the structure 
in this localized region, and the resulting vibra- 
tion is transmitted to the other parts of the 
structure.  Since the structural vibration is 
derived from a localized source of excitation, 
t       :bration level averaged over the structure 
SU*    -e clearly depends on the extent of the 
structure.  Also, shock oscillation frequency is 
generally found to be quite low (20 to 100 cps). 
As a result, only a few lowest order modes of 
the structure determine the vibration response. 
These facts dictate consideration of a finite 
structure with well-defined boundary conditions 
and estimation of Individual modal response for 
the first 5 or 10 modes.  Thus, in this case, 
statistical concepts (like modal density) cease 
to apply to the very few modes involved.   The 
statistical concepts can, however, be applied to 
the random oscillatory motion of the shock front. 
Details of the response estimation for oscillat- 
ing shock are given in Ref. 1. 
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DYNAMIC VIBRATIONS OF THICK-WALLED 

ELASTIC ANISOTROPIC CYLINDERS AND 

SPHERES WITH INTERNAL DAMPING* 

Gabriel Cinelli 
Argonne National Laboratory 

Argonne,  Illinois 

A new finite Hankel transform is used to find the transient displacement 
and stresses in thick elastic cylinders and spheres composed of mate- 
rial with transverse curvilinear isotropy and internal viscous damping 
for the following problems:   (a) plane strain motion of an infinitely long 
circular cylindrical shell, (b) torsional motion of a finite circular cy- 
lindrical shell, and (c) radially symmetric motion of a spherical shell. 
The dynamic loads on the surfaces arc taken as arbitrary functions of 
space (torsional case only) and time. 

It is shown that the problems of the solid body, the thin shell, and cavity 
in an infii;'i_ medium can be obtained from the thick shell solution as 
limiting casos.   Specializing the surface tractions to standard forms 
such as an impulse or a sinusoid, the free, harmonic, and static mo- 
tions are recovered.   Physical quantities such as resonance and me- 
chanical impedance are derived and studied.   Using the displacement 
equations, it is shown that the radially symmetric motion is analogous 
to the plane-strain motion of the cylinder.   The results for isotropic 
bodies are found by specifying certain values for the elastic constants. 

An extended Weber transform is also introduced, permitting solution of 
infinite media problems in a manner which is more direct than existing 
techniques. 

G. Cinelli 

INTRODUCTION 

In recent years considerable effort has 
been expended on study of dynamic wave propa- 
gation and vibration in elastic isotropic bodies 
of finite and infinite dimensions.  In contrast to 

this has been the small amount of work done 
regarding elastic anisotropic bodies, although 
many materials of practical interest are of this 
nature.  What work has been accomplished is 
mostly harmonic wave propagation and vibra- 
tions.  Very few transient problems have been 
solved, especially for finite regions. A good 
review and evaluation of the field is given by 
Harmon [1] and Scott and Miklowitz [2]. 

For some classes of anisotropy and axes 
orientation, the equations of motion of an elas- 
tic solid admit plane strain and torsional solu- 
tions.  These are the class of problems studied 
in this paper.  The purpose of this study was to 
determine the transient displacement and 
stresses in elastic bodies of material with 
transverse curvilinear isotropy :nd viscous 
internal damping for the following problems: 
(a) plane strain motion of a thick infinitely long 

Work performed under the auspices of the U.S. Atomic Energy Commission. 
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circular cylindricaJ shell, (b) torsional motion 
of a finite thick circular cylindrical shell, and 
(c) radially symmetric motion ot a thick spher- 
ical shell. The surface loads in these problems 
are taken as arbitrary functions of space (tor- 
sional case only) and time. The only previous 
work on such problems has been that by Eason 
on harmonic loads [3j. 

The paper is divided into five parts.  The 
first section I-its the pertinent finite and infi- 
nite transforms use', «j solving the various 
problems.  The second portion treats in consid- 
erable detai1 the plane strain motion of the cy- 
lindrical shell.  The general solution is obtained 
by means of a finite Ilankel transform [4].  By 
specifying certain values for the elastic con- 
stants, the solution for the Isotropie body is 
given.  Next the cases of the solid body and the 
tiün shell are shown tc be limiting cases of the 
thick shell solution.  An extended Weber trans- 
form is then introduced which solves the prob- 
lem of a cylindrical cavity in an iminite medium. 
The surface tractions are specialized to stand- 
ard forms, such as step function and sinusoid, 
which enable the free, harmonic, and static mo- 
tions to be recovered as special cases.  Physi- 
cal quantities such as resonance and mechanical 
impedance are then derived.  In the next section, 
it is shown that the radially symmetric motion 
of a sphere is analogous to the plane strain 
problem wtüch enables the solutions for the 
sphere to be obtained directly from those in the 
plane strain problem.  The general solution for 
the torsional motion of the finite cylindrical 
shell is given in the fourth part.   Finally, the 
results and conclusions of the study are pre- 
sented. 

TABULATION OF TRANSFORMS 

The various transforms and their proper- 
ties are listed in this section to make the paper 
self-contained.  In these formulas, a bar over a 
lower case letter indicates the transform vari- 
able, whereas a prime on a letter indicates 
differentiation. 

Extended Finite Hankel Transform [4J 

{(r) 
2 

T L iJ.'f -':!>) 

kj   ( '.U).2   f( 
*".<-".) 

(3^ 

F.fVi) k2* Z*[1'  (^b)2])'^^*^^^ 

■t-y-n .T'( -:b) - k.T,( f.b) 2. (4) 

where - ^  is a positive root of 

*   kYj-'il.) 

Idr2       r  dr       r2     > 

V-'i'^kJj-jb);    -ity-'ib) 

,]'( -ja)   •   hj   (    .aK .    (5) 

Uyj:ih)   tl!J:(  ^i1'^ 

if To) • kf(b) f (a) <■ bUa) f(-;>.     (6) 

Extended Weber Transform 

Hif(r), 7      7( i)        |     rf(r)  C:(r, i) cir' 

a   _   r   ■    ■.    r    •   - 1   2 

C (r, O JjiDl IY'J ia)   •   UY ( -.a)' 

-  Y.( -r)   i ij'j ia)   t   hj^ ia)]  . 

if( i) C (r. ■■) (I > 
frr) f -— 

lj,(<a)' •iYV.a)<hY,Oa)] 

(7) 

(8) 

(9) 

Icir2      r  (Jr      r2 
ir if'dt) • liffa)l --  :2U i). 

(10) 

H(f(r)l ((--,) rf(r)  C.Xr, -j) dr Finite Hankel Transform [5] 

a   1  r   <: h,   i    --12,   (1) 
Hff(r)] f       f( .* r rf(r)   J,(    .r)  .Ir 

1), 12.  (11) 
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!-?/     ...     /..     _^    Jj^b); (12) 
•u b,   t   > 0. 

(18) 

where    . is a poEitive roo: of 

jj.'f-.b)   •  kj., -jh.      0 (13) 

/(l2f     ' i]<       2   \ H(--i . ; iL - _ ,-       bj (:ib)!f'(b) ♦ kf(b)i 
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F'nite Cosine Transform 

Cffx)!     !     ffn) f^x)  cos ^^-^ cix.   n    0.1.2. a 

(15) 

f(x)       1 f(0)  * -?   y"   V(n!  cos ~  ,     (16) 
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'u u 
^2-'    C22- 

(19) 

(20) 

where 

Jt. '6 = radial and circumferential 
stress components, respectively; 

u = radial displacement of cylinder; 

t' = density of elastic medium; 

ciici2c22 = elastic constants; and 

D = viscous damping coefficient. 

Putting Eqs. (19) and (20) into Eq. (21) gives 

lu   t   1 £U .Li üiii + _L ^    (21) 

where 

In these formulas thfe following notation holds: 

J!. Y,   = Bessel functions of ♦he first and 
second kind, respectively, and of 
order : ; 

H.c = linear integral operators; 

a,b = inner and outer radii of shell, 
respectively; 

h.k = constant coefficients whose value 
can be positive, negative, or zero; 
and 

f = arbitrary function. 

: 2 ^  • (22) 

Equations (2), (3), and (21) can be transformed 
into the following nondimensionalized coordinate 
system as 

ÜH + 1 iü - ü! u z .aiy + c iü 
.1.2 /•   *P >r2 

p    r   _ 

1   < ^ <p,     T  >0. 

(23) 

(24) 

PLANE STRAIN MOTION OF AN 
INFINITELY LONG CIRCULAR 
CYLINDRICAL SHELL 

The basin equations of motion for the ra- 
dial vibrations of an infinitely long cylindrical 
shell witii transverse curvilinear isotropy and 
internal viscous damping are: 

avD 

B1)' 
V 

I1' 

(25) 
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a .        . -u      "- 12 u 
    Ojf'.T) —   *  
c,,      * \l       C ..   f 11 11 

(26) 
The solution to Eq. (33) via the Laplace trans- 
form and Eq. (28) is 

,(/.T) 
du *- 22   u 

''     *    C12   ' 

(27) 
Ü(--;.r) 

,(--») 

The appropriate initial conditions are 

uO^.O)   ^   f(.) . 
(28) 

du ü(, .0)  --   RO ) 

the boundary conditions are 

Opip,') B(r) 

„( 1. ? )    =    A{ - ) . 

(29) 

The appropriate transform for the solution 
of this problem is, from Eq. (1), 

üfc'i.T) - |   .u(. .T) cy, .-"^dp.     (30) 

Define 

ifiJ^Cj)   *   hJ^Cj)] 

l-jJ^f.p)  ♦  kjjcjp)! 
•Jp.v) ■Jl.v)l 

sin  -(T-V)  dv  +   f(C-)  e        '     cos 

    e sin  - t . 
(35) 

• C(..f.)dp. (36) 

.n/r^^    ^VT^T5 

The solution for the displacement is, from 
Eq. (3), 

u(..o      ^ E V  -J^-P) 

(37) 

(31) 

c.jP       P  ■ 

Applying Eq. (30) to Eq. (23) and using Eqs. (6), 
(26), (29), and (31) gives 

<l ii      _ du       . 7 _ 
   k  C -r- +   -     u 
A,2 ''• 

2a 
;c 11 

^ij:^i) * hj.i^)] 

ii^J't -P)  * kJ^fiP)] 

•fp, O -   \n.)| •     (32) 

• ^^^'2^-i^
c-r0-(38) 

When the relationships given by Sneddon [5] are 
used, 

<iz 
z  - z (39) 

z AI    *  BY. (40) 

The stresses found from Eqs. (26), (27), and 
(38) are 

By following standard techniques, Eq. (32) can 
be rewritten as 

d\i du        2 2a f   I^J^:,) 'KUf;)! 
[fiJ^fiP) »kJ^^p); 

(P. o -  ■ (1.  ) 

c c CR 

CCR        2 

n i 

;    (33) 

(34) 

2a. 
Y  VlV££iPJ ' kj/f.p)] 2 u( f j . r) 

jC./'-'i)- c.^C^.C,,^) 

(41) 

rc>1 ' -r  c.^'-i'-^j-c+l(, fj) (42) 
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EquationF (35), (38), (41), and (42) represent 
the general solutions to the basic equations. 

The case of the Isotropie solid is obtained 
by defining the elastic constants as: 

II L2J (43) 

The transform for this case is from Eq. (11) 

■ 
ü     üfCj.T)   =   f  pu(p,t.) Cjp.t^äp. (48) 

o 

Applying Eq. (48) to Eq. (46) and uuing Eqs. (14), 
(31), and (45) gives 

d 2u      ,, r       du 2 - jg^ij 
 r ♦  2','>   -T- +   »i    U          
Ar* n  dr " c. 

a/l.r),   (49) 

The general solutions then reduce to those in 
Ref. 6. 

The thin shell solution is contained in 
Eqs. (35) and (38).   Using Eq. (38) and taking 
the difference between the displacements at the 
surfaces gives 

I.(P.   )-u(l.)    —Y. "'iJ'"',J'(->^ M^fiP)!2 

where '..-•„ are as defined by Eq. (34). The 
solution to Eq. (49) is 

u( j.')        I   e ~ (1 .v) sino,^T - v)dv 
cil'    J 

t f( -. ) e       n   cos urr +  e    "  sin^'T. 
1 JJ 

(50) 

iK-':.') 

fMO ic^p.f^-c^i.fj); 

(44) 

As p approaches one, the difference in the 
bracket in Eq. (44) goes to zero.  Hence, the 
usual assumptions of shell theory apply here, 
thereby showing that the general solutions hold 
over the range of shell thicknesses from very 
thin to very thick. 

The solid cylinder is obtained by letting 
the inner radius approach zero.   The initial 
conditions are those of Eq, (28), but the bound- 
ary conditions become 

AP ,T)    =      —  t (45) 

For this case the nondimensicnalized form of 
Eq. (21) is 

—  4  — u +  C — ,     0 ^ ,  •  1, 
.2        r  .' ? .,2 ,W ^      ~ 

r 
b 

t , 
b 

bvD 
cii 

0; 

(46) 

(47) 

fff:)        r1     UP) 
p) dp . (51) 

where     is as defined in Eq. (37).  The solution 
for the displacement is obtained from Eq. (12) 
as 

u^)-2£-lil^L    i^_..(52) 

The corresponding stress is found from Eq. (45). 

The case of the cavity in an infinite me- 
dium is solved by using the extended Weber 
transform.  The basic equations, Eqs. (23) 
through (28), remain the same. The boundary 
conditions now become 

,(1,T)   =   A{r) , 

lini  iT (* , T) -• 0 

(53) 

The transform for this case is 

ü     ü('.0   ^   j   PU(P.T) cv(p.<i)dp.     (54) 

Applying Eq. (54) to Eq. (23) and using Eqs. (10), 
(26), (31), and (53) gives 

d2u       „ du 
dT 

2a 

'7C 11 
Jl.T) (55) 
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The solution to Eq. (55) is 

T 

dv 

»f?/   ^ . 2ga)tCf(a)    . ] f(a) COS^T ♦  sin 'T 
L 2u> } 

-C/2\- 
+ e I ffa) cosier 

((P) 
P C (p.a)dp 

1/ 2 

(56) 

(57) 

(58) 

From Eq. (9) the displacement is 

f° aü(a,T)  0^(^.0) da 

(59) 

The corresponding stresses are found from 
Eqs. (26) and (27). This problem has also been 
solved [7] using the Laplace transform. The 
advantage of the solution given here is that the 
complex integration used by Eason is avoided. 
However, it remains true that for most cases 
the integral in Eq. (59) must be evaluated 
numerically. 

Returning to the thick shell, the surface 
tractions are now specialized so that particular 
cases of interest can be studied.  Setting the 
surface tractions in Eq. (28) equal to zero, 
that is, 

°p(p.-r)  --  OpO.-O - o. (60) 

gives the solution for free vibrations.  Har- 
monic vibrations are studied by specifying the 
surface loads as follows: 

ap(l,7)   =   -Ac 

%(P.-0       HP)  '-   g(p)  =  0 

(61) 

Putting Eq. (61) into Eq. (33) and solving for a 
gives 

2aA 
i(<jT-<*n) 

II "n 

('■f^M; (62) 

2^ 

tan (63) 

Resonance is obtained by letting ü - u>n in Eq. 
(62), which gives 

'RES 
2aA      „     «(« r-o/i) 

J   'n" 

2; 

(64) 

(65) 

where On is the "magnification factor" for each 
mode. Static motion is then found by letting <. 
approach zero in Eq. (62) which gives 

2aA 
JST 

11   n 

(66) 

By using Eq. (66), Eq. (62) is rewritten as 

i(«T    .   A     ) 
U 

2 ST 

■v n  ' » n' 

(67) 

Equations (61) through (67) show that under 
harmonic excitation each normal mode of the 
shell responds very much like a single degree 
of freedom with viscous damping   Another form 
of the harmonic solution which has practical 
use is the transfer function or the ratio of the 
displacement to the surface load ap( l. r >.   By 
using Eqs. (38), (62), and (67), it is easily shown 
that the transfer function is 

-'*„ 

(-^■•K)' 
Tl/2 'ST 

(68) 

Equation (68) clearly shows the interrelation- 
ship of the static displacement, driving force, 
and shell response. Mechanical impedance is 
another concept which has widespread practical 
use. For a continuous elastic system of finite 
dimensions, this is defined as 
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Pfej.cj.e,)  e1 

i..e,.e,.e. (69) 
u(e,.e,.e 2ei- ' 

where 

Z = mechanical impedance, 

eie2es - orthogonal coordinates, 

P = spatial distribution of applied 
force, and 

ü = velocity of elastic .system. 

To apply this concept to elastic systems of 
finite dimensions, two restrictions must be 
made: (a) all initial conditions must be zero, 
and (b) for loads on more than one surface, the 
mechanical impedance must be determined 
separately for each surface.  For the loads 
specified in Eq. (61), the mechanical impedance 
found from Eqs. (61), (62), and (68) is 

"T £ ti2 ^iJK^P) + kJ^'iP» Z(P.") 

-i(*n '2) 
JST 

(■-^M«€)' 
1/2 

(70) 

The reciprocal of the impedance has been used 
in Eq. (70) because of the length and complexity 
of the expression and the fact that puch an ex- 
pression can be implemented in an analyzer. 
The use of the complete expression in Eq. (70) 
is, of course, cumbersome.  Fortunately, for 
most structural materials the damping is so 
low (4 < 0.01) that contributions to the total 
motion from modes other than the first consti- 
tute only a few percent.  Hence, a good approx- 
imation to Eq. (70) is 

'l(p,co)   S 

2ösrF^i) ('-^ N)' 
-11/2 

i(*   -"/2) 

(71) 

The "point" impedance is found in Eqs. (70) and 
(71) by choosing p = i.   The "transfer" imped- 
ance is found by taking p $ i.   All of the results 
in Eqs. (61) through (71) were obtained for a 
load on the inner surface.  The same procedure 

can be repeated for a load on the outer surface 
with similar results. 

The specification of the surface loads en- 
ables the transient solution to be put into a 
form that is more convenient for physical in- 
terpretation than Eqs. (35) and (38).  To illus- 
trate the basic method, the following conditions 
are chosen: 

VlT> l(r). 
(72) 

Taking the Laplace transform of Eq. (33) and 
using Eq. (72) gives 

Ü(^;.S)     = 
2a 

,)2^2] 
•    (73) 

The final value theorem of Laplace transform 
theory is 

lim  F(x,y.z.t)   -    lire  F(x,y,*,s).      (74) 
t -»i » -» 0 

When Eq. (74) is applied to Eq. (73), the static 
solution to Eq. (23) is 

1    ST 

2a 
ST (75) 

Equation (73) can be rewritten as 

"n "ST 

s[(S   f   ^n)
2  +   CO2] 

(76) 

By inverting Eq. (76) and using Eq. (38), the 
solution for the displacement is 

v(p-r)--^ZtiHtX(tipy+ujtirt2¥iTT 

x  uST    1 + ~ e''""7  siniwr- 0)     ,   (77) 

1/1   -    tan -i _äL (78) 

Equation (77) shows that the dynamic response 
can be related directly to the static deforma- 
tion. This is similar to the case of harmonic 
vibration in Eq. (67). As the damping 4 goes to 
zero, the standard result is that a dynamic dis- 
placement of twice the static deformation is 
recovered. The basic procedure shown here 
can be repeated for other types of loading with 
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similar results and for loads on the outer 
surlace. 

All of the results in this section shown for 
specific loads can be easily extended to the 
limiting cases of the solid cylinder and cavity 
in an infinite medium. The standard case of no 
damping for all of the results in this section 
can be obtained by letting the damping ratio c 
go to zero. Although the approximation of the 
internal damping as a viscous effect is undoubt- 
edly oversimplified in many materials, the in- 
corporation of more complex viscoelastic be- 
havior can be solved by the same methods. 
Hence, extension to linear damping models of 
wider applicability can be accomplished by the 
interested reader. 

When the same variables defined in Eqs. (24) 
and (25) are used, the dimensionless form of 
the basic equations for the sphere are: 

!'2u      2   \i    (u2- 1 4)       ^u    „ \i    . —— »        —. 4 c — . 1 
V    2 -A. .7 ;<r J Ar 

a ^       *c 12 
— •,(;.')        — ♦  u 
- n    ' V      C

II' 

(84) 

(85) 

'\1        "- JJ   T   "-J3 

12 
^(f.T)  =  — aJt.T)  -.  — + —- 

C I 2       * dP C I 

(86) 

The appropriate initial and boundary conditions 
are, respectively. 

RADIAL MOTION OF A 
SPHERICAL SHELL 

The basic equations for the radially sym- 
metric motion of a spherical shell with internal 
viscous damping and transverse curvilinear 
isotropy are 

ir+—r— = p^ + D37-,,-r<-b-t>0' 
(79) 

(80) 

(81) 

c
r   --   C

II 
<M 
ir+ 2ci2 7- 

ae '- ^ = ci2 
<\l        . N   u 

where 

u = radial displacement of the 
sphere; 

crras,a* = radial and circumferential 
stresses, respectively; 

ciici2c22c23 = elastic constants; and 

u(. .0) -- m(p) . 
(87) 

Vl-T)   --   A(T)   , 
(88) 

zjp.r)   =   B(r) . 

T) -    P1   2  f(P.r). (89) 

u 

then Eqs. (84) through (88) become 

92f     1 3f     u2 d2(     „ of 

\2 + '  :■. P      o 2
f^+C^-        l<-^-P'    ^0- 

a, ■ 
vjp.r)    -    — + 

y , 4c 12 - ! 

2c, .P 
f , 

a-'   2       ,        ^       ^1   2       .        s 

df 2fC22+c23>   -    ! 
—   + ^    f 
SA' 2C12P 

(90) 

(91) 

(92) 

t *,D = material density and viscous 
clamping coefficient, respec- 
tively. 

Substitution of Eqs. (80) and (81) into Eq. (79) 
gives 

c^u      1  äu      (M2
- 1/4^ p'    32u       D     ?>u 

(82) 

2 I 
8fc2j+cj3-cu) T 1/2 

+ 1 
(83) 

Initial Conditions: 

f(p,0) --  pl  2 m(p), 

-   HP.O)      , '   2 n(p). if 

Boundary Conditions: 

crp(l.r)   --   A(T) 

r->,T)   -   B(T) . 

(93) 

(94) 
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A comparison of Eqs. (90) through (94) with 
Eqs. (23) through (29) indicates that there is a 
direct analogy between the plane strain and 
radially symmetric problems if the following 
analogous quantities are defined: 

Cylinder Sphere 

c'z2 +   a    Ur2  '   r   ?r  "   r2  7   "   c44   t2 at 

(95) 

u(^,0),   ü(, ,0) f(A.O).   U- ,C) 

1 2 -.(..o, .' 2.'.,<-.n 

12 

22 

13 

2c 12 1 2 

c22   +   C23   -    1   2 

Thus, the solution for f(p,r) in the general case 
and all the various subcases can be written di- 
rectly from the solution for u(p,r) in the cylin- 
drical case merely by replacing the cylindrical 
quantities in the expression by their spherical 
counterpart. The radial displacement is then 
found from Eq. (89). The spherical stresses 
are obtained from the expressions in Eqs. (41) 
and (42) for the cylindrical stresses in exactly 
the same manner as ((p.r).   Eason [7] has 
shown that the plane stress solution also has a 
plane stress analog. As a result of the present 
study, any plane strain, plane stress, or radial 
symmetric problem has a corresponding solu- 
tion in the other two analogs. 

TORSIONAL MOTION OF A FINTTE 
CYLINDRICAL SHELL 

W-.t)   ^   c44a-(|-H). 

and 

where 

,2(r.z.t)    -   c44 — 
au 

z 

(96) 

(97) 

u = torsional displacement of the 
cylinder, 

c44 = elastic constant, and 

a* = dimensionless constant whose value 
depends on the type of material 
crystal being used [2]. 

The new variables are defined as 

P - 
a v/a7 

z 
X   =   — 

a 

P* 

(98) 

Transient torsional wave propagation prob- 
lems in elastic media have been studied exten- 
sively in the recent past with most papers 
concentrating on Isotropie bodies [6,8-19]. 
Achenbach [11] and Berry [20] have extended 
the studies to viscoelastic materials. Aniso- 
tropie materials have been treated in only a 
few cases, as in Refs. 2, 18 and 19 which con- 
cern an infinite plate and semi-infinite media. 
^'1 of the papers in which the radial direction 
is finite assume that the lateral surface is free 
from tractions.  The problem treated here is 
the vibration of a finite hollo* cylinder with 
internal viscous damping and transverse curvi- 
linear isotropy with all of its surfaces subject 
to loads. 

The basic equations of motion for this prob- 
lem are [2]: 

vt 
a 

» = l 

q = — 

C = avD 

(99) 

The basic equations in nondimensionalized co- 
ordinates are 

SV /32u     1   3u       1    \      92u    .3H    jl'^^X 

(100) 
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-■-,..(■ .x. • ) - .'^(l-i).    (loi)      ^)Cäü ,'^.^u^       &   ^.g 

and 

The appropriate initial conditions are 

u(..x.O)   =   F(. .x) . 

boundary conditions are 

'^(l.x.-)    =   A(x. -) , 

c  ,(P,x,r)    -    B(X.T) : 

(102) 

(103) 

(104) 

..-^ 
(no) 

A<n, -) -' A(x. -) 

B(n,M       J    B{x.') 

n "x   . 
cos    dx 

q 

DC--..-) 

E(V-) 

F      D(..   ) 
(..-:.)". 

n 
,2.. 2 

(HI) 

(112) 

(113) 

CtJ^.O.T)   --   D(. .) , 

•..jL.q.r)    z    £(..--) 

(105) then by using the same definitions of Eq. (34) in 
Eq. (110), the solution for u is 

The appropriate transform for the axial 
variable (x) is. from Eq. (15), 

üffj.n.T) 
v\ä»   . J   I    2 

:(-l)nE(-'i.v)-D(s'i.v)] 

u =  u(/,.n.T) f   u(..x.^  cos ^dx.   (106) 

By applying Eq. (106) to Eq. (100) and using 
Eqs. (17), (102), and (105), 

X [(-l)n E^,-) - D(..-): + i'-ii|- . i-^- -L o 

ij;('':)+hjt(fi)     _ _ 
B(n.v) - A(P.V) 

e       n     sin  ••>,' T - v)  dv   +   e 

I- G( ^.n) + : SF(^.,n) 
i  ;( "   , n) cos VT  + sm  ^r 

(114) 

Xri 
(107) 

The transform for the radial variable ( ) is, 
from Eq. (1), 

FC^.n) 5.   |3    F(t Ff-^.n) {i    ^    F(,,x) 
C,(p,si)  cos   dp dx . 

,x)      ' ' 1 

(115) 

The solution for the displacement is obtained 
from the inversion series in Eqs. (3) and (16) as 

ü =   u( f,, n, T ) f pu(.,n.T) C,(\..-i)dp. (108) u(.,x,r) = —  ^  f.2 k-jj'^.p) 

If by definition 

h     -l 

k 

(109) 

i - il 
p     p 

then using Eq. (108) along with Eqs. (6), (101), 
and (104) on Eq. (107) gives 

^ kJ1(s-iP)]2u(ci.0.r)^^ 

T E L ^^ij;^"iP) 

+ kl^s-jP^] 2ür:i,n, r)     ' '   cos^-^ 

(116) 
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The solution is obtained by placing Eq. (114) 
into Eq. (116).  It can easily be shown [11] that 
the lowest torsional mode (- j    o) is nondis- 
persive, thereby making anisotropic finite hol- 
low cylinders useful as delay lines in ultrasonic 
studies. 

The special cases of free, harmonic, and 
static motion plus the limiting cases of the solid 
cylinder and thin shell can be solved using the 
techniques and methods outlined for the circu- 
lar cylindrical shell. Using the extended Weber 
transform, the case of the infinite plate with a 
circular hole in it can be Solved.  The solution 
for the semi-infinite medium with a circular 
hole is obtained by using the extended Weber 
transform and semi-infinite cosine transform. 
The infinite medium with a circular hole in it 
is solved by the combined use of the extended 
Weber transform and complex Fourier trans- 
form.  Because of the ease with which these 
subproblems can be solved and to conserve 
paper length, they are left as an exercise for 
the reader. 

This section treated the case where all 
four surface tractions were specified. Other 
cases which have displacements and tractions 
specified on the surfaces can be solved by 
choosing appropriate transforms that are avail- 
able in the literature.  Mixed boundary condi- 
tions which lead to dual integral equations are 
treated by Shall [15] an^Sneddon et al. [16]. 

RESULTS AND CONCLUSIONS 

The dynamic response of thick elastic ani- 
sotropic cylinders and spheres has been found 
in certain problems, where the boundary condi- 
tions are Cauchy in nature, by new integral 
transforms. The solutions were obtained in a 
manner which is more direct and concise than 
existing techniques.  It was shown that there 
exists a direct analog between plane strain mo- 
tion of a cylinder and radially symmetric mo- 
tion of a sphere.  These results have application 
to such diverse fields as pressure vessels, solid 
rocket propellants, geophysics, and ultrasonics. 
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EFFECT OF ASYMMETRICAL TRAPEZOIDAL PULSE 

ON SINGLE-DEGREE-OF-FREEDOM SYSTEMS* 

H. Saunders 
General Electric Company 
Philadelphia, Pennsylvania 

The behavior of components when subjected to a shock may be approx- 
imated by a single-degree-of-freedom mass-spring system subjected 
to a prescribed pulse.   A number of specifications require a rectangu- 
lar input pulse.   Due to the limitations of the physical laboratory equip- 
ment, the theoretical rectanguiar pulse is unattainable and an asym- 
metrical trapezoidal pulse must be used.   Equations are derived for 
predicting the maximum acceleration response of a physically obtain- 
able asymmetrical trapezoidal pulse.   The equations employ the actual 
rise, decay and dwell portions of the pulse.   Since most physical sys- 
tems contain httle or no damping, an undamped one degree of freedom 
is employed.   The solution is obtained by utilizing the Laplace trans- 
form method in terms of the Dirac delta function.   Comparisons are 
made between the theoretical rectangular pulse and a few trapezoidal 
pulses having different rise, decay and dwell times.   The rectangular 
pulse is the most severe.   The rise and decay times have a secondary 
effect on the response; the dwell time has the most important effect. 
By using the derived equations, the designer can evaluate the degree of 
departure between the idealized and actual test condition and can thus 
define an equivalent trapezoidal pulse capable of furnishing a similar 
response in the component. 

INTRODUCTION 

Great   osts and prodigious engineering ef- 
forts are involved in attempting to achieve high 
reliability in the launch of space payloads. 
High reliability is based o.i a strong foundation 
of rigid quality control and preflight tests, par- 
ticularly shock and vibration tests. Space pay- 
loads are subjected to shock loads before and 
during flight and at touchdown. In the preflight 
phase, shock loads occur during transportation 
and handling of the payload.  From launch to 
reentry, the primary sources of shock are en- 
gine ignition, shutdown and staging.  From re- 
entry to the successful end of the mission, the 
main sources of shock excitation are parachute 
deployment, earth or water impact and, in the 
case of the LEM vehicle, touchdown on the 
moon.  Since space payloads are exotic struc- 
tures consisting of fabricated mechanical and 
electronic parts, the response analysis of such 
a system may be of questionable value in as- 
sessing the system reliability. It thus becomes 
apparent that, wher -ostiüle, these payloads 

must be subjected to the anticipated shock 
loads.  Under simulated operating conditions, 
all components should be energized and prop- 
erly functioning to prove their ability in with- 
standing the induced shock. The components 
must either perform flawlessly or passively 
survive during the shock environment. The 
shock loadings may tend to compromise their 
ability to complete the intended flight mission. 

DISCUSSION 

At present, most aerospace manufac.    ^rs 
subject components to shock load tests to . -n-ify 
their capability before going into system test. 
Each type of shock testing machine creates a 
particular pulse defined by an accelaration- 
time curve.  The area under the acceleration 
curve is the velocity change and is considered 
to be a primary parameter in the damage effect. 
There are certain applicable principles concern- 
ing component damage which are directly re- 
lated to the results of a shock. 

^This paper was not presented at the Symposium. 
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MATxiEMATICAL ANALYSIS 

A one-degreo-of-freedom vibrating system 
subjected to various shock impulses applied to 
the base has been analyzed by a number of au- 
thors in terms of acceleration response and its 
resulting amplification factor. A majority of 
the present specifications stipulate that the 
shock pulse inputs must be either peak terminal 
sawtooth, half-sinusoidal, simulated blast pulse 
(right triangulaf), or rectangular [1].  Consider 
a one-degree-of-freedom system with an elas- 
tic restraint, as shown in Fig. 1. The illustra- 
tion shows the absolute displacement x, of the 
mass m, the absolute displacement of the chas- 
sis xo, and the idealized spring stiffness k. 
The differential equation governing the behavior 
of the system during the shock phase of motion 
is 

and 

or 

where 

mx, ♦ k(x, - xc) 

'l2(xl-xo)  = 0 

2 = JL 

0    <    t    <    T (la) 

(lb) 

and r is the pulse period. 

C.G. OF MASS m 

(2c) 

Likewise, the original differential equation is 
transformed to the following form: 

y + .2y o < <   T (3) 

This indicates that x0 represents the base ex- 
citation and y represents the relative displace- 
ment of the mass m with respect to the base. 
Equation (3) can be readily solved for y, to- 
gether with the conditions that the initial veloc- 
ity x(0) and displacement x(0) are zero.  For 
most components, damping is considered to be 
small and is neglected. 

In practical design, the maximum absolute 
acceleration response is of primary concern. 
The relationship between x, and y is deter- 
mined from Eqs. (1) and (2a): 

(4) 

A characteristic value of the displacement x, 
is the maximum static displacement under the 
maximum absolute value of the force, i.e., 

F(t) 
k 

max F(t) 
_ ,. 2 (5) 

Based on this equation, it is most natural to 
express the displacement spectrum in a dimen- 
sionless form in terms of the static deflection 
h.   The ratio of the displacement spectrum to & 
is defined as the dynamic amplification factor 
or acceleration spectrum: 

}. 777777777777 
Fig. 1. Schematic 
representation of 
single-degree-of- 
freedom system 

amplification spectrum - 
|x,| max (co1 t) 

_ displacement spectrum 

max. static displacement 

(6) 

For most practical problems, the amplifi- 
cation spectrum for acceleration is desired and 
is represented by 

In present specifications, the shock pulse 
inputs are prescribed in terms of accelerations. 
For convenience, the following transformations 
are used: 

x, - x0 = y , (2a) 

*,-*() ^ v. (2b) 

t  max. absolute acceleration of mass 
a2      max. acceleration of pulse 

If the shock pulse is defined, one approach to 
shock analysis is the use of Laplace transforms. 
This was first applied by Müller [2]. 

Many specifications prescribe the rectan- 
gular pulse as a shock input.  A number of 
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Fig. 2.   Maximum acceleration response for rectangular pulse 
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authors have derived its shock spectrum by 
various methods. During the pulse, the maxi- 
mum acceleration ratio is 

1 -  cos a),! t    <   T, (7) 

where ^2 is the forcing frequency and r - -n/wj, 
This reaches a maximum of 2 when ay&'j - 1. 
After the pulse, the maximum acceleration ra- 
tio is 

/ wi    \,/2 

=   2 si t     >    T  . (8) 

When OJ, = u>J; the maximum acceleration ratio 
again attains the value of 2. This is illustrated 
in Fig. 2. In the laboratory, the specified rec- 
tangular pulse is difficult to obtain. Due to the 
inherent characteristics of present-day ma- 
chines, the rectangular pvlse acquires definite 
rise, dwell and decay times. The desired rec- 
tangular pulse thus becomes an asymmetrical 

trapezoidal pulse (Fig. 3). Jacobsen and Ayre 
[3] derived a symmetrical trapezoidal pulse, 
i.e., equal rise and decay time. 

The derivation of the asymmetrical pulse 
consists of describing the three phases, i.e., 
rise, dwell and decay positions, by an impulse 
function in Laplace transform notation.  For 
the asymmetrical trapezoidal pulse, the base 
acceleration applied to the single-degree-ol- 
freedom system, as defined in Fig. 3, is 

a2 (A+B + C) , (9) 

where 

rise period ^A- — irft) - n(t - a)?-] ,   (10) 
ar 

dwei 1 period - B -   [ß(t - a) - fj.(t - (a + 0)T)] , 

(11) 

decay period = C = -^-^ [ß(t~ (a+ 0)T) - rft- r)]. 

(12) 

and ß(t) is the Dirac impulse function where 
a - ar, h = ßr , c = yr,  and a + ß+y -   1.    The 
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The acceleration ratio during the pulse, i.e., 
t < T , then becomes 

t      3 + j      M sin a'jt      N cos   :i.t 

(1.) 
where 

COS    I <.,T C os  VJ,( a t ^)       j 
1    (18a) 

and 

F    = APPLIED PULSE FORCE 
o 

r    - PULSE PERIOD 

«♦fl + y = 1 

Fig. 3.   Asymmetrical 
trapezoidal pulse 

expressions of Eqs. (10) through (12) are sub- 
stituted into Eq. (9) and the resulting equation 
is described in transform notation: 

sin  u,1(a + ß)-'       sin aujT 
(18b) 

To maximize the expression in Eq. (17), 
the first derivative is set equal to zero, solved 
for sin u^t and cos ^t, and substituted back 
into Eq. (17).  This results in an expression for 
the maximum absolute acceleration response in 
terms of ^ and ^2. 

After some mathematical manipulation, the 
maximum acceleration ratio reduces to: 

ars     L 
e  e + — e 

(13) 

Equation (3) can be represented in transform 
notation by 

s2 + OJ,2)   y(S)    =    - s2XoCs) . (14) 

i »       M sin ii.t       N cos   ^.t 1 - _L + ! L    (19) 

where 

sin  J,t 
M      Ny/y^M^N2)  -   1 

-/(M2 + N2) 
(20a) 

Substituting Eq. (13) into Eq. (14) and simplify- 
ing yields 

y(s)    =    - -jrr- 

-CITS       a     -(ci*3)rs       a     - T s 
1-e - — e + — e 

,2 /<!2      ,,2. s     ( S     •• 0, i   / 

(15) 

The inverse transformation results in the 
acceleration ratio equation after utilizing 
Eq. (4): 

t      sin a)jt      / t sin    ,(1 ■ IT)\ 

ar        aw.T        \.ar aai" / 
)j(t-ir) 

t      a + ß     sin te,[t-(a+ 3)T] 

y~      7 yojjT 
ß[t-(a + f3)r] 

/_t_    ±     sin Mt(t-T)\ 
t-T). (16) 

and 

COS   OJ.t 
M - NN//

2(K2 + N2)  -   1 

y(M2 + N2) 

This can be further simplified to 

(20b) 

^-^^[y^.N2)-!] 
1   2 

(21) 

After the shock phase, the forcing function 
is no longer operative. The resulting acceler- 
ation ratio becomes 

G sin   ■ jt      H cos u^t 
(22) 

where 
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■, r        cos   Vjf a + fj'jr . 

and 

{23a) 

- [~h \ 

&) - cos \ ~~ i no 

sin i.'j( i + .■")T       sin   i^ijt       cos   -,7 

(23b) 
-4n (cos(-i) n [l - (i±i)a] sin(^) na si„ (^)^-j 

To obtain the maximum acceleration ratio, the 
procedure as outlined above for Eq. (19) is fol- 
lowed. After much algebraic manipulation, the 
maximum acceleration ratio reduces to 

^2 

COS   d  V 

1                           "!2  + t 

cos —( 1 - y)-n 
">2 

cos — w 

sin  a — TI 
M2 

sin — ( 1 - a)77 
■}2 

+  sin 

i   2 

(24) 

When a = /, Eq. (24) becomes a symmetrical 
trapezoidal pulse, and the equation reduces to 
that given by Jacobson and Ayre [3] when ex- 
pressed in their terminology. 

Equation (24) can be further simplified by 
expanding the quantities in the parenthesis and 
collecting terms. After much manipulation, 
Eq. (24) reduces to the following: 

where n - a 

(25) 

Example 

As an example of the use of the developed 
equation, consider a theoretical rectangular 
pulse having an 11-msec dwell. There are 
three other pulses, one symmetrical (LRP) and 
two asymmetrical trapezoidal pulses (ASTP 
No. 1 and No. 2) which may be obtained by use 
of the laboratory equipment.  The question 
arises, "Which of the pulse shapes will simu- 
late the theoretical rectangular pulse?" 

Table 1 gives the quantities necessary for 
the problem solution. After substituting the 
values for the rectangular pulse into Eq. (8) 
and LRP, ASTP No. 1, ASTP No. 2 into Eq. (25), 
one finds that the rectangular pulse is the most 
severe (as to be expected) and the ASTP pulses 
are approximately the same (Fig. 4). 

TABLE 1 

Pulse a b c a ß y n 

Rectangular 
(theoretical) 

- 0.0)1 - - - - - 

LRP 0.002 0.011 0.002 0.1333 0.7334 0.1333 1.0 

ASTP No. 1 0.002 0.011 0.004 0.118 0.647 0.235 0.5 

ASTP No. 2 0.004 0.011 0,002 0.235 0.647 0.118 2.0 

TABLE 2 

Pulse a b c a .3 y n 

ASTP No. 3 

ASTP No. 4 

ASTP No. 5 

0.002 

0.002 

0.002 

0.001 

0.004 

0.006 

0.001 

0.0025 

0.00035 

0.6452 

0.320 

0.2395 

0.3226 

0.640 

0.7186 

0.0322 

0.040 

0.0419 

20.037 

8.0 

5.716 

123 



2.0 

— = FREQUENCY RATIO 

Fig. 4.    Shock spectra for rectangular, LPP, ASTP No. 1 and ASTP No. 2 

2.4 

2.0 

1.6 

< 
Z 
2   i-2 

u 
3 
Ot 

5    0.8 

-i-r 
0.4 

0.1 1.0 

— • FREQUENCY RATIO 
«2 

Fig. 5.    Shock spectra for ASTP No. 3, ASTP No. 4, and ASTP No. 5 

10.0 

1   l* 

J /' 
o 
-£—. * ^ 

/ 

/ 

' \ 

1                                            * 
1 

A ^ 
Ik/ 

-"^ ̂  

y NOTES 

 ASTP #5 

-1— i —— ASTP #4 

V • 

^^ 
 ASTP #3 > 

10.0 

124 



As a further indication of the relative ef- 
fects cl the rise, decay and dwell times, three 
other asymmetrical trapezoidal pulses having 
the same rise time but increasing dwell and de- 
cay times were computed. The inputs for the 
pulses are given in Table 2.  Based on calcu- 
lated results of these three pulses, ASTP No. 5 
was the most severe, with AST? No. 3 the 
mildest (Fig. 5). 

CONCLUSIONS 

A simple equation has been presented for 
determining the maximum acceleration ratio of 
an asymmetrical trapezoidal pulse.  This pulse 
results from the inability of laboratory equip- 
ment to simulate physically a specified rectan- 
gular pulse. It has been shown that the asym- 
metrical trapezoidal pulse is less severe than 
the theoretical rectangular pulse. The dwell 
time is the determining factor, with the rise 
and decay portions performing secondary roles. 
The results of this study will enable the de- 
signer to assess the degree of deviation between 
the idealized and the actual test conditions; in 

this way he can specify an equivalent trapezoi- 
dal pulse capable of providing similar response 
in the test item. The relationship between rise 
and decay portions of a pulse has been exten- 
sively discussed by Lowe and Cavanaugh [4] 
and Schell [5]. 

ADDITIONAL EFFORTS !N 
PROGRESS 

The General Electric Re-Entry Systems 
Department is continuing studies of the asym- 
metrical trapezoidal pulse by extending the 
method to include damping and by developing 
spectra for determining the maximum acceler- 
ation response composed of all variables. 
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