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ABSTRACT

The primary purpose of this investigation is the study of the flow
field of steady, viscous, incompressible jet-wakes and vortices sub-
merged in free and confired surroundings.

> Starting with an extensive account of the present ideas and devel-
opment on the subject flows, the general principles of the motion of a
free laminar jet Lava-been analyzed and reviewed. From these principles
an understanding of the very complex behavior of a turbulent jet has -
been obtained.

Using a linearized form of the Navier-Stokes equations of motion,
a set of solutions capable of describing the laminar axial, rotational,
and radial velocity profiles of a jet was deduced.

Next, it was indicated that by introducing a 'viscosity function"
to the simpiified equations of laminar motion, solutions of the same
general analytic form, but with a different nondimensional variable,
can be obtained to describe the turbulent motion.

For the confined jets and vortices, two different approaches have
been used to simplify and solve the equations of motion. The set of
solutions obtained is of the same nondimensional form. Using the ele-
mentary solutions of this set, analytic expressions for the different
characteristics invonlved in the design of a jet ejector were calculated.
Also, a process for che estimation of the different parameters for the
optimum design of a jet pump or a thrust augmenter was indicaced,

The comparison of the calculated general analytic expressions of
this study to existing experimental results indicates that the assump-
tion: and processes used to predict the different velocity profiles of
free motions are reasonable.

On the basis of the presented theoretical analysis and available
experimental results, it was concluded that the laws describing jet-
wakes and vortices for laminar and turbulent motion are of the same

general nature.
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CHAPTER ONE, INTRODUCTION

The mass or flow entrainment process is one of the predominate
phenomena in the flow motion of jets, wakes, vortices and boundary
layers. It is also the basis of many important practical applications,
especially when it takes place in confined surroundings, where in many
cases the entrained flow is noticeably increased.

In the past, a large number of theoretical analyses have been
developed on some parts of the general problem concerning the motion of
laminar or turbulent jet-wakes and vortices submerged in either free or
confined surroundings. The aim of almost every one of these analyses
was to use some form of the Navier-Stokes equations of motion to deduce
analytic expressions capable of predicting the particular motion under
consideration. In this respect - as indicated in the following chapters -
the agreement obtained between the developed theories and the experi-
mental results is generally satisfactory, although in some cases (and
for certain regions of the velocity field) the agreement is poor.

But since the theoretical analyses of the past have dealt only
with some particular type of motion, the presently existing knowledge
of jet-wakes and vortices does not readily allow a comparison or eval-
uation of a general nature to be drawn relative to the mechanism of the
entrainment process. Obviously, this situation exists primarily because
of the wide range of the possible motions and the many, and often dif-
ferent, assumptions made in the development of the abtove-mentioned
theoretical analyses. This is especially true for the case of turbulent
flow, which lacks a universally applicable '"turbulence theory" that
could be valid for all these motions. As a result, the turbulent case
presents one of the more complicated problems in modern incompressible,
viscous fluid dynamics.

A considerable effort in the direction of a more precise under-
standing of the mixing process involved in all the previously mentioned
types of flow was developed in the past by the Aerophysics Department of
Misiissippi State University. In a series of published papers by
Cornish (reference 53) and faris (reference 51), it was indicated that
the semiempirical two-dimensional Coles' wake function - with some
modifications - could describe the velocity profile of a free and con-
fined vortex. However, the universal application of this function has
not been indicated, and it has not been demonstrated with sufficient
theoretical reasoning that this function may have a more universal appli-
cability.

For the above reasons and in view of the present need for more
comprehensive and applicable techniques in predicting the flow field
components, the present report is devoted to the study and development
of generalized analytic expressions capable of describing the types
of motion under consideration.




To be more specific, the primary purpose of this investigation is
the study of the flow field of steady, viscous incompressible jets
submerged in free and confirned surroundings (jet-ejectors). Also, the
similarity and universal nature of the laws describing jet-wakes and
vortices have been investigated; and on the basis of the results
obtained, some basic relations between the different jet-ejector param-
eters have been established.

In the first phase of the present research, the general principles
of the motion of free laminar jet-wakes and vortices have been analyzed
and reviewed. Furthermore, for a simplified form of the Navier-Stokes
equations capable of uniquely describing these types of motions, a set
of solutions has been obtained which can be used to predict the axial,
rotational and radial velocity profiles.

As indicated in the past, in many cases it is possible to extend
laminar solutions to describe turbulent cases. In order to verify this
possibility, the Navier-Stokes equations of motion have been recon-
sidered using the existing '"statistical" and "free turbulent" theories.

Studies have indicated that by introducing some specific function,
namely, the "viscosity function'", to the simplified equations of lami-
nar motion, solutions of the same general analytic form - but with a
different nondimensional variable - can be obtained. Comparison with
existing experimental results indicates that, under this assumption,
one may predict the velocity profiles as accurately as when any of the
other more elaborate, previously developed theories are used.

In the second phase of the present research, after a critical
review of existing jet-ejector theories and experimental results, and
on the basis of the experience obtained from the study of free jets
and vortices, the general equations of motion and the boundary and
physical conditions of axialiy symmetric confined jets and vortices
have been established.

Two differert approaches have been indicated which may be used
to simplify and solve the differential equations of motion, one being
applicable very close to the initial plane, and the other being valid
at some distance from the initial plane. The solutions obtained are
of the same general nondimensional form.

Using an assumed nondimensional velocity profile, analytic expres-
sions for the different characteristics involved in a jet-ejector
design have been calculated.

Finally, in the first of two appendixes included at the end of
this study, it has been verified that the assumptions and processes
used for arxially symmetric motion may be used successfully to describe
the corresponding two-dimensional problems. In the second appendix




some techniques have been indicated that can possibly be used to pre-
dict the components of a confined jet in an arbitrary pressure gradient.



CHAPTER TWO
LAMINAR, VISCOUS, AXTALLY SYMMETRIC JET-WAKES AND VORTICES

GENERAL REMARKS

Previous Developments

It is well known that the general equations of motion of an axially
symmetric jet-wake o. ‘ortex are not amenable to a complete mathemati-
cal solution. In the past, approximations have been used to simplify
these equations to an integrable form. In this respect, first reference
is made to the work of Schlichting (references 1 and 2), who presented
a solution for the case of a laminar, viscous, isobaric jet submerged in
a stationary surrounding far from the origin. Schlichting, assuming a
general form for the stream function, used some of the physical condi-
tions of the problem to simplify the equations to an integrable form.
Due to the restrictions imposed and the processes followed, the analytic
expression obtained for the axial velocity profile is of single-valued
form and can be used to describe with sufficient accuracy the core
regica of the jet.

Gortler (reference 3) extended Schlichting's analysis to include
rotational motion. In this study of the decay of swirl in an axially
symmetric jet far from the orifice, Gortler utilized the method of
separation of variables in the rotational momentum equation. The derived
infinite number of solutions were restricted by using some of the physi-
cal conditions of the problem, but the obtained solutions cannot describe
vortical flow that behaves like a logarithmic vortex for large values
of ¥

Newman (reference 7), using a small perturbation analysis, has sim-
plified the general equations of motion to describe the flow in a vis-
cous trailing vo.tex. The single-valued form of the profile used to
describe rotational velocity does not satisfy some of the physical con-
ditions of the problem, sipce it becomes an unbounded expression for
the rotational mass flow. 1In the following review of the problem, the
general equations of motion will be simplified to yield an integrable
form, and then, by assuming a form for the velocity profile, a set of
solutions capable of predicting all of the types of motign of current
interest will be deduced.

Equations of Motion

For the case of steady, axially symmetric flow, the general Navier-
Stokes equations of motion (1) may be simplified by use of the usual
boundary layer approximations of Prandtl which yield the following equa-
tions in cylindrical coordinates:
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The continuity equation becomes
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where Z denotes distance measured along the axis of symmetry and Z
the distance from that axis.

The above simplified form of the general equations of motion may
represent the velocity and pressure field of a jet-wake or vortex
emerging into either stationary or moving external surroundings under
the proper boundary conditions associated with the particular motion,

Equation (1) is the simplified form of Schlichting (reference 2),
which represents the case of a laminar, circular jet mixing with the
surrounding isobaric fluid at rest (P = constant). Equations (2) and
(3) are taken from Gortler's study of the decay of swirl in an axially
symmetric jet (reference 3).

A brief discussion concerning these solutions may be found in
References 1 and 4. The solutions obtained are valid for the case of the
mixing of an isobaric jet with the surrounding fluid at rest at some
distance downstream from the initial plane.

For the case of a nonstationary surruvunding fluid, the axial

velocity UL may be replaced by the algebraic sum of the free-stream
velocity (Lo and the defect velocity (A (see Figure 1).

w = Ll‘() + X Ll—) (5)

where o{ = 1 for the case of a jet and ol = -1 for the case of a vortex
or wake.



Substituting equation (5) into equations (1), (2), (3), and (4)
gives
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An exact solution of the above system of partial differential
equations can only be obtained some distance downstream from the initial
plane where the equations of motion may :e linearized with satisfactory
accuracy. The linearization process can be performed either in the
initial plane or after some suitable transformation, since the accuracy
of the solution of the equations of motion - equations (1), (2), and (3)-
depends upon the general assumptions and the processes used to obtain
the final result and not upon when the initial assumption of linearity is
performed.

Jf a small perturbatior analysis, similar to the one used by
Schlichting (reference 5) or Pai (reference 6) for the equation of axial
velocity and the analysis of Newman (reference 7) for the equation of
rotational velocity, is used, it may be assumed that the defect velocity
is smaller than that of the free-stream, and that the radial velocity
and variation of pressure along the Z axis is very small. Thus,

W _ N o (, 3u
ot = 'zaz('&

(1-b)

w? | 3P
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As indicated in the followiag chapters, the partial differential
equations (1-b) and (3-b), under a suitable transformation, may be
transformed to ordinary differential equations of the eame general
mathematical form.

The Form of the Possible Solutions

The mathematical form of the preceding partial differential equa-
tions is very siwmilar to those describing different physical phenomena,
e.g., equation (1-b) is identical to the one of heat transfer describ-
ing the radial heat flow of a cylinder at variable temperature and is
similar to the well-known equation of Stokes' first problem of a sud-
denly accelerated plane wall.

The solution of these equations under the proper boundary and
physical conditions forms one of the many boundary value problems. The
most common method used for the solution of the above system of equa-
tions is to assume some general form of solution and then to transform
these partial differential equations to ordinary ones which can be
integrated using standard mathematical techniques.

In the past, for some of the heat conduction and wave motion prob-
lens, the method of separation of variables has produced good results.
This method, when applied to equation (l1-b), gives a solution of the
form

oo

L

V X?’
e Yo mz'- Jo<)‘fn’b))

m=|

(6)

where J, is the Bessel function of zero order and of the first kind,

since the solution of the second kind is always unbounded at Z = O.
The above form of solution, as indicated in the next chapter, presents
some difficulties when the boundary condition and the constancy of the
momentum are to be considered.

But as 1s known, there are still other methods and assumptious for
reducing or solving the above equations. When one uses different
methods, completely different forms of solutions may be obtain.u in
which each form may have a different feature at the time that the bound-
ary and physical conditions of the specific problem are used.

In the past, for many physical problems of the above nature
(references 1, 2, 4, 5, 7, and 8), a form

weg§(H) w7z &)




was used to deduce a single-value solution.

In searching for more general expressions of the different velocity
components, it may be assumed that

%28 § (252€)

satisfies both equations (1-b) and (3-b), and then, using dimensional
considerations, a solution of a more general form may be found.

AXIAL VELOCITY

Solution of Axial Momentum Equation

Following the above brief discussion, a solution of the form

w=1*2% §(e) =
may be sought where

ey e =
e="1"# (8)

and O, 6, ¥, and € are constants as yet not defined. Substitution
of the velocity function, equation (7), into the linearized equation
(1-b) gives, after some simplifications,

52(329°{ (o +[z$(zo.+ T)me (L J /L?f-zé)S(QH

[cu’“-@(ﬁL—L—?] ) =0,

ez§(e)+[w(za,+x) (& Ze)]e o §(e)+

[a, 6(’?‘ U~o]§ 0.

If the vilocity field is to have a universal or self-preserving
profile, one may take

or
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O = 'Lb'ze = -

where € = =) and ¥ =2.

Thus,

6 £(G) +[a+ 1+ eu°] of(e) + [(Zz- €2L¢° ] §e)=o.

This equation, under a transformation of the independent variable simi-
lar to the one used by Blasius (reference 8) for the case of the bound-
ary layer along a plate, i.e.,

_ 4AvX
O = Wo (10)

takes the nondimensional form

Xz%’éx) + X%’(x) {1+a+ x] S (X)[ €x] 0.
Finally, by transforming

(0 = x -% ¢ (x),

the following is obtained:

“+(1+x) - ¢ (Z+ 8)=0. s

The form of the solution of this equation that is of Laguerre's
type will depend on the value of the constants Q. and € , and can
be rewritten in Laplacian coordinates

O+ o {—+<—+€)(s s+1] O.

This equation has the sclution
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This will give the following results in the initial coordinate system:
Case 1:
For % + € = -m m>o0
where m\ is a positive integer,
b (x) = e % v (-l)K-l(m-_l)! xK1 _
m=" (-] (m-K)| (K'D! (11)
K=1

Case 2:
For _%__‘_ 6 = m> OJ
-X m
_ e d m_ X\
q)m(X) = T ml d.xm (X e ). -
Case 3:

For the particular case that
a 1
e + o —
2 g 2

Bessel's solution of the form is obtained,

Cb()() = Ae-% Io (“_2)(7)7 (13)

where Io is a Bessel function of second kind of zero order.

It must be noticed that, if (¥) is not an integer, the solutions
will be similar to those given for Cases 1 and 2 and can be obtained

1
5; )m.

by binomial expansion of (

The corresponding velocity function of the (& ,’? ) coordinates
systein is

10




R+F 4
w=AZ = ¢ (14)

for Cases 1, 2, and 3, respectively.

Any linear combination of velocity profiles given by the general
expression Pe)

4+ e
W= AnZ ™ Z §. (0 s

is a solution of the equation of motion, equation (l-b), where the
final form will depend on the boundary conditions and the momentum

considerations.

Momentum Considerations

There is a constant associated with the axial motion that can be
obtained by multiplying both sides of equation (1) by 2 , integrating
with respect to Z between the limits O and ©0 , and assuming that

- ow | _
\’Zl—:noo 372 = 0.

Momentum is given by

00
M = 2T S’L(F’-\—Suz)d,z) (16)
(@)

which can be written

M= 2 So: [P +3(u.o+°(u.)z] ZO(Z, (16-a)

or, neglecting the higher powers of the defect velocity, this constant
for the present case can be expressed as

o0
Mg = 4nguo&xuzdz. (16-b)
O

11



Therefore, it must follow that

- dmgud o) And™ T g 0ilnd
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is a constant value.

To satisfy this condition, solutions must be sought that produce
momentum integrals independent of axial distance #Z . It can be seen
that the only solution of equation (1-b) which produces a constant momen-

tum is the one for which & m
R + — = -1.

This solution has the form

-1 _X
L = Alz e 3 (18)

-l X
w = Ww, +AZ € . (18-a)

Any other expressions of the form

5:0 ¢, (x)dx = O, (18-b)

which obviously will not alter the magnitude of the momentum integral,
may be added to the solution (18-a).

The above conditions are satisfied by the velocity functions that
are given by equations (15) and (11), in which constant momentum is
produced for M = 1 and zero momentum for m = 2, 3, 4, ... Thus, a solu-
tion of general form that satisfies the constancy of the momentum is

o0 m ke f
_ 1 _ T I ( D xK




where K = 2. 3, .... It may be noticed here that, for n > 1, and not
an integer, the integral in equation (18) does not vanish and the
momentum becomes a function of Z.

Boundary Cenditions

So far, the only restriction imposed in the solutions has been the
independence of the momentum with respect to the axial distance Z.
The final form of the solution is directly related to the following
boundary conditions that are the same for the case of the axial velocity
of a jet-wake or vortex at some distance downstream from the initial
plane.

U
l’L—>oo = kol (20)
ou o

and t‘J

(22)
where C1 and CZ are constants.

It may now be verified that any solution of equation (19) satis-
fies the above boundary conditions and that solutions of equations (15)
and (12) or (13) are unbounded for 7 approaching infinity. Therefore,
the only solution that satisfies the boundary conditions and the con-
stancy of the axial momentum is the one given by equation (19).

Whenever the velocity function is given by more than one term,
unavoidable difficulties arise in the calculation of the arbitrary
constants A"” since only Aq_can be calculated from the momentum inte-
gral.

Ay = Mo
8rr'\)30< ’ (23)

Some additional information for the calculation of these constants
may be obtained experimentally; i.e., the value of the velocity along
the £ axis where

13




Ww 00
: — -Mm
2=0 ,; AmZ . (24)

In tensor notation, the solution of the system is

where | is the axial velocity along the Z axis at a distance Z( from
the origin. This will give the value of the arbitrary constants A ,,.

ROTATIONAL VELOCITY

Solution of the Rotational Momentum Equation

The rotational velocity (W may be calculated from the simplified
equation (3-b) by using an approach similar to the one used for axial
velocity. Again, assuming a solution of the form

w =7 £6§(e) (25)

where © = Zb'-ze, substituting into equation (3-b), and simplifying, it
is found that

22 +[25(zo.+z;) € ]684—

[0. -1- G(U’d ]g = 0. (-9

If the velocity field has a self-preserving or universal profile,

S _
Ea = —EE__ and Zf = 23)
€=-1,

and using as before

and transforming

14




% | -atl
W= x 2 O,
an equation mathematically similar to equation (1-f) is obtained.

X+ xd'— Y_%+ 6+%} = 0. @b

In view of the boundary conditions of the problem, it is assumed that

(X)) =0 a x=o0.

Transforming into Laplacian coordinates,

¢ (s+Ds+ & [25+ 2 +-&+-g] =0, (g

or

(b - s+1 Z + B- -xa— )
This will give the followmg results in the initial coordinates:
Case 1:
For %-{-8 —% =m /Y\ a positive integer,
m +
¢ - 2 ! xK .
m &
= K! (- (K41) ! (26)
Case 2:
0¥ 1
For o =l —_

m -X m-K+1
d)m: Z(l)(l)m\e X

K=o K (m- 1O (KDL - (27)

Also, for the case

or




the following relations are obtained:

d = 1-e* (28)
b= xe = [1,05+1,63).

It should be noted that when M 1is not an integer, the solution
is very similar to the one given by equations (26) and (27). In this
case the final form will be restricted on the basis of the given
boundary conditions and additional physical conditions which the velocity
profiles are required to satisfy.

and

(29)

Physical Conditions

Starting first by selecting the velocity profiles which have
physical meaning, the conditions concerning the bounded characteris-
tics of the physical quantities related to the motion will be investi-
gated.

Following Gortler (reference 3) in this connection, it may be
recalled that the pressure is regarded as constant along the #Z axis,
but that there is a pressure variation along the radial distance from
the & axis that can be calculated by integrating equation (2-b). Thus,

00 oo 2
Pl = 38 9 dz
O o (2 (30)

1, (P w?
AP=Z§ SO v d. x

which must be of a finite form in the domain of definition. On the
other hand, there is another constant associated with this type of
vortical wotion that will depend on the degree of swirling in the
described motion. This constant may be derived by multiplying equa-
tion (3) by 'Lz, integrating with respect to ‘L between the limits
O and 00 , letting L, W TWV—>0 as TL->c0, and
setting V=) =0 when L = @© . The integral expressing angular
momentum for a unit axial width is then obtained.

R = ango'z,zuwdvz, o
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The constancy of the angular momentum is to be expected due to
elementary mechanical principles, and for the present case

oo
R=2wg go(uo-\—ocu,)w'z,zd'b. (31-a)

If
UWol >> ok UW,

R = ZTTS\LOS w*d .

(31-b)

Finally, the circumferential mass flow for unit axial width,
oo
™ = ggwdz
J
o
may be assumed to possess a finite value.

Now, the question arises as to the possibility of satisfying all
of the above conditions and of deriving a condition which is suffi-
ciently restrictive to enable solutions given for different values of
™M (of integer and noninteger order) to be obtained for which the
physical profile is described with sufficient accuracy.

To examine this question it may be assumed, using a process simi-
lar to the one given by Gortler (3), that the integral

o0

So XKwdx)
* K A

o 1T whde

might exist in bounded form where K and A\ are arbitrary constants.
This last condition yields the relation
K+1

O+ 286 = —
. A

or more generally

between the arbitrary constants.

The general form of the velocity profile calculated using the
above prccess is given by the function

a _1
w = Bz¥TZ xz ¢

17




Thus, the corresponding pressure difference given by equation (30) is

AP-——B Szze+°'8 dx.

Also, the circumferential momentum flux relation will be

3 L7 __3__ 00
gt §Y2 B+2 12
R =~ Uy: BZ o ¢dX) (31-c)

(30-a)

and the circumferential mass flow is

L a * ¢
v \Z _8+tz+ 3 il
Bf ('uI) gr » A X OLX. (32-a)

o

It may then be observed that any function given by equation (26) is
unbounded as x —» oo, and it cannot satisfy the integral restriction
given above. Also, the particular solutions given by equations (28)
and (29) are unbounded in integral form. Equation (28) is identical
to the one given by Newman in Reference 7.

E—?T_'L-Cl— —X). (33)

This type of flow at large values of Z describes a swirl profile that
corresponds to a logarithmic vortex.

The logarithmic vortex is also a solution of the equation of
motion and may be obtained from equation (2-f) for the particular case

that a i _
2z Té+z=0

and =

¢ - C-
Although these two forms of the vortex have been used extensively in
the past, it may be easily verified that nonc of the physical conditions
previously described can be satisfied, as these functions are unbounded
for extreme values of 7.

Starting from the momentum integral in equation (3l-c), one may
observe that for the particular case when

o _ _23
$+ 2 =-2>

the momentum is indipendent of the axial distance # and is of constant
value.

For this case, the constant of integration is

18




B. = Ru,‘/z/ 32
0 o/8uSV7*.
The above is also true for all integrals of ¢ for which

e""&:—':——m

where ™ 1is an integer and M =1 are of zero value.

The corresponding solutions of the equation of motion are, for

o 3 -3 Y% _x
B+ 2 =-3 w,=BZ “x7e", (34-a)
5 -% X\ 4o _
8+ F=-2 w1=B12 “(1-z)xRe’%, (34-9)
a 7 . -% 2 Y% _
8+-z“="5)wz =BzZ z(l-x+i—)xze x) (34-c)
o __q -% 3 1.2 x3
€+ 2= % 005 ByZ * (1-F x4 x% 25 ) re
2 (34-d)
and, in general,
M o |
. i +2-K) _ -3
o = X\ B U ml xRy
KI (m-K)l (m-k+1)!

Thus, any combination or linear superposition of equation (34-a), n=z O,
with any number of forms of equation (34) for which m>Q, satisfies
the constancy of the angular momentum,

The corresponding values of the integral involved in equation
(32-a) for the circumferential mas flow are for m= 0, +1, +2....

Sw—‘tolx# 1L 11
o X )2,)317))

respectively. So the quantity expressed by any of the above combina-
tions decreases with the axial distance for 2 > 1 according to an

inverse power law.
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Finally, the corresponding values of the integral S; Ci.x

involved in equation (30) for the pressure differences yield constant
values.

Thus, there exists an infinite number of solutions which satisfy
the differential equation of motion and the physical conditions imposed
previously. But, it can be seen that these conditions are not suffi-
cient to deduce the solutions which have physical meaning; in addition
to the boundary condition, the condition that circumferential velocity
is always greater than or equal to zero must be considered. The mean-
ing and possibility of the existence of "negative velocities'" will be
discussed in Chapter Five.

The Boundary Conditions

The swirling velocity must banish for

Liem ()
1—>0 (35)

and

Lim(w) = 0.
U =Yoo (36)

Also, the swirling velocity must always be greater than or equal to

Zero.
w> O.

The first two conditions are satisfied by any solution given in
equation (34) for m of integer order. The last condition irs satisfied
by equation (34-a), and can be satisfied by linear combinations of
equation (34) only for certain regions of the axial distance #Z and for
some carefully calculated values of the integration constants B”p
Because the algebraic equation

= ERm! TR

K! (m-K)!(n- K+1)|
K=0 (37)

has m distinct positive roots, the velocity profile described by a
single function ¢”KX) will represent a velocity that changes sign m
times for a radius variation between zero to infinity, a condition
that cannot b2 expected to exist under laminar motion.
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The Static Pressure

Using equation (34), one may calculate the static pressure drop
along the T axis to be

oo

2 -3-2mn = -

m XZ
0
m=0 (38)

Also, the static pressure for a given value of X may be calculated from

o0
X n2
p=3) BZ Z%*" %“z—(x)otx.
Mm=0 2 (39)

The Radial Velocity

Using the continuity equation (4-a), the radial velocity U for
some point ( TU,Z) is given by

v
— o ol
]}____SO/L.S_d’/L

or

X
U —0(2-4")8 g—%‘o{,x.

22 Wy

Substituting \J from equation (15) gives

00 X
U= _%_zz : % Am Z-m"go [ (- )& (0)-x¢$ ()] dx+G(),
m=1 (40)

where (G (2 ) is a function of & or a constant that, according to
the boundary conditions, is equal to zero. For thaparticular case
when the axial velocity ) 1is given for .

g 5 8m+ = -1 R

2
then Alz, —uollz
=
U =2 e dvz .




THE FORM OF THE SOLUTIONS

The Initial Conditions

Up to this point, some of the possible boundary and physical
conditions that restrict the motion have been considered without
restriction being made relative to the value of the velocity components
at the initial plane. It may be verified that all the analytic expres-
sions given for the velocity components cannot be defined if the initial
plane is at Z = 0, as 22 = 0 is a singular point for all those func-
tions. On the other hand, the types of simplifications used in the
Navier-Stokes equations of motion are such that they can be used only
at some distance downstream from the initial plane. Thus, a question
arises as to how velocity profiles described by functions of equations
(19) and (34) are produced in some initial plane. First, it may be
observed that the mathematical treatment of the present problem holds
true for a more general coordinate system 2 + 2|, where Z( is an
arbitrary negative or positive constant that is expected to be different
from the theoretical origin of the velocity field. This constant can
be estimated experimentally by comparing measurements taken at any two
points along the & axis.

It may be assumed that at Z = Z |,
w = W (2) ad w = wi (2).

Then, following a process similar to the one used by Taylor (reference
9) for the case of the dissipation of eddies, the initial distribution
of the velocity is now

' - -X{ -m — m-1)! Xi
ui(z) =e E‘“Z“ Z(K-l)!(m-K)!(K‘l)!
m=1 K=1 )
and fo%= m -
T W GV &) P
wi(2) =€ m=L K1 (m-K) {(m-k+D)! 2
m=0 K=0 (42)
where X: = ,Z‘ZL'L'O

LT o4avz
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The Nondimensional Velocity Profile

Since the system of motion under consideration has no preferred
length or dimension for reference, the cbtained velocity profile can
be expressed in a nondimensional form by using some conve.iently chosen
reference quantities as follows:

For the vortical velocity: A characteristic region for the vorti-
cal velocity at a given axial distance #£ 1is one of maximun value. This
maximum can be calculated by letting

W _
E

For the case of a vortex of the simple form given by equation

(34-a) for 1
72
@ _ - _2_v_£=_>

2 WUo

where Z4 is the vortex radius for which the velocity is at its maximum
value, the corresponding nondimensional velocity is

1/2)2
W C_Z,i_e—Z(’zl) . )

Wanax
These values are of the same nature as the ones given by Newman (. >f-

erence 7), which probably were obtained by estimating the maximum of
the velocity profile

Be - X
w = —
(A = . (45)

This is also a solution of the equation of motion resulting by super-
position of an antirotating logarithmic vortex to equation (33). Tke
nondimensional vortex profile is given for this case by

§Z
w i -5 1
—_2_=-C _>e 2 here & = —
W max l(§ " S 71 (46)

But, in general, if the velocity is expressed by a more complicated
function, e.g., equation (34), much more sophisticated criteria must
be used to obtain a nondimensional form; and since these criteria are
related to the integration constant, they can be evaluated only experi-
mentally.

For the axial velocity: Using the same process for the axial
defect velocity and considering that the maximum value occurs at X= 0,
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it may be seen from equation (19) that U,,m“ is a function of Z only
and may be written as

291
- E -m
m=1

For such a general solution, (equation 19), difficulties similar
to those described in the above paragraph exist; but for the particular
case that m= 1, the axial velocity defect takes the nondimensional
form

(47)

u,°+O(LL(X)_ - X or w - -X
W,+AU(o) _ © Wnax ~ € (48)

when solutions (18-a) and (18) are used, respectively.

The Validity of the Obtained Solutions

In the preceding chapter, the mathematical solutions of the line-
arized equations of motion of the axially symmetric laminar flow of a
jet-wake or vortex have been described.

Solutions of integral order of the induced variable m have been
indicated for every velocity component. The physical conditions con-
cerning the motion with the appropriate boundary conditions have been
applied to restrict some of the solutions for integral values of the
induced variable m.

Now, it is of particular interest to examine the question of the
range of the validity of the obtained solution. Of course, this range
is expected to be directly related to the extent that laminar flow
exists for this type of motion.

If, as a criterion, the Reynolds number based on the jet diameter
and some of the velocity components is used, it may be observed that
the Reynolds number very quickly exceeds its critical value so that
the flow is expected to be turbulent.

As indicated in the past by Gortler, Schlichting, Squire, Newman,
and others (references 1, 3, 7, and 10, respectively), it is possible
to extend the obtained solutions of laminar flow to turbulent motion,
since for this case the differential equations of motion are almost of
the same form. Therefore, it will be useful to examine the behavior of
a turbulent axisymmetric motion.
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CHAPTER THREE
TURBULENT, VISCOUS, AXTALLY SYMMETRIC JET-WAKES AND VOLRTICES

GENERAL REMARKS

It has been noted that in most practical applications the flow
motion is turbulent for very low Reynolds numbers. Such a turbulent
or eddying motion is primarily characterized by a fluctuating velocity
component which is superimposed on the principal velocity, the effect
of which is equivalent to a great increase in the coefficient of vis-
cosity. To describe such a motion, Boussinesq (reference 11) suggests
that turbulent flow can be treated by assuming an increased viscosity
due to eddying motion, which can be considered constant through a given
flow field. According to this theory, eddy viscosity is not a property
of the fluid but depends on its mean velocity. It has been proved that
in some cases (references 1 and 12), Boussinesq's assumption is accurate
enough to predict the velocity distribution of a free jet as accurately
as any other more elaborate theory.

There are currently two principal approaches to the study of tur-
bulent flow. The first, which goes under a general title of "Free
Turbulence Theory', includes Prandtl's mixing length (references 13 and
14), Taylor's vorticity transfer (reference 15), Reichardt's ianductive
theory (reference 16), and others (references 17 and 18). All of these
theories establish a functional relation between Reynolds stresses
produced due to the mixing motion and the mean-velocity components of
the fluid by means of semiempirical hypotheses. The second approach,
which goes under the title of '"Statistical Theory of Turbulence", is
based on methods of statistical mechanics and describes the flow
variables by using statistical mean values (references 19 through 22).
It is not the aim of this report to discuss the range of applicability
of each of these methods. A rather extensive discussion is included
in Goldstein (reference 23), Schlichting (reference 1), and Townsend
(reference 22).

But as will be seen in the following text, for some cases using
the different above-mentioned theories, or a simple assumption of the
"viscosity function', solutions of exactly the same form and of good
agreement with the experimental results may be obtained. The signifi-
cance of this fact will be indicated in Chaptec Five of this report.

AXTIAL VELOCITY

The Equation of Motion

The Navier-Stokes equations of motion for an incompressible vis-
cous fluid - equations (1), (2), and (3) - may be transformed to describe
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the turbulent flow by replacing the laminar velocities by

™ =Upm+ u,')

49)

where W ,1is the mean and W the fluctuating velocity components,
respectively.

By taking mean values of equations (1), (2), and (3), considering
axial symmetry at the boundaries and the mean values connected with
the flow, the equations of mean motion in cylindrical polar coordinates
are

LL eu-nn éufm a
Seo TSt 57 +

i A(ZLLU) P N (’l MU

|
T 3 € 9 'Laz > 50

and

WV OV | 3(UWV7)
Um 5z Urm S SZ T

130%)_ o2 L3P, [ L2 (r 0m
Y 2 3372 T az 3T A, (51)

where, again, & is the axis of symmetry and 4 is the radial coordi-
nate. Continuity is also

d(Umn?) ;| 3(Um?)

3= O.

QT - (52)

Discussion of Previous Developments

Before proceeding to develop a simplified approach for the solu-
tion of the equation of turbulent motion, some of the work performed in
the past will be indicated and discussed very briefly. However, it
should be noted here that none of the turbulent theories (references 13
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through 15) were originaliy developed for axisymmetric motion, so that
any development »ased on two-dimensional relations between turbulent
shear stress and mean motion may be regarded as being without any
"theoretical basis"'.

Townsend (reference 22), using assumptions similar to the one used
for laminar flow with the fact that W#* is very nearly equal to w’?
everywhere (except at % = 0, where the two terms are equal), and that
the gradient of the mean value 2 1is large compared with 2 , has fur-
ther simplified the above equations (50) and (51) to obtain

3U sum W02 1 SUUZ _V 3 (29Um
W m m
™ 3z + U 5z T S Z AR 'za'z( .

if the normal stress component is neglected - a condition that is almost
valid near the axis of symmetry of a jet or a wake, but is of some non-
negligible value near the edge of the boundary - then this gives

SUL )8 1 dWue 23U
Y Sz tUmsz ‘Yo 52 = 'z,az( ) (s

The corresponding equation of motion for the case of an axisymmetric
jet or wake in a co-flowing surrounding may be obtained if the mean
velocity is replaced by

W = WUg +°(u,) (54-a)

where L, is the defect velocity component, and an order of magnitude
evaluation is applied. Then, following Refereonce 22, it is assumed that

— A
W = u'o+°(U'28 (?); (55)
12™ 79/
and
¢ — 2 _..,2_’.—
wu = W, 912< e,,)- (56)

In order to have a universal velocity profile,

eo’\) (i B 20)1/3

(57)

and

&

"LZN (Z = ZO)— _3_ . (58)
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The solution indicated by Townsend is
WUe?

e =
U~ U= A(Z-Z1) € AV(Z-21) (59)

which may be expressed in a nondimensional form by dividing equation
(59) by the maximum defect velocity occurring at r = 0. Thus,

Wt
Wo = Uom  _ e AV(2-#1) -

Wo = U amax ) (60)

where Z& 4 1is defined as some new virtual origin. This velocity pro-
file is identical to the one given for the laminar jet equation (1l1)

for n = 1.

An explanation for this similarity is that at sufficient distance
downstream from the initial plane, the turbulent velocity field
develops independently of the mean-velocity field and the turbulent
motion becomes negligible compared to the mean velocity of the motion.
Thus, the mean-flow velocity may be approximated by the corresponding
velocity of a continuously developing laminar flow.

Although Reichardt's theory (references 16 and 24) was listed as a
free turbulence theory, it differs from most free turbulence theories.
Instead of attempting to establish some semiempirical relation between
Reynolds stress and turbulent velocity components, it assumes in the
equation of motion, equation (50), that the terms with pressure
gradient and molecular viscosity may be neglected.

Therefore, the equation of axial momentum may be written in the
form

AW
QZ

oUm _

L =
m 3T

+ U
(61)

Now, by multiplying the equation of continuity, equation (52), by LL,ﬂﬂ
and combining,

2
(Q!Jv‘nT\ _+_ ;; quyy\L)nnq —%— \l’nﬂlkjfvn — C).

OZ QT T (62)

Furthermore, Reichardt has assumed that the lateral transport of the
mean-velocity momentum is proportional tc the transverse gradient of
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the horizontal component of the mean-velocity momentum

2
- &U-rnn
U'NY\Urm - /\(i) TL— P 63

where /\(Z) is a parameter analogous to Prandtl's mixing length with
the dimensions of length. Substituting into equation (62) gives

2
W N Uen 1 dWom
32 Q1= (Y (64)

At this point, a set of solutions may be obtained by assuming that

2 a 6 Je)
Wim = %2 §(1%2°),
and by following the process described for axial defect velocity. The
nondimensional parameter will be

V2
X €

ZN(E)

However, Reichardt has transformed equation (1) on the basis that in
an axisymmetric jet the dynamic pressure is inversely proportional to
the square of some characteristic thickness |p , a condition that

is identical to the one obtained using the small perturbation analysis
equation.

Introducing a nondimensional parameter 5 = ’Z,/b , and

assuming that the momentum transfer length is

_ ., db
N(B) = b=,

(65)
and that a mean dynamic pressure function is
2 c=
W = <2 § (5)
Reichardt calculated the elementary solution
2
2 Cz -§/Z
Wen = —Z— €
b < (66)
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As was expected, due to the mathematical form of equations (46) and
(64), the nondimensional solutions are identical; but a difference
between the actual velocity profiles exists.

To smooth out this difference, an assumption similar to that of

Townsend (reference 22) may be used in which, from energy equilibrium
of large eddies, it may be shown that

b Z—ZQ

w

/
RT is an equilibrium flow constant given by

Rl _ LL(mAX b T
n N . (68)

Thus ,

2
2-2Z, v BUo

and Reichardt's solution and the solution obtained using the process
described for laminar jets for ¥= 2 and €=-] are approximated.
Although this report is primarily concerned with the axially symmetric
flow motions in Appendix I, it may be verified that the assumptions and
processes used for axially symmetric motion may be used successfully

to describe the corresponding two-dimensional problem.

Finally, mention may be made of the work of Faris (reference 51),
who developed a semiempirical relation capable of predicting very accu-
rately the axial velocity profiles by extending the wake law suggested
by Cornish and Coles for the turbulent entrainment process of the
outer boundary layer.

Solution of the Axial Momentum Equation

An alternative approach for the solution of the equation of tur-
bulent motion, equation (54), can be developed by assuming an approach
analogous to Boussinesq's "mixing coefficient" for Reynolds stress.

9 U
tzlz = SV(Z> _;L_/L_)

(70)
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where 8 is the actual density of the fluid and V(E) is a "viscosity
function' which 1s a function of distance Z measured from some
initial point.

By combining equation (70) with the general expression for tur-
bulent shear,

Y
LT3y = — SU’U , (71)
we have
wu = -v(z) é&’_@_
a'Z/ (72)
Then, substitution into equation (54) gives
2V v 2V(E) ( oW
W == m =

and an equation similar to the equation of axial laminar velocity,
equation (l). Obviously, the expression used for Reynolds stress does
not affect the mathematical form of the equation of motion and, in
this respect, is of the same nature as when it is assumed that /U’ =0
and when some "viscosity function'" is introduced to the laminar flow
case in order to describe mean-velocity motion.

Now, replacing the mean velocity from equation (54-a) and applying
an order-of-magnitude evaluation, the resulting partial differential
equation may be transformed to an ordinary one by assuming a solution
of the form given by equations (7) znd (8).

o+ [257 - S Hule { @ +
2 Q 2 o
[ c;; T z‘flzz \L/?Z)] S(@: O- 74

If the mean-velocity profile is expected to have a universal or
self-preserving character,
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£-Y¥ E-¥% . % 2
’ T £ 2 Wo -
el -e=l6] gz 2V(z) - X

where € = - £, Ele |€\ , and (p 1s a constant having the
dimensions of length. Thus

£ .22 Uo ;¥ 2°

V(Z) = 32’ Z 2 zb’ .

Therefore, if V(z) is a function of Z , Y= 2. Now, by introducing
a nondimensional parameter

£ 2 i,
¥Rz 2 V(&) > (75)

and transforming the nondimensional equation by

{ = % ¢ (),

then

)“1)”"’ [1+x] $ - [%+%] ¢ =0

This equation gives solutions similar to the one for laminar flow if,

in equations (11), (12), and (13), X 1is replaced by X_ and %-}-@

€

by 2 4+ —=—. Also, the velocity profile is given by

¥ T E 0 ac
w=AZ"""7 o(X), 7

or, in general,

(77-a)

“ {fmz”‘s bun (O

where (bm (X) is given by equation (11) with % + ;g- = -m.

If it is assumed that the constancy of the momentum is given in this

case by equation (16-a), then —g 4 Q = - —24 (78)

¥ ¥ -

Thus, the solution in Laplacian coordinates is
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— -2
d = S+1\ ¥ 1
= S (79)

The condition of constancy of momentum is satisfied for all positive
integral values of M as in the laminar case. The form of the veloc-
ity function depends on the value of ¥ , or, more generally, on the
"viscosity function'. If "viscosity' is a function of Z only, then

T = 2.

When € = 1, a velocity profile similar to the laminar profile in
equation (l1) for en = 1 is obtained. If &€ = 2, a nondimensional
solution is given by

_ -X
U.,‘ =€ 5 (80)
wh ’Z,E
ere x_ == Cl-—éi .

But, if "viscosity'" is a function of both variables Z and Z& , a
condition that may lead to the equation (74) due to the form of the
simplified equation of motion, then a relation between & and ¥
must be established in addition to determining the value of ¥

For instance, using the relation resulting from Schlichting's
analysis of the turbulent wake (reference 5) as a basis for establish-
ing a relationship between & and ¥ ,

ZE =Y,
and under a more general assumption that

1=¥<2

as expected from References 5, 6, 7, and 16, an infinite number of
solutions for the limiting cases may be obtained. The solution for
¥ = 2 has already been given by equation (18) and for ¥ =1
with m = 2,

J

Ly = —g(i_X)e-x

(81)
T
where JC now becomes Y = Cp ;!-% It may be verified that the

last solution satisfies all conditions of the problem. Again, for
these cases, Uy, 4+ WL may be expressed by the same function.

The values of the constant of integration, the induced constant,
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the virtual origin of 2 , or the characteristic thickness b must
be determined experimentally. Obviously, all of these quantities uay
be included in a conveniently chosen "viscosity function".

Before comparing the calculated velocity profiles to existing
measurements for axially symmetric wakes and jets, it will be useful
to investigate whether the semiempirical profile of the turbulent
boundary layer wake (as modified by Cornish and Faris (reference 51))
to describe jets may be approximated by some of the possible solutions
of the linearized equations of motion indicated above.

We may then verify that a velocity profile of the simple form
LL 0 -X .
1€

where J)C 1is given by equation (75), successfully approximates the
proposed profile to give

e‘x ~n 1 - @30.

Here, 630 is Coles' wake function (54). But superimposing the
solutions

g

one may obtain a very good agreement. Thus, Coles' wake law may be
regarded as a solution of the linearized equations of motion.

ROTAT1ONAL VELOCITY

Introductory Remarks

Since in the case of the axial velocity component the laminar
velocity profile can be extended to describe turbulent motion with
the aid of the 'viscosity function" or "momentum transfer length", it
may be expected that by using similar techniques the mean-vortical
velocity profile may be approximated.

Unfortunately, existing experimental data are not of a nature
which allows verification of the necessary assumptions that lead to
profiles representing the actual case. Also, in view of the infinite
variety of solutions that may be obtained for a form of equations (2)
or (54), the following discussion will be limited to the indication
of some of the different possible processes that have been used in the
past or that may be followed in an alternative way for estimation of a
sufficiently accurate mean-vortical velocity profile.
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In general, it may be assumed that at a position downstream, the
velocity profile behaves as the mean velocity, and that the turbulent
velocity components are of negligible order.

It may also be assumed that the swirling velocity does not affect
the first approximation of the axial flow velocity. Then, by replac-
ing the kinematic viscosity in equation (3-b) by its value given in
one of the existing theories (references 13, 14, and 15), it may be
possible to solve the problem.

Gortler (reference 3) indicated this process by using the apparent
kinematic viscosity from Prandtl's second hypothesis.

€ = Kb (Wynay™ Uonun) -
For the present case,

o = Kbw(z,0)

and is constant for a given distance from the initial plane.

Squire (reference 10) considered the growth of a viscous vortex
and concluded that there is no justification for the introduction of
complicated formulas for eddy viscosity or mixing length. Also, since
the circulation is a principal parameter characterizing the motion,
apparent kinematic viscosity may be determined from the summation
V+E, where € = X B is constant and B 1is the circulation of
the line vortex. Newman (referencc 7), in discussing the agreement of
the vortical velocity profile given by equation (33) with some experi-
mental results of tests carried out by Mowforth (reference 25), concludes
that it is clear that this type of motion cannot be described in terms
of a constant viscosity for every downstream station, and that eddy
viscosity is approximately constant at the vortex core. For relatively
large radii, however, deviation from the theoretical profile is very
large.

Solution of the Rotational Momentum Equation

On the basis of the above brief discussion and since the most
uncertain parameter in the description of turbulent flow is the assump-
tion concerning viscosity or relating stress to rate of deformation, it
will be preferable to search for solutions of the equation of rotational
momentum that must be of some general character and of such form that
the solutions may be adapted to describe actual mean-rotational profiles.

If, as in the case of the axial jet, a characteristic width b and
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a viscosity function V(’(,Z) are introduced it may be assumed that
a solution exists of the form =7%b _f('()’be) and an equation

of the form below may be obtained by following the same elementary
process as for axial motion.

gx +§ [ZC%-«-J +x]+%[a.;—21 _661,]:0)

where for the present case

Lo db 2%
B b5 [C} zrz V(12 dZ b=

(82)

(83)

£=-€=l€|, and C has the dimensions of length. Then, by letting
a+l

g = de”(I)) (84)

and by transforming into the Laplacian coordinates,

g 1
- ¥te- ¥
d) - (5+l)
S o
(85)

Before transforming to the original ( T, b ) space, the existing
relations may be indicated between the constants Q., € , ¥ , and
& in order to satisfy the three integral conditions which are given
for the laminar case by equations (30), (31), and (32), assuming presently
that they may be extended for turbulent flow.

As the velocity profile for this case will be given by
00

{h+L+DE _x
W m =Zme ° x T CP,,r\()C)J (86)
m=0 6
where ¢m is given by (27) with m = .-%'- -+ E- + :‘t_ ‘f'l

the angular momentum integral is then
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8+é9.’.+£ 002_-8_
R =CyBb % 7 X7 d(x)dx. &n

Thus, the constancy of the angular momentum implies

g 4 & - _3,
€ 3 ¥ (88)
Therefore, -1+ %

L S
¢ = (S+1)¥r ,

for which the general solution is
38 _ 1
] -4
W= Bb® X ¥ &(x). (89)

If viscosity «..d characteristic thickness are functions of ( £ ) only,

then
T =2
and _3E 9
- RLZ T .F
w = Bb x ? e (90)
2 m )
where x:Cz—Eg’. The simplest case, as was indicated for axial

velocity, is for € -1, where, if the expressions deduced from energy
equilibrium for large eddies are used, then

22
(7 -C1 7
Wm =Bz € . (91)

The nondimensional velocity profile may be calculated by dividing by
the naximum velocity occurring at

O Wm _
37 - 9,

which 1s of the form
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Wm T -C47212'
S e B g
W (max) PR 92)

where T 1 is the radius where maximum velocity occurs.

However, for other more complicated '"viscosity functions" using
the same approach, profiles of different analytic form may be calcu-
lated. Also, by combining solutions of the general form, equation (89),
a measured experimental profile satisfying all of the existing boundary
and physical conditions may be approximated. Since presently available
experimental results do not permit a well-founded decision for the
existing relation between & and &£ or for the value of either of
them, the present analysis is limited at this point. Hopefully, future
experiments will give the necessary information for the estimation of
the different constants relating the nondimensional parameters in
equations (90) and (84). Then, a realistic form of the analytic expres-
sion for the velocity profile may be formulated.

&
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CHAPTER FOUR
CONFINED JETS AND VORTICES IN AXTALLY SYMMETRIC SURROUNDINGS

GENERAL REMARKS

It is well known that the jet entrainment process is the basis of
many important practical applications, especially when the motion of
the jet takes place in confined surroundings. In some cases, the
presence of the surrounding walls noticeably increases the entrained
mass flow,

In this chapter, some of the characteristics of the axisymmetric
jet-mixing phenomena of jet ejectors and vortex chambers will be
examined. In this respect, the existing knowledge and experimental
data of the flow with jet and vortex profiles in a.cylindrical channel
will be used. Also, a form of the f.ow in the inlet length of a circu-
lar pipe will be used which will help in developing a better under-
standing of the confined mixing process. Such a process has not been
completely covered in the up-to-date literature where, in general,
assumptions valid for two-dimensional motion are used to describe
three-dimensional problems.

JET EJECTORS

Summary of Previous Developments

During the pasi two decades, extensive theoretical and experi-
mental research has been conducted by several investigators under
the above general topic. H. B, Helmbold (references 27, 28, and 29,
in "Contribution to the Jet Pump Theory', has given much useful theoreti-
cal and experimental information concerning the existing integral and
analytic relations between the different flow characteristics and also
some of the possible processes that may be used in order to calculate
some of the goemetric dimensions of a jet pump.

Cruse and Tontini (reference 30) have reviewed the theoretical work
performed in References 27 and 31 and have presented analytic methods
for the design of a constant-pressure mixing tube and for the calcu-
lation of an effective mixing length.

0. V. Yakovlevskiy (reference 41) hes studied the mixing of a jet
in a channel with variable cross section and gives analytic expressions
of the velocity profile for the two cases of constant diameter and
conically shaped tubes. Yakovlevskiy's velocity profiles are in
agreement with existing experimental results.
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Under the topic '"Steady Flow Ejector Research", Lockheed Aircraft
Company (references 32 and 33) has performed an extensive study of the
different geometric and flow parameters affecting the general design of
a jet ejector to be used as a thrust-augmentation device.

Finally, general information concerning the confined jet flcw, as

it may be applied to the design of a jet pump, thrust augmenter, or
noise reducer, may be found in References 34 through 40,

The Velocity Distribution at the Ejector Chamber

To calculate an analytic expression representing the velccity pro-
files at different lateral sections along the length of the mixing cham-
ber and from the point where the jet "primary flow" exists to the
co-flowing external ''secondary flow'" of the mixing tube, the Navier-
Stokes ecuations of motion for an axially symmetric flow (1) must be
written,

If it is assumed that the rotational velocity is zero and the well-
known Prandtl boundary layer approximations are applied, then

usw 4 youw _ _1 9P 1 a(2z)

— - —— S ———— ’

dZ 32 = ] JZ €7 372 (93)

Again, the most uncertain parameter in equation (93) is the relationship
existing between shearing stress and the rest of the flow parameters.

It has been noted previously that all the existing free turbulence
theories (references 13, 14, and 15) are valid only for two-dimensional
flow because the assumptions on which they are based are such that they
cannot be extended for three-dimensional problems. Therefore, it will
again be assumed that the viscous term is of the fomm

oL
'z, az <,Z’ X2 )) (94)

where V is a "viscosity function" that corresponds to a turbulent
shearing stress

U=z $5)de.

When V is a function of & only, equation (94-a) takes the form

L
V37—

(94-b)
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By substituting equation (94) into equation (93),

S SWw _ 1 3P :
U5z TV ° Saz+za%<"?’ %) o

This equation, with the continuity equation (4), forms a system of two
equations from which the three unknown functions 1L, ’ and P must
be calculated. Thus, in order to proceed to a solution, some "arbitrary
relation" between the function must be used. For this reason, the
existing boundary and physical conditions that will limit our final
decision as to the arbitrary relation may be considered.

The momentum for this case is given by the integral, equation (16),
where the limits of integration are R(&) and zero.

The relation T = R(-‘-) is the function describing the boundary of
the mixing tube. 1If this theorem is applied over a closed control
surface, it may be stated as follows: the difference of the momentum
over two lateral cross sections is equal to the axial component of the
pressure force on the tube wall.

The mass flow must also remain constant along the length of the

channel so that
R@)

o= ergu.'bd@.
o)

The boundary conditions are:

at 7 = O) U =0 (96)
dw

at T = o, o - O) (97)

and at %2 = E,(-Z)} w=Vv-=20. (98)

In addition to all of the above, and for the study of a free jet,
the assumption that the velocity profiles at different lateral cross
sections have a self-preserving or universal form has to be considered
in order to lead to a solution.

In this respect the work of Abramovich (reference 42), who has
experimentally verified that there exists an interesting analogy between
the velocity fields of a free and a confined jet, may be considered.

It was fcund that the dimensional velocity field at every cross
section of the mixing chamber was of the same form as the central part
of a free jet hypothetically bounded by the walls of the chamber,
Abramovich concluded that this was not surprising if the universality of
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the existing general laws of turbulent mixing are considered.

In the up-to-date literature, two types of jet ejectors are
described: the constant-pressure and the constant-diameter types.
Here, the variable-pressure type (not necessarily constant-diameter)
will be examined, and the constant-pressure type will then be taken as
a particular case,

A simplified form of equation (95) may be deduced if, at some point
along the radius of the ejector and for the region under consideration,
the velocity becomes a value UL such that

UL m 1 JdP
WUy &2 1 oF
™3z T T % 32

where approximately a u
o

S
Now, by replacing the velocity function UL by

L = Umtxuw (100)

J (99)

1P

OF

in equation (93), and by using equation (99) and applying an order of
magnitude evaluation,

W >> W,

an expression that is almost correct at a few ejector diameters down-
stream from the initial plane may be written. Thus,

wlm | U _ VvV 3 U

Y3 AL

or introducing a function
\
Y W W ) (102)

oY _ N d (/z,‘w

An alternate approach which will simplify equation (93) in the region
very close to the initial plane is to assume that the secondary flow
can be regarded as a free-stream relative to the primary flow of the
ejector, and that the pressure at some jet diameters downstream from
the initial plane may be regarded as unaffected by the confining walls
of the mixing chamber.

(103)

For this case, the jet will behave like a free jet and, according
to existing experience (reference 44), the laminar flow linearization
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techniques may be used to give an equation of the form

Su N3 (, 3
dZ T 3 T ) (104)

where (L 1is the defect velocity and \J.s is the undisturbed velocity
of the secondary flow.

Equations (103) and (104) are mathematically similar to equation
(1-b) and to the heat conduction equation describing the radial flow
of a hollow cylinder (reference 43). The boundary and initial conditions
are similar to the same heat transfer problem.

Thus, the corresponding process for the present problem is to
assume that equation (104) describes the velocity field at the first
few jet ejector diameters with the initial conditions:

Ug=Cg , for Z=ZF, Te<t<R, (105-a)
and

Up=Cp , for Z=Z, O 2< 2¢, (105-b)

where LLS and Lp are the constant velocities of primary and secon-
dary flow, respectively.

From the lateral section at the axial distance 2 K up to the
exit of the mixing chamber, equa:ion (103) is used with velocity
distribution at the initial plane Z  given by the solution of equa-
tion (104) evaluated at the surface & K .

The problem of a free jet close to the initial plane was first
considered by Pai (reference 44), who used a method of separation of
variables similar to the one used for heat transfer problems (reference

43).

The solution obtained may be of the form

R(2)
W
Eote) FLOVTLOWAA,

0

where ~]o and ;Il are Bessel functions of zero and first order,
respectively, and which satisfy initial conditions expressed by a
Weber-Schafheitlin discontinuous integral.

However, if the simplified equations (103) and (104) can be used
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for the regions of confined jet flow as indicated previously, then so
can the mathematically similar equations of the general form

€
28 %(’LKZ ) (107)

Following the same process as in Chapters Two and Three for the
present case, solutions of the general form - equations (26), (27),
and (29) - are obtained. Whenever the conditions for momentum and
mass constancy are not very restrictive, as when the integral limits
are between zero and some defined point R(-Z) the function describing
the velocity profile does not have to be bounded in the limit(Z—>o0).

General Case of Ejector Design

The more general case for the design of an ejector is when we
assume that the boundaries are described by a function not yet defined.
Then, in order to solve the equation of motion, it may be assumed
that the solution is of the general form

o €
Y oo w= TR (z)g(%KRe(z)). D)

For the case of a turbulent jet, equation (108) may be substituted into
equations (103) or (104) to obtain equation (74), where the nondimen-
sional parameters are

E‘(V

[ © ] [R(Z)]E [6]

(109)
and

v - & 2° u, dIR@]
5% R(Z) V(2,2 dZ (110)

Here, L o 1is either Uos or u-(m when ), 1is to be used for equations
(104) or (103), respectively.

The solution for equations (103) or (104) is then

€
(L or W = R(z)e)'%' @1()()) (111)
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where for equation (104)

¢, (x) = A
1 X=0 '
from which the maximum velocity is O..E

U max [R z)] (112)

Thus, the mass flow is

X
R@ giae, 26
wm = C§ AX 5
o

A
()
o
«
o;
S
(&
S
Q
Lot
.-\-

and it is necessary that

g+ &8 = _ 2E
=

for the mass flow will be independent of the axial distance.

|
X

The solution of the equation of motion in Laplacian coordinates
is, therefore,

- -2
boE (e

If the integral of the function ¢(X.) over a region R(Z) ~ O
must be independent of R (E), ¥ must equal & so that the upper
limit of the integral will be

(114)

R(Z)

The above expression may be considered equal to 1 without losing the
generality of the equation.

The mass flow integral may now be written as

rm-zng% $d(x)dx.

(115)

If friction on the wall of the mixing chamber is neglected, the
momentum integral evaluated at two different lateral sections R(Zi)
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and R(Zz) will give the value of the axial component of the pressure
force I

R(z1)

< 2-X : 2
R Jx% [P+ §(Umrauw) Jd x

X‘ Q(zz) (116)

Using the same process, similar nondimensional relations between the
different parameters describing the velocity field at some distance
from the initial plane may be stated where the functions R(Z’), the
induced constants, the function & (X), the constant of integration,
and the virtual origin of Z may be different for every case.

Howevet, if the solution of equations (104) and (103) must satisfy
the previously stated initial conditions of equations (105-a) and
(105-b) as well as the variation of the velocity in the Z direction
so that it will be continuous at the lateral section 2 ¢ ,

o\k
Z —
a Z = ZK
must have the same value for both velocity functions and the problem
becomes extremely complicated. The deduction of general expressions

for the ejector charactecristics is insuperable.

In the following section, a simplified approach will be presented
that may be used for the calculation of some of the parameters involved
for an ejector design.

Simplified Approach for Ejector Design

One very important conclusion celati- -~ to the form of the possible
solution of equations (103) and (104) is chat the nondimensional
velocity profile exprescsed by equation (114) is of the same general
form for both cases.

On the basis of this observation and by using Abramovich's (ref-
erence 42) experimental verification, it may be assumed with sufficient
accuracy that the elementary nondimensional form of equation (114) in
the plane may be obtained if ¥ = 2. This makes it identical to the
one that can be deduced for the case of a free jat. Now

L-Ls _ e—)c
Um-Wg 2 (117)
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or for

i
—

¥

)
L -WUs _ -x )
Um-Wg e (-x); (118)
where 2
=
X R2(&) C,

and W,y is the axial velocity at a given lateral section. (L 1is the
absolute rate of flow, and Wg 1is the nominal velocity of the secon-
dary jet flow that can be regarded constant over the region under con-
sideration.

Using the notation indicated in Figure 2, the excess mass flow is

R(2)
m( =(LL§J—LL3)F§=2n§$o(u~us)'z,d/z,, (119)

From equation (118), we have

RAZ) Nres! _
TrSC R!(U-mrx' us)Cx(l-x)d_)C; (120)
(o)

and finally, the excess velocity along che Z axis is given by

-

1
u”Y“—uS‘:mgCZ'E—?«__(_Z)) (121)

where

-1
c,=TSe
C
Using the velocity profile given by equation (118), we have

_msCs —x
W-Wg = \?2(58 (1-X), -

where em { and Cz may be estimated experimentally. A similar
expression may be deduced from equatjon (117).

From the momentum equation, the pressure at any section of the
region under consideration may be deteruined.

The excess momentum between any of the lateral sections aund the
exit of the mixing chamber may be written as
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Me(ug-us) +PeFg = \ (U-Us)dM + P.F.

(123)

The velocity momentum from the above equation may be simplified by
writing {

= \@-us)dm- Tﬁ%@g(\x-us)ud Yy

and by adding and subtracting the momentum of the secondary jet.

1
{ _ T 3&2 (2 (ULm S)S(u’m u)d)ﬂusg(u u.s)dxx e

Now, by using equation (118), we have

2
= R*(2) (um-us)[(um—usﬂa*uscé«] , )

where gr 1
T -
C3 = —¢— gezx(‘l-x)zdx
(o}
and g' 1
Cq = —WC ef - (1=x)ldx.
(o]
Also,

Mg(ug-us) o Trgf?z(i)u;(ug’u-s)' (126)

By substituting equations (125) and (126) into equation (123), the
axial pressure force due to the pressure difference between those two
sections 1s obtained.

The above analysis is based on a velocity profile given by equa-
tions (108) or (111) that exists when the boundaries of the mixing

chamber are given by
7= R(&).

For the particular case of a constant-diameter chamber, a velocity
turction of equation (7) may be used to deduce expressions similar to
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those already given.

The pressure gradient for a ccastant-difameter mixing tube was
calculated in Reference 42, where two nondimensional variables were
introduced on the basis of existing similarities of free and confined

jets.

The variable relating the radius of the chamber to the free jet

is R
XK = %0
and the other which relates the free jet to the local radius may be
written as
x = X,
b

Then, using simplifiec relations between the different velocity field
components as established in References 4, 27, 38, 39, and 42, an
approximate expression was obtained for the pressure difference.

PS" P = N %(XK>) (127)

where S(KK) is a given function of X'K and also of expressions
for the mixing length and the mass ratio of the ejector.

Finally, if the ejector is to be used as a thrust augmenter, the
thrust augmentation factor becomes particularly important,

The thrust augmentation factor Qb is defined by the formula

R(®
@: 2 Je wridn

> .
Re Up (128)

If the absolute value of the velocity is given by equation (115),
then X|
R(2) a€  2¢

- 8+¥ t+%
Q:‘ SO Y R d*(d x
= z
C R%e U}

Sor & = 2; and for a velocity satisfying the constancy of the mass
flow, equation (113),
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R*GE)mEREZ U

(129)
sn additional equation to be solved for the case of a high-
augmentation factor ejector is

3 R(Z)
. 2 —

wda | = o.
9Z 3

o (130)

This may also be used for the estimation of the ejector boundary
function R (2).

Remarks

The indicated solutions in Chapter Threcc are based on linearized
partial differential equations of motion which may be transformed to
ordinary ones by using suitable operations. A process of solving the
complete equation of motion is indicated in Appendix II.

CONFINED VORTICES

Introductory Remarks

Numerous theoretical and experimental investigations of the topic
"confined vortex flow'" have been developed in the past primarily
because some very important applications can be developed on the basis
of the behavior of this type of motion as indicated in References 45,
46, and 47,

In general, the flow field in a vortex tube is the result of the
interaction of the primary core flow with the secondary boutdary layer
flow of the surrounding and the end wall of the tube. In this respect,
extensive theoretical and experimental investigations have been developed
in References 48, 45, 49, and others. In the present section the
discussion will be restricted to the vortex produced in a cylindrical
chamber similar to the one used in Reference 50, and an attempt will be
made to determine whether the nondimensional solution of the linearized
equation of rotational motion, as obtained in Chapters One and Two,
may be extended to describe the considered confined vortex flow.
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Rotational Velocity Distribution in a Yortex Chamber

An analytic expression of the rotational velocity profile at
different lateral sections of a vortex tube may be deduced by solving
the general Navier-Stokes equation of motion for axially symmetric
flow. If, for the sake of simplicity, it is assumed that Prandtl's
boundary layer approximations are valid, for this case, equations (1),
(2), and (3) will represent this type of motion. A further simplifica-
tion of the above equations may be obtained by processes similar to
those in previous chapters that represeut the variation of the rotational
velocity independent of the axial velocity, a condition that may be
regarded as unreasonable at this stage of development. However, if it
is assumed that equation (86) represents the velocity profile in a con-
fined vortex chamber, the velocity function is

e+€m

W= b T (),

where the nondimensional parameter is given by equation (84) and the
"viscosity function'" by equation (94-a). Then, solutions of equation
(85) may be obtained.

The physical conditions represented by the integral equations
(30), (31), and (32), due to the fact that the upper limit of integra-
tion is some defined function or constant, do not restrict the motion
so definitively as for the case of a free vortex. However, the
constancy of the circumferential mass flow may be expected.

The circumferential mass flow fg{ a given axial width is

=fBb So " X (131)
and the independency of the axial distance may be expected for
€ Al T
& L] T (132)
This relation between t': constants will give a solution in the
Laplacian coordinate: ! : .
2
(s - 1D
(133)

Thus, by using different values of ¥ , an infinite number of solutions
may be obtained. The simplest solution in the CZ z:) space 1s

51



for ¥=2.

(t) ()C) = 1- 6-1. (134)

The corresponding velocity function is

— <1 - €—x> " (135)

The singularity of the velocity function and the mass flow expression
at (L =0)or (X =0 ) is removable. The mass flow will then be

z
o= B‘—(il z,zi"'"')) (136)

where
N1 :le)

which will be constant if (?!r is independent of Z . This condition
may be obtained under proper arrangement of the nondimensional variable

Y. by taking ¥ = €.

But, if turbulent nondimensional free vortex profiles may be
extended to describe the confined motion, it may be possible that the
experimental verification of Abramovich (reference 42), relative to the
existing analogy between the axial velocity of a free and a confined
jet, may also exist for the case of the vortical velocity profile.

Now, it will be particularly interesting, before examining the
possibility of using the central part of the elementary nondimensional
free vortex velocity profile as hypothetically bounded by the wall of
the vortex chamber, to describe the confined velocity profile as
indicated by the results obtained in Reference 50.

Thompson, using a semiempirical analysis, has indicated that
the vortical velocity profile is of the form

W 8(630> + 7
W m Aax . T ) (137)

where @ 3p 1s Cornish's modified Coles' wake function (reference 51)
which, according to the theory developed in this report, may be

52




approximated by the exponential function

-X
e ~ 1 - g 3D .
Thus, equation (137) becomes .
ww - \'?L (i—e'1)+l)
MAYX (138)

which may be recognized as a solution of the linearized eguation of
motion, equation (3-b). The velocity given by equation (138) does not
satisfy some of the imposed physical conditions of the problem, but
shows sufficient agreement with experimental results.

Using Thompson's experimental results, the above-stated possibility
of extending Abramovich's concept for this tvpe of motion has also been
investigated. It was found that the corresponding free vortex profile
may be used t.0 describe the core of confined vortex motion in the middle
section of the vortex chamber where the end wall interaction is mnot
large.

It was also found that a velocity profile of equation (135) or
equation (33) may be used to describe this type o motion with suffi-
cient accuracy.

In general, as for jet ejector design, two nondimensional param-
eters may be used to describe the confined mation. One is

_ R
X = b »

which relates the radius of the vortex to that of the tube. The other
parameter is

— L
X__b_’

which relates the local tn the free radius.

The constancy of the circumferential mass flow may be assumed
only if '

R

b NY constant,

Similarly, for the nondimensional velocity profile, where

U
X ~ o=,
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the mass flow may be constant only if 7/_ ~D constant and

wﬂY\Ax "D constant. These conditions al::e valid only if 21 = constant,
which can be expected if no losses occur during the motion.
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CHAPTER FIVE
COMPARISON OF PRESENT THEORY WITH EXISTING
THEORIES AND EXPERIMENTAL RESULTS

In Chapter Four, a set of solutions ¢f the linearized equations of
motion of free and confined jet-wakes and vortices was developed that,
as was indicated, may be used to describe turbulent motion using a
suitable 'viscosity function'", '"virtual origin" or "characteristic
thickness".

In this chapter, these solutions will be compared to other theoret-
ical profiles and to collected and developed experimental data.

It was verified (see Figures 6 and 7) that the two-dimensional
wake law of Cornish and Coles (references 53 and 54), which governs the
turbulent entrainment process at the cuter edge of a turbulent boundary
layer, may be approximated very accurately by equation (11), when X 1is
replaced by X as given by equation (66) or equation (84).

Using the same analytic expression, equation (11), and a different
"virtual origin", the semiempirical Coles' wake function as modified
by Cornish and Faris (reference 51) may be deduced. This function and
the solution presented in this paper may be used to describe the
experimental results obtained by Faris (reference 51) with very good
accuracy for the case of an axisymmetric jet emerging in a stationary
surrounding (see Figure 8).

Comparing the velocity profiles obtained by Tollmien (reference
62), Gortler (reference 12), and the present theory (Figure 9), it can
be verified that all of these are in very good agreement at the core
region, but that there is a small difference at the outer boundaries of
the jet. The same difference may be observed between the above theoret-
ical profiles and the experimental results of Reichardt. An explanation
for chis overestimation is that at the outer jet region the normal
stress which has been neglected in all previous analyses has some
significant value if it is compared to the other fluid motion components
at the outer region.

However, if two or three forms of the general solution, equation
(11), are used, the small defect may be smoothed cut and the agreement
of this theory with the experimental results thereby becomes much better
(Figures 10 and 11).

The analytic expression by Reichardt (reference 16) for the dynamic
pressure profile of a free axisymmetric jet, obtained by using his
"inductive theory of turbulence'", is of the same form as the elementary
solution given by equations (11 and 84) when the nondimensioral parameter
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Both theories are in good agreement with the experimental results
presented in Reference 16 (see Figures 10, 11, and 12). Finally, the
present theory agrees with the experimental results obtained by
Forthmann and Reichardt for the axial velocity distribution of a
two-dimensional turbulent jet (references 16 and 55) as can be verified
in Figures 12 and 15.

is used.

Therefore, it has been verified that, although present theory is
basically developed by the use of a small perturbation analysis for
the case of a jet in a co-flowing surrounding some distance downstream
of the initial plane, in practice it can be used to predict the motion
of a jet in a stationary medium as accurately as any of the much more
elaborate processes used in the past.

For the case of a jet in a co-flowing surrounding, there are very
few existing experimental results. However, in Figure 16 it is indi-
cated that the experimental data obtained in References 58 and 66 for
the case of a jet spreading through the co-flowing air coincides with
the present theoretical results. Also, a satisfactory agreement is
obtained with the results of References 5, 59, and 61 (see Figures 13,
14, and 17. The small defect at the core region where theory overesti-
mates the actual velocity of the jet may be regarded as within the
accuracy of any experimental measurement. The velocity distribution
obtained by using the present theory predicts very accurately the
experimental results shown in Reference 56 for an axisymmetric wake
(Figure 13) as well as the experimental results of Reference 5 for the
two-dimensional wake behind a circular cylinder.

For the confined jet, the results obtained by Reference 39 can be
approximated by the same general velocity profile given by equation (1l1)
(see Figures 19 and 20), where for this case the nondimensional parameter
Y. 1is given by equation (110). However, the existing agreement becomes
poor downstream of the initial plane as the boundary layer of the wall
of the mixing chamber approaches nonnegligible thickness relative to the
diameter of the tube. 1If, instead cf the geueral solution, the core
part of the elementary solution given by equation (48) as stated by
Abramovich (reference 42) is used, it is apparent that the velocity
profile at the broader part of an ejector chamber is described with
sufficient accuracy (see Figure 21).

For all the abave cases, the maximum velocity distribution along
the =2 axis may be approximated by a function of the general form of
equation (24), where K may be an integer or a noninteger. The elemen-
tary distribution for a two-dimensional jet is obtained with W = 1/2,
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and for free and confined jets with K = 1. These two elementary dis-
tributions predict existing experimental results (Figure 22).

However, the concept of virtual origin z = z + z; permits one to
use an expression of the form

- C
L -
MAX « \K
SAut)
(indicated in Figures 22 and 23) to describe the maximum velocity varia-
tion some distance downstream of the initial plane.

Thus, the obtained solutions for the case of two- and three-
dimensional jets and wakes that are of the same nondimensional general
form agree very accurately with the existing experimental results. This
indicates that the entrainment processes in these types of motion are
of a universal nature.

Also, in many cases the velocity profile deduced from laminar flow
analysis may identically describe turbulent mocion. The reason for
this similarity is that at a sufficient distance downstream from the
initial plane, the turbulent velocity field develors independently of
the mean-velocity field, and the turbulent motion becomes negligible
when compared to the mean velocity of the motion. Thus, the velocity
field at that region may be approximated by the corresponding velocity
of a continuously developed laminar flow. When the laminar velocity
profile in the intermediate region fails to describe the motion, a
conveniently estimated 'viscosity function' may be used to modify the
laminar solution to one describing turbulent, not fully developed motion.
The accuracy that can be obtained using this technique is as good as
that of any of the other more elaborate methods.

For vortical velocity, as indicated in the preceding parts of this
report, the existing experimental data are not of a nature which allows
verification of the necessary assumption that leads to profiles repre-
senting the actual case. However, physical conditions used to restrict
the set of existing solutions to those representing the actual motion
are not necessarily strictly valid.

The agreement obtained between the elementary soluticn, equation
(34-a), and experimental results of Reference 52 is indicated in
Figure 25, and is not sufficient to permit the deduction of any definite
conclusion. However, the existing defect between theory and experimen-
tal values may be due to existing difficulties invclved in measuring
flow quantities such as the vortical velocity, and the defect may also
be due to some misadjustment of the general solution due to the use of
conditions which do not exist for actual motion. In this respect, if
the imposed condition

VJ ;; ®) is neglected,
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two or three of the solutions given by equation (34} may be superimposed
to approximate the actual velocity profile very accurately.

For confined vortex motion, the results obtained by Reference 50
may be approximated by the solutions given by equations (135) or (i38),
both of which are solutions of the linearized equation of motion and
which, under proper definition of the variable X , may satisfy all of
the existing restrictions of the motion. Also, the extension of
Abramovich's verification for the case of the vortex motion may be
valid with sufficient accuracy only when a generalized solution of
equation (34) is used. The elementary solution of this equation
describes very accurately the core of the vortex but fails to accurately
describe its outer regions (see Figures 26 and 27).

In the previous discussion, it has been indicated that the exis-
tence of some ''megative velocity" or '"back flow" may permit the pre-
diction, with sufficient accuracy, of the outer part of axial or vorti-
cal jet or wake motions. Here, this possibility will be investigated
very briefly.

In Figures 28 and 29, the first few terms of the solution given
by equations (11) and (34) are plotted separately, assuming that

Am=Bm=1
and iE = 1..

All of these, except for the elementary solution, present some nega-
tive regions at the outer part of the jet or the vortex.

The superposition of these solutions may produce velocity profiles
of the form indicated in Figures 30 and 31. Such velocity profiles
have been obtained theoretically in the past by Terazawa and Shigemitsu
(references 63 and 57) for the decay of two-dimensicnal vortex motion.
In searching for experimental evidence that may indicate the existence
of such velocity profiles, the experimental work of Reference 64 on
the formation and growth of vortices behind plates miy be recalled where,
in many of the obtained pictures, the outer part of the main vortex is
split into secondary vortices representing regions of 'back flow' or
counterrotating motion.

The same result was obtained for thc case of a trailing vortex in
Reference 65 (see Figure 3). Although in this case the vortex is
formed in ground proximity, there is a noticeable ground effect in the
lower part of the outer region of the vortex. Similarly, a '"'megative
velocity" region can be obtained at the boundary of a jet or at the
wake of a cylinder or sphere.

In Figures 4 and 5, the velocity field in the wake of a cylinder is
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indicated by using the newly developed flow visualization technique,
smoke generation on a hot wire (reference 67), where the region of
back flow at the middle part of the wake is very large.

Thus, in general, it is reasonable to use velocity profiles of
equation (l1) or equation (34) with the nondimensional variable X
given by equation (66) or equation {(84) to describe jet-wake and vor-
tex motion.

At this point it may be noted that th¢ sbtained solution of the
simplified equations of laminar motion, with the aid of the 'viscosity
function'", can predict with very good accuracy all the existing experi-
mental results, and are of reasonable agreement with all the existing
theories.

The question now arises as to why all these theories based on sc¢
questionable an assumption as "mixing length', "eddy viscosity", and
"viscosity function" produce results that are so close to the experi-
mental results. To answer this question, the important role of dimen-
sional considerations and of boundary and physical conditions in the
solution of all the problems must first be realized. 1If, for instance,
the process and results in the analysis of jets or wakes of this report
and of References 2, 3, 5, 8, and 16 are evaluated, it 1is quickly
observed that both the form of the transformed partial differential
equation of motion and the final solution obtained are largely based
on these considerations and conditions. Also, the quantities of
primary importance related to the described phenomenon are not very
highly affected by any of the assumptions made in relating stress to
rate of strain. Thus, the same results are obtained following more
than one assumption when, in many cases, these assumptions are contra-
dictory ones.

However, it must be noted that, at the present time, none of the
semiempirical formulas used by turbulence theories (references 13, 14,
15, and 17) can produce analytic expressions for the velocity profiles
of the different flow motions, since each one of them is valid only
for a specific problem or a category of problems. A generally valid
theory for the representation of turbulent motion does not exist, and
it is probably more attractive, at least from an engineering point of
view, to treat the equation of motion by assuming an unknown 'viscosity
function" that can be determined by using the experimental results.
This could be done in- such a way that the final analytic expression
for tne velocity profiles would agree with those results. This
approach can be used instead of introducing some semiempirical rela-
tion which, in many cases, would complicate the differential equation
of motion and finally produce results that would be valid in a limited
flow field region, Furthermcre, all the previously mentioned theories
are developed for two-dimensional motion, and they cannot be used for
the present axisymmetric motion.
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In closing this discussion, the existing similarities of the axial
and rotational momeatum equations of motion in the conveniently trans-
formed coordinate system that can be used identically to describe jet-
wa' es and vortices should be ewphasized. Also, *he obtained solutions,
equations (11) and (34), are of r:he same nondimensional characteristic
form, and may be used for free and confined cases by proper adjustment
to the corresponding boundary and physical conditions for every case.
So, on the basis of the present theoretical analysis and all the
existing and above-mentioned experimental results, it may be stated
that the laws governing the entrainment process of jet-wakes and vor-
tices for laminar and turbulent motions and for free and confined
surroundings are of the same universal nature.

Finally, if critical experiments are performed, as suggested in
the body and the appendixes of this report, to supply the additional
information necessary for the calculation of the different induced
cons*ants, the given analytic relations between the flow or jet
ejector component and parameters will be an extremely useful tool for
any engineering application.
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CHAPTER SIX. SUMMARY AND CONCLUDING REMARKS

On the basis of an extensive account of the present ideas and
development on the subject of jet-wakes and vortex flow, the general
principles of the motion of a free, laminar jet have been analyzed and
reviewed, and from an extension of these principles, an understanding
of the very complex behavior of a turbulent jet has been obtained.

Also, under a more general assumption that the term "jet'" means
the motion of a fluid on a side of a tangential separation surface, the
similarities of the entrainment process of the flow field of jet-wakes
and vortices were investigated. More specifically, using a linearized
form of the Navier-Stokes eguations of motion, a set of solutions was
obtained which describes the axial, rotational and radial laminar velo-
city profiles.

In order to verify the possibility of extending laminar solutions
to describe turbulent cases, the general equations of motion have been
reconsidered using the existing "statistical' and "free turbulent"
theories.

It was then proved that, by introducing a 'viscosity function' to
the simplified equations of laminar motion, solutions of the same
general analytic form, but with a different nondi.iensional variable,
can be obtained which are capable of describing theturbulent cases.

For the case of confined jets and vortices, two different
approaches have been used to simplify and solve the equations of motion,
one valid very close to the initial plane, and one valid some distance
downstream. The set of solutions obtained is of the same nondimensional
form. Using the elementary solutions of this set, analytic expressions
for the different characteristics involved in the design of jet ejectors
were calculated. Also, a process for the estimation of the different
parameters for the optimum design of a jet pump or thrust augmenter was
included.

It was finally indicated that the generalized ncendimensional
analytic expressions, calculated by this study to describe the dif-
ferent field components of free or confined jet-wakes and vortices,
are in very good agreement with ali the existing experimental results.
On the basis of this agreement, it is concluded that the linearization
techniques used herein and the introduction of the 'viscosity function"
may be used to predict all those velocity fields as accurately as with
any of the other elaborate methods of the past.

Also, by comparing the conveniently transformed basic eauations
of motion and the final form of the solutions obtained to describe
laminar and turbulent jet-wakes and vortices in free and ccafined
surroundings, the similarity of the mechanisms of the entrainment
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process of these flow fields proposed by Cornish (reference 68) is
supported.

Finally, for vortex motion and confined jets, some critical experi-
ments are suggested in the body and appendixes of the present study,
which would be useful in supplying some additional information necessary
for the calculation of the different induced constants, or for the esti-
mation of the validity of some of the boundary and physical conditions
used.
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Figure 3. Tip Vortex in Ground Proximity.
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Figure 6. Cornish's Modified Coles' Wake Law and Present Theory.
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APPENDIX I

TWO-DIMENSIONAL WAKES AND JETS

For the case of steady two-dimensional motions of a jet or wake,
the Navier-Stokes equations of motion may be simplified by using
boundary layer approximations to give (in Cartesian coordinates)

dZF YA Y- Y/

g

2
wdl 4 ydd - 1 9P yu
(139)

Also, the continuity is
o oV _
3z or 0 © G

where # denotes distance measured along the direction of motion and
‘¢, the distance from the axis of symmetry 2 .

For the case of a co-flowing surrounding fluid, the axial velocity
UL may be equated to the algebraic sum of the free-stream velocity UL,
and the defect velocity (W .

W= W, + AW, (141)
where o has the same value as for axially symmetric flow.

Then, substituting the velocity in cquation (141) into equation
(139) and using an order-of-magnitude evaluation, we have

2
u ~ RYVA _ \o E)\lJ
dZ T2 -
The solution of the above equation may describe the laminar velocity
profile of a jet or wake at sufficient distance downstream of some

initial plane, and was first given in that form (reference 1) to describe
the wake of a flat-plate at zero incidence.

(142)

But, also, if we replace the kinematic viscosity by the virtual
kinematic viscosity (references 3, 4, and 5), or if some other "viscosity
function" is used to relate stress to rate of strain, equation (94), the
velocity profile of a turbulent flow may be obtained.

As for the axisymmetric case, the above partial differential
equation is transformed to an ordinary differential equation by intro-
di cing the transformation
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Q
w = 7 Z8g<é), (143)
where Q = T 7

This gives

5 S+ eg [2&+ZH _€ mzuol+§[o.(a,—l>  z Lto]_’o'

2 ZV 2 ZVY
§ ¥ (144)

If it is now assumed that this equation represents a self-preserving
velocity field, then

L T, E #Puo
© =71 % %2 Zv = X,
where
lel=-€=¢.

For a laminar case where kinematic viscosity is constant, as previously
explained,

¥ =2 and 6"""1)'

but, in general, for a turbulent flow, a relation of equation (84) may
be used.

Then, by applying a tranformation

% = X-% ¢(X)J

the result is
o ; 8 1-
¢X+¢Y—‘—+X 4)"?6-’\’?]"0
The corresponding equation in a Laplacian coordinate system is
g T Bt
de)s+b[s T+ & + L4l = 000,

because d)(o) # 0.

(145)

2(146)
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The solution cf equation (146) is

X, 8 _L a4 £
e (s+1)‘+g ¥ \ ¢(o0) 5T E d
4> - < 4 € 2 o, € |\ ES)
gFreT! ¥ (St)FTE-5H (147)

where, in view of the boundary conditions, the constant of integration
is taken as zero.

The boundary conditions in the T, Z coordinates system are given
by equations (20), (21), and (22).

Also, the axial momentum integral has to be constant as expressed

by 00
M = gSo Wo (Wo+att)dr,

M = &g W, Stwd’b.

The velocity function that must satisfy the above conditions is given
by 8
84 =& ¥
Zz & . (148)

Using elementary processes, it may be deduced that for the laminar
case there is one solution that ratisfies all the above conditions:

Any other solution of the form

8 + 8—;’—: ——;:—Iml}

where M = 1, 2, 3, ..... R

satisfies the boundary conditions and produces a zero momentum integral
as can be expected in view of the mathematical form of equation (142).
The elementary solution M = 0 as given by Reference 1 is

-3 =X
W = Ao Z e . (149)

102




]
p—
-

For m\ 3

W = A|Z_-£ <|“2X)e-’x. (149-a)

For m\ 2%

w = A, z (2 8’<+ z)e . (149-b)

Again, any linear combination of the elementary solution with any of
equation (148) for which o\ =1, 2, ..... , satisfies the equation of
motion (142), the boundary conditions, and the momentum considerations.
A o can be calculated from momentum considerations and A4, Az,

may be found experimentally. Finally, all other solutions of equation

(142) for S | ‘
g + *60’:__2-,-_}-\(“‘

or for nonintegral fyy do not satisfy the constancy of the momentum.

It may be noted here that the solution

|
-5 =X
Lot AL = A Z ® e {150)

is also a solution that satisfies all boundary conditions and the
constancy of the momentum.

Thus, the final form of the analytic expression of the velocity
profiles may be selected only on the basis of experimental results.

Turbulent Flow

In Reference 1, the process of extending the solution of the
laminar velocity profile of the wake of a flat-plate at zero incidence
to describe the turbulent motion of a wake is discussed. Prandtl's
virtual kinematic viscosity is used, which for this case is

SV = KudrmAXb = a constant,

ard it is indicated that the velocity profile, equation (149), is
expected to describe turbulent flow far from the origin.

Also, using "mixing length hypothesis', Schlichting (reference 5)
has presented a solution in his thesis for the case of a two-dimensional
wake behind a single body, where the velocity profile is given by

I 3 42
W _ e [1_ 'L"i]
G
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Here, p 1is the width of the wake
1
b= CyZ7?
)

and C and C are constants that can be calculated from the drag of
a cylinder.

Reichardt (reference 16), using his "momentum transfer length"
hypothesis, has presented a solution similar to the integral form of
the one given by egquation (66) for an axially symmetric jet.

Finally, Tollmein (reference 26), using von Kdrmdn's hypothesis
(reference 18), and Gortler (reference 12), using Prandtl's "mixing
length theory'", have preseuted solutions in series form for the same
problem.

As has already been indicated under an assumption of 'viscosity
function" and an accurate expression of characteristic width of the
layer b with axial distance, it may be expected that the solution of
the form of equation (147) may be extended to describe the turbulent
velocity profile in dimensional or nondimensional form.

More specifically, the condition
¥ ¥
due to the constancy of the momentum, may be rewritten as

€ , a _ _ 1
e T Y T T3

Then, substituting into equation (l47), we have

1

Plo) ¥
S T s+l

(152)

Now, if & = 2, as for the Reichardt solution where the nondimensional
parameter is of the form X = (2/£)K, an infinite number of solutions
of exponential or polynomial form can be obtained. The elementary
solution satisfying all conditions of the problem, with

5 =€=%

in the (‘t) Z) coordinate system, is
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i n 3/2
= k% .C
L = A1Z 2 e(z) 1

° (153)

A and C]_ are constants tnat can be defined using given conditions
of the problem.

Also, if the nondimensional parameter is of the form

(< (Y

as for laminar flow or for turbulence (reference 5), then the elementary
solution may be identical to equation (149).

Using relations corresponding to equations for two-dimensional
flow, we may transform the laminar velocity profile, equation (149),
to describe turbulent motion. Then, the relation established is in
nondimensional form:

w “z2°C

L max :

Finally, the same nondimensional turbulent velocity profiles
have been obtained using equation (147) for the values € = ¥ =2
and a.+ € = -1, for which

u UotdU _ 27 02

L max L A x

(154)

This corresponds to the derivative of the elementary solution obtained
by Reictardt (reference 16).
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APPENDIX II

AXIALLY SYMMETRIC JET UNDEK PRESSURE GRADIENT

For the case of a steady, axially symmetric jet, the Navier-Stokes
equations of motion using Prandtl's boundary layer approximation may be
simplified to give equations (1), (2), and (3), and the continuity
equation is given by equation (4).

In the previous chapters, it has been possible to obtain solutions
by various techniques that, under the concept of "virtual origin" or
"viscosity function', may approximate with sufficient accuracy the
erxisting experimental results. However, the solutions that have been
obtained are valid for isobaric motion for aimost every case.

Some possible techniques that can be used to simplify equation
(1) in an integrable form will now be discussed. It will also be
shown,by assuming different forms of the "viscosity funtion'" or pres-
sure gradient along the & axis, how the modified form of the final
differential equation of motion can be affected.

However, the final solution is highly affected by the existing
different boundary and physical conditions of the problem; in this
respect, reference is made to the work of Tollmein (reference 26),
Gortler (reference 12), and others who, by using different "free turbu-
lence theories", have obtained equations that give very similar results
under the proper conditions.

The complete solution of the problem of an axisymmetric jet under
a pressure gradient will be given in a separate paper, and will include
the especially interesting case uvf confined motion (jet ejectors).

The motion that will be considered in this appendix is axisymmetric,
which the rotational velocity is zero. This condition reduces the
number of previously required equations, (1), (2), (3), and (4. to only
two equations, (1) and (4).

As has already been indicated in Chapter Three, this system of two
equations contains three unknown functions and can be solved only if
some additional relation exists between them.

In order to transform the partial differential equation to an
ordinary one, the same process as for equation (l-b) may be used. Thus,
for the present problem, a stream function similar to the one used by
Schlichting (reference 2) for the case of a circular isobaric jet is
assumed.



Then, letting

Y = ZO., = (8) (155)

where
o = 28z¥
J
the continuity equation (4) gives
Y
T 37 (156)
and
U = —-;&...éiﬁg_.
T JZ (157)
In terms of (1 °
= 2% ok
\Jv 8? e F (9) (158)

and

z& {
U =-£—Z—(a,F(e)+xeF(e§> (159)

Substituting into equation (1), we have, after some simplifications,
2 " //
b [e O'F'+86F (3e-4)+F (8% 48t+4)] +
/
oF Fla8)-o(F ) (zx+ad)+

/ 1 74z 1 3f
F Fd (6"2):' o) z%o.@' 8 JZ 2 (160)

where @ \)
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The '"‘viscosity function'" is given by equation (94). To further
simplify the above equation, some form for the viscosity and pressure
function must be assumed.

In the following cases, some possible processes are indicated that
can be used to lead to a simple modified equation of motion.

Case 1:

First assume that Q.= 1. This implies that q>= V, and, from
dimensional considerations, we have VaJ constant. Then, if ==y =1,
the equation of motion takes the form

VIe*F“F'o+F |+ oF F +
3
N e o 22 9P
o(F) -FF = S 32 » (el
or, by proper ‘ransformation and rearrangement, gives
d A_(F’)- FF1. 2% oF
d6 | de \ © o | S 3z . e

The right side of this equation is similar to the one given by
Schlichting (reference 2), and may be integrated twice to give

F? _ C .( nES JP

-

F'e-2F '*"7 = )UB S 82 ded e . (163)

This equation is of Reccati's form, and by transforming

F = 206,

then
/ ' 2
20”6 —ze@a—zez@z:ge%ﬁg—;dede.
' .
If 6 :§/§ ,

o*f" 0§ § A (efe2" 28 dede]-o.

The final form of the equation (165) depends on the pressure distribution
along the longitudinal axis. In general, the pressure may be regarded
as independent of the radial distance.

(165)
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This assumption, along with dimensional considerations, leads to
the pressure function /\

P~ 2
2
y
that will transform the above equation to a Bessel or Laguerre type of
equation,

Case 2:

Alternatively, it is observed that for ] - 2, equation (160) may
be simplified to give

¢ |40%F 49F"]+ oF 'F2a-

N _ 2322 4 3P
G(F);Z(UHL) T TZzR%z ¢ 3Z  (166)

For further simplification, assume that d) = constant, a condition
that implies:

Vo C
Vo ZE
Vo Z®

—
—
-

=

W » =

a.
oV
09

Then, for a = — W , we have

r " 1" " _ '2,2'23 1 3P
2@\_®F+F 1""‘: FO.» - 22,0...4. g Q7 ) (167)

Under the above assumption, the axial velocity function takes the form
/
w = 2F.

Again, the final equation of motion will be highly affected by
the decision made relative to the pressure functions. If

SP A
3z & zV

and if the motion is of self-preserving or universal character, then

3P 14

(168)
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Finally, if an axial velocity function is desired,
) /
u‘_’
'Z“F)
that corresponds to a radial velocity
\J = ?{ _Ez_ F:/
. )
then the differential equation of motion may take the form

! & zz > 1 P
2@[9}'—*-}—]4_5(‘:) € JdE | 1)

For different values of the constants a, 6 , ¥ , and on the
basis of dimensionless considerations, different differential equations
of motion are obtained.

An indication, relative to some algebraic relation existing
between the induced constants, may be obtained by the use of the momen-
tum and continuity integrals.

However, at the present stage of this research, no definite
decisicit will be made for the value of the induced constants or the
pres: .re distribution along the longitudinal axis. Instead, it will
only »e noted that, in an "arbitrary pressure gradient mixing tube',
the pressure distribution along the axis of symmetry may be adjusted
using boundary layer suction or blowing techniques and a proper mixing
tube profile.

The solutions of equation (169), as they may be adjusted to satis-
fy the physical and boundary conditions of the problem (under a given
pressure function - and the integro-differential relations - equation
(130)) of maximum augmentation factor, will be presented in a separate
paper.

It is believed that the solution of the outlined problem, when
necessary experimental information is availalbe, will prove to be a
very useful tool for the design of a high-thrust augmentation factor
ejector or high-performance jet ejector pump.
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