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Abstract 

A technique is presented for calculating the radar 

cross section of a conducting cone-sphere as a function 

of cone angle,   aspect angle,   tip radius,   base radius,   and 

wavelength for both cw and short-pulse incident signals. 

A modification of the physical optics approximation is 

used in which the incident sinusoidal wave is replaced by 

a pulse of triangular waves,   permitting the physical optics 

integrals to be replaced by finite summations.    Creeping 

waves are included by using the known results for a sphere 

combined with an aspect-angle dependence obtained from a 

ray-tracing model.    For long incident pulses,   the calcu- 

lated cross sections show good agreement with cw measured 

values.    For short incident pulses,   the behavior of individual 

scattering centers may be studied as a function of the target 

parameters. 

Accepted for the Air Force 
Franklin C.   Hudson 
Chief,   Lincoln Laboratory Office 
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A Model of Radar Scattering from the Cone-Sphere 

I. INTRODUCTION 

There are only a few target shapes for which electromagnetic scattering 

is exactly calculable and as a consequence,   many approximation techniques 

have been developed.    One of the most widely used of these is the physical 

optics or Kirchoff approximation. *    The basic assumption of this method is that 

the  surface cur   ent at a point on the target is the  same as would be produced 

on an infinite plane tangent to the target at that point.    There are several 

variations of physical optics which differ in their treatment of shadow regions 

and shadow boundaries,   but all of these retain the basic assumption mentioned 

above.    This assumption appears to restrict the validity of physical optics to 

targets with characteristic dimensions (such as radii of curvature) large com- 

pared with a wavelength.    However,   there are cases for which physical optics 

is applicable for bodies with small characteristic dimensions.    For both pointed 

and rounded cone tips,   it has been shown    that the physical optics results 

closely approximate results obtained from a more exact theory. 

Even though physical optics represents a considerable simplification of 

electromagnetic theory,   in many cases the physical optics integrals must be 

evaluated either numerically or by means of some analytic approximation.     In 

the following sections we will use an approximate waveform for the incident 

signal,   which considerably simplifies the physical optics calculations.    The 

agreement between these results and more exact (theoretical and experimental) 

results will then be used to justify applying the present model to cases which 

have not been considered previously. 

The present model will be applied to calculate both the cw and short- 

pulse scattering of cone-spheres at all aspect angles.    The scattering from 

these targets is generally expressed in terms of returns from various  scatter- 

ing centers.    Depending on the aspect angle,   these may include tip,   joint, 

specular,   and creeping-wave returns.    The tip,   joint,   and specular returns are 



fairly well approximated by physical optics.    At zero aspect angle (nose-on), 

the creeping-wave return is closely approximated by the creeping-wave return 

for an isolated sphere.    A simple model is used to estimate the creeping-wave 

return at non-zero aspect angles.     The results obtained by combining physical 

optics and the creeping-wave model show agreement with cw measurements. 

The predicted short-pulse results may be used to estimate the contribution of 

the various scattering centers as functions of aspect angle,   wavelength,   etc. 

U.        PHYSICAL OPTICS FOR TRANSIENT SIGNALS 

Most work in electromagnetic scattering has been concerned with the re- 

sponse of a target to an infinite sinusoidal incident wave.    In this case,   the 

back-scattered magnetic field is given by 

ikH , A 
Hs =   z-l^F exP("ikr)  J* exp(-2ikz)^   dz       , (2.1) 

where   k ,    H    ,    and   e    are the wave number,   amplitude,   and unit polarization 

vector of the incident field,     r    is the distance to the observation point,     A   is 

the area of the target intersecting a plane of constant   z   ,   and   S   is   usually 

taken to be the illuminated surface of the target.    In Eq.   (2. 1),     z   is taken 

along the direction of incidence (not necessarily the symmetry axis of the body) 

and,   in general,   the integral is quite complicated.    For transient incident sig- 

nals,   we must take the Fourier transform of Eq.   (2. 1) weighted by the incident 

spectrum,    H (k) .    We then obtain 

^s(^'t) = 2FF«f   dkikHQ(k) exp [-ik(r  - ct + 2z)]J^ dz       . (2.2) 
S 

Performing the   k   integration first,   we are left with 

Hs<r " ct> = 27FF ef Ho' <r - ct + 2z> H7 dz     - <2- 3> 
S 

where   H   '    is the derivative of the incident waveform, o 
For the particular cases of impulse,   step,   and ramp waveforms,   the 

integral in Eq.   (2.3) is trivial,   giving   d  A/dz   ,   dA/dz ,   and   A    respectively 



3   4 
(evaluated at   2z = et - r).    Kennaugh and co-workers have considered the 

impulse response of several bodies in some detail.    However,  they have modi- 

fied the physical optics approximation to improve their long-wavelength results. 

In the present discussion,   we will be concerned with the short-wavelength re- 

sponse of a cone-sphere and will modify physical optics only to include creeping 

waves. 

There are several disadvantages in the use of the impulse response.    Per- 

haps the most serious drawback is that the impulse is a poor representation of 

any physical waveform.    The impulse has a non-zero dc component and is not 

capable of indicating the wavelength dependence of scattering.    These latter 

two objections may be removed by combining positive and negative impulses 

separated by half a wavelength.    However,   the resulting waveform is still not 

physically reasonable.    Other waveforms may be formed by appropriately com- 

bining step or ramp functions.    For our purposes,   we will use a pulse of tri- 

angular waves formed from ramp functions,   as shown in Fig.   1.    Use of such 

a waveform simplifies the calculations considerably and provides a fairly good 

approximation to a pulsed sinusoid.    The Fourier expansion of this waveform 

contains only odd harmonics with the amplitude of the   nth harmonic decreasing 

as    l/n    .    If we consider a pulse one wavelength long,   the resulting field is 

expressed in terms of the ramp response as follows: 

Field (z) = Ramp (z)  - 2Ramp (z - \/S) + 2Ramp (z - 3\/8) 

- Ramp (z - \/Z)       , (2.4) 

where    z - (ct - r)/2 .    Thus,   the physical optics integrals have been approxi- 

mated by finite sums.    From Eq.   (2. 3),   we find the ramp response to be 

Ramp (z)  - ^T A (z)       , (2. 5) 

which is easily calculated. 

Examination of Eq.   (2.4) gives some insight into the results to be ex- 

pected.    After some algebra,  the scattered field is seen to be proportional to 

the third finite difference of the ramp response (or the target area).    In the 

limit of small wavelength,  the scattering from the target is localized in those 



Fig.   1.    Pulse constructed from ramps, 

3-44-10094 

( y, y' out of poper ) 

Fig.   2.    Geometry for cone-sphere. 



3 3 
regions where   d  A/dz      is non-zero.    For   \ -» 0 ,   the one wavelength pulse 

used to obtain Eq.   (2.4) has the appearance of a doublet for which the scattered 
3 3 

field is also proportional to   d   A/dz    ,   as seen from Eq.   (2.3).    In the next 

section,   we will calculate   A(z)   for a cone-sphere as a function of target 

dimensions and aspect angle. 

III.       SCATTERING BY THE CONE-SPHERE 

In this section we will calculate the response of a cone-sphere to an 

incident ramp waveform as a function of cone angle,   aspect angle,   sphere 

radius,   and tip radius.    This ramp response may then be used to obtain the 

scattered field,   as discussed in the previous section.    To calculate   A(z)   for 

the cone-sphere,   we use the coordinates shown in Fig.   2. 

In the x'   - y'   - z'    coordinate system,   the surface of the cone-sphere is 

given by 

a     -  [z'   +(R  - a) esc a] ;     -Rcsca+a(csca-l)^z'   ^ 

- R esc a + a cos a cot a 

x'     +y' 
(z'   + R esc a)  tan  a 

R2-z'2 

(tip) 

-Rcsca facosa cot a ^ z1   £ 

- R sin a (3. 1) 

(cone) 

;       - R sin a * z»   £ R 

(sphere) 

where   R   and   a   are the sphere and tip radii and   a   is the cone half-angle. 

These equations may be converted to the x - y  - z    coordinates through the 

transformation 

x !    - x cos - z sin 

y»    =  y 

z'   = x sin 0 + z cos G 

where    G    is the aspect angle,   to give 

(3.2) 



a   - [x sin 9 + z cos 9+(R - a) esc a J       ;   tip 

y   = - (x cos 9 - z sin 9) + \ (x sin 9 + z cos 9+R esc a)    tan  a ;   cone (3.3) 

I R     - (x sin 9 + z cos 9) ; sphere 

The tip-cone and cone-sphere joints are not planes of constant   z   but may be 

expressed in the form   x.(z)   and   xJz) .    The area of the cone-sphere at a 

fixed value of   z   is given by 

A (z) = 2 JV (x,   z) dx      . (3.4) 

In general,  this integral must be split into integrals over the tip,   cone,   and 

sphere,   depending on the value of   z .    From Eq.  (3. 3),   it is seen that   y      is 

a quadratic function of   x   in each region and thus,   the integrals in Eq.   (3.4) 

may be done analytically.    Depending on the values of   c.   ,   c? ,   and   c.  ,  the 

(c.x    + c?x + c^>) '    dx ,   is expressed in terms of various elementary 

functions.    It should be noted that   y      is not a quadratic function of   x   for an 

arbitrary body of revolution but only for bodies comprised of linear and quad- 

ratic surfaces. 

In deriving   A (z) ,  we have calculated the area of the cone-sphere inter- 

secting the plane    z = const   independent of whether this area is illuminated or 

shadowed.    In the next section we will attempt to justify this neglect of shadow- 

ing,   and through the introduction of creeping waves,   will partially correct for 

the effects of shadow boundaries and surface waves. 

IV.  SHADOWING EFFECTS AND CREEPING WAVES 

In obtaining the ramp response of the cone-sphere in the previous section, 

we used the total target area rather than the illuminated area.    This is con- 

sistent with the version of physical optics used by Adachi    for slender bodies 

with no specularly reflecting points in the shadowed region.    For the cone- 

sphere,   however,   such shadowed specular points are present for a range of 

aspect angles and will be dealt with later in this section. 

Before continuing the discussion of shadowing for the present problem, 

it is appropriate to review its treatment in cw physical optics calculations. 

For nose-on incidence on a pointed cone-sphere,   the integral in Eq.   (2. 1) 



becomes -Rsina z* 

2rr [tan  a   I ( z +R csca) exp ( -2ikz) dz - J        z exp (-2ikz) dz ] 
-Rcsca -Rsina 

 j [-tan a exp ( 2ikR csca) + sec a exp ( 2ikR sina) 
2k^ 

- (1 + 2ikz*) exp (-2ikz*)J . (4. 1) 

The first term in this expression represents tip scattering,   while the second 

term represents scattering from the cone-sphere joint.    The term containing 

z'     should describe the effect of the rear termination but does not do so cor- 

rectly.    If the physical optics integral is cut off at the shadow boundary (z     = 0) , 

the last term in Eq.   (4. 1) describes a "joint" return from the shadow boundary. 

If the integral is extended over the entire target (z    = R) ,  then this term de- 

scribes a "specular" return from the rear of the sphere.    Clearly,   neither of 

these techniques correctly describes the effect of the shadow boundary and of 

surface waves.    The usual procedure"   for dealing with this difficulty is to 

neglect the term containing    z      entirely and to replace it with a term describing 

creeping waves (obtained from the solution for a sphere).    For a pulse wave- 

form,   this fictitious return occurs only for    0^9^ rr/2 + a   and may be 
2 2 eliminated by using the expression   R     - z'       for    z'   ^ R   in Eq.   (3. 1).     This 

technique is successful as a consequence of the fact that the scattered field is 

proportional to the third difference (or derivative) of the target area. 

After eliminating fictitious returns from the shadow region,   it is necessary 

to include the creeping-wave return.    The creeping-wave return at nose-on 

incidence is usually taken to be the same as that for a sphere of the same radius 

(with some slight corrections   ).    Since an exact calculation of the creeping 
Q 

wave even for a sphere     is fairly complicated,   it will be necessary to use an 

approximate method to determine the cone-sphere creeping wave for non-zero 

aspect angles. 
A model is presented in Appendix A ,   in which the creeping-wave return 

at aspect angle    9   is given by the product of the nose-on creeping-wave return 

and a geometrical factor   F(9)   given by Eqs.   (A-6) and (A-7) and graphed in 

Fig.   A-l, 



(\ 

F(6) = 

where 

2  * 
cos cp    = 

1  - 2<p  /n 

.   2    ,  .   2. sin   a/sin   I 

0 ^ 9 ^ a 

a £ 9 £ JT/2 + a 

rr/2 + a £ 6 * TT 

(4.2) 

(sin  a - cos   9)/sin   9 

a £ e <. n/2 

n/2 * 6 £ n/2 + a 
(4.3) 

We must now calculate the creeping-wave return for nose-on incidence. 
9 

For this purpose we make use of the empirical result    for a sphere of radius R, 

o-      ^TTR2(kR)'5^ 
cr 

for    1 * kR £ 15 (4.4) 

-5/4 The amplitude of the scattered field varies as    k   "' ~*    and the phase is such that 

the creeping-wave ramp response (obtained using Fourier transforms) has the 

form 

Rampcr(z) M gjL 6R"l/4(z - TTR/2)
9/4 (4.5) 

The creeping wave given by Eqs.  (4. 2) and (4. 5) must now be added to the pre- 

vious ramp response given by Eq.   (2. 5) to obtain the scattered field. 

In the following section,   results obtained from the present model will be 

compared with cw measurements of cross section as a function of aspect angle 

and wavelength.     This will provide a means of estimating the accuracy of this 

model. 

V.        NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENT 

A computer program has been written to calculate the backscattered field 

as a function of range given the cone half-angle,   aspect angle,  tip radius,  base 

radius,   wavelength,   and pulse length (in wavelengths).     Typical results are pre- 

sented in Figs.   3a and 3b,   which show the nose-on and tail-on scattering of a 

four-wavelength pulse.    The tip,   joint,   creeping wave,   and specular returns 

are evident and are seen to have differing waveforms.    The specular return is 

similar to the incident pulse,   while the joint return is proportional to the inte- 

gral of the incident pulse.    The tip return is the sum of specular and joint con- 

tributions and its detailed shape depends on a/\.     The creeping-wave return 
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Fig.   3a.    Scattered field for nose-on incidence on cone-sphere. 
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Fig.   3b.    Scattered field for tail-on incidence on cone-sphere. 
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is seen to have a mean value which increases with time (range) until the pulse 

has passed. 

To obtain agreement with known results,   the cross section is defined in 

terms of the local amplitude of oscillation as follows: 

er = 4nr   | scattered amplitude/incident amplitude | . (5. 1) 

The amplitude is defined in terms of the difference between the maximum and 

minimum field values occurring within a half-wavelength of the point considered. 

As the pulse length increases,   more than one scattering center will con- 

tribute to the return,   and interference may take place.    Examples of this inter- 

ference are shown in Fig.   4,   where the contributing  scattering centers are 

indicated.    It is  seen that the tip and joint interfere constructively,   while the 

joint and creeping wave interfere destructively. 

If the pulse is sufficiently long,   all scattering centers will contribute to 

the scattered field over a certain range,   and this cross section should equal 

the cw cross section of the target.    Since the cw cross section of the cone- 

sphere has been measured for a variety of body parameters,   it is of interest 

to compare these measurements with the results of the present model.    In 

Fig.   5 the nose-on cross section is shown as a function of K/\ for the present 

model,   for cw theory       and for several experiments.    Figures 6a through 6d 

show the cross section as a function of aspect angle for the present model 

superimposed on experimental results. In all these figures,   the present re- 

sults are in qualitative agreement with experiment,   and the numerical devia- 

tions are usually of the order of a few db.    These differences are comparable 

to the experimental differences between HH and VV polarization,   and since the 

physical optics approximation predicts no polarization dependence for back- 

scattering,   we should not expect better agreement between the present model 

and experiment.    The numerical results presented in Fig.   6a through 6d at  10 

aspect-angle intervals approximate the average or smoothed cross-section 

pattern.    To determine whether the detailed lobe structure could be obtained, 

the cross section was calculated every 1    from 30    to 60    for R/\ =  1.45 (see 

Fig.   6b).    The fact that the correct lobe structure was not obtained may be 

understood if lobing is interpreted as interference between scattering centers. 

II 
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  EXPERIMENT 
X     PRESENT   CALCULATIONS 

Fig.   6a.    Calculated and measured (HH polarization) cross 
section; a = 12.5°,   R/X =   .6. 
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Fig.   6b.    Calculated and measured (HH polarization) cross 
section; a = 12.5°,  R/\ = 1.45. 
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Fig.   6c.    Calculated and measured (HH polarization) cross 
section; a = 12.5°,   R/\ = 2.4. 
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Fig.   6d.    Calculated and measured (HH polarization) cross 
section; a = 12. 5°,  R/\ =3.91. 
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To obtain a good approximation to the average cross section,   it is only necessary 

to represent the dominant scattering center fairly accurately.    However,   to ob- 

tain the correct lobe structure,   it is necessary to represent all scattering 

centers very accurately. 

VI.       SCATTERING BY INDIVIDUAL CENTERS 

Before investigating the scattering by individual scattering centers in 

detail,   it is essential to identify these centers.    In Figs.   3a and 3b the tip, 

joint,   specular,   and creeping-wave returns appear as localized scatterers for 

nose-on and tail-on incidence.    At other aspect angles,   these individual scatter- 

ing centers may themselves show some structure.    The specular return arises 

from the specular point (or line) on the target and should not have any structure 

regardless of aspect angle.    Similarly,   all rays contributing to the creeping- 

wave return have the same phase and will appear to come from a point scatterer. 

The joint return,   however,   is produced by a ring of radius    R cos a   and the 

elements of this ring are all in phase only for nose-on and tail-on incidence. 

At arbitrary aspect angles,  the returns from different parts of the ring will 

differ in phase,   and these parts may be resolvable if the pulse is sufficiently 

short.    In Figs.   7a and 7b,   showing the scattering from a typical target at 0 

and 30    aspect angles,   the joint return is seen to separate into distinct returns 

from the leading and trailing edges of the ring.    (The additional returns between 

the tip and joint are due to numerical round-off errors and provide an estimate 

of the accuracy of the calculations. )   It is at these edges of the cone-sphere 

joint (points A and B in Fig.   8) that the ring is perpendicular to the direction 

of incidence.    These scattering centers may also be identified using conventional 

cw physical optics by finding the points of stationary phase in Eq.   (2. 1). 

The tip scattering consists of a specular part and a return from the tip- 

cone joint.    If the tip is sufficiently large,  these will be resolvable and, for 

some aspect angles,   the joint return will show structure similar to that of the 

cone-sphere joint.    For the cases we will consider,   however,   the tip dimen- 

sions are fairly small and the tip appears as a single localized scatterer. 

Now that we have located the various  scattering centers,   it is of interest 

to study their behavior as a function of wavelength and aspect angle.    This is 

18 
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Fig.   8.    Scattering centers on cone-sphere joint. 
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done by using an incident pulse short enough to resolve individual centers. 

Figure 9 shows the nose-on cross sections of the tip,  joint,   and creeping-wave 

returns as functions of R/\   and   a/\   for a 15    half-angle cone-sphere.    For 

a fixed target size,   the horizontal axis corresponds to a frequency axis.    At 

low frequencies,   the creeping-wave return exceeds the joint return and both 

are much larger than the tip return.    As the frequency increases,  however, 

the creeping wave becomes weaker,   while the joint remains constant.    The tip 

return increases and,   at high frequencies, may provide the dominant contribution 

to the scattering. 

In Fig.   10,  the scattering from a 15    cone-sphere with R/X. = 3   and 

a/\ = . 06   is shown as a function of aspect angle.    The creeping wave is seen 

to be constant near nose-on and decreases monotonically as the aspect angle 

increases.    The joint return decreases rapidly and divides into leading- and 

trailing-edge returns as    9   increases from zero.    These joint cross sections 

pass through minima and begin to increase as broadside incidence (6 = 7 5  ) is 

approached.    Near broadside the leading joint and specular returns run to- 

gether and cannot be resolved.    The tip return is roughly constant near nose-on 

and increases slowly as broadside is approached.    For other values of   R/X.   or 

a/\ ,  the aspect-angle dependence of the tip and joint returns may differ from 

those shown in Fig.   10.    The joint and tip returns for    6 > 90      are very similar 

to those for    9 < 90      due to the use of the physical optics approximation and the 

type of shadowing assumed.    These returns for    9 > 90      are much weaker than 

the specular return,   which is a maximum for broadside incidence and is a 

constant for incidence on the rear sphere.    There are many other combinations 

of target size,   shape,   and orientation,   which could be presented,   but it is felt 

that this would add nothing essentially new to what is shown in Figs.   9 and 10. 

It must be remembered that these results have been derived from an 

approximation to physical optics which is itself inexact.    The fact that the 

present model shows good agreement with experiment (see Sec.  V) indicates 

that the results for the individual scattering centers are probably correct,   but 

errors of several db in cross section are to be expected. 

22 
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VII.     CONCLUSIONS 

At this point it is useful to summarize the present method and results. 

The scattering from a conducting cone-sphere is calculated using physical 

optics for an incident signal consisting of a pulse of triangular waves.    Use of 

this waveform reduces the physical optics integrals to finite summations.    In 

essence,   we are approximating a sinusoid by a series of line segments.    More 

refined models might use a larger number of segments to better approximate 

the sinusoid; in the limit,   this is equivalent to numerical evaluation of the 

physical optics integrals. 

The entire surface of the target (illuminated and shadowed) is assumed 

to contribute to the scattering,   but fictitious returns are eliminated by a pro- 

cedure analogous to that used in conventional physical optics calculations. 

Creeping waves are included by using the known results for a sphere with an 

aspect-angle dependence obtained from a ray-tracing model. 

If the pulse length is sufficient to illuminate the entire target simul- 

taneously,  the cross section obtained should equal the cw cross section.    Cal- 

culated and measured results show agreement for a variety of cases.    It should 

be noted that this agreement implies only that the return from the dominant 

scattering center is represented accurately.    In particular,   for incidence on 

the rear sphere,   the specular return is much stronger than any other return, 

and the agreement between the present model and experiment does not insure 

that these additional returns are described correctly.    However,   in the region 

near nose-on,  this agreement indicates that the present results are not grossly 

in error.     For short-pulse incidence,   the scattering may consist of tip,   leading- 

joint,   trailing-joint,   creeping-wave,   and specular returns.    These various re- 

turns have been studied as a function of the target parameters. 

It is of interest to consider other target shapes for which this method is 

applicable.    The calculation of   A(z)   from Eq.   (3.4) constitutes the solution to 

the problem,   and this integral is considerably simpler than the physical optics 

integral Eq.   (2. 1).    In particular,  for bodies of revolution formed from linear 

and quadratic curves,    A(z)   may be evaluated explicity.    This class of bodies 

includes those comprised of portions of spheres,   cones,   cylinders,   paraboloids, 
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spheroids,   hyperboloids,   etc.    For many targets,   however,  there will be a 

problem in describing returns such as the creeping wave on a cone-sphere or 

the diffracted wave on a flat-backed cone.    These returns are not obtainable 

from physical optics and must be included separately to adequately describe 

the scattering.    If this is done,  the present method may prove useful for a 

variety of targets. 

SDW:cm 
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APPENDIX A 

A Model of Creeping Waves for the Cone-Sphere 

This appendix serves to present a simple model which permits estimation 

of the creeping-wave return at any aspect angle.    The geometrical theory of 

diffraction has been used to describe surface waves       and we will make use of 

its assumptions that the various rays contributing to the total field do not inter- 

act.    A "creeping ray" which makes one circuit of the spherical part of the 

cone-sphere traces the same ray path as a creeping ray on an equivalent sphere, 

and should have the same contribution to the creeping wave return (if rays 

which loop the sphere more than once are neglected).    For a sphere,  the creep- 

ing rays encounter no obstacles in looping the sphere.    For a cone-sphere,   how- 

ever,   for some aspect angles,   many creeping rays will intersect the cone- 

sphere joint and their paths will be considerably altered.    As a first approxi- 

mation,  we will assume that any creeping ray which intersects the joint does 

not contribute to the creeping-wave return,   thus neglecting the effect of creep- 

ing waves on the conical surface. 

The basic assumption of the present model is expressed in Eq.  (A. 1): 

A     (cone-sphere) = A     (sphere) (fraction of contributing (A. 1) 
creeping rays) 

or 

Acr(9) = Acr(0)F(6)      , 

where   A        is the creeping-wave amplitude.    This approximation should be 

fairly good since all contributing creeping rays have the same phase.    To calcu- 

late   F( 0)   easily,   we use the   x - y - z   coordinate system of Fig.   2 and intro- 

duce the polar angle,   \|j ,   and azimuthal angle,   cp ,   about the z-axis. 

Since the creeping rays propagate along great circles,   all rays which 

contribute to the backscattered wave must pass through the anti-specular point 

(\|i  = 0) .    A particular creeping-ray path is given by   cp - (p.   for   \|r   decreasing 

from   rr/2 to 0 ,   and   cp = cp + TT   for    \|f    increasing from   0 to TT/2 .    If this ray 

is to contribute to the creeping-wave return,   it may not intersect the cone-sphere 
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joint.    To determine which rays contribute,   it is necessary to express the 

locus of points on the joint in the present coordinate system.    This is done by 

noting that the line from the origin to any point on the joint makes an angle of 

TT/2 + a   (measured from the rear of the sphere) with the cone-sphere axis. 

Specifying an arbitrary point on the joint by   (\|f, cp)   and the point of the rear of 

the sphere by   (\|/.   =8,   cp.   = 0) , and using spherical trigonometry  we find 

cos \|f cos  6 + sin ijf  sin 9 cos cp + sin a = 0       . (A. 2) 

This may be solved to find the equation of the cone-sphere joint,     i|l  = \|f ((f), for 

a given aspect angle    9   and half-angle    a . 

It is now necessary to use these results to find   F( 9) ,as defined in 

Eq.   (A. 1).    Rays will be incident on the cone-sphere at all values of azimuth 

cp.  .     We must determine the ranges of   cp.    for which the creeping-ray paths 

(cp = cp.,   cp.  + TT,   \[i  ^ TT/2)   intersect the cone-sphere joint   \|f  = ty(cp) .    More ex- 

plicitly,   we must find the range of   cp.    for which either    i|((<p.)    or    ty{cp.  + TT)   is 

less than   TT/2 .    Defining   x = cos \|r  ,   Eq.  (A. 2) becomes 

x(cos  9 + sin 9cos (£>) +x(2cos 9 sin a) +(sin a-sin 8cos cp) = 0     ,        (A.3) 

or 

Ax2 + Bx + C = 0 

Non-contributing rays will have   x(cp.)   or   x.(cp.  + TT)   between 0 and  1.    Using 

the solution to the general quadratic equation,   we will examine the conditions 

under which a ray is non-contributing.    Since   A    is always positive,   we must 

consider only two cases depending on the sign of B: 

Case  1 

implies   C ^ 0 B > 0 (9 <TT/2) : 1 * x * 0 

or 
7              •    2 
2     N sin   Q 

j 

sin   9 

Case 2 

B < 0 (9 > TT/2) :   1 2> x * 0 

or 7                   ■     2 
2     s sin  a - 

cos   cp ^   
cos   9 

2 
sin 9 

(A. 4a) 

implies    B     - 4AC * 0 

(A. 4b) 
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Those rays for which   cos   cp.    satisfies inequalities   (A. 4a) and (A. 4b)   are non- 
1      * 

contributing.    If we introduce   cp      as that value of   cp    satisfying the equality 

sign in Eqs.   (A. 4a) and (A. 4b) ,  then the range of   cp.    may be divided as follows: 

0 ^ cp. ^ cp non-contributing rays 

cp    < cp. < TT - cp contributing rays 

TT - cp    ^ cp. * TT non-contributing rays (A. 5) 

etc. 

However,   for many combinations of    9   and   a    ,  there is no solution for   cp 

From Eq.   (A. 4a) we see that   for    0 < a ,  no rays are non-contributing   and 

F = 1 .    From Eq.   (A. 4b)   for    0 > n/2 + a ,   all rays are non-contributing and 

F = 0 .    Thus,   our results may be summarized by 

1 0 £ 0 * a 
JL, 

F(G) =        <    1  - Zcp  /TT a £ 0 * n/2 + a 

n/2 + a * 6 * TT (A. 6) 

where 

2   * 
cos cp    - 

sin  a/sin   0 a £ 0 £ n/2 

(sin   a - cos   0)/sin 9        TT/2 £ 0 £ n/2 + a (A. 7) 

The function   F(0)   obtained from Eqs.  (A. 6) and (A. 7) is shown in Fig.  (A. 1) 

for a variety of aspect angles. 

The determination of   F( 0)    serves to reduce the problem of finding the 

creeping-wave amplitude for a cone-sphere at any aspect angle to that of find- 

ing the creeping-wave amplitude for a sphere (at least to this degree of 

approximation). 
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Fig.  A-l.    Geometrical factor for creeping waves. 
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