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ANALYSIS AND PREDICTION

METHOD FOR IMPROVING A DYNAMIC MODEL USING
EXPERIMENTAL TRANSIENT RESPONSE DATA

Ching-u Ip, Eli P. Howard and Richard J. Sylvester
Aerospace Corporation
San Bernardino, California

A rational method is developed for improving the mathematical dy-
namic model of a linear system by utilizing experimental results, The
di:a required as input to the method consist of measurements of the
applied load and some limited response information. Two examples
demonstrate the improvement in the mathematical model of a six-
degree-of-freedom system when the loading and limited response in-
formation is known without experimental error. Future eftorts are
outlined to study effects of error in experimental input data and fea-
sibility of application to systems of many degrees of freedom.

E. P. Howard

INTRODUCTION

The dynamic analyses performed to deter-
mine the responses of a structure subjected to
dynamic loads involve the formulation of a
mathematical model that represents the physi-
cal structure. When the structure and loading
are particularly complex, confirmatory experi-
ments are devised to gain confidence in the re-
sults of the mathematical model or to demon-
strate structural integrity, or botl.

A certain degree of confidence in the math-
ematical analysis can be achieved by a ground
vibration test in whkich the ent're structure is
vibrated at a low ievel and the resonant fre-
quencies are identified. However, limitations
in this experimental technique usually preclude
obtaining the mode shapes of the struciure with

the same accuracy as the resonant frequencies.
In addition to a ground vibration survey, dy-
namic load teste are often conducted that sub-
ject full-scale reentry vehicles to a blast wave
in a large shock tube. A facility currently
being utilized for this purpose is the Sandia
Corporation "Thurderpipe" facility at Albu-
querque, New Mexico.

It is the purpose of this paper to present a
method or technique for utilizing experimental
results from such facilities.as the "Thunder-
pipe' to improve the mathematical model rep-
resenting the structure that was tested. The
improvement is achieved by revising the the-
oretically computed mode shapes to be in better
agreement with experimental results.

LIST OF SYMBOLS

[c] Square matrix, damping matrix
{Rty)} Column matrix giving forces act-
ing on various stations (nodes) of
system
i Subscript
(1] Identity matrix

j Subscript
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B}

{at)}

{1

T

fx}, {x}, {x}

{yt)}

{e}

¥i

[«

Square matrix, siiffness matrix
Square matrix, mass matric
Number of modes

Column matrix of generalized dis-
placements

Laplace transform variable

Transformation matrix relating
strains to displacements

Superscript, transpose of a mstrix
Column matrices representing -:3-
placements and their time deriva-
tive

Scale factor

Parameter associated with input
forces and defined as quaatity in-
side large parentheses of Eq. (11}
Shear strain

Parameter associated with input
forces and defined by Eq. (15)

Column matrix of strains
ﬂi/2wi

Diagonai matrix of generalized
modal damping

Modal matrix normalized so that
[p)Timl [¢) = [1)

Function to be minimized and de-
fined by Eq. (2)

Diagonal matrix of squares of cir-
cular frequencics

DESCRIPTION OF METHOD

Thunderpipe Tests

The "Thunderpipe’ test series subjects a

full-size reentry vehicle structure to blasts of
conventional explogive, confined in a closed-end
tube. One objective of the tests is to compare
the measured dynamic response with the the-
oretical predictions to verify the analytical ap-
proach. Specifically, the pressure-time his-
tories at various stations on the reentry vehicle
are measured and are used as the forcing

functions in the analytical model. Measure-
ments by strain gages and accelerometers at
selected locations on the vehicle constitute the
measured responses. ‘inese are used to com-
pare with the caiculated response of the pre-
selected mathematica) model of the dynamic
system subjecied to the measured forcing
function.

Comparison of Experiment
anc Theory

An exact duplication of measured and com-
puted response never occurs in practice. Henc
a quantitative assessment of the degree of cor-
relation is desired to assess the validity of the
mathematical model used in the dynamic anal-
ysis. This study was conducted to determine
the fe2sibility of improving the dynamic model
using measured data from "Thunderpipe" ex-
periments. This study assumes that the instru-
mentation and experimental technique are ade-
quate, and that discrepaacies are due to errors
in formulating the mathematical model or es-
tablishing values of parameters for use in the
model.

This feasibility study is idealized by con-
sidering linear mass-spring-dashpot mechani-
cal systems subjected to transient response
experiments in general, rather than the specifi:
problem of the response of a reentry vehicle in
a shock tube.

Summary of Method

In analyzing the continuous structure to
which the shock is applied, the structure is
approximated by a system of finite elements
consisting of masses, springs, and dashpots.
Since the structure is assumed to experience
small vibrations due to the shock loading, the
finite elemencts are considered to behave lin-
early. Hence, the linear response of the struc:
ture at the mass locations can be determined
by the solution of the equations of motion of the
system of finite elements if the system indeed
represents the structure correctly. The prob-
lem is formulated utilizing matrix noiation to
facilitate the treatment since the mathematical
aspects of the problem usually involve solving
a large number of differential equations simul-
taneously. The large number results from the
large number of finite elements used to repre-
sent the continuous system. The finite element
are represented by (n x n) square matrices with
n being the number of degrees of freedom. The
shock or exiernal disturbance is represented
by a column matrix of forces, with each force




element being a function of time acting on a finite
element or mass.

In the discussion that follows, a formal so-
lution of the equations of motion is derived in
matrix forrr. The responses of the system,
calculated and measured, should agree with one
another. H these do no! agree, cne has to adjust
the values of the 3n? elements in the mass,
spring, and dashpot matrices until agreement
between calculated and measured response is
reached. Since the system is assumed to be
linear, the response can be assumed to be a
linear superposition of its normal modes.
Hence, by filtering the measured response by
adjusting the filter to the measured resonant
frequencies (obtained from a vibration survey),
its modal comy-onents can be obtained. This
can be compared with the normal mode solution
obtained analytically and has the advantage that
one has to adjust the v.lues of only n elements
at one time. This was done in this report with
the aid of a method developed and computerized
at Aerospace Corporation. In this method, the
difference between the calculated and measured
values of the response in a particular mode, i,
constitutes an error. The ¢ furction derived in
the bedy of this report represents the sum of
the squares of all the errors in the ith mode.
This function is to be minimized so that the ex-
perimental data and the calculated 1esults agree
as closely as possible. By adjusting the values
of the n modal elements in the neighborhood of
the calculated values in a random manner and
choosing the better set after each adjustment,
one can find the values of the modal elements
for closest agreement. Tue method described
in this report accomplishes this result in a
systematic way.

Derivation of Method for a Mass-
Spring-Dashpot System
The equations of motion of a linear system
with viscous damping can be written concisely
in the form of a matrix equation:
mI{x} + [cl{x} + [kK]{x} = {F(t)}, (1)

where

im] = square matrix called the

mass matrix,

(el

square matrix called the
damping coefficient matrix,

(k]

square matrix called the
stiffness matrix,

{x},{x}, {x}

column matrices represent-
ing displacencents and their
time derivatives, and

{F(t)} = column matrix giving the
forces acting on various
stations (called nodes) of the
system.

The solution to this equation will be derived
in terms of the normal modes of the system.
Not only {x(t)}, the displacement, but {x(t)},
the velocity, and {x(t)}, the acceleration, were
derived in terms of the normal modes and are
given, respectively, in Eqs. (11), (12), and (13)
which appear later.

It is convenient to treat the transient re-
sponses of the dynamic system as th¢ summa-
tion of the responses of its normal modes. For
a linear dynamic system with damping, the
existence of normal modes is given by a the-
orem of Caughey [1] which can be stated as fol-
lows: "A necessary and sufficient condition
that a linear damped dynamical system possess
classical normal modes is that the damping
matrix be diagonalized by the same transfor-
mation which uncouples the undamped system."
However, if the transformation matrix (4],
which diagonalizes the [m] and (k] matrices of
the undamped system, is found, it will not nec-
essarily diagonalize the [c] matrix of the
damped system; but, for a realistic vibrating
system, the off-diagonal terms of the trans-
formed [c] matrix will be small compared with
the diagonal terms. Hence, the calculated re-
sponses by considering the system possesses
classical normal modes would not differ much
from the actual responses, and the generally
accepted procedure is to ignore the off-diagonal
terms of the modal damping matrix.

Consid-r the modal transformation as de-
fined by

() = [¢l{a(t)}, 2
where [¢) is the modal matrix, normalized
such that ()T (m)(¢] = [1], and {q(t)} is 2

column matrix representing the generalized
displacements.

Substituting Eq. (2) into Eq. (1) and pre-
multiplying by (¢!T results in

@+ Tula + [e?] (g} = [BIT(F(t)}, (3)

where [ ] and [»?] are diagonal matrices
representing the generalized modal damping
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and the normalized stiffness (or the aqruare of
circular frequency), respectively. [(¢]' is the
transpose of the {¢] matrix. Thus, we obtain

@iTimlle) = [71].

ATIl) = [o2]. 4)
and

ig)Ticl o] = [«]

where [1] is the identity matrix.
Taking the Laplace transformation of Eq.

(3), we obtain the transformed equation, after
using the following notations:

{a(s)} = j {a(t)} e-Stde,
)

{F(s)} :J[ {F(t)} e 3tdt ,
° (5)

{x(s)} = [sl{as)},

and
(52[1‘] + Sru,] + [“"21) (ﬁui)} = [zl)]T(f(s)}
+(s{1] + [ xllao}) + {ac0y}.

Premultiplying Eq. (2) by (¢]T[m] and using the
normalization property given in Eq. (4), we ob-
tain the following equation:

{att)) = (1T ml ()}, (6)
where the initial conditions are given by

{q(0)} = [HT(m){x(0)}
and (7

{a(0)r = (@) (m){x(0y} .

From Eq. (5) we obtain

{x(s)} = [H{a(s)}

1 _
= [‘f’] r————l——‘——J ‘-’f?]T"F(S)}

s+ oy _
+ (¢ [-2 2] [#]T Im) {x(0)}
s+ su. + 4
r 1 o oo
+ (@) | —=———— 1 (] [ml{x0)},
52 + Siy + ‘uiz

®

where i is the index for the ith row of the
diagonal matrix. Now we observe that

1 1 T

i I S T . 1 )
f¢] [sz, sy ¢ “’iz] {e)* = Z sz's“i vl 1 C
(9)
where {;}; is a2 column matrix formed from the

1th column of the [¢4] matrix or the ith mode of
the dynamic system. Hence, Eq. (8) becomes

(x(s)* = ) (e, F
%(s) Z|: ¢, (8}, (s“s'ﬂ“ﬁ’ {Fs))
s + :
+ = - 5 [m] {x(0)}
s” + s“’i + wy
1 .
o s o7 [m](x(O))) : (10)

Taking the inverse Laplace transform of
Eq. (10) and differentiating the resulting func-
tion, we obtain the displacement, velocity, and
acceleration matrices of the linear dynamic
gystem as follows:

t e (t-r)
e

x(ty) = Y M}i(d:):{

—
Y wi\/l = Ci

x sin (:ui(t-7) Vi- Z,i!) {F(r)} dr

+ [m){x¢0) e‘{iw"t [cos (“’it V1 - {iz)

L

71
+ -_!:f sin ("’it V1 - {,;2):‘
vi- 1

«liwit
+ [m] {x(0)} € —sin {"it‘“'ciz}'

72
w vl -4y

(11)

t
(x(‘.)} - 2 {¢}l{¢}|T [J e‘Liwi(t-v)
i ¢

i wi(t- T)

x {F(7)} (cos 1-2.

- = o V1 - (',iz w0t - 7)>:| dr

J1 - 1.2

1

(12)
(Cont.)
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- iml{x(0)} = :

ﬁ sin I(wi( J1 - ;iz)

+ [m} {x(0)} e LR cos (,‘;i‘ 1- "aiz)

sin (.'i: 1- ',-,’)} . (12)

4

-l w.t
- ml{x(0yte "' [uizcos (wi(\/l - ;iz)

y

T (w;' n-i2 li’)" ¢ (m]{%(0))

1-¢2

]

-

=% 3%®p 0 “’i(z‘v-iz -1 (
x e —_—  — sin ni(\/l-l'i!)
l: V1 -3¢

- 2Li”i cos (u)i( 1- Z,iz)] . (13)

where “, - ;. 2.,

Equations (11), (12), and (13) represent the
displacement, velocity, and acceleration re-
sponses of the total system of finite elements
in terms of its normal modes. Considering, for
example, Eq. (13), one may interpret that the
elements in {x(t)} are obtainable from acceler-
ometer readings, those in {F(7)} are obtainable
from pressure measurements, the values of .,
arc obtainable from a vibration survey, and (¢},
are the unknown quantities needed to satisfy the
equation,

Also, it may be observed from Eq. (13) that
the acceleration signals consist only of compo-
nents of the damped {requencies ., y1 - 7 2. It

is then feasible that a narrow-band filter
(whether it is an electronic circuit or a digital
computer filter) may be used to separate the
components. The filtered acceleration compo-
nents are derived below and given in Eq. (19).

Filtered Signal - Consider the acceleration

column matrix, Eq. (13}, which can be written
as

Kot = Lo o, . (14)

where {y(t)}; is the column matrix represent-
ing the quantity inside the braces in Eq. (13).
For an undamped system where 7, =0,

1
(7(())i = {F(t)} -J' {F(1)} w, sin w(t-T1)dT
o

~ [m}{x(Oo)} wiz cos w;t
- ml{x’0)} w; sin w;t. (15)

Let the acceleration column matrix be de-
composed into its modal components,

) = L Axn); . (16)

which gives, from Eq. (14),
ZY); = e o, (17)
Writing Eq. (17) in detail gives

N o r
Xy #y; Yii
X2 $a; Vi

x Py Yii
ni) (Pni) 'ni)
(18)

where
n is the number of degrees of freedom,
i denotes the jth mass, and
i denotes the ith mode.

From Eq. (18),

X (6) = @5 Z Bei Vi () (19)
k=1
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which is the filtered acceleration respcnse at
station j (filter set at the :th frequency).

Prior to the transient response experiment,
a vibration survey (frequency response experi-
ment) is made to determine accurately the natu-
ral frequencies (actually the daraped frequen-
cies) of the system. The applied forces {F(t)}
are measured during the transient response
experiment. (It is assumed that the applied
forces at each mass point representing the ex-
ternal structure are measured or can be extrap-
olated.) Then the quantities y, ,(t) can be de-
termined from {F(t)} and the initial conditions
of the system. Hence, on examining Eqs. (15)
and (19), it would appear that a set of {¢}, could
be determined if the values of x;;(t) and y, ;(t)
are computed for a sufficient number of instants
of observation.

In general, however, Eq. (19) will not be
satisfied exactly for all instants of observation,
due to inaccuracies in the formulation of the
mathematical dynamic model. Consequently, a
least squares criterion was generated for the
determination of the best {)}, that would satisfy
Eq. (19).

For the ith mode, this least squares cri-
terion may be written

iy P00 b03)

2

i -, s, >
. ii “3i Lo ki ki
Ly L

™

i= k=1

2|
||

- minimum (20)
or
- = maximum ,
where
k=1,2,...,n;
i=12,...,m, number of responses meas-
ured; and
t =1,2,...,p, number of instants of ob-
servation.

It should be pointed out that the number of re-
sponses measured, m, can be le3s than n, the
number of degrees of freedom.

Recapitulating, we have shown that, on the
basis of a dynamic analysis, an estimate of the
natural mode shapes {5} could be made. To-
gether with this information and the naiural
frequencies ..; obtained from a ground vibration
survey of the structure and the measured

response at various locations un the structure,
we are able to coastruct ,;; . This function ex-
presses in a general way the difference between
tite computed and measured responses. Hence,
minimizing this function wilt result in a set of
mode shapes that will fit the experimental data.

The minimization of Eq. (20) wag accom-
plished by means of a method developed by
Brooks [2]. This method is described in the

following paragraphs.

Brooks' Monte Carlo Method for Finding a
Maximum - A customary method for determin-
ing maxima is the gradiert method, which re-
quires determining the direction of maximum
change of the function by evaluating its partial
derivatives with respect to its independent
variables. One then proceeds along the direc-
tion of the gradienft until a local maximum is
determined. At this point, another gradient
direction is established.

Because of the amount of computation in
derivative determina‘ion, a more efficient
method is to maximize along a line in a random
direction. One can show that the expectation of
tke change is in the gradient direction, yet the
partial derivatives associated with the gradient
need not be determined.

To simplify the discussion of the method,
we consider ¥, to be a functioa of a two-
dimensional space (¢,;,¢,;) (Fig. 1). Starting
with an initial guess of ¢,, by which corre-
sponds to the point 0 in the space, one evaluates
-y; . From 0, a random direction is chosen. A
point 1 in the vicinity of 0 in the chosen direc-
tion is then selected and the corresponding value
of -y; is evaluated. The second value of -y, is
compared with the first. I the second value is
higher, select point 2 in the direction of 0-1 at
twice the step size. H point 2 is still higher,
select point 4 at again twice the step size. K
point 2 is still higher, select point 3 at again
twice tr.e second step size. H point 3 gives a

Fig. 1. Monte Carlo method




lower value of -, than point 2, a parabolic
curve is drawn through points i, 2, and 3.
Point 0" corresponds to the highes. point on the
parabolic curve, which should be clise to the
position of a local maximum in that Gae direc-
tion. From @', another random direction is
chosen and the process is repeated. The proc-
ess terminates when an exhaustive seaichof a
vicinity yields no better -y, .

It may be seen that this method has some
of the characteristics of the method of steepest
descent, but seems to be more efficient in that
the gradients in n-dimensional space need not
be evaluated for each step.

EXAMPLE PROBLEMS AND
DISCUSSION

Two problems were solved to illustrate the
method of this report. Both of these problems
considered a lumped parameter model having
only six degrees of freedom, but it is felt that
the essence of the method was deinonstrated
nevertheless. In the absence of test data, the
mass and stiffness parameters in the problems
were arbitrarily changed in an attempt to intro-
duce errors due to shortcomings of the dynamic
analyst who formulated the problems. The mode
shapes computed from this erroneous formula-
tion were obviously different from the true mode
shapes one would obtain from an experimental
modal survey if this could be accomplished
accurately.

In the first problem, it was assumed that
there was measured disturbance or response
information at all points corresponding to the
degrees of freedom ¢. the mathematical model.
In the second problem, this was not true. In
fact, no information was available at two of the
stations used in the mathematical formulation.

The convergence to the true mode shapes
was excellent in the first example despite the
fact that the analytically derived mode shapes
differed considerably from the true ones. In

— = 12,000 IN.,/SEC

|

k lvz

the second example, improvement in the com-
puted mode shapes was shown as a result of
processing the "experimental data'’ according
to the method of this report, aithough the im-
provement was not as dramatic as in the first
example. These results seem to imply that one
caa anticipate considerable improvement in a
poorly formulated mathematical dynamic model
when a large amount of experimental data are
available.

Example Problem Number 1

Statement of Problem - To illustrate the
application of the previously derived results,
an example was constructed that contains the
main featirres of a typical problem. The prob-
lem might represent the case in which it is de-
sired to determine the transient response of a
reentry vehicle subjecied {0 a blast loading.
Based on the physical properties of the struc-
ture, a spring-mass analog was constructed,
consisting of 6 masses and 5 springs (Fig. 2).
The applied force is represented by a triangu-
lar pulse with a peak of 1000 1b and a duration
of 0.001 sec that travels over the reentry vehi-
cle at 2 speed of 12,000 ips.

Let the true (actual) masses and springs
be of the following values:

w, = m,g = 28.309 Ib
w, = mpg = 19.709 b
w, - my, = 16.110 1b
w, - myg = 14.919 Ib
ws - meg = 19.319 Ib
we - meg = 19.427 1b

k, = 1.251 x 10 1b/in.

k, = i.528 x 104 Ib/in.

k3 H‘ \ls

SEC

"'i 0,0001.';m f“zw m Y LA
P S A A

KA d WA
6

s

Fig. 2. Spring-mass system subjected
to traveling pulse
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ky = 1.063 x 104 Ib/in.

= 4
L, = 1.144 x 10* Ib/in. T Pp———
ke = 1.012 x 104 Ib/in.

Let the dynamicist who formulates the dy-
namic model calculate these values to be

; v = 25.000 Ib v = 7.5677902x 10°
v, = 19.709 1b

| wy, = 16.110 Ib and
%, = 17.000 b
v, = 19319 Ib wg = 1.2522949x 106
v, = 19.4271b

k, = 1.25 x 10* Ib/in.

k, = 1.300 x 10* Ib/in.

it =

(J»)s =

{thg =

4 s A7)
1.4134544
-2.3715559
-1.8505419
1.2303420
2.2175386
1.7438144 |

A

"
)
0.5546950 |
-1.8057222
0.8981284
3.0055750

-2.7191541
_ 0.9841980 |

AL

(" 0.3159087 )

-2.0028400
4.4781486

-2.0715276
0.6050650

AL

-

v

hd

-0.1 157667 )

b. Calculated Frequencies and Mode Shapes -
Tiae calculated frequencies and mode shapes are

x, = 0.800 x 10* Ib/in. gﬁf;s?: masses and springs estimated by
k, = 1.144 x 10* 1b/in. ‘1.0 3
ks = 1.012 x 10* Ib/in. 1'8
2=0 W>):=< 1-0 >,
which are differerit from the true values; i.e., 1' 0
some errors wer2 made in formulating the 1' 0
values due to limitations of the theory employed. Lt J
An eigenvalue analysis would furnish the (2.2822298)
following frequencies and mode shapes. 1.6491218
o 2 - . 594196 1 4 4 = 0-6928123
a. True Frequencies and Mode Shapes - The 2 =93 2 g = 4 -0.8125969 <
true frequencies and mode shapes are based on -1.8292985
actual masses and springs of the system. &-2.4938566/
(1.0 ) (1.7012653 )
1.0 J -0.4846835
w?=0 1.0 7 _ 5 -2.1157792
! Y}, = wy = 2.4823731x 10 {p}, =
(rigid body mode) =910 < 3 X * = N-2.7167839
1.0 -0.5938498
_ 1.0 ) _ 2-5348854
(2.1832192) (1.8014632)
1.4587241 -2.3457125
27 =5.6617794x 104 v~ J 0.5896454 +2 = 4.4476042x 105 = J-2.2398130
(lzst flexible mode) 0ty -0.7540531 ? ’ ¢ ) * Wi ﬁ 1.2419185 <
-1.8584049 1.8550571
-2.5865483 ) (-1.5313187
(1.7488900 ) 0.6474993)
-0.88663317 -1.7204015
Wl = 5 4 = J-2.2827900 w? = 105 5 = J 0.7739617
J =2.5711003x 10 {0}, <-2.6291799 s 2 = 7.0651811x 10 {phg = < 95497223 [’
-0.6677005 -2.9868394

| 2.3984586

i B

_ 1.1885990 |




and
0.4804274
-2.1742601
4.3856738
"62 = 1.0675415x 10°¢ {1)6 = -1.7835363
0.6914416

-0.1605030)

It should be ncted that the true and calcu-
lated values of the frequencies and mode shapes
are different and that, after a hypothetical fre-
quency survey has been performed, the set of
true .’ in case a is found. The sets of {/}; in

case a are not known, however, whereas those

in case b hiave been calculated by the dynamicist.

It is assumed that, during the frequency survey,
either the mode shapes were not measured or
they were not obtained with the same accuracy
as the measured fiequencies. A computer pro-
gram hes been written to compute the quantities
x;;(t) and ,; (1) using Eqs. (14) and (15). The
values of the quantities for 3 time instants and
the 5 fiexible modes are given in Table 1.

Example Problem Results - The numerical
values from Table 1 were entered as inputs to
the "Creeping Random Computer Program,"
previously discussed, which minimizes ¢; in
Eq. (20). This computer program requires as
input an initial trial value for ... Instead of
using the calculated values of ¢,; only (the re-
sults of the dynamic analysis), two cases of ini-
tial trial values of ;; were attempted: (a) the
calculated values of <, (from the dynamic
analysis), and {b) all elements of ¢ ;i equal to
1.0.

a. Calculated /;; as Initial Values
(o) = o) {0}, {gh)

[ 2.1832193

1.7489067  1.4134545
1.4587253 -0.88650611 -2.3715565
_ | 0.58964542 -2.2828123 -1.6505421
~ 1-0.75405318 -2.6292058  1.2903421
-1.8584052 -0.6677963 2.2175393
| -2.5865485  2.3984812 -1.7438146
No. of (71,001) (245,000) (81,002)
Trials
0.55469529 0.32092342
-1.9057233 -2.0454205
0.89812871 4.5181893
3.0055761 -2.0922921
-2.7191556  0.59756558
0.98419836 -0.11567424
No. of (139,002) (285,000 not
Trials yet converged)

b. All Elements of ¢ Equal to 1.0 as
Initial Values

1

i¢l = o) {8} 3} 4i¢h,)

-2.1832198 -1.7464479 -1.4134545

-1.4587201 0.90395607 2.3715562

- |-0.58864556 2.2796787 1.8505420

0.75405333 2.6254416 -1.2903421

1.8584022 0.65576761 -2.2175390

_2.5865490 -2.3956199 1.7438145

No. of (108,002) (186,002) (152,001)
Trials

0.55469514

-1.8057231

0.89812867

3.0055761

-2.7191556

0.9841983514

No. of (177,002)
Trials

Discussion of Example Problem Number 1
Results - Comparing the results obtained with
the true mode shapes, it may be observed that
the computer results are accurate and repeat-
able as they converge to the values known to be
correct a priori.

It is interesting to note that ¢,, converges
to the same numerical value, but with 2 minus
sign for i = 2, 3, and 4 in the case of the initial
values of 1.0. For i =5, the obtained result is
the same for cases a and b. For our physical
problem, the mode shape - {¢}, is the same as
the mode shape {¢};.

Not every set of ¢;; which minimizes Eq.
(20) is necessarily a modal vector. If only a
few response measurements are made and if
there are many more unknowns than are repre-
sented in Eq. (20), more than one set of ¢,; will
render y; equal or close to zero. An addftional
mathematical constraint is required to produce
an acceptable solution. This restraint is sup-
plied by confining in some manner the mode
shape {¢}; tu a neightorhood of the theoretically
calculated mode shape.

If the [m] matrix is chosen somewhat arbi-
trarily, as is often the case in the original
model formulation, a test to evaivate whether
the correct set of {¢}; is obtained is that the
vectors should be orthogonal with respect to the
fm] matrix. After the correct [¢) matrix,

[¢] = [{s};i¢},...{¢},], is obtained from the
Monte Carlo computation, the correct mass and
stiffness matrices can then be evaluated from
the following equations:
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m = (7)) ()
and (21)
m = (i$)T) ' [w2]lgl-t.

H

Example Problem Number 2

Statement of Problem - Referring to Ex-
ample No. 1 and Eq. (20), we note thai {f neither
a forcing function measurement nor a transient
response measurement is made on any node in
the dynamic model, then the modal value at that
node does not appear in the equation. Hence,
its value can then be arbitrary. In this example
problem, we shall investigate methods for over-
coming this deficiency.

When a dynamicist first formulates a math-
ematical model, the choice of nodes is perfectly
arbitrary and is subject solely to his judgment.
To a lesser degree, the assignment of the
masses at the nodes is also arbitrary. For
most dynamic analyses, knowing the correct
frequencies and mode shapes should be suffi-
cient to describe the system analytically. In
this example we shall assume that the correct
mass matrix is formulated; hence, the mass
matrix is not going to be changed in the im-
provement of the model.

The same transient loading as that in the
previous example is used except that the travel-
ing pulse hits the first two particles only. The
acceleration measurements are made on parti-
cles 1, 3, and 6. No experimental data are
available for particles 4 and 5. This may cor-
respond to the case in which there are internal
components 3, 4, 5 and 6, and 1 and 2 represent
the external structure of a vehicle subjected to
a blast loading. Compared with the 6 .orce
measurements and 4 acceleration measure-
ments of example 1, this example presents a
more restrictive requirement.

It is noted here that the orthogonality prop-
erties of the modal matrix normalized with re-
spect to the mass matrix might be used as a
supplemental restraint in addition to the com-
parison of analytical results with experimental
data. The following equation is chosen for mini-
mization in the Monte Carlo method:

9”2(‘1’]2-d’22q ..

-
m

N Z ‘?:. <§52"”j2 Zd’ k2 7k2>
k=1

t=1 |j=1 \ t

 $n2)

2

2
n ]

- 2 &
‘o, tL Wop Bpg - 386.08401J = minimum, (22)

f=1

11

for i { 2, the first flexible mode,

- ’
P L] qQ
VildgjeceePpy) = Z Z(’?ii"”ii Z 4’“7&;)
t=1 szl k=1 t
- 2
vy |Y wy g, - 386.08401
[0=1
F 2
tc, Z'Hd’li‘t'!!] = minimum,
[ £=1
(23)
where

k = 1,2,... q, number of forces
measured;

wgy = diagonal clement of weight matrix
("'correct' set);

i =12,...,m number of accelera-
tions measured;
¢;.c, = weighting constants; and
t = 1,2,..., p, number of instants of
observation.

Table 2 constitutes the input data to the
"Creeping Random Computer Program' for the
improvement of the first three flexible modes.
For initial trial values of the ¢'s, the calculated
values mentioned previously are used. Values
of 1.0 are taken for the constants c, and ¢,,
giving equal weights to the experimental data
and conditions of orthogonality.

Example Problem Results - Results from
the computer program are given in Table 3.
The true values of ¢'s are repeated for com-
parison in the same table.

Discussion of Example Problem No. 2
Results - The results show that improvement of
the modal values, at nodes where there are no
experimental data, can be obtained by the use of
the orthogonality properties of modes.

The orthogonality property introduces one
additional equation (in the case of {¢#},) to
equations containing experimental data when
there are n unknown ¢'s to be found. The value
of n can be much larger than m. The question
remains whether the orthogonality equation can
improve all the ¢'s in a somewhat uniform
manner.

To investigate this question, a value of 10°
is taken for ¢, in Eq. (22), thus magnifying the




TABLE 2
Creeping Random Computer Program Input Data
Flex- t, = 0.0028 t, = 0.0032 t, = 0.004
ible
Mode }! S8hear Strain | Acceleration | Shear Strain | Acceleration | Shear Strain | Acceleration
18t |12 -65.00842|x,,|-477.84119|y,,] -74.16420|x,,| -552.93978]y,,| -90.38496 |x,, -687.48634
(i =2)|22 -52.74640 |x,, | -129.05569}y,,| -62.62416{x,| -149.33837}7,,| -80.59479]x,, -185.67680
xg,| 566.11783 Xg2| 655.09017 Xg; 814.49204
ond |713]-237.7336 |x,,|-402.66076y,,|-249.6289 |x,,|-401.89947}y,, -242 6493 |x,, -351.65368
(i=3)]= -209.2545 |x,,| 525.58478(vy,;|-233.2089 |x,,i 524.59108}y,,|-251.8453 |x,, 459.00629
xg3 | -552.21607 X¢3| -551.17202 Xe; -482.26407
3rd  [714]-333.1873 ix,,| 415.55418}v,,|-314.4325 |x,,| 491.64481}»,,|-211.4668 |x,, 533.72985
(i =4)|72 -322.5316 |x,,|-544.05747],,|-334.0710 |x,,| -643.67788,,|-285.2581 |x,, -698.77702
Xgq | -512.A7969 Xge| -606.55462 xs, -658.47600
TABLE 3
Comparison of Computed and True ¢'s for Example 2
b by ¢4
Computed True Computed True Computed True
2,1823435 2.1832192 1.7488908 1.7488900 1.4134613 1.4134544
1.4613510 1.4587241 -0.88663371 | -0.88663372 | -2.3715563 | -2.3715559
0.58940554 0.58964540 | -2.2827910 -2.2827900 -1.8505515 | -1.8505419
-0.76325231 | -0.75405312 | -2.6339910 -2.6291799 1.3480425 1.29803420
-1.8548189 -1.8584049 -0.65287925 | -0.66770054 2.1903482 2.2175386
-2.5855092 -2.5865483 2.3984598 2,3984586 -1.7438244 | -1.7438144
294,002 trials.
b170,002 trials.
€106,001 trials.
effects of orthogonality in comparison to those MIXED RESPONSE DATA FROM STRAIN
of the experimental data. GAGES AND ACCELEROMETERS-—-AN
EXTENSION OF THE METHOD
Table 4 shows the results of computed {¢},
compared with the starting values and the true In the preceding examples it was implied
values. A general iraprovement of {¢}, is that only acceleration measureinents were
noted. made. In practice, however, both acceleration
TABLE 4
Effects of Orthogonality Equation (C, = 10°)
Calculated {¢},2 | Computed {¢},> | True {4},
2.2822298 2.1391473 2.1832192
1.6491218 1.5925472 1.4587241
0.69281230 0.57770646 0.58964540
-0.81259693 -0.81575419 -0.75405312
-1.8292985 -1.8758526 -1.8584049
-2.4938566 -2.5343082 -2.5865483

a
b

Starting values.
From random program,
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and strain measurements are used. In formu-
lating the dynamic m« Jel, we postulate that the
dynamicist uses a finite v ement approach of
some kind where masges are concentrated at a
network of stations cailed nodes. The displace-
ment and acceleration regponses are also
measured at thc nodes. K the strains of the
structure between the nodes are measured by
strain gages, these measurements can be re-
lated to the relative displacements of the two
nodes. The exact nature of this relationship
would have been determined by the dynamicist
in his original stress analysis.

Before proceeding with the development of
the method for hardling strain data, we will di-
gressbriefly to derive some strain-displacement
relationships that will be needed in the subse-
quent derivation.

Let the transformation matrix (T] relate
the strains {¢} and the displacements {x} of the
system. The matrix (T] is called the '"strain
transformation' matrix. This relationship may
be expressec as follows:

{e} = (T)x}. (24)

As an illustration of the form of (T], two ex-
amples are shown. Example 1 is the case of an

axially loaded bar of varying cross section (Fig.

3). For this case, Fz. (24) takes the form:

tq [1/{, | VZA% ) [x,
- x, > . (25)
€ [0 “1/4, | /4, L,

Fig. 3. Example 1,
longitudinal bar of
varying cross section

1
!
~
»
~ ~~
o
x

The second example (Fig. 4) is slightly
more complex and considers the case of a tri-
angular membrane element subjected to in-
plane forces. The strain-displacement rela-
tionship is expressed by Eq. (26):
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Fig. 4. Example 2,
triangular membrane
element

v,
s
Yxy X32 Ya3 X:3 Y31 ¥21 Y12
v
- B BEANE)
(26)
where
@ o Bep gy & strains in x- and y -directions

and shear strain, respectively,
considered to be uniform in
small triangular element;

A = area of triangle;
Va3 = ¥; ~V3, €tc., where x and y are
coordinates from reference

point; and

u,v = displacements in the x- and y-
directions, respectively.

Now, proceeding in a manner analogous to
the treatment of acceleration data, we have
from Eq. (11), the filtered signal for the dis-
placement,

(x(t)}; = (&), {e) B0, . (27)

where {5(t)}, are the terms included in the
braces in Eq. (11).

Substituting Eq. (24) into Eq. {27) gives

fey; = Mo} (3, (28)

which, when written out in expanded form, be-
comes




——

(€4;) LITRIT Tinl
€2i
i = (T T2 Ttn
. r ) Trl Trl Trn_‘
(t,,\ fﬁ“\
¢2| ﬁ'."i
s > (81,05 - Sl X - P
(Fni) (Fai)
(29)
where ¢,; is the strain measurement {iltered

to the ith mode between nodes { and £+ 1, and
there are r strain measurements.

It follows that ¢, is given by

(Z Ty, ¢ \)(Z b ﬁk,>. (30)

Hence, the ¢, function to be minimized for
mixed measurements of strain and acceleration
responses will be given by

$i( Py baie- - ®ni)

fofgree) )]

(31)

where there are m acceleration and r strain
measurements, m+r < n and o = scale factor,
which is introduced because the strains, nu-
merically, are so much smaller than the
accelerations.

Similarly, one can gather together the ex-
perimental data of more than one transient
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response experiment to form the ¢ function to
be minimized. The subsequent dy aamic model
obtained from a single computing operation will
best fit all the experimental data 8o treated.

CONCLUSIONS

This report demonstrates that it is feasi-
ble to improve an analytically derived linear
structural-dynamic model based on transient
responge experiments. Although the? data used
in this report were "manufactured' from anal-
yses and were not actuai mcasured data, the
basic concept has been demonstrated.

In the examples presented, attempts were
made to represent typical transient response
experiments, aibeit on a smaller scale; i.e.,
only a six-degree-of-freedom model was used
although it is recognized that most practical
problems in the aerospace industry require
many more degrees of freedom for adequate
simulation. In addition, the essence of the
transient response cxperiments was maintained,
especially in the second example, where the
forcing function was assumed to be applied at
only tihe first two particles and acceleration
measurements were made on particles 1, 3, and
6. This example typifies the experiment in
which the external structure, represented by
particles 1 and 2, is subjected to a load, and
response measurements are made on the exter-
nal structure and on some, but not all, of the
internal components. (No measurements were
made on particles 4 and 5.)

The basic logic of the method has been es-
tablished, even though feasibility was demon-
strated only on a six-degree-of-freedom system
with input data (loading and response) known
exactly. A study of the effect of errors in data
should form a next step in the evolution of the
method.

FUTURE EFFORT

Although this report, in its pr-esent form,
can be utilized for assessing the validity of a
structural dynamic analysis based on experi-
mental results, certain questions have arisen
during the course of this study ihat require ad-
ditional effort to find the answers. In an effort
to demonstrate the principles of the method in-
volved, relatively simple examples were chosen
in the report. To obtain a better simulation of
the physical system, more complex analytical
dynamic maodels involving more than six degrees
of freedom are often generated. It is planned
to demonstrate that the methods of this report
are feasible and economical (in terms of




computer time) in handling systems represented
by many degrees of freedom.

In the simple examples given, it was as-
sumed that four, and then three, accelerometer
measurements were mnade during the tests. An
investigation is planned in which it is hoped that
general criteria for the anumber and location of
transducers required for successful application
of this method can be achieved. These criteria
will then serve as a guide for future planning
of experiments.

Measurement inaccuracies due to trans-
ducers and associated circuitry always arise
due to factors such as manufacturing tolerances
or noise in the system. R is planned to employ
statistical concepts in the representation of the
loading an” response measurements gbtained
from experiments. This study should result in
a "best fit" solution to the dynamic model based
on test data. In addition, it is hoped to formu-
late a criterion for measurement accuracy to
yield adequate results for revision of the ana-
lytical model.
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DIGITAL ANALYSIS OF FATIGUE DAMAGE TO A MULTI-
MODAL SYSTEM SUBJECTED TO LOGARITHMICALLY
SWEPT SINUSOIDAL VIBRATION SPECTIRA

Seymour Fogelson
The Marquardt Corporation
Van Nays, California

To qualify a component for use in missiles of space vehicles, it is nor-
mally required that its fatigue strength be demonstrated by test. Such
a test generally requires that the component be subjected to a random
vibration input for a specified time a.d to a sinusoidal vibration spec-
trum that is swept linearly or logarithmically at a given rate. One of
the functions of the stress analyst is thus to verify that the component
has a fatigue life sufficient to pass these tests without failure. The
purpose of this paper is to present the analyst with a digital computer
program that will predict the fatigue damage done to a structure with
up to six degrees of freedom that is subject to logarithmically swept
sinusoidal vibration spectra.

A method for calculating the fatigue damage of structures subjected to
sinusoidal vibration spectra that are swept logarithmically at a given
rate was developed anc programmed for analysis by digital computer.
It is assumed that the structure is a damped spring-mass system with
each mass having three translational and three rotational aegrees of
freedom. Only lumped mass structures are considered. It 1s further
assumed that the resonant amplification factors and the overail damp-
ing ratic of the structure are known.

Based on this analysis, the resulting digital computer program yields
the damage accumulated in each mode of respunse for each axis of ap-
plied excitation, the total damage accruing for each input axis, and the

total damage caused by sweeping the spectrum a given number of times.

5. Fogelson

INTRODUCTION

When a damped resonator is subjected to a
sinusoidal excitation of a given amplitude and
frequency, its response peak acceleration and
frequency is constant with time. The stresses
induced in the structure, which are functions of
the response accelerations, and the number of
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times these stresses are repeated are there-
fore readily determined.

The "'allowable' number of times this in-
duced stress may be repeated is obtained from
the S-N curve of the material and the resulting
damage to the structure is directly obtained.

When a number of sinusoids differing in
both amplitude and frequency are applied to the
structure in sequence, the resulting damage is
the sum of the damage caused by each resulting
stress level, i.e.,

D-Z% (1)

according to the Palmgren-Miner hypothesis of
cumulative damage.

’
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It is often required to determine the dam- such as that shown in Fig. 1 is logarithmically

age done to a structere when a frequency range swept at a given rate. This paper describes

is swept at a given rate. Within this range the the utilization of that equation, and the resulting
magnitude of the applied excitatior may remain digital computer program, for predicting the
constant for all frequencies or only over speci- fatigue damage in a lumped mass system having
fied frequency ranges, as shown .n Fig. 1. six degrees of freedom.

When this range of frequencies is swept, the

responsec accelerations and, therefore, stresses

are now time dependent and Eq. (1) is no longer LIST OF SYMBOLS
applicable. In short-lived structures, sucn as

missiles and epace vehicies, the rate of sweep b Slope of material S-N curve

is adjusted to provide equal time increments

for each frequency band [1, p. 24-22]. In this D Damage

type of sweep the frequency varies logarithmi-

cally with time as shown in Fig. 2. An Numbez of applied cycles occurring be-

tween two specified stress levels

f Frequency of applied acceleration (cps)

e
f, Natural frequency, simple resonator (cps)
f, Natural frequency in mode r, multi-
modal system (cps)
e F.T Force, torque (Ib, in.-ib)
» Damping ratio
H Linear or generalized magnification factor
HCPS) I Weight moment of inertia (psi)
Fig. 1. Input spectrum K Percentage of maximum magnification
factor
The response of a damped resonator sub- m Mass
jected to a legarithmic swept sinusoidal spec-
trum was investigated by Grumman Aircraft M Generalized weight (1b)
Engineering Corp. [2]. This investigation re-
sulted in an equation for predicting the number i Response acceleration (in./sec?)
of times a specific amplification factor and,
therefore, stress is exceeded when a spectrum n Number of applied cycles i

10 T

10
LOG f (CPS)

10

It N .
0 50 100 150 200
USEC)

Fig. 2. Frequency-time relationship
for logarithmic sweep
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N Number of allowable cycles from material
S-N curve

Q Generalized force (lb, in.-1b), "quality"
factor = 1'2,, single-degree-of-freedom
system

R Applied load factor (g)

S Stress (psi)

SR Sweep rate (octaves/min)

T Sweep period (sec/octave)

¥ Weight (lb)

x Applied acceleration (in./sec?)

¢ Torsional mode magnification farctor

Subscripts
i General index, response coordinate
j Input coordinate
k General index
L Subincremental index

r Mode

Matrix Notation
[A]T Transpose of matrix A

[ ] Diagonal matrix

FAILURE CRITERIA

A typical material S-N curve is shown in
Fig. 3. If a stress of intensity S, is cyclically
applied n, times, the resulting damage is

D, (2)
1
and the fatigue margin of safety may be ex-
pressed as
I
MS. - - 1. (3)

If the peak stress intensities vary during the
life of the structure, the damage, according to
the Miner hypothesis, is cumulative and is ex-
pressed as
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Fig. 3. Typical material S-N curve

b Yok

i=1 !

(4)

where m is the total number of different stress
intensities applied to the structure. In a piece-
wise fashion the S-N curve shown in Fig. 3 may
be expressed as

N.

N, (S,/Sp°°. (5)

where

log (N,/N,)

™7 Ter (5,5

(6)

By substituting Eq.
is expressed as

o SRR

(5) into Eq. (4), the damage

(7)

Equation (7) demonstrates that, for a given ma-
terial, the damage depends on the magnitude of
the applied stress s, and the number of times
n; that it is applied. According to test data

[1, p. 24-12), failure of a multiple-loaded mate-
rial occurs when

D>1/2.

(8)

=Xt

1SS/ I

P

|

C
1
u
YAAYA
K

Fig. 4. Stress-time history




For clarity, the calculation processes for de-
termining S; and n, will be illustrated for a
single-degree-of-freedom system.

SINGLE-DEGREE-OF-FREEDOM
SYSTEM
Determination of Stress

A resonator, such as shown in Fig. 4, re-
sponds to an excitation with the acceleration of

v, =

Hx . (9)

where H, the magnification factor, is given by

H - {00 (607 + &2 (g f,,)’}| © (0
X(t) = X, sin o, (11)

and u; = response acceleration. When
f,= f,. (12)

Eq. (10) reduces to

When f; ¢ £, the magnification factor can be
expressed as

H; - K;0, (13)
where K, is some fraction less than unity. The

stress on section A-A (Fig. 4) of the mass is
given by
 ma- Al

(14)
Axa

where

ms_a 1S the mass to the right of section
A-A, and

A,_p is the cross-sectional area at A-A.

Substitution of Eqs. (9) and (13) into Eq. (14),
setting my o, W, . g, yields

s, ARk X (15)

Aa.a g
or

S;  S,K,ON,

(16)

where S is the stress due to a 1-g loading and
N is the applied load factor. If
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S... - S,ON,

nax (17)
the stress at any nonresonant condition can be
expressed as

i i “max -’ (18)

Determination of Applied Cycles

The number of times the stress s; (Ej.
(18)) is equaled or exceeded was found by
Grumman [1, p. 24-22] to be

n; - 2.041Tf, /1 Jae A kel .
(19)

in which T is the sweep period in seconds per
octave.

Since n; counts all of the peak stresses
greater than s, it also includes the number of
times the stress S, is exceeded (where S, > Si),
as iliustrated in Fig. 5.

Fig. 5. Simple resonator

To preclude counting s, and all higher
values of S more than once, the increment be-
tween n; and n, is used and the number of
times the peak stress level is between s; and
S, is counted. Thus, the quantity

(20)

n; n; = ng

is used in Eq. (7) in lieu of n;,. The stress
magnitude now used in Eq. (7) is the average of
S, and S, i.e.,

§_l

=k (21)

(Si+sk)'

If K, - X, is small enough, the resulting error
will also be smail. Since the greatest damage
is done at the higher stress levels, this differ-
ence should be initially small, e.g., 2.5 percent,
increased to 10 percent for K = 0.6.




FETERMINE| |DETERMINE
L] ot As;
(EQ. 19) (EQ. )

DETERMINE

INPUT DATA] |INPUT DATA DEFINE D, DETE ¢ DETERMNE
=1 S MAX, Q,N [~ VALUES OFf—-» = D*=1D; =] TOTAL DAMAGE

Ny, $y. b v PER SWEEP

1+ N o . D=D*x NS
t, 7. N8 K, (€Q. & PER SWEEP x
*NS = NO. OF SWEEPS

|

DETERMINE
5
(€Q.17)

(1) IF SN DIAGRAM IS NOT A STRAIGHT
LINE WHEN PLOTTED ON LOG-LOG
PAPER, THEN ASSUME STRAIGHT LINES
BETWEEN AVAILABLE DATA POINTS
AND USE SEVERAL VALVES OF NS, &6.

Fig. 6. Flow diagram for single-degree-of-freedom system

The procedure to be used to determine the
damage factor D for a single-degree-of-freedom
system is outlined in Fig. 6, and will now be
adapted to a multi-modal system.

MULTI-MODAL SYSTEM

Discussion

This analysis is limited to a lumped mass
system, supported on lightly damped springs,
with each mass having three translational and
three rotational inodes of vibration. This sys-
tem may be typified by equipment supported at
various points on a space framework with struc-
tural damgping. A sinusoidal excitation, such as
shown in Fig. 1, is logarithmically swept and
applied to the system along each of the three
orthogonal system axes in succession. This
input excites all six modal responses as the
frequercy range of the spectrum is swept, as
shown in Fig. 7.

As in the simple resonator, the procedure
to be followed is (a) determine the applied
stress intensity; (b) determine the number of
times each stress intensity is applied; (c) de-
termine, {rom the S-N curve, the number of
times each stress intensity inay be appiied; and
(d) coinpute the damage.

In a weakly coupled system, the damage
from each mode must be computed separately
and then summed. Each of the procedures out-
lined above will now be discussed in detai'.

21

Fig. 7. Response inertia
forces and moments

Determination of Stress Intensities

Each inertia load shown in Fig. 7 is de-
rived from the mass properties at its centroid,
the corresponding amplification factor, and the

applied excitation. These loads are expressed
as

rij rijor

and > . (22)

Let each load be indexed as

b




e

(o ) h
’rxj rQl'lj
Frvi Q, 2;
Frlj Qri
< > = < < Qri‘
J
Trxj Qr!j ?
Teys Qs;
\Tr:jJ \Qtoj)
where
r is the mode,
i is the response coordinate, and
i is the input coordinate (i = 1 on x-2xis,
j = 2 on y-axis, and j = 3 on z-axis),
Similarly, let
- . _ -
v M,
v M,
w MJ
= = M] .
Iy M, [ !
Iy Mg
. IZ.. L Mo
Hixi Hiyj Higy fuxg Ouyy Oy
H2xj H2yj Hsz 92xj 02yj 82:]
Hin H3Yj HJ!J‘ (‘)ij 03YJ 931]
Huj Hayj Huj (’u; 04” Buj
Hij HSyj HSzj Uij 05yj HSzj
L"oxi "oyj H6zj Ooxj ﬁoyj 06zj
Hn, lej Hloj
H2|j Hyéj
[Hfij] Al
_Holj Hooj
and

- —

Let the full force matrix be

(Q,:;) = [©y;;110,,,) - (@]

which, from Eq. (22) and the matrices defined

o] alla]

o]

At any point in the structure, the stress induced
by one of the Q_;, forces is

(23)

rij

Seij = QijAis (24)
where A, is the coefficient relating S,;, to
Q,;; as found by stress analysis. If Eq. (24) is
written as a matrix, with the columns corre-
sponding io the response axes and the rows
corresponding to the modes,

s~ ear ]I ]

and using Eq. (23), these stresses may be ex-

(25)

pressed as
90 1 8 9 N P
where
T
Seij ¢ [{Snj}{szn} {Sou}]
and
(e |
Srlj
Sr2j
S.5;Y = § - % :
hsron

For the nonresonant frequencies, as in Eq. (18),
Eq. (26) becomes
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Determination of Applied Cycles

It is shown by Eq. (19) that, for a simple
resonator, the number of times a stress of in-
tensity S, is exceeded is a function of the cor-
responding magnification factor kK,Q. Ina
multi-degree-of-freedom system, however, the
maximum magnification factor is H, which is
different from Q = 1/2y. Equation (19) is,
therefore, expressed as

122.46
s e /1-J[1+72] [1-(/KH ;O .
(28)
where
f_ = rth modal frequency, and
SR = sweep rate (octaves/min) = 60/T,

Equation (28) indicates that for a given mode
and sweep rate, the stress components S, ;;
will each be exceeded a different number of
times, depending on the magnitudes of the cor-
responding magnification factor (K H ;).
Consider a two-degree-of-freedom system
with response directions q, and q, and the
corresponding resonant amplification factors in
mode 1, H,, and H,,, for an input in direction
1, and assume that H,, > H,,. Equation (28)
indicates that as (K H, ;) diminishes, the num-
ber of times the stress corresponding to
(K, H_ ;) is exceeded increases. Thus

Mg € Nyggge

The number of times the peak stresses fall in
the intervals

Spir <8y < S(k+Ak)ll
and
Se12 < Sip < S(kﬁAk)lz
is given by
LT M k+ak)11
and
Mgz = Nyyp ” Nketk)r2”
Since
Neir < Mgz
and
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<
Moeakynn  M(keskyr2°

(29)
Angyy <00y, .

Since Eq. (29) must hold for all values of k,
it is inferred that, on a time basis, the stress
S, 12 is applied to the structure before the stress
S,1:- This means that the stress S, ,, is applied
to the structure a number of times equal to

- |
BBy yy = Bnyg gy = By, (30) i

more than S, ,,. Also, since S, ,, and S, ,, are
applied symmetrically about a central frequency,
Any,,/2 and Ang,,/2 must occur simultaneously.
The total stress

S = Seun * Sz

is thus applied to the structure a number of
times equal to

Abng,, = Bny g - (31)

This reasoning has been extended to cover the
six-degree-of-freedom problem under consid-
eration.

This concept is best illustrated in Fig. 8
where the &n; and S; values are chosen arbi-
trarily. In this figure, 4n;/2 is plotted against
S; to emphasize the temporal relationship be-
tween the various response directions.

it is seen from Fig. 8 that the initial stress
intensity applied to the structureis s ,, = §, =
5 ksi, which is applied (2) (300 - 200) (10%) =
200x 10 times. Since the total stress applied
to the structure is the sum of the component
stresses, the stress S, = S;+S, =5+ 10=
15 ksi is applied to the structure (2)(200 - 150)
(103) = 100x 103 times before S, is applied.
The summation of stress versus cycles contin-
ues until the maximum stress is reached. This
method is illustrated in Table 1 which lists the
total number of applied cycles for each Sy
value.

The stresses, S, ,, as found in Table 1,
are then used in Eq. (5‘ to determine the corre-
sponding allowable number of cycles, N, .

Allowable Cycles and Total Damage
In any interval of stress, where

S, <S8 <S5 a

it is assumed that S, may be used as the ref-
erence stress to determine the allowable number
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Fig. 8. Example relationship

between 4n,

and S;

TABIE 1
Total Stress vs Number of Applied Cycles2

Increment, L No. of Applied Cycles, &n, Tetal Stress, S , (ksi)
1 (2) (300 - 200) (10%) = 200x 103 5
2 (2) (200 - 150) (10%) = 100x 103 10+5 = 15
3 (2) (150 - 100) (103) = 100x 103 20+15 = 35
4 (2) (100 - 50) (10%) = 100x 103 15+25+35 = 175
5 (2) (50) (103%) = 100x 103 30+75 = 105
4See Fig, 7.

of cycles, as given in Eq. (5). By using the sub-
scripts k, r, and j as before, and introducing
the subscript L to denote the subincrements as
illustrated in Table 1, Eq. (5) is written as

b
1 l(serj> . (32)
Neeprj N\ S,

The total damage per spectrum per sweep is
then, from Eq. (7),

=1 r=1 k=1 L=1

where

m is the number of nonresonant stress in-
tensities,
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n is the number of subincrements result-
ing when the componert stresses are
summed, and

b is the slope of S-N curve (see Ey. (6)).

PROGRAMMING

The calculations indicated in this analysis
were programmed, in Fortran IV, for the IBM
7040 digital computer. A flow chart of the pro
gram is shown in Fig. 9. A listing of the main
program, with the subroutines SORT and SUM,
is given in Appendix A. A sample problem
based on the LEM Propuision System/Thrust
Chamber Assembly (PS/TCA) analysis [3] is
given in Appendix B.
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Fig. 9. (a) Fatigue program input-output flow chart, and {(b) computation of damage
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25




Rpp——— T L

3602 ¢ FUOLELSEM

IS0

T WY

Appendix A
PROGRAM LISTING

1CC4-DU-0136 FURTRAN SCURCE LI1ST 09/726/66
SOULNCE STATEREAT

0 $IBFIC 3¢C2

NV W

13
30

-

(9
C
(4

[aNaNalal [aXaNalalal

(2N alal

[a X al

50
10C

11C
120

130

PRCGHAR ~FATIGUL ANALYS(S.G.A.E.C. PETHCOD
vATeD 19 APRIL.16¢6
ANALYSIS AND PRCunAP 8Y S.FCGELSCN

DIMENSIUN SSIS5e103eVVAIS 10D BBSNES.30) sNANE2( 4,103 ,MAT(10).,ABl 06,
2300 o MANEI & 10D ZZRI10I o XXNS(10) +XXR(6,10) !
DIMERSICN AJLDoNIO03)eFNIO)TITLELIS)(TITLEZ(4), TITLEIIS),

2 XRIO)oSOXIOe6)eSOYIO0) ¢SDZIO6)sALIIT) oSFOXIO41T7,6)9SLOY(6,17
300)oSFOZIG1Te0)oERXIIT¢046) +ENY (17464060 ENZITIT,6006) DELENXILT 6,6
S oDELENYI(To€eO) e LELENZITT 16,0)0AA10) ¢BLO)oCLO),SUNNXIG,1T,0),FSOX
SU174¢696)s SUPNY(6:17406) ¢ SUMKZIOIT o063 ¢FSOVIIT6e0)oFSUZI17,646),
OkOX(17¢60€3oROYI17:600)sROZTIT646)0ELDOXILIT . .DELOOY(17,0),
TOLLOOZ117:0) . SOMDX16) o SORDY(6)SOMDZ(6),0DMI6) o XXX (6D XMI6)
DIMEASICN SIS),VNIS) 4BSKLS)

VIBEASICON X(€) VIS) 100}

REAL NAPE2,MANED

REACIS,10CITITLEL ¢APS o ACSoNPATS

FORMAT(4A0,2X,313)

TITLEL=S ASSEMBLY MAME, NPS= NO. OF PARTS TC BE CHECKED, NCS=NO.
OF LCAU CCMUITIDNS, NPATS 1S THt NUMBER OF DIFFERENT MATERIALS IN
ThE ASSEPBLY

REAQIS12CHILINHIL 2 JeKDelx196)ol=106)9K=1,43)
FORMAT(6FO.3)

HEGedoKI=PAGANIFICATION FACTOR (N MCOE (,FOR A RESPONSE IN DIRECTI-
ON JoTO AN (APUT LCAD FACTOR 1IN OIRECTION K

REAQISo13CIIFNILD(=1,0)
FORMAT(6EL2.¢)

FNJ(IsNATURAL FRECLENCY (A MCOE 1
REAUD S (2000 XM3 3 40s1,40)

XM3Jhed=m1e3 = ASSEFBLY WEIGHY: XPIJ)eJ=4e6 =11X),0LV), ML)
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3402 2 HLCELSEN

(S»

4%
£5
(1]
1

1co
s

112

123
134

14¢
147
156
151
153
154
15%
1%¢
16C

[a XA N aNoNal

[a N o/ o] [aNaNalal

[aN aXal [aNaN ol

14«0

150

155

1¢¢

34C2 2 FCCELSCN

IsN

1¢l
163
les
165
167
17C
171
172
174
175
176
172
20C

2C3
2C4
2C5
2C7
<10
el
213
215
¢
ra %)

22¢
rd ]
c22

[a N aNal oS

[a N aX al

[a N a K ol o

165

167

17

18C

192
164

196

2¢C

1CC4~CO-0136 FCRTRAN SCURCE LIST 3402
SOUYRCE STATEMENTY

READESo13S5D1(SSINPIN=]5),P7] ,NNATS)
REAULS, 1353 LVYNIN,P) A=L;5),M3] (NNATS)
REAUIS)1ISILIBBSNIA M) oN=]1,5) oN=] ,NNATS)
FORMATIS5EL2.¢)

SSA 1S THE CROLINATE OF Tht PATERIAL S-N CURVE
YVA 1S THE ABSCLISSA OF TnE MATER(AL S-N CUVE
tBSN 1S THE SLCPE CF THE MATERIAL S-N CURVE

READIS 140 (NAPE2LL GNP I=]o%) s MATINP) (1P |, NPS)
FCRMAT(4A6,2X,13)

NAPL2 1S THE NAMc OF THE PART BEING ANALIZEO., PAT (S THE NATERIAL
COOE NUMBER

READISo130)C(ABIIINP) ¢J=L,6) NP1, APS)
ABLJIWNP) 1S THE STRESS INFLUENCE CCEFFICIENT FCR A RESPONSE IN
DIRECTIGN J FOR PART AMUMBER NP.

READIS o 15000 (INAMES (L oeNCIol=106) o ZZRINCS o XXNSINC)oNC=1,NCS)
FORMAT{ 4AG2X oF6.3,2XeFb6.3)

MAME3 IS THE NAME OF THE NCITH) CONOITION BEING CHECKED.
READ(SoL3CIUIXXRIToNCIel=],o6)eNC=] oNCS)
XXR{1¢NC) 1S THE INPUT CF MCDE 1 OURING CONCIVION MNC.

CO 200D NP=1.NPS
P=MAT(NP)

00 155 1=1,4
TITLE2(1)=NAFE2(1.AP)
CU 16C N=1,5
SINI=SS{N.M?
VYNIN)=VVN{N,P)
BSN{N)I=BBSh(A M)

0G 165 J=1,6

1CG4-00-0136 FORTRAMN SCURCE LIST 3402
SOURCE STATEMENT

AlJ)=ABIJyNP)

U0 1000 NC=1,NCS

00 167 (=1,4
TITLE3(Li=NAME3(1,NC)
IR=ZZRINC)
XNS=XXNSINC)

00 17D 1=1,6
XREL)sXXRE(oNC)

00 180 1=1,6

0C 18D J=1,6
SOXCLeJdd=XRULISHEL o Jol)OALIIOXNM(Y)

"SDY(Lloda=XRELIPHILoJo2)*ALJ)SXNIY)

SOZUloJa=XRELISHIL Je3)SALJ)EXM{J)
SCXeSOYeSUL ARE PARY STRESSES FOR LOACING (N XeYoZ AXES DI(RECTIONS
AK=PERCENT GF MAX(PUP STRESS LEVEL

AK(1)=1.C

DO 192 N=2,5
AKIN)=AKIN-1)-0.025
00 196 N=o,13
AKINI=AKIN-1)-0.05C
OC 156 N=14,17
AKEN)=AKIN-1)-C.1C
0f) 200 J=1,¢

DO 200 1=1,6

00 2C0 h=1,17

SFOXoSFLYobTCo o ARE MAX. STRESSESe FOR X oY oANC Z LGADING.TIMES AX
SFDX(LleNsJi=AKIN)SSCX(l,J)

SFOY(LoNyJ)=AK(N)®S0Y(]1,J)

SFLZlToNeJd)=AKINI®SCL((,J)

EAXoEAYIENL ARE THE APPLIED CYCLES FUK X Y ANC Z-AXES LOAOING.SUB-

SCRUPTS N=PLRCENT LCADING (=MOUE J=RELSPONSEt AX(Sy{.teolux-TRANSLA-
TCON 2=Y-TRANSLAT(CAN S=v-AX1S ROTATION 6=7-AX1S ROTATIUON
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Jele 2 FCELSOM

ISN

220
e21
230
231
232
233
234
235
240
241
<42
243
246
2417
250
251
<%
25%
cS¢

257

2¢3
2¢4
2¢5
2¢6
2¢1
27C
JT1
212
2713

[pXala

[a ¥ o N aN ol ol

225
23C

25C
260

27¢
ico

310

34C2 ¢ FCLELSCn

ISh

2N
300
3l
302
3c3
ICe
305
ice
3¢t
21C
34
15
316
in
220
322
323
34
32
3¢
LA
231
232
123
235
238
37
ELYH
361
342
J4s
345
340
3+C
51
3¢2
53
3154

322

320

34C

350

3389

1CCe-00-013e FCRTRAN SCLRCE LIST 3402 09726766
SOURLE STATEMENT

0C 3C0 I=1,6
KER({L)=122.40FNI1)ONS/IR
D0 300 J=1,0

CO 300 »=1,12

FHX sAKINI®M{l,J001)
Fny sAK{N)IOKF{],4J,2)
FHl SAKINI®HIT 4J,3)

Ir{AeSIrhY).LE.1.CIGO TC 225

ENYINGI 2 J)=X2X{1 )oSCRTIL.0-SCRTI1.004442(1.0-1.0/1FHY®e2))))
GC T1C 230

ENYINo Lo JI=XXXIII]

Ir{ABSIFHL).LE.L.0IGO TC 250

ENZING L pJ)=XXX{])OSURTIL 0~SonT{(1.004440(].(~-1.0/(FH]®®2))))
GC TG 260

ENZINS T U =R2X{TI

IF(ABSIFNX) .LE.1.CIGU TC 270

ENXINGT o J)=xXX{I)OSQRTII cO-SuRTI1.004642(]1.0-1.0/1FHX®9%2})}))
GC T0 300

ENKING L o JI=XXX{])

CCATINUE

CELENXIN: [+ J)=INCREVPENT OF ENX BETREEN N PERCENT AAND (N-1) PERCENT

00 310 1=],6

00 310 J=1,6

DELENXI ) T oJISENXIL ],J)

UELENY I Lo 1 o JIaENYIL,1,J)
DELENZL L1 0J)=ENLIL,]1,4J)

D0 310 N=2,17

DELENXIN T o J)=ENXIN Gl o JI-ENKIN-1,1,J)
DELENVING Lo J)=ENYING I 4 J)-EANYIN-1,1,J)
DELENZING L ¢ J)=ENLING]L 4 J)-EN2IN-1,41,J)

SUMAX=TCTAL AC. CF TIFES A PARTICULAR STRESS LEVEL IS APPLIED NUE
LOAUING ON X-AXIS,AT K § GF MAX.,IN MCO: 1.
FSUX=STRESS LevtlL APPLIFC SUMNX TIMES CUE TC X-LCAUING

18C4—00-0130 FCRTRAN SCUKCE LIST 3402 09726766
SOURCE STATEMENT

V0 322 1=1+6

CC 322 N=1,6

GO 322 k=1,6
SUPNXIKsho 1 )=0.0
SUPNYIK o A,I)=0.0
SUPNZIKsN,1)=0.0
FSOXINKo[)2CoO
FSOYINyK,1)=0,0
FSUZIN.Ke[)=0.0
CCNTINLE

0C 400 N=],17

0C 400 I=1,%

DC 320 J=1,6
AALJ)=DELENXINGT 0 J)
BEI)=SFOXUIsN,J)
CALL SCRT{AA,B0)
CALL SUMIAAIBeCoboJdXeXsYy2)
0C 340 x=]l,JX
SUPNX{KoNyI)=X{K)
FSOXIN Ko 1)=Y(K)
CCANTINUE

L0 350 J=1.6
AALJ)=JELENYINAT 0 J)
BEII=SFOYIIoNoJ)
CALL SCRT{AA,2,06)
CALL SUMIAA89Ce60JYoXyY,2)
DU 370 K=1,JY
SUMNYIK¢No Tl )=x1K)
FSOYINeK I )=YIK)
CUNTINLE

DC 38C J=1,06
AA(JISOELENLZIN,T 0 J)
BUJI=SFOZ{T4NoJ)
CALL SCHRT{AA,E 6]}
CALL SUMIAA29Cob0JdleXeV,si)
00 3%5 K=1,J¢
SULFNZIN Ny Eh2X(R)
FSULINGK LDV K]
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36Ls ¢ FCCeL TN

15h

157

3e2
2¢3
3es
2¢S
31C
371
272
315
376
37
402
«C3
404
4D7
410
411
412
4lé
415
42V
42l
€22
425
42¢
427
432
423
434
437
4«C
44l

(ol aNal o ol

355
¢

«2C

422

425

«3C

440

4“4l

L LY

445

3640c 2 FCCELSCM

ISN

442
444
445
450
451
452
“55
450
457
“t2
4¢3
et
4¢7
47C
471
472
474

677
500
5C1
5C2
5C3
34
5C5
5Cé
<C?
510

S5le
515
tle
s17

2N alalal

(o alal

450

400

L1

“t2

465
47C
60C

65C

1CCs-00-01306 FCRIRAN SCURCE LIST 3402
SULRCt STATEFENT

CONTINLE
CUNTINUE

KUXINGK ol )SHECIPRCCAL GF ALLCWASLE CYCLES wHEN X-AXIS (S LUAOED,AT
N PERCENT LUADING CCHRESPCMUINGL TO THE KITH) STRESS LEVEL.IN MCUE

0C 6CC I=1,6

0C 6CC M=l,17

U0 430 K=l,6

IFCABSIFSDXINGK, [D) LTF.SELDIGL TO 420
ROX(NgK 1 }=].0/VNL])

GC TC 430

IFCABSIFSUXIN K 1)L T.SU3D)GC TC 621

HOXINGK B D= { EFSDXEN,K 1D 7S12))08B5NIL))/7VYNI2)
GL TC 430

IFIABSIFSDE(NGK ID Dl ToSt@DIGC TC 422
ROXENGKo L)l IFSOXINK, [D/S(3))8eBSAIB)/VNID)
GC YC 430

IFIABSIFSOXENKIDD.LT.SIS)IGC TC 425
ROXENGKo B )l (FSUXINGK, 1D/S14))08SNI4) D/ VALS)
GG YC 430

RUX(NeKol )2D.0

CCNTINUE

DO 450 K=]1,6

IFCABSIFSDYIN,K, 1)) LT.SILD)IGC TC 440
ROYINeKoE)=1.0/VNIT)

GC TO 450

FELABSIFSOYINGK )DL TSE3DDIGC TO 4el
ROYINGKo L)l IFSOYIN Ko 1)/7S12))8e8SNIL)D/VNLZ)
GO TC 450

Lo BABSIFSOUYINGK 1) ).LT.SISDIGC (T 442

ROYENGK B )= LIFSOYINGK 1 )/SE3))%sBSAL3)D/VNIZ:
GO TC 450

IFEABSIFSUYINGK, 1) D)oL T.SISIIGE 'TC 445

RUYEINGK B )sEIFSDYIN Ko ) /SE6)I®®3SNIG) D/ VNLG)
GL YC 450

RUY{N¢Ko[)=0.C

IDD4-DD-01 36 FCRTRAN SOURCE LIST 3402
SCURLE STATENMENT

CONTINUE

OC 47D K=1,6

IHIABSIFSUZINGK 1)) .LTL.SEL)IGC TO 460
ROZINKol)=1.0/7VNLL)

GC 1C 470

IFIABSIFSOZINGKo D)oL T.S13))GC TO 461
RUZINGKo L )={(FSDZ{NoKo1)/S12))8%BSNIL2)/VNL2)
GG TC 470

IFIABSIFSUZINGKy 1) ).LT.S14))GC TC 462
RDZ(NoKo b )2l IFSOZEINKoE)/SE3))0eBSNI3)I/VYNLD)
GC Y0 «7C

IFLABSIFSOZINGKy 1) ).LT.SU5))IGD TO 465
RDZINsKol)=slIFSDZINGKoB)/7S14) ) ®8BSNIG))/VNIS)
GC T0 «70

ROZIN¢Ko1)20,D

CUNTINUE

CCNTINGE

OELOOXIN, )TCTAL PART LAPAGE FCR X-AXIS LOADING,AT N PERCENT OF

MCVE .

CU 65C I=1,6

JG 65D N=1,17

DELDDXiN,1)=C.0

OELDOYIN,1)=20.D

LELJUZINGI)=D.D

00 650 Kk=1,6

DELODXIN B )=CELODXINs I ) eRDOXINIKo [ )SSUMNX IK Ao 1])
DELDOYENo B )2ULLUUYENG L) ORUYINGKo L )SSUMNY IKyN,o I}
DELOCZINoI)sCELODZINGI)¢ROZINGKy FD)SSUMNZIK oA, 1)
CUNTINUE

SUMDX( 1)=TOTAL PART CAMAGF l‘ MOOE | FOR X-AXIS LOADING.

CO 675 I=1,¢
SuMDXIE)=D.0
SOMDYI1)=0.0
S0MOZI1)=0.0
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3402 2 FCLeLSCN

ISh

5¢¢
c21
522
5¢3
L)

21
530
531
532
533
534
525
53¢

S4C
4l
42
544
245
546

e?5

[a N o N o Nl

[aXalal

71c

720

[aNalal

-1}

80%

810

3402 2 #TGELSCA

(5h

5¢3
54
5715
eCe
ec?
62¢
621
€32
[3X)
635
€27
€4C

820
£30
840
850

10C0O
2CCC

34C2 2 FOLELSLMN

1SN

1CU4-0u-0136 FCRIRAN SOURCE L(IST 3402 097.°6766
SOURCE STATEBENT

uC 6T N=1,17

SOMOX! ()=SOMCXI1)eCELOOXIN, ()
SOMDY (1 )=SOMCY( 1) +CELDDY(N,I)
SUMBIZ{1)=SURCILTd oLk "2 ins ()
CONTINGE

DLX= TCTAL PART CAMAGE LUE TC X-AX{S LCALINGs URMFING THE ROUAL
UAMAGE .

GOXx=0.0

DOY=0.0

c0l=D.0

00 700 I=}1,6
CCX=COXeSOMODXI ()
CCy=0DYeSOMDY(])
ODI=00Z+SOMOZII)
CUATINUE

COr(1)s TOTAL PART CAMAGE PER MUDE, SUMM{NL THE LLAD AX(S DAMAGL.

0C 710 I=1.6

OOM{(}=G.0

CCNTINUE

OC 720 I=1,6
OCMIT)=DOM{T)eSOPCXIT)eSCRCYIT)eSOMDICT)
CONTINUE

00= TOVAL GF ALL PART CAPAGE DUk TC SPECTRUAM,.

0D=DLX¢0DY+DCZ

aR{TE(O,8D0)TITLEI +TITLER

FORMATUIH] o 47X o 4AL/SI Ro IOMFATIGUE ANALYSTS/4TK4AG/52Ke 1 4HF AT (GUE
20ARAGE /)

wR{TEI6.8C5) LR y4NS

FURMAT(IXy i INSWELP RATE=oF5.2,10Xs I1HNUMBER CF SKEEPS (UP AND OOwN
2)=,F%.2 /)

WRITE(64BECIT(TLED+(PCDELPCOE=1,6)

FURNATU/4T N 4A6/7/5TX ¢ 4HPCOL /3K ¢ THLCADING/4X o 4HAX (S 96112411 Xe 3HSUN

1CC4-CJ-01306 FCRTKAN SCURCE LIST 3402 09/72¢/766
SGURCE STATEPENT

<)
WRITc(64820)({SOMOXI{)el=]1.06),00K)
FURMATIOK o IHX o TX47EL2.3 /)
akITE(E+830)1(SOPOYITNI]1,46),00Y)
FORMAT(OA s IHYTX7E12.3 /)
WR{TE(6+840) ({SOPDL(I)y'-1.4",4uDL)
FORPAT(6X,1H2oTX,7E12.3 /)
aR1Te(66350) LIUUNIT)eixl,40),CD)
FORMATI/5X ¢ INSUPobXoTEL2.3/10-)
CONT {NUL

CONTINLE

GU 10 50

ENO

1CC4-0C-0136 FCRTRAN SCURCE LIST C9/2¢€766
SULRCE STATEPENT

$(BFTC SCRTY

1€00

SUBRCUTINE SCRTIA.B,4N)
OLIPENSICN ALL),BL()

DC 1000 (=2.N

Jl 1000 J=241

JJ=1¢2-J
IFIALJI-1).GEALIJ)) GC TC 1000
AQUN=A(JJ)

gcur=61JJ)
AlJJI=ALSI-1)
8(JJ)=8lJJI-1)
AlJJ-1)=ADUN
8(JJ-1)=00Un

CCNTINUE

RETUKN

END
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JaCe 2 FLLELSLH 1CCe=-0u~01 36 FGRYRAN SCLACE LIESY €9/26/66
(St SLURCE SYATEPENT
G $t1erTC SLM
1 SLARLLTINE SLMIA,B,CoReJCoXoY,o )
2 UIFERNSION AC10,E100 U1 0 R0, YERE,200)
3 x(10=AC1¢
™ Ye1)=8011¢
S 201¢=CC 1)
6 JC= ¢
7 OC 2000 (=2,M
1C 1F(Al11-1).EC.A11C) CC IC 1000
13 JC=JCe]
14 X(JC)=all)
15 YOILE=Y(JC~1)eB11)
| T3 Z1JC)=2(JC-102eCU1 ¢
17 6C YC 2000
G 1CCO v(JCi=Y1JC(eBLIC
il 21JCe=214CceC11¢
é2 2090 CCMNTINUE
26 RE TUKM
25 (1Y)

IBM 7040 INPUT FORM - 80 COLUMN
FOMM TMC (349 REv *08

e o x — et T [mr

2
}

4 M Sp—— N T = T T = 1 v T M
123 4546 183 01l ZIBWS 6178 150 12700 57 P ABDI L TINSE VB 404 Q40N 4647 @ SIS 3456 SR HROR 2 56 PRI 2 T8 KT R

TITLE ] o
JE D W O W
N | NOL2TD) 16,1)
IS Wt RS T ST T OTE e WO N T I e W w e e
18 CARDS, AMPLIFICATION FACTORS *
A4 &1 a4 812 aaax a0 pdoaso2oaagopaogpptxax o al8o8o0ao0 02041t 418 44 QA% s a4 g4 4L R A A il A% Ay
Al a4 434 d AL Ld)yld LA i s 1§14 8ay A1 440 s 0 a4 b4t a8 g2 A gk iyl d 4K gt t% 224 s 422
N(6,1,3) | N(6,2,3) | H(633) "“4” N“@”IN“LM
Y U W A0 ¢ 2 2 3 4 L £ 1131 ) 11} Al 2t N T W S 1O WO 5 U O O 5% W W O IO O W B W O W O T O W O B W W
FR(1) FNQ) FNQ) EN @) l FN(5) ] FN @)
e el el e T TS T e e TN T TSN TR W W
YEIGHT | o), 91, | #l, |WEIGHT & WEIGNT MOMENTS OF INERTIAS
TNy B | L 42 L 4 AL A2 4 a1 toal I NN A L1 13 21t J_L i A & ). 01 3¢ 14§ 4go 3 41 442 84 Qg 202N 4 L4 L]
$S(11) $SQ.1 (1 $$(4,1) l $SG.1 ] NMATS CARDS
Lo a2 s b g a a0 s By oo a1k tso a0 ) oaa s b s x a2 8otogs ot ads gl A 0 % 2 2 4 88 A A3 %A 3 & LA
ORDINATES OF S-N
LA x a4 a b A8l 2188 g 1) ISR NSOl NN 41 40 42 A8 2Ly
$S (1,M) SSQ.M) $S(3.m) $S (4.M SS(S.M) CURVES
L4 24 A 4 4 423k i U U WY A 42 410§ &4 a) AL 4t 1 3 4 41 il 3 4 90 8 5 2 4 ) 1313 4.4 2. 3.1 122121241
YYN(L1) YVN(S,1) NNTS CARDS
NN T TSNS PN S SO TSNP EUO SN SN N S W ! Al s L2 0 b a2 i 2 ksl
“SCISSAS OF &N CUlVES
A4 i 44 doagoApa ) Ao s da b4 g £ (04 18 L QA h gt bgFbo) Ll gy U NEE W A4 4 3 222 2 & %0 L8 Ay
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Appendix B

EXAMPLE PROBLEM

This analysis was conducted on the LEM
PS/TCA, Reaction Control System aft engine
support structure. In this structure, static
stress analysis indicated that the most highly
stressed points were on adjacent pieces of
structure loaded simultaneously by a single
bolt. While the stress of one of the parts was
only 94 percent of the stress in the other part,

they were of different materials and, therefore,

both were analyzed. A schematic of this as-
sembly, with the critical loading, is shown in
Fig. B-1.

MAGNIFICATION "FACTORS

Since the input is applied sequentially along

each of the three reference axes, three matrices
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of magnification factors result, one for each

axis of loading:

X-Axis Loading

H

ril

+2.59

1.10
+1.65
J 2.70

+0.31

-0.52 +0.46
-1.17 0.76

+2.40 -2.77

-0.81

-0.15 -0.14

1.71

| 0.21 0.12 0.07

-0.33

-0.63

0.73

0.25

-0.13
-1.12
+0.36

0.99

+0.04

0.03

-0.09
-0.74
+0.31

0.63
-0.03

-0.05 |




Y-Axis Loading

{Hri 2] =

[-0.52 2.43

-1,17 +1.02
+2,40 +4.32
-0.80 +0.50

-0.13 6.37

| 0.10 2.87

Z-Axis Loading

[4+0.46
0.76
-2.77
1.72

-0.13

| 0.06

-1.86
-0.20
-4.85
-1.79

6.03

1.88

-1.86
-0.20
-4.84
-1.79

6.03

1.88

+2.24
1.18
5.84
1.46
5.70

1.60

NATURAL FREQUENCIES

1.42
-0.38
-1.10
-0.18
-0.11

-0.10

-1.32
0.37
1.29
0.29

-0.11

-0.06

-3 TUBE (2219-T85101

Fig. B-1, Schematic of LEM
PS/TCA cluster mount

0.07
+0.12
+0.20
-0.30
-0.66

0.60

-0.06
-0.08
-0.24

0.66
-0.63

0.35

0.08 |
+0.08
+0.33
-0.20

0.68

-0.99 |

-0.07 |

-0.05

-0.38
0.43

0.65

-0.58

The six calculated modal frequencies are
listed below.
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Mode F, (cps) lL Mode F,, (cps)
1 57.1 4 113.3
2 69.6 5 173.6
3 96.7 6 200.8
MASS MATRIX

In this problem, the input spectra are in
units of g. The mass matrix is, therefore,
written in terms of the cluster weight and
weight moments of inertia:

and

w= 25Ib,
Ix = 318 pSi,
I, = 592 psi, and
I, = 591 psi,
25
25
25
318

591
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STRESS COEFFICIENT MATRIX

A static stress analysis yielded the follow-
ing stress coefficient matrices for the two parts
(see Eq. (26)):

-15 Spacer
N
AiJ e
[0.1339 ]
-14.6
0.3842
18.86 |
1.653
L 2.423 |
-3 Tube
K
Ai] .=
[0.1258 ]
-13.1
0.3608
17.11 '
1.55
2.275
L -t

INPUT SPECTRA

Three sinusoidal spectra, shown in Fig,
B-2, are applied sequentially in x-, y-, and
z-axis directions. These spectra are logarith-
mically swept at the rates, and for the number
of times, shown in Table B-1,

T A T T T T T T l
REFERENCE LSP-310- 20 AMENDMENT 3. TAMLE '1'
LAUNCH AND 8008T
] L 1.3
SPACE FLIGHT g
LOAD / o
FACTOR v =34
¥ )7, P
4 e
Y P
A
LURAR EXCURSION
0 100 200 300 400 500
F(CPS)

Fig. B-2. Sinusoidally applied
load factors qualification test

TABLE B-1
Sweep No. of
iﬁfn. Spadition (ocl::.:is/ %v[v;eig:
min) Down
1 Launch and boost 3 2
2 Space flight 1.5 2
3 Lunar excursion 0.5 2

DATA SHEETS

Completed data input sheets are shown in
Fig. B-3.
RESULTS

The damage resulting from the three load-
ing conditions for the -15 spacer and the -3 tube
are shown in the following printout. The total
damage for the -3 tube is

D = 0.01925 + 0.00104 + 0.00002 = 0.02031,

and for the -15 spacer,

D = 0.04758 + 0.00197 + 0.00004 = 0.04959.
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Fig. B-3(a). Completed data input sheets
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Fig. B-3(b).

Completed data input sheets
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LEM FS/TCA AFT CLUSTER
FATIGut AiALYSIS
-3 TURE
FATIGUE UAMAGE

SeaceP Kale= 2,.C ALMDER (F Sat€PS (LP AND DCwhl= 2.790

LAUNCH ANJ BOCST

MCUE
LUACING
Axl1S 1 2 3 4 5 [} SuUM
x Ce Cecllt-C4 C. 0. 0. 0. 0.221€-94
Y Lol 32t-C2 C. C.148E-02 0. 0. 0. 0.581€-02
14 Co2706k-0c 0. C.560E-02 0. 0. 0. 0.942€-02
Sum Galzle=-ClI CocclE-Ca 0.714€-02 0. 0. 0. 0.193€-01
LeM PS/TCA AT CLUSTLR
FATIGUE AWALYSIS
-3 TuBe
FATIGUE DAMACE
SubtP ralt= 1.5C NUMBER CF SWEE®S (LF NS DCeN)= 2409
SPALE FLIGKTY
MLUt
LCAGING
axls 1 2 3 4 5 6 SUM
x C. C.221E~06 Ce 0. 0. 0. 0.221E-04
A\ «S4CE-C3 0. C.551€-04 C. 0. 0. 0.555£-03
4 CoelidBe=(s C. 0.284€~C3 Ve Qs 0. J.422€-73
Suk C.€7RE-C3 Ce2i1€-Ca 0.343E-03 0. 0. 0. 0. 1C4t-02
LeP PS/TCA AFY CLUSTER
FATIGUE ANALYSIS
-3 TURE
FATIGUE CAMACE
SabtP wale= C.5C AUMBER LF SWEEPS {LP AND uCmhl= 2,00
LUNAKR EXCURSICN
MOOL
LCAC ING
Ax1S 1 2 3 4 5 6 Sum
] C. C.2¢1k-C4 C. 0. 0. 0. 0.221€-04
Y C. C. Ce 0. De 0. 0.
I C. 0. 0.162F-0% 0. 0. 0. 0.162E-05
Suwr C. C.221t-C4 C.162€-05 0. 0. 0. 0.237e~04
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Salt? walr: 2,20

LCACING
Axls 1
x Ce.
Y C.cCof-Cl
z C.547€-C2
Suk C.2C1e-C1

Sact? RATE=z ]1.5C

LLACING
AX1S 1
X C.
¥ C.ELZ2E-O3
7 Co5647t-03
suv Gelie€E-C2

SnEtP kATrz C.50

LOALING
AxlS 1
x C.
Y Ce.
I G
SL¥ C.

LES PS/71CA AFT CLUSTFR
FATluUE ANALYSIS
=15 SPACER
FAT GUt UAMAGe

AUP3ER CF SafEPS (LP ARG DUmA)= 2.00

LAUNCH AAD BLCST

NLE
2 3 4 5
C.271€E-C4 Ce U. 0.
C. C.393€-02 0. 0.
0. 0.135€-C1 0. O«
Ce271t-Ca C.174e-Cl 0. 0.

LEP PS/VCA AFT CLUSTER
FATIGUE ANALYSIS
~15 SPACER
FATIGUE UAMAGE

ALMEER LF Sakkr”S (UP AND OCmN}= 2.00

SPACt FLIGHT

MCOE
2 3 4 s
Ce271E-C4 C. Ce. 0.
c. C.166£-03 0. 0.
0. 0.413E-03 O, 9.
C.271t=C4  G.580€-03  O. 2.

LEM PS/TCA AFT CLUSTER
FATIGUE ANALYSIS
=15 SPACER
FATIGUE DAMAGE

ALMEew LE SAEEFS (UP ANL LumN)= 2.00

LUNAR EXCURSICN

MCDE
2 3 4 5
0.271E-C4 Ca 0. 0.
0. Ce 0. 0.
C. 0.16%5E-04 O. 0.
CodT1lt-C4 C.165E-04 C. 0.
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sumM
0.271E-0%

C.246€E-01

0.230E-01

O.476F-01

SUm
0.271€-04

0.578&-03

0.961F-03

C.157€-02

SUM
0.271:-04

0.

0. 1€9€-04

0.44CE-04
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DISCUSSION

Mr. Holland (Allied Research Associates):
Fatigue damage is sensitive to the response
amplitude, and you have determined damping
analytically. Have you tried to find the effect
different values derived from the damping ma-
tri< have on the cumulative fatigue damage ?

Mr. Fogelson: The greater the damping,
of course, the lower would be the applied stress
and, therefore, the damage would be less.

Mr. Holland: How sensitive is it to this
matrix? Since it is analytically determined,
would small errcrs create a large difference in
response ?

Mr. Fogelson: We haven't found that. We
aoplied various damping ratios differing by as
much as 10 perceni, and the difference was less
than 10 percent, less tha. a 1:1 relationship.

Mr. Holland: What is your damping ratio?
Mr. Fogelson: We use 10 percent,

Mr. Holland: What is the critical damping;
is it modal damping?

Mr. Fogelson: Yes.

Mr. Bratkowski (Westinghouse Research
Laboratories): How were you measuring modal
damping? This has been a problem for most
dynamicists in the past, but it seems that you
have solved it.

Mr. Fogelson: I haven't solved the prob-
lem. The program has been used only in the
design and analysis stage in which we have as-
sumed a certain amount of modal damping. We
have run a test on the system, but the data are
not yet reduced.

Mr, Bratkowski: How have you correlated
the results of your theory and experimental re-
sults as far as damage is concerned ?

Mr. Fogelson: That, too, is waiting for
completion of the test now under way.

Mr, DiTarantv (PMC Colleges): Why were
you using each of the three stresses at a point
individually, instead of the combined stresses?

Mr. Fogelson: I did not make myself clear.
1 do corabine the stresses. There are six stress
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components, one for each response direction,
But I combine them based on the number of
times each of these stress levels is applied.
The stress ‘evel with the greatest number of
cycles is used only for the number of cycles
that it is applied minus the number of cycles
that the next greatest stress is applied. Then
the next two stresses are added together to get
a new total stress which is applied only for the
difference in the number of times these stresses
are applied. All stresses are finally added to-
gether, but only for the minimum number of
cycles.

Mr. DiTaranto: These are not added
linearly ?

Mr. Fogelson: Yes, they are.

Mr. DiTaranto: Rather than using a more
circular approach?

Mr. Fogelson: No. because this stress was
uniaxial and, therefore, the individual stress
components, since they were all acting in the
same direction, were added linearly.

Mr. Ip (Aerospace Corp.): Miner's hypoth-
esis is based on a simple fatigue test. Is there
any question of how well it applies to three-
dimensional fatigue ?

Mr, Fogelson: I cannot answer- that.

Mr, Stallard (AVCO Corp.): A test was run
about ten years ago using random vibration as
the load on pieces of metal. This again ap-
proaches the idealized test. By performing that
test using Miner's hypothesis of Z (n/N) equal
to 1, we found that = (n/N) varied between 3/10
and 5 and 6, which makes me wonder alout this
test. Of course, you are using sinusoidal rather
than random vibration. In the last two or three
years, most of the papers in the Shock and Vi-
bration Bulletins indicated that Miner's = (n/N)
ratio hnlds for a sinusoidal flexing load pre-
duced by a small i'ound beam with a wheel in the
center and a weight hanging on the end of it,
However, Z (n/N) 1is not equal to 1 for random
loading; {t varies over a wide range. I am sure
that anyone else in this audience who has seen
this type of test has found the same answer.

Mr. Rubin (Aerospace Corp.): This is very
true. I think a paper was presented a few weeks
ago at a Society of Automotive Engineers'




meeting which poiated out that the choice of the
criterion of failure will affect the result. For
example, if you define a 1 percent change in the
natural frequency as failure for a small beam
specimen, you will get one result. If you then

*
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want to call failure a 2 percent change in the
natural frequency, you will get an entirely dif-
ferent result. So your failure criterion is also
very important in establishing the exact fatigue
kypothesis.

*
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This paper is intended to serve as an introduction to the ''statistical
energy analys:s' approach, which provides one with a relatively simple
means for understanding and estimating the most significant properties
of multi-modal random vibrations of complex structures. The theoret-
ical basis for this approach is summarized, some insights resulting
from its use are presented, and some applications of it to spacecraft
vibration analysis and testing are discussed.

E. E. Ungar

INTRCDUCTION

Recent technological trends have brought
with them more powerful sources of high-
frequency random vibrations, and simultane-
ously have led to lighter, smaller, and more
delicate structures and equipments which are
susceptible to damage from such vibrations.
As these trends have developed, vibration ana-
lysts have found that the various techniques
that served them so well in the low-frequency
domain (near the fundamenial resonances) could
not deal realistically with high-frequency
problems,

To be sure, the time-honored classical
analysis techniques are also theoretically valid
for high frequencies; however, one encounters
difficulties in their application to practical
problems. The classical techniques generally
involve determination of the lowest few mode
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shapes, calculation of the response of each
mode to a prescribed excitation, and superpo-
gition of these responses to obtain the total re-
sponse. Since only the lowest few modes re-
spond significantly to low-frequency excitation,
computations based only on these modes ‘uffice
for low-frequency analyses. This is not the
case for broadband high-frequency excitations.

In analyzing the respcnses to high-frequency
excitations, particularly where the excitations
have broad frequency band spectra, one finds
that one must take info account a large number
of modes., Determination of all of these mode
shapes, of the associated natural frequencies,
and of the modal responses generally requires
an excessive amount of computation.

Further, and perhaps more significantly,
one finds that one cannot calculate the high-
frequency mode shapes of practical structures
meaningfully. To perform such calculations
one would need to have available complete and
precise mathematical descriptions of the ge-
ometries, boundary conditions, and elastic
properties of all structural components. Since
such descriptions are usually not available, one
is tempted to perform the required calculations
for a fictitious structure which is similar to
the actual one, Unfortunately, however, at a
given location on the structure the responses
associated with the higher modes tend to be
much more affected by small changes in




geometry and boundary conditions than those
assoclated with the lower modes Analysis of

a fictitious structure thus gives results which
are devoid of meaning for the higher modes,
although a similar analysis may be useful where
only the lower modes are involved.

If one could somehow perform adequately
the multi-mode calculations required for high-
frequency response predictions, one would still
be faced with interpreting the large volume of
data generated by such calculations. Generally,
one would desire to perform further computa-
tions, e.g., to determine various response av-
erages, to reduce these data to more easily in-
terpretanle form.

An approach, which has come to be known
as statistical energy analysis, has been devel-
oped in the past few years to circumvent the
aforementioned problems. This approach per-
mits one to calculate average responses and
their distribution over complex structures with
relative ease, being concerned with the details
of the various modes.

This paper is intended to serve as an in-
troduction to "statistical energy analysis.”" The
theoretical basis for this analysis approach is
summarized in the fiist of the following sec-
tions. Some applications of this approach to
two coupled systems are indicated in the sec-
ond section, whereas the ‘nird section discusses
some practical applications to more complex
systems,

THEORETICAL BACKGROUND [1,2]
Modes

Modes describe a special class of free vi-
brations of undamped elastic systems where all
points move in unison sinusoidally in time.
Accordingly, one may describe a modal vibra-
tion of an extended (one-dimensional*) system
by

wix,t) = (1)

Pa(x) sin w t .

Here w denotes a deformation of the system
from equilibrium and is a function of the spa-
tial coordinate x and of time t. The function
v.(x) 18 called the "'mode shape' and is inde-
pendent of time. The time dependence of w(x,t)

*The discussion is here presented only for a
one-dimensional system, such as a beam or
shaft. Results for two- or three-dimensional
systems may readily be obtained by analogy.
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is embodied in the sin .t term, where . de-
notes the (radian) frequency associated with the
mode.

Continuous systems have an infinite num-
ber of modes, each with an associated modal
(natural) frequency. The modes are usually
numbered, beginning with the lowest (i.e., the
fundamental) mode. The subscript "n»" in
Eq. (1) indicates the mode number. The mode
shapes -, and modal frequencies satisfy the
system equations of motion (in the absence of
damping and excitation) and the boundary
conditions.

The mode shapes also satisfy

0 for
M for

where m(x) denotes the distribution of mass

per unit length, L the total length, and M the

total mass of the system. (M is, of course,

equal to the integral of m(x) over the eatire

length.) The property that the product of two

different mode shapes integrates to zero is

called "orthogonality," and only holds for sys-

tems whose boundaries are clamped, simply

supported, and/or elastically restrained. Inte-

gration of y *(x)m(x) to M is a "'normalization" i

condition (one of many possible ones) which is

imposed on the mode shapes to define them

uniquely (since the differential equations oi

motion define them only within an arbitrary

multiplicative constant).

ntk
(2)

L
I ValX) Yu(x) m(x) dx = :
0 n=k

The mode shapes are useful functions for
studying the responses of systems, since they
permit one to expand any physically realizable
system deflection w(x, t) or velocity v(x.t} and
most excitation distributions p(x,t) in series:

Z W () Yo(x),

wix, t) =
A=l
v(x,t) = Z V() (x), (3)
n=zl
and
p(x,t) = F () v (x) . :

n=

Fur constant or small damping, each displace- i
ment coefficient W and velocity coefficient v
depends only on the corresponding force coeffi-
cient F_, according to
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) (4)
vV, = W_.

Here C_ is a modal viscous damping coefficient,

and K, - M. ? is a modal stiffness; F_ is called

the modal force.

Equation (4) may be recognized to be com-
pletely analogous to the relation which governs
the displacement ¥_of a mass M to a force F_,
where the mass is mounted on a parallel com-
bination of a spring (of stiffness K_) and a dash-
pot (with viscous damping coefficient C ). Thus,
one may study the responses of modes simply
by studying the responses of analogous single-
degree-of-freedom mass-spring-dashpot sys-
tems.

One may also show that the kinetic energy
of a vibrating elastic system and its (spatially
averaged) mean square velocity is simply re-
iated to the modal coefficients. By use of Egs.
(2) and (3), one finds that the total kinetic en-
ergy T, of the system obeys

L
%j m(x) vi(x.t) dx
(i

@ o L

1

-Q-ZZV"VRJ m(x) g (%) U (x) dx O
n=1 n= 0

M

PIRED

nel

Ty

and that the (mass-weighted) mean square ve-
locity vi(z) is given by
ZT vl . @

L
vi(t) = P%J m(x) vix, t) dx =
0 n=1
Equation (5) shows that the system kinetic en-
ergy is equal to the sum of all modal kinetic
energies Mv,’/2, and Eq. (6) indicates th-t the
system mean square velocity is equal to ihe
sum of the squares of all modal velocities Vv .
These important results will be put to use later.

Energy Analysis of Two
Coupled Modes

Before studying the interaction between
two coupled elastic systems, one may do well
to develop an understanding of the interaction
between two modes, where one mode belongs to
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the first and one to the second sysiem. In ac-
cordance with the previous discussion, one may
visualize each mode as a mass-spring-dashpot
system, so that cne may study the interaction
of two modes in terms of a system like that di-
agrammed in Fig. 1.

COUPLING
ELEMENT

g T

Ka

My
—

Ca

Fig. 1. Schematic representation
of two coupled modes

Keeping in mind that the present cbjective
is to develop an "energy balance" approach to
replace the more complex detailed d;namic
analyses which are commonly used, one may at
once note that the time-average power D, dissi-
pated by mode a is given by

{7

where the brackets <---> indicate time aver-
ages; <v2> thus denotes the mean square veloc-
ity and <T > the average kinetic energy of

mode a.

If one knows the time-average power in-
puts A, and A, to the two modes of Fig. 1, then
one still cannot perfcrm an energy balance
analysis unless one *an describe the time-
average net power fiow P_, from mode a to
mode b. It turns out, fortunately, that under
some conditions th:ut are often encountered in
practlice the net mode-to-mode power flow is
proportional to the difference between the time-
average niodal kinetic energies; that is,

Poo = @ap(<Tp> - <Tp>).

(8)

Equation (8’ has been shown to hold, at
least approximately, if (2) the coupling between
the two modes s linear (giving rise to a linear
differential equation), conservative (neither
supplying nor dissipating mechanical energy),
and light and/or purely springlike and/or gyro-
scopic, and (1) the forces acting on the two
modes are uncorrelated and have spectra that
are flat (conmpared to the systems admittance
spectra) within the frequency band encompassed
by the rescnances of the coupled system.
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The proportionality coefficient - , may be
calculated if the coupling element is defined.
For example, for coupling that may be repre-
sented in Fig. 1 by a spring of stiffness K_, one
finds

X?a M N
@.b - < a\ a™b . (ga)
I e T (“’:_ “‘51)
where
a2 S0 G
ow,ow
. - C. K, ¢+ C K,
€ "-"b
(9b)
2 K, ¢+ Kc
w. = u
a
and
wb‘" . K, + K.
"b

One may show for any type of ''loose" coupling
(i.e., coupling that has relatively little effect on
the average response of a mode to a force act-
ing directly on it) which satisfies the aforemen-
tioned conditions, that

2¢,C, (®
c.b X :7 [ ;Y.b(f‘i)lz do, (10)

where Y, is the transfer admittance, that is,
the ratio of the velocity (phasor) v (.) of
mode a to the force (phasor) F (») which acts
on b to produce V (.).

It is of interest to note that Eq. (8), Eq. (7),
and an analogous relation pertaining to mode
permit one to analyze the two coupled modes
problem in terms of energies, and to visualize
it in terms of a diagram like Fig. 2. One may
also recognize that Fig. 2 is analogous to a di-
agram one may draw to represent the heat
transfer between two systems; then <T > and
<T,> are analogous to the system temperatures,
P_, is analogous to the heat flow betweer the
systems, A, and A, are analogous to heat sup-
plied from sources, and D, and D, are analo-
gous to heat rejected to sinks,

If one, for example, considers the mode a
in absence of any coupling, then one may deter-
mine that A, - D_; that is, that the average
power received by a mode is in the steady state
equal to the average power dissipated by the
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Fig. 2. Power flow diagram
for two coupled modes

mode. In the absence of coupling (or for loose
coupling) one may express the power received
by mode 2 as

A, ~ 1S M (11)

in terms of s_, the value of the mean square
spectral density (also called power spectral
density) of the force F,_ at and near the reso-
nance of mode a. (S, is again assumed to be
a relatively flat function of frequency.)

By use of Egs. (7) and (11) one may then
directly arrive at the following expression for
the steady state mean square velocity of an un-
coupled mode:

v = -s_MC,. (12)

As one may visualize with the aid of Fig. 2,
if mode b has no force acting on it directly
(A, = 0), then this mode receives power only
through the coupling element. In the steady
state this power must be equal to the power
dissipated by mode b, so that if Eq. (8) holds,
then

M M
Zabl T = <Tp>) = £y [_?a <Va2> - _2b' <Vb2>]

= v, (13)

From the foregoing relation one nay readily
determine that the velocity ratio between the
two modes may be written as

<V I’2’> 2Cb ¥ % (14)

<vb2> < ab Mn

Energy Analysis of Two Mode Sets

The previously discussed expression per-
taining to power flow between two individual
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Fig. 3. Power flow diagram
for two coupled sets of modes

modes may be extended to apply to the power
flow between two sets of modes (Fig. 3), where,
for example, the two sets of modes may be
groups of modes of two different structures.
One finds that the time average power flow P,
from a mode set = t0 a mode set 3 may be
‘yritten as

P,y = ¢,5T,-T;), 15)

analogously to Eq. (8), Here T, represents the
average kinetic energy per mode of the a set;
thus, if Ty, represents the total kinetic energy
of all modes of the set, and if there are N,
modes in the set, then

N
a

LS P
Ta = — = —N— Z <T’.>' (16)

a .
a j=l

A corresponding expression applies also for T,,
of course.

Equation (15) may be shown to hold if (a)
the mode-to-mode power flow from all modes
of the a set to all modes of the ,© set satisfies
Eq. (8), and (b) either the mode-to-mode cou-
pling is the same for all mode pairs composed
of one of the 2 and one of the 5 modes, or all
modes in a set have equal time-average kinetic
energies. Equation (15) also applies for the en-
scmble average power flow from one mode set
to another mode set of an ensemble, if (a) the
first of the foregoing conditions is satisfied,

45

(b) the mode-to-mode coupling coefficients and
modal kinetic energies are statistically inde-
pendent, and (c) the modal kinetic energies in
the easemble average are uniformly distributed
within a set. However, here T,, T, and ¢,
must be taken as the corresponding ensemblﬂe
average parameters,

Under the aforementioned conditions the
set-to-set coupling factor ¢,, turns out to be
the sum of all possible mode-to-mnode coupling
factors between the sets, or

N, Mg

%ap = Y Y Gaiax T NaNgduy pn a7

where 4,, o, denotes the average (over all
mode pairs) of the mode-to-mode coupling fac-
tors and ¢,; ,, denotes the factor pertaining to
power from the jth mode of the a set to the kth
mode of the 3 set.

The total power U, dissipated by mode set
a is equal to the snm o1 all the dissipation con-
tributions of the individua' modes. Therefore,

D, = }: c’.<vj3> = Cu<v¢2>‘ (18)
) 1

where <v_ 2> represents the total mean square
velocity of system o due to the N, modes; ac-
cording to Eq. (6), <v 2> i3 equal to the sum of
all the individual modal velocities, since all of
the = modes belong to the same elastic system.
C, is an "effective' viscous damping coefficient
for the whole set « and may be seen to obey

2 )
) ZCj<Vj> ) “Cj<Tj>

- - (19)
a z <vj2> TT

where all summations are implied to extend
from j=1toj =N,.. The second form of Eq.
(19) follows from Eq. (5) and from the equality
of all modal masses in a set of modes of the
same system, as evident from Eq. (2).

Loss Factors

It is useful to restate some of the previ-
ously given results by introducing loss factors
as measures of energy dissipation and conduc-
tion. Loss factors may be defined in terms of
energy quantities and thus have greater gener-
ality than viscous damping coefficients. In addi-
tion, use of loss factors for both dissipation and
conduction of energy serves to draw attention
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to the fact that both of these mechanisms may
have the same effect on a system.

The loss factor is related to the viscous
damping coefficient ¢ and the critical damping
coefficient c_ as

n = M, = CVER = 2C/c, .

The lcss factor n» of a mode a oscillating in
steady state may be expressed as
Na = D./Zw.<r.>. (20)

where D, denotes the time-average power dis-
sipated by the system, <1, > the time-average
kinetic energy of the mode, and ~, the modal
frequency [3]. An expression like Eq. (20) may
also be applied to a set of modes. The loss
factor n, of a set « may be written as

Mo % Do/20, Ty, % 9 <T;>/5<T;>, (21)
where «, here represents the center frequency
of a band which encompasses all modal fre-
quencies of the set, and where the summations
on j extend from 1to N,. The right-hand ex-
pression of Eq. (21), which is similar to Eq.
(19) and shows that -, is a weighted average of
the modal loss factors, follows from Egs. (16),
(18), and (20).

""Coupling loss factors" n,, and n,;, which
are indicative of power flow in the same way
that the loss factors of Eqs. (20) and (21) are
indicative of power dissipation, may be defined
by expressions which are the same as Eqgs. (20)
and (21), except that p, and D, are replaced by

= ¢¢B<r¢> and Pdﬁ T = ¢¢ﬁT¢.

p
ab n
<T,>=0 p=0

From the appropriately modified Eq. (21) and
from an analogous expression pertaining to the
mode set 5, one finds that the coupling loss
factor n,, (which refers to power flow from
set a to set 8) and the loss factor n,, (which
refers to power flow from the 3 to the a set)
obey

HGBN‘, = n_BGNB = ¢¢/3/2("°' (22)

The usefulness of this notation will become ap-
parent in the illustrations which follow.

Modal Densities

One usually studies the interactions of
elastic systems on a band-by-band basis by
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determining the power flow from modes of one
system which have their resonances in a given
frequency band to a set of modes of another
system which have their resonances in the
same band. One may in general choose any
convenient bandwidth, and one may often wish
to use different bandwidths for different calcu-
lations. The number of modes which fa:! within
the various sets depends on the bandwidths one
chooses, so that it is useful to introduce the
concept of modal density, in terms of which the
dependence of some of the previous results on
bandwidth can be stated more explicitly.

The modal density of an elastic system is
defined as the average number of modes per
unit frequency interval. If a system exhibits
N, modes whose resonances fall within a fre-
quency interval Aw, then the modal density of
the system at the center frequency « Gf 2 in-
terval is defined as

n,(«) = N/bw,

(23)
n,(f) = N, /2#Af .

The modal densities of systems may be
determined from their "frequency equations,”
i.e., from the equations which give the system
resonance frequencies as a function of the sys-
tem parameters. For simple systems these
calculations may be carried out without great
difficulty [4].

Table 1 lists the modal densities of some
uniform elastic systenis, obtained largely from
Smith and Lyon [4] and from related calcula-
tions. The expressiona listed in the table apply
strictly only for frequencies considerably above
the system fundamental (by perhaps at least two
octaves), where boundary conditions have no
imporiant effects on the natural frequencies;
however, these expressions generally also pro-
vide reasonable estimates for the modal densi-
ties at frequencies only slightly above the
fundamental.

The modal density of a composite system
is approximately equal to the sum of the modal
densities of the component systems. Thus, for
example, the modal density of a plate with at-
tached beams is roughly equal to the modal
density of the plate by itself, plus the modal
densities of all of the beams by themselves.

APPLICATIONS TO SIMPLE SYSTEMS
Two Coupled Plates

Consider two coupled systems, as repre-
sented by two irregularly shaped plates, joined




TABLE 1
Modal Densities of Some Uniform Systems

System Motion Modal Density, n(«) Auxiliary Expressions
String Lateral L/me c, = VT/oR
Shaft, beam Torsion L/mcy cy = VGk/pJ
Shaft, beam Longitudinal L/mc, cp = VE/p
Beam Flexure L/2n (wxycp)t/2 xpcp = VEI/0A
Membrane Lateral A, o/ 2mck ca = VS/ph
Plate Flexure A/ x cy xoCp = VD/oh = VEW/120(1-v?)
Room Sound Vol/2mdc

(acoustic volume) (compression)
% n, for w/w, > 1 w, = cp/a
Cylindrical skells [5] | Flexure {
2 np(w/wr)”’ for w/w, < 1 n, = A/4mu cy
Doubly curved shells | Flexure Expresuions are complex,
see Ref. 6
Symbol Definitions
A = cross-sectional area 1 = centroidal moment of inertia of A
A, = surface area J = polar moment of inertia of A
a = mean radius of cylindrical shell K = torsional constant of A
c, = acoustic wave velocity L = length
cp = longitudinal wave velocity S = membrane tension force/unit edge length
¢, = membrare wave velocity T = string tension force
c, = string wave velocity V = volume

cy = torsional wave velocity xp, = radius of gyration of A

D = plate rigidity Kp = radius of gyration of plate cross section
E = Young's modulus v = Poi:uon'u ratio

G = shear modulus w = frequency (rad/time)

h = thickness p = ma'terial density

by a reinforcing beam (Fig. 4). If plate a is
exposed to a broadband excitation of bandwidth
Aw {considerably above the plate fundamental)
50 that it vibi ates a given amount, how much
will plate 3 vibrate? This is clearly a difficult
(or at least a tedious) problem to solve by clas-
sical means, However, one may obtain an esti-
mate very easily and rapidly by the statistical
energy approach.

The beam of Fig. 4 is likely to result in
loose coupling between the modes of plate a
(which have their resonances in the band of in-
terest) and the corresponding modes of plate 3.
If one assumes all modes of a set to be uni-
formly excited, so that the previously outlined
concepts apply, one may write an energy bal-
ance for set 3 as
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Fig. 4. Two
coupled plates

Fap(Ta=Ty) = Dy = g 20, N, T, (24)

and from it determine

T @ n
Lo 02 . _Tae 25
T: ¢AB + 2“’0 "73"5 Mga g ) ( )

From Eqgs. (16), (23), and the expression of
Table 1 for the modal density of plates one finds
that if the plates are made of the same mate-
rial, then

E . Pa Mﬁwﬁb A thwﬁ2> (26)
a nB Ma<va2> As.,S haz<vaz> '

where h and A, denote the thickness and area,
respectively, of the plate indicated by the sub-
script.

By combining Egs. (25) and (26), one may
obtain an expression for the ratio of the mean
square velocitiec in terms of only the gross
geometric parameiers of the two plates, the
dissipation loss factur n,, and the coupling
loss factor n,,. The 1oss factor n; generally
can be estimated from avoilable data, or it can
be determined from some s:mple measure-
ments, e.g., of the rate of decay of free vibra-
tions of plate 3 by itself. As ye: there is
available no adequate means for ectimating the
coupling loss factor n»,,. However, n,_ +n,
may also be deduced from sorae simplc meas-
urements, e.g., of the rate of decay of free vi-
brations of plate 5 when it is attached to piate «
58 in Fig. 4. (Note that the coupling loss fac-
tor ., which appears in Eq. (25) refers to
power flow from plate .; to plate », but power
flows from 2 to 3 when » is excited.)

It is of interest to note that the aforemen-
tioned result reduces to a particularly simple
one if the plate . is lightly damped (7, << ),
so that the right-hand side of Eq. (5) reduces
to unity.

The grouping of the loss factor terms ap-
pearing in Eq. (25) permits one also to make
some observations concerning the effectiveness
of adding damping to the indirectly excited
plate 3. If the damping of the 3 plate is small
initially, that is, if 5, << -, , then added damp-
ing will reduce the system vibrations only if
this added damping is large enough so that the
resulting . is no longer insigi.ificant com-
pared to n,,. Onthe other hand, if », >> 5, ,
tnen <«v 1> varies inversely as », and any in-
erease In n, Will result in a corresponding de-
crease in <v 2>,

From an energy balance on the directly
excited plate a one may determine that

A, - Tag M3

Btk e i 0
The "apparent loss factor' n, introduced in
the foregoing equation corresﬁaﬁds to the value
of the dissipation loss factor which one would
ascribe to set a (on the basis of measurements
performed on set 2) if one were not aware that
this set i3 coupled to set 3. It is evident from
Eq. (27) that the apparent loss factor Nappp 3
never smaller than the actual dissipation loss
factor n,. Thus, if one is unaware that a sys-
tem whose loss factor one is measuring is cou-
pled to another system, then one always obtains
a loss factor value which is too large, an "obvi-
ous" result. The error is insignificant, how-
ever, if the coupling is poor (n, ;, n,, = 0)
and/or if the coupled set is relatively lossless
(773 58 Tia )'

From Eq. (27) one may also deduce that the
response <V 2> of plate a to a given excitation
A, is not controlled by the actual dissipation
loss factor v, of that plate, but rather by the

appareat loss factor =,
app

Interaction of Sound and Structures

The statistical energy approach may also
be applied to cases where one of the elastic
systems considered is an acoustic volume,
Thus, the approach may be used for estimating
the sound field produced by structural vibra-
tions or for predicting the structural vibrations
induced by sound.

Consider the case where a structure S is
direcily excited by randomn forces acting on it,
aznd where these structural vibrations produce
noise in a room R in which the structure is
located. Hexre the structural modes in a




frequency band of interest correspond to a di-
rectly excited mode set :, the modes of the
acoustic space R correspond to the indirectly
excited set -.

The total energy E in a diffuse acoustic
field within a fluid volume v in a frequency
band - . is related to the mean square acoustic
pressure 52> measured in the same frequency
band as

Ep - 62 Y.,_ct. (28)

where ., denotes the density and ¢, the sound
velocity of the fluid. This total energy is, on
the average, half potential and half kinetic,
henze the average total kinetic energy Ty is
one half of the total. The average modal kinetic
energy T, may be obtained by dividing T,y by
ng <..+, the number of modes in the interval.
With the modal density expression given in Ta-
ble 1 for acoustic volumes, one finds the aver-
age kinetic energy of an acoustic mode of a
rocin to be given by

Tg = z—F— = — 8 *F—’zl) . (29)

If one applies Eq. (16) to the structure un-
der consideration and replaces the number of
modes Ng by n_xAw», then one finds that the av-
erage kinetic energy of a structural mode may
be written

M v M <l (30)

TS Zngde T r, .
s

where <V?> represents the mean square veloc-
ity and <a /> = .2<v 2> the mean square accel-
eration of the structure, as measured in the
frequency band A. with certer frequency ..
From an energy balance on the indirectly ex-
cited system, i.e., the room, one may then
obtain

<]52> B ‘a Ms RS (31)
<a_> 2°%¢ n. TRs ' TR
S a 5

In most practical cases the room-to-structure
coupling loss factor will be much smaller than
the dissipation loss factor of the rcom. Then,

if one uses Eq. (22) to replace ngg by nggngng
and replaces the loss factor rg; by an equiva-
lent viscous coefficient Cpg, one obtains

<H > ~a CSR LRC:CS“ (32)

cn AN 2 . . - R
ag 2 Ca 5 NR ™R V. TR
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where the last form is cbtained by substituting
for ng the appropriate exoression from Table 1.
The structure-to-room coupling coefficient Cgp
may be shown to be the same as the rather
well-knowr acoustic "'radiation resistance’ of
the structure, which may be estimated reason-
ably readily [4].

One may also readily develop an expres -
sion which describes the response of a struc-
ture to sound. For the cas2 where sound in an
acoustic enclosure excites a structure, one may
write an energy balance for the (here indirectly
excited) structure, and from it determine that

<a >
ag c.n

. g2 % s "SR ) (33)

PRACTICAL APPLICATIONS
Rationale

In applying "'statistical energy analysis"
one takes advantage of properties which largely
are peculiar to high-frequency random vibra-
ticns. Calculations involving structural and
excitation details are avoided by averaging over
possible excitation and measurement positions,
since at high frequencies the vibration of uni-
form structural regions is usually insensitive
to details of the excitation or measurement
positions. By considering a complex structure
as composed of a number of simple, lightly
coupled substructures, one may often study the
vibrations of each substructure in terms of the
vibration characteristics of that substructure
considered as completely isolated from adjacent
substructures; the power flow between the sub-
structures then can be calculated from simple
power balance relations similar to Eq. (24).

Coupled structures may be shown to exhibit
a certain tendency toward assuming equal av-
erage modal energies, and one often finds it ad-
vantageous to use this ''equipartition’ tendency
in estimating vibration distributions in com-
posite structures. Since the coupling and dissi-
pation loss factors are always positive, one may
deduce from Eq. (25), for example, that the
average moda: energy T, of the indirectly ex-
cited system is always less than that of the
directly excited system T . The two modal
energies are essentially equal in those cases
where the loss factor -, of the indirectly ex-
cited system is much smaller than the coupling
loss factor ,,. One may use the fact that
T, < T, todetermine a simple upper bound to
the vibration levels that result in various




components of a complex structure due to lo-
calized random excitation.

Vibration Responses of
Space Vehicles

The statistical energy approach has been
applied to a number of problems involving vi-
bratiun response and transmission in space ve-
hicles. The approach has proven particularly
useful for evaluating the relative importances
of various excitation sources and transmission
paths. For example, statistical energy calcu-
lations have shown, in ag-eement with recent
experimental work, that over a significant fre-
Gguency range turbulent boundary layer excita-
tion is more efficient in exciting mechanical
vibrations than is acoustic excitation [7]. The
use of the statistical energy approach to calcu-
late the response of a launch vehicie to acoustic
and aerodynamic excitaticn sources is discussed
by Chandiramani and Lyon [8].

Figure 5 shows a schematic diagram of the
OGO spacecraft and the energy paths that have
been considered in calculating the vibration
distributions that resuit from the action of the
exterior acoustic field [9]. The ""acoustic path"
involves the exterior acoustic space, shroud,
interior acoustic space, and spacecraft panels;
the "mechanical path” invoives tke exterior
acoustic space, shroud, ring frame, mounting
trusses, and spacecraft panels. Calculations [9]
predict 10 to 20 db greater vibration levels due
to transmission via the acoustic path than via
the mechanical path. An experimental investi-
gation of vibration transmission in the OGO
spacecraft is in progress.

The relative importance of various vibra-
tion transmission paths in the Surveyor space-
craft are currently under study. As indicated
in Fig. 6, this study considers a direct acoustic
path from the interior acoustic space to com-
partment A, in addition to a mechanicai path
which invoives transmission from the adapter
to the spacecraft trusses and then to compart-
ment A. The adapter is excited by three
sources: the interior acoustic space, the vented
acoustic space, and the tank dome.

The statisticai energy calcuiations indicate
that high-frequency vibration transmission in a
wide ciass of compiex structures depends
largely on a few characteristic properties of
the structure, such as length of transmission
path, mass of typical elements, average modal
density, and internai damping. Some preiiminary
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work has been done, which indicates that vibra-
tion transfer functions experimentally deter-
mined on Ranger, Mariner and Surveyor space-
craft can be reduced to a common form by
scaling the frequency axis with respect to a
transmission length [10].

Implications Relative to High-
Frequency Vibration Testing

In precent practice one generally attempts
to obtain very si’ff test fixtures to set the first
fixture resonance at a relatively high frequency.
However, the first bending resonance of conven-
tional fixtures often occurs within the fi equency
range of interest in random vibration tests.
Fixture resonances result in amplification of
the vibration level, for which one usually must
compensate by using expensive equalization
equipment) and in spatial variations in the fix-
ture vibration, which complicate the problem of
excitation control.

As a possible means of avoiding the prob-
lems associated with stiff test fixtures, the
statistical energy view suggests the use of light,
flexible, multi-modal test fixtures. Such a fix-
ture would have many resonances in any meas-
urement bandwidth, and would result in a vi-
bration field quite uniformly distributed over
the fixture. (It has been demonstrated [11] that
the spatial variation in mean square response
of a structure excited with noise is inversely
proportional to the number of structural modes
which contribute to the response. Therefore,
whereas the spatial variation in the response of
a very rigid fixture vibrating in a low mode
may be quite large, the vibration field of a thin
panel-like fixture responding in many modes
generally is quite uniform.)

Multi-modal test fixtures also have the
added advantage that they usually can simulate
the impedance of typical aerospace mounting
configurations much better than conventional
fixtures. Conventional rigid test fixtures pro-
vide a coherent excitation source and, there-
fore, severely overtest equipment which in
practice is attached to lightweight structure

and subjected to an incoherent excitation source.

Some preliminary tests with multi-modal test
fixtures have been rather encouraging.

By use of the multi-modal test fixture
approach one also may avoid the conceptual,
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instrumentation, and ccmputation problems as-
sociated with interface vibration measurements
and specif. ;ations. One merely needs to use
in-flight measurements of the reverberant vi-
bration on multi-modal structures to set the
reverberant test levels on the multi-modal fix-
tures. This methou of specifying the vibration
test levels is analogous to specifying the sound
pressure level for acoustic tests in a reverber-
ant chamber,

CONCLUDING REMARKS

The ideas which underlie the statisticai
energy analysis approach have been summa-
rized to give the reader some insight into the
range of validity and applicability of this poten-
tially very useful approach. Extended discus-
sions of these ideas and a more complete list
of references appears in Ref. 1.

A number of cases have been indicated
where the statistical energy analysis approach
nas led to a better qualitative urderstanding of
this behavior of coupled systems. Practical
applications of the approach to the prediction of
vibration levels and to the comparison of the
relative importances of parallel vibration
transmission paths have also been discussed.

Statistical energy analysis provides one
with a simple and powerful means for obtaining
a qualitative understanding and quantitative es-
timates of the most ‘mportant agpects of multi-
modal random vibrations of complex structural
systems, At present the lack of information on
power-flow coupling coefficients often limits
the validity of the quantitative response esti-
mates one desires to make for practical sys-
tems, but related further work is in progress.
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DISCUSSION
Mr. Bookstein (Jet Propulsion Laboratory:: Mr. Ungar: I was not careful enough to
Have you made any comparison between your point out the savings which we make. We do not
method aad the so-called stone-age methcil for have to determine the mode shapes. All we
computing responses ? need to know is the average number of modes
per frequency interval and this is a very dirty
Mr. Ungar: No. The problems we have number which depends only on gross system {
attempted by this method are completely im- properties.
possible by any other method. So ours is the ,
best. Mr. Kaplan: But here again, for an exam- ]
ple such as you postulated, a complicated
Mr. Kaplan (General Electric Co.): It ap- spacecraft structure, there would be resonances !
pears that you still have to go through the cum- within the various higher frequency bands that
bersome stone-age procedures, namely, getting might be attributed to local breathing, second-
the modes of vibration of the subsystems or the ary resonances on the equipment support struc-
portions of the structure. ture, and the like. Therefore, wouldn't you
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still have to know the content within each of the
frequency bands to associate the various phe-
nomena in terms of what is happening physically,
and wouldn’t you still n.ed the mode shapes?

Mr. Ungar: We do not need to know the
mode shapes. We need to know only the type
and number of modes.

Mr. Lyon (Bolt Beranek and Newman): A
few of the more difficult modes to calculate,
for example, in-plane motions or extensional
modes of the structure, may be missed by thr:
simpler ways of counting the number of modes
in a band. Fortunately, there is a tendency for
an equal amount of energy to exist in all modes,
Therefore, if you miss 5 percent of them, you
have only missed 5 percent of the ~nergy or 2
percent of the motion.

Mr. Smith (Bell Aerosystems Co.): Clas-
sical or statiscical, you are still faced with the
last step, aren’t you? If you are handling 4
fatigue problem, you want stresses in the struc-
ture, not modal displacement. Neither the clas-
sical attack, with the shortcomings you outlined,
nor the statistical will indicate whether you
have a well or a badly designed structure.

Mr. Ungar: That is certainly true to some
extent. We are, incidentally, working on an ap-
plication or extension of this method in which
we calculate, from the mean square response
obtained, the maximum stresses near the edges.
Incidentally, we are doing this by applying the
dynamic edge condition principle discovered by
Bolotin. I realize this is only a partial answer
to your question, but it is the best I can give.

Mr. Crocker (LTV Research Center): Can
you tell me how good your method is at low fre-
quencies ? I suspect that the classical method
might be more accurate for the lower modes.

Mr. Ungar: If you can use the lowest
modes, you should. The method is well estab-
lished. However, to do a reasonable analysis
involving the lowest 20 modes, you need to deal
with the lowest 14 modes and a 40x40 matrix,

*
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and so on up. Yoa very quickly run out of com-
puter space. If you have a program and you
want to worry only about the lowest three modes,
by all means use classical methods.

Mr. Crocker: I did a problem by computer
where we took into account 400 modes. It wor 1d
have taken me 20 years by hand; the comguter
did it in ahout 20 minutes. The method seems
fairly accurate at low and high izecaencies, and
is quite quick once the program is set up.

Mr. Ungar: Iam glad you went through
this stone-piling procedure. I recently saw
some simiiar calculations where people calcu-
late transmissibilities of structures when they
were really only interested in the transmlssi-
bility peaks at reasonably high frequencies. So
they did something very similar, based on an
assumed value of damping. I think if you had
assumed the value of damping, using the simple
method, you would have had the answer, without
the use of a computer, in 1/10th the time, per-
haps at half the cost.

Mr. Himelblau (North American Aviation):
I would like to come to your defense because I
believe it is very difficult to get any kind of a
computer solution for the higzher modes that will
adequately describe the modes and the modal
responses. If you are averaging over several
modes, the statistical energy method is very
effective for problems not particularly suscep-
tible to a narrow-band {ype of failure. For ex-
ample, whether fatigue occurs in the 40th or
the 43rd mode generally does not determine
that a different l'fetime exists. However, in
certain problems involving sub3equent narrow-
band oscillators which provide an input to a
particularly narrow-band resonant structure,
you would not want to know what would happen
in the 43rd mode. Taking the average response
over a range involving, say, the 40th to the 50th
mode, would not give assurance that your de-
sign was adequate. Any comment on that ?

Mr. Ungar: You covered a lot of ground,
and I think I agree with you in just about every-
thing, particularly in coming *o our defense.

*




DYNAMIC ANALYSIS OF CONTINUUM BODIES
BY DIRECT STIFFNESS METHOD

W. E. Baker
Rocketdyne
Division of North American Aviation
McGregor, Texas

and

J. M. Daly
Arde Engineering Company
Asheville, North Carolina

Problems frequently encountered in the field of structural dynamics
require an analysis of structures having complex geometry and non-
homogeneous materials. A method is presented for dynamic analysis
of complex continuun: bodies by extension of the finite element method,
to circumvent the severe oversimplification often required in treating
these problems by classical methods. Axisymmetric and plane stress-
strain formulations, with t+ associated computer rrograms, have been
developed. The analysis w. ; developed using viscous damping and the
assumption that classical modes exist. The undarnped frequencies and
mode shapes are first calculated, then used to uncouple the damped
equations of motion by diagonalization of the mass, damping and stiff-
ness matrices. Thus, single-degree-of-freedom modal response equa-
tions are formed and solved for the response contribution of each
mode. Through superposition of each modal contribution coupled with
a transformation back to the original coordinate system, the response
to an arbitrary forcing function is determined. Theoretical develop-

the analysis are discussed.

ment, correlation studies, applications and some of the limitations of

INTRODUCTION AND SUMMARY

In the field of structural dynamics, prob-
lems frequently encountered require an analysis
of structures having complex geometry andnon-
homogeneous material properties. This is par-
ticularly true in the solid rocket motor field,
where the propeliant grains often have irregular
internal surfaces. Classical methods of analy-
sis are somewhat limited, particularly where

55

irregular geometries and nonhomogeneous
materials are involved; often severe over-
simplifications are required to obtain classical
solutions.

Recent achievements in finite element
methods, accompanying the continuing advances
in speed and capacity of digital computers, have
enhanced the scope and detail practical in
structural analysis. The finite element method,
which has been found to be a powerful and ver-
satile tool in the static analysis of complex
structures, is being extended into the field of
dynamics to allow a whole new realm of dy-
namic problems to be solved at minimal cost.
Some of the problems that may be solved are:

1. Dynamic elastic analysis of thick-walled
vessels, including spheres, cylinders and gen-
eral axisymmetric shapes. Both longitudinal
and radial modes may be analyzed.

2. Plane stress and plane strain analyses
of arbitrary configuration and material property




distribution, subjected to transverse dynamic
loading.

3. Analysis of elastic half spaces in which
pressure waves emanate radially from a point
source acting on the surface.

4. Longitudinal waves in rods of varying
nonuniform cross section.

5. Analysis of circular plates of . arying
nonuniform general thickness subjected to axi-
symmetric loading.

A major portion of the dynamic analysis,
the stiffness matrix, had already been formu-
lated in the development of the static analysis
[1-4]. A recent study has extended the two-
dimensional plane stress finite element method
to include dynamic effects [5]; and at Rocket-
dyne the method has been extended to axisym-
metric bodies. The extension of the finite ele-
ment method to dynamic analysis required the
development of a mass matrix. Initially, a
lumped mass method was used, but later a dis-
placement consistent mass matrix suggested by
Archer 16] was developed to improve the accu-
racy of the program. Comparisons of the two
mass expressions showed that the consistent
mass method generally provided greater accu-
racy, especially in the higher raodes.

With the computer programs developed, a
large number of sample problems have been
solved, the majority of which involve bodies of
regular shapes such as spheres, cylinders, and
thick plates. The accuracy of the method is
shown by comparison of the calculated natural
frequencies and mode shapes with results avail-
able from experiments and classical theoretical
solutions. Agreement was very good, especially
in the lower modes.

THEORETICAL PROCEDURE
Direct Stiffness Method

Details of the development of the stiffness
matrix for a solid body are not presented here,
except to the extent necessary for a general in-
troduction to the concept; the missing details
may be found in Refs. 1 through 4. Due to the
similarity between the plane stress and axisym-
metric formulation, only the axisymmetric case
will be discussed.

The finite element concept is the idealiza-
tion of an actual continuum body as an assem-
blage of discrete elements (Fig. 1) connected
at their nodal points. The basic element is
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triangular in cross =section, as shown in Fig. 2.
For compatibility to be maintained at the edge
of the elements, linear displacement functions
were assumed:

u(r,z) = a-+ br + cz,

and (1)

vir,z) = dr er+ fz.

By assumi-.g the displacement functions and
knowing the strain-displacement and the stress-
strain relations, the snergy function inay be
calculated for the element. The element stiff-
ness coefficients are then obtained by minimi-
zation of the energy function. The cocfficients
relate nodal displacements to nodal forces; for
a triangle having six degrees of freedom, a 6 x6
element stiffness matrix is formed.

Fig. 1. Typical axisymmetric model

The complete assembly stiffness matrix is
then formed by superposition of the appropriate
stiffness coefficients of the elements connecting
each nodal point, and the matrix will be equal in
size to twice the number of nodal points. Bound-
ary conditions that impose displacement con-
straints are accouated for by removal of appro-
priate rows and columns in the matrix. The
assembly stiffness matrix relates the nodal
forces to nodal displacements and the relation-
ship expressed in matrix form is

{F} = [K]{u} . 2)

e
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(a) Element for the plane stress

or plane strain case

Fig. 2.
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(b) Flement for the axi-
aysmetric case

Finite elements used in dynamic

stiffness method

Dynamic Analysis

The equations of motion ir. 2 damped finite
element system may be expressed in matrix
form as

(M] (G} + [R){Q} + [K}{u} =

{F(t)}, (3)

where

K is the nodal stiffness matrix as de-
scribed in the previous section,

is the mass matrix,

is the equivalent viscous damping
matrix, and

{F(t)} is the dynamic force vector.

The mass matrix used in these programs is
defined by one of the following methods: (a)one-
third of the mass of each element is lumped at
each of its nodal points, or (b) mass distribution
is based on the assumed displacement shape of

the element. The displacement-consistent mass
matrix (method b) will be discussed later,

The general procedure followed in the
method presented in this paper is (a) to solve
the characteristic equation of an undamped sys-
tem for the natural frequenciesand mode shapes,
and (b) tc evaluate the forced dynamic response
by mode superposition. The eigenvectors of the
characteristic equation are used to form a
transformation matrix that will uncouple the
equations of motion, forming single-degree-of-
freedom modal response equations. These
equations are then solved for the response
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contribution of each mode; and, through super-
position of the mode contributions combined
with a transformation back to the original co-
ordinate system, the structural response is
calculated.

The method used to decouple the equations
of motion required the assumption of the exist-
ence of classical modes. This assumption re-
quires the damping matrix to be diagonalized
by the same transformation that diagonalizes
the mass and stiffness matrix. In general, this
is not entirely true for many practical prob-
lems, and the error introduced remains to be
proven. Another approximation which may in-
troduce error is the use of only the first 20
modes to evaluate the transient response plus
the loss in accuracy in calculating some of the
higher mode shapes.

The effective forcing function is determined
using the assumption that all displacement con-
strained nodal points are rigidly attached to the
body supplying the external force to the system.
This, the effective force becomes the difference
of the applied external force and the resulting
internal force. No provision has been made to
provide for absolute fixity of a nodal point.

Displacement Congistent Mass Matrix

It has been shown by Archer [6] that im-
proved accuracy in dynamic analysis may be
attained by a mass distribution consistent with
the assumed element displacement function.
Because of computer storage limitation, it was
of interest to develop a method whereby accu-
racy could be improved in a manner other than




by increasing the number of elements used to
define a structure. Therefore, a mass matriv
consistent with the displacement field within the
element was developed. The resulting element
mass matrix is similar to the element stiffness
matrix. Use of the consistent mass method re-
quired some additional matrix manipulation and
was somewhat of a disappointment in that it re-
quired a prohibitive amount of computer stor-
age space, thus limiting the grid size. Im-
provements in irequency and mode shapes were
not suificient to warrant use of the consistent
mass method; no studies have oeen made to de-
termine the effects on the forced response.

CORRELATION STUDIES
Discussion of Correlation Studies

During development of this new application
of the finite element metheq, various structural
dynamics problems were analyzed to serve as
checkout runs to evaluate the namerical accu-
racy and scope of the method.

For every example analyzed, excellent
correlation was achieved with data available
from other sources. Most of the examples
studied were chosen for availability of both the-
oretical and experimenta. correlated data.
These examples include structures of simple
geometrical shapes, such as flat circular
plates, spheres, rods, and rectangular beams.

The agreement has been excellent, as indi-
cated in the examples presented in this section.
The high degree of accuracy is especially im-
pressive, since in most instances relatively
coarse element models were used to expedite
the gathering and reduction of data and to limit
the total computer time required throughout
development and checkout of the computer
program.

In addition to simple examples used for
evaluation of the accuracy of the methed, rocket
motors of complex shapes were analyzed. The
utility and power of the dynamic stiffness
method becomes apparent in the analysis of
structures of complex shape. The same finite
elements that form a thick-walled sphere, flat
circular plate or uniform cantilever beam can
readily be reassembled to represent a pressure
vessel, cket motor, or icreguiar piece of
hardware. For such cases, there exists no
other known practical approach to calculating
the dynamic structural response, without the

introduction of grossly siraplifying assumptions.
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Examples

In the examples presented, natural frequen-
cies and mode shapes calculated by thz dynamic
finite element method-have been compared with
results from other methcds. In all instances,
excellent agreem:cat as to both frequencies and
mode shapes has been achieved. Following de-
termination of frequencies and mode shapes,
overall stiructural response to a forcing function
is calculated using the mocie superposition
method.

Examples presented to illustrate accuracy {
of the method are:

1. Flexural and extensional (radial) vibra-
ticns of thick circular plates;

2. Radial vibrations for spherical bodies;
and

3. Longitudinal and radial vibrations of
hollow tubes and rings.

To illustrate typical rocket motor grain struc-
tural response calculations, examples of
stresses, displacement, velocities and accel-
erations throughout the body, varying with time,
are presented in Example 1.

Even for the first three seemingly simple
examples, solutions by classical theoretical
methods are extremely difficult. For several
of these three classes of problems, satisfactory
theoretical solutions have been developed only
in recent years.

The first three examples are problems in
three-dimensional elasticity that may be for-
mulated in two parameters. Further compli-
cating the classical theoretical approaches is
the fact that separate solutions may be involvec
for flexural vs extensional modes of vibration,
for a given body. In contrast, the dynamic
analysis of these and many other classes of
structures may be performed by a single dy-
namic finite element method program.

Example No. 1, Circular Disk — A particu-
larly useful series of cases were analyzed for
vibrations of thick circular diske. Vibrations
of bodies of this class have been intensively
studied, providing good data for comparison;
both experimental and theoretical results are
available.

Theoretical solutions for flexural modes of
vibration have been published by Deresiewicz
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and Mindlin [7], and corresponding experimental
results have becn published by Sharma [8].

Theoretical solutions for extensional (or
radial) modes of vibration have been developed
by Gazis and Mindlin [QH, and experimental re-
sults obtained by Shaw [10] have been compared
with the theoretical.

Table 1 summarizes a comparison of fre-
quencies of extensiona' (or radial) modes of
vibration. Figure 3 shows the model used in
this anal. sis. As noted, the finite element
method agrees very well with the theoretical
results. In the range of disk diameter-to-
thickness ratio of 10:1 used in this example,
the theoretical results of Gazis and Mindlin [9]
and experimental results of Shaw [10] were in
close agreemen.. For smaller diameter-to-
thickness ratios, about 5:1, results from these
two sources differed by about 12 percent for
several modes. In this region, the finite ele-
ment results were about 4 percent beiow exper-
imental results, and about 8 percent above the-
oretical results, which seems very good
correlation, considering the discrepancies in
the data available.

5ood agreement is also shown in Table 2
for flexural vibrations of the same circular disk.

Deflected mode shapes as calculated by the
finite element method show clearly extensional
and flexural modes of vibration. Extensional
mode shape data are presented in Fig. 4. Some
flexural mode shapes are shown in Fig. 5. Little
has been published as to predicted mode shapes

100 in. :
The Circular Disk
A

TABLE 1
Comparison of Natural Frecuencies
Obtained by Finite Element Program
and Theoretical Resulis

Normalized
Funda- Frequency,
mental o
Mt?de Efl‘initet Theoretical Diff. (%)
0. €meNt | pesults |9]
Program !
1 0.221 0.220 0.4
2 0.568 0.570 -0.4
3 0.872 0.880 -1.¢
4 1.115 1.143 -2.5
5 1.271 1.290 -1.6
6Ab 1.369° -- --
6Bb 1.385¢ 1.47d -5.8
1.31¢ +5.7
7 1.472 1.5 -2.0
8 1.58 1.61 -1.9

20f radial vibration for thick circular disk,
diameter:thickness ratio of 10:1.
Apparent shear-extensional mode.

CEdge mode.

dExperimental edge mode.
€Theoretical edge mode.

No. of Elemenis « 98
No. of Nodal Points = 65

T

10 in.

i

|—————Radius = 50 in. ——— &=

I Axisymmetric Finite Element Assembly

Fig. 3. Circular disk and axisymmetric finite
element model




TABLE 2

Natural Frequencies in Flexural Modes of Vibration
of Thick Circular Disk by Finite Element Program

Normalized Frequency
Fundamental - Max. Diff.
LfE0S WS F ‘“l‘,‘:ogize“‘ Theoretical [7] | Experimental [8] (%)
1 0.0533 0.0515Y 0.0515b 35
2 0.205 0.197 0.194 5.7
3 0.400 0.371 0.3710 7.8

2Applicable results for first three modes only are éiven ir. the references.
Approximate — curve extended beyond range given in Refs. 7 and 8.

Normalized Frequency, JLn
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60




s
o=

Displacement
Scale Ratio
Horizontal

Vertical

m L-- b

~~~~~~

Flexural Modes for
Free Circular Plate
98 Element Mode)

.

D/t ~ 10

20 30 40 50
Radius, in.

Fig. 5. Deflected shapes for disk
vibrating in flexurzl modes

for circular plates, but efforts will continue to
determine the accuracy of the calculated shapes.
The accuracy of these shapes directly influences
the accuracy of calculated stresses and strains
in forced vibration, when using the mode super-
position method. Based on the present study it
seems reasonable to assume tentatively that
accuracy of the mode shapes will be of the

same order as that attained in calculating the
natural frequencies.

A review of data in Tables 1 and 2 reveals
the maximum error in naiural frequency to be
about 7.8 percent. Also, it can be seen that
much higher accuracy is obtained in the exten-
sional than in the flexural modes, as might be
expected from consideration of the basic as-
sumptions of the finite element method. The
relevant assumption is that each element under-
goes extension or compression and shear, but
not pure flexural distortion (1, 2, 3].

A better grid system than the cne chosen
would perhaps give better flexural results, al-
though this particular finite element method
would not be recommended for dynani’c analy-
sis of, for example, thin shell structures where
flexural modes predominate. However, the
method is ideally suited for analysis of rela-
tively thick bodies, such as solid rocket motor
grains encased in relatively stiff cases where
case bending is neglected.

Example No. 2, Spherical Bodies — Addi-
tional correlation of the finite element program
was made with the theory for vibration of spher-
ical bodies. Three bodies were analyzed: a
soliu sphere, a hollow body with a wall thickness
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50 percent of its outer radius, and a hollow
sphere with <« wall thickness equal to 33.3 per-
cent of the outer radius.

Theoretical solutions for the fundamental
radial frequency are given by Love [11]. With
this approach a computer program was written
to find the theoretical natural frequency, using
an iterative procedure on an IBM 1401 com-
puter. Table 3 summarizes and compares the
results obtained by the finite element method
and by Love's theory {11]. The models are
shown in Fig. 6.

TABLE 3
Natural Radial Frequency of Spheres
Natural Radial
Frequencies
Sphere (rad/sec) D(g;
Finite |Theoreti-
Element | cal {11]
Solid (90 element 729 726 0.41
model)
-.Hollow, wall thick- 605 605 0
ness 50% (51 ele-
ment mogel)
Hollow, wall thick- 535 533 0.37
ness 33.3% (98
element model)
Hollow, wall thick-| 539 533 | 1.13
ness 33.3% (48
elenicnt model)

Example No. 3, Tubes, Rings, and Cylin-
ders — A variety of tubes, rings, and cylinders

were also analyzed by the finite element method.

Several hollow cylinder models were analyzed
and checked against applicable theories. Sim-
ple classical theories for vibrations of finite
length, hollow cylinders do not include this im-
portant physical parameter. Therefore, to pro-
vide a basis for correlating the finite element
analyses with theory, Poisson's ratio was per-
mitted to approach zero in correlation data for
this example. Results of including Poisson's
ratio are also given to demonstrate the effect
of varying the ratio in the analysis.

Table 4 presents the natural frequencies
for a long hollow cylinder, with an element
model as shown in Fig. 7. Mode shapes are
calculated by the dynamic finite element pro-
gram and plotted as shown in Fig. 8.
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Axisymimetric finite element models for solid and
hollow spheres
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TABLE 4

Natural Frequencies of Longitudinal Vibration for a Eollow Cylinder

Natural Frequencies

Mod-: (rad/sec)
| heoretical Finite Element Program, | piga () | Finite Element Program,
1 48.25 48.23 ~-0.04 48.15
2 144.75 144.30 -0.31 142.19
3 241.25 239.16 -0.87 228.97
4 3317.50 331.64 -1.74 302.72

2Percent difference = (program frequency - theoretical frequency)/theoretical

cent; theoretical frequency calculated by

where

n

MM

o e 7 /eE
wy = (n O.S)L >

mode number, 1, 2, 3, 4;
unit weight, 0.065 pci;
elastic modulus, 1060 psi; and

length, 80 in.
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Fig. 7. 80-in. long hollow cylinder and finite
element assembly
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Fig. 8. Mode shapes of longitudinal
vibrations for 80-in. cylinder

Theoretical mode shapes are calculated
by the equation

(4)

where

1,3,5,7..., the number of quarter
waves per length of cylinder;

axial displacement;
axial location;
length, 80 in.; and

amplitude of maximum displacement,
a constant not defined for free vibra-
tions.

Table 5 summarizes the results for a thick
ring, illustrated in Fig. 9. The ring chosen has
a very coarse model of eight elements, yet re~
sults appear satisfactory for the ring exten-
sional (radial) modes and for the lower order
longitudinal modes. Theoretical frequencies of
longitudinal vibrations are calculated as for a
long cylinder.

Ring extensional {or radial) frequency is
calculated by

-1 /Ee R =L
“® * 2V andR-‘/:-

where

35.355 in.,
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TABLE 5
Natural Frequencies of Longitudinal
and Ring Extensional Vibrations
for Short Hollow Cylindera

Natural Frequency
(rad/zec)
Mode Type Finite Element 2;;
Theo- Program,
retical Poisson's
Ratio = 0.0
Extensional
wk 65.6 66.7 1.5
Longitudinal
1 182.7 180.5 1.2
2 548.0 573.9 4.7
aSee Fig. 9.
E = elastic modulus, 910 psi,

acceleration of gravity, 32.2 x 12 in./
sec?;

unit weight, 0.065 pci;

I = moment of inertia of ring; and

a = cross-sectional area of ring.

Example No. 4 — Figure 10 summarizes the
information available from the dynamic finite
element analysis. The problem is defined as
follows:

Grain outside diameter = 3.960 in.;
Case thickness = 0.064 in.;

Grain modulus = 1000 psi;
Poisson's ratio = +0.48;

Boundary condition: outer boundary rigidly
fixed to forcing body;

Load resonant acceleration:

Py = 1(g) sin (w(l)t),

where
1 ()

the assumed maximum amplitude
of load,

the first resonant frequency (rad/
sec), and

(@)

-
L]

time (sec).
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Fig. 9. Short hollow cylinder and finite element model

The element model and curves shown are re-
produced from cathode ray tube plots, automat-
ically drawn by the computer to aid in rapid
interpretation of the data from the computer
run, as well as to provide documentation of the
analysis as shown in Fig. 10:

Part (a) pictures the element model of a
section of a typical grain, to be analyzed for
transverse accelerations.

Part (b) is a trace of acceleration loads
input to the grain through the case, mounted on
a vibrating fixture.

Part (c) shows traces of acceleration and
displacement of the tip of the grain during load-
ing. Maximum displacements and accelerations
asymptotically approach a maximum value dur-
ing resonant load of constant maximum ampli-
tude. Accelerations and displacements quickly
die out due to energy absorption of the propel-
lant following removal of the applied load.

Part (d) is a plot of stresses in a critical
element of the grain, at the side of the filleted
star point. Stresses also approach a maximum,
to die out quickly after removal of load.

Comparison of Program Versions
Using Lumped Mass and Consistent
Mass Matrix Representations

A comparison is made of natural frequen-
cies and mode shapes calculated by the lumped
mass program {AXDY) and by the consistent
mass program (AXMQ) for identical finite ele~
ment models. All solid bodies analyzed to
compare the two approaches were treated in
the preceding paragraphs; only those additional
data required for comparisonare now introduced.
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The results presented in Table 6 show that,
in general, for a given element assembly the
two programs agree about equally well with
correlated data. An exception was shc «n in the
case of Example 1, a very coarse model of a
short hollow cylinder.

In evaluating accuracy of the resuits, con-
sideration of the effect of the stiffness matrix
is also pertinent. From the fundamental as-
sumption of constant strains through an element,
a limitation is placed on the displaced shape the
body can take. As a result, the finite element
model is invariably stiffer than the real struc-
ture, tending to produce calculated frequencies
that are higher than the correct value. Fur-
thermore, use of the displacement-consistent
mass matrix approach yields frequencies that
represent an upper bound to the true frequen-
cies [6].

In general, Zumped mass representation
may yield frequencies either higher or lower
than the correct value. However, in most of the
cases analyzed Ly the luniped mass program,
the calculated frequencies were below the cor-
rect values. In these cases, errors introduced
by the mass representation were apparently
larger and of opposite sign from those intro-
duced by the stiffness representation. Thus,
the errors tended to be canceling, improving
the agreement with theoretically correct re-
sults for the lumped mass program.

Results of previous work have indicated
the consistent mass matrix can be expected to
yield results superior to those obtained using a
lumped mass approach. However, results of
this study show that, for those element models
finely enough divided to represent the stiffress
characteristics uf the structure, the lumped
mass approach gives results with about equal
accuracy.
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Fig. 10. Results from typical grain analysis




TABLE 6
Natural Frequencies Calculated by Programs AXDY and AXMQ
Compared with Theoretical Values

Program AXDY Program AXMQ
Example Theoretical Naturai Diff. Natural Diff.
Frequency @) Frequency %)
(cps) (cps)
1. Short hollow cylinder:
Ring extensional mode, w, 66.3 62.5 -5.7 66.6 +0.3
Longitudinal mode -1 182.7 160.0 -12.6 185.0 +1.2
-2 548.0 701.0 +217.9 601.0 +8.8
_2. 44-in. long cylinder:
Longitudinal mode -1 83.03 83.0 -0.035 83.01 -0.02
-2 249.1 248.2 -0.36 249.9 +0.32
-3 415.15 411.1 -0.967 419.6 +1.96
-4 581.2 570.0 -1.93 593.4 +2.1
-5 747.3 723.0 -3.25 764.7 +2.34
-6 914.0 867.6 -5.07 961.4 +5.19
3. Hollow spheres: i
t/ro = 0.50,
radial mode 576.5 581.6 +0.71 584.1 +1.32
t/r, = 0.333,
radial mode 532.0 539.0 +1.12 545.0 +240

DISCUSSION AND CONCLUSIONS

Dynamic analyses using the finite element
method have been applied to a variety of test
cases on elastic bodies of regular shape. Cor-
relation with available natural frequency and
mode shape results of theoretical and experi-
mental solutions has been excellent. It appears
that with some refinement, this method of anal-
ysis will provide an excellent tool for analyzing
bodies of complex geometry and nonhomogene-
ous materials.

The forced response portion of the analysis
has several shortcomings, which may make the
results qucstionable for many classes of prob-
lems. Attempts to allow for arbitrary forcing

€7

function and transient response calculations led
to the use of the mode superposition method.
For many problems, the assumption of the ex-
istence of classical modes, used in the mode
superposition method, does not hold and the
deviation from the actual response, in many
cases, is now known. Making the forcing func-
tion less general (steady-state sinusoidal) would
allow the use of better solution techniques and
improve the results in steady-siate vibration
prowvicras.

With modification the methkod could be ex-
tended to include analysis of bodies with ortho-
tropic material properties, analysis of bodies
encased in thin shells, structural damping, and
three-dimensional analyses. Structural damp-
ing in steady-state sinusoidal vibration may be
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liicluded by multiplying the stiffness by a factor
of (1+ig), where i is -1 and ¢ is the damping
proportionality factor. Isothermal viscoelastic
analyses may be performed with a program of
this type for calculation of the stiffness matrix
using the storage modules and letting ¢ become
the loss tangent.

In many problems a three-dimensional
analysis would be most appropriate. The for-
mulation of such a program is fundamentally
easy but berause of computer storage limita-
tions it does not appear feasible at this time.
However, the two-dimensional program may be
used to obtain good approximations.
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DISCUSSION

Mr. Howard (Aerospace Corp.): Do ycu
use a solid or a two~-dimensional element in
your model?

Mr. Baker: This is a two-dimensional ele-
ment and the plane-stress plane-strain formu-
lation is a triangle of unit thickness. In the
axisymmetric formulation it is a segment of a
ring. Actually we eliminate the whole ring and
use a one-radian segment, triangular in cross
section. This can be done in three dimensions
by using a tetrahedral solid element, although
this may cause trouble with computer storage
capacity.

Mr. Langland (Naval Ordnance Test Station,
China Lake): You mentioned earlier that you
assume a linear displacement function for these
elements. Would you care to elaborate ?

68

Mr. Baker: It has generally been found that
he linear displacement function is satisfactory
for this type of analysis. It is the easiest one
to use. The displacements are set along the two
coordinate directions and are written in terms
of either the rz or the xy coordinates, e.g.,
A+Br Cz. By using this displacement, the
forces are determined in terms of nodal point
displacement. We minimize energy by using
these linear displacement functions, writing an
energy function and then using a Rayleigh-Ritz
procedure to minimize it for the iower values.

Mr. Langland: Is the tetrahedral element
you mentioned the one Gallagher developed and
described in some papers?

Mr. Baker: There are several papers about
it. I think some one at General Dynamics pub-
lished a paper using the tetrahedron.

*
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MIN-MAX RESPONSE PROBLEMS OF DYNAMIC SYSTEMS
AND COMPUTATIONAL SOLUTION TECHNIQUES
Eugene Sevin and Walter Pilkey

IIT Research Institute
Chicago, Dlinois

Analysis and design problems of dynamic systems are considcred in
which the system and/or disturbances are not completely prescribed
and the extremal peak responses are of interest. Discussions are pre-
sented of mathematical techniques of linear and nonlinear programming
and dynamic programming which can be used to solve these so-called
min-max problems. These techniques serve to determine not c.ly the
extremal responses but also the unknown properties of the system (the
optimum design problem) and/or the disturbance (the extremal re-
sponse analysis problem) which generate these responses. Detailed
consideration is limited to single-degree-of-freedom dynamic systems.

E. Sevin

INTRODUCTION

Various analysis and design-oriented prcb-
lems in dynamics are concerned with achieving
some minimum-maximum deviation of the re-
spornise, though they may not always be stated in
this form. F»r example, it may be desired to
design a shock isolator for which either the
maximum transmitted acceleration or the max-
imum relative displacement is to be minimized.
Or perhaps the response of a system to the
"worst' loading of a prescribed class is sought.
This might correspond to finding the particular
loading among the class for which the system's
maximum displacement is itself a maximum.
The problem may be of a compound type in
which, for example, an isolator is desired hav-
ing 2 minimum-maximum response under the
"worst'' loading. Still another possibility is a
design for minimum response sensitivity where
the system is sought for which the spread be-
tween the maximum responses, corresponding
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to the "worst' and the 'best' loadings, is
minimized.

This paper deals with min-max problems
for which the properties of the system and/or
¢isturbances are not completely prescribed.
Computational techniques are discussed which,
under these circumstances, serve te determine
both the maximum (or minimum} system re-
sponse as well as the unknown system and/or
disturbance characteristics. Consideration is
limited to single~degree-of-freedom dynamic
systems. While the methods are easily gener-
alized to higher dimensions, in some instances
the associated computationa! burden appears to
be a formidable one.

CLASS OF PROBLEMS

By way of introduction, considex the single-
degree-of-freecdom shoeck absorber and shock
isolator shown in Figs. 1 and 2, respectively.
For unit mass the eguation of motion for a
shock absorber i5

Xoioulx,x) = og(t), (1a)
and for a shock isolator is
X+ u(x,x) - -g(t), b

where u(x.x) denotes the system function and
g(t) ile disturbance (input) function. The #ys-
tem function generally is expressed in terms of
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the state variables, i.e., for a2 linear spring-
dashpot system

u(x,x) =

and is only an implicit function of time. In
some instances, however, it is more appropri-
ate to treat u as an explicit function of time.

It is convenient to introduce a state vari-
able notation where the symbol x denotes the
vector {}}, whose elements are displacement
x and velocity x. Then the types of systems
we will consider are those covered by a set of
first-order ordinary differential equations of
the vector form

x = f(x,u,g), (2)
x(0) = prescribed. Equations (1) are merely
special forms of Eq. (2).

We will define the response function h as
being that aspect of the system response whose
maximum deviation is to be either minimized
or maximized. Th's, for the isolator whose
relative displicement is to be minimized, h - x;,
however, for the absorber we may wish {0 min-
imize the maximum transmitted force, so that
h = v. In general, then

h = h(x,u)

and we will seek to determine the maximum
deviation of h from some preassigned quantity
in a time interval of interest, 0 <t < T. This
is designated

max h(x,u) .
t
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We may nc'v consider three types of min-
max problems, the first two being a simple type
and the third a compound type.

Problem 1

Given a system u(x) and a class of disturb-
ances g(t), find

min max h(x) (3a)
3 t
or
max max h(x) (3b)

€ t

and the associated g(t). This is the analysis
problem of determining the upper and lower
bounds to the sysiem response for incompletely
prescribed disturbances or, equivalently, the
problem of finding the respcnse to the "best’
and "'worst" disturbances among a specified
class. A way of prescribing the class of g(t)
might be to specify total impulse and duration
and/or to specify a band within which g(t) must
lie. This problem can be generalized immedi-
ately to multidegree-of-freedom systems, for
example, for the study of stress and displace-
ment bounds on continuous structural members
for incompletely prescribed loadings.

Problem 2

Given constraints L(x,u) < 0 on the system
response and a disturbance g(t), find

min max h(x,u) (4)

u t

and the associated u(t). (In this problem u can-
not be found directly as u(x), unless a class of
u(x) is first prescribed {1]. The latter ap-
proach would represent a less general minimi-
zation of h. Therefore, in the present formu-
lation the determination of u(x) is considered a
separate problem which ultimately requires that
some class of u(x) be specified.) This is the
design problem of determining a systen: whose
response is optimum in a prescribed sense. At
the same time,

max h(x,u)
t

represents optimal performance specifications

against which the "efficiency’ of any suboptimal
system can be measured and the margin for im-
provement determined. The ability to establish




the optimal u(t) also suggests improved tech-
niques for determining the best u(x) from
among a prescribed class, since what has here-
tofore been treated as a constrained minimiza-
tion problem now can be viewed as the much
more simple problem of approximating ulx(t)]
to u(t), e.g., by the method of least sgGuares.

Probiem 3

Given constraints L(x,u) < 0 on the system
response and a class of disturbances g(t), find

min min max h(x,u) (5a)
3 u t

or
max min max h(x.u) (5b)

g u t

and the associated u(t) and g(t). This type of
compound problem corresponds to designing a
system which is optimum for either the "best"
or ''worst" possible disturbances among a pre-
scribed class. A problem of this sort related
to the design of space vehicles is discussed by
Blair, Lovingood and Geissler [2]. Examples in
terms of shock absorbers and isolators are
obvious.

It might be noted that these problems have
their counterparts in the theory of differential
gamss. Roughly speaking, Eq. (5b) corresponds
to a player g whose goal is to maximize max h
while an opposing player u is seeking to mini~
mize it.

DISCRETE FORMULATION

Since we intend to seek computational pro-
cedures utilizing high-speed digital computers,
it is essential that a discrete formulation of the
min-max problems be developed. Various ap-
proaches are possible, depending on the dis~
cretization of u(t) and g(t).

Let the total time interval T be dividec into
n subintervals At;, i = 1,2,..., n. Denote the
value of x at the beginning of the :th interval by
x;. If the subintervals are of equal length At,

then

x. = x[(i-1At].

A piecewise constant representation of the
system function u(t) is

u(t) - Z (u;~u, ) Ht-t ), (8)
11
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where H(t-t;) is the unit step function, u; is
a constant in the irterval t, <t <t; + &,
t; = (i-Dbt,and o = ). A continuous rep-
resentation of u(t) is

2. (ui-ul ) K-t (e-t), (7)

u(t) =
where

w'(t) = Q. (ui-ui,) Ht-t)
i=1

with u; constant in ¢, < ¢t < t; + At.

1

Possible representations for the disturb-
ance function include a series of a discrete im-
pulse applied at the beginning of each interval,
i.e.,

) = D g (t-t;), @)
i=1

where &t - t;) is the Dirac delta function, and
the piecewise constant form

() = ) (-l HE-t)). (9)
i=1

"The solution to Eq. (2) provides, in effect,
a transformation of state variables fro.n the ith
to the (i + 1) st state. That is, we ™2y write
Xi41 ~ F(‘i'”i'gi)’ (10)
where the function F may be either an exact
expression if a closed form solution to Eq. (2)

is available or an approximating difference
equation,

Finally, we represent t{he response function
h in discrete form, so that the maximization
over tiine t is equivalent to maximization over
all stages i, i.e.,

(11)

max h{x,u) = max h(x;,u;), i=1,2,..., n+l.
t v

COMPUTATIONAL TECHNIQUES
Linear and Nonlinear Programming

The general problem of iincar and nonlinear
programming is the selection of the set of pa-
rameters y, which minimizes {or maximizes)
some objective function (performance index)
q(y;) subject to certain conditions of constraint
on the parameters, p(y,) < 0. When both the
objective function and each of the constraining

=




functions are linear in the y,, the problem is
one of linear programming; otherwise, it is one
of nonlinear programming. The solution teck-
niques and relative ease of computation are far
more advanced for linear programming prob-
lems. Thus, while we will consider the problem
""solved’ when reduced to either a linear or
nonlinear programming formulation, a numeri-
cal solution in the latter case may not be easily
obtained.

For the min-max problems, the maximiza-
tion over time of h(x,u) is placed in a form
leading to mathematlcal programming formula-
tions hy setting

w h(xi.ui) = Q. (12)
The problem is now to extremize ¢, subjcct to
the prescribed constraints, with the addition of
the requirem~at
h(‘i'“i) < ¢, 1=1,2,...,n+1. (13)

As a first example, consider a problem 1
situatlon in which the bounds to the maximum
displacement of a damped linear absorber are
sought for a class of disturbances character- -
ized by total impulse and duration.

Here, the specific form of Eq. (2) is

x 1 x
NER! . oo
x -kx - cx + g(t)

where the disturbance will be represented by a
series of impulses as given by Eq. (8). The
response function is merely the displacement,
so that

L(x;,up) = %, . (15)

An exact solution of Eq. (14) is possible and the
state transformation, Eq. (10), can be extended
for zero initial conditions to the form

g «ﬁw(ti-tj)
j e s
X. ———— sin [Aro(ti-tj)

o)
' A ’

B cle, <1, and

c 20 - 2 Jk.

c

The class of disturbance functions is char-
acterized by
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g, 20, =

i 1,2...., n+ 1 {non-negative loading),

P 0. j >n+ 2 (pulse of duration T - nit) ,

and
(17)

T Aatl
g t) dt

i)

. B;
LN

-]

= R (prescribed total inpulse, R).

From Egs. (12) and (15;,

$ = max |xii .

i

(18)

Then the mathematical programming problem
is one of finding the set of g; satisfying the
conditions set by Egs. (17) such that ; isa
minimum (or maxiraum), where the x; are
given by Eq. (16). In the form stated, the prob-
lem is one of linear programming since ¢ and
the constraints of Egs. (17} are all linear func-
tions of the unknown g; - However, we have yet
to state an cxplicit condition for insuring that
the max {x, [, found in 0 < t < T, is not exceeded
at some ¢+ > T. One approach is to recognize
that there exists a functional relationship be-
tween x and x (i.e., 2 region of the phase plane)
which insures that max |x;| is not exceeded at
some later time. In general, this will be a non-
linear relationship among the g;, destroying
the linearity of the problem. In the present ex-
ample. this relationship is easily shown to be
quadratic for Eq. (16). To retain the linearity
it is necessary to either approximate the non-
linear function by a polygonal path in the phase
space or, more simply, to extend sufficiently
the time interval of interest. Clearly, the lat-
ter approach would be followed here.

A second example is the problem 2 type, in
which we seek to design an isolator whose rel-
ative displacement does not exceed a prescribed
value and whose maximum transmitted acceler-
ation is minimized. The disturbance function is
specified.

The system function, u(t), will be taken to
be piecewise constant as in Eq. (6), and the
state transformation obtained from the solu-
tion of

x + u(t -
(t) g(t) (19)
x(03 0

is

(uj=u; it -7 - gt (20)




The response function is h(x;.u;,) - -u; and,

hence, : - max ‘u,'. The linear programming
problem is the determination of the set of u;

for which

x. © X. (21)

{prescribed displacement bound) and : isa
minimum, the x; and u; being related throuvgh
Eq. (20). The solution to this problem is re-
ported by Liber and Sevin [1]; typical results
are shown in Fig. 3.

Problem 3 is considered as a final examole
of the linear programming formulation. The
example is interesting in its own right and also
serves to indicate that not all such problems
admit to a linear, or even nonlinear, approach.
We want to design an isolator whose response.
for the "best' of a given class of disturbances,
is such that the maximum acceleration does not
exceed a prescribed value and the maximum
relative displacement is minimized. That is,
we seek to determine

min min ma.lx h. (22)
u, R; 1

where the response funciion is hix;,u;) = x;.
We specify the class of disturbance functions to
be of prescribed duration, total impulse and
bounded intensity. Both the system and disturb-~
ance functions wiil be represented as piecewise
constant, as in Eqs. (6) and (9), respectively.
The state transfo''mation now is

U*
L = == =Prescribed
008 (Constraint)
0.04
X* 0

-0.04

-0.08

e

-0.12

- - Prescnibed
(Constrant)

l ]
X -2 [? Cuj-uy 0t -t “‘i'gi“)J"
(23)

the linear programming provlem is to find the
set of u, and the set of g, satisfying Eq. (23)
for which

(prescribed force bound),

Z (gj-gj-l)(tnO!_tj) =R
pE

{prescribed total impulse), and such that ; is a
minimum.

Examination of Eq. (23) will indicate that
the problem yields to a linear programming
formulation simply because we are minimizing
4 with respect to both the u; and g,. Were we
instead to attempt to construct

min max J ,
U, ']

x Isolator

gtt)
,,,L Maving

Bose

1
i2
u is Sought Such That

Mox { Acceleration
t Of Mass

is Minimized.
Optimum Quantihes Are Starred.

Fig. 3. Optimum shock isolator




where an order of minimization and maximiza-
tion has to he preserved, an alternate approach
would be necessary. In this instance, the mat-
ter of linearity is of no consequence, so non-
linear programming offers nothing new. We are
forced to turn then to dynamic programming.

DYNAMIC PROGRAMMING

The computation::1 technique of dynamic
programming can be used to solve all three
classes of min-max problems, and hence is a
more general formulation than either linear or
nonlinear programming. The method is com-
putationally quite straightfurward; there is
more of a problem in getting lost in a sea of
notation. We will first illustrate the technique
with respect to a problem 2 example considered
earlier and then generalize to cover all three
classes.

We want to establish the system function
u(t), characterized by the set of v, for which
Ix; § @ X; (x. specified) and - - max oy isa
minimum. The state transformation is given by
Egs. (10); note that the system starts from res:,
i.e.,, x, = 0. Assume for the moment that at
time ¢. (<t ,,), the system is in state x; and
that the min-max solution for the subsequent
motion is known. Moreover, assume that this
solution is known for M different values of the

state x;. That is, we know
¢(xj"') = minmax ju; i iz, jel....n+l
u, i
m=1,2...., M (24)

In this notation m = 1, j - 1 corresponds to the
value of the initial state originally prescribed.
Thus, the desired min-max value is represented
by :(x,") = r(0).

We seek now a means for computing :(x'j"_ aDo
Consider the system to be in the state x;_ , at
time ¢; , and investigate its response under
the choice of some value of u. , consistent with
the constraint of Eq. (21). At'time 't later,
i.e., at t;, the system wili be in state x, , as
determined from Eq. (10), corresponding to
which can be found the value of :(x;). The
maximum of the two quantities u; , and :(x)
is recorded. This process is repeated for a
range of admissible u; ,, so that

min max [ Ujqis .‘(xj)]
u, 1

can be determined. Clearly, this value then
corresponds to :(x’;.“_ ) for the particuiar choice
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of ... The entire process must be repeated for
a sufficient range of » so that subsequently, at
any stage ;- 1, the resulting state x; will be
close enough to some x " in the matrix of known
iix ;") values to permit accurate interpolation.
The process is easily started at ; - n- 1 since
at t.,,, :n. - 0forall x] ,. We recognize
that with dynamic programming the n- 1 dimen-
sional minimization required in the linear (or
nonlinear) programming formulation has been
replaced by a sequence of n+ 1 unidimensional
minimizations. Since dynamic programming
does not consider linearity, it represents a
most powerful approach.

The notation is improved somewhat if we
distinguish better between the subscript denoting
the stage of the computational process and the
state of the system response. Thus, the com-
putational algorithm becomes

(x) = min max [uj . 'ml-j(‘jo!)_!'

u.
]

n42]

with
Silxg.) = 0,

where subscript j represents the state of the
system and the subscript on : denotes the stage
of the computational process. The minimiza-
tion, of course, is only with respect to admissi-
ble values of u, as determined from the system
constraints of Eq. (21). The optimal choice of
the u; is retained in the computer memory at
each stage. Once the desired : , (0) is deter-
mined, knowledge of u, permits the process to
be repeated forward in time to select the appro-
priate set of u;.

Equation (25) follows directly from Bell-
nman's principle of optimality, which in essence
says that regardless of the decisions made in
reaching a particular state, subsequent deci-
sions must constitute an optimal policy with re-
spect to this state. This permits us to general-
ize the formulation immediately. Let

extrem

represent any of the minimizations, maximiza-
tions or min-max combinations appropriate to
the three types of problems considered earlier.
That is,

extrem = min or min or max or min max or min min .

55 Uy E; g; v Ry Ui &




Then, if at the (. - 1 - j;th stage of the process,
corresponding to the system being in its (j + 1)st
state, we denote the min-max value by

(3,

‘nellj extrem max hix;.u;) . (26)

s 1
1

the next stage in the process is given by

~ -

(x)\ ext‘rom max;h(xj.uj). ’n'l--j(‘i'l)_}‘

'.noz.,

(27)
The process starts with
Ti(Xp, ) max h(xoud. ot ot .. (28)
t
and is conducted fer § = n.n-1..... 1. The ex-

tremes are taken only with respect to admissi-
ble values of s; as determined by the stagewise
constraints

-

S : € 5q < Sj .
In the dynamic programming formulation it
is necessary to distinguish between stagewise
and process (overall or terminal) constraints.
In the linear programming formulation, these
appeared either as inequalities (stagewise con-
straint) or equalities (process constraint), and
both could be handled automatically. It is usu-
ally said that the greater the number of con-
straints, the easier is the dynamic programming
solution since the space to be searched is re-
duced accordingly. This is true enough with
respect to stagewise constraints, but the com-
putational burden is increased in the presence
of process constraints. Specifically, the pre¢z-
ess constraint enters the problem as an addi-
tional state variable. Consider, for example,
the case in which the disturbance function is to
have a prescribed total impulse,

T
(g T) ( g(t)dt = R, (29)

We define a new state variable z; as

e X .
(‘J J

z, 1 - ;‘i . (30)
\r(g.t;) I'(P,,ti)

where r(g.t;) is the value of the constraint at
time t;. The additional state transformation
needed to supplement Eq. (10) is

r(g.t;,)) = r{g.t;) « Sr;.

where ‘r is the change caused in the constraint
variable r Ly app.ication of g;.

Unfortunately, the addition cf another state
variable increases the already bothersome bur-
den of dimensionality. An alternate approach
possessing the originai dimensionality is avaii-
able for some systems. It has been shown [3]
for a certain class of absorbers, including lin-
ear systems, that the response function and
process constraint can be interchanged without
increasing the dimension of the dynamic pro-
gramming formulation. In the case of min-max
displacement for an absorber with prescribed
total impulse and time duration, the equivalent
problem becomes that of finding the g(t) of
duration T, such that .x: < X (X prescribed) and
the total impulse r(g.T) i maximized. Here

nel

g; » (31)

Tnet-j (Xj4) = max
L izj+l
and in accord with the principle of optimality
:’n42-j(‘j) = max {gj v c’n-jol("jol)} (32)

is computed for j = n, n-1...., 1. Typical re-
sults for this problem are shown in Fig. 4.

SUMMARY

A number of practical problems of a
minimum-maximum deviation, or min-max,
sort have been described and classified as three
types. These have been represented by discrete
formulations amenable to solution by such gen-
eral mathematical programming techniques as
linear and nonlinear programming and dynamic
programming. Where applicable, linear pro-
gramming constitutes the most efficient com-
putational approach. Dynamic programming is
the most general technique but presents the
greatest computational burden for higher order
systems. The method is eminently practical,
however, for single-degree-of-freedom dynamic
systems. Certain of the more interesting prob-
lems formulated have not as yet been solved
numerically. These will be the subject of future
publications.
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Fig. 4. Min-max solution for systems with prescribed
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STRAIN RESPONSE OF SIMPLY SUPPORTED BEAMS
TO POINT AND ACOUSTIC LOADING

Tony L. Pariott and Joseph A. Drischler

| NASA Langley Research Center
Langley Station, Hampton, Va.

Although dynamic strain response is the basic ingredient in fatigue life
estimation schemes, there is a lack of documented comparisons of
measured and predicted strains for responses of either complex or
simple structures. Many investigators have been concerned with
measurements of strain responses on structural components under op-
erational conditions for which calculations are impractical to perform.
On the other hand, theoretical investigations have been carried out for
relatively simple structures for which few experimental strain re-
sponse tests have been conducted, perhaps primarily because of the
difficulty of obtaining a sufficiently close approximation to a set of
classical houndary conditions.

It is the purpose of this paper to present a comparison of measured and
predicted strain responses for carefully controlled experiments on
beams whose boundary conditions approximate, to a high degree of ac-
curacy, those of a simple support. The simply supported boundary
condition was found to be readily amenable {0 mathematical analysis
and characterized by low damping. Considerable development work
was required in perfecting beam bhoundary attachments having satisfac-
tory simple support behavior. Dimensions of the beams were chosen
so that sigrificant vibration amplitudes (in excess of the beam thick-
ness) could be cbtained in the fundamental mode. The beams were e¢x-
cited by sinusoidal and random loadings applied both acoustically (uni-
formly distributed along beam) and mechanically (at a point location).
In addition to strain measureme1ts, both the total equivalent viscous
damping and the magnitude of the exciting force were obtained.

In general, good agreement between measured and predicted dynamic
bending strain was obtained; however, for sinusoidal point loading the
theory overpredicted, and for sinusoidal acoustic loading it underpre-
dicted the dynamic strains. For random loading the theory and experi-
ment were in close agreement. The total equivalent viscous damping,
measured by the log decrement technique, was found to have amplitude

and modal dependence.

T. L. Parrott

INTRODUCTION

Present-day strain response prediction
schemes are iniended tu provide engineering

estimates of the strain levels at critical loca-
tions in complex structures loaded by spatially
distributeq forces characterized by continuous
spectra with or without discrete frequencies
superimposed. The prediction of strain re-
sponse is useful for the purpose of estimating
fatigue life and for determining noise trans-
mission characteristics. The dynamic strain
response of an aircraft or space vehicle struc-
tural component to various types of complex
dynamic loading depends, in addition to the
detailed characteristics of the loading, on the
geometry of che structure, the distribution of
the structural mass and elasticity, the ability
of the structure to dissipate vibrational energy,




and the beundary conditions imposed on the
particular structural component of interest by
the remaining struct ire.

Many investigators have been concernad
with measurements of sirain responses on
structural components under operational condi-
tions for which calculations are impractical to
perform. On the other hand, theoretical inves-
tigations have been carried out for relatively
simple structures for which few experimental
strain response tests have been conlucted,
perhaps primarily because of the difiiculty of
obtaining a sufficiently close approxiiaation to
a set of classical boundary conditions.

It is the purpose of this paper to present a
coraparison of measured and predicted strain
responses for carefully controlled experiments
on beams whose boundary conditions approxi-
mate those of a simple support. It was found
that the simply supported boundary condition
was readily amenable to matheiaatical analysis
and was characterized by low damping. Consid-
erable develupment work was required, how-
ever, in perfecting beam boundary flexure at-
tachments having satisfactory simple support
behavior.

TEST MODEL

Illustrated in Fig. 1 are the boundary con-
ditions associated with the various idealized
models used in the classical description of
beam behavior, The free-free beam was elim-
inated from consideration in the present inves-
tigation because of the practical difficulty of
supporting it in such a manner as to permit the
excitation of the higher modes, as well as the
infrequent encounter with anything approaching
this type of support in existing hardware. The
clamped-clamped support was 2180 eliminated
frora consideration because of the urwieldy
mathematics needed to describe the response
to random loading and also because of the in-
herently high joint damping. Finally, the sim-
ple support (hinged-hinged) was chosen because
of the ease with which the mathematics could
be handled, the low damping that could be
achieved, and because this type of boundary
condition is not too far removed from some
practical situations. The last entry illustrates
an idealized model of the beam boundary con -
ditions which actualiy existed. 'The development
work centered around attempting to make the
spring stiffness, which governed the verticzl
displacement, very stiff without introducing an
appreciable resistive bending mument [1]. This
resistive bending moment is represented by the
torsional springs. By using a combination of
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Fig. 1. Boundary conditions
of end supported beams

analytical and empirical methods, a very close
approach to true simple support conditions was
achieved.

A schematic diagram of the beam geometrv,
including flexure support details and strain
measuring locations, is shown in Fig. 2. The
analytical work indicated that the resisting
bending moment would be negligible if the beam
thickness to flexure thickness ratio were on the
order of 25. The flexures were spot welded to
the beam as close as possible to the right-angle
bend. Observations indicated that the best per-
formance could be obtained if the flexures were
clamped approximately 0.032 in. from the beam.
Apparently, this clearance minimized the tor-
sional spring compliance.

As criteria for evaluating the success to
which simply supported conditions were
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Fig. 2. Schematic diagrams of
test beam and support system
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approached, both natural frequencies and mode
shapes were measured. Figure 3 shows a
comparison of the mcasured and calculated
frequencies for the firs: five symmetric modes
for a typical beam installation. In this plot the
ratio of calculated to measured frequencies is
plotted as a function of mode number. It will
be seen that the measured frequencies are
within 5 percent of the calculated frequencies
for all measured modes. However, the agree-
ment is not quite as good at the higher frequen-
cles. This is probably due to the spring action
of the flexures, which calculation indicates
should become predominant at the higher
frequencies.

R SIN w,t— BEAM
L2r £ g

LI _—EXPERIMENT
< THEDRY
ot
8t
o
L 1 E d 1 i s 4 L J
0 I 2 3 4 5 6 7 8 9
MODE NUMBER

Fig. 3. Comparison of calculated
and measured resonant frequencies
of test beam

As a further test for the closeness of ap-
proach to the simple support condition, the
measured mode shapes for the first three sym-
metrical modes are compared to the theoretical
mode shapes in Fig. 4. In these plots the meas-
ured strain at two off-center locations on the
beam is ratioed to the strain measured at the
midspan location and plotted as a function of
the beam length. The theoretical mode shape
for the simply supported beam is a sinusoid of
the appropriate wavelength as shown for the
first three symmetric modes. Note that the
measured strain ratios are very close to their
proper relative magnitudes. Thus, it appears
that a close approximation to simple support
conditions has been attained based on measured
frequencies and mode shapes.

A number of beams, constructed to be as
nearly identical as possible, were tested in
this experiment to evaluate individual differ-
ences of behavior. It was found that as far as
frequencies were concerned, the deviation from
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DISTANCE ALONG BEAM, X/L

Fig. 4. Comparison of calculated
and measured beam flexural mode
shapes

calculations did not exceed 10 percent. Also,
nodal patterns were in excellent agreement with
calculations. By far the greater part of the
differences in behavior between beams was in
the dynamic strain response which, in turn, was
due to relatively large differences in the damp-
ing between the beams.

ANALYSIS

The test program and the data acquired
were directed toward the comparison of the
measured and the nredicted strain response
taking into account the detailed nature of the
modal damping and the driving force. The
equation of motion for a beam undergoing a
general time varying distributed loacling is
given by:

EIN, ,, + oW + 5W = P(x,t) (1)
where

E = modulus of elasticity (Ib, /in.?),

I = moment of inertia (in.*),

w = deflection (in.),

o = mass per unit length (lb_/in.),

3 = damping coefficient (It ;-sec/in.?),

Pi{x,t) = }“:oad distribution along beam
{Ib; /in.),
W, = W/ ox, and
W = Ow/dt,
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This equation was solved for the four cases
corresponding to the type of driving force used
in the tests:

1. Sinusoidal point load,
2. Random point load,

3. Sinusoidal acoustic load with normal
incidence, and

4. Randor- acoustic load with normal inci-
dence.

The normal mode technique used to solve
Eq. (1) made use of the characteristic functions
for a simply supported beam to express the
beam displacement response as a series [2].
The strain response was thon obtained by taking
the second space devivative of the displacement
response. For the poiat load cases, use was
made of the Dirac delta function to express the
loading as an idealized point load.

The solutions of Eq. (1) for the rms strain
at the midspan location for the above four cases
are as follows:

1. Point sinusoidal load

P
- f - 6(4 l (fn)rms (2)
D, () (2 e
rms ‘Ebh’wz n2 2
2. Random point load
. B 6L \%; pl’ms (3)
“rms Fb h?n? n? ) '

3. Sinusoidal acoustic loading for normal
incidence

P(f,)
c(fy - (____5" ) R DT T
BRLE Ebh?r3/ \n3 o

4. Random acoustic loading for normal

incidence
o (BEY(E)©
rms Ebh?n? n? s
where
»(f,)_ = root mean square strain re-

sponse for pure mode excitation
(vin/in.),

-
n

length of beam (in.),
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b = width of beam (in.),
h = thickne:s of beam (in.),
n = mode number,

= ratio of damping to critical
damping,

. = angular frequency (rad,’sec),
f,, = normal mode frequency, and

P(f,) . = sinusoidal loading at a normal
mode frequency (lb).

MEASURED DAMPING

The ability to predict the absolute strain
magnitude at a given location on a beam under-
going dynamic excitation depends in part on an
exact knowledge of the total equivalent viscous
damping for each mode of interest as well as
how it changes as a function of the response
amplitude. Damping was measured by the free
decay technique since this was believed to be
the most expedient technique available. In
Fig. 5, a sample of the measured damping is
shown for the first three symmetric modes of
a beam as a function of the rms value of the
driving force. In this plot, the damping is given
on the vertical scale in percentage of critical
damping and the driving force is plotted on the
abscissa in millipounds of force. Note that the
damping in the first mode is essentially inde-
pendent of response amplitude, having a value
of approximately 0.35 percent. However, the
higher modec are seen to be dependent on re-
sponse amplitude; the second mode damping
varies from 0.10 percent to about 0.24 percent
for the driving furce range applied, and the
third mode damping varies from about 0.09 to
0.20 percent.

COMPARISONS OF EXPERIMENTAL
RESULTS AND THEORY

As indicated previously, a knowledge of the
damping and driving force enables prediction of
the strain response at any location on a given
simply supported beam., Measured strain re-
sponses have been obtained at the midspan lo-
cation of the beam for the four types of dynamic
loadings for which analytical expressions have
been derived. Comparisons of these measured
responses with the analytical estimates are
given below,
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Sinusoidal Point Loading

In Fig. 6, the strain response in micro-
inches per inch is plotted as a function of the
driving force in millipounds. The measured
and predicted strain by use of Eq. (2) is shown
for the first three symmetric modes at the
midspan of the beam. Predicted strain is shown
by the dashed curves and the experimental
strain values are indicated by the symbols.

The driving force in this case was sinusoidal
point loading with a frequency corresponding to
that of the particular mode of the beam being
driven. Note that the agreement between theory
and experiment is quite good.
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Random Point Loading

The frequency spectrum of the point load-
ing applied to the beam midspan is shown in
Fig. 7. Note that the spectrum is flat from
20 Hz to approximately 800 Hz. Strain re-
spanses of the beam have been measured for
the first three symmetrical modes to such a
spectrum of force for various levels of force
input. These measured strain responses are’
shown in Fig. 8 along with the predicted strain
response of Eq. (3) (modal theory) as a function
of the mode number. Also included for compar-
ison is the strain predicted for the first mode
response by the well-known Miles theory {3}.
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DRIVING FORCE, RMS MILLIPOUNDS

Fig. 6. Comparison of calculated and
measured nodal strain responses of
test beam as function of sinusoidal point
driving force
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measured strain responses for random
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Note thae the Miles theory is overpredicting as
expected, being approximately 25 percent high.
The modal theory is also overpredicting and
varies from 7 to 15 percent above the experi-
mentally observed strain response.

Uniform Sinusoidal Acoustic Loading

In Fig. 9 is shown the measured strain re-
sponse and strain response predicted from Eq.
(4) for acoustic loading of the sinusoidal type

where the acoustic loading is ¢xpressed in milli-
pounds of force. The acoustic loading was meas-

ured by microphones flush mounted into a surface
in which the beam was also mounted to provide
baffling. In the first mode, theory and experi-
ment are again in good agreement, with theory
overpredicting. In the two higher modes, how-
ever, this trend is reversed. Here the thecry
seems to be underpredicting, although tie gen-
eral trend of the strain response is still pre-
dicted very well. Greater discrepancies will
probably be encountered between theory and
experiment when icoustic measurements are
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Fig. 9. Comparison of calculated and

measured modal strain responses for
sinusoidal acoustic loading

involved because of the inherent lack of preci-
sion associated with extrapolating an acoustic

pressure measurement from a rigid surface to
a nearby vibrating surface.

Uniform Random Acoustic Loading

The frequency spectrum of the random
acoustic loading is shown in Fig. 10. A flat
spectrum cannot be obtained with the means
available for producing acoustic loading. The
beam resonance frequencies of 20, 200, and
500 Hz are indicated on the plot by the vertical
lines. Note that the beam frequencies are lo-
cated at points on the spectrum where there is
a local minimum or where the spectrum is
changing rapidly. Hence, it was surmised that
this type of spectrum would provide a severe
test for the theory since the assumption was
made that the excitation for each mode consisted
of white noise with a level corresponding to that
of the actual spectrum ievel at the resonant
frequency of the particular mode of interest.
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The results in Fig, 11 indicate the devia-
tion of experiment from theory for the input
spectrum shown in Fig. 10. The data are plotted
as the ratio of calculated to reasured strain
response as a function of the mode number.

Note that the theory predicts the strain response

to within about 40 percent. The greater devia-
tion of experiment from theory for the third
mode may somehow be related to the fact that
the spectrum was changing rapidly with respect
to frequency for this mode; however, for the
maqst part the discrepancies are believed to be
due to experimental error. These results indi-
cate that the present assumptions and approxi-
mations used in the modal analysis schemes
for predicting strain levels are adequate for
strain response estimates for the simple struc-
tures used in this experiment.

CONCLUDING REMARKS

A technique has been employed for the de-
sign of simple structures to approximate sim-
ply supported boundary conditions characterized
by low damping. The use of this technique on a
simple beam has established confidence in
modal analysis wmethods for providing gcod en-
gineering estimates of strain levels for loadings
ranging in complexity from simple sinusoidal
point loading to random acoustic loading.
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DISCUSSION

Mr. Smith {Bell Aerosystems Co.): Did
you investigate how the damping of the speci-
men w~as distributed between the joints at the
two ends, the material itself, the internal mate-
rial damping, and the basic acoustic damping ?

I assume the test was not conducted in a vac-
uum. Second, when you compared the r2sponses
for the random point loading, the analysis of
this spectrum appeared to be coarse. Tris
might account for the differences between tiic
experimeital and theoretical results. Third,
how was the random acoustic loading correlated
along the length of the beam ? It obviously plays
a vital part, again, in the comparison between
theory and experiment.

Mr. Parrott: I did not try tn distinguish
between the various components of damping; I
only measured the total equivalent viscous
damping, using the logarithmic decrement, ex-
citing the specimen sinusoidally, letting it de-
cay, and taking the first 3 db of the record.

Mr. Smith: In the spectral analysis of the
point random loading, the points on your graph
appear to be quite wide apart in frequency. You
are playing with three lightly damped modes,
and your spectrum might not be as flat as you
think it is.

Mr. Parrott: We assumed in the calcula-
tions that the spectrum was actually white noise
at the point where the beam was resonating.

We thought we could do this because with the
low damping, less than 1 nercent of critical for
this beam, there wac no intermodal coupling.
We simply assumed all the strain response to
be due to that particular mode; we filtered out

*
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all modes of the strain response except one and
louked at it.

Mr. Smith: I assume that spectrum was
your inpu:t spectrum of the point loading.

Mr. Parroit: Yes. This is a 1/3-octave
band analysis of the force lcading.

Mr. Smith: Your modes are very much
less damped than a 1/3-octave analysis of your
input spectrum could handle. Your spectrum
might not be flat, and this could account for the
scatter between theoretical and measured re-
sponses.

Mr. Parrott: Right, but in the experimen-
tal analysis we centered the filter of the 1/3-
octave band analyzer on the beam resonant
frequency and looked with several other widths
of filters. It seemed that we were getting all
the strain response in that particular mode.
Damping may have played a part in some of our
analysis scatter here because we mrasured
damping using a sinusoidal excitation and had
to extrapolate back to the approximate ampli-
tudes at which we felt the specimen was re-
sponding under random ivading. Perhaps the
damping values are off in the region in which
we are interested for random loading.

Mr. Sriith: The third question was the
spatial correlation of the acoustical loading on
the beam.

Mr. Parrott: The loading was normal im-
pirgement, and we have no reason to believe
that it was anything but unity throughout the
total length cf the beam.

*




PREDICTION OF FLIGHT VIBRATION LEVELS
FOR THE SCOUT LAUNCH VEHICLE

Robert B. Bost
LTV Aerospace Corporation
LTV Astronautics Division
Dallas, Texas

calculations.

A widely used technique for establishing random vibration criteria is
based on scaling of measured vibration data by such factors as acous-
tic sound pressure level, mass loading, and surface weight density.
This paper prv ents a prediction procedure developed in the process of
establishing random vibration criteria for the Scout launch vehicle.
The prediction procedure was designed to define the acoustically in-
duced random vibration environment throughout the Scout vehicle by
using the limited data sample from six vehicles.

A transfer function relating the internai vibration level to the external
noise level was established by use of the measured vibration data and
the calculated external nois~ levels at the pcint of measurement.
transfer function was then used to calculate the expected vibration
levels in cach area of the vehicle from the noise level at each location.
Statisticai methods were used to establish confidence leveis for these

The success >f the prediction procedure is demonstrated by comparison
! of the predicied vibration levels with measured data obtained on subse-
| quent Scout flights. In addition, the applicability of the procedure to
otr.er vehicles is demonstrated by comparison of predicted and meas-
ured vibration levels for the Atlas-launched fire velocity package.

This

R. B. Bost

INTRCDUCTION

The prediction of environmental vibration
levels for a new vehicle is a problem continu-
ally facing the vibration engineer. The diffi-
culty of this problem is only slightly mitigated
when the engineer is subsequently required to
modify the predicted environment on the basis
of limited measured data obtained in the vehicle
flight test program.

Several methods of predicting environmen-
tal vibration levels have been formulated by
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various investigators in the dynamics field.
These methods are, in general, based on em-
pirical information. Some of the methods have
been employed with considerable success, par-
ticularly wl 2re the vibrations are induced
solely by acoustic excitation. In this case, a
strong correlation usually exists between the
external noise level and the induced vibration
level, so a transfer function may be defined
which reflects the observed correlation.

It is the purpose of this paper to present a
transfer function method for the prediction of
acoustically induced random vibrations. This
method was developed for the Scout launch ve-
hicle to aid in revising the vibration test re-
quirements to simulate better the actual flight
environment. The method was developed from
analysis of measured vibration data cbtained
during the boosted flight phase of six different
Scout vehicles. These vehicles were equipped
with 19 vibrometers located in three of the four
vehicle interstage structures and with sensitive
axes in both the longitudinal and transverse
directions.




The success of the prediction procedure is
demonstrated by comparison of the predicted
vibration leveis with measured data obtained at
different locations on subsequent Scout flights.
In addition, the applicability of the procedure to
other launch vehicles is demonstrated by com-
parison of measured and predicted vibration
levels for the fire velocity package launched by
the liquid-propellant Atlas booster.

REVIEW OF SCOUT FLIGHT DATA

An examination of the flight vibrationdata
from the six Scout vehicles indicated that the
maximum random vibration levels occur at a
flight time corresponding to maximum cynamic
pressure and are induced by the turbulent
beundary layer surrounding tke vehicle at this
time. These vibrations are broadband random
in character and approximate a stationary
Gaussian random process for several seconds
of flight time. These characteristics were ver-
ified by amplitude probability density analyses
and by autocorrelation analyses.

Since the Scout vibration environment at
maximum dynamic pressure arises solely from
acoustic excitation, it was elected to devise an
analysis procedure whereby all vibration data
arising from this source could be considered
as a single statistical sample. This was ac-
complished by the transfer function approach
(1} which consists of relating the external sound
pressure level to the internal vibration level
through a transfer function. Since the vibration
data currently available for the Scout are quite
limited for some portions of the vehicle, this
was considered to afford the best estimate of
the overall vehicle vibration environment con-
sistent with the current data sample.

PREDICTION OF EXTERNAL
NOISE LEVELS

The application of the transfer function
method required a knowledge of the external
noise levels existing at maximum dynamic
pressure. Since measured data were not avail-
able, a prediction procedure was used to esti-
mate these levels.

External sound pressure fluctuations in-
duced by turbulent boundary layers have been
shown by several authors (2,3} to be strongly
correlated with the free-stream dynamic pres-
sure. The correlation is represented by a re-
lation of the form

r'R

(1)

Kq

n

where P, is root mean square {rms) boundary
layer pressure, q_ is the free-stream dynamic
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pressure, and K is a factor which may vary
over a wide range depending on the aerodynamic
"cleanliness' of the vehicle. Measurements on
the Scout vehicle [4] irdicate a value of K on the
order of 0.005. Equation (1), written in terms
of the overall sound pressure level (0ASPL), for
a K value of 0.005 is

OASPL - 20 log Pp - 20 log q_+ 82 db. (2)

relative to 0.0002 dynes/sq cm. This equation
is shown graphically in Fig. 1 by the curve
labeled ""conventional."

Experimental data indicate that the corre-
lation represented by the above equation tends
to overestimate the magnitude of the external
pressure levels in the supersonic region of
flight. The deviation from the conventional
curve suggested by Van Houten [3] for higher
dynamic pressures is shown in Fig. 1 super-
imposed on the conventional curve., This curve
was used to estimate the Scout boundary layer
noise levels at maximum dynamic pressure.

The spectrum of sound pressures have
been correlated with the Reynolds, Strouhal,
and Mach numbers 2s a combined parameter
[2] (Fig. 2). The parameters defining the co-
ordinates of the graph in Fig. 2 are as follows:
C, is the speed of sound at sea level; v is the
free-stream velocity; , and , are the kine-
matic viscosities at sea level and at the altitude
of operation, respectively; and - is the thick-
ness of the boundary layer.

The boundary layer thickness was deter-
mined by the flat-plate approximation 5],

(3)

where L is the distance from the leading edge
of the structure initiating the disturbance, and
the quantity within the pareatheses is the in-
verse of the Reynolds number. For these cal-
culations, the nose of the vehicie was assumed
to initiate the disturbance.

0.37L¢._ VL)' 5.

The one-third octave band soand pressure
level {1/3 OBSPL) was calculated from the sound
pressure spectrum level (SPL) by the relation
(4)

1’30BSPL SPL + 10 log Af .,

where the SPL was established at the geometric
mean frequency, f,,~ (f, f,)! 2,and Af - §
is the one-third octave bandwidth.

=g
H 'L

The application of this procedure to a
typical Scout vehicle operating at a free-stream
dynamic pressure of 2600 psf at an altitude of
35,000 ft 1s shown in Fig. 3.
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DEVELOPMENT OF TRANSFER
FUNCTION

The transfer function approach to the pre-
diction of random vibration environments in-
duced by acoustic excitation is limited prima-
rily to the prediction of the broadband
characteristics of the vibration. Some authors
[6] have used a transfer function to define the
octave band vibration levels, while others [1]
have attempted a finer definition by considering
one-third octave band levels. Both approaches
apply an arbitrary "'correction factor' to ac-
count for possible narrow-band peaks in the
vibration spectrum.

The transfer function considered here is in
terms of one-third octave band levels, but the
appropriate correction factors are obtained by
correlation with measured narrow--band data

rather than by specifying some arbitrary factcr.

Details of Transfer Function
Definition

The one-third octave band external sound
pressure levels in decibels relative to 0.0002
dynes/sq cm were calculated by the procedure
outlined in the preceding paragraphs for each
measurement location on each of the instru-
mented Scout vehicles. The corresponding
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measured one-third octave band rms vibration
levels were extracted from the acceleration
time histories and converted to decibels rela-
tive to 1g rms. The difference of these two
quantities, 1/3 0BSPL - 1/3 OBGRMS, was defined
as the transfer function relating external sound
pressure level at maximum dynamic pressure
to the internal vibration levels. These data are
shown as a function of the one-third octave
band center frequencies by the scattered points
in Fig. 4.

A regression anal;'sis was performed on
these data to provide a '"best fit" in the least
squares sense. This analysis was conducted to
smooth the data and to provide a statistical
basis for establishing confidence in predictions
made from it. Quartic regression was found to
provide the minimum standard deviation of er-
ror about tlie regression line, and this fit is
shown superimposed on the data points of Fig. 4
along with the corresponding 80 and 5 percent
confidence limits.

The external sound pressure levels shown
in Fig. 3 were used in conjunction with the
transfer function shown in Fig. 4 to predict the
one-third octave band g rms vibration levels
for a typical Scout vehicle. The resulting levels
were then converted to an acceleration power
density spectrum by assuming the spectrum
was flat within each one-third octave band.

§ i imit s
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The calculated acceleration power density
gpectra for the three Scout interstage sections
designated "B'", "C" and "D are shown in
Figs, 5 through 7. These spectra are based on
the transfer function defined by the regression
line and by the upper 80 and 95 percent confi-
dence lines of Fig. 4. The spectra presented
represent a smooth envelope of the spectra
calculated by assuming a flat spectrum in each
of the one-third octave bands.

CORRELATION WITH MEASURED
DATA

The calculated acceleration power density
spectra of Figs. b through 7 were compared
with measured narrow-band data to establish
the appropriate correction factors to be placed
on the vibration levels predicted on the basis of
the regression line of Fig. 4. This comparison
is shown in Figs. 5 through 7 in terms of an en-
velope of all of the measured data from each of
the three interstage sections. As can be seen,
the upper 95 percent confidence line provides
a satisfactory envelope of all of the peaks in

89

the measured narrow-band data. On this basis,
the upper 95 percent confidence line of Fig. 4
was chosen as the appropriate ""transfer func-
tion" relating the external noise levels and the
-nduced vibration levels for each of the Scout
interstage sections,

APPLICATION TO OTHER
VEHICLES

While the data presented here were col-
lected from the Scout launch vehicle, these em-
pirical curves have been used to predict vibra-
tion levels for other launch vehicles where
vibration data are available. 'The predicted
levels fit the measured data with about the
same degree of accuracy as they do the Scout
data. This is illustrated in Figs. 8 and 9 by
comparison of measured and predicted vibration
spectra at two locations on the fire velocity
package launched by a liquid-propellant Atlas
booster. As for the Scout data, the upper 95
percent confidence level provides a satisfactory
envelope of all of the peaks in the measured
spectra.
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CONCLUDING REMARKS other launch vehicles. In particular, the 95
percent level should satisfactorily envelop most

By choosing the desired risk level (confi- narrow-band peaks and, hence, provide a good

dence line), the transfer functions presented in first estimate of the vibration environment of a

Fig. 4 may be used with reasonable success on new vehicle.
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DISCUSSION

Mr. Whiteley (Ampex Corp.): Did you de-
velop a transfer function from acoustical noise
to mechanical vibration?

Mr. Bost: Yes, that is correct.

Mr. Whiteley: Is this felt applicable to
various space vehicles?

Mr. Bost: I think it is definitely applicable
to aerodynamically generated noise. We have
tried it in a few cases for engine-generated
noise, and it seems to give a fairly good corre-
iation there also. We have tried it on other ve-
hicles where measured data are available, and
generally it gives a pretty good prediction of
the maximum level.

Mr. Whiteley: This acoustic coupling, then,
is felt to come through the skin. Is it structur-
ally or acoustically coupled on the inside ?
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Mr. Bost: It is structurally coupled. It is
transmitted through the skin to the basic struc-
ture. All these measurements were made on
primary siructure which was fairly heavy and
stiff.

Mr. Franken (Bolt Beranek and Newman):
What is the typical giameter of the Scout
vehicle on which the empirical procedure was
based ?

Mr. Bost: It varies from about 40 to 30 in.

Mr. Franken: With this diameter of about
2-1/2 to 3 ft, the ring resonance would be
somewhere around 1500 cycles. Perhaps the
peak in your transfer function is due to some
cylindrical behavior which ought to be scaled
by the diameter of the vehicle you are dealing
with.

*




RESPONSE OF STRUCTURAL COMPONENTS OF A LAUNCH VEHICLE
TO IN-FLIGHT ACOUSTIC AND AERODYNAMIC ENVIRONMENTS

Khushi L. Chandiramani and Richard H. Lyon
Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

A unified system of rrocedures is developed for estimating some im-
portant classes of in-flight noise environments and the resulting sur-
face vibration on a tyjical i1aunch vehicle.
classified according 1o the nature of the spatial and temporal corre-
lations of the associated fluctuating pressure fields. The structural
elements considered are a cylinder and a flat plate. The presentation
is general enough to apply to orthotropic and liquid-loaded structures.
Sorme numerical examples are presented for estimates of frequency
spectra of acceleration on the vibrating structures.

Noise environments are

R. H. Lyon

INTRODUCTION

This paper summarizes a recent study [1]
undertaken to establish a syster: of procedures
for estimating some important classes of in-
flight noise environments and resulting surface
vibration levels experienced by skin segments
of a typical launch vehicle. The in-flight noise
environments are estimated empirically, based
largely on available laboratory and field data
and well-accepied similarity arguments. The
procedures for response estimation draw heavily
on the available pool of completed analyses,
which have heen modified to apply to vehicle skin
segments that are orthotropic because of string-
ers and stiffening rings or filled with liquids.

The study results in abasic system of simple
procedures and solutions that are comprehensive
enough to establish some preliminary design
specifications and intelligible enough that an in-
tuitive understanding of t e results can be gained.

The study was undertaken with the follow-
ing objectives in mind:

1. The final estimates should be in more or
less closed form, so that the effect of various input
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parameters can be easily appraised, and so that
detailed calculations (such as numerical inte-
gration or numerical solution of a differential
equation) are not necessary for final predictions.

2. The input parameters themselves should
be as few as possible and should relate easily
to trajectory and geometric parameters.

The above objectives dictated certain com-
promiscs — for example, ignoring of variations
in convectiur: velocity and eddy decay in the
mathematical meJel for pressure fluctuations
under a turbulent boundary layer, use of thin-
shell theory, and ignoring of flutter-type inter-
action between the vibrating structure and the
exciting pressure field.

IN-FLIGHT ACOUSTIC AND
AERODYNAMIC ENVIRONMENTS

Classification cf N ise Sources

Figure 1 preseants a summary of environ-
mental noise sources in terms ¢f vehicle con-
figuration and Mach number. The letters in the
figure refer to different types of noise sources.

The noise sources can be broadly classified
into two categories: the acoustic noise associ-
ated with rocket jet exhaust stream which domi-
nates during or shortly after vehicle lift-off,
and the aerodynamic noise which dominates
during the rest of the trajectory. Table 1 shows
the classification and coding of these noise
sources. Table 1 and Fig. 1 broadly define the
range of trajectory and geometric parameters
over which a particular type of environment is
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TABLE 1

Classification and Coding of In-Flight Acoustic
and Aerodynamic Environments

T

| Flight

Environment Mach Code

No.

Acoustic noise during lift-off -
Unperturbed and attached turbulent
boundary layer
Separation aft of flares at subsonic
speeds
Shock oscillation aft of flares at
transonic speeds
Separation aft of transonic shock
oscillation (D)
Shock oscillation forward of flares
at supersonic speeds 1
Separation aft of supersonic shock
oscillation (E)
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manifested, and the associated overall root
mean square level p___ of fluctuating pressure
in terms of free-stream dynamic head q. Here
tne detailed procedures for estimating the en-
vironmental parameters are omitted; they may
be found in Ref. 1. Extensive use of available
laboratory and flight data was made for this

purpose.

Grouping of Noise Sources for
Response Estimation

For vibration analysis, it is convenient to
group the environments in accordance with the
nature of the spatial and temporal correlations
of the associated fluctuating orssure fields.
The environments are, therefore, grouped and
modeled mathematically.

Environment A. Acoustic Noise During
Lift-Off - The sound pressure field surrounding
a segment of the vehicle is modeled approxi-
mately by a diffuse sound field; that is, at any
frequency, uncorrelated plane sound waves are
assumed to impinge with equal intensity from
all possible directions exterior to the structure
surface. The pressure field acting on the struc-
ture surface is statistically homogeneous and
stationary in space and time, and its spatial
correlation is isotropic.

The sound pressure levels of the noise field
exciting the structure are estimated by dimen-
sional scaling of field data; the scaling parame-
ters are the total lift-off thrust, jet exhaust ve-
locity, effective nozzle diameter, and overall
dimensions of the vehicle.

Environments B, C, E, G and H. Turbulent
Boundary Layer and Similar Noise Sources — We
can assume the fluctuating pressure fields asso-
ciated with these environments to be statistically
homogeneous and stationary in space and time.
However, unlike a diffuse sound field, these pres-
sure fields show dominant propagation only in
the direction of the mainstream flow. An ade-
quate representation of these environments is
given by a simple mathematical model of a con-
vecting and decaying fluctuating pressure field
completely defined by the following: a constant
convection velocity U, ; normalized wave number
spectra ®,(k,) and ®,(k,), in the directions pa-
rallel and transverse to the main flow; and the
normalized "temporal" or "'moving-axis’ spec-
trum ¢ (). The combined wave number and
frequency spectrum @ (k,.) is given by

2
Dok ) - ps Pk Dyky) D (w- kU, (1)

wl‘r‘:re2 k is the wave number vector (k,.k;),
and p is the overall mean square value of

rms
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the pressure fluctuations. The familiar fre-
quency spectrum measured by means of a fixed
microphone is then p;_ . ®.(.), given by

@

Pras 102 = | [ ooa. @

- -7

The flow parameters that must be estimated

for calculation of structural response are the
boundary-layer displacement thickness 5°, the
convection velocity u_. » __, and the spectra

¢, .) and #,(k,). The dispiacement thickness

:* can be related to the distance frcm the lead-
ing edge, U_ can be related to the iree stream
velocity, and p,__ can be related to the free
stream dynamic head. The shapes of ¢(.) and
®,(k,) can be obtained in terms of :* and U_.

A dominant component of the structural response
of airborne vehicles, as a ~=~sult of the excitation
by the environments under discussion, occurs at
"coincidence' which is the match between the
spatial patterns of vibration on the structure
surface and those of {luctuations in the exciting
pressure field. In such a case, details of eddy
decay become unimportant and one can bypass
the necessity for specifying the spectra ¢ (k)
and ¢ () separately [1].

Environments D and F. Shock Oscillation —
The oscillation of shock fronts is a result
of shock/boundary layer interaction. It is a
relatively low-frequency phenomenon. At
transonic speeds the shock oscillation occurs
downstream of the flares; at supersonic speeds
it occurs upstream of the flares. The empirical
evidence for shock oscillation is obtained by
noting that the static pressure measured near
the mean shock-front location consists of a
random rectangular wave with a dominant fre-
quency (2,3].

For the purpose of estimation of structural
response from environments D and F, we idealize
the environment in the following way. The pres-
sure in front of and behind the shock front has
constant values. There is a discrete jump A, In
the pressure across the shock front. The shock
front oscillates in the direction x, of the main
flow and always remains straight in the trans-
verse direction x,. The displacement y(t) of
the shock front from its mean position is repre-
sented by a narrow-band random Gaussian proc-
ess with zero mean, centerband frequency W g
and rms value 0. The statistical properties o
y(t) are identical to those of the displacement
of an oscillator of resonance frequency «_,_,
when exciied by white Gaussian noise. Note that
the random pressure field, assumed to be asso-
ciated with an cscillating shock front, is statis-
tically homogeneous in time but not in space.




For estimation of response, the parameters
Aoy pac and o of the exciting environment are
determined empirically by relating them to the
flow and geometric parameters such as Mach
number, dynamic head, ambient static pressure,
and flare geometry.

STRUCTURAL COMPONENTS

We have studied various dynamic properties
of two eimple structural elements, a flat plate
and a cylinder. To handle most situations of
interest, these structures have been studied in
both their finite and infinite form, and in their
isotropic as well as orthotropic form. We have
considered also the case where a liquid (inside
the cylinder or on one side of the plate) forms
an integral part of the structure. Here we pre-
sent some of the major results.

Infinitely Extended Structures

When the exciting pressure field is statisti-
cally homogeneous over the surface of the re-
spondiing structure and when the structure bound-
aries or the discontinuities on the structure
surface do not play a significant role, it is
worthwhile to exploit these simplifications by
considering an infinitely extended model of the
structure.

Infinitely Extended Isotropic Cylinder or
Plate — Consider vibration (in the radial direc-
tion) of an infinitely long, isotropic, thin cylin-
drical shell of radius a, thickness h, and sur-
face mass density , . Let x, x, be the axial
and circumferential coordinates. The resonance
frequency « for a vibration pattern with wave
number k = (k,,k;) on the cylinder surface is
found to be given by the resonance condition,

~

v o= r‘ + cos‘

e, (3)

where v and (r./) are the dimensionless fre-
quency and wave number defined as

v = wa‘cy, (4)
r=k(-a)t?, (5)
k= Ikl = (k@ekd’ 2, (6)
and
tan ¢ = kyky; = ry'rg . (7
Here, ~ - h 12 is the radius of gyration and

cg is the velocity of longitudinal waves in the
cylinder material. In deriving Eq. (3), the in-
fluence of bending and membrane stresses is

accounted for in the simplest possikle way; the
influence of shear deformation and of axjal and

~ tangential inertias is neglected. In spite of
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these approximations, the final result has been
found to be quite accurate, especially for thin
cylinders with thickness-to-diameter ratio of
10-2 or less [4].

If we think of the resonance condition of
Eq. (3) in terms of energy functions, the kinetic
energy of the vibrating structure is propor-
tional to .2, the contribution to the potential
energy from the bending stresses is propur-
tional to r*, and the contribution to the potential
energy from the membrane stresses is propor-
tional to ces*:. The resonance condition for an
infinite flat plate can be obtained by simply
omitting the term cos*¢ in Eq. (3), since the
effect of curvature and resulting membrane
stresses is absent in a fiat plate.

The loci of constant resonance frequency v
in the wave number plane (r,s) are shown in
Fig. 2. In the membrane regior of the (r.¢)
plane, cos ¢ is larger than r; hence membrane
stresses dominate and the resonance condition
becomes approximately

v = ol (8)

The resonance loci in the membrane region are
thus radial straight lines. In the bending region
of the (r.~) plane, r is larger than cos
therefore, bending stresses dominate, the cylin-
der responds like a flat plate, and the resonance
condition becomes approximately

v=rl, (9)

The resonance loci in the bending region are,
therefore, circles. The boundary between the
membrane and bending regions is given by
r = cos (. (10)

Infinitely Extended Orthotropic Cylinder or
Plate — For analyzing an orthotropic structure,
the inertial, extensional, and bending properties
of the structure are averaged over the sources
of its orthotropy, such as axial stringers and
circumferential stiffeners in the structure. The
average properties thus defined are valid for
vibration with wavelengths larger than the spa-
tial exient over which the structural properties
are averaged.

The averaged surface mass density enters
into the kinetic energy of vibration. The aver-
aged extensionral and bending rigidities of the
structure (these can be different in the axial and
circumferential directions) enter, respectively,
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into the components of potential energy con-
trolled by the membrane and bending <tresses.
The description of the resonance loci in the
wave number plane is qualitatively the same as
that for the corresponding isotropic structure

[1).

Infinitely Extended, Liquid- Loaded Cylinder

or Plate — We consider only the liquids whose
sound velocity exceeds the phase velocity of vi-
bration on the structure surface. For such
cases, no net energy is radiated from the vi-
brating structure into the liquid, and the im-
pedance offered by the liquid pressure to the
structural vibration is inertial. The mass
loading m; per unit surface area owing to the
liquid is approximately given by

mg = no/k. (11)

where ¢, is the liquid density and k is the mag-
nitude of the wave number of vibration on the
structure surface.

This additional mass loading effect can
easily be incorporated into the dynamic prop-
erties described above for the "empty" struc-
tures. This liguid mass loading, in general,

tends to reduce the resonance frequencies and
suppress the merbrane effects induced by the
curvature. For example, if the isotropic cylin-
der shown in Fig. 2 were filled with a heavy
iiquid, the resonance loci in the membrane
region of the (r,5) plane would no longer be
radial straight lines; the loci would tend, rather,
to be extensions of the circular resonance loci
in the bending region, thus reflecting the sup-
pression o. the curvature-induced membrane
effects.

Structures of Finite Extent

When the excitation field is not statistically
homogeneous cver the surface of the responding
structure, or when the discontinuities such as
the structure boundaries are expected to play a
significant role, it becomes necessary to con-
sider the modal representation of the finite
structure. Often, the analyses performed on
highly idealized structures with simple bound-
ary conditions yield concepts (and answers)
powerful enough to find application in more
general situations.

Modal Representation for Finite Cylinder
or Plate — Consider a rectangular plate of
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dimensions {,, ¢,, simply supported along its
edges. The flexural vibration of the plate can
be rezolved into a double infinity of its orthog-
onal modes. The spatial pattern y_, (x) of the
mode (m.n) of this series is given by

Ymn(%) = sin (mx,/41) sin (nxy/43) (12)

where x,, x; are the coordinates parallzl to 7,
and {,, and m.,n are positive integers. The
modal wav> number k associated with the mode
(m.n) I8 g >nby

k - (klnk:;) = (mﬂ/{l. n‘ﬂ/'(:s). (13)

This is the dominant wave number correspond-
ing to the spatial pattern of Eq. (12). In other
words, the spatial Fourier transtorm of Eq. (12)
would peak at the wave number k given by Eq.
(13). The larger the dimensions £, and £, of
the plate, the sharper this peak in the Fourier
transform will be, until in the limit the peak
approaches a Dirac delta function for an infinite
plate.

For a cylinder, odd numbers of half-
wavelengths of vibration along the circumfer-
ence are not possible. However, for every even
number 2n of half-wavelengths along the cir-
cumference, two independent modal shapes must
be specified. Thus, for a cylinder of length <,
and circumference 7,, simply supported along
its edges, the modal shapes . (x) are

sin (mvx,/4 ) sin (2nmay/4y).

and (14)

V(X = sin (mmx, il) cos (2n77x3,”73)

The structures we have considered are
simply supported along their boundaries. The
resonance frequencies of their modes are,
therefore, related to the associated modal wave
numbers by the resonance conditions (such as
Eqgs. (3), (8), (9)) for the corresponding infinite
structures.

Modal Densities for Finite Structures —
Modal density n(«) is defined as the numbe'' of
modes whose natural frequencies lie in a unit
radian frequency bandwidth around frequency «.
The simplest way of calculating modal densities
is to represent the structural modes as a lattice
of points in the wave number plane k, where the
location of each mode is determined by its as-
sociated modal wave number. By considering
the geometry of the resonance loci in the k plane,
we can easily calculate the modal densities [1,5].

Calculations show that for an isotropic cyl-
inder, below the ring frequency »_ - c¢/a, the
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modal density increases with frequency. It at-
tains its peak value at the ring frequency and
maintains a constant value, roughly two-thirds
of the peak value, abuve the ring frequency.
This constant value of modal density above the
ring frequency applies also to a flat plate of the
same area as the surface area of the cylinder.
As noted before in connection with Eqs. (3), (8),
(9) and Fig. 2, above the ring frequency «, (i.e.,
v > 1), a cylinder is dynamically equivalent to
a flat plate.

Detailed calculations of the modal density
for orthotropic and liquid-loaded structures
are reported in Ref. 1.

STRUCTURAL VIBRATION INDUCED
BY ACOUSTIC AND AERODYNAMIC
ENVIRONMENTS

Response of Cylinder or Flat Plate to
Turbulent Boundary Layer Pressure
Field (Environments B, C, E, G, or H)

Consider a turbulent boundary layer (TBL)
pressure field over an isotropic cylinder, the
pressure field being convected along the gen-
erators of the cylinder. Figure 3 shows the
geometry of the situation in the wave number
piane k for three different frequency ranges.
At each frequency «, most of the excitation
from the TBL pressure field is shown to be
concentrated in a narrow strip centered around
k, = «/U_, where &k, is the wave number in the
flow direction and U_ is the convection velocity.
The width of this strip in the k, direction de-
pends on the eddy decay time or the temporal
spectrum ¢ (=) (see Eq. (1)). As shown in Fig.
3, this "'excitation strip' divides the wave num-
ber plane into regions of hydrodynamically
slow (HS), hydrodynamically coincident (HC),
and hydrodynamically fast (HF) modes. These
modes are defined by the tra~e in the axizl di-
rection of the phase velocity of vibration at
frequency «. The trace velocity for a HS mode
is less than U_. The HF and HC modes are
defined similarly.

The three frequency ranges represented in
Fig. 3 are defined by the two critical frequen-
cies, the ring frequency .. , and the hydrody-
namic critical frequency «, , defined as

wy = UM key (15)

Almost invariably, the hydrodynamic critical
frequency is higher than the ring frequency for
structures of current interest. For w < «,, the
strip of excitation in the wave number plane
intersects the resonance locus (Figs. 3b and 3c);
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for . > ., it does not (Fig. 3a). For . <. <uw_,
only the bending stresses are dominant and the
cylinder behaves like a flat plate (Fig. 3b); for
w < u_, both the bending stresses and the mem-
brane stresses become important (Fig. 3c).

In the wave number plane, the domain of
excitation at any frequency is quite narrow and
sharply defined; therefore, the HC modes find
the best spatial match or coincidence with the
excitation field. The excitation of the HS and
HF modes arises from relatively secondary ef-
fects. The first of these effects is the result of
the extension, or "tail,"” of the excitation field
beyond the narrow strip defining the coincident
region in the wave number plane. These tails
of the excitation field (see the variation of
¢ (k, o) in Fig. 3a) are governed by the tem-
poral fluctuations, that is, the spectrum ¢ ( .),
of the pressure field in the TBL. The second
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effect is due to the finite extent of any real
structure. I the structure has many edges and
discon:inuities (i.e., a smali mean free path),
the edge effects will contribute to some coupling
with the excitation field.

For the situation considered in Fig. 3a, the
frequency - is higher than the hydrodynamic
critical frequency. Any resonant response of
the structure at this frequency must arise from
the secondary effects described above. In this
frequency range, most of the resonant response
is controlled by the temporal spectrum ¢ (),
the contribution from the edge effects being
relatively negligible {6]. Below the hydrody-
namic critical frequency «, , the dominant struc-
tural response is not only resonant but also
coincident, and is caused by the interaction be-
tween the exciting pressure field and the struc-
tural modes that lie in the wave number plane
near the intersection of the resonance locus and
the excitation strip (Figs. 3b and 3c).

For the noncoincident and resonant re-
sponse above ., where response is controlled
by ¢ (.), as well as for the coincident and
resonant response below ., , the interaction be-
tween the pressure environment and the appro-
priate structural modes is characterized by the
matching of the wave numbers in the pressure
field and the modal wave numbers. This inter-
action takes place over the entire surface of
the structure and 1s more or less independent
of the edges. Therefore, we can simplify the
calculations for power transfer and vibration
response by considering a corresponding struc-
ture that is infinitely extended or 'edgeless."”

The following general procedure is used to
calculate the vibration response of structures
excited by a TBL or by similar convecting-and-
decaying pressure fields. Consider the corre-
sponding edgeless structure. In different fre-
quency vands, find the mechanical power that
the fluctuating pressure field transfers to the
structure via the matching wave numbers of
vibration at resonance. Equate this power input
to the power dissipated as a result of the struc-
tural vibration. (The power can be dissipated
inside the vibrating structure as well as into
the surroundings.) Solve for the velocity spec-
trum of structural response. The resulting
estimate pertains to resonant vibration aver-
aged over the suriace of the structure. This
technique has been successfuily apnlied to
isotropic, orthotropic, and liquid-loaded cyiin-
ders and plates [1].

We omit the mathematical details and pre-
sent oniy the results of a typical calculation.
Figure 4 shows the spectrum for resonant ac-
celeration of an isotropic cylinder excited by
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a TBL pressure field. The cylinder is 25 f{t in
diameter, 200 mils thick, ard has a dissipation
loss factor of 0.01. The boundary layer pres-
sure fluctuations have a mean convection veloc-
ity of 1250 fps with a free-stream velocity of
1800 fps. The boundary layer displacement
thickness is 0.25 ft. The response spectrum is
calculated up to the hydrodynamic critical fre-
quency f,. For the empty cylinder, the re-
spornse is seen to peak at f, and at the ring
frequency f,. When the same cylinder is filled
with a liquid of specific gravity ¢, the liquid
mass loading brings down the response levels
and suppresses the membrane effects as well
as the peak at the ring frequency.

Response of Cylinder or Flat Plate to
Diffuse Sound Field (Environment A)

Consider a diffuse sound field impinging on
the exterior of an isotropic cylinder. Figure 5
shows the geometry of the situation in the wave
number plane k fcr three different frequency
ranges. At each frequency «, the excitation
from the diffuse sound field is shown to be re-
stricted to wave number magnitudes ranging
from 0 to k, = «/c, where c is the sound speed.
This region is shown as a shaded quarter-circle
in the wave number plane. The structural modes
situated in the wave number plane inside this
shaded circular region are acoustically fast (AF)
modes, those situated outside are acoustically
slow (AS) modes. Thc magnitude of the phase
velocity of vibration at frequency « of an AF
(AS) mode is higher (lower) than the ssund ve-
locity «.
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The three frequency ranges represented in
Fig. 5 are defined by the two critical frequen-
cies, the ring frequency ~_, and the acoustic
critical frequency -_, defined as

w. = c¥key . (16)

For most structures of interest, . > . .
At a frequency » > »_ (Fig. 5a), all the resonant
modes of the structure find a good spatial match
or coincidence with some wave number compo-
nents of the impinging sound field. The 1esonant
vibration here is controiled by the bending
stresses or the flat-plate behavior of the struc-
ture. At a frequency - < «_(Fig. 5c¢), only some
of the resonant modes that are controlled essen-
tially by membrane stresses are coincident.
Thus, for the situations depicted in Figs. 5a and
5c (namely, « > «_, and © < «»_), the dominant
structural response arises from the surface
interactions between the environment and the
resonant and coincident modes. The vibration
analysis in these frequency regimes can, there-
fore, be performed equally well on an infinitely
extended or edgeless strecture. In the inter-
mediate frequency range, «_ < « < ._(Fig. 5b),
a fairly important frequency range, no coinci-
dence or surface interaction is possible be-
tween the resonant modes and the sound field.
Any interaction causing resonant response in
this frequency range must arise from the effects
due to the boundaries and discontinuities on the
structure surface. The analysis on the corre-
sponding infinite or 2dzelecs structure would
give zero resonant response in this frequency
range.
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Response calculations for excitation from
a diffuse sound field are based on a modal ap-
proach, so the size, boundaries, and discon-
tinuities of the structure can be taken into con-
sideration. The interaction between the sound
field and different classes of modes over the
surface, perimeter, edges, and corners of the
siructure can be expressed in terms of coupling
parameters, which, in turn, can be related to
the radiation efficiencies of modes. These cal-
culations have been successfully completed for
isotropic, orthotropic, and liquid-loaded cylin-
ders and plates [1,7,8]. The vibrational energy
of a structure is dissipated partly by radiation
into the surrounding acoustic medium; there-
fore, the radiation efficiency, in addition to de-
termining the extent of coupling between t..
structural modes and the sound field, modifies
the total dissipation loss factors of modes. Our
approach is to calculate the response of a single
mode to a diffuse sound field, and then extend
the concepts to include groups of structural
modes resonating in different frequency bands.

Again, we omit the mathematical details
and present only the results of a typical calcu-
lation. Figure 6 shows the spectrum for reso-
nant acceleration of an isoiropic cylinder ex-
cited by a diffuse sound field. The cylinder is
30 ft long, 25 ft in diameter, 200 mils thick, and
has a structural dissipation loss factor of 0.01.
In the response calculations, this loss factor of
0.01 is increased slightly by the addition of the
effective radiation loss factor. The accelera-
tion spectrum for a cylinder with discontinuities,
shown in Fig. 6, is calculated for the case where
line sources of discontinuities are spaced 5 ft
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apart, along the axial and circumferential direc-
tions of the cylinder. As we noted before, the
response at frequencies above the acaustic criti-
cal frequency f_ and below the ring frequency

f, is dominated by the surface interactions and
is, therefore, hardly influenced by the presence
or absence of structural discontinuities, edges,
or boundaries. However, between the ring fre-
quency and the acoustic critical frequency, the
edge coupling is important and the response
level depends on the .nean free path of vibration
or on the ratio of structural surface area to
total length of the edges. The discontinuities
reduce the mean free path and increase the
resonant response.

Response of Cylinder or Flat Plate to
Oscillating Shock Front (Environment
Dor F)

As explained before, the pressure field as-
sociated with an osciliating shock front is not
spatially homogeneous. When a shock front

over a structure surface undergoes a random
oscillatory motion, the portion of the structure
near the mean shock position experiences a

fluctuating pressure field. Consequentiy, energy

flows from the environment into the structure

in this localized region, and the resulting vibra-

tion is transmitted to the other parts of the
structure. Since the structural vioration is
derived from a localized source of excitation,

t ‘bration level averaged over the structure
su. e clearly depends on the extent of the
structure. Also, shock oscillation frequency is
generally found to be quite low (20 to 100 cps).
As a result, only a few lowest order modes oi
the structure determine the vibration response.
These facts dictate consideration of a finite
structure with well-defined boundary conditions
and estimation of individual modal response for
the first 5 or 10 modes. Thus, in this case,
statistical concepts (like modal density) cease
to apply to the very few modes involved. The
statistical concepts can, however, be applied to

the random oscillatory motion of the shock front.

Details of the response estimation for oscillat-
ing shock are given in Ref. 1.
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DYNAMIC VIBRATIONS OF THICK-WALLED
ELASIIC ANISOTROPIC CYLINDERS AND
SPHERES WITH INTERNAL DAMPING™

Gabriel Cinelli
Argonne National Laboratory
Argonne, lllinois

techniques.

A new finite Hankel transform is used to find the transient displacement
and stresses in thick elastic cylinders and spheres composed of mate-
r.al with transverse curvilinear isotropy and internal viscous damping
for the following problems: (a) plane strain motion of an infinitely long
circular cylindrical shell, (b) torsional motion of a finite circular cy-
lindrical shell, and (c) radially symmetric motion of a spherical sheil.
The dynamic loads on the surfaces are taken as arbitrary functions of
space (torsional case onlyj} and time.

It is showrn that the problems of the solid body, the thin shell, and cavity
in an infii:' . medium can be obtained from the thick shell solution as
limiting cases. Specializing the surface tractions to standard forms
such as an impulse or a sinusoid, the free, harmonic, and static mo-
tions are recovered. Physical quantities such as resonance and me-
chanical imperiance are derived and studied. Using the displacement
equations, it is shown that the radially symmetric motion is analogous
to the plane-strain rnotion of the cylinder. The results for isotropic
bodies are found by specifying certain values for the elastic constants.

An extended Weber transform is also introduced, permitting solution of
infinite media probiems in a manner which is more direct than existing

G. Cinelli

INTRODUCTION

In recent years considerable eifort has
been expended on study of dynamic wave propa-
gation and vibration in elastic isotropic bodies
of finite and infinite dimensions. In contrast to

this has been the small amount of work dore
regarding elastic anisotropic bodies, although
many materials of practical interest are of this
nature. What work has been accomplished is
mostly harmonic wave propagation and vibra-
tions. Very few transient problems have been
solved, especially for finite regions. A good
review and evaluation of the field is given by
Harmon [1] and Scott and Miklowitz [2].

For some classes of anisotropy and axes
orientation, the equations of motion of an elas-
tic solid admit plane strain and torsional solu-
tions, These are the class of problems studied
in this paper. The purpose of this study was to
determine the transient displacement and
stresses in elastic bodies of material with
transverse curvilinear isotropy -nd viscous
internal damping for the following problems:
{a) plane strain motion of a thick infinitely long

*Work performed under the auspices of the U.S, Atomic Energy Commission,




circular cylindrical shell, (b) torsional motion
of a finite thick circular cylindrical shell, and
{c) radially symmetric motior of a thick spher-
ical shell. The surface loads in these problems
are taken as arbitrary furctions of space (tor-
sional case only) and time. The only previous
work on such problems has beer. that by Eason
on harmonic loads [3].

The paper is divided inlo five parts. The
first section Lists the pertinent finite and infi-
nite transforms use . :.1 solving the various
problems. The secend portion treats in consid-
erable deta;' the plane strain motion of the cy-
lindrical shell. The general solution is obtained
by means of a finite Hankel transform [4]). By
specifying certain values for the elastic con-
stants, the soluti:xn for the isotropic body is
given. Next the cases of the solid body and the
thin shell are shown tc be limiting cases of the
thick shell solution. An extended Weber trans-
fcrm is then iatroduced which solves the prob-
lem of a cylindrical cavity in an in:inite medium.
The surface tractions are specialized to stand-
ard forms, such as step function and sinusoid,
which enable the free, harmonic, and static mo-
tions to be recovered as special cases, Physi-
cal quantities such as resonance and mechanical
impedance are then derived. In the next section,
it is shown that the radially symmetric motion
of a sphere is analogous to the plane strain
problem which enables the sclutions for the
sphere to be obtained directly from those in the
plane strain problem. The general solution for
the torsional mction of the finite cylindrical
shell is given in the fourth part. Finally, the
results and conclusions of the study are pre-
sented.

TABULATION OF TRANSFORMS

The various transforms and their proper-
ties are listed in this section to make the paper
self-contained. In these formulas, a bar over a
lower case letter indicates the transform vari-
able, whereas a prime on a letter indicates
differentiation.

Extended Finite Hankel Transform [4]

b
Hif(e)l T T Jl

rf(r) C (r, ") dr,

a_r b, >-12.(1)

C(r.i) JL(’fir)l':in"(t'in) + hYb(‘in)l

3

- Y (055 hgL L (2)
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Extended Weber Transform
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Finite Hankel Transform [5]
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Finite Cosine Transiorm
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In these formulas thé foliowing notation hoids:

Bessel functions of the first and
second kind, respectively, and of
order : ;

jv'Yx =

H.C = linear integral operators;

a,b = inner and outer radii of shell,

respectively;

h,k = constant coefficients whose value
can be positive, negative, or zero;
and

f = arbitrary function.

PLANE STRAIN MOTION OF AN
INFINITELY LONG CIRCULAR
CYLINDRICAL SHELL

The basir equations of motion for the ra-
dial vibrations of an infinitely long cylindrical
shell wit., transverse curvilinear isotropy and
internal viscous damping are:
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where

s,. ', = radial and circumferential
stress compcnents, respectively;

u = radial displacement of cylinder;
«* = density of elastic medium;
€,1-C12:C 4, = elastic constants; and

D = viscous damping coefficient.

Putting Egs. (19) and (20) into Eq. (21) gives

12 - 2 Y
&, Aoy o _v_'»‘_lu_D_?;‘(Zl)
,',rl r cr rZ C dtz Cqp ©t

where

C
14 = —ZZ . (22)
1

Equations (2), (3), and (21) can be transformed
into the following nondimensionalized coordinate
system as

2 2

3y 13w a2y, ou ’
Jw o 12u_ vt o d%u du Lo
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(23)
T
* -é'
p -2, (24)
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The approepriate initial conditions are
uw(e,0)y = (),
(28)
du . - i s
-&_; o = (s -0) g(#)
the boundary conditions are
Py ) B{r) .
(29)
no(l,v) A(TY .

The appropriate transform for the solution
of this problem is, from Eq. (1),

14

u ﬁ(c'in):j cu(o,7) C (5,3 dp. (30)
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Applying Eq. (30) to Eq. (23) and using Egs. (6),
(26), (29), and (31) gives

C {:IJ_‘,( ?if)) t kJ,,(flp)

di

du
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v 224G
1
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By fcllowing standard techniques, Eq. (32) can
be rewritten as
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The solution to Eq. (33) via the Laplace trans- .
form and Eq. (28) is
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The solution for the displacement is, from
Eq. (3),
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When the relationships given by Sneddon (5] are
used,
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The stresses found from Eqs. (26), (27), and
(38) are
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Equations (35), (38), (41), and (42) represent
the gencral solutions to the basic equations.

The case of the isotropic solid is obtained
by defining the elastic constants as:

Cyg Caa o < 2;1 - (43)

The general solutions then reduce to those in
Ref. 6.

The thin shell solution is contained in
Eqgs. (35) ard (38). Using Eq. (38) and taking
the difference between the displacements at the
surfaces gives

-2 al .
R S W R R N N RIS RN

G,

) .
. -= ICp i -C(1 5
F-(::i) X/(p l) V( 1

(49)

As p approaches one, the difference in the
bracket in Eq. (44) zoes to zero. Hence, the
usual assumptions of shell theory apply here,
thereby showing that the general solutions hold
over the range of shell thicknesses from very
thin to very thick.

The solid cylinder is obtained by letting
the inner radius approach zero. The initial
conditions are those of Eq. (28), but the bound-
ary conditions become

‘CL cApLTy = \—’l—' + CC—” U)* . (45)

For this case the nondimensicnalized form of
Eq. (21) is

.2 ‘ ;2 a2 y
__u.fo!__u.-—'__u ~u+c__l1v 0/__)~<_1‘.‘.0;
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(46)
r
b
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The transform for this case is from Eq. (11)

1
G oa(s, ) j pulr ;) C 0.6 dp . (48)

o

Applying Eq. (48) to Eq. (46) and using Egs. (14),

(31), and (45) gives

9_2_GQ 270 -d—u-{ ,2‘—: Jy(fl)
dr? O d7 B <

o,(1,7), (49)

where 7. are as defined by Eq. (34). The
solution to Eq. (49) is

LY ¢

u(I.7) ;”l,; j e'n"“'v)c’p(l.v) sinu{7 - v)dv
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rf(5)e " cos T+ ' e " sinwT,
(50)
i S (0
s J b I, {51)
(5;) - g(c)

where - is as defined in Eq. (37). The solution
for the displacement is obtained from Eq. (12)
as

sracs, Ty J(¢:0)

- 1 . (52)
K2e (g3 -vD (16?2

u(.,7) = 2 ):

The corresponding stress is found from Eq. (45).

The case of the cavity in an infinite me-
dium is solved by using the extended Weber
transform. The basic equations, Egs. (23)
through (28), remain the same. The boundary
conditions now become

o (1,7) = A7),
(53)
lini oo,y 0.

p®

The transform for this case is

@

@ = aga, ) J su(i,7) C(poaydo.  (54)

Applying Eq. (54) to Eq. (23) and using Eqs. (10),
(26), (31), and (53) gives
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The solution to Eq. (55) is

2a

u(a,7) = T
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From Eq. (9) the displacement is

el

U(p.T):_‘-

ai(a.7) C (p.a) da
[aj;(a) + th(a)] 2, [aY"’(a) + hYp(")] 2"
(59)

The corresponding stresses are found from
Eqs. (26) and (27). This problem has also been
solved [7] using the Laplace transform. The
advantage of the solution given kere is that the
complex irtegration used by Eason is avoided.
However, it remains true that for most cases
the integral in Eq. (59) must be evaluated
numerically.

Returning to the thick shell, the surface
tractions are now specialized so that particular
cases of interest can be studied. Setting the
surface tractions in Eq. (28) equal to zevo,
that is,

o (p.T) = o (1,7) =0, (6M

gives the solution for free vibrations. Har-

monic vibrations are studied by specifying the

surface loads as follows:

op(l,v) B Aei(ﬂ
(61)

op(p.7) - f(p) = &(p) = 0.

Putting Eq. (61) into Eq. (33) and solving for a

gives
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Resonance is obtained by letting .-.. in Eq.
(62), which gives

) 2aA i(w,7-7/2) 64

U|R£s = nclld)n n ( )
1

Qn - fi (65)

where Q, is the "magnification factor’ for each
mode. Static motion is then found by letting ..
approach zero in Eg. (62) which gives

Ggr = —2A (66)
e 11%n
By using Eq. (66), Eq. (62) is rewritten as
_ i(wr - dyn)
a e
ist [( AN v (60
- ——‘——2> + (2( u;

Equations (61) through (67) show that under
harmonic excitation each normal mode of the
shell responds very much like a single degree
of freedom with viscous damping. Another form
of the harmonic solution which has practical
use is the transfer function or the ratio of the
displacement to the surface load < (1,75. By
using Eqgs. (38), (62), and (67), it is easily shown
that the transfer function is

u( o, «w) 2 . :

SiTa 7R L S EIER ke
fi

i C,,‘/’sfi) e io, ~

Ugr - (68)

2|/2
w w
o) )

Equation (68) clearly shows the interrelation-
ship of the static displacement, driving force,
and shell response. Mechanical impedance is
another concept which has widespread practical
use. For a continuous elastic system of finite
dimensions, this is defined as
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Ziej.ej.eq, ) = - . (69)

where
Z = mechanical impedance,
e,.e,.e; = orthogonal cocrdinates,
P = spatial distribution of applied

force, and

velocity of elastic system.

-
"

Tc apply this concept to elastic systems of
finite dimensions, two restrictions must be
made: (a) all initial conditions must be zero,
and (b) for loads on more than one surface, the
mechanical impedance must be determined
separately for each surface. For the loads
specified in Eq. (61), the mechanical impedance
found from Egs. (61), (62), and (68) is

2
L. 1Y I JUER ¢ KI(Ep)]
Y p,w) 2 <
cv(p'gi) ._‘;e-i(¢ -n/2) ST
5 = 2112
( _13) + (2§ wﬂ)
@n n

(70)

The reciprocal of the impedance has been used
in Eq. (70) because of the length and complexity
of the expression and the fact that such an ex-
pression can be implemented in an analyzer.
The use of the complete expression in Eq. (70)
is, of course, cumbersome. Fortunately, for
most structural materials the damping is so
low ({ < 0.01) that contributions to the total
motion from modes other than the first consti-
tute only a few percent. Hence, a good approx-
imation to Eq. (70) is

2p,w) =

, 2 172 , B
2asrl-‘y<é.)[( -:——2) + (24 “Tw'):l !B/
n2wé 2 THEP) + KI(EMIZC 06D
(n)
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The "point" impedance is found in Egs. (70) and
(71) by choosing » = 1. The "transfer' imped-
ance is found by taking , { 1. All of the results
in Egs. (61) through (71) were obtained for a
load on the inner surface. The same procedure

can be repeated for a load on the outer surface
with similar results,

The specification of the surface loads en-
ables the transient solution to be put into a
form that is more convenient for physical in-
terpretation than Eqs. (35) and (38). To illus-
trate the basic method, the following conditions
are chosen:

op(l.‘r) = =-1(7),
(72)

cApP.T) = f(p) = g(p) = 0.
Taking the Laplace transform of Eq. (33) and
using Eq. (72) gives

S5 s) = 2a 1 . {13)

i* Pel
cn s[(s + ;w“)2 + w2]

The fina! value theorem of Laplace transform
theory is

lim F(x,y.z,t) = lim F(x,y,z,5). (74)

t-x s=+0

When Eq. (74) is applied to Eq. (73), the static
solution to Eq. (23) is

_ _ 2a
U(fi)sr = ugr < 7 - (75)
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Equation (73) can be rewritten as

w?i
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By inverting Eq. (76) and using Eq. (38), the
solution for the displacement is

cv( P, éi)

2
(o, 7) 2T DT ERIETEp) + kT, (€;0)] 7 =% S
1 4 1

£

@
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3

¢ = tan'! Z% . (78)

Equation (77) shows that the dynamic response
can be related directly to the static deforma-
tion. This is similar to the case of harmonic
vibration in Eq. (67). As the damping [ goes to
zero, the standard result is that a dynamic dis-
placement of twice the static deformation is
recovered. The basic procedure shown here
can be repeated for other types of loading with
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similar results and for loads on the outer
surface.

All of the results in this section shown for
specific loads can be easily extended to the
limiting cases of the solid cylinder and cavity
in an infinite medium. The standard case of no
damping for all of the results in this section
can be obtained by letting the damping ratio ¢
go to zero. Although the approximation of the
internal damping as a viscous effect is undoubt-
edly oversimplified in many materials, the in-
corporation of more complex viscoelastic be-
havior can be solved by the same methods.
Hence, extension to linear damping models of
wider applicability can be accomplished by the
interested reader.

RADIAL MOTION OF A
SPHERICAL SHELL

The basic equations for the radially sym-
metric motion of a spherical shell with internal
viscous damping ani transverse curvilinear
isotrcpy are
Ao 2 -og-cy W92 3

r

u
' " —pm*Dg.s‘_rsb.wo.
(79)
gt u 80
Sy T et 24,7 (80)
9 * T Cr2y " (sz*czs)%' (81)

where

u = radial displacement of the
sphere;

o950, = radial and circumferential
stresses, respectively;

€11:C12C5,. €55 = €lastic constants; and
.*.D = material density and viscous
damping coefficient, respec-

tively.

Substitution of Eqs. (80) and (81) into Eq. (79)
gives
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When the same variables defined in Eqgs. {24)
and (25) are used, the dimensionless form of
the basic equations for the sphere are:

o2u 2 A (k?-14) % N
D G = Py i A C-;— 1<, 7p. r>0
(84)
a o 20, 85
€11 160 7 T‘T’Cu‘ v (85)
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(86)

The appropriate initial and boundary conditions
are, respectively,

u(,,0) = m(s),
(87)
% o = n(e)
c LTy = AT
(88)
op(p,r) = B(n).
If
u(o. 7y = oV 2 f(p Ty, (89)
then Egs. (84) through (88) become
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Initial Conditions:
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Boundary Conditions:
Gp(l,r) = A(ry,
7427 = B(T). (94)




A comparison of Eqs. (90) through (94) with
Eqs. (23) through (29) indicates that there is a
direct analogy between the plane strain and
radially symmetric problems if the following
analogous quantities are defined:

Eydind=x Sphere
U T fOZ,0m) w5y
9,000 cale ) R AR PRS0 PRV L PR3
u(+.0), (,.0) f(,.0). f(..6)
c 2c,, - 172
h:._l_z h = ._lz__.—
€ 1
c c +c - 1/2
K- S22 oo S22t Cas
€12 €12

Thus, the solution for f(c,.7) in the general case
and all the various subcases can be written di-
rectly from the solution for u(c.~) in the cylin-
drical case merely by replacing the cylindrical
quantities in the expression by their spherical
counterpart. The radial displacement is then
found from Eq. (89). The spherical stresses
are obtained from the expressions in Egs. (41)
and (42) for the cylindrical stresses in exactly
the same manner as f(p, 7). Eason [7] has
shown that the plane stress solution also has a
plane stress analog. As a result of the present
study, any plane strain, plane stress, or radial
symmetric problem has a corresponding sclu-
tion in the other two analogs.

TORSIONAL MOTION OF A FINITE
CYLINDRICAL SHELL

Transient torsional wave propagation prob-
lems in elastic media have been studied exten-
sively in the recent past with most papers
concentrating on isotropic bodies [6,8-19].
Achenbach [11] and Berry [20] have extended
the studies to viscoelastic materials. Aniso-
tropic materials have been treated in only a
few cases, as in Refs. 2, 18 and 19 which con-
cern an infinite plate and semi-infinite media.
Al of the papers in which the radial direction
is finite assume that the lateral surface is free
from tractions. The problem treated here is
the vibration of a finite hollow cylinder with
internal viscous damping and transverse curvi-
linear isotropy with all of its suriaces subject
to loads.

The basic equations ¢f motion for this prob-
lem are |2]:

-2 %2 - 2 3
" u -l__ﬂ._:lj.-lu)_‘ __U.QD.E
oz? \or? or gl Caa t? ot
fa<r <b
0<z<4iy (95
t >0
du
Te (T 2. t) = c4.at (*_r - %) . (96)
and
du
ggl(r-z-t) = C“ a—z " (97)
where

c
n

torsional displacement of the
cylinder,

elastic constant, and

* = dimensionless constant whose value
depends on the type of material
crystal being used [2].

o
1]

The new variables are defined as

r

p = —,
aJa*
z
X ==,
a
(98)
c
2. 4
ve = o °
oo Cas
P
"
" a
. b
p';l
(99)
4
a=3:
c - ab
Cas

The basic equations in nondimensionalized co-
ordinates are

1<p<
3% (3% 1w 1 A% Su -F =P
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Ax? B_pz 0 Op pz ar? or -~
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Loy = w v (22 2) 0 (o
and
a(e X 7Y 2L = (102)
‘ e
The appropriate initial conditions are
u(..x.00 = F(..x).
(103)
32 = G(..x)
~r .-0
boundary conditions are
ce(lx, Ty = Alx.T)
(104)
c.p.x,7) - B(x.7):
Tag (e 00Ty = DLy
(105)
cax(eiaumy 7 E(L7)

The appropriate transform for the axial
variable (x) is, from Eq. (15),

Q
G = a(eon.Ty = f

o

u(..x,”) cos 2;—-5 dx.

(106)

By applying Eq. (106) to Eq. (100) and using
Eqgs. (17), (102), and (105),

R /25 ‘a
L ey By - Dy ”'l_—”——la)
“ 2 2
425 s 2.2
- ‘;»c_—‘}"z T (107)
- q

The transform for the radial variable (.) is,
from Eq. (1),

4

G 85 = f,u(k.n.r) Cyi+.5;) dp. (108)
1

If by definition

(109)

then using Eq. (108) along with Egs. (6), (101),
and (104) on Eq. (107) gives
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-— _-- D --.
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E- ) / E(..)
If
2.2
o I - (113)
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then by using the same definitions of Eq. (34) in
Eq. (110), the solution for G is
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x i'.‘(“l.n) cos o7 + - sin T
(114)

F(Z. ) F A Fex) -

! = {f, C(c. ;) cos N7X 4o dx .

Gs,omy L4 G(hux)
(115)

The solution for the displacement is obtained
from the inversion series in Egs. (3) and (16) as
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The solution is obtained by placing Eq. (114)
into Eq. (116). It can easily be shown [11] that
the lowest torsional mode (¢, - ¢) is nondis-
persive, thereby making anisotropic finite hol-
low cylinders useful as delay lines in ultrasonic
studies.

The special cases of free, harmonic, and
static motion plus the limiting cases of the solid
cylinder and thin shell can be solved using the
techiniques and methods outlined for the circu-
lar cylindrical shell. Using the extended Weber
transform, the case of the infinite plate with a
circular hole in it can be sulved. The solation
for the semi-infinite medium with a circular
hole is obtained by using the extended Weber
transform and semi-infinite cosine transform.
The infinite medium with a circular hole in it
is solved by the combined use of the extended
Weber transform-and complex Fourier trans-
form. Because of the ease with which these
subproblems can be solved and to conserve
paper length, they are left as an exercise for
the reader.

This section treated the case where all
four surface tractions were specified. Other
cases which have displacements and tractions
specified on the surfaces can be solved by
choosing appropriate transforms that are avail-
able in the literature. Mixed boundary ccndi-
tions which lead to dual integral equations are
treated by Shail [15] and Sneddon et al. [16].

RESULTS AND CONCLUSIONS

The dynamic response of thick elastic ani-
sotropic cylinders and spheres has been found
in certain problems, where the boundary condi-
tions are Cauchy in nature, by new integral
transforms. The solutions were obtained in a
manner which is more direct and concise than
existing techniques. It was shown that there
exists a direct analog between plane strain mo-
tion of a cylinder and radially symmetric mo-
tion of a sphere. These results have application
to such diverse fields as pressure vessels, solid
rocket propellants, geophysics, and ultrasonics.
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EFFECT OF ASYMMETRICAL TRAPEZOIDAL PULSE
ON SINGLE-DEGREE-OF-FREEDOM SYSTEMS®

H. Saunders
General Electric Company
Philadelphia, Pennsylvania

Tke behavior of components when subjected to a shock may be approx-
imated by a single-degree-of-freedom mass-spring system subjected
to a prescribed pulse. A number of specifications require a rectangu-
lar input pulse. Due to the limitations of the physical laboratory equip-
ment, the theoretical rectanguiar pulse is unattainable and an asym-
metrical trapezoidal pulse must be used. Equations are derived for
predicting the maximum acceleration response of a physically obtain-
able asymmetrical trapezoidal pulse. The equations employ the actual
rise, decay and dwell portions of the pulse. Since most physical sys-
tems contain litile or no damping, an undamped one degree of freedom

response in the component.

is employed. The solution is obtained by utilizing the Laplace trans-
form method in terms of the Dirac delta function. Comparisons are
made between the theoretical rectangular pulse and a few trapezoidal
pulses having different rise, decay and dwell times. The rectangular
pulse is the most severe. The rise and decay times have a secondary
effect on the response; the dwell time has the most important effect.
By using the derived equations, the designer can evaluate the degree of
departure between the idealized and actual test condition and can thus
define an equivalent trapezoidal pulse capable of furnishing a similar

INTRODUCTION

Greal :osts and prodigious engineering ef-
forts are involved in attemnting to achieve high
reliability in the launch of space payloads.
High reliability is based 0. a strong foundation
of rigid quality ccntrol and preflight tests, par-
ticularly shock and vibration tests. Space pay-
ioads are subjected to shock loads before and
during flight and at touchdown. In the preflight
phase, shock loads occur during transportation
and handling of the payload. From launch to
reentry, the primary sources of shock are en-
gine ignition, shutdown and staging. From re-
entry to the successful end of the mission, the
main sources 0f shock excitation are parachute
dep'oyment, earth or water impact and, in the
case of the LEM vehicle, touchdown on the
moon. Since space payloads are exotic struc-
tures consisting of fabricated mechanical and
electronic parts, the response analysis of such
a system may be of questionable value in as-
sessing the system reliability. It thus becomes
apparent that, wher ~oscwle, these payloads

*This paper was not presented at the Symposium.

must be subjected to the anticipated shock
loads. Under simulated operating conditions,
all components should be energized and prop-
erly functioning to prove their ability in with-
standing the induced shock. The components
must either perform flawlessly or passively
survive during the shock environment. The
shock loadings may tend to compromise their
ability to complete the intended flight mission.

DISCUSSION

At present, most aerospace manufac’ . rs
subject components to shock load tests to <orify
their capability before going into system test.
Each type of shock testing machine creates a
particular pulse defined by an accelaration-
time curve. The area under the acceleration
curve is the velocity change and is considered
to be a primary parameter in the damage effect.
There are certain applicable principles concern-
ing component damage which are directly re-
lated to the results of a shock.




MAT.{(EMATICAL ANALYSIS

A one-degree-of-freedom vibrating system
subjected to various shock impulses applied to
the base has been analyzed by a number of au-
thors in terms of acceleration response and its
reaulting amplification factor. A majority of
the present specifications stipulate that the
shock pulse inputs must be either peak terminal
sawtooth, half-sinusoidal, simulated blast pulse
(right triangulaf), or rectangular {1]. Consider
a one-degree-of-freedom system with an elas-
tic restrain¢, as shown in Fig. 1. The illustra-
tion shows the absolute displacement x, of the
mass m, the absolute displacement of the chas-
sis x_, and the idealized spring stiffness k.
The differential equation governing the behavior
of the system during the shock phase of motion
is

mx, + k(x,-x;) =0, 0<t <7 (la)
or
Xy + wl(xp=x5) =0, (1b)
where
k
2 .k
wy" = ™

and - is the pulse period.

‘—- C.G. OF MASS m
\

Lo

L1177 7777777

Fig. 1. Schematic
representation of
single-degree-of-
freedom system

In present specifications, the shock pulse
inputs are prescribed in terms of accelerations.
For convenience, the following transformations
are used:

(2a)

-
[}
»”
=
"
«

(2b)
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Xy~ Xg =

(2¢c)

<

Likewise, the original differential equation is
transformed to the following form:

0 <+ <. (3)

This indicates that x, represents the base ex-
citation and y represents the relative displace-
ment of the mass m with respect to the base.
Equation (3) can be readily solved for y, to-
gether with the conditions that the initial veloc-
ity x(0) and displacement x(0) are zero. For
most components, damping is considered to be
small and is neglected.

In practical design, the maximum absolute
acceleration response is of primary concern.
The relationship between x, and y is deter-
mined from Egs. (1) and (2a):

S = —liy (4)

A characteristic value of the displacement x,
is the maximum static displacement under the
maximum absolute value of the force, i.e.,

F(t)] _ max F(t)
k | - 2 : (5)

d = max l
m w1
Based on this equation, it is most natural to
express the displacement spectrum in a dimen-
sionless form in terms of the static deflection
5. The ratio of the displacement spectrum to s
is defined as the dynamic amplification factor
or acceleration spectrum:

o . |x'| max (w, t)

amplification spectrum = R —

_ displacement spectrum
max. static displacement

(6)

For most practical problems, the amplifi-
cation spectrum for acceleration is desired and
is represented by

21  max. absolute acceleration of mass

a, max. acceleration of pulse

If the shock pulse is defined, one approach to
shock analysis is the use of Laplace transforms.
This was first applied by Muller [2].

Many specifications prescribe the rectan-
gular pulse as a shock input. A number of
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Fig. 2, Maximum acceleration response for rectangular pulse

authors have derived its shock spectrum by
various methods. During the pulse, the maxi-
mum acceleration ratio is

= 1- cos wpt,
a,

e<n, (@)

where «, is the forcing frequency and r = =/w,.
This reaches a maximum of 2 when w,/«w, = 1.
After the pulse, the maximum acceleration ra-
tio is

u
S
——
ot
'

e

»
IE‘

3
S

a
2 m & x

Y el B4
2s1n(;;—2-). t>T. (8)

i

When «, = »,, the maximum acceleration ratio
again attains the value of 2. This is illustrated
in Fig. 2. In the laboratory, the specified rec-
tangular pulse is difficult to obtain, Due to the
inherent characteristics of present-day ma-
chineg, the rectangular pulse acquires definite
rise, dwell and decay times, The desired rec-
tangular pulse thus becomes an asymmetrical
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trapezoidal pulse (Fig. 3). Jacobsen and Ayre
[3] derived a symmetrical trapezoidal pulse,
i.e., equal rise and decay time.

The derivation of the asymmetrical pulse
consists of describing the three phases, i.e.,
rise, dwell and decay positions, by an impulse
function in Laplace transform notation. For
the asymmetrical trapezoidal pulse, the base
acceleration applied to the single-degree-oi-
freedom system, as defined in Fig. 3, is

X, = 8, (A+B+C), (9)

where
rise period = A = ﬁ [ty -t - a)r) , (10)

dwell period = B = [yt -a)~u(t-(a+B)7)],

(11)
decay period = C = -ty—"TI {lt-(a+ By - it - 7,
(12)

and 4 (t) is the Dirac impulse function where
azar,b=8r,c=yr, and a+B8+y =1, The
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Fig. 3. Asymmetrical
trapezoidal pulse

expressions of Egs. (10) through (12) are sub-
stituted ints £q. (9) and the resulting equation
is described in transform notation:

a e-(au’?)vs +£e-75].
Y v
(13)

Equation {3) can be represented in transform
notatior: by

a
s X (s) = —2
arTs

[l_e-a-rs _

2

(s +w12) y(s) = -Szxo(S)- (14)

Substituting Eq. (13) into Eq. (14) and simplify-

ing yields
e-(ﬂ’E)Ts o ie-‘rs :]
Y

1-e 7% -2
Y
s?(s?.-
(15)

The inverse transformation results in the
acceleration ratio equation after utilizing

a,

y(s)y = -5 =

{A}l i

Eq. (4):

a sin w,t sin ~ ({ -a7)

LY S g _t_l-_l_ plt-127)
32 aT ’J(AJIT Feie g aa.t’

sin oyt -(a+ 3]

ywT

sin wl(t-1)> oy

y(ulT

> U[t - (a+3)7]

(18)
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The acceleration ratio during the pulse, i.e.,
t < r, then becomes

a, t a+ 2 Msinwt Ncos gt
-] - 1 - =14 ~ 4 -
82 Yal s ‘A)l7 L‘lT
(17)
where
COS 1,7 cos w(a+,3
M - ! 3 e l( r) = l (183.)
% ¥ a
and
sin o (2 + .3)" sin aw,T
N = '/ + ! (18b)
Y a

To maximize the expression in Eq. (17),
the first derivative is set equal to zero, solved
for sin w;t and cos w,t, and substituted back
into Eq. (17). This results in an expression for
the maximum absolute acceleration response in
terms of ~; and =,.

After some mathematicai manipulation, the
maximum acceleration 1-atio reduces to:

a, 1 t M sin w;t N cos wgt
;—2 BV * Wy - W, T - (19)
where
i ) —
i g = M- NJVY¥M*+N% 1 (203)
¥(M?+N?)
and
cos w;t = M- NVy (¥ +N% l, (20b)
¥(M2+ N2y
This can be further simplified to
al _ 1 t 1 2 2 2 172
;;m“ = 7-F+7w17 [y3MZ+N%Hy - 117,
(21)

After the shock phase, the forcing function
is no longer operative. The resulting acceler-
ation ratio hecomes

G sin =t

H cos w,t
= — +

(22)

{lr

where




COS Lo, 7 cos w,{(a+.))r cos
G - o, 1 - l_ _ 1
2 y 2 ¥4
{23a)
and
sin «w)(14+.9)7  sin Lyt coes o7
H-- = +
’ a 7
(23b)

To obtain the maximum acceleration ratio, the
procedure as outlined above for Eq. (19) is fol-
lowed. After much algebraic manipulaticn, the
maximum acceleration ratio reduces to

a,

a,

max

e

2 2 A

(L)l !u'l
( COS a—71 ccs—(1- /n
(73] w

-2 !
x -+ + - Cos—‘n/
Ly 2 a Y @y
1,2
Uil w 2
sin a — 7 sin~—(1-a)n
2 ] |
+\ - = + sin —m7
a y \L)z
(24)

When o = y, Eq. (24) becomes a symmetrical
trapezoidal pulse, and the equation reduces to
that given by Jacobson and Ayre [3] when ex-
pressed in their terminology.

Equation (24) can be further simplified by
expanding the quantities in the parenthesis and
collecting terms. After much manipulation,
Eq. (24) reduces to the following:

Y
5 cos(j:) na
s ——— {1+ n? 11- :

, f - ~
1 ] . ZN . “1\:
a 1 ——yra e g
n sin C‘;g SN wy e
e 4

where n = 2a/y.

Example

As an exampile of the use of the developed
equation, consider a theoretical rectangular
pulse having an 11-msec dwell. There are
three other pulses, one symmetrical (LRP) and
two asymmetrical trapezoidal pulses (ASTP
No. 1 and No. 2) which may be obtained by use
of the labcratory equipment. The question
arises, "Which of the pulse shapes will simu-
late the theoretical rectangular pulse ?"

Table 1 gives the quantities necessary for
the problem solution. After substituting the
values for the rectangular pulse into Eq. (8)
and LRP, ASTP No. 1, ASTP No. 2 into Eq. (25),
one finds that the rectangular pulse is the most
severe (as to be expected) and the ASTP pulses
are approximately the same (Fig. 4).

— " — s

TABLE 1
Pulse a b [of a ,3 b4 n
Rectangular - 0.011 - - - - -
(theoretical)
LRP 0.002 0.011 0.002 0.1333 0.7334 0.1333 1.0
ASTP No. 1 0.002 0.011 0.004 0.118 0.647 0.235 0.5
ASTP No. 2 0.004 0.011 0.002 0.235 0.647 0.118 2.0
TABLE 2
Pulse a b c a 3 0% n
ASTP No. 3 0.002 0.001 0.001 0.6452 0.3226 0.0322 20.037
ASTP No. 4 0.002 0.004 0.0025 0.320 0.640 0.040 8.0
ASTP No. 5 0.002 0.006 0.00035 0.2395 0.7186 0.0419 5.716
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As a further indication of the relative ei-
fects ci the rise, decay and dwell times, three
other asymmetrical trapezoidal pulses having
the same rise time but increasing dwell and de-
cay times were computed. The inputs for the
pulses are given in Table 2. Based on calcu-
iated results of these three pulses, ASTP No. §
was the most severe, with AST? No. 3 the
mildest (Fig. 5).

CONCLUSIONS

A simple equation has been presented for
determining the maximum acceleration ratio of
an asymmetrical trapezoidal pulse. This pulse
results from the inability of laboratory equip-
ment to simulate physically a specified rectan-
gular pulse. It has been shown that the asym-
metrical trapezoidal pulse is less severe than
the theoretical rectangular pulse. The dwell
time is the determining factor, with the rise
and decay portions performing secondary roles.
The results of this study will enable the de-
signer to assess the degree of deviation between
the idealized and the actual test conditions; in

this way he can specify an equivalent trapezoi-
dal pulse capable of providing similar response
in the test item. The relationship between rise
and decay portions of a pulse has been exten-
sively discussed by Lowe and Cavanaugh [4]
and Schell [5].

ADDITIONAL EFFORTS IN
PROGRESS

The General Electric Re-Entry Systems
Department is continuing studies of the asym-
metrical trapezoidal pulse by extending the
method to include damping and by developing
spectra for determining the maximum acceler-
ation response composed of all variables.
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