
ESD-TR-66-309 3 linu- 1 IX-DO- 0U»

l ESD ACCESSION LIST
E! EST! Call NO._____AL_ 546 ||

Copy No. / ol

MTR-222

ESD RECORD COW
RETURN TO

SCIENTIFIC & TECHNKAL INFORMATION D.VsSiON
(UTi*. BUiUiiNG 1211

USERS* MANUAL FOR THE EDITOR

NOVEMBER 1966

B. Isquith

Prepared for

DEPUTY FOR ENGINEERING AND TECHNOLOGY
DIRECTORATE OF COMPUTERS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Distribution of this document is unlimited.

Project 508F
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

ftDolWU^i^

This document may be reproduced to satisfy official
needs of U.S. Government agencies. No other repro-
duction authorized except with permission of Hq.
Electronic Systems Division, ATTN: ESTI.

When US Government drawings, specifications, or
other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in
any way supplied the said drawings, specifications,
or other data is not to be regarded by implication
or otherwise, as in any manner licensing the holder
or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

ESD-TR-66-309 MTR-222

USERS' MANUAL FOR THE EDITOR

NOVEMBER 1966

B. Isquith

Prepared for

DEPUTY FOR ENGINEERING AND TECHNOLOGY
DIRECTORATE OF COMPUTERS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Distribution of this document is unlimited.

Project 508F
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

FOREWORD

This program was originally designed and implemented by
Emerson Griswold, formerly of The Mitre Corporation, for the PHOENIX
simulator on the IBM 7030.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

CHARLES A. LAUSTRUP
Colonel, USAF
director of Computers

ABSTRACT

EDITOR I is an on-line program within the initial PHOENIX
computer software system which enables the system user to create,
destroy, or modify his collection of symbolic data, organized as
files.

The actions of EDITOR 1 are user-controlled by means of a one-
pass assembler, herein described.

111

TABLE OF CONTENTS

Page

GLOSSARY

SECTION I INTRODUCTION

SECTION II BRIEF DESCRIPTION
2.1 PROPERTIES
2.2 LIMITATIONS
2.3 CURRENT STATUS
2.4 OPERATION

SECTION III DATA STRUCTURE
3.1 LINES AND LINE NUMBERS
3.2 BLOCKS
3.3 FILES
3.3. 1 File Structure
3.3. 2 File Names
3.3. 3 File States
3.4 SYNTACTICAL CHART

SECTION IV THE CONTROL LANGUAGE
4.1 CHARACTER SET
4.2 CHARACTER SOURCE MECHANISM
4.3 TYPEWRITER DIALECT
4.4 SEGMENTATION
4.5 ATOM TYPES AND RULES OF FORMATION
4.5. 1 Variable Atoms
4.5. 2 Numeric Atoms
4.5. 3 Independent Atoms
4.5. 4 Literal Atoms
4.6 SYNTACTICAL CHART
4.7 SYMBOLS AND THE SYMBOL TABLE
4.8 SYMBOL TYPES, VALUES, AND DEFINITIONS
4.8. 1 Symbol Types
4.8. 2 Operators
4.8. 3 Binary Connector
4.8. 4 Actor
4.8. 5 Constant
4.8. 6 Argument Separator
4.8. 7 Command Separator
4.8. 8 File Name
4.8. 9 Undefined Symbols
4.9 SYNTACTICAL CHART

Vlll

1

2
2
2
2

2

3
3
3
3
4
4
4
4

6
7
8

10
10
10
10
10
11
11
11
12
13
13
13
13
14
15
15
lb
16
L6
17

TABLE OF CONTENTS (Continued)

SECTION V COMMAND STRUCTURE 18
5.1 DEFINITIONS OF COMMAND 18
5.2 ARGUMENTS 18
5.3 ARGUMENT TYPES 18
5.3.1 Expressions 18
5.3.2 Examples of Expressions 18

5.3.3 File Names 1')
5.3.4 New 1-)
5.3.5 Symbols 19
5.3.6 Literals 19
5.4 SYNTACTICAL CHART 19

SECTION VI EDITOR COMMANDS 20
6.1 COMMAND NOTATION 20
6.2 LISTDIRECTORY 21

6.3 LISTALLFILES 21
6.4 LLSTFILE NAME 22
6.5 LISTSYMBOLTABLE 22
6.6. LISTSYMBOLS TYPE 23
6.7 PURGESYMBOLTABLE 24
6.8 OPENFILE NAME 24

6.9 CLOSEFILE 2 5

6.10 TYPECLN 2 5

6.11 SETCLN El 26
6.12 DCON NEW, El 27
6.13 TYPELLN 28
6.14 SETUDF SYMBOL 28
6.15 DSYNON NEW, SYMBOL 29
6.16 RENAME OLDNAME, NEWNAME 30
6.17 DESTROY 31
6.18 PURGEFILES 31
6.19 TYPE El; OR TYPE Ei E2 32
6.20 REPLACE El, LITERALI 33
6.21 CREATE NEW 3 5

6.22 WIPELASTLINE 36
6.23 MERGE NEW, NAME 1, Ell, E12 37
6.24 SWAP El, E2, E3 38
6.25 SETFLAG K, El 39
6.26 TYPEFLAGS 41

6.27 DELETE El; OR DELETE El, E2 42
6.28 INSERT El, LITERALI, LITERAL2,.. ,.,LITERALN 44

vi

TABLE OF CONTENTS (Continued)

6.29
6.30
6.31
6.32
6,33
6.34
6.35
6.36
6.37
6.38
6.39

APPENDIX I

APPENDIX II

APPENDIX III

APPENDIX IV

APPENDIX V

APPENDIX VI

Page

DUPINSERT El, E2, E3 45
DUPREPLACE El, E2, E3 47
TRANSINSERT El, E2, E3 49
TRANSREPLACE El, E2, E3 51
RECOVER 53
SPACE 54
NUMBERS 55
TERMINATE 56
REINITIALIZE 56
LISTLINEPOINTERS 57
LISTFILESTRUCTURE 57

THE EDITOR UNDER PEST CONTROL 59

LIST OF PROGRAM RESERVED SYMBOLS 61

ALPHABETIC LIST OF COMMANDS 63

TABLE OF COMMANDS BY FUNCTION 65

BACKUS NORMAL FORM 69

FURTHER ILLUSTRATIVE EXAMPLES 71

vii

GLOSSARY OF TERMS

actor

argument

argument separator

a symbol which has a computed numeric value
which is some line number of the open file.

an atom or group of atoms used as control
parameters by EDITOR commands.

a type of symbol which must appear between
arguments--the EDITOR initially defines the
character "," (comma) as such.

atom

binary connector

the lowest logical and informational group
processed by the control language.

a type of symbol used to concatenate expression
elements--the EDITOR initially defines the
characters "+" and "-" as such.

block a group of one or more lines which have con-
tiguous line numbers.

cln an actor whose value is the current line number
in the open file.

closed file one of two file states, in which a file can
only be read.

command

command separator

a user request for a specific action to be
performed by the EDITOR.

a type of symbol which must end the argument
string of a command, including the null argu-
ment string--the EDITOR initially defines the
character ";" (semi-colon) as such.

config

constant

directory

an actor whose value is the line number in
which a specified literal argument is located,

a type of symbol which has a numeric value.

a list of file names of all existing files.

vm

expression a type of argument consisting of one or more
expression elements connected by binary
connectors.

expression element

file

file name

file state

file structure

flag

independent atom

line

line number

literal argument

literal atom

lln

a numeric atom or a constant or an actor.

a block of lines accessed through a file name.

a type of symbol which must be an atom of type
variable, and is an unique reference to a file.

the two states in which a file can exist,
either open or closed.

a general term meaning the entire character
string being handled by the EDITOR.

an actor whose value is the line number of an
uniquely specified line, wherever it appears in
the open file.

a type of atom which is a self-delimiting atom;
an atom which stands by itself and acts as a
delimiter for other types of atoms--all
characters of type punctuation are such.

a string of characters in a file, the last
character, and only the last, of which must be
a carriage return.

the numeric quantity associated with each line;
the first line in a file is line 0 (zero).

a type of argument which is a literal atom.

a contiguous string of any characters, except
carriage return, end of message, start of
message, erase, and partial message, bounded
by a closed, balanced pair of left and right
quotes.

an actor whose value is the line number of the
last line in the open file.

ix

new

numeric atom

a type of argument which is an undefined symbol.

a type of atom consisting of a contiguous string
of numeric characters.

open file one of two file states, in which a file can be
modified--or that file (only one file may be
open at any given time) which is in that state.

operator a type of symbol which is a request for a
specific action by the EDITOR.

symbol an atom of type variable or type independent
which appears in the symbol table, either
initially or as a result of the user's commands,
and carries with it an associated type and value.

symbol argument a type of argument which is any symbol which
appears in the symbol table, and which is not
of type undefined.

symbol table

symbol type

symbol value

a segment of the EDITOR which stores the type,

value, and character representation of all
symbols used by the EDITOR in the translation of
the control language.

the logical category in which the symbol belongs
or is classified; the EDITOR recognizes eight
types of symbols.

the value of a symbol depends upon the type of
the symbol and may be either a subroutine call
to perform an action upon the user's file, or a
subroutine call to perform an action upon the

symbol table itself, or a number used during the
execution of an EDITOR action, or a subroutine
call to compute a number, or a pointer to a file

location.

undefined symbol either a symbol which does not appear in the
symbol table, or a symbol which appears in the
symbol table as being of type undefined-- such
a symbol has no value associated with it.

variable atom a type of atom consisting of a contiguous

string of numeric or alphabetic characters,

at least one of which is of type alphabetic,

xi

SECTION I

INTRODUCTION

EDITOR 1 is an on-line program within the PHOENIX computer soft-

ware system which gives the system user complete file manipulation

capabilities upon symbolic data, by the issuance of commands through

a PHOENIX typewriter.

This report serves as a user's guide or manual to EDITOR I,

and is generally concerned with those features which remain invariant,

no matter under what monitor system EDITOR I is operating.

The user's data will be referenced by the program as a character

string delineated and ordered into lines by carriage returns. Such a

collection of lines is called a file and is referenced by a symbolic

file name.

The actions of the EDITOR are user-controlled by means of a one-

pass assembler, described in sections IV and V of this report.

SECTION II

BRIEF DESCRIPTION

2.1 Properties

EDITOR I is an on-line, user-controlled, file manipulator pro-

gram, providing symbol definition capability and complete editing

functions.

2.2 Limitations

The present machine-implemented version of the EDITOR subjects

the user's data to the following restrictions:

a) a single file may contain no more than 4,0946 lines;

b) the symbol table will accommodate approximately 200

user-defined, variable-length, symbol entries;

c) the number of separate files allowed, at any one time,

depends upon the room for entries in the symbol table; and

d) all the files together, existing in the system at any one

time, may contain no more than 184,320 characters.

2.3 Current Status

The EDITOR is operational.

2.4 Operation

The EDITOR will perform manipulative functions upon data and data

printouts, as requested by the user, in sequence and through commands

typed on a PHOENIX typewriter attached to the PHOENIX computer, subject

to legality checks.

SECTION III

DATA STRUCTURE

3.1 Lines and Line Numbers

A line is a string of characters, the last, and only the last,

character of which must be a carriage return.

Each line has associated with it a numeric quantity called the

line number. The line number is the user's primary means of accessing

a line within a given file. The line number of a given line may be

computed at any time by counting the number of lines between the given

line and the start of the file. The first line in a file is line 0

(zero).

If line 'n' is deleted from a file, the line numbers of all lines

from 'n' through the last line are decreased by 1. If a line is in-

serted into a file at line number 'n', all line numbers from 'n' through

the last line number are increased by 1.

3.2 Blocks

A block is a group of one or more lines which have contiguous

line numbers. A block is specified by the line numbers of the first

and last lines in the block, in that order.

3.3 Files

A file is a block or blocks of lines which the user may access

through a file name (see 3.3.2). A single file may contain no more

than 4,096 lines.

3.3.1 File Structure

The file structure is a general term meaning the entire

character string being handled by the EDITOR, and may comprise both

accessible files and blocks of lines which are no longer accessible,

due to the user's commands. The entire file structure, at any one

time, may contain no more than 184,320 characters. (Facilities for

garbage collection upon the file structure are available in the

command repertoire.) Inaccessible lines in the file structure are

caused by destroyed files and the rewriting of altered files.

3.3.2 File Names

A file name is an unique alphanumeric character sequence

by which a file is accessed by the system user. The user may change

the name of any file or combine the contents of several files in a

straightforward manner by means of the command repertoire.

3.3.3 File States

A file can only be in one of two states, open or closed.

A file may be modified only when it is in the open state, and only

one file may be open at any given time.

3.4 Syntactical Chart

Meta-linguistically, we restate the above definitions of the data

structure as follows (in Backus normal form*):

*See Appendix V for a description of Backus normal form.

< ^>::= carriage return

<character>::= any typewriter character, red or black,

upper or lower case, except < ^ >

<line>::= <character> < ^->|<character> <line>

<block>::= <line>|<block> <line>

<file>::= <block>|<file> <block>

SECTION IV

THE CONTROL LANGUAGE

This section contains a description of the syntax or rules of

formation of the control language through which the user issues

commands to the EDITOR. A word of caution is in order at this point--

in no way should the syntax of the data structure or user's files, as

described in Section III, be confused with the syntax of the control

language through which the EDITOR is commanded.

As characters are typed and placed into the input buffer, the

EDITOR segments the characters according to their properties and

groups them into larger and larger logical units, called atoms,

symbols, arguments, actors, and commands. These logical units or

subdivisions of the control language are analogous to the parts of

speech of natural language.

Basically, there are four types of atoms which can form eight

types of symbols which, in turn, give rise to the various arguments,

actors, and commands.

Associated with a symbol are the two characteristics, "type" and

"value." The type and value of a symbol should not be confused with

each other. The type of a symbol is the logical category in which it

belongs or is classified (much as a word is either a noun or adverb

or another one of the parts of speech) , while the value of a symbol is

the meaning associated with it, or bound to it, by convention or decree,

b

For example, the word "quarter" denotes a certain type of coin

which has a value of twenty-five cents, while the word "two bits" de-

notes any number of coins whose total value is twenty-five cents.

In much the same way, the character string "three" in the EDITOR

can be defined by the user to be a symbol of type constant with the

value of 3, while the character string "constant" is defined by the

EDITOR to be a symbol of type constant with the value of 3.

4.1 Character Set

The character set of the input string to the control language is

that of the MITRE ball 2 for the PHOENIX typewriter.

The following notation symbolizes the non-printing function

keys of the PHOENIX typewriter (in Backus normal form):

< * >

< h >

< T >

<3 >

< S>

<q >

< n >

<a>

= carriage return

= erase

= tabulate

= index

= end of message

= start of message

= partial message

= space

= backspace

The following characters are recognized by the EDITOR by class:

Class Member

numeric 0123456789

punctuation + -*(),;$* '

spacing D H

carriage return ^.

start of message L

partial message ^\

erase 9

undefined Q j? and all illegal codes

alphabetic all others

4.2 Character Source Mechanism

The character source mechanism of the EDITOR processes the input

character string into commands (according to rules of formation to

be described) and the EDITOR executes these commands in sequence as

they appear. However, the typewriter will remain in input status

until a carriage return is struck, and more than one command may be

typed across the page, properly separated by command separators, of

course. No processing of the commands will occur until the user types

a carriage return. If there is no typeout from the typewriter to

indicate that a command has been performed, a carriage return will be

performed. If an illegal command or an incorrectly formed command

appears, appropriate error messages will be typed out, and the

character source mechanism will go to the next command, or, if there

8

is none, return the typewriter to input status awaiting a new input

from the user. Meaningless alphabetic input character strings cause a

"?" to be typed out.

The character source mechanism will trap all carriage returns,

removing them from the input string, and then return the typewriter

to the user for a new input. This has been done to allow the user

flexibility in formatting in certain commands. In the case where a

literal character string is to be processed as a line image (for

adding to or inserting into a file, for example), the character source

mechanism will insert the carriage return, at the end of the line

image, for the user.

The detection of an undefined character in the input string will

cause an error message to be typed out.

During the operation of the EDITOR, any striking of the start of

message key during typeout will cause the EDITOR to "shut up" and

return to the character source mechanism.

When the user is typing inputs, hitting the partial message key

will remove the last character typed into the input buffer and echo

it back in red; if all characters are removed, subsequent depressing of

the partial message key will cause a carriage return to be performed.

Hitting the erase key removes the entire line from the input buffer

and also causes a carriage return to be performed.

4.3 Typewriter Dialect

At present, the "typewriter dialect" expected by the EDITOR in

its dialogue with the user is "lower case black" except where user

definitions and syntax override it. These exceptions are duly described.

The EDITOR responds in "lower case red" except when typing out

files, symbols, and so forth, where the character color is considered

to be part of the "name" or line "image," in which case the actual

color of the character is typed out.

4.4 Segmentation

The characters of the input string are segmented into units,

called atoms, according to the rules described below. Atoms are the

lowest logical and informational groups processed by the control

language.

4.5 Atom Types and Rules of Formation

4.5.1 Variable Atoms

A variable atom is a contiguous string of characters of

type numeric or alphabetic, at least one of which is of type alphabetic.

A variable atom is delimited by a character of type punctuation or

type spacing.

4.5.2 Numeric Atoms

A numeric atom is a contiguous string of characters of

type numeric, delimited by a character of type punctuation or type

spacing.

10

4.5.3 Independent Atoms

All characters of type punctuation are independent atoms.

An independent atom is a self-delimiting atom, an atom which stands by

itself and which also acts as a delimiter for other types of atoms.

4.5.4 Literal Atoms

A literal atom is a contiguous string of any characters,

except carriage return, end of message, start of message, erase, and

partial message, bounded by a closed, balanced pair of left and right

quotes (' and '), the left quote being to the left of the literal, the

right quote being to the right of the literal. All characters between

the quotes, including spaces and quotes, are part of the literal. The

EDITOR keeps count of left and right quotes and will consider the

literal ended when the number of right quotes equals that of the left

quotes.

Note that a literal atom follows the syntax of the data structure

(see Section 3.4) as far as character case and color are concerned.

(A future implementation of the EDITOR will change the rules of

formation for literal atoms but at present the above is the one that

is operational.)

4.6 Syntactical Chart

Meta-linguistically, we restate the above definitions for atom

formation as follows:

11

<n-char>::=0|l!2|3|4|5|6|7|8|9

<p-char>::= +|-|*|(|)|,|;|$\K |'

<s-char>::= a|h

< }.>::= carriage return

< £>:: = start of message

<9 >:: = partial message

< 3 >::= erase

<u-char>::= Q\3| and any illegal code

<a-char>::= all others

<i-atom>::= <p-char>

<n-atom>::= <n-char>|<n-char> <n-atom>

<v-atom>::= <a-char> <n-atom>|<a-char>|<a-char> <v-atom>|

<n-char> <v-atom>

<l-atom>::= any string of characters except < j). > and < £ > and

< 3 > and < "-) > and < 9 >'|s<l-atom>'

4.7 Symbols and the Symbol Table

A symbol is an atom of type variable or type independent which

appears in the symbol table, either ab initio or as a result of the

user's commands. (Symbols in the symbol table, ab initio, are con-

sidered to be reserved symbols and cannot be removed or modified.)

The symbol table is a segment of the EDITOR which stores the type,

value, and character representation of all symbols used by the EDITOR

in the translation of the control language.

12

The value of a symbol depends upon the type of the symbol and may

be either a subroutine call to perform an action upon the user's file,

or a subroutine call to perform an action upon the symbol table itself,

or a number used during the execution of an EDITOR action, or a sub-

routine call to compute a number, or a pointer to a file location.

4.8 Symbol Types, Values, and Definitions

4.8.1 Symbol Types

The EDITOR recognizes eight basic types of symbols:

1) operator;

2) binary connector;

3) actor;

4) constant;

5) argument separator;

6) command separator;

7) file name; and

8) undefined.

4.8.2 Operators

A symbol of type operator is a request for a specific

action by the EDITOR. A complete list of operators will be found in

Section VI of this report.

4.8.3 Binary Connector

The characters "+" and "-" are symbols of type binary

connector and have the normal arithmetic meaning.

13

4.8.4 Actor

An actor is a symbol which has a computed numeric value

which is some line number (see Section 3.1) of the open file, and is

computed each time the actor appears. Actors have a value only when

there is an open file. At other times, actors are treated as undefined

symbols.

The EDITOR recognizes the following actors with their

associated meanings:

lln the value is the line number of the last line
in the open file.

cln the value is the line number of the current line
in the open file (cln< lln + 1), and represents
the contents of a register pointing to some line
in the open file.

flag(k) locates a given flagged line, and the value is
equal to the line number of the flagged line (k
must be either a symbol of type constant, see
below, or a number 0 s k s 31). See Section 6.25
for a description and example of a flagged line.

config ('literal') locates a line number by a character-by-character
search of the open file, seeking the first appear-
ance of the literal argument. The search begins
with the cln and wraps around from the last line
to the first, stopping the search at the cln.
The value of the config actor is the line number
of the first line encountered which contains the
character string literal. Note that the paren-
theses and quote marks are not part of the literal
If no value can be found, an appropriate error
message is typed out.

14

4.8.5 Constant

A constant is a symbol which has a numeric value. The

value of a constant may be set by the user with the appropriate command,

The following constants have been defined, ab initio:

Symbol Numeric Value

operator 0

binaryconnector 1

actor 2

constant 3

operandsep 4

commandsep 5

filename 6

undefined 7

(20

) 19

These constants may be used as arguments for those

commands requiring constants as arguments, and are used internally

by the EDITOR.

4.8.6 Argument Separator

The character "," (comma) is defined as a symbol of type

argument separator, and must appear between arguments in those

commands which take more than one argument.

15

4.8.7 Command Separator

The character ";" (semi-colon) is defined as a symbol of

type command separator, and must be the last character in the argument

string of a command, including the null argument string.

4.8.8 File Name

A file name is a symbol which must be an atom of type

variable and which is used to reference the user's file. File names

must be unique. A symbol may be defined as a file name through the

use of certain commands in the command repertoire.

4.8.9 Undefined Symbols

There are two types of undefined symbols. The EDITOR does

not distinguish between them.

1) A symbol which does not appear in the symbol table

is undefined.

2) A symbol which appears in the symbol table as type

undefined is also an undefined symbol.

Undefined symbols will appear, either directly or indirectly,

as a result of the user's commands, and may be listed and garbage-

collected out of the symbol table.

lb

4.9 Syntactical Chart

Meta-linguistically, the preceding definitions for symbols are

restated as follows:

<symbol character string>::= <v-atom>|<i-atom>

<operator>::= <symbol character string> defined as type operator

<binary connector>::= +|-| <symbol character string> defined

as type binary connector

<constant>::= operator|binaryconnector|actor|constant|operandsep|

commandsep|filename|undefined|(|)|<symbol character

string> defined as type constant

<actor>::= lln|cln|flag(<constant>)|flag(<n-char>)|flag(<n-char>

<n-char>)|config(<l-atom>) |<symbol character string>

defined as type actor

<argsep>::= ,|<symbol character string> defined as type argument

separator

<commandsep>::= ;|<symbol character string> defined as type

command separator

<file name>::= <v-atom> defined as type file name

<defined symbol>::= <operator>|<binary connector>|<actor>|

<constant>|<argsep>|<commandsep>|<file name>

<undefined symbol>::= <symbol character string> not in the

symbol table |<symbol character string> in the

symbol table defined as type undefined

<symbol>::= <defined symbol>|<undefined symbol>

17

SECTION V

COMMAND STRUCTURE

5.1 Definitions of Command

A command is a user request for a specific action to be performed

by the EDITOR. The acceptable formats are:

1) operator;

2) operator argument; and

3) operator argumentl, argument2,..., argumentn;

The ";" (semi-colon) is necessary. It is a signal to the EDITOR

to begin execution of a command. The "," (comma) must be used to

separate arguments.

5.2 Arguments

An argument is an atom or group of atoms used as a control param-

eter by EDITOR commands.

5.3 Argument Types

5.3.1 Expressions

An expression element is a numeric atom, a constant, or an

evaluable actor, two or more of which may be concatenated by binary

connectors to form expressions. A binary connector may begin, but

never end, an expression.

5.3.2 Examples of Expressions

-24 + a + b is an expression

- 24 + a + b - is not an expression

18

5.3.3 File Names

The characteristics of file names have been discussed in

Section 4.8.8.

5.3.4 New

New arguments are symbols of type undefined (see Section

4.8.9).

5.3.5 Symbols

An argument of type symbol is any symbol which appears in

the symbol table and is not of the type undefined.

5.3.6 Literals

A literal argument is a literal atom (see Section 4.5.4).

5.4 Syntactical Chart

Meta-linguistically, the preceding definitions for argument

formation can be restated:

<expression element>::= <n-atom>|<constant>|<actor>

<expression>::= <expression element>|<binary connector>

<expression>|<expression> <binary connector> <expression

element>

<new>::= <undefined symbol>

<argument>::= <expression>|<file name>|<new>|<defined symbol>|

<l-atom>

<argument sequence>::= <argument>|<argument sequence> <"argsep>

<argument>

<command>::= <operator> <commandsep>|<operator> <argument sequence>

<commandsep>

19

SECTION VI

EDITOR COMMANDS

6 .1 Command Notation

The following notation is used to describe the EDITOR'S command

repertoire. Any deviation from the notation will be justified as

being prima facie understandable.

Expressions are abbreviated in a command description as En, where

n is a number indicating the order in which the various expressions

appear.

When a command requires arguments of type file name, the arguments

are abbreviated as NAMEn, where n is a sequence number.

New arguments are indicated in the argument list of a command by

the word NEW and are symbols of type undefined.

Arguments of type symbol (defined) are indicated as SYMBOL, with

the exception of file names.

The use of a literal argument is indicated by the appearance of

the word LITERALn, where n is a sequence number.

Two broad classes of legality under which most of the commands are

either operable or inoperable depend upon whether there is or is not

an open file. The EDITOR will always advise the user, through

appropriate error messages, if a command is not acted upon for this

reason.

20

The following sections comprise a complete list of all user

commands to the EDITOR.

6 . 2 listdirectory;

(list the directory)

1) Arguments

No arguments are necessary.

2) Actions

All file names of existing files are typed out.

6.3 listallfiles;

(list all files)

1) Arguments

No arguments are necessary.

2) Actions

a) FILE OPEN

'listallfiles' is an illegal command when there is an

open file.

b) FILE CLOSED

The complete contents of all defined files are typed

out with their associated file names and line numbers.

21

6.4 listfile NAME;

(list file)

1) Arguments

'NAME' must be a symbol of type file name.

2) Actions

a) FILE OPEN

'listfile' is an illegal command when there is an open

file.

b) FILE CLOSED

The file referenced by the symbol 'NAME' is typed out

with the proper line numbers.

6.5 list symboltable ;

(list the symbol table)

1) Arguments

No arguments are required.

2) Actions

Every symbol in the symbol table and its type, as well as

value in the case of constants, is typed out.

22

6.6 listsymbols TYPE;

(list symbols)

1) Arguments

As shown in the list below, 'TYPE' must be either an

expression whose value is in the range from 0 through 7, or a pre-

defined constant:

Constant Numeric Value

operator 0

binaryconnector 1

actor 2

constant 3

operandsep 4

commandsep 5

filename 6

undefined 7

2) Actions

All symbols of the type specified by 'TYPE' are typed out.

Constants have their values typed out as well.

3) Example

The commands 'listsymbols 2;' and 'listsymbols actor;' are

identical commands to the EDITOR, and will cause all symbols of type

actor to be typed out.

23

6.7 purgesymboltable;

(purge the symbol table)

1) Arguments

No arguments are required.

2) Actions

a) FILE OPEN

The "purgesymboltable' command is illegal when there is

an open file.

b) FILE CLOSED

All undefined symbols are removed from the symbol table.

The EDITOR will type out an appropriate warning message whenever the

symbol table is full and an attempt is made to add another symbol.

6.8 openfile NAME;

(open file)

1) Arguments

'NAME' must be a symbol of type file name.

2) Actions

a) FILE OPEN

The currently open file is closed, proceed to b).

b) FILE CLOSED

The file referenced by the symbol 'NAME' is placed in

the open (read and write) state.

24

6.9 closefile ;

(close file)

1) Arguments

No arguments.are required.

2) Actions

a) FILE OPEN

The currently open file is closed (placed in read only

status).

b) FILE CLOSED

The 'closefile1 command is ignored.

6.10 typecln;

(type current line number)

1) Arguments

No arguments are required.

2) Actions

a) FILE OPEN

The contents of the current line number register are

typed out as shown below:

.. the current line number is n

b) FILE CLOSED

'typecln' is an illegal command when there is no open

file.

25

6.11 setcln El;

(set current line number)

1) Arguments

'El' must be an evaluable expression.

2) Actions

a) FILE OPEN

The value of 'El' replaces the contents of the current

line number register.

b) FILE CLOSED

'setcln' is an illegal command when there is no open

file.

26

6.12 dcon NEW, El;

(define constant)

1) Arguments

a) 'NEW' must be a symbol of type constant (which is not a

reserved symbol) or a symbol of type undefined.

b) 'Ei' must be an evaluable expression.

2) Actions

a) FILE OPEN

If undefined, the symbol 'NEW is added to the symbol

table as a symbol of type constant, whose value is equal

to the value of 'El1. If 'NEW is already defined as a

symbol of type constant, the value of 'El' replaces the

current value of the constant.

b) FILE CLOSED

Identical to section a).

3) Example

dcon test,2;

dcon test, test+test;

setcln test;

typecln;

.. the current line number is 4.

27

6.13 type 1In;

(type last line number)

1) Arguments

No arguments are required.

2) Actions

a) FILE OPEN

The line number of the highest numbered line in the

open file is typed out in the following form:

.. the last line number is n

b) FILE CLOSED

'typelln' is an illegal command when there is no open

file.

6.14 setudf SYMBOL;

(set undefined)

1) Arguments

'SYMBOL' must not be a reserved symbol.

2) Actions

'SYMBOL' is defined or redefined as a symbol of type

undefined.

CAUTION - through this command, file names can be declared to be

of type undefined, and access to the file can thus be

lost.

28

6.15 dsynon NEW, SYMBOL;

(define synonym)

1) Arguments

a) 'NEW' must not be a reserved symbol.

There are no restrictions as to the type of 'NEW.

b) 'SYMBOL' must not be a file name.

2) Actions

The symbol 'NEW is defined to have the same meaning (type

and value) as 'SYMBOL1.

3) Example

dsynon num, typecln;

dsynon D, dsynon;

u « > >

num*

.. the current line number is 24 .

^y

6.16 rename OLDNAME, NEWNAME;

(rename file)

1) Arguments

a) 'OLDNAME' must be a file name.

b) 'NEWNAME' must be a symbol of type undefined.

2) Actions

a) FILE OPEN

The name of the file 'OLDNAME' is changed to 'NEWNAME'

The symbol 'OLDNAME' is redefined to be a symbol of

type undefined. If 'OLDNAME' is the name of the open

file, the name of the open file is changed as above.

b) FILE CLOSED

Identical to a) above.

30

6.17 destroy NAME;

(destroy file)

1) Arguments

'NAME1 must be a symbol of type file name.

2) Actions

The access to the file which is referenced by the file name

'NAME' is destroyed. The symbol 'NAME' is redefined to be of type

undefined.

6 .18 purgefiles;

(purge files)

1) Arguments

No arguments are required.

2) Actions

a) FILE OPEN

The currently open file is closed, proceed to b).

b) FILE CLOSED

All lines not associated with a file name are removed

from the file structure. Lines not associated with a

file name are caused by destroyed files and the

rewriting of altered files.

The EDITOR will type out an appropriate warning message whenever

the space allotted for the file structure is nearly filled.

31

6.19 type El; or type ElfE2:

(type lines)

1) Arguments

a) 'El' and 'E2' must be less than or equal to the last

line number.

b) 'E2' must be equal to or greater than 'El'.

2) Actions

a) FILE OPEN

The lines in the open file whose numbers are in the

range from 'El' through 'E2' are typed out with their

associated line numbers. If 'El' is the only argument,

then that single line is typed out.

b) FILE CLOSED

'type' is an illegal command when there is no open file,

32

6.20 replace El, LITERALl;

(replace lines)

or

replace El, LITERALl, LITERAL2,•..,LITERALn;

or

replace El, LITERALl,

LITERAL2,

LITERALn;

1) Arguments

a) 'El' must be equal to or less than the last line number

+ 1.

b) 'LITERALl1, 'LITERAL2',..., 'LITERALn' must be atoms of

type literal (see Section 4.5.4).

NOTE: the argument sequence of literals may be typed
across the page, or typed underneath each other in linear
mode. This flexibility in formatting is due to the fact that
the EDITOR traps all carriage returns, and also inserts them
for the user as the last character in a literal that is to be
processed as a line image (see Section 4.2). No literal may
contain a carriage return.

This flexibility of formatting and the rules in the cited
sections as to literal atom formation apply to all commands
using literals as arguments.

2) Actions

a) FILE OPEN

The value of 'El' replaces the contents of the current

line number register. 'LITERALl' is converted into a

line which replaces the line whose line number is equal

33

to the contents of the current line number register. The

contents of the current line number register are then

incremented by 1, and the above process is repeated with

the next literal, until a symbol of type commandsep is

detected (in this case, it is the ";"). The EDITOR then

proceeds to the next command.

b) FILE CLOSED

'replace' is an illegal command when there is no open

file.

c) Examp1e

type 10,13;

10 file line 10

11 file line 11

12 file line 12

13 file line 13

replace 11, 'replace line 1',

1 replace line 2';

type 10,13;

10 file line 10

11 replace line 1

12 replace line 2

13 file line 13

34

6.21 create NEW;

(create file)

1) Arguments

'NEW' must be a symbol of type undefined.

2) Actions

a) FILE OPEN

The open file is closed, and b) is executed.

b) FILE CLOSED

The symbol 'NEW' is defined to be a symbol of type file

name, and space is allocated for a new file with that name,

WARNING - the next command must be

replace 0, LITERAL and so forth

(see Section 6.20) in order to put something into the new file,

starting at line zero. Failure to observe this rule will cause the

EDITOR to write "EMPTY FILE' as line zero. The new file is left in

the open state at the conclusion of the 'create' command.

35

6.22 wipe last line;

(wipe out the last line)

1) Arguments

No arguments are required.

2) Actions

a) FILE OPEN

The highest numbered line of the open file is destroyed

b) FILE CLOSED

The 'wipelastline' command is ignored.

36

6.23 merge NEW,NAME1,E11,E12,

NAME2.E21.E22 NAMEn,Enl,En2;

(merge lines)

1) Arguments

a) 'NEW must be a symbol of type undefined.

b) All 'NAMEi' must be the names of defined files. A given

'NAMEi' may appear any number of times in the argument

sequence.

c) The expressions 'Ei1' and 'Ei2' must define blocks of

lines contained in the file named 'NAMEi'.

Note that 'Ell' and 'Ei2' may not contain actors, as

there is no open file during the merge operation.

Note also that the command format permits the same

flexibility as the 'replace' command (see Section 6.20).

2) Actions

a) FILE OPEN

The open file is closed, proceed to b).

b) FILE CLOSED

The blocks of lines defined by 'Eil' and Ei2" are copied

from the file 'NAMEi' into the newly defined file 'NEW,

in order of their appearance in the argument sequence.

At the end of the 'merge', the file 'NEW is in the

open state.

37

6.24 swap E1,E2,E3;

(swap lines)

1) Arguments

a) 'E2' must be equal to or greater than 'El1.

b) The block defined by 'E3\ ('E31 + 'E2' - 'El') as well

as the block defined by 'El', 'E2', must be within the

line number range of the open file. The two blocks may

not share any line numbers.

2) Actions

a) FILE OPEN

The lines in the block defined by 'El1, 'E2' are exchanged

with the lines in the block defined by 'E3', ('E3' + 'E2'

- 'El').

b) FILE CLOSED

'swap' is an illegal command when there is no open file.

3) Example

(See section 6.25.)

38

6.25 setflag K,E1;

(set flag)

1) Arguments

a) 'K' must be a symbol of type constant or an atom of

type numeric.

'K' is taken modulo 32.

b) 'El' must be an evaluable expression.

2) Actions

a) FILE OPEN

The flag whose flag number is 'K' is bound to, and

identified with, the line whose line number is 'El1,

regardless of previous definitions.

b) FILE CLOSED

'setflag1 is not a legal command when there is no open

file.

3) Example

a) Sample Open File

00000 dac alpha,6

1 last line

39

b) User Command Sequence

setflag 1,1;

type flag(1) ;

1 last line

swap 0,0,1;

type lln-l,lln;

00000 last line

1 dac alpha,6

type flag(1);

00000 last line

4l)

6. 26 typeflags;

(type out flags)

1) Arguments

No arguments are required.

2) Actions

a) FILE OPEN

A table of all 32 flag numbers is typed out with the

current state of each flag. If a flag is set and the

associated line exists, then the line and its current

line number are also typed out.

b) FILE CLOSED

'typeflags' is an illegal command when there is no open

file.

41

6.27 delete El; or delete E1.E2;

(delete lines)

1) Arguments

a) 'E2' must be equal to or greater than 'El'.

b) 'El' and 'E2' must both be equal to or less than the

highest line number.

2) Actions

a) FILE OPEN

The block of lines specified by 'El' and 'E2' are

removed from the open file. The line numbers of the

lines from ('E2' +1) through the last line number are

decremented by ('E2' - 'El' + 1). If 'El' is the only

argument, then that is the only line deleted.

b) FILE CLOSED

'delete' is an illegal command when there is no open

file.

42

28 insert El,LITERAL1,LITERAL2 LITERALn;

(insert lines)

1) Arguments

a) 'El' must be equal to or less than the last line number.

b) 'LITERAL11, 'LITERAL2',...,'LITERALn' must be atoms of

type literal (see sections 4.2, 4.5.4, and 6.20).

2) Actions

a) FILE OPEN

The value of 'El' replaces the contents of the current

line number register, so that insertion of the lines into

the file occurs just before 'El'. The line numbers of the

lines from 'El' through the last line number are increased

by 1, and the literal 'L1TERAL1' is converted into a line

whose line number equals the contents of the current line

number register. The current line number register is then

incremented by 1, and the above process is repeated with

the next literal, until a symbol of type commandsep is

detected (in this case, it is the ";"). The EDITOR then

processes the next command.

b) FILE CLOSED

'insert' is an illegal command when there is no open

file.

43

3) Example

type 10,12;

10 file line 10

11 file line 11

12 file line 12

insert 11, 'insert line 1',

'insert line 2 ' ;

type 10,14;

10 file line 10

11 insert line 1

12 insert line 2

13 file line 11

14 file line 12

44

6.29 dupinsert E1,E2,E3;

(duplicate and insert)

1) Arguments

a) Definitions

1 - 'El' and 'E2' are, respectively, the lowest and

highest line numbers of block 1.

2 - 'E3' and ('E3' + 'E2' - 'El') are, respectively,

the lowest and highest line numbers of block 2.

b) Restrictions

1 - block 1 and block 2 may not share any line numbers.

2 - the line numbers of block 1 must be in the range

from 0 through the highest line number.

3 - 'E3' must be equal to or less than the last line

number.

2) Actions

a) FILE OPEN

The lines currently occupying block 1 are duplicated and

written into a gap in the open file, created by incrementing

the line numbers of the lines from 'E3' through the last

line number, by the quantity ('E2' - 'El' + 1), so that

insertion occurs just before 'E3'.

b) FILE CLOSED

'dupinsert' is an illegal command when there is no open

file.

45

3) Example

type 0,11n;

00000 test line 1

1 test line 2

2 test line 3

3 test line 4

4 test line 5

5 test line 6

dupinsert 0,1,4;

type 0,lln;

00000 test line 1

1 test line 2

2 test line 3

3 test line 4

4 test line 1

5 test line 2

6 test line 5

7 test line 6

4 b

6.30 dupreplace E1,E2,E3;

(duplicate and replace)

1) Arguments

a) Definitions (same as 'dupinsert')

1 - 'El1 and 'E2' are, respectively, the lowest and

highest line numbers of block 1.

2 - 'E3' and ('E3' + 'E2' - 'El') are, respectively, the

lowest and highest line numbers of block 2.

b) Restrictions

1 - block 1 and block 2 may not share any line numbers.

2 - the line numbers of block 1 must be in the range

from 0 through the highest line number.

3 - 'E3' must be equal to or less than the last line number+1

2) Actions

a) FILE OPEN

The lines currently occupying block 1 are duplicated and

written into the open file, replacing the lines contained

in block 2.

b) FILE CLOSED

'dupreplace' is an illegal command when there is no open

file.

47

3) Example

type 0,lln;

00000 test line 1

1 test line 2

2 test line 3

3 test line 4

4 test line 5

5 test line 6

dupreplace 0,1,4;

type 0,lln;

00000 test line 1

1 test line 2

2 test line 3

3 test line 4

4 test line 1

5 test line 2

48

6.31 transinsert El.E2rE3:

(transmit and insert)

1) Arguments

a) Definitions (same as 'dupinsert')

1 - 'El' and 'E2' are, respectively, the lowest and

highest line numbers of block 1.

2 - 'E3' and C 'E3' + 'E2' - 'El') are, respectively,

the lowest and highest line numbers of block 2.

b) Restrictions (same as 'dupinsert')

1 - block 1 and block 2 may not share any line numbers.

2 - the line numbers of block 1 must be in the range

from 0 through the highest line number.

3 - 'E3' must be equal to or less than the last line

number.

2) Actions

a) FILE OPEN

The lines currently occupying block 1 are duplicated and

written into a gap in the open file, created by incrementing

the line numbers of the lines from 'E3' through the last

line number, by the quantity ('E2' - 'El' + 1) so that

insertion occurs just before 'E3'. The lines in block 1

are then destroyed and all the line numbers are adjusted

accordingly.

^

b) FILE CLOSED

'transinsert' is an illegal command when there is no

open file.

3) Example

type 0,lln;

00000 test line 1

1 test line 2

2 test line 3

3 test line 4

4 test line 5

5 test line 6

transinsert 0,1,4;

type 0,lln;

00000 test line 3

1 test line 4

2 test line 1

3 test line 2

4 test line 5

5 test line 6

50

6.32 transreplace E1,E2,E3;

(transmit and replace)

1) Arguments

a) Definitions (same as 'dupinsert')

1 - 'El' and 'E2' are, respectively, the lowest and

highest line numbers of block 1.

2 - 'E3' and ('E3' + 'E2' - 'El') are, respectively,

the lowest and highest line numbers of block 2.

b) Restrictions

1 - block 1 and block 2 may not share any line numbers.

2 - the line numbers of block 1 must be in the range

from 0 through the highest line number.

3 - 'E3' must be equal to or less than the last line

number+1.

2) Actions

a) FILE OPEN

The lines currently in block 1 are duplicated and written

into the open file replacing the lines in block 2. The

lines in block 1 are then destroyed.

b) FILE CLOSED

'transreplace' is an illegal command when there is no

open file.

51

3) Example

type 0,lln;

00000 test line 1

1 test line 2

2 test line 3

3 test line 4

4 test line 5

5 test line 6

transreplace 0,1,4;

type 0,lln;

00000 test line 3

1 test line 4

2 test line 1

3 test line 2

52

6.33 recover;

(recover file)

1) Arguments

No arguments are required.

2) Actions

a) FILE OPEN

The open file is restored to the state it was in immediately

following the most recent action that put it into the

open state. All destroyed lines originally present are

reinserted into the file, all added lines are removed,

and the lines are placed in their original sequence.

WARNING - the 'recover' command must not be used if the

open file is a newly created one, as a result of a

'create' operation, as such a file actually exists as a

list of line pointers and will not be put into the file

structure until it is closed. Failure, to observe this

rule will cause an empty file as described in the 'create'

command. To avoid the loss of the new file, after a

substantial number of lines have been entered, it is

recommended that the file be closed and then re-opened.

In this way, subsequent use of the 'recover' command

will cause no loss of the file.

b) FILE CLOSED

'recover' is an illegal command when there is no open

file.

53

6.34 space;

(space lines)

1) Arguments

No arguments are required.

2) Actions

All printouts of any file, whether open or closed, will be

changed from single spacing to double spacing, or double

spacing to single spacing, depending upon what spacing mode

was being followed, initially.

3) Example

type 0,lln;

00000 first line
1 last line

space;

type 0,lln;

00000 first line

1 last line

space;

type 0,lln;

00000 first line
1 last line

54

6.35 numbers;

(numbers)

1) Arguments

No arguments are required.

2) Actions

All printouts of any file, whether open or closed, will be

single spaced with line numbers deleted, if they are present,

or vice versa. This command overrides 'space' (see section

6.34) as far as spacing is concerned.

3) Example

type 0,lln;

00000 lac alpha

1 add beta

2 dac gamma

numbers;

type 0,lln;

lac alpha
add beta
dac gamma

numbers;

type 0,lln;

00000 lac alpha

1 add beta

2 dac gamma

55

6.36 terminate ;

(terminate)

1) Arguments

No arguments are required.

2) Actions

If a file is open, it is closed. The directory of file names

is saved, thus preserving current status of the files and

symbol table, and control is then transferred to whatever

monitor is running the system.

6.37 reinitialize ;

(reinitialize system)

1) Arguments

No arguments are required.

2) Actions

The file structure and directory of file names are restored

to the original condition they were in following the last

'purgefiles' command. All modifications to all files since

then are canceled. All new files are destroyed. All user

definitions are removed from the symbol table. It is obvious

that this command should be used with due respect and caution.

56

6.38 listlinepointers;

(list line pointers)

1) Arguments

No arguments are required.

2) Actions

a) FILE OPEN

A list of all lines and their associated addresses in

storage (not line numbers) of the open file is typed out.

This command is not intended to be of value to the user

but is a system debugging command.

b) FILE CLOSED

1listlinepointers' is an illegal command when there is

no open file.

6.39 listfilestructure;

(list the file structure)

1) Arguments

No arguments are required.

2) Actions

All lines in the file structure are listed with octal pointers

to the first character in each line. This command is not

normally of any interest to the user and is a system

debugging command.

57

APPENDIX I

THE EDITOR UNDER PEST CONTROL

Through simple typewriter commands, PEST will allow the user to

call either the EDITOR or PAT into core from the drum--the drum having

been initially loaded through a PEST tape.

The EDITOR has, as its exclusive province, certain drum fields

for its files.

Upon a user command to PEST for magnetic tape input of files, PEST

will write the files onto these drum fields and hand down to the EDITOR

a drum list, giving the starting address and length of each file, up to

a maximum of four files.

The very first time the EDITOR is loaded into core and activated

by pressing the start of message key, the EDITOR will check the drum

list, and, if correct, use it to build its directory of files. In

either case, appropriate messages will be typed out.

Subsequent to the initial activation, the EDITOR, upon being

loaded and started (by pressing the start of message key), refers to

its already existing directory and merely indicates that it is ready,

thus preserving its current status.

If during the interim since the last 'terminate' command (see

Section 6.36) there has been a magnetic tape input of new files, the

EDITOR must be alerted by the 'reinitialize' command (see Section 6.37),

59

being the first command issued. Under PEST, the 'reinitialize' command

should be used for nothing else, since using it during a system run will

send the EDITOR to the outdated drum list.

It should be noted that the maximum of four files applies only to

magnetic tape input. The number of separate files allowed, at any one

time within the EDITOR, is a function of the symbol table and file

structure (see Section 2.2).

After receiving and checking the drum list from PEST, the EDITOR

will build its directory of files and, arbitrarily, name the first

four files, in the order of their presence, "filea", "fileb", "filec",

"filed". (Complete renaming, merging, file creating, and destroying

facilities for the user are present in the EDITOR.)

When issued the user command 'terminate', the EDITOR will transfer

control to PEST, after first preserving the current status of its files

and symbol table. It will also write out onto a fixed drum location a

copy of the most recently opened file, filled out with right parentheses

(to signal the end of the file) for eventual input to PAT.

At the end of the run, PEST will allow the user to perform a tape

dump of the entire system, which can be reloaded for the next run, thus

preserving the current status of programs and files.

60

APPENDIX II

LIST OF PROGRAM RESERVED SYMBOLS

operator

binaryconnector

actor

constant

operandsep

commandsep

filename

undefined

lln

cln

flag

config

(

)

and all command names listed in Appendix III.

hi

APPENDIX III

Command

closefile

create

dcon

delete

destroy

dsynon

dupinsert

dupreplace

insert

listallfiles

listallfiles

listfile

listfilestructure

listlinepointers

list symbols

list symbol table

merge

numbers

openfile

purgefiles

purgesymbol table

ALPHABETIC LIST OF COMMANDS

Section

6.9

6.21

6.12

6.27

6.17

6.15

6.29

6.30

6.28

6.3

6.2

6.4

6.39

6.38

6.6

6.5

6.23

6.35

6.8

6.18

6.7

62

Pa%e

25

IS

27

42

31

29

45

47

43

21

2]

22

57

57

2 3

22

37

55

24

31

24

ALPHABETIC LIST OF COMMANDS (Cont.)

Command Se c t i o n Page

recover 6.33 53

reinitialize 6.37 56

rename 6.16 30

replace 6.20 33

setcln 6.11 26

setflag 6.25 39

setudf 6.14 28

space 6.34 54

swap 6.24 38

terminate 6.36 56

transinsert 6.31 49

transreplace 6.32 51

type 6.19 32

typecln 6.10 25

typeflags 6.26 41

typelln 6.13 28

wipelastline 6.22 36

63

APPENDIX IV

TABLE OF COMMANDS BY FUNCTION

File State* Command Arguments Section Page

A

A

A

A

A

O

A

File Status
Commands

closefile

create

destroy

merge

openfile

recover

rename

NEW;

NAME;

NEW, NAME1,E11,E12,.
NAMEn,Enl,En2;

NAME;

OLDNAME, NEWNAME;

6.9 2!)

6.21 35

6.17 31

6.23 37

6.8 24

6.33 53

6.16 30

c

c

0

File
Printouts

listalIfiles

listfile

type

NAME;

El; or E1,E2;

6.3

6.4

6.19

21

22

32

* 0 = open file
C = closed file
A = any state

64

TABLE OF COMMANDS BY FUNCTION (Cont.)

File State* Command Arguments Section Page

Open File
Manipulation

0 delete El; or E1,E2; 6.27 42

0 dupinsert E1,E2,E3; 6.29 45

0 dupreplace E1,E2,E3; 6.30 47

0 insert E1.LITERAL1,.. . ,LITERALn; 6.28 4 3

0 replace E1,LITERAL1,.. .,LITERALn; 6.20 33

0 swap E1,E2,E3; 6.24 38

0 transinsert E1,E2,E3; 6.31 49

0 transreplace E1,E2,E3; 6.32 51

A wipelastline

Symbol
Definition

6.22 3b

A dcon NEW,El; 6.12 27

A dsynon NEW,SYMBOL; 6.15 29

A setudf

System
Information

SYMBOL; 6.14 28

A

A

listdirectory

listfilestructure

6.2

6.39

21

57

* 0 = open file
C = closed file
A = any state

65

File State*

0

A

A

0

0

0

0

0

A

A

c

A

A

TABLE OF COMMANDS BY FUNCTION (Cont.)

Command Arguments

System
Information

listlinepointers

list symbols TYPE;

list symboltable

setcln El;

setflag K,E1;

typecln

typeflags

type 1In

Format
Commands

numbers

space

Garbage
Col lection

purgefiles

purgesymboltable

System Status

reinitialize

terminate

Section Page

6.38 ')7

6.6 23

6.5 22

6.11 26

6.25 39

6. 10 21)

6.26 41

6.13 28

6.35

6.34

6.18

6.7

6.37

6.36

55

54

31

24

56

56

* O = open file
C = closed file
A = any state

66

APPENDIX V

BACKUS NORMAL FORM

Backus normal form (B.N.F.) is a type of notation developed to

describe unambiguously the syntax or rules of formation of a

programming language. It is, essentially, a language for describing

languages, or a meta-language. The most important aspect of Backus

normal form is its recursive definition ability, which allows

description of all the possible and syntactically correct character

strings of the particular language being described.

The symbology of the notation consists of

" < ", " > ", "::=", and "| ".

"|" is the "exclusive or" operator and is used on the right-hand

side of a B.N.F. statement to distinguish between the different

possible character strings.

" < " and " > " are used as the left and right delimiters,

respectively, of a B.N.F. symbol.

"::=" is the B.N.F. "equals" or assignment operator, which sets

the left-hand side of a B.N.F. statement equal to the right-hand side,

with the provision that a B.N.F. symbol may appear on either side,

thus providing recursive capability.

67

The B.N.F. statement

<_digit>::= 0| l| 2| 3| 4| 5| 6| 7| 8| 9

means that a digit has been defined as 0 or 1 or 2 or 3 or 4 or 5 or 6

or 7 or 8 or 9 .

The B.N.F. statement

<number>::= <digit>|^number> <digit>

means that a number has been defined as a digit or a number followed

by a digit. The symbols <number> <digit> expand to <digit> <digit> or

<.number> <digit> <digit>, since a number has been recursively defined

as either a digit or a number followed by a digit. Thus, with a

rather simple B.N.F. statement, the definition of a number has been

expressed as any possible string of digits of any possible length, as

<number> <digit> may be recursively substituted for <number> as many

times as necessary.

68

APPENDIX VI

FURTHER ILLUSTRATIVE EXAMPLES

1. Repetitive use of the following command

delete config('xyz') ;

will delete all lines where "xyz" occurs, from the open file, and the

EDITOR will type out a message indicating that there are no further

occurrences.

2. The following example is included with no further comment:

create fun;

replace 0, 'ZERO',

'ONE',

1 TWO•,

'THREE' ,

'FOUR';

type 0, lln;

00000 ZERO

1 ONE

2 TWO

3 THREE

4 FOUR

69

setcln 0; transinsert lln,lln,cln;

setcln cln+1; transinsert lln,lln,cln;

setcln cln+1; transinsert lln,lln,cln;

setcln cln+1; transinsert lln,lln,cln;

t yp e 0 ,11 n;

00000 FOUR

1 THREE

2 TWO

3 ONE

4 ZERO

70

Security Classification

DOCUMENT CONTROL DATA • R&D
(Security claeellication ol title, body ol abstract and indexing annotation muel be entered when the overall report ie elaeeitled)

1 ORIGINATING ACTIVITY (Corporate author)

The MITRE Corporation
Bedford, Massachusetts

la REPORT SECURITY C U ASSI FIC A TION

Unclassified

2b CROUP

3 REPORT TITLE

Users' Manual For The EDITOR

4 DESCRIPTIVE NOTES (Type ot report and inclusive dales)

N/A
5 AUTHOR^; (Laat name, IIrat name, initial)

Isquith, Ben

6 REPORT DATE

November 1966
la TOTAL NO. OF PAGES

80
76. NO. OF REFS

8a. CONTRACT OR GRANT NO.

AF 19(628)-5165
6. PROJECT NO.

50 8F

9a ORIGINATOR'S REPORT NUMBEHfSj

ESD-TR-66-309

96 OTHER REPORT N O(S) (Any other numbert that may be aealgned
thie report)

MTR-222

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Deputy For

Engineering and Technology, Directorate
of Computers; Electronic Systems Division,
L. G. Hanscom Field, Bedford, Mass.

13 ABSTRACT

EDITOR I is an on-line program within the initial PHOENIX computer
software system which enables the system user to create, destroy, or modify
his collection of symbolic data, organized as files.

The actions of EDITOR I are user-controlled by means of a one-pass

assembler, herein described.

DD ,^1473
Security Classification

Security Classification
M

KEY WORDS
ROLE «T

LINK C

COMPUTORS

Programming, on-line

EDITOR I, user's manual

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord-
ance with appropriate security regulations.

26. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of authoKs) as shown on
or in the report. Enter tast name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATZ^ Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.
76. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.
86, 8c, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.
96. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC."

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

II

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

i»

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS). (S), (C), or (U).

There is no limitation en the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional

GPO 886-551

Security Classification

