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Abstract

Numerical solutions have been obtained for the motion of a gas
bubble in an incompressible liquid when harmonic pressure oscillations
are imposed. The mean pressure in the liquid was taken to be 1 atm and
the ratio of oscillating pressure amplitude, A, to the mean pressure
was given the values 0,2, 0.5, 1, ,O and 2; 0. Tl:le e{quilibrium bubble
radius was chosen to be R‘o = 16’2 . 1;)'-3 and, ‘1 o™ cm, and the angular
fr‘equency of the pressure variations was W = OTé'X 105, 0.7X 105, and
1..2;;(41‘05 per sec. The phenomena of bubble '"explosion'' or ''collapse'
were found for large A, i.e,, 1.0 and 2,0, For the smaller values of

A, the bubble radius varied with time within well-defined limits, but

nonlinear effects were evident,
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Introduction

The equation of motion for a gas bubble in a liquid acted upon by
a variable pressure is nonlinear, and solutions for the radius as a
function of time cannot be given explicitly in terms of simple, or familiar,
functions, The example of a pressure variation harmonic in time is ot
particular interest since it corresponds to a sound field, In the treat-
ment of the scattering of sound by a gas bubble it has been customary to
linearize the equation of motion for the bubble radius. There are, how-
ever, many experimental situations in which the sound pressure ampli-
tude is oi the order of atmospheres, The acoustic linearization in the
liquid remains valid with high precision but a question remains regarding
the accuracy of the linearization of the bubble equation.

Numerical integrations of the bubble radius in harmonic pressure
fields have been carried out by Noltingk and Neppira.s:1 . The primary
difference between their results and the present results lies in the great-
er range of parameters used here and also in the longe: time over which
the bubble histories are extended. There are more recent calculations
by Borotnikova and Soloukin2 but the published results are rather limited
and more complete data is apparently not available in the general litera-
ture. Both their analysis and the previous work of Noltingk and Nepi.as
assume that the bubble oscillations are adiabatic. It is known, however,
that the bubble oscillations in the range of concern are isothermal rather

3

. . 3 .
than adiabatic and the calculations presented here are made on the
. . . 5 .
isothermal basis, Calculations have also been made by Flynn™ but his
primary concern was with frequencies much higher than the sonic range

which will be considered in this paper.
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There are two physical effects which contribute elements of
indefiniteness to any solutions for bubble motions. A bubble can of
course be set into free oscillation; in the limit of very small pressure
amplitudes such oscillations take place with the resonant frequency of
the bubble. These free osciliations are excited by the initial conditions
which are customarily used and which are used here. The bubble is
taken to be in equilibrium and at rest under a static pressure P, for
t<0; for t> 0 the oscillating pressuré field POA sinwt is applied and
subsequent motion of the bubble is determined. It may be shown explicitly
from the linearized solution of the bubble motion that viscosity eventually

damps out the resonance oscillations, A similar behavior is to be

expected for the nenlinear solutions,

No consideration will be given here to possible physical mecha-
nisms which give a stable hubble6 or ''nuclei'" undear the static pressure
Po for the indefinitely long period t< 0. The second physical effect
which is not considered arises from rectified diffusion7 which is the
process by means of which a pulsating gas bubble grows in size by
transport of dissolved gas from the liquid into the bubble. This rectified
diffusion is, however, a slow process so that the solutions obtained will

remain accurate for many cycles of the oscillating pressure field.

Formulation of the Problem

When the motioas of a gas bubble are sufficiently slow so that the

effects of compressibility may be neglected, the variations of the bubble

radius with time are described by the equations’ 9
R)-p
e 32, PRIP,
RR + > R®= — (1)

e T "r—'_—“ —rT - T




where p is the liquid density, p(R) is the pressure in the liquid at the
bubble wall, and P, is the pressure in the liquid at a large distance
from the bubble. It is assumed that effects which disturb spherical sym-
metry such as gravity may be neglected. The condition of stress conftin-

uity across the bubble boundary gives

20
P(R)=p (R) - T . (2)

In Eq. {2) the surface tension constart is ¢ and pg(R) is the gas pres-
sure in the bubble, The contribution of the vapor pressure of the liquid
to the pressure within the bubble has been omitted. Since the bubble
motions will be isothermal and since the bubble wall velocities are
supposed to be small, the vapor pressure .nay be taken to be constant,
A constant shi_ft in the pressure level is not significant in the problem,
The viscous stress, -4uﬁ./R, has been dropped from the right hand side

of Eq. (2). This term has a significant effect on the bubble motion only

after a long time,as has been remarked, and it eventually damps out the

free oscillations.

For t< 0 the bubble is at rest with the equilibrium radius R °
so that
20

PgRo) - & =, (3)

where Po is the static pressure in the liquid. The equilibrium relation
(3) determines the initial gas pressure pg(Ro) when Po is fixed. The

calculations which have been carried out in this study have ail been made
with P0 =1 atm. For t> 0 the pressure at a distance from the bubble
is supposed to be disturbed by the addition of a harmonic field so that

the total applied pressure at a large distance from the bubble is




pco(t) = Po(l-i-A sinwt) . (4)

The bubble motion is taken to have the initial conditions R(0) = R o’
1.1(0) = 0, The gas pressure in the bubble at any radius is determined by

the isothermal relation
R 3
P (R) = p,(R) (“1%) (5)

Since the angular frequencies, ©, of the oscillating pressure will lie
in the sonic range, the bubble will follow the isothermal law for all the
radius values Ro of present concern. The problem is completely
defined and the numerical integration can proceed in a straightforward
way.

It is convenient to introduce the dimeansionless radius

_ R
n =g (6)
(o)
so that Eq. (1) becomes
o 3 o2 -3 3 -1 .
+ = =c! -1 - -
mt za=cn Ytecfm -n )-c Asinot (7)
with
Po
ey (8)
PR
and
c = —2-0—3- . (9)
PR,
The initial conditions are
n(0) = 1 (10}
n(0) =0 . {11)
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Near t = 0, n(t) will be very nearly unity so that for small time

one may write

n(t) = 1 +elt) {12)

where |e(t)| « 1. Under this condition, the equation obtained from (7) for
€(t) may be linearized and integrated analytically. One finds readily that,

for t near zero,
c A w

o . .
t) =1 1 — sinw t-sinw_t (13)
n(t) +(wz-w z) wr T o :
r o
. clA(,oo
n{t) = — (lcoswrt-coswot) ) (14)
(w ~w )
r o
where
' 1 1
3p_\? 2
o =[—2] [1+ 525 (15)
- pRoz o" o

is the isothermal re- mant'frequency. This initial solution (13) is used
only up to a time 7T at which €(7) is still very small. The solution
which is developed for t> 7T is, of course, independent ot T so long as
7 is sufficiently small. This way of starting the numerical solution is
for convenience only and serves to facilitate the development of the
further integration,

Numerical sol;ztions were obtained using an IBM 7094 Computer,
The numerical integraiion of the equations was performed using a variable
step size integration scheme. A small initial step size was éiven as an
input; the integration scheme then proceeded to integrate each step with
the largest step size possible, concistent with the specified accuracy.

It was found that different choices of initial step size had no effect upon
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the character of the solution.

Discussion of the Results

The results are presented in graphical form in Figs, 1 - 9. It
may be observed that, as might be expected, the largest values of A,
i.e., 1 and 2, lead to large variations in n = R/Ro including the possibil-
ity of collapse or sxplosion. It is convenient to define a bubble ''collapse'
as a change in n by a factor of 107 or less; similarly a bubble
""explosion'' is defined as a change in n by a factor of 10° or more. As
a general result it appears for large A that collapse occurs more
frequently than explosion. It is of some interest to observe that, for
the lower frequencies and for Ro = J.O-3 cm and 107 cm, no collapse
occurs for A = 1. The rate of collapse which is found is clearly suf-
ficiently great to lead to cavitation damage and cavitation noise. It also

is evident that bubbles with radius values in the range 10%cm to 10*cm

2an act as nuclei for the cavitation phenomena usually observed. There
is a trend for the higher frequencies to give, for all values of the initial
radius and of A, a more violent radius change; there is a trend also at
higher frequencies for collapse or explosion to occur earlier in the
bubble history.

The bubble radius varies within well-defined limits for A = 0.5,
and 0.2. In the figures which depict these solutions, comparisons with
the linearized solutions are included; where they are omitted the two
solutions essentially coincide. For the high frequencies the radius varies
in a more erratic manner than for the low frequencies., There are also
indications of more erratic variations ir radius for the larger initial

radii. The resonance oscillations which are excited have the effect of
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giving a nonperiodic character to the solutions.

The results presented are for a phase of the applied oscillating
pressure whichgives P_A sinwt with A > 0. Essentially the same behavior,
as is shown here, is obtained for A< 0. For a given value of | Af, the
general character of the solutions is preserved. This behavior is to be
expected since the effect of explosion, or collapse, for example, appears
only after a few cycles of the applied pressure. The specific phase at
t = 0 would then be unimportant provided in all cases I.{(O) is always

small,
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Figure 2. The ratio, n(t), of the bubble radius to the initial radius, FLO,

is shown as a function of time for Ro= 10~zcm. The mean
pressure is 1 atm and A is 0,5. w, the angular frequency

of the oscillating pressure is 1, 2X 10°/sec in {a), 0.7 X 10°sec

in (b), and 0.2 X 10°/sec in (c). The dashed curves show the
linearized solutions,
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Figure 3. The ratio, 7i{t), of the bubble radius to the inidial radius, Ro’

is shown as a function of time for R_ = 10"2cm. The mean
pressure is 1 atm and A is 0.2, w, the angular frequency

of the oscillating pressure is 1,2 X 10°/sec in (a), 0,7X 10°/sec
in (b), and 8.2 X 10°/sec in (c). The dashed curves show the

linearized solutions.
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Figure 5. The ratio, n(t), of the bubble radius to the initial radius, R _,
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is shown as a function of time for Ro= 10 cm. The mean

pressure is 1 attm and A is 0.5, w, theangular frequency of
the oscillating pressure is 1.2 X 10°/sec in (a), 0.7 X 10°/sec

in (b), and 0.2 X 10°/sec in (c). The dashed curves show the
linearized solutions,
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Figure 6. The ratio, n(t), of the bubble radius to the initial radius, Ro’
is shown as 2 function of time for Rp = 103 cm. The mean

pres<ure is | atm and A is 0.2. w, the angular frequency of
the oscillating pressure is 1.2 X 10° sec in (a), 0.7X 10% sec
in (b), and 0.2 X 10°/sec in (c).
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Figure 8. The ratio, n(t), of the bubble radius to the initial radius, R o
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pressure is 1 atm and A is 0.5. w, the angular frequency of

the oscillating pressure is 1.2 X 10%sec in (a), 0.7X 10°/sec
in (b), and 0.2 X 105 /sec in {c).
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Figure 9. The ratio, n(t), of the bubble radius to the initial radius, R o’
is shown as a function of time for Ro = 10 cm. The mean
pressure is 1 atm and A is 0.2, w, the angular frequency of

the oscillating pressure is 1,2 X 10°/sec in (a), 0.7 X 10°/sec
in (b), and 0.2 X 10°/sec in (c).
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