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PREFACE 

Much of the theory of multiple scattering is devoted to the 

cases of isotropic or mildly anisotropic scattering (such as the 

Rayleigh law). On the other hand, investigators such as Deirmendjian 

and van de Hulst have emphasized the practical need for the study 

of multiple scattering processes involving elementary acts of scat¬ 

tering with strongly peaked forward scattering. Such processes 

present formidable analytic and computational difficulties. 

The aim of this Memorandum is to explore numerically certain 

axially symmetric fields for which the local phase function is ap¬ 

proximated by a rational function of the cosine of the angle between 

the incident and scattered rays. The various analytic and numerical 

advantages are pointed out, and several sample numerical results are 

displayed. 



V 

SUMMARY 

The invariant imbedding approach is applied to the problem of 

diffuse reflection from a slab which has a strongly elongated phase 

function. The diffuse radiation field is assumed axially symmetric. 

The analytic and computational advantages of using a rational func¬ 

tion approximation to the phase function, rather than an expansion 

in Legendre polynomials, are examined. Numerical results for selected 

cases are presented, as are the FORTRAN programs. 
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I._INTRODUCTION 

Multiple scattering problems in which the local scattering dia¬ 

gram is highly anisotropic are difficult,^ ^ compared with the iso- 

tropic and mildly anisotropic cases. ' However, these are 

important problems when one considers radiative transfer processes in 

the haze and clouds of the earth's atmosphere/14-16^ as well as in 

the sea.^1^ In the mathematical treatment, if one expands the phase 

function in a series of Legendre polynomials/8^ one finds that on 

the order of a hundred terms are required to approximate the phase 

(1 21 
function moderately well. * The computational solution may then 

not be routine. 

In this Memorandum, the possibilities of using a rational function 

to approximate a strongly peaked phase function are explored. The 

radiation fields are supposed to be axially symmetric. The plan is 

to derive the basic equations for the reflection and source functions, 
« 

to compute the reflection function as the solution of an i.iitial-value 

problem for ordinary differential equations, and to present some nu¬ 

merical results for cases of increasingly fiercer forward scattering. 

Interpolation methods are discussed. Appendix A contains listings of 

the FORTRAN program for the reflection function, and Appendix B con¬ 

tains a program for interpolation by expansion in orthogonal poly¬ 

nomials. 

It is assumed that the reader is acquainted with the basic nomen¬ 

clature of radiative transfer as presented in Ref. 8. 
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II. PRELIMINARIES 

Consider a slab bounded by two horizontal parallel planes, and 

having a finite optical thickness x. At each point on the top plane a 

conical flux of energy is uniformly incident, and each individual ray 

forms an angle whose direction cosine is -u (0 < u s; 1) when measured 

from the upward directed vertical. The energy passing through a unit 

horizontal area is tt u per unit time. The local scattering is aniso- 

tropic, but because of the form of the incident energy and the phase 

function the internal and external fields are axially symmetricj i.e., 

they are not azimuth dependent. We assume for simplicity that the ab¬ 

sorption and reemission characteristics of the slab do not depend on 

position. In passing through the optical distance A, the fraction Ù of 

the energy is temporarily absorbed by the medium. The albedo for single 

scattering, \ (0 < \ £ 1), is the fraction of this absorbed energy that 

is reemitted in all directions. The phase function p(cos 8) describes 

the angular distribution of the reemitted energy: 

, p(cos 0)d(cos 0) 
^ 2 7 “ t^ie fraction of energy that, 

after a local interaction with 

the medium, propagates in a di¬ 

rection forming an angle with 

the original direction, whose 

cosine lies between cos 0 and 
cos 0 + d(cos 8). (i) 

The phase function is normalized so that 

2tt J p(cos 8)d(cos 8) 4n 
-1 

1. (2) 
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If u and V are the cosines of the polar angles (measured from the 

upward directed vertical) before and after the interaction, and if 

<p is the change in the azimuth angle, then the well-known formula 

cos 0 * uv + /l - u^ ^1 - cos cp (3) 

relates the cosine of 9 to u, v, and cp, and we may view p as 

p(v,u,cp) , a function of v, u, and cp. 

It will be convenient to introduce the quantity c(v,u), 

c(v,u) dv = the fraction of the energy that has 

direction cosine u, interacts with the 

medium, and then has a direction cosine 

between v and v + dv. (4) 

From the above definitions, 

2TT 

c(v,u) « X J dcp. (5) 

0 

A frequently used measure of the degree of forward scattering is the 

fraction of the scattered energy which is scattered into the forward 

hemisphere: 

1 

f “ 2TT J ^ d(cos 6). (6) 

0 

It is assumed that the phase function is a rational function in 

cos cp, so that the evaluation of c(v,u) via Eq. (5) can, in principle, 

be made. 
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III. BASIC EQUATIONS 

We shall derive equations for the reflection function,an(j 

then for the source function. Let us define 

P(v,u,x) dv - the energy per unit horizontal area 

per unit time emerging from the top 

of the slab, in a solid angle with 

cosine of che polar angle between 

(v, V + dv), due to multiple scatter¬ 

ing in the slab of optical thickness 

X, the sources of energy being uni¬ 

form conical flux of net flux unity 

per unit horizontal area in the top 

surface of the slab, and the cosine 

of the incident radiation being 

-u (0 < u £ 1, 0 < v s 1). (7) 

We first write a finite difference equation for this function using 

the invariant imbedding approach. We add a thin slab of thickness A 

to the top of the slab of thickness x, thus forming a slab of thickness 

X + A . We write, to terms of order A, 

(8) 

where 

This equation says that pdv for the slab of thickness x + A is equal to 

Pdv for a slab of thickness x plus some changes. These changes are 

due to (1) absorption in the thin layer as the energy passes into the 
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slab and out of the slab; (2) absorption in the thin layer followed 

by ultimate emergence of the energy from the top of the slab, in the 

correct direction; and (3) the energy that would have emerged in 

the wrong direction but is then absorbed and ultimately emerges in 

the desired direction. The q function may be defined in words, 

q(v,u) dv ■ the fraction of the energy that interacts 
with the medlun at the top while propa¬ 
gating with direction cosine u, which will 
emerge from the top of the slab with 
direction cosine between v and v + dv, either 
directly after one scattering, or after 
multiple scatterings (-1 * u si +1, 0 < v * 1).(10) 

We assume that the lower boundary is a perfect absorber, so that any 

energy that impinges on it is absorbed. Now let the slab thickness 

approach zero, and we obtain the initial condition for p, 

P(v,u,0) - 0. (ID 

Note that the p function depends on the phase function through 

Eqs. (5), (8), and (9). 

Now let us introduce the reflection function, 

r(v,u,x) dv - the intensity of the energy emerging from 
the top of the slab with direction cosine 
v, due to multiple scattering in the slab 
of optical thickness x, the sources of 
energy being uniform conical flux of net 
flux nu per unit horizontal area, and the 
cosine of the incident direction being 
-u (0 < u £ 1, 0 < v * 1). (12) 
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From the definitions of r and p, it is clear that 

r(v,u,x) - TTu • P<v-U-X> • -L . 
V 2H 2v (13) 

We next introduce the S function, which is symmetric in u and v, 

/ X S(v,u,x) 
r(v,u,x) * —*■' j } . 

4v 
(14) 

It follows that 

P (v.u.x) - ~^V2u>X^ (15) 

We substitute Eq. (15) into Eq. (8), and we let A - 0. We thus 

obtain the differential-integral equation for S, 

Sx(v,u,x) + ¿)s 

+ 2 :(v,-u) + J c(-v',-u)S(v,v/,x) ~-“7 

+ J S(v',u,x) c(v,v')+-|J c(-v" ,x) 

0 

dv dv' 

v ' ' 
(16) 

In place of Eq. (16), we may use 

Sx(v,u,x) * + ^)s + 2q(v,-u) 

+J S(v/,u,x)q(vJv^) “*t (17) 
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and 

q(v,w) 
i r 

c(v,w)+2t c(-v',u)S(v,v',x) (18) 

The initial condition is 

S(v,u,0) - 0. (19) 

These are the desired basic equations for the S function. 

We turn our attention now to the source function/18^ 

J(t,v;u,x) = energy scattered per unit volume per unit 

time into a unit solid angle with polar di¬ 

rection cosine V, at optical altitude t above 

the bottom; the input energy is conical flux 

of net flux ttu per unit horizontal area, with 

direction cosine -u (0 < u s; 1), and the slab 
thickness is x. 

We derive an equation for J in which the slab thickness is varied, 

while the internal point is held fixed at altitude t. Again, we 

write a finite difference equation correct to terms involving A , an 

incremental thickness, 

J(t,v;u,x + A) J(t,v;u,x)(i - 

1 

0 TT y 

0 

JitjVjv7,x)2n dv'. (21) 

The source function for the slab of thickness x + A is expressed as the 

source function for the slab of thickness x modified by the absorption 

in the thin layer of thickness A (some of the incident energy never 
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gets to altitude t to cause any scattering there), and augmented by 

the scattering at altitude t due to energy emitted at the top in the 

thin layer. The differential-integral equation for J is 

Jx(t,v;u,x) - -J J(t,v;u,x) 

1 

+ 2 J WC-v'.u.xJJit.vjv^x) -^7. (22) 

0 

The source function at the top, 

W(v,u,x) ■ J(x,v;u,x) (“l * V £ +1) (23) 

appears in this equation. In order to obtain an equation for xt, we 

do the imbedding by adding a thin layer to the bottom of the slab. 

We derive the equation, 

1 

Wx(v,u,x) « 2 J Z(-v/,u,x)Z(v,v/ ,x) ~r, (24) 

0 

which now involves the source function at the bottom, 

Z(v,u,x) » J(0,v;u,x) (-1 * V * +1). (25) 

For the source function at the bottom, we obtain the equation 

1 

Z (V,u,x) Z(v,u,x) + 2 J W(-v/ ,u,x)Z(v,v / ,x) (26) 

0 

by putting t ■ 0 into Eq. (22). 
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Equations (22), (24), and (26) for* a complete system of equations 

foi the source function at the top, at the bottom, and at altitude t. 

Equations (24) and (26) may be solved simultaneously, independently 

of Eq. (22). For these, the initial conditions are 

W(v,u,0) - c(v,-u) , 

, 1 (27> 
Z(v,u,0) ■ — c(v,-u). 

Equations (27) are obtained by considering a thin slab of thickness 

X - A. It is so thin that the source function at the top is the same 

as that at the bottom, which we call J(v,u,A). The total rate of 

scattering in a portion of the slab with height A and unit base area 

is, to terms of order A, 

2TT 

A • J(v,u,¿> - nu • £ i J X ip. (28) 

0 

The factors on the right-hand side are as follows: (ttu) is the energy 

incident per unit horizontal area per unit time; (A/u) is the fraction 

of the energy that is absorbed in this thin slab; the remaining factor 

is the distribution of the reemitted energy. By letting A -* 0 and 

using Eq. (5), we obtain the initial conditions of Eqs. (27). 

Thus, the source function at the top and at the bottom of a slab 

may be evaluated as the slab thickness varies from zero to any desired 

finite value, by numerically solving Eqs. (24) and (26) subject to 

Eqs. (27). Let us suppose that this has been done for x * t. Then we 



10 

have the initial condition for the source function at altitude t, 

J(t,v;u,x) !x=t = W(v,u,t). (29) 

Equation (22) with initial condition Eq. (29), when solved simultane¬ 

ously with Eqs. (24) and (26), enables one to compute the source 

function at altitude t for x <: t. Extensive calculations of source 

functions for the case of isotropic scattering in homogeneous slabs 

are reported in Ref. 10. For some basic equations in the case of 

anisotropic scattering in inhomogeneous slabs that do not assume 

axially symmetric fields, see Ref. 12. 
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IV. COMPUTATIONAL REMARKS 

The computational scheme is based on the ability of current high 

speed computers to produce solutions of large systems of ordinary 

differential equations, subject to initial conditions, both rapidly 

and with high precision. In order to transform differential-integral 

equations into systems of ordinary differential equations, we employ 

(8 19 j 
the method of finite ordinates. ’ We make the approximation 

1 N 
r 
j g(z) dz 2: ^ 8(zk>wk (30) 

0 k=l 

by utilizing a gaussian quadrature method. The abscissas z , 
k 

k = 1,2,...,N, are roots of the shifted Legendre polynomial of 

* 
degree N, Pjj(z) = “ 2z) , taken in ascending order, and the w, , 

lx 

k “ 1,2,...,N, are the Christoffel weights. The formula is exact 

for polynomials of degree 2N - 1 or less. Tables of roots and weights 

for N = 3,4,...,15 are available in Ref. 19. 

Let us introduce the functions of one variable, 

Sij(x) = S(zi,zj,x), (31) 

which are S functions evaluated at u » z^, v « z^, where z^ and z^ 

are roots of P^z), and j » 1,2,...,N, i = 1,2,...,N, the independent 

variable being the thickness x. In place of the original equations 

for S, Eqs. (17)-(19), we deal with the ordinary differential equa¬ 

tions with initial values 
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V + I V^i-V r • 02) 
k-1 k 

N w 
,(z1,tej) . c(z1>te ) + 1 l c(zk,Tz )Sik ^ , (33) 

k-1 k 

SiJ(0) - 0. (34) 

2 
The array S^j contains N elements, but because of the symmetry of S, 

i.e., 

VjOO - S^Cx), (35) 

we have to consider only N(N + 1)/2 differential equations. 

Equations (32) are the equations that we solve, using Eq. (33) 

and initial conditions (34), by numerical integration on the IBM 7044. 

In some of the runs, N « 7 is used, with a grid size for numerical 

integration of Lx - 0.01. In other runs, we use N - 5, 9, 13, or 15, 

and step sizes of Lx - 0.005, 0.0025, and 0.001, as we shall explain 

later. Equations (32) have been found to be computationally stable. 

Systems of ordinary differential equations could also be written 

for the J, W, and Z source functions, but we shall not do so here. 

We would like to discuss now two ways in widch one might inter¬ 

polate to obtain S at arbitrary values of the arguments u and v, 
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•fç 

given S evaluated at the roots of P^. Both procedures are in no way 

restricted to dealing with the S function, but may be used for J, W, 

Z, and other appropriate functions. We need an interpolation proce¬ 

dure for comparing the results obtained with the use of quadrature 

formulas of various orders. 

In one method, we add more differential equations for each new 

S function desired. Suppose we require S for v - i - 1,2,...,N, 

and u - a^, X - 1,2.M. Let 

Ai£(x) - S(zi,a/,x) (i - 1,2.N; l - 1,2.M) . (36) 

Then the equation for A.. is 
X Ju 

ai/(x) ■ -(^++ 2<i(zi'-ai> 

V 
+ l \£<,(zi>zk) r • (37) 

k-1 k 

where 

N w 

q(zi’-V ■ c(zi--aP+ í I r • (38) 
k-1 k 

and q(zi,zk) is given in terms of by Eq. (33). In Eq. (38) we 

have used the symmetry of A. The N • M Eqs. (37) are adjoined to 

the basic set in Eq. (32) and are integrated simultaneously with the 

initial conditions of Eq. (34) and 

Au(0) - 0. (39) 
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In the second method, we aru given a function evaluated at the 

N points zj»z2.zn: f > • • • (2^) » an<* we wish to find 

f(v) through approximating this function by a polynomial of degree 

N - 1. We make an expansion in the orthogonal polynomials P (v), 
m 

N-l 

f(v) - I amPI<v)* <40> 
m=0 

where the coefficients are 

1 

O' - (2m + 1) f f (v)P*(v) dv. (41) m J m 
0 

Making the approximation 

N 

a, M2* + i) l i(zl)F*(zj)ul , (42) 

i=l 

and substituting it into Eq. (40), we find the formula that gives 

f(v) in terms of the given values f(z^), 

N-l N 

f(v) « ^ (2m + 1) Y ^VVWm^- (43) 
m«0 i= 1 

We rewrite Eq. (43): 

N 

f(v) = £ f(zi)^i(v)» 

i=l 

(44) 
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where 

N-1 

ßi(v) “ Wi I (2m + 1)Pm(zi)PI(v)- 
m=0 

We have evaluated these coefficients for N = 7 and v - 0,0.1, 

0.2,...,1.0. These are listed in Table 1. These coefficients may 

be used, for example, in producing S(v,u,x) based on the N numerical 

values of S(zi,u,x), i - 1,2,...,N. 
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V. COMPUTATIONAL RESULTS 

Reflection functions are calculated for several strongly peaked 

forward scattering diagrams. A simple rational function that ex¬ 

hibits this property is 

P(cos 6) " b - cos e ’ (46) 

where b is a number slightly greater than 1, and k is a positive 

constant chosen to satisfy the normalization condition of the phase 

function. This phase function, as a function of two polar angles and 

an azimuth angle, is 

-- . (47) 
2 

1 - V cos 9) 

The function c(v,u) is then, by analytically evaluating the integral 

in Eq. (5), 

c(v,u) * —- -kk ■ - ■ — , (48) 

2 ▼ (b - uv)2 - (1 - u2) (1 - V2) 

p(v,u,cp) 

b - (uv +/T u 

and the constant k is 

k •2 (log fH) ^ 

The forward scattered fraction of Eq. (6) is 

(49) 

(50) 
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Polar diagrams of phase functions for b = 1.5, 1.1, and 1.01 may 

be seen in Fig. 1. The numerical values are given for the quantity 

(b - cos 0) , rather than p itself. In Table 2 are found the frac¬ 

tion, f, of scattering into the forward hemisphere, and the ratio of 

forward to backward scattering, p(cos 0°)/p(cos 180°), for each of 

six values of the parameter b. 

Table 2 

FORWARD SCATTERING PARAMETERS 

A FORTRAN IV program is written for the IBM 7044 to compute the 

reflection function as described in Section IV. The interpolation 

method of adjoining additional differential equations is incorporated 

into the code so that the quantities S « S(zi,z.,x), A. = S(z.,a ,x), 
J J i ¿ 

and \i • s(wx) are evaluated. The A and B arrays (or the cor¬ 

responding reflection"matrices) are convenient for the purpose of 

comparing the effects of the order of the quadrature formula N, and 

the grid size Ax. They can also be compared with interpolated values 

obtained by the method of expansion in orthogonal polynomials. 
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120 90 60 30 

120 90 60 30 

Fig. I — Phase diagrams for b = l.5, M and 1.01 
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In Figs. 2-5, we see reflection functions plotted against v, the 

cosine of the output angle, for incident cosines u - 1.0, 0.5, and 0.1. 

The values of b are 1000 (essentially isotropic), 1.5, 1.1, and 1.01 

in Figs. 2-5, respectively. The albedo for single scattering is 

\ ■ 1, and the thickness is x ■ 1.0, in each case. There is a remark¬ 

ably smooth transition in the reflection pattern as one departs more 

and more from the spherical scattering diagram (bear in mind Fig. 1). 

The intensities drop in value, generally, except for grazing outgoing 

directions with grazing incidence. This increase at grazing angles 

may be attributed to single scatterings, and the decrease at other 

angles may be due to the greater forward scattering with less back¬ 

ward scattering. In this connection, it would be of interest to examine 

the diffuse transmission functions, which should exhibit behavior re¬ 

verse to that of the reflection functions. 

From the same computer runs that produced numerical values for 

Figs. 2 and 4, we are able to obtain reflection patterns for slabs of 

thicknesses less than one. Figures 6 and 7 are graphs of reflection 

functions for b » 1000 and b « 1.1, for slab thickness 0.1 and albedo 

X - 1. Very little difference is found between the two figures. In 

inverse problems for the determination of the phase diagram based on 

reflection measurements, it would seem that thicker slabs and con¬ 

sequently a greater number of multiple scatterings would provide more 

information about the phase function. A class of inverse problems for 

estimating the coefficients in the expansion of the phase function in 

Legendre polynomials has been considered in Ref. 20. 
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Fig. 2 — Some reflection curves 
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Fig. 3 — Some reflection curves 
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Fig. 4 — Some reflection curves 
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Fig. 5—Some reflection curves 
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Fig. 6— Some reflection curves for a thin slab 
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Fig. 7— Some reflection curves for a thin slab 
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Ihe ValUe 0£ N “>« tt,e integration step sl 
reflection functlon8 ^ ^ - calculate the 

U8t - — of a^r are 8ÍVen ln IabU 3- " -° 

mateS are * varying N a„d .x " °btalned- ««- 

^ AttemPt8 are - calculate tHe ^ ^ ^ 

y Peaked Ph«e function for b . ! 001 f°r eXtra"e- 

hl8hly aCCUrata — a- - Cain, i0!" Seen fr" tMa — 

"«her of quadrature pointa and a tiny i„t " “ Ur8e 

ln8 h"6’ a- 1 - £or -e reaulta of ^ 
8 - 2~4 and 5 min for Fig. 5. 

Table 3 

ACCURACY OF EVAHJATION of r BV INTEGRATION 

Ue epply the second interpolation a a 

polynomials, to obtain values of r ' ln 0”hogonal 

“"i WhCn the °«P0C cosines are ^ ^ ^ ^ 

t0r — -PVC cosines „hen .e i, ^ ^ ^ ^ 

1-°. These evaluations are C°Stnes «o o . 0.1 and 
s are compared with t-h„ 

edditional equations for r i„ Tabl , ° * ‘"“bating 

^ “ 1» and X ■ i Inth •lnTabl^£o-1eoasei„„hichb.1_1 

In the -P-sion calculation the on, the coefficient8 
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Table 4 

REFLECTION FUNCTIONS BY TWO INTERPOLATION METHODS 
FOR THE CASE b - 1.1, \ » 1, x - 1 

u 

V - 0.025 

Integ. Expans. 

V - 0.500 

Integ. Expans. 

V - 0.975 

Integ. Expans. 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

.3498 .344 

.3985 .403 

.4054 .40- 

.3957 .394 

.3791 .379 

.3601 .362 

.3408 .341 

.3222 .321 

.3049 .306 

.2887 .286 

.0733 .0734 

.1335 .1334 

. 1774 . 1774 

.2069 .2070 

.2253 .2253 

.2357 .2356 

.2406 .2406 

.2416 .2417 

.2401 .2400 

.2368 .2370 

.03178 .03176 

.06330 .06329 

.0894 .0894 

.1087 .1087 

. 1220 . 1220 

.1306 .1306 

. 1358 . 1358 

.1384 .1385 

. 1392 . 1392 

. 1388 .1389 

V 

u ** 0.1 

Integ. Expans. 

u * 1.0 

Integ. Expans. 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

.2360 .238 

.1612 .160 

.1192 .119 

.0921 .0930 

.0733 .0731 

.0597 .0591 

.0495 .0495 

.0417 .0422 

.0355 .0352 

.0306 .0320 

.3063 .3062 

.3059 .3057 

.2885 .2885 

.2634 .2636 

.2368 .2368 

.2114 .2113 

.1885 .1885 

. 1683 . 1683 

.1505 .1504 

. 1350 . 1353 
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ß^(v) of Eq. (45) were computed in double precision arithmetic (about 

15 to 16 decimal figures), for v(or u) - 0.1,0.2,...,1.0, and 

i “ 1,2,...,7. We first compute the r functions using about eight 

figures of accuracy in ß^v). Then we repeat the calculations after 

truncating ß^v) after the sixth decimal place. The r functions using 

six and eight figures are in agreement to about six places. Thus, 

these coefficients to six decimals, listed in Table 1, are suitable 

for hand computation on a desk calculator. 
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VI. DISCUSSION 

The theoretical and numerical treatment of multiple scattering in¬ 

volving highly anisotropic elementary acts of scattering is in a rudi¬ 

mentary state. We have chosen to attack some problems for which there 

is no azimuth dependence of the diffuse radiation field though the local 

scattering is anisotropic. This is half way between the desired case 

and the simple isotropic case. To simulate the great forward scattering 

(14) 
lobes suggested by Deimendjian, we suggest using a simple rational 

function, for both its analytical and its computational convenience. 

More realistic approximations will require the use of higher polynomials 

in both the nunerator and denominator. In these cases it may be necessary 

to evaluate the function c(v,u) in Eq. (5) numerically. The function 

c(v,u) would have a sharp peak along v - u that could cause difficulty 

in evaluating the integrals in Eqs. (17) and (18). 

The treatment of a variety of inverse problems for anisotropic scat¬ 

tering, i.e., the estimation of the local phase function based on multiple 

scattering measurements, now appears feasible. A start is made in Ref. 

20. An early work is represented by Ref. 21. It is of interest that 

the function c(v,u) (an integral of the phase function) appears in the 

initial conditions on the source functions W and Z, Eqs. (27). It does 

not appear in the differential-integral Eqs. (24) and (26). An interesting 

inverse problem is the determination of the missing initial conditions on 

W and Z. 

(22) 
Extensions to the case of isotropic sources, reflecting surfaces, 

and so forth are readily carried out. 
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Appendix A 

FORTRAN PROGRAM FOR S AND r FUNCTIONS. WITH AXIALLY SYMMETRIC 

FIELDS, AND PHASE FUNCTION p(cos 6) « k/(b - cos ^ 

This program is written to compute the functions S(v,u,x) and 

r(v,u,x) first for u - z1>...,zN and v « z^...^; second for 

u “ al’** * and v * Zx» - • • »ZN; and third for u = a^... ^ and 

V “ al* ' * * ,aH* 1116 phase functi°n is p(cos 0) - k/(b - cos 0). The 

phase function and the matrices c(v,u) are evaluated in subroutine 

CHANGE, and printed. 

There are NEQ = N(NH)/2 + M(M+l)/2 + N • M differential equa¬ 

tions that are simultaneously integrated. The value of the independ¬ 

ent variable x is kept in cell T(2), the increment Ax in T(3). The 

dependent variables, the S functions, are stored in T(4) through 

T(NEQf3), and their derivatives in T(NEQf4) through T(2 • NEQf3). 

The derivatives are evaluated in subroutine DAUX, which is called on 

by subroutines INTS and INTM. The latter two subroutines are for the 

numerical integration of a system of ordinary differential equations 

using a fourth-order formula. They are called in the MAIN program. 

Subroutine EMERG, called upon by DAUX, calcule .es the q(v,u) 

functions. Subroutine OUTPUT computes the r functions and prints all 

of the S and r matrices for each thickness between 0 and the final 

thickness, at evenly spaced values of x. 

Sample data are given for the case \ « 0.1, b « 1.5, x « 0.1,0.2, 

N - 7, M « 10, ai « 0.1, ^ = 0.2,..., a1() - 1.0. 
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$JOB 2890'SAXSYM,K0160«45'00,100'P PAL 77 
SIBJOB MAP 
$IBFTC MAIN 

COMMON N,MvNPRNT»MPRNTfDELTA,B,ZK,ALAM,ZK02tNE0tMX,FOREtPEAKt 
1 ZHI5),Z2(I1),AHI5,15),A2(11,1I),A3(15,1I),WZ(I5»,C11P(15,15), 
2 Cl IMÍ15,15 ),C22Mai,ll),C12M( 15, m,C21P(l 1,15 ),51(15,15), 
3 52(11,11),53(15,11),011P(15,15),011M(15,15),022M(11,11), 
4 Q12M(15,11),021P(11,15),R(15,15),T(4213),MT(15),C12P(15,11) 

5 FUNCTION FOR AXIALLY SYMMETRIC FIELD 
ANISOTROPIC PHASE FUNCTION P * K/(B-Z), Z«COSlNt ALPHA 
N«NO. OF ROOTS, Zl(I ) 
M«NO. OF COSINES, Z2(I) 
S1(I,J) > S(Z1(I),Z1(J)) 
S2(I,J) > S(Z2( I ),Z2(J)) 
S3 ( I,J) * S(Z1(I),Z2(J)) 
f MATRICES—PROS. OF SCATTERING FROM ONE D.C. TO ANOTHER 
0 MATRICES—PROB. OF EMERGENCE WITH D.C. V, IF PARTICLE 

INTERACTS AT TOP WHILE IN STATE WITH D.C. U 
R( I , J ) REFLECTED INTENSITY 

INPUT 

1 READ(5,100)N,M,NPRNT »MPRNT 
WRITE(6,90)N,M,NPRNT »MPRNT 
READ(5,101)DELTA,B,ALAM 
WRITE(6,91)DELTA,B,ALAM 
READ(5*101)(Zl( I ),1*1,N) 
WRITE(6,92KZ1( 1),1-1,N) 
READ(5,10l)(WT( I ),I«1,N) 
WRITE(6,93)(WT(I ),1-1,N) 
READ(5,101)(Z2(I ),1-1,M) 
WRITE(6,94)(Z2(1),1-1,M) 

DO 2 1-1,N 
WZ(I)-WT(I)/Z1(I) 
ZZl-l.O/ZH I ) 
DO 3 J-1,N 

3 A1 ( I , J )>ZZ1 + l.O/ZKJ) 
DO 2 J-1,M 

2 A3 ( I , J )«ZZ1 + 1.0/Z2(J) 
DO 4 1*1,K 
ZZ2-1.0/22( I ) 
DO 4 J-l,M 

4 A2(I ,J)«ZZ2 ♦ 1.0/22(J) 

LOCAL SCATTERING PROPERTIES 

CALL CHANGE 

INITIAL CONDITIONS FOR S 

DO 5 1-1,4213 
5 T( I )»0.0 

T( 31-DELTA 
NEO - N*(N+1)/2 ♦ M*(M+l)/2 ♦ N*M 
CALL INTS(T,NE0,2,0,0,0,0,0,0) 
MX-1 
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INTEGRATE 

DO 6 M1»IfMPRNT 
DO 7 M2»ltNPRNT 
HX-HX41 

7 CALL INTH 
6 CALL OUTPUT 

GO TO 1 

IDO 
90 

101 
91 
92 
93 
94 

i-tI4,3X2HM«f14,3X6HNPRNT-,14,3X6HHPRNT»,14) 

FORMAT (6112) 
FORMAT(1H1,2HN> 
FORMAT (6E12*8) 
FORMAT 11H0, 6H0ELTA«,F 6.3,3X2HB«,F8.3,3X7HLAMBDA«,F6.3) 
FORMAT! 1H0»14HN ROOT ï , ZK I )/( 1X6E20.8) ) 
FORMAT (1H0, 9HN WEIGHTS/ (1X6E20.8)) 

COSINES, Z2( I )/(1X6E20.6)) FORMAT (1H0,16HM 
END 

SIBFTC DAUX 
SUBROUTINE DAUX 
COMMON 

1 
2 
3 
4 

iOMMON N,M,NPRNT,MPRNTfOELTA,B,ZK,ALAM,ZKD2,NEO,MX,FORE,PEAK 

CllM(15,15),C22M(ll,il),C12M(15,ll),C2lP(ll,15),Sl(l5,15), 

012M(15,11),Q21P(11,15),R(15,15),T(4213),WT(15),C12P(15,11) 

L»3 
DO 1 I«l,N 
DO 1 J«1,I 
L-L+l 
S1(I,J)»T(L) 

1 S1(J,I)»T(L) 
DO 2 1*1,M 
DO 2 J*1,I 
L-L+l 
S2(I,J)*T(L ) 

2 S2(J,P*T(L) 
DO 3 I*a,N 
DO 3 J*1 , M 
L-L+l 
S3( I ,J)*T(L) 

3 CONTINUE 

CALL EMERG 

DO 5 1*1*N 
DO 5 J*1,I 
SUM*0.0 
DO 6 K*1,N 

6 SUM-SUM S1(K,J)*011P( I,K)*WZ(K) 
L-L + l 

5 T(L)*-A1(I,J)*SHI,J) 2.0*011M( I,J) ♦ SUM 

DO 7 1*1,M 
DO 7 J*1,I 
SUM-0.0 
DO 8 K*1,N 

8 SUM-SUM ♦ S3(K,J)«021P(I,K)*WZ(K) 
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L*L+1 

7 T(L)»-A2U,J)*S2(I,J) ♦ 2.0*Q22M( I , J ) ♦ SUM 
C 

DO 9 I-1,N 
DO 9 J>1»H 
SUH«0 «0 
DO 10 K>ltN 

10 SUM-SUH ♦ S3(KtJ)*01lP(ItK)*WZ(K) 
L«L+i 

9 T(L)«-A3( ItJ)*S3Ut J) ♦ 2.0*012H( I, J) ♦ SUM 
RETURN 
END 

SIBFTC CHANGE 
SUBROUTINE CHANGE 
COMMON NfM,NPRNT,MPRNTfDELTA,BfZK,ALAM,ZKD2tNE0,MX,F0REtPEAK, 

1 Zl(15),Z2ai),Ai(i5,l5),A2(ll,ll),A3(15,ll),HZ(15),CllP(15,15)t 
2 CllM(15tl5),C22M(li,ll)tC12M(15,11),C21P(11,15),S1(15,15), 
3 S2(11,11),S3(15,11),011P(15,15),011M( 15,15),022M(11,11), 
4 012M(15,11),021P(11,15),R(15,15),T(4213),WT(15),C12P(15,11) 

NORMALIZATION CONSTANT, ZK 

ZL0G=AL0GI(B+1.0)/(8-1.0)) 
ZK«2.0*ALAM/ZL0G 
ZKD2*0.5*ZK 
MRITE(6,90)ZK 

90 FORMAT (1H0,3HZK»,E16.6) 

PHASE FUNCTION VS. SCATTERING ANGLE (COSINE OF) 
WRITE (6,91) 
DEL«2.0/40.0 
DO 1 1-1,41 
FI-I-1 
Z-FI*DEL - 1.0 
PHASE ■ ZK/(B-Z) 

1 WRITE(6,92 ) Z, PHASE 

91 FORMAT (///20X17HPHAS6 FUNCTION, P /14X 6HC0SINE,19X 1HP) 
92 FORMAT(F20.3, E20.6) 

FORWARD FRACTION AND PEAKEDNESS 

ZLOG-ALOG(B/(B-l.0)) 
F0RE«ZKD2*ZL0G 
WR ITE(6,93) FORE 

93 FORMAT(1H0,18HF0RWARD FRACTION -,F6.3) 

C(V,U) MATRICES 
CUP 

WRITE(6,94)(Z1(I),I-1,N) 
94 FORMAT( / //20X16HC MATRIX (CUP) /( 1H011X,8F 14.3 )/8X4HINC.//) 

DO 3 J*1»N 
DO 2 1-1,N 
SOI*(B - ZK I )*Z1( J) )**2 
S02*(1.0 - Z1( I )**2) * (1.0 - Z1(J)**2) 

2 C11P(I,J) - ZKD2 / SORT (S01-S02) 
3 WRI TE ( 6,95 ) ZMJ), ( C 11 P( I , J ), I -1 ,N ) 

95 FORMAT( F12.3,8E14.6/12X8E14.6) 



c 
c 
c 

96 

C 
C 
C 

4 
5 

97 

C 
C 
C 

6 
7 

89 

C 
C 
C 

12 
13 

35 

CUM 

WRITE(6,96)(ZlU)tI-l,N) 
FORMAT ( ///20X16HC MATRIX (CUM) / ( 1H011X f8F14.3 )/8X4HINC .//) 
DO 5 J»1*N 
DO 4 I«1,N 
SOI* ( B •*■ ZU n*Zl( J) )**2 
S02«(1.0 - Z1( I )**2) * (i.o - Z1(J)**2) 
C11MÍI,J)«ZKD2 / SORT (S01-SQ2) 
WR ITE(6»95) Z1(J)♦ (CliM(I,J),I«lfN) 

C22M 

WRITE(6,97)(22(1 ),I-itM) 
FORMAT(///20X16HC MATRIX (C22M) /(1H01IX,8F14.3)/8X4HINC.//) 
DO 7 J*1,M 
DO 6 1*1,M 
SOI*(B ♦ 22( I)*Z2(J))**2 
S02*(1.0 - Z2(I)*42) 4 (i.o - Z2(J)4*2) 
C22M(I ,J)*ZKD2 / SORT(S01-SQ2) 
WRITE(6,95) Z2(J),(C22M(I ,J), I*1,M) 

C12P 

WRITE(6,89)(21(1),1*1,N) 
FORMAT (///20X16HC MATRIX (C12P) /(1H011X,8F14.3)/8X4HINC«//) 
DO 13 J*1,M 
DO 12 1*1,N 
SOI*(8 - 21(I)4Z2(J))4*2 
S02*(1.0 - 21(1)4*2) 4 (i.o - 22(J)4*2) 
C12P(I,J)*ZKD2 / SORT(S01-S02) 
WRITE(6,95)Z2(J),(C12P(I,J),I*1,N) 

C12M 

98 

8 
9 

C 
C 
c 

WRITE(6,98)(21(1),1*1,M) 
FORMAT(///20X16HC MATRIX (C12M) /(1H011X,8F14.3)/8X4HINC•//) 
DO 9 J*1 ,M 
DO 8 1*1,N 
SOI*(B ♦ 21(1)*Z2(J))4*2 
S02*(1.0 - 21(1)4*2) * (i.o - 22(J )**2 ) 
C12M(I ,J)*ZKD2 / SORT (S01-SQ2) 
WRITE(6,95) 22(J),(C12M(I,J),1*1,M) 

C21P 

99 

10 
11 

WRITE(6,99)(22(1),1-1,M) 

nnRïiT,/i/f0,<16N C ,C2lP' /<lH0nx,gF|*.3)/8X*HINC.//) 
L'U il Js 1 tN 

DO 10 1*1,M 
SOI*(8 - 22( I)*Zl(J))**2 
SO?«(1.0 - 22( I )**2) * (1.0 - 21(J)**2) 
C21P(I,J)*ZKD2 / SORT(SQ1-SQ2) 
WRITE(6,95) ZKJ), (C21PÍ I,J), I»lfM) 

RETURN 
END 

ilBFTC OUTPUT 
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SUBROUTINE OUTPUT 
COMMON N*MtNPRNTtMPRNT'OELTA,BVZK,ALAM,;:KD2«NEQtMX,FOREtPEAKt 

1 Z1 ( 15),Z2(in,Al <15,15 ),A2 (11,11 ),A3( 15,11) tNZ( 15),CI1PU5,15), 
2 CllM(15,15),C22M<ll,ll),C12M(15,ll>,C2lP;il,15),Sl(15,15), 
3 S2< 11,11),S3( 15,11),011P< 15,15) ,Q11M( 15,15) ,022M(lltH ) , 
A 012M<15,11),021P<11,15),R(15,15),T<4213),WT<15),C12P(15,ll) 

L"3 
DO 11 1*1,N 
DO 11 J*1,I 
L*L*1 
SICI,J)*T<L) 

11 SI (J, I )*T(L ) 
DO 12 1*1,M 
DO 12 J«1,I 

S2( I *J)-T(L ) 
12 S2(J,1 )*T(L ) 

DO 13 1*1,N 
DO 13 J-1,M 
1*1.+1 

13 S3(I ,J )*T(L) 

HR ITE(6,50) 

WR ITE(6,51) 
51 FORMAT(50X9HS1 MATRIX) 

HRITE(6,59)T(2) 
59 FORMAT(A7X9HTHICKNESS, F6.2) 

HRITE(6,52)(1,I-1,N) 
52 FORMAT(lH0,llX,eil4) 

WRITE(6,53)(2111),I-1,N) 
53 FORMAT(12X8F14»3) 

WRITE (6,54) 
54 FORMAT(8X4HINC. ) 

DO 1 J»1,N 
1 HR ITE < 6,55) J,Zl(J),(S1( I ,J), I*1,N) 

55 FORMAT (I5,F7»3,8E14»6/12X8E14.6) 

DO 2 I* 1 ,N 
DO 2 J*1,N 

2 R(I »J)*0.25*S1( I, J)/Zl( I ) 

HR ITE(6,56) 
56 FORMAT(///50X9HR MATRIX) 

HRITE(6,52)(1,1*1,N) 
WRITE(6,53)(21(1),1*1,N) 
HR ITE(6,54) 
DO 3 J-l,N 

3 HR ITE(6,55) J,Z1(J),( R(I ,J ),1*1VN) 

HR I TE(6,57) 
57 FORMAT(////50X9HS2 MATRIX) 

HRITE(6,59)T(2) 
HRITE(6,52)(1,1*1,M) 
WRITE(6,53)(22(1),1*1,M) 
WRITE(6,54) 
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DO 4 J*1»M 

4 WR I TE (6»55) J,Z2<J ),(S2U , J ) , I-l,M) 

DO 5 1*1»H 
DO 5 J«1,M 

5 R(I * J)*0.25*S2(IrJ)/22( I ) 
WRITE(6» 56) 
WRITE(6,52H 1,1*1,M) 
WRITE(6,53)(22(1),I*1,M) 
WRITE(6,54) 
DO 6 J*1,M 

6 WR ITE(6,55) J,Z2(J), (ft(I ,J ) , 1*1,M) 

WRITE (6,58) 
58 F0RMAT(////50X9HS3-MATRIX) 

WRITE(6,59)T(2) 
WRITE(6,52)(1,1*1,N) 
WRITEÍ6,53)(21(1),1*1,N) 
WR ITE(6,54) 
DO 7 J*1,M 

7 WR ITE(6,55) J,Z2(J),(S3(I,J ) , 1*1,N) 

DO 8 1*1,N 
DO 8 J* 1 ,M 

8 R(I,J)«0.25*S3(I,J)/Z1(I) 
WRITE(6,56) 
WRITE(6,52)(1,1*1,N) 
WRITE(6,53)(Z1(I),1*1,N) 
WR ITE(6,54) 
DO 9 J*1,M 

9 WRITE(6,55) J,Z2(J),(R(I ,J),I«1,N) 

50 FORMAT (1H1) 
RETURN 
END 

JIBFTC EMERG 
SUBROUTINE EMERG 

COMMON N,M,NPRNT,MPRNT,0ELTA,B,ZK,ALAM,ZKD2,NEO,MX,FORE,PEAK, 
1 Z1(15)*Z2(11),A1(15,15),A2(11,11),A3(15,11),WZ(15).C11PI14 mt 

CnNa5,151,M2Mm.lll,C12MU5, í),¿¿íí il ïi ,s U5.Í5)! 

012M(15*11),021P(11,15),R(15,15),T(4213),WT(15)*C12P(15,H) 

2 
3 
4 

0 MATRICES* PROBABILITIES OF EMERGENCE 

DO 2 1*1,N 
DO 2 J* 1 ,N 
U11P*0.0 
U11M«0.0 
DO 1 K* 1 ,N 

UllP-UllP ♦ C11P(X,J)*S1(I,K)*WZ(K) 
1 U11M*U11M + C11M(K,J)*S1(I,K)*WZ(K) 

011P(I ,J )*C11P(I,J) ♦ 0.5*U11M 
2 011M(I ,J)*C11M(I ,J) + 0.5*U1IP 

DO 4 1*1,M 
DO 4 J*1,M 
U22P*0.0 
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DO 3 K-ltN 
3 U22P«U22P ♦ C12P(K,J)*S3(K,!)*HZ(K) 
4 022HU»J)>C22M( IVJ) t 0.5*U22P 

C 
DO 6 1*1tM 
DO 6 J*ltN 
U21H-0.0 
DO 5 K*1«N 

5 U21M-U21M ♦ CllM(K,J)*S3<KtI)*WZ(K) 
6 021PU.J)*C21P( I.J) ♦ 0.5*U21M 

C 
DO 7 1*1tN 
DO 7 J*1,M 
U12P-0.0 
DO 8 K-1 »N 

8 U12P-U12P + C12P(K'J)*S1( I,K)*WZ(K) 
7 012H(I »J)«C12M(ItJ) + 0 «5*012? 

C 
RETURN 
END 

SENTRY NAIN 
7 10 10 10 

0.01 1.5 0.1 
25446046E-0112923441E-0029707742E-0050000000E 0070292258E 0087076559E 00 
97455396E 00 
64742484E-0113985269E-0019091502E-0020897958E-0019091502E-0013985269E-00 
64742484E-01 

0.1 0.2 0.3 0.4 0.5 0.6 
0.7 0.8 0.9 1.0 
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Appendix B 

FORTRAN PROGRAM FOR THE INTERPOLATION OF FUNCTIONS BY EXPANSION 

IN SHIFTED LEGENDRE POLYNOMIALS 

In this program, the roots and weights for N £ 15 are input in 

double precision. The M values of V(J), and the N given values of 

the function FZ(I), are read in, in single precision. The coeffi¬ 

cients are calculated in subroutine LCOF and returned in matrix 

I “ 1, N; J ■ 1, M. The interpolated function is F(J) 

-£fz(d • The coefficients 0(1,3) may be truncated after 

MDEC decimal places. 

The C(I,J) array may be calculated by using the recurrence 

relations for the coefficients in the expansion of shifted Legendre 

polynomials by a power series, 

n 

l 
k-o 

V 

V no 1, 

n + k 
n - k ^n-l,k k ^ n, 

2 
n \i,n-l k - n, 

as done in the first subroutine LCOF that is listed. In the second 

version of LCOF, the C(I,J) array is calculated by using recurrence 

relations for the shifted Legendre polynomials themselves, 



AO 

nP*(x) - -(n - l)P*_2(x) + (2n - 1)(1 - 2x)P*_1(x), 

P*(x) - 1, 

P*(x) - 1 - 2x. 

Both subroutines give virtually the same set of coefficients. 

The data shown are for the case N - 7, M ■ 11, MDEC = 6, 

V(l) ■ 0.0, V(2) ■ 0.1,..., V(ll) - 1.0. The functions to be inter¬ 

polated are nine different reflection functions (for nine input or 

output directions), with x - 1.0, b ■ 1.1, and X » l.J. 



O
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 O
 

O
 O

 O
 o
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2890,LC0F,K0160,1,50,10,C PAL 77 
SIBJOb MAP 
SIBFTC MAIN 

DIMENSION F(21),C(15,21),W(15),V(21),Z(15),FZ(15) 
DOUBLE PRECISION Z,W 

INTERPOLATION 
F(J)*SUM(FZ(I)*C(I,J)) 

READ (5,1) N 
WRITE (6,2) N 
READ (5,1) M 
WRITE (6,3) M 
READ(5,1)MDFC 
WR ITF(6,2B)MUEC 

MDFC = O C(I,J) IN FULL PRECISION 
MDEC.GT. O C(I,J) TRUNCATED TU MDEC DECIMAL PLACES 

READ (5,4) (ZM),I«1,N) 
WRITE (6,5) 
WRITE (6,6) (ZU),1*1,N) 
READ (5,4) (W( I ),I*i,N) 
WRITE (6,7) 
WRITE (6,6) (W(I),I*1,N} 

READ (5,8) (VU),1 = 1,M) 
WRITE (6,9) 
WRITE (6,13) (VU),1*1,M) 

CALL LCOF(N,Z,w.M,V,C) 

IF(MOEC.EO.O) GO TO 25 

DO 22 1*1,N 
DO 22 J*1,M 
DEC*10.0**MDEC 
CD*C(I,J)*OEC 
CD*I F I X(CD) 

22 C(I,J)*CD/DEC 
C 

WRITE (6,18) 
WRITE(6»21) U,1*1,N) 
DO 23 J = 1,M 

23 WR I TE(6,24) V(J ) , (C(I,J ),I * I,N) 
GO TO 20 

C 
C 

25 WRITE (6,18) 
WR I TE(6,21) (1,1*1,N) 
DO 10 J* 1 ,M 

10 WRITE(6,19) V(J),(C(I,J ),I*1,N) 



c 
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20 READ ( 5,11 ) (FZ(I)»I = 1»IM) 
WRITE (6,12) 
WRITE (6,13) ( F Z ( I ),1 = 1,N) 

C 
DO 15 J = 1,M 
SUM=().0 
DO 14 1=1,W 

14 SUM=SUM + FZ(I )*C< I,J) 
15 F(J)=SUM 

WRITE (6,16) 
WRITE (6,17) (J , F (J),J=1,M) 

C 
GO TO 20 

1 FORMAT (12) 
2 FORMAT (3HIN=I2) 
3 FORMAT (3H M=I2) 

4 FORMAT (D24.16) 
5 FORMAT (5H0Z( I ) ) 

6 FORMAT (D30•16) 
7 FORMAT (5H0W( I )) 
H FORMAT (6E12.A) 
9 FORMAT (5H0V(J)) 

11 FORMAT (7F10.6) 
12 FORMAT (6H0F(Zn ) 
13 FORMAT (F20.8) 
16 FORMAT (15H0 J F(J) ) 
17 FORMAT (1H I2,E23.8) 

18 FORMAT ( 9FI0C MATRIX) 
19 F0RMAT(F10.4,7E17.8) 
21 FORMAT(9X1HV,7I17) 
24 FORMAT(F10.4,7F17.6) 
28 FORMAT (1X5HM0FC = ,12) 

END 
»I8FTC LCOF 

SUBROUTINE LCOF(N,Z,W,M,V,C) 
DIMENSION Z(15),W(15),V(21),C(15,21),PZ(15),MV(21),A(16,17) 
DOUBLE PRECISION Z,W, PZ , PV,A ,X1,X2,X,FK, SUM 

C 
C COEFFICIENTS FOR P* 
C 

NPLUS=N+i 
A(1,1 ) = 1.0 
DO 4 I = 1»NPLUS 
IP=1+1 
DO 3 N=IP,NPLUS 
X1 = N + i - 2 
X2=M - I 
A(N,I)=A(N-1,I)*X1/X2 
N=IP 
X«I 

3 
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O
 
O

 

4 A(N,N)=-A(N,N-1)*2.0/X 
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N=NPH)S-1 

COEFFICIENTS FOR INTERPOLATION 

6 

7 
I 
? 

DO ? I = 1 » N 
DO 2 J=I♦M 
SUM=0.0 
DO I Kl*I,N 
K=KI-1 
PZ(I )- A (K1 * 1) 
PV(J)xA(Kl,l) 
IF(KI.EO.I) GO TO 7 
DO ft LI = 2 »KI 
L=L1-I 
PZ ( I ) =PZ ( I ) + AIKl ,1.1 )*Z( I )**• 
VJ=D8LE(V(JI) 
VJL=0.0 
IF(V(J).LT.O.OOOOI) GO TO 6 
VJL=VJ**L 
PV(J) = PV(J) + A(K1,1.1 )*VJL 
FK=2*K+1 
SUM=SUM FK*PZ( I )*PV( J) 
C(II )*SOM 

8 

90 

DO 8 K1=1,N 

WRITE(ft,90)Kl,(A(Kl,Ll),L1=1,K1) 
FORMAT!14,ftE20.8/(4X6E20.8)) 
RETURN 
END 

SENTRY MAIN 
7 

11 
ft 

2.54460438286208660 -2 
1.29234407200302820 -1 
2.9707742431130145D -1 
5.0000000000000000Ü -1 
7.0292257568869853D -I 
8.70765592799697060 -1 
9.74553956171379Ü9D -1 
6.47424830844348160 -2 
1.39852695744638280 -1 
1.90915025252559380 -1 
2.08979591836734660 -1 
1.9091502525255938D -1 
1.39852695744638280 -1 
6.47424830844348160 -2 

0.0 0.1 
0.6 0.7 

0.203020 0.371563 0.405522 

0.2 
0.8 

0.379093 

0.3 
0.9 

0.340232 

R 
R 
R 
R 
R 
R 
R 
W 
W 
w 
w 
w 
w 
w 

0.4 
1.0 

0.309816 

0.5 

1/7 
2/7 
3/7 
4/7 
5/7 
6/7 
7/7 
1/7 
2/7 
3/7 
4/7 
5/7 
6/7 
7/7 

0.292717 V*.025 
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0.0731602 
0.0347348 
0.0192928 
0.0123163 

0.00905363 
0.00764297 

0.349797 
0.288726 

»IHSYS 

0.242239 
0.147246 

0.0925291 
0.0631951 
0.0481446 
0.0413203 
0.208559 
0.308438 

eNOJOB 

0,338402 
0.249669 
0.176338 
0.128695 
0.101643 

0.0887331 
0.120187 
0.289201 

0.357989 
0.296789 
0.225259 
0.171199 
0.138247 
0.121975 

0.0733123 
0.236751 

0.343726 
0.304510 
0.2406H0 
0.187130 
0.153061 
0.135881 

0.0492430 
0.187859 

0.324392 
0.297928 
0.240762 
0.189609 
0.156193 
0.139156 

0.0371810 
0.155426 

0.311595 
0.291086 
0.237743 
0.188390 
0.155742 
0.139000 

0.0317777 
0.138773 

TOTAL NUMBER OF CARDS IN YOUR INPUT DECK 
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$ I HF TC LCf)F 
SURKDUTI NE LCOF(N,Z , W,M,V,C) 
DI MENS IHN Z(15)»W(15),V(21),C(15,21),PZ( 15),PV(21) 
DOUBLE PRECISION PZ,PV,SUM,PLI,Z,W,Fl 
PZ(1)=1.0 
PV(1) = 1 .0 
N1 = N-1 
DO 1 1 = 1, N 
DO 1 J = 1 , M 
PZ (2) = 1.0-2.0*(Z ( I>) 
PV2 =1.0-2.0*(V(J) ) 
PV(2)=DBL E(PV2) 
SUM=1 .O + PZ(2)*PV(2)*3.0 
DO 2 L=2,NI 
L1=L+1 
L2=L-1 
PLl = DBLE(FL0AT(L2) ) 
FL = i)RLE ( FLOAT ( L ) ) 

PZ(L1)=(-Pll*PZ(L2)+(2.0*FL-1.0)*pZ(2)*PZ(U)/FL 
PV(Ll)=(-PLl*PV(L2)+(2.0*FL-1.0)*PV(2)*PV(L))/FL 

2 SUM=SUM+(2.0*FL + 1.0)*PZ(L1)*PV(L1 ) 
C( I,J) = W(I)*SUM 

1 CONTINUE 
RETURN 
END 
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