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ABSTRACT 

The influence of gaseous convection inside a model placed in a 
space chamber with solar simulation was investigated by means of a 
numerical calculation.    Thermal modeling relations were derived for 
a model with internal convection. 
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SECTION I 

INTRODUCTION 

In thermal testing of space vehicles in a space simulation chamber 
there is the question of the influence of the gas (or liquid) in the space- 
craft on the heat balance and the temperature-time history of the space- 
craft.    Also,  if the model is a scaled version of the actual vehicle and if 
the gas significantly influences the temperature-time history,   a scaling 
procedure must be devised-to produce the proper convection effects.    Tests 
carried out in a space chamber with gravity-induced internal convection do 
not simulate the free space conditions.    It is therefore useful to determine 
the limiting conditions for which the internal convection can be neglected. 

Although it is clear that the liquid in a thin-walled tank influences 
markedly the temperature-time history of such a tank when it is subjected 
to a periodic solar source in cold space,   it is not immediately apparent 
when the heat capacity of a gas and the heat transmission through the gas 
are important. 

In this report the temperature-time history of an arbitrary shaped 
container, filled with a gas,  is calculated.    The container is placed in a 
cold (0°K) vacuum chamber and suddenly subjected to a simulated solar 
source maintained at one solar constant.    This includes,  for example,   a 
simplified case of a space capsule carrying its own atmosphere. 

The model used in the present calculations is very simple compared 
to many actual cases.    However,  it is believed that the results are useful 
as a guide in assessing the problem in practical cases. 

SECTION II 

ANALYSIS 

2.1   BASIC EQUATIONS 

Consider an arbitrary shaped con- 
tainer of temperature Ts with a gas at 
temperature Tg. The container is placed 
in a cold (0°K) vacuum environment and 
it is subjected to parallel radiation, qs, 
over its projected surface area, As, nor- 
mal to the radiation direction. For sim- 
plicity the thermal conductivity  of   the 
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solid is assumed to be infinite.    The energy balance of the solid is: 

aqsAs _ «/IVAe - h(Ts - Tg)Ai = CSM,   12k (1) 

and the energy balance for the gas is: 

h(Ts _ T8)A, =  CgMg  111 (2} 
dl 

The heat-transfer coefficient,  h,  is an average value over the tem- 
perature range considered. 

Under steady-state conditions,  Eqs.  (1) and (2) give: 

oqsAs = «rTE«Ac (3) 

where TE is the equilibrium temperature.    Substitution of Eq.   (3) in 
Eq.   (1) gives: 

«AeOV  - TV)  -h(Ts  - Tg)Al  m  C3MS  ils (4) 

The following nondimensional parameters and variables are 
introduced: 

A       ■'s — rSi0 h   = 
T    — T 

T    = 

hAj 
t 

TE-TSi0 TE ~ '''s.o CSMS 

C   _   C|c\        P   . 
CSMS 

€aAe 

h A, 
(TE - To)1 Q = To 

TE - rl 0 

We shall assume for the initial temperatures TSj D ~ Tgj o ~ To. 
although no special difficulty is introduced when TS/0 t Ttf^ 0.    Substitu- 
tion in Eqs.   (2) and (4) gives the basic equations: 

es-es_c^ (5) 

P [(l+Q)4 - {ßs^QV] - (e, - 9E) = i^. (6) 

The boundary conditions are: 

T - 0:    e& = 0g = 0 

T -  oa:      0S   =   0g   =   1 

2.2  NUMERICAL METHOD 

Equations (5) and (6) can be written in finite difference form: 
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where n £ 1 and Q„ 0 
= ^s, 0 = 0 

Ös.n+i   =  6Si„  +  Ar {   P[Q   +Q)'  -  (es>a  +  Q)*] 

-(0S.O   -   9g,„>   } (8) 

where n >  0 and 6gt 0 
= ös> 0 = 0 

Equation (7) is a recursion formula for 0g and can be written as: 

L c c c 

or 

Sg,n   --£■   fe..^l   4   F"1    (1   -    ^r1   *8,a_}] 

The convergence criterion for the series in Eq.   (9) is: 

(9) 

(>-?) Ar\   0s,n-j 

C / ös>n_j. 

or also: 

(1 _ _) 
Ar,    fl9,i 

C      $s,i4- i 

<   1 

<   1 

where i is an arbitrary number in the regime of the series.    This can also 
be written as: 

1 

In the present problem 

0s,i+l ^7        i 0a,i+l   <  — <  i  +     —„_ 
#s, i c ds, i 

(10) 

^s.i-t- 1 
>   1 

and the series can be made to converge. The value of AT should be chosen 
such that the error in 0 is as small as desired. For example, by choosing 
the first temperature increase, Ös \ - 0.02, the following criterion results 
from Eq.   (8): 

Ar = 
0.02 

P[ (l + Q )« - Q4] (ID 

The value of AT is determined by Eqs.  (10) and (11) and is dependent on 
C,   P,   andQ,    For gases,  even high pressure gases,  the range of C was 
such that these conditions could be satisfied.    However,  it may not be 
possible to apply the same numerical technique to liquids in thin-walled 
containers. 
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SECTION III 

NUMERICAL RESULTS AND DISCUSSION 

The temperatures of the solid (0S) and gas (0g) were calculated as a 
function of time (T) with Eqs.   (7) and (8).    Numerical solutions were 
obtained for Q = 0. 1,  0. 3,  amd 0. 5 and P = 0. 2,  0. 4,  and 0. 6 with 
appropriate values of C,  ranging from 0. 02 to 0. 4. 

These values of Q correspond to TE/T0 = 11,  4. 33,  and 3,  respec- 
tively.    The equilibrium temperature,  Tg,  is plotted versus ale  in 
Fig.   1 for a flat plate (As/Ae = 1/2) and a sphere (As/Ae = 1/4),   assum- 
ing radiation of one solar constant {qs = 1395 w/m2).    The ratio o/e  ranges 
from a few tenths for light colored paints to over ten for polished zinc so 
that the regime of interest is TE = 200 to 600°K.    The values of Q corre- 
spond then to the range T0 = 60 to 200°K for the configurations in Fig.   1. 
In many cases T0 will be higher,  which corresponds to a value of Q 
greater than 0. 5.    As will be seen,  this would correspond to smaller 
convection effects, 

A high value of P corresponds to a relatively small convective heat- 
transfer contribution as is apparent from the definition of P and Eq.   {6). 
The value of h was estimated from the convective heat-transfer relation, 
Nu ~ (Gr)1/4J where the proportionality constant was taken somewhat 
lower than for free external convection.    For example,  for a sphere of 
one meter diameter filled with air at from 1 to 100 atm at room tempera- 
ture,  it was estimated that h = 3 to 30 w/m2-°K.    If further e   =1.0, 
Ae/Ai - 1, the range of P is from 0. 05 to 0. 5. 

The quantity C is the ratio of thermal capacity of the gas to that of 
the enclosure.    For air at one atmosphere enclosed in a spherical metal 
shell with a wall thickness of one hundredth of its diameter,   C is of the 
order of 0. 01. 

Typical results of the numerical calculations are shown in Fig.   2. 
All other curves had the same character.    The case of C =0,   no gas 
enclosed,  was calculated separately and is shown in Fig.   2. 

There are several ways in which the curves can be characterized. 
The method chosen here is shown in Fig.  3.    The decrease in 0S at 6S ~ 0. 8, 
caused by the presence of the gas at a given value of P and Q,  was used as 
a measure of the effect of the gas on the temperature-time history of the 
solid.    For all cases considered,  this also corresponded closely to the 
maximum temperature deviation during the heating time.    For the cases 
of Fig.   3, A0S < 0. 5C.    This certainly holds for Q > 0.5,  which 



AEDCTR.66-257 

corresponds to 

TV 1 
— =   ]   t    —  <.3 
Tu 0 

TE 
Most practical cases will satisfy the condition —— < 3.    Furthermore, 

T0 

AT =   rs - Tg = -^ ÄÖÄ 

If, typically,   C < 0.01 and T0 < 300°K we find for Q > 0. 5, 

AT  <  ^f- 0.5C or AT  <  3CK 

Therefore the major conclusion from Fig.   3 is that when C « 0. 1 the effect 
of the gas on the temperature of the solid is very small and probably within 
the measuring accuracy in many tests.    This is of course only true when P 
is greater than,   say,  0. 2.    The convection heat-transfer coefficient,   h, 
is proportional to the one-fourth power of the acceleration.    In the zero 
gravity condition,  the value of h will be determined by conduction through 
the gas only.    It is expected that h for zero gravity is always smaller than 
in a space chamber,  and that P will be larger,  and therefore from Fig.  3, 
&&S somewhat smaller than in a space chamber.    However,   since the 
thermal conductivity for gases is very low,   it is expected that the time to 
reach equilibrium within the gas is longer when conduction is the only mode 
of heat transfer,  which may make the present analysis subject to some in- 
accuracy. 

SECTION IV 

THERMAL SCALING 

With the differential equations for the unknown temperatures Ts and 
Tg given in dimensionless form,  the similarity parameters to be pre- 
served in a scaled model test are given by the nondimensional coefficients 
In the equations.    From Eqs.   (5) and (6) it appears that these coefficients 
are C,   P,  and Q,   and the characteristic time 

C„M. 
tr   = 

h A, 

is scaled accordingly.    An alternate arrangement avoiding the presence of 
h in the characteristic time is given below. 

T T t 
Substitution of 0g = —s—, 0S = —- and r = — in Eqs.   (2) and (4) gives, 

' r ^r 'r 

after rearranging: 

Ps   —   Pg   -              
hA,tr AT 
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or also: 

,. - eR J^i\ fc^   (C°M*  )     *J± (12) 

and 

wAcTr
3 

hA, 

n 
E 

LJr 

\C.MJ V    hA,     /     VfffABT,3t,y rfr 

<f£jAeTr
Jir/    V   hA,    / dr 

(13) 

Apparently similarity between prototype and model is assured when the 
following parameters are preserved: 

C.w.\     /WeTr
J\     /       C.M, \ /TE '«"g ,   and 

kCsMs/      \     hA;     /      \ £oAeTr\ / \Tr 

where 

In practical cases the variation of qs in a space chamber is limited. 
Also,   it is difficult to change e   and a at will so that temperature and 
material preservation (at least to the extent of its radiative properties) 
are desirable.    Preservation of the external geometry gives 

A 

e/    model \    el   prototype 

If Tr = Tg in both cases,  the scaling parameters become: 

CgMg\       /A,\ /CM 
1 '    and 

C,M,/       VhA 

Since it is expected that under space conditions h is much smaller than 
under laboratory conditions,  the internal area,  Ai,   has to be reduced 
accordingly for the model test or h has to be reduced by placing internal 
low conductivity partitions in the model. 

The problem of scaling the thermal masses with temperature and 
material preservation was discussed by Adkins*; similar procedures 
would be applicable here. 

*D.  L. Adkins.    "Scaling of Transient Temperature Distributions of 
Simple Bodies in a Space Chamber. "   Thermophysics and Temperature 
Control of Spacecraft and Entry Vehicles.    Academic Press, New York, 
1966,  G.   B.   Heller,  editor. 
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Finally it is noted that the time for corresponding temperatures 
between model and prototype is given by: 

iC,M.,' \r)      , 
(,\ _-       mi,-If] 
^Viiodcl   -   '   , —      It'jirolotvpc 

iCsMs/A.i *     *        ■   prot.j-.vpe 

SECTION V 

CONCLUSIONS 

The influence of internal convection in a model in a space chamber 
on the temperature of the model was investigated with a numerical com- 
putation. 

It was found that for gases with total thermal capacitance below one 
percent of the thermal capacitance of the test vehicle,  the influence of 
convection is negligible under "normal" conditions (Q > 0. 5 or 
TE/TO < 3).    Charts are presented showing the effect of convection. 

Thermal modeling rules for transient heating with internal convec- 
tion were derived.    For simulating space conditions,  the internal con- 
vection can be reduced by partitioning the model internally. 
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APPENDIX 
ILLUSTRATIONS 
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Fig. 1    Equilibrium Temperature of Bodies in Cold Space, Exposed to Solar Radiation 
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Fig. 2   Temperature of Solid and Gas as a Function of Time 
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