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ABSTRACT 

The primary purpose of this investigation is the study of the flow 
field of steady, viscous, incorcpreasible jet-wakes and vortices sub- 
merged in free and confinad surroundings. 

"^>^ Starting with an extensive account of the present ideas and devel- 
opment on the subject flows, the general principles of the motion of a 
free laminar jet havs be«n analyzed and reviewed. From these principles 
an understanding of the very complex behavior of a turbulent jet has 
been obtained. 

Using a linearized form of the Navier-Stokes equations of motion, 
a set of solutions capable of describing the laminar axial, rotational, 
and radial velocity profiles of a jet was deduced. 

Next, it was indicated that by introducing a "viscosity function" 
to the simplified equations of laminar motion, solutions of the same 
general analytic form, but with a different nondimensional variable, 
can be obtained to describe the turbulent motion. 

For the confined jets and vortices, two different approaches have 
been used to simplify and solve the equations of motion.  The set of 
solutions obtained is of the same nondimensional form.  Using the ele- 
mentary solutions of this set, analytic expressions for the different 
characteristics involved in the design of a jet ejector were calculated, 
Also, a process for ehe  estimation of the different parameters for the 
optimum design of a jet pump or a thrust augmenter was indicaced, 

The comparison of the calculated general analytic expressions of 
this fitudy to existing experimental results indicates that the assump- 
tion.' and processes used to predict the different velocity profiles of 
free motions are reasonable. 

On the basis of the presented theoretical analysis and available 
experimental results, it was concluded that the laws describing jet- 
wakes and vortices for laminar and turbulent motion are of the same 
general nature. 

ill 
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SYMBOLS 

A constant used to describe axial velocity profile 

D constant used to describe rotational velocity profile 

C constant of Integration 

F nondlmenslonal velocity function component 

X modified Bessel function of first kind 

T Bessel function of first kind 

M axial momentum 

• local static pressure 

Tv rotational velocity momentum 

•>(Zy ejector radius function 

fv constant ejector radius 

3 nondlmenslonal variable In Laplaclan coordinates system 

XZ axial velocity 

V-IQ free-stream velocity 

^MAY maximum axial velocity 

UL« secondary entrained flow velocity 

LLn primary ejector velocity 

UL axial defect velocity 

IXi UL modified form of axial velocity 1J   Z 

IXy*. mean axial velocity 

UL turbulent axial velocity component 

U radial velocity 

U turbulent radial velocity component 

UO rotational or vortical velocity 
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Wjj^/jj modified forms of rotational velocity 

X nondlmenslonal variable 

Q»} C constants 

D characteristic thickness 

•r nondlmenslonal component of axial velocity function 

^\ nondlmenslonal component of Reynolds stress 

K,T\ constant of Integer or nonlnteger order 

X. characteristic thickness 

OTVp mass flow 

IL distance measured In radial direction 

2 distance measured along the axis of symmetry 

^ O. d!£€ constants 

0 nondlmenslonal variable 

A separation constant 

'V kinematic viscosity 

V^J^ viscosity function 

£ nondlmenslonal variable 

^ fluid density 

Q dimensional constant 

U shearing stress 

A(?/ momentum transfer length 

(£. nondlmenslonal axial velocity component 

(J> velocity component in Laplaclan coordinates system 

X thrust augmentation factor 

V|^ velocity function in the ejector chamber 
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3£  nondimensional parameters describing the motion In an 
ejector chamber 

yd.      nondimensional parameters describing the motion In an 
"  ejector chamber 

Subscripts 

■ 

I,  denotes initial conditions 

GL  denotes axial conditions 

denotes final conditions 5 
O \ ..y\     as indicated 
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CHAPTER ONE.  INTRODUCTION 

The mass or flow entrainment process is one of the predominate 
phenomena in the flow motion of jets, wakes, vortices and boundary 
layers.  It is also the basis of many important practical applications, 
especially when it takes place in confined surroundings, where in many 
cases the entrained flow is noticeably increased. 

In the past, a large number of theoretical analyses have been 
developed on some parts of the general problem concerning the motion of 
laminar or turbulent jet-wakes and vortices submerged in either free or 
confined surroundings.  The aim of almost every one of these analyses 
was to use some form of the Navier-Stokes equations of motion to deduce 
analytic expressions capable of predicting the particular motion under 
consideration.  In this respect - as indicated in the following chapters 
the agreement obtained between the developed theories and the experi- 
mental results is generally satisfactory, although in some cases (and 
for certain regions of the velocity field) the agreement is poor. 

But since the theoretical analyses of the past have dealt only 
with some particular type of motion, the presently existing knowledge 
of jet-wakes and vortices does not readily allow a comparison or eval- 
uation of a general nature to be drawn relative to the mechanism of the 
entrainment process.  Obviously, this situation exists primarily because 
of the wide range of the possible motions and the many, and often dif- 
ferent, assumptions made in the development of the above-mentioned 
theoretical analyses.  This is especially true for the case of turbulent 
flow, which lacks a universally applicable "turbulence theory" that 
could be valid for all these motions.  As a result, the turbulent case 
presents one of the more complicated problems in modern incompressible, 
viscous fluid dynamics. 

A considerable effort in the direction of a more precise under- 
standing of the mixing process involved in all the previously mentioned 
types of flow was developed in the past by the Aerophysics Department of 
Mississippi State University.  In a series of published papers by 
Cornish (reference 53) and 7aris (reference 51), it was indicated that 
the semiempirical two-dimensional Coles' wake function - with some 
modifications - could describe the velocity profile of a free and con- 
fined vortex.  However, the universal application of this function has 
not been indicated, and it has not been demonstrated with sufficient 
theoretical reasoning that this function may have a more universal appli- 
cability. 

For the above reasons and in view of the present need for more 
comprehensive and applicable techniques in predicting the flow field 
components, the present report is devoted to the study and development 
of generalized analytic expressions capable of describing the types 
of motion under consideration. 



To be more specific,   the primary purpose of this Investigation is 
the study of the flow field of  steady,  viscous  incompressible jets 
submerged in free and confined surroundings  (jet-ejectors).    Also,   the 
similarity and universal nature of the laws describing jet-wakes  and 
vortices have been investigated;  and on the basis of the results 
obtained,  some basic relations between the different jet-ejector param- 
eters have been established. 

In the first phase of the present research,   the general principles 
of the motion of free laminar jet-wakes and vortices have been analyzed 
and reviewed.    Furthermore,   for a simplified  form of the Navier-Stokes 
equations capable of uniquely describing these  types of motions,   a  set 
of  solutions has been obtained which can be used  to predict the axial, 
rotational and radial velocity profiles. 

As  indicated in the past,   in many cases  it is possible to extend 
laminar solutions to describe  turbulent cases.     In order to verify this 
possibility,  the Navier-Stokes  equations of motion have been recon- 
sidered using the existing "statistical" and  "free turbulent"  theories. 

Studies have indicated  that by introducing some  specific  function, 
namely,   the "viscosity function",  to the simplified equations of  lami- 
nar motion,  solutions of  the  same general analytic  form - but with a 
different nondimensional variable - can be obtained.     Comparison with 
existing experimental  results  indicates  that,  under this assumption, 
one may predict the velocity profiles as accurately as when any of  the 
other more elaborate,  previously developed  theories  are used. 

In the second phase of the present research,   after a critical 
review  of existing jet-ejector theories and  experimental results,   and 
on the basis of the experience obtained from the  study of free jets 
and vortices,  the general  equations of motion and  the boundary and 
physical  conditions of axially symmetric confined  jets and vortices 
have been established. 

Two different approaches have been indicated which may be used 
to  simplify and solve the differential  equations  of motion,  one being 
applicable very close  to  the  initial plane,   and  the other being valid 
at  some distance from the  initial plane.     The  solutions obtained  are 
of  the  same general nondimensional form. 

Using an assumed nondimensional velocity profile,   analytic expres- 
sions  for  the different characteristics  involved  in a  jet-ejector 
design have been calculated. 

Finally,  in the  first of  two appendixes  included at the end of 
this study,  it has been verified that the assumptions and processes 
used  for axially symmetric motion may be used  successfully to describe 
the corresponding two-dimensional problems.     In the second appendix 



some techniques have been indicated that can possibly be used to pre- 
dict the components of a confined jet in an arbitrary pressure gradient. 
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CHAPTER TWO 

LAMINAR. VISCOUS. AXIALLY SYMMETRIC JET-WAKES AND VORTICES 

GENERAL REMARKS 

Previous Developments 

It is well known that the general equations of motion of an axially 
symmetric jet-wake o:  -ortex are not amenable to a complete mathemati- 
cal solution.  In the past, approximations have been used to simplify 
these equations to an integrable form.  In this respect, first reference 
is made to the work of Schlichting (references 1 and 2), who presented 
a solution for the case of a laminar, viscous, isobaric jet submerged in 
a stationary surrounding far from the origin,  Schlichting, assuming a 
general form for the stream function, used some of the physical condi- 
tions of the problem to simplify the equations to an integrable form. 
Due to the restrictions imposed and the processes followed, the analytic 
expression obtained for the axial velocity profile is of single-valued 
form and can be used to describe with sufficient accuracy the core 
regies of the jet. 

Gortler (reference 3) extended Schlichting1 s analysis to include 
rotational motion.  In this study of the decay of swirl in an axially 
symmetric jet far from the orifice, Gortler utilized the method of 
separation of variables in the rotational momentum equation.  The derived 
infinite number of solutions were restricted by using some of the physi- 
cal conditions of the problem, but the obtained solutions cannot describe 
vortical flow that behaves like a logarithmic vortex for large values 
of JT . 

Newman (reference 7), using a small perturbation analysis, has sim- 
plified the general equations of motion to describe the flow in a vis- 
cous trailing vo_tex.  The single-valued form of the profile used to 
describe rotational velocity does not satisfy some of the physical con- 
ditions of the problem, sin^e it becomes an unbounded expression for 
the rotational mass flow.  In the following review of the problem, the 
general equations of motion will be simplified to yield an integrable 
form, and then, by assuming a form for the velocity profile, a set of 
solutions capable of predicting all of the types of motion of current 
interest will be deduced. 

Equations of Motion 

For the case of steady, axially symmetric flow, the general Navier- 
Stokes equations of motion (1) may be simplified by use of the usual 
boundary layer approximations of Prandtl which yield the following equa- 
tions in cylindrical coordinates: 



T, au. , Tjda _     i ^p , v c) A da 

The continuity equation becomes 

a (zu.)  .   a (tu)  _ 
where H  denotes distance measured along the axis of symmetry and  £ 
the distance  from that axis. 

The above  simplified form of the general equations of motion may 
represent  the velocity and pressure field of a jet-wake or vortex 
emerging into either stationary or moving external  surroundings under 
the proper boundary conditions  associated with the particular motion. 

Equation  (1)   is the simplified  form of Schlichting   (reference 2), 
which represents  the case of a  laminar,  circular jet mixing with the 
surrounding isobaric fluid at rest   (P = constant).     Equations   (2)  and 
(3)  are  taken from Gortler's  study of  the decay of swirl  in an axially 
symmetric  jet   (reference 3). 

A brief discussion concerning these solutions may be found in 
References  1 and 4.    The solutions obtained are valid  for the case of the 
mixing of an isobaric jet with  the  surrounding fluid  at rest  at some 
distance downstream from the initial plane. 

For  the case of a nonstationary surroandii\g fluid,   the axial 
velocity   IJL may be replaced by the algebraic sum of the free-stream 
velocity  UL0   and the defect velocity    UU    (see Figure  1). 

U    =      U-o + ^^J <» 
where o^ = 1 for the case of a jet and O^ = -1 for the case of a vortex 
or wake. 



Substituting equation (5)  into equations  (1),   (2),   (3),   and (4) 
gives 

(2-a) 

(3-a) 

and ^ aftq)  1 a (Zu) 
3^ ä t -   O. 

(4-a) 

An exact solution of the above system of partial differential 
equations can only be obtained some distance downstream from the initial 
plane where the equations of motion may be linearized with satisfactory 
accuracy.  The linearization process can be performed either in the 
initial plane or after some suitable transformation, since the accuracy 
of the solution of the equations of motion - equations (1), (2), and (3)- 
depends upon the general assumptions and the processes used to obtain 
the final result and not upon when the initial assumption of linearity is 
performed. 

If a small perturbation analysis, similar to the one used by 
Schlichting (reference 5) or Pai (reference 6) for the equation of axial 
velocity and the analysis of Newman (reference 7) for the equation of 
rotational velocity, is used, it may be assumed that the defect velocity 
is smaller than that of the free-stream, and that the radial velocity 
and variation of pressure along the ^ axis is very small.  Thus, 

UL ^LL      -^J  ä 
o 
32      Z   ^ 

to*   -I  ^P 

(*&), 
(1-b) 

and 
t S   ZZ     > (2-b) 

(3-b) 



As Indicated In the following chapters, the partial differential 
equations (1-b) and (3-b), under a suitable» transformation, may be 
transformed to ordinary differential equations of the eame general 
mathematical form. 

The Form of the Possible Solutions 

The mathematical form of the preceding partial differential equa- 
tions is very *i;uiiar to those describing different physical phenomena, 
e.g., equation (1-b) is identical to the one of heat transfer describ- 
ing the radial heat flow of a cylinder at variable temperature and is 
similar to the well-known equation of Stokes1 first problem of a sud- 
denly accelerated plane wall. 

The solution of these equations under the proper boundary and 
physical conditions forms one of the many boundary value problems.  The 
most common method used for the solution of the above system of equa- 
tions is to assume some general form of solution and then to transform 
these partial differential equations to ordinary ones which can be 
integrated using standard mathematical techniques. 

In the past, for some of the heat conduction and wave motion prob- 
lems, the method of separation of variables has produced good results. 
This method, when applied to equation (1-b), gives a solution of the 
form 

fr\-\ 

(6) 

where J is the Bessel function of zero order and of the first kind, 

since the solution of the second kind is always unbounded at t = 0. 
The above form of solution, as indicated in the next chapter, presents 
some difficulties when the boundary condition and the constancy of the 
momentum are to be considered. 

But as is known, there are still other methods and assumptions for 
reducing or solving the above equations. When one uses different 
methods, completely different forms of solutions may be obtained in 
which each form may have a different feature at the time that the bound- 
ary and physical conditions of the specific problem are used. 

In the past, for many physical problems of the above nature 
(references 1, 2, 4, 5, 7, and 8), a form 



was used to deduce a single-value solution. 

In searching for more general expressions of the different velocity 
components.   It may be assumed that 

^a^€ ^ (.z*ze) 
satisfies both equations  (1-b)  and   (3-b),  and then,  using dimensional 
considerations,  a solution of a more general form may be found. 

AXIAL VELOCITY 

Solution of Axial Momentum Equation 

Following the above brief discussion,  a solution of  the  form 

uo^z^Ce) (7) 

may be sought where 

e^^z6- (8) 
and OL/, O, V> and £ are constants as yet not defined.  Substitution 
of the velocity function, equation (7), into the linearized equation 
(1-b) gives, after some simplifications, 

or ^il f i> -4       ,-y 

2f2eÄS Ce) + [-yC2a+¥)-£(-#^-)]e^e)+ 

[a*-^-!^)] j = o. 
If  the velocity field is  to have a universal or  self-preserving 

profile,  one may take 

8 



e * ^^€ —  1, 
& 

(9) 

where   ^, = -\ and     tf = jg,. 

Thus, 

e' 
"     r 

OL+l-i- 4V ^f(e) + [^-^]i(e>-o. 
(1-d) 

This equation, under a transformation of the Independent variable simi- 
lar to the one used by Blaslus (reference 8) for the case of the bound- 
ary layer along a plate,  I.e., 

e = _ 4%U 
UL (10) 

takes  the nondlmenslonal  form 

xÄ5(x)-t- x^00[l+a+x] + 5(x)[-^-€xl=o. 
Finally,  by transforming 

Ux) = X 
Oj 
ä <t>00. 

the following Is obtained: 

xf'+Ox)^- (f) (^ + 6) = o. (i-f) 

The form of the solution of this equation that Is of Laguerre's 
type will depend on the value of the constants CL and ^ , and can 
be rewritten In Laplaclan coordinates 

4'+ 4> [-H-t^X- s = 0 

This equation has the solution 



-. 

I+« *-m -i 
This will give the following results in the Initial coordinate system: 

Case 1; 

For J|L + -g   -   _ nn       nn > O 

where   Oft   is a positive  integer, 

?mu; - e   /_CK-i)!(m-K)!(K-l)!      (11) 

Case  2; 

For 0/   i    /) -. -g1 + 6 = no > Oj 

(12) 

Case  3; 

For the particular case that 

^ +€= - :L 

Bessel's  solution of  the  form is  obtained, 

where   X0   is a Bessel  function of second kind of zero order. 

(13) 

It must be noticed that,  if   (V^    is not  an integer,   the solutions 
will  be  similar to those  given for Cases  1  and  2  and can bp obtained 

/5-H \nr» 
by binomial expansion of     f —jr 1 

The corresponding velocity function of  the   (2  »^ ) coordinates 
system is 

10 



u. = hi**1* tCx) (i4) 
for Cases 1, 2, and 3, respectively. 

Any linear combination of velocity profiles given by the general 
expression _- - 

is a solution of the equation of motion, equation (1-b), where the 
final form will depend on the boundary conditions and the momentum 
considerations. 

Momentum Considerations 

There is a constant associated with the axial motion that can be 
obtained by multiplying both sides of equation (1) by ts ,   integrating 
with respect to 'Z between the limits O and oo , and assuming that 

Li™    f/t |^1 = 0. 

Momentum is  given by 

M    =     ^TT    ^('P+SU^OdU. (16) 
which can be written 

M=^TT3   LP+S(u-o^-0<^)Ältcl^;)   (i6- a) 

or, neglecting the higher powers of  the  defect velocity,   this  constant 
for the present case can be expressed as 

c00 

11 



Therefore,  It must follow that 

M 
^=1 

or O^ 
00 

IAA o ^ (17-a) 

Is  a constant value 

To satisfy  this condition,   solutions must  be  sought   that produce 
momentum integrals  independent of axial  distance  TE. .     It can bj seen 
that  the only  solution of equation  (1-b) which produces  a constant momen- 
tum is  the one  for which o ,       CX 

This  solution has  the  form 

€m+^P-= -1. 

\JL =   A-i2    e' (18) 

or 

ix = a0 4 A.^' e   . (18-a) 

Any other expressions of the  form 
oo 

J0 ^rnMcL*  = Oj (i8-b) 

which obviously will not alter the magnitude of the momentum integral, 
may be added to the solution (18-a). 

The above conditions are satisfied by the velocity functions that 
are given by equations (15) and (11), in which constant momentum is 
produced for rrt = 1 and zero momentum for 0r\ = 2, 3, 4, ...  Thus, a solu- 
tion of general form that satisfies the constancy of the momentum is 

a=A(e 'e x+e ;f/^ Kti Oc-OlMKK-O!    a« 

1.2 



where K = 2. 3, ....  It may be noticed here that, for n>l, and not 
an integer, the integral in equation (18) does not vanish and the 
momentum becomes a function of 2. 

Boundary Conditions 

So far, the only restriction imposed in the solutions has been the 
independence of the momentum with respect to the axial distance H.. 
The final form of the solution is directly related to the following 
boundary conditions that are the same for the case of the axial velocity 
of a jet-wake or vortex at some distance downstream from the initial 
plane. 

a 
oo = O 

^a 
ZZ ^=o=0^ 

(20) 

(21) 

and UL 
^ = o = C z J 

where Cl and C2 are constants. 

(22) 

It may now be verified that any solution of equation (19) satis- 
fies the above boundary conditions and that solutions of equations (15) 
and (12) or (13) are unbounded for 7 approaching infinity.  Therefore, 
the only solution that satisfies the boundary conditions and the con- 
stancy of the axial momentum is the one given by equation (19). 

Whenever the velocity function is given by more than one term, 
unavoidable difficulties arise in the calculation of the arbitrary 
constants Ajn, since only AA can be calculated from the momentum inte- 
gral. 

1 = 
M CL 

STTSKC* (23) 

Some additional  information for the calculation of these constants 
may be obtained experimentally;  i.e.,   the value of the velocity along 
the Z axis where 

13 



a 
^=0     L   AonZ  • (24) 

In tensor notation, the solution of the system is 

Am2c = UL; 
where UL*^ is the axial velocity along the Z axis at a distance H^from 
the origin.  This will give the value of the arbitrary constants A^. 

ROTATIONAL VELOCITY 

Solution of the Rotational Momentum Equation 

The rotational velocity Cü may be calculated from the simplified 
equation (3-b) by using an approach similar to the one used for axial 
velocity.  Again, assuming a solution of the form 

cü^z^Ce), (25) 

where Q  = 2 -Z^, substituting into equation (3-b), and simplifying, it 
is found that 

yVS"+[^a+Jr)-€G^)]eijV 
[o?-l-€(^-)]^0. (2.d) 

If the velocity field has a self-preserving or universal profile, 

0 = ———     and       Y = "2 ) 

€ = -1, 

and using as before 

e=^r* 
and transforming 
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r -o+l  , 

an equation mathematically similar to equation  (1-f)  is  obtained. 

x4)"+x4)'-(l)[f+ 6+1;]= o.     (2-f) 
In view of  the boundary conditions  of the problem,  it is assumed  that 

<K>0   =0       at      X  =0. 
Transforming into Laplarian coordinates, 

?'(S+l)S+*[25+-| + f-(.«] .0,     „.,, 

This will give the following results in the initial coordinates: 

Case 1: 

For    -_^l_-|-g-_- ^ /Yi a positive integer. 

Case 2; ^'U 
(26) 

Yrn       zL   K! C^-K)!(K+l)l 
(27) 

Also^ for the case 

or 

CL     .    ß i_ _   ___   3__ 
Z  ^ 0      Z ""       2. J 
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the following relations are obtained: 

-X 

and 

(j) = 1- e (28) 

4) = XG-^[l0(-|)tI1(-|)]. (29) 

It should be noted  that when   0^   is not an integer,   the  solution 
is very similar  to the one given by equations   (26)  and   (27).     In this 
case the final  form will be restricted on the basis of the given 
boundary conditions and additional physical conditions which the velocity 
profiles are required to  satisfy. 

Physical Conditions 

Starting first by selecting the velocity profiles which have 
physical meaning,   the conditions concerning the bounded characteris- 
tics  of the physical quantities related to the motion will be  investi- 
gated. 

Following Go'rtler   (reference 3)   in this  connection,   it may be 
recalled that the pressure is regarded as constant along the  2    axis, 
but  that there  is a pressure variation along  the radial distance from 
the  -ig   axis  that can be  calculated by integrating equation  (2-b).     Thus, 

(30) 
or 00 . .z ^is\T^ O 

which must be of a finite  form in the domain of definition.     On the 
other hand,   there is another constant associated with this  type of 
vortical motion that will  depend on the degree of swirling in the 
described motion.     This  constant may be derived by multiplying equa- 
tion  (3) by   't    ,   integrating with respect to  t,    between the  limits 
O      and    OÖ    ,   letting     UL ,    GO      TULN/—^O  as  t-^-co,  and 
setting   V= 60 = O  when   t*    «  O     *     The integral expressing angular 
momentum for a unit axial width is  then obtained. 

•oo 

(31) 
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The constancy of the angular momentum is to be expected due to 
elementary mechanical principles, and for the present case 

R   =    ^TT^   ^     (ULo-\-0(.a)c0 ^O^ . (31-a) 

If 

a0co >> <x bLOJ^ 

(31-b) 

Finally, the circumferential mass flow for unit axial width, 
■oo 

»o 
may be  assumed  to  possess  a  finite value. 

Now,  the  question arises  as  to the  possibility of satisfying all 
of  the  above conditions  and of deriving  a condition which  is   suffi- 
ciently restrictive  to enable  solutions  given for  different  values of 
fY\   (of  integer  and noninteger order)   to be obtained for which the 
physical  profile   is described with sufficient accuracy. 

i 
To examine this question it may be assumed, using a process simi- 

lar to the one given by Go'rtler (3), that the integral 

00  K X   cod x , 
or more  generally 

might exist in bounded form where K and    X   are arbitrary constants. 
This  last condition yields  the relation 

a +• ^ € = K_ti 
A 

between the arbitrary constants. 

The general form of the velocity profile calculated using the 
above prccess is given by the function 
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Thus, the corresponding pressure difference given by equation (30) is 

Also, the circumferential momentum flux relation will be 

(30-a) 

and the circumferential mass flow is 

vrv = Bffe) (32-a) 

It may then be observed that any  function given by equation  (26)   is 
unbounded as x->■ oo ,   and it cannot satisfy the integral restriction 
given above.     Also,   the particular solutions given by equations   (28) 
and  (29)  are unbounded in integral  form.     Equation  (28)   is  identical 
to the one given by Newman in Reference 7. 

CO   = (l-e-*). 
arr^ ^ ^ 03) 

This type of flow at large values of % describes a swirl profile that 
corresponds to a  logarithmic vortex. 

The  logarithmic vortex is  also a  solution of the equation of 
motion and may be obtained from equation   (2-f)  for  the particular case 
that i--,-« + lr = o 

* = c. 
Although these two  forms of the vortex have been used extensively in 
the past,   it may be  easily verified that none of the physical  conditions 
previously described can be satisfied,   as  these functions are unbounded 
for extreme values of  %. 

Starting from the momentum integral  in equation  (31-c),  one may 
observe that for the particular case when 

the momentum is  indipendent of the axial distance 2 and is of constant 
value. 

For this case,   the constant of integration is 
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The above is also true for all integrals of <|> for which 

where CT\   is an integer and 00^1 are of zero value. 

The corresponding solutions of the equation of motion are, for 

* +   £ -      ä^^Oo-ßo2        X      6       _, (34-a) 

«+ t=-|3  OOt =  ßlE'S/Äa-|)x1/Äe-><
> (34-b) 

6 +t = -1; ^z '- BaH^ (l-x + ^)x V^ (34-c) 

(34-d) 

and, in general, 

K!  (oa-K)! ('n-K+i)! 
K, = 0 '       (34) 

Thus, any combination or linear superposition of equation (34-a),^sO, 
with any number of forms of equation (34) for which 'n>0, satisfies 
the constancy of the angular momentum. 

The corresponding values of the integral involved in equation 
(32-a) for the circumferential mas flow are for rf\-  0, +1, +2.... 

* SLclx  ^   1^    1    1 ,.., 
respectively. So the quantity expressed by any of the above combina- 
tions decreases with the axial distance for »5^1 according to an 
inverse power law. 
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Finally,   the corresponding values of the integral     \ 

involved  in equation (30) for  the pressure differences yield constant 
values. 

Thus,   there exists an infinite number of solutions which satisfy 
the differential equation of motion and the physical  conditions imposed 
previously.     But,  it can be seen that these conditions  are not suffi- 
cient to deduce the solutions which have physical meaning;   in addition 
to  the boundary condition,   the condition that circumferential velocity 
is always  greater than or equal  to  zero must be considered.    The mean- 
ing and possibility of the  existence of "negative velocities" will be 
discussed  in Chapter Five. 

The Boundary Conditions 

The swirling velocity must banish for 

Linrr» Cu^)  =   O 
^->o (35) 

and 

L inm (üü)  =   0 . 
Is'+oo (36) 

Also, the swirling velocity must always be greater than or equal to 
zero. 

The first two conditions are satisfied by any solution given in 
equation (34) for rf\  of integer order. The last condition if satisfied 
by equation (34-a), and can be satisfied bv linear combinations of 
equation (34) only for certain regions of the axial distance -Z and for 
some carefully calculated values of the integration constants B^. 
Because the algebraic equation 

(-i) (-iron! x 
_    k! (^-OKon-K+l)! 

K = 0 (37) 

= o 

has r(\  distinct positive roots, the velocity profile described by a 
single function 9m(^) will represent a velocity that changes sign or» 
times for a radius variation between zero to infinity, a condition 
that cannot b^ expected to exist under laminar motion. 

20 



The Static Pressure 

Using equation  (34),  one may calculate the  static pressure drop 
along  the Z axis  to be 

cr\-0 (38) 

Also, the static pressure for a given value of X m3y be calculated from 

m = o 0 (39) 

The Radial Velocity 

Using the continuity equation (4-a), the radial velocity U for 
some point ( T/>Z) is given by 

U = -^/t-^dL^ 
0 

2<-  /, lit 

Substituting U from equation (15) gives 

oo X 
u = "If-0"^ z"m" J [(-^t^-x^Jdx+GCs), 

m-l        0 (40) 

where G" ( 2-) is a function of Z or a constant that, according to 
the boundary conditions, is equal to zero. For the particular case 
when the axial velocity U is given for  I)       i ^rrx _  ^ 

then ii rj Z, 
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THE FORM OF THE SOLUTIONS 

The Initial Conditions 

Up to this point,   some of the possible boundary and physical 
conditions that restrict the motion have been considered without 
restriction being made relative to t'ie value of the velocity components 
at the  initial plane.     It may be verified that all  the analytic  expres- 
sions given for the velocity components cannot be defined if the Initial 
plane is at   ü = 0,  as -Z = 0 is a singular point for all those func- 
tions.     On the other hand,   the types of simplifications used in the 
Navier-Stokes equations of motion are such that  they can be used only 
at  some distance downstream  from the initial plane.     Thus,  a question 
arises as  to how velocity profiles described by  functions of equations 
(19)  and  (34)  are produced in some initial plane.     First,   it may be 
observed  that the mathematical  treatment of the present problem holds 
true  for a tnore general coordinate  system Z + Z^, where Zi, is an 
arbitrary negative or positive constant that is  expected to be different 
from the  theoretical origin of the velocity field.     This constant can 
be estimated experimentally by comparing measurements  taken at any two 
points along the 2;  axis. 

It may be assumed  that at  Z  = Zl   , 

UL=^^(/l)        and        CO    =    uJ^Ct). 

Then^ following a process similar to the one used by Taylor (reference 
9) for the case of the dissipation of eddies, the initial distribution 
of the velocity is now 

oo or» ^ t 

UaW    e     ^A^C ^CK-I)!^.K)!CK-1)! 
(41) 

and oo nn 

-x; 

(42) 

whtre V    —       ^    ^'0 

4VSL     ' 
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The Nondlmenslonal Velocity Profile 

Since the system of motion under consideration has no preferred 
length or dimension for reference,  the obtained velocity profile can 
be expressed in a nondimensional form by using some conve .iently chosen 
reference quantities as follows: 

For the vortical velocity; A characteristic region for the vorti- 
cal velocity at a given axial distance 2 is one of maximum value. This 
maximum can be calculated by letting 

Tir= 0' 
For the case of a vortex of the simple form given by equation 

(34-a) for . 

^  *:= -1;       *-! '   HiT-/    , (43) 
where Z-^  is the vortex radius for which the velocity is at its maximum 
value, the corresponding nondimensional velocity is 

CO 
CO or^AX. 

= c 
ti 

.1(3.) 
e  2K7i (44) 

These values are of the same nature as  the ones given by Newman  (-^f• 
erence 7), which probably were obtained by estimating the maximum of 
the velocity profile 

CO = 
B. -K 

(45) 

This is also a solution of the equation of motion resulting by super- 
position of an antirotating logarithmic vortex to equation (33). The 
nondimensional vortex profile is given for this case by 

CO 

60 nwAX - =i(+) 
IT 

where s- (46) 

But,   in general,   if the velocity is  expressed by a more complicated 
function,  e.g.,   equation (34), much more sophisticated criteria must 
be used to obtain a nondimensional  form;   and since these criteria are 
related to the integration constant,   they can be evaluated only experi- 
mentally. 

For the axial velocity;    Using the same process for the axial 
defect velocity and considering that  the maximum value occurs at X= 0, 
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it may be seen from equation  (19)   that U*^^ is a  function of £ only 
and may be written as 

oo 

-y ^rm/KY "'   /     ^nn ^ 
rf\ = i (47) 

For such a general solution, (equation 19), difficulties similar 
to those described in the above paragraph exist; but for the particular 
case that /H*!, the axial velocity defect takes the nondimensional 
form 

a0-l- o( u(x)      .x   or     a . x 
- e TT—r. = e u0-*-o(aco) LL^AX ; (48) 

when solutions  (18-a)  and  (18)  are used,  respectively. 

The Validity of the Obtained Solutions 

In the preceding chapter,   the mathematical  solutions of the line- 
arized equations of motion of the axially symmetric laminar flow of a 
jet-wake or vortex have been described. 

Solutions of integral order of the induced variable rr\  have been 
indicated  for every velocity component.    The    physical  conditions con- 
cerning the motion with  the  appropriate boundary conditions have been 
applied  to restrict some of the  solutions  for integral values of the 
induced variable   m. 

Now,   it is of particular interest to examine  the question of the 
range of the validity of  the obtained solution.     Of course,  this range 
is  expected  to be directly related  to the extent  that  laminar flow 
exists  for this type of motion. 

If,   as  a criterion,   the Reynolds number based on the jet diameter 
and some of the velocity components is used,   it ma>  be observed that 
the Reynolds number very quickly  exceeds  its  critical value so that 
the  flow is  expected to be  turbulent. 

As  indicated in the past by Gbrtler,   Schlichting,   Squire, Newman, 
and others   (references  1,   3,   7,   and 10,  respectively),   it is possible 
to extend the obtained  solutions  of laminar flow to turbulent motion, 
since  for this case the differential equations of motion are almost of 
the  same  form.    Therefore,   it will be useful  to  examine the behavior of 
a  turbulent axisymmetric motion. 

24 



CHAPTER THREE 
TURBULENT,  VISCOUS,   AXIALLY SYMMETRIC  JET-WAKES AND VORTICES 

GENERAL REMARKS 

It has been noted  that in most practical  applications  the  flow 
motion is  turbulent   for very low Reynolds numbers.     Such  a   turbulent 
or  eddying motion  is primarily characterized  by  a  fluctuating velocity 
component which  is   superimposed on the  principal velocity,   the  effect 
of which  is  equivalent  to  a great  increase  in  the coefficient  of vis- 
cosity.     To describe  such  a motion,   Bousslnesq   (reference  11)   suggests 
that  turbulent  flow can be  treated by  assuming an increased viscosity 
due  to  eddying motion,  which can be considered  constant  through  a  given 
flow field.     According  to  this  theory,   eddy viscosity  is  not  a  property 
of  the fluid but depends  on its mean velocity.     It has been proved  that 
in  some cases   (references   1  and  12),   Boussinesq's  assumption  is  accurate 
enough to predict   the velocity distribution of  a  free  jet  as  accurately 
as  any other more  elaborate theory. 

There are  currently  two principal   approaches  to  the  study  of  tur- 
bulent flow.     The  first,  which goes under a general  title of "Free 
Turbulence Theory",   includes Prandtl's mixing  length   (references  13  and 
14),  Taylor's vorticity transfer  (reference  15),  Reichardt's  inductive 
theory  (reference   16),   and others   (references   17  and  18).     All  of  these 
theories establish  a  functional relation between Reynolds     stresses 
produced due  to  the mixing motion and   the mean-velocity components  of 
the  fluid by means  of  semiempirical hypotheses.     The  second  approach, 
which goes under  the  title of "Statistical  Theory of Turbulence",   is 
based on methods  of  statistical mechanics  and  describes  the  flow 
variables by using  statistical mean values   (references  19  through 22). 
It  is not the aim of this  report  to discuss  the range of applicability 
of  each of  these methods.     A rather  extensive  discussion is  included 
in Goldstein  (reference  23),  Schlichting   (reference 1),  and Townsend 
(reference 22) . 

But as will be  seen  in the following  text,   for some cases using 
the different above-mentioned theories,   or a  simple assumption of the 
"viscosity function",   solutions of exactly  the  same form and of good 
agreement with  the  experimental  results may be obtained.     The  signifi- 
cance of this  fact will be  indicated in Chapter Five of this  report. 

AXIAL VELOCITY 

The Equation of Motion 

The Navier-Stokes  equations of motion for an incompressible vis- 
cous  fluid  -  equations   (1),   (2),  and   (3)   - may be transformed   to describe 
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the turbulent flow by replacing the laminar velocities by 

■U-tU+u^ (49) 

where TX(Trtis the mean and   U-    the fluctuating velocity components, 
respectively. 

By taking mean values of equations  (1),   (2),   and  (3),  considering 
axial  syimietry at  the boundaries and the mean values connected with 
the flow,  the equations of mean motion in cylindrical polnr coordinates 
are 

a^^ + u,™^-»-^ 
iZ 

d*: B^ ^E 4- 

1 ^TUAJO i ^P 
^   ^& (50) 

and 

u Will ÖXJrt aow   ^(uTuQ 
^ 

+ 

liO/fi) a3f_ isp . ..r 1 ä (~^™\ 
J   (51) 

where,   again,   it is  the axis of symmetry and   %  is the radial coordi- 
nate.     Continuity is  also 

r o. 
(52) 

Discussion of Previous Developments 

Before proceeding to develop a simplified approach for the solu- 
tion of the equation of turbulent motion, some of the work performed in 
the past will be indicated and discussed very briefly. However, it 
should be noted here that none of the turbulent theories (references 13 
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through  15) were originally developed  for axisymmetric motion,   so that 
any development based on two-dimensional  relations between turbulent 
shear stress  and mean motion may be regarded as being without any 
"theoretical basis". 

Towusend   (reference 22),  using assumptions similar  to the one used 
for laminar  flow with the fact that   UL*  is very nearly equal  to  tO'^ 
everywhere   (except  at   'Z/ = 0, where  the  two terms are equal),   and that 
the gradient of the mean value   t   is  large compared with   ^  ,  has  fur- 
ther simplified  the above equations   (50)   and   (51)  to obtain 

If the normal  stress component is neglected - a condition that is almost 
valid near  the axis of symmetry of a  jet or a wake,  but is  of  some non- 
negligible value near the edge of the boundary -  then this gives 

(54) 

The corresponding equation of motion  for  the case of an axisymmetric 
jet or wake  in a co-flowing  surrounding may be obtained  if the mean 
velocity is replaced by 

U^   -    Uö-V-o<LL^ (54.a) 

where   U/ is  the defect velocity component,  and an order of magnitude 
evaluation is  applied.    Then,   following Reference 22,   it  is  assumed that 

u„= a„ + o< a vm    "-o^ ~ "-aj^ej, (55) 
and 

J12\ ej > 

'■'- ■■" \a(-l:)- r    ,   _ 2. ,        ,. 
LU U    -     ^   9i 2, V     eoJ ' (56) 

In order to have a universal velocity profile, 

and 

i^^~z0ys 

^^C^-^o)'3. 

(57) 

(58) 
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The solution indicated by Townsend is 

-1 a^ 
Uo-u^^ A(£-HI) e ^v(^i). 

(59) 

which may be expressed in a nondimensional form by dividing equation 
(59) by the maximum defect velocity occurring at r = 0. Thus, 

LUo^;^ 

a0 -a.,™ 
(60) 

where   & \    is  defined as  some new virtual  origin.     This velocity  pro- 
file is  identical  to  the one given for the  laminar jet equation  (11) 
for nr\ = 1. 

An explanation for  this  similarity  is   that  at  sufficient distance 
downstream from the  initial  plane,   the  turbulent velocity  field 
develops  independently of  the mean-velocity  field and the  turbulent 
motion becomes negligible compared to the mean velocity of the motion. 
Thus,   the mean-flow velocity may be approximated by the corresponding 
velocity of a continuously developing  laminar  flow. 

Although Reichardt's   theory  (references   16  and  24)  was   listed as  a 
free turbulence  theory,   it  differs  from most   free  turbulence  theories. 
Instead of attempting   to  establish  some  semiempirical relation between 
Reynolds  stress  and  turbulent  velocity components,   it  assumes   in  the 
equation of motion,   equation  (50),   that   the   terms  with  pressure 
gradient  and molecular  viscosity may  be  neglected. 

Therefore,   the  equation of  axial momentum may be written  in  the 
form 

v>-/m —^^   -\-   UriX\ —"CZ^   —    u - a? ",   äT 
(61) 

Now,  by multiplying  the  equation of continuity,   equation  (52),   by   LL/YTV 
and combining. 

ZZ ^ ^ (62) 

Furthermore, Reichardt has assumed that the lateral transport of the 
mean-velocity momentum is proportional to the transverse gradient of 
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the horizontal component of the mean-velocity momentum 

^U^ = A(e) 
z 

hi (63) 

where AC^)^8 a parameter analogous to Prandtl's mixing length with 
the dimensions of length.  Substituting Into equation (62) gives 

l^L =  A(z) 
(64) 

At  this  point,   a set of solutions may be obtained by  assuming that 

u rm =    if-i*   ^(1*2*1 
and by  following the process  described for axial  defect velocity, 
nondimensional  parameter will  be 

The 

X   = n,ze 
zA(z) ' 

However,  Reichardt has  transformed equation (1)  on the basis that in 
an axisymmetric  jet the dynamic   pressure is  inversely  proportional  to 
the square of some characteristic  thickness    b   ,   a condition that 
is  identical  to  the one obtained using the small  perturbation analysis 
equation. 

Introducing a nondimensional  parameter      ^    —   tyb   ,  and 

assuming  that  the momentum transfer  length is 

A(H)  =   b db 
dE (65) 

and that a mean dynamic pressure function is 

te). 

Reichardt calculated the elementary solution 

z 
u-nm —   ; 

-§% 
(66) 
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As was expected,   due to the mathematical  form of equations   (46)  and 
(64),  the nondlmenslonal solutions  are Identical; but a difference 
between the actual velocity profiles  exists. 

To smooth out  this difference,   an assumption similar  to  that of 
Townsend (reference  22) may be used In which,  from energy equilibrium 
of large eddies.   It may be shown that 

t = 3 
2 -2 O 

(67) 

y Is an equilibrium flow constant given by 

T fsj ' (68) 

Thus , 

2 - Zft   oj bg Up 
j 

(69) 

and Reichardt's  solution and the  solution obtained using  the process 
described for  laminar jets  for }f= 2  and €. = -1 are approximated. 
Although this  report is primarily concerned with  the  axlally  symmetric 
flow motions  in Appendix I,   it may be verified that  the assumptions and 
processes used for axlally  symmetric motion may be ust.d successfully 
to describe  the corresponding two-dimensional problem. 

Finally, mention may be made of  the work of Farls  (reference 51), 
who developed a semlempirlcal  relation capable of predicting very accu- 
rately  the  axial velocity  profiles  by extending  the wake  law suggested 
by Cornish and Coles  for the  turbulent  entrainment process of  the 
outer boundary  layer. 

Solution of  the Axial Momentum Equation 

An alternative approach for  the  solution of the equation of tur- 
bulent motion,  equation (54),   can be  developed by assuming an approach 
analogous  to Boussinesq's  "mixing coefficient" for Reynolds  stress. 

T -   (?VO)    ^m> 
(70) 
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where   S    Is  the actual  density of the fluid and  VCz)  is a "viscosity 
function" which Is a function of distance    ^     measured from some 
initial  point. 

By combining equation  (70)  with the general  expression for  tur- 
bulent  shear. 

(71) 

we  have 

UL-V  = -V(z) ^a^ 

Then, substitution into equation (54) gives 

u-^n , ..   au^     2V(g) 

(72) 

(73) 

and an equation similar  to  the equation of axial  laminar velocity, 
equation  (1).    Obviously,   the expression ujed for Reynolds stress  does 
not affect the mathematical  form of the equation of motion and,   in 
this respect,  is of  the  same nature as when it  is  assumed that   uu'U' = 0 
and when some "viscosity  function" is  introduced to  the laminar  flow 
case in order to describe mean-velocity motion. 

Now,  replacing the mean velocity  from equation  (54-a)  and applying 
an order-of-magnitude evaluation,   the resulting partial differential 
equation may be transformed  to an ordinary one by assuming a solution 
of  the  form given by equations  (7)  and (8). 

fe] e fCe) + 
^ULo ]<j(e>o. 

*-    ZZV(£)\VJ (74) 
If the mean-velocity profile is expected to have a universal or 

self-preserving character. 
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where €•""£, w= l^J » an^  (ß is a constant having the 
dimensions of length. Thus 

Therefore, if V(sO is a function of 2. , y == ^.  Now, by introducing 
a nondlmensional parameter 

^^^^^(2)  ^ (75) 

and transforming the nondimensional equation by 

^ = x'^ «Kx), 
then 

x4>"4-[l+x]^-[^ + %](})=0.   (76) 

This equation gives solutions similar to the one for laminar flow if, 

in equations (11), (12), and (13), X is replaced by X  and -rsr-f € 

by -^r "f •?r • Also, the velocity profile is given by 

a= k^~ <t)(X), (77) 

or, in general, oo 

(77-a) 
^=1 

where V/VNC^/ is given by equation (11) with  —- -j- -^- = _ ^ # 

If it is assumed that the constancy of the momentum is given in this 

case by equation (16-a), then —g-  4"   = —   t (78) 

Thus, the solution in Laplacian coordinates is 
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9 v s; - s ■ 
The condition of constancy of momentum is  satisfied for all  positive 
integral values  of   rf\    as in the laminar case.     The form of  the veloc- 
ity function depends on  the value of   Y ,  or,  more generally,   on the 
"viscosity function".     If "viscosity"  is  a function of   Z-   only,   then 
^T   = 2. 

When £   =  1,   a velocity profile  similar  to the laminar profile  in 
equation (11)   for  (Y\    =  1 is obtained.     If   £.    =  2,  a nondimensional 
solution is given by 

-x 
Ltl -   e      J (80) 

where X = Cj. 

But, if "viscosity" is a function of both variables ^ and ä , a 
condition that may lead to the equation (74) due to the form of the 
simplified equation of motion, then a relation between S and "g" 
must be established in addition to  determining  the value of   'ft    . 

For instance,   using the relation resulting from Schlichting's 
analysis of the  turbulent wake  (reference 5)   as a basis  for establish- 
ing a relationship between   £   and    "g"   , 

ze = Vj 
and under a more  general assumption that 

as  expected from References 5,  6,  7,   and  16,   an infinite number of 
solutions  for  the   limiting cases may be obtained.    The solution for 
"Y     =2 has  already been given by equation (18)  and for   1$    =  I 
with nr\ = 2, 

-X 
^z= 4(1" *)e. (81) 

where JC now becomes OC = C« —TS •  It may be  verified that the 

last solution satisfies all conditions of the problem. Aßain, for 
these cases, U0 4-0(UL may be expressed by the same function. 

The values of the constant of integration, the induced constant, 
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the virtual origin of     Z    ,  or the characteristic   thickness     b     must 
be  determined experimentally.     Obviously,   all  of these quantities may 
be included in a conveniently chosen "viscosity function". 

Before comparing  the calculated velocity  profiles  to existing 
measurements for axially  symmetric wakes and jets,   it will be useful 
to  investigate whether  the semiempirical profile of  the turbulent 
boundary  layer wake  (as modified by Cornish and Faris  (reference  51)) 
to describe jets may be  approximated by some of the  possible solutions 
of  the  linearized equations of motion indicated above. 

We may then verify  that  a velocity profile of   the simple  form 

where    X»    is given by  equation (75),   successfully  approximates  the 
proposed profile to give 

e     <\J   i - 63D. 

Here,   ßan   is Coles'  wake function (54).     But  superimposing the 
solutions 

one may obtain a very  good agreement.    Thus,  Coles'   wake law may be 
regarded as a solution of the  linearized equations  of motion. 

ROTATIONAL VELOCITY 

Introductory Remarks 

Since in the case of  the  axial velocity component the laminar 
velocity  profile can be  extended to describe  turbulent motion with 
the aid of the "viscosity function" or "momentum transfer length",   it 
may be  expected that by using  similar techniques  the mean-vortical 
velocity  profile may be  approximated. 

Unfortunately,   existing  experimental  data are  not of a nature 
which allows verification of  the necessary  assumptions  that  lead to 
profiles representing  the actual case.    Also,   in view of the infinite 
variety of solutions  that may be obtained for  a form of equations   (2) 
or   (54),   the following  discussion will be  limited  to  the indication 
of  some of the different  possible processes  that have been used in  the 
past or  that may be  followed in an alternative way  for estimation of a 
sufficiently accurate mean-vortical velocity  profile. 
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In general, it may be assumed that at a position downstream, the 
velocity profile behaves as the mean velocity, and that the turbulent 
velocity components  are of negligible  order. 

It may  also be assumed that  the  swirling velocity  does  not affect 
the first approximation of  ehe axial   flow velocity.    Then,   by replac- 
ing the kinematic viscosity in equation (3-b)  by its value given  in 
one of  the existing  theories  (references  13,   14,  and 15),   it may be 
possible to  solve the problem. 

Gortler  (reference 3)  indicated  this  process by using  the apparent 
kinematic viscosity  from Prandtl's  second hypothesis. 

For the  present  case, 

and is constant  for  a given distance  from the initial  plane. 

Squire  (reference  10) considered the growth of a viscous vortex 
and concluded that  there is no justification for the introduction of 
complicated formulas   for eddy viscosity or mixing length.     Also,   since 
the circulation  is  a  principal parameter characterizing  the motion, 
apparent kinematic viscosity may be  determined from the  summation 
"N)4-£, where   £    = <X B      is constant and    B   is  the circulation of 
the line vortex.    Newman (reference  7),  in discussing  the agreement of 
the vortical velocity  profile given by equation (33) with some experi- 
mental results  of  tests carried out by Mowforth (reference  25),  concludes 
that it is clear  that  this  type of motion cannot be described in  terms 
of a constant viscosity  for every  downstream station,   and  that eddy 
viscosity is  approximately constant  at  the vortex core.     For relatively 
large radii,   however,   deviation from the theoretical profile  is very 
large. 

Solution of  the Rotational Momentum Equation 

On the basis of  the above brief  discussion and since  the most 
uncertain parameter  in the description of  turbulent flow is  the assump- 
tion concerning viscosity or relating  stress  to rate of  deformation,   it 
will be preferable to search for  solutions  of the equation of rotational 
momentum that must be of some general  character and of  such  form that 
the solutions may be  adapted to describe actual mean-rotational  profiles, 

If,  as  in  the case of the axial  jet,   a characteristic width   b    and 
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a viscosity function V(Z2) are introduced, it may be assumed that 
a solution exists of the form CO = T^b^f (t^b^)  and an equation 
of the form below may be obtained by following the same elementary 
process as for axial motion. 

5- x\ Q ZCL+t +*M a?-1    6 xl 
Ä = o, 

(82) 

where for the present case 

x - £\ctZ t a0    d b   r 
** V(ZB) dZ    ^z j (83) 

£=-6 = l6|» and C has the dimensions of length.  Then, by letting 

^ =   x  ^   4>Cx)? (84) 

and by transforming into the Laplacian coordinates. 

(j)  = (s+i) 
0, . l.i 

5 Y f r + T ^1 
(85) 

Before transforming to the original ( t/, b ) space, the existing 
relations may be Indicated between the constants (X> ,    &  ,     Y > and 
£,     in order to satisfy the three integral conditions whir^ are given 
for the laminar case by equations (30), (31), and (32), assuming presently 
that they may be extended for turbulent flow. 

As the velocity profile for this case will be given by 

(86) 

where $m  is given by (27) with r(\   = -^L-l-^-^-L-f-X, 
0   t   o    v 

the angular momentum integral is then 
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^ + iö:+3£rOCV» 
R   = C1ßb    Ä     ff jX * 4,Cx)c(x.      es?) 

Thus,   the constancy of  the angular momentum implies 

1$ Y  " (88) 

Therefore, - "L^T x 

4> = (S-l-l)44r   j 

for which the general solution is 

-3£   _ J^ 

U^=  Bb^ x"^  <t>(x;. (89) 

If viscosity tud characteristic thickness are functions of ( ^ ) only, 
then Y = ^ 
and 35     ± 

udffr,= 6b *  x'* e'   _, (90) 
where X. = C 7-5".  The simplest case, as was indicated for axial 

velocity, is for C = 1, where, if the expressions deduced from energy 
equilibrium for large eddies are used, then 

r>   if 

a 

The nondimensional velocity profile may be calculated by dividing by 
the maximum velocity occurring at 

which is of the form 
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CfTnA/) 

Z_ 
H 

-C 
C3^e 4 L1 

(92) 

where t/ ^ is the radius where maximum velocity occurs. 

However, for other more complicated "viscosity functions" using 
the same approach, profiles of different analytic form may be calcu-
lated. Also, by combining solutions of the general form, equation (89), 
a measured experimental profile satisfying all of the existing boundary 
and physical conditions may be approximated. Since presently available 
experimental results do not permit a well-founded decision for the 
existing relation between ^ and £ or for the value of either of 
them, the present analysis is limited at this point. Hopefully, future 
experiments will give the necessary information for the estimation of 
the different constants relating the nondimensional parameters in 
equations (90) and (84). Then, a realistic form of the analytic expres-
sion for the velocity profile may be formulated. 
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CHAPTER FOUR 
CONFINED JETS AND VORTICES  IN AXIALLY SYMMETRIC SURROUNDINGS 

GENERAL REMARKS 

It is well known that the jet entrainment process  is  the basis of 
many important practical applications,   especially when the motion of 
the jet takes place in confined  surroundings.     In some cases,   the 
presence of  the surrounding walls noticeably increases the entrained 
mass flow. 

In this  chapter,   some of the characteristics  of the axisymmetric 
jet-mixing phenomena of jet ejectors and vortex chambers will be 
examined.     In this  respect,   the  existing knowledge and  experimental 
data of the flow with jet and vortex profiles in a cylindrical channel 
will be used.     Also,   a form of  the f^ow in the inlet length of a circu- 
lar pipe will be used which will help  in developing a better under- 
standing of  the confined mixing process.     Such a process has not been 
completely covered  in the up-to-date  literature where,   in general, 
assumptions valid  for two-dimensional motion are used  to describe 
three-dimensional problems. 

JET EJECTORS 

Summary of Previous Developments 

During the pasi two decades,  extensive  theoretical  and  experi- 
mental research has been conducted by  several investigators under 
the above general  topic.    H.   B.   Helmbold  (references 27,  28,  and 29), 
in "Contribution to  the Jet Pump Theory",  has given much useful  theoreti- 
cal and experimental information concerning the existing integral and 
analytic  relations between the different flow characteristics  and also 
some of the possible processes  that may be used in order to calculate 
some of the goemetrlc dimensions of a  jet pump. 

Cruse and Tontini  (reference 30) have reviewed the theoretical work 
performed in References 27 and 31 and have presented analytic methods 
for the design of a constant-pressure mixing tube and for the calcu- 
lation of an effective mixing length. 

0.  V.  Yakovlevskiy (reference 41) ht.s studied the mixing of a jet 
in a channel with variable cross section and gives analytic expressions 
of the velocity profile for the two cases of constant diameter and 
conlcally shaped tubes.    Yakovlevskiy's velocity profiles are  in 
agreement with existing experimental results. 
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Under the topic  "Steady Flow Ejector Research", Lockheed Aircraft 
Company (references 32 and 33) has performed an extensive study of the 
different geometric and  flow parameters affecting the general design of 
a  jet ejector to be used as a thrust-augmentation device. 

Finally,  general  information concerning  the confined  jet flow,   as 
it may be applied  to the design of a  jet pump,   thrust augmenter,  or 
noise reducer, may be found in References  34  through 40. 

The VelKity Distribution at the Ejector Chamber 

To calculate an analytic expression representing the velocity pro- 
files at different lateral  sections along the  length of the mixing cham- 
ber and from the point where the  jet "primary  flow" exists  to the 
co-flowing external  "secondary flow" of the mixing tube,   the Navier- 
Stokes equations of motion for an axially symmetric flow  (1) must be 
written. 

If it  is assumed  that the rotational velocity is  zero and  the well- 
known Prandtl boundary  layer approximations  are applied,   then 

3^ ^ %     ZZ ?%       ät '       (93) 
Again,  the most uncertain parameter in equation  (93)  is  the relationship 
existing between shearing stress  and  the rest of the flow parameters. 
It has been noted previously that all  the existing free turbulence 
theories  (references  13,   14,  and  15)  are valid only for two-dimensional 
flow because the assumptions on which  they are based are  such that  they 
cannot be extended for  three-dimensional problems.    Therefore,   it will 
again be assumed  that  the viscous term is of  the form 

^ a^ v    ^ /) (94) 

where V is a  "viscosity function"  that corresponds to a  turbulent 
shearing stress 

When V   is a function of -2   only,  equation  (94-a)  takes the form 

"0= ?\) 5Z (94-b) 
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By substituting equation  (94)  into equation 

n ^U   .   TT «MX   _      1    ^P 
dH       ö^  '   § dz  '   ^ ^^ ^" ^^ ^   (95) 

This  equation,  with the continuity  equation  (4),   forms a  system of two 
equations  from which the three unknown functions    XL ,  v    ,   and P  must 
be calculated.     Thus,  in order to proceed to a  solution,   some "arbitrary 
relation" between the function must be used.     For this  reason,  the 
existing boundary and physical conditions that will  limit  our final 
decision as  to  the arbitrary relation may be considered. 

The momentum for this  case is  given by the integral,   equation  (16), 
where  the limits of integration are  R(2)  and  zero. 

The relation  Z s R(z) is the  function describing the boundary of 
the mixing tube.     If this  theorem is  applied over a closed  control 
surface,  it may be stated  as  follows:     the difference of  the momentum 
over  two lateral cross  sections is  equal to the  axial component of the 
pressure force on the tube wall. 

The mass  flow must also remain constant along the  length of the 
channel  so that 

w = \   Zir^yj^Zciz, 
'o 

The boundary conditions  are: 

at     Z  =   Oj   U = OJ (96) 

at    'l=   0;  1P^=   0J (97) 

and    at     Z   =   ß(^);   Lü = V = O . (98) 

In addition to all of  the above,   and for the study of  a  free jet, 
the assumption that the velocity profiles at different lateral cross 
sections have a  self-preserving or universal form has to be considered 
in order to lead to a solution. 

In this  respect the work of Abramovich  (reference 42),  who has 
experimentally verified that there exists an interesting analogy between 
the velocity fields of a free and a confined jet, may be considered. 

It was found that the dimensional velocity field at every cross 
section of the mixing chamber was of the same form as the central part 
of a  free jet hypothetically bounded by the walls of the chamber. 
Abramovich concluded that this was not surprising if the universality of 
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the existing general laws of turbulent mixing are considered. 

In the up-to-date literature,   two types of jet ejectors  are 
described:     the constant-pressure and  the constant-diameter  types. 
Here,   the variable-pressure type  (not necessarily constant-diameter) 
will be examined,   and the constant-pressure type will  then be  taken as 
a particular case. 

A simplified  form of equation  (95) may be deduced if,   at  some point 
along the radius of the ejector and  for the region under consideration, 
the velocity becomes a value  IX ^rv   such that 

"^ fYY\ 

where approximately 

<iU^ 1      ^P 

^ 

Now,  by replacing the velocity  function XL by 

"^ ^-nm "^   ^   U- (100) 

in equation (93), and by using equation (99) and applying an order of 
magnitude evaluation, 

a^ » u, 
an expression that is almost correct at a few ejector diameters down- 
stream from the initial plane may be written.  Thus, 

^    ^2    +    ^TTT - T d^ (^äT^      (101) 

or introducing a  function 

(^)- rm   o v   \    <* v /       (io3) 

An alternate approach which will simplify equation  (93)  in the region 
very close to  the initial plane is  to assume that the secondary flow 
can be regarded as a free-stream relative to the primary flow of the 
ejector,  and  that the pressure at some jet diameters downstream from 
the initial plane may be regarded as unaffected by the confining walls 
of the mixing chamber. 

For this case,  the jet will behave like a free jet    and,   according 
to existing experience  (reference 44),   the laminar flow linearization 
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techniques may be used to give  an equation of  the  form 

UL    aa  =:  j± A. //> AlA 
S   52 Z  ZZ \     at )> (104) 

T.;here   LL   is the  defect velocity and   ULc     is  the undisturbed velocity 
of  the   secondary flow. 

Equations  (103)  and  (104)   are mathematically  similar to equation 
(1-b)  and to the heat conduction equation describing  the radial  flow 
of a hollow cylinder  (reference 43).    The boundary and initial conditions 
are  similar to the  same  heat  transfer problem. 

Thus,   the corresponding  process for  the  present  problem is  to 
assume   that equation  (104)   describes  the velocity  field at the  first 
few jet ejector diameters with the initial conditions: 

LLS=CS    ,   for     2-Zij   Ze<1'< Rcj (105-a) 

and 

Up^Cp,for    Z-Bj    O^t^Ztj (105-b) 

where Ü.5 and ULp are the constant velocities of primary and secon- 
dary flow, respectively. 

From the lateral section at the axial distance 2? f< up to the 
exit of the mixing chamber, equation (103) is used with velocity 
distribution at the initial plane 2 j< given by the solution of equa- 
tion (104) evaluated at the surface Z. K . 

The problem of a free jet close to the initial plane was first 
considered by Pai (reference 44), who used a method of separation of 
variables similar to the one used for heat transfer problems (reference 
43). 

The solution obtained may be of the form 

irp 
= M    e^J0(xOJ1(A2o)dA; (106) 

where J0  and 3±    are Bessel functions of zero and first order, 
respectively, and which satisfy initial conditions expressed by a 
Weber-Schafheitlin discontinuous Integral. 

However, if the simplified equations (103) and (104) can be used 
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for the regions of confined jet flow as indicated previously, then so 
can the mathematically similar equations of the general form 

iaze Wt^). 
Following the same process as in Chapters Two and Three for the 

present case, solutions of the general form - equations (26), (27), 
and (29) - are obtained. Whenever the wonditions for momentum and 
mass constancy are not very restrictive, as when the integral linuts 
are between zero and some defined point R(ä), the function describing 
the velocity profile does not have to be bounded in the limit (ft—^oo} • 

General Case of Ejector Design 

The more general case for the design of an ejector is when we 
assume that the boundaries are described by a function not yet defined. 
Then, in order to solve the equation of motion, it may be assumed 
that the solution is of the general form 

V  -  UL = ^R^)WR6
^)). (103) 

For the case of a turbulent  jet,   equation  (108) may be substituted into 
equations   (103) or  (10^)  to obtain equation  (74), where  the nondlmen- 
sional parameters are 

and 

x =    £    ^   Uo   dLR(z)] 

(109) 

*z RC^; s/ctfi     dz (no) 

Here, IX-o is either U#S or U'tm v^en  X ^s to *,e used for equations 
(104) or (103), respectively. 

The sjlution for equations (103) or (104) is then 

LL  or   V  =  Rrz/+V QlCt), (111) 

4^. 



where  for equation  (104) 

^Cx) x = o = A i > 

from which the maximum velocity is 

^^AX= [«(«)] 
«+¥ 

(112) 

Thus, the mass flow is 

'Yn= CTT^V      AX 

5üSTT^(E); (113) 

and it is necessary that 

for the mass flow will be independent of the axial distance. 

The solution of the equation of motion in Laplacian coordinates 
is, therefore, 

* - 4- (^T* (114) 

X 

If the integral of the function q>(X) over a region R (^) r^> O 
must be independent of R C^)> ^ must equal £ so that the upper 
limit of the integral will be 

R(z) 
The above expression may be considered equal to 1 without losing the 
generality of the equation. 

The mass flow integral may now be written as 

onn 
Jo (115) 

If friction on the wall of the mixing chamber is neglected,   the 
momentum integral evaluated at two different lateral sections    R C^^) 
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Ji^ 

and  R(Z^) will give  the value of the axial component of the pressure 
force "Y 

f 
R,») 

R*jx^[p+ ^Ca^+o<a)Ä]ötx 

RCz-i) 

!f?.(zj   <116> 
Using the same process,  similar nondimensional relations between the 
different parameters  describing the velocity  field at some distance 
from the initial  plane may be  stated where the  functions   R Cz^O >   the 
induced constants,  the  function   4>(X) ,  the constant of integration, 
and the virtual origin of  X   may be different  for every case. 

However,  if  the  solution of equations  (104)   and  (103)  must  satisfy 
the  previously stated initial conditions of equations   (105-a)  and 
(105-b)  as well  as  the variation of the velocity  in the   2:   direction 
so  that it will be continuous at  the  lateral  section    ^ j^   , 

52 Z^K 

must have the same value for both velocity functions and the problem 
becomes extremely complicated. The deduction of general expressions 
for  the ejector characteristics  is insuperable. 

In the  following  section,  a simplified approach will be  presented 
that may be used for the calculation of some of  the parameters  involved 
for  in ejector design. 

Simplified Approach for Ejector Design 

One very important conclusion relatj' ^  to  the form of the possible 
solution of equations  (103)  and  (104)   is  chat  the nondimensional 
velocity  profile expressed by equation (114)   is  of  the  same general 
form for both case». 

On the basis of this observation and by using Abramovich's  (ref- 
erence 42) experimental verification,  it may be assumed with sufficient 
accuracy that the elementary nondimensional form of equation (114)   in 
the  plane may be obtained if If ~ Z.    This makes  it identical to  the 
ore  that can be deduced for  the case of a free jat.    Now 

TX-Us      _ 
tt^-a, =   e 

'rm 

-X 
(117) 
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or for 

Y= 1 j 

TX  - Us        _ -X 

where 
=  e~  ci-^)j U^- UQ w      ^A       x ; (118) 

and tL/YY^ is the axial velocity at a given lateral section. LX is the 
absolute rp.te of flow, and UL<j is the nominal velocity of the secon- 
dary jet flow that can be regarded constant over the region under con- 
sideration. 

Using the notation indicated in Figure 2, the excess mass flow is 

'vr^ = (u^-LLs)^ ;aTT$ j (ix-us)W^,       (119) 
From equation (118), we have 

^^ = —Q  \    (a/rr>-as)e  0'X)clX;    (120) 
and finally, the excess velocity along ehe 21 axis is given by 

1 
U^rm "" LLs ' 'Y^J C^ * pÄ/^) ) (121) 

where _      ~. P  ^-1 
z c 

Using the velocity profile given by equation (118), we have 

s      Ra(e) c     ^ 3 (122) 

where aY\£ and C ^, may be estimated experimentally. A similar 
expression may be deduced from equation (117). 

From the momentum equation, the pressure at any section of the 
region under consideration may be deterulned. 

The excess momentum between any of the lateral sections and the 
exit of the mixing chamber may be written as 
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J 

hs (ui; - as) + P^s = \ (u- u-s) a M + p. F.        (i23) 

The velocity momentum from the above equation may be simplified by 
writing , 

1=  Uu-as)dM-^^yCu-as)udlx, 

and by adding and subtracting the momentum of the secondary jet. 

r r1 i 
J = TI^^)[(uw-a5Tj(^^)ax + asyu-us)dxJ.   (i24) 

o 
Now,  by using equation (118), we have 

1= R;2(2)(um.-as)[(uw-us)C3-»-asC4] ^ 
(125) 

.1 where 

C3 = -^X e^Cl-xfdx ^    \      ~2x/* ^ 

and 

^4 C 
Also, 

\ e"x(i-x) dx- 

M^Caj-as) — Tr^R^2)Uj:(ucrus). (126) 

By substituting equations  (125)  and  (126)  Into equation  (123),  the 
axial pressure force due to the pressure difference between those two 
sections  is obtained. 

The above analysis Is based on a velocity profile given by equa- 
tions  (108)  or  (111) that exists when the boundaries of the mixing 
chamber are given by 

i= R(£). 
For the particular case of a constant-diameter chamber, a velocity 

function of equation (7) may be used to deduce expressions similar to 
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those already given. 

The pressure gradient for a coistant-dlameter mixing tube was 
calculated In Reference 42, where two nondlmenslonal variables were 
Introduced on the basis of existing similarities of free and confined 
jets. 

The variable relating the radius of the chamber to the free jet 
is Y  ~ E_ 

and the other which relates the free jet to the local radius may be 
written as ,. 

x      T ' 
Then, using simplifier relations between the different velocity field 
components as established in References 4, 27, 38, 39, and 42, an 
approximate expression was obtained for the pressure difference. 

P5-P=^CX.), (127) 

where    JCXK) is a given function of  X K     and also of expressions 
for the mixing length and  the mass ratio of the ejector. 

Finally, if the ejector is to be used as  a thrust augmenter,   the 
thrust augmentation factor becomes particularly important. 

The thrust augmentation factor     (p       is defined by the formula 

Re ^p (128) 

If the absolute value of the velocity is given by equation (115), 
then XI  r 

, 

C R e Up 

*or 0 - /2/ ; and for a velocity satisfying the constancy of the mass 
flow, equation (113), 
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(3 = L3 

Rz(z)Ti$Rl ^Z
? (129) 

An additional equation to be solved for the case of a high- 
augmentation factor ejector is 

B£ 
L Jo 

- o. 
C130) 

This may also be used for the estimation of the ejector boundary 
function   R (2). 

Remarks 

The indicated solutions  in Chapter Three are based on linearized 
partial differential equations of motion which may be transformed to 
ordinary ones by using suitable operations.    A process of solving the 
complete equation of motion is  indicated in Appendix II. 

CONFINED VORTICES 

Introductory Remarks 

Numerous theoretical and  experimental investigations of the topic 
"confined vortex flow" have been developed in the past primarily 
because  some very important  applications can be developed on the basis 
of the behavior of this type of motion as  indicated  in References 45, 
46,  and 47. 

In general,  the flow field in a vortex tube is  the result of the 
interaction of the primary core flow with the secondary bouadary layer 
flow of  the surrounding and  the end wall of the  tube.     In this respect, 
extensive theoretical and experimental investigations have been developed 
in References 48, 45,  49,  and others.    In the present section the 
discussion will be restricted to the vortex produced in a cylindrical 
chamber similar to the one used in Reference 50,   and an attempt will be 
made to determine whether the nondimensional solution of the linearized 
equation of rotational motion,  as obtained in Chapters One aid Two, 
may be extended to describe the considered confined vortex flow. 
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Rotational VeLoclty Distribution In a Vortex Chamber 

An analytic expression of the rotational velocity profile  at 
different  lateral  sections of a vortex tube may be deduced by  solving 
the general Navier-Stokes equation of motion for axially symmetric 
flow.    If,  for the  sake of simplicity,  it  is assumed that Prandtl's 
boundary layer approximations are valid,, for  this case,  equations  (1), 
(2),  and (3) will represent this  type of motion.    A further  simplifica- 
tion of the above equations may be obtained by  processes similar  to 
those in previous chapters that represeut  the variation of the rotational 
velocity independent of  the axial velocity,  a condition that may be 
regarded as unreasonable at this  stage of  development.    However,  if  it 
is  assumed that equation (86)  represents  the velocity profile  in a con- 
fined vortex chamber,   the velocity function is 

oj =  b   * -x'* 900, 
where the nondimensional parameter is given by equation (84)  and the 
"viscosity  function" by equation (94-a).     Then,   solutions of equation 
(85) may be obtained. 

The physical conditions represented by the  integral equations 
(30),   (31),  and (32),   due  to the  fact that  the upper limit of  integra- 
tion is some defined function or constant,   do not restrict the motion 
so definitively as  for the case of a free vortex.    However,  the 
constancy of the circumferential mass  flow may be ejected. 

The circumferential mass flow for a given axial width is 
C     r Xl 

and the independency of the axial distance may be expected for 

(132) 
i- 4.-^. =  _ A 

This relation between tho constants will give a solution in the 
Laplacian coordinate   !       T. 

* es) - S11A 
* 

(133) 

Thus, by using different values of ^T , an infinite number of solutions 
may be obtained.  The simplest solution in the (7 2) space is 

> 
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for   y Ä 2. 

4» (x) =   1 - e_x. as« 
The corresponding velocity function is 

^>    =   — (l   - C     ) . (135) 

The singularity of the velocity function and the mass flow expression 
at  (^=0)or  (X=0)  is removable.     The mass flow will then be 

'VA= ^GV-Ä+-")J (136) 

where 

^   =X R ; 

which will be constant if   C*   is independent of    TS. .    This condition 
may be obtained under proper arrangement of the nondlmensional variable 
X     by taking ^ = £ . 

But,  if turbulent nondlmensional free vortex profiles may be 
extended to describe  the confined motion,  it may be possible that the 
experimental verification of Abramovich  (reference 42), relative to the 
existing analogy between the axial velocity of a free and a confined 
jet, may also exist for the case of the vortical velocity profile. 

Now,  it will be particularly interesting,  before examining the 
possibility of using  the central part of the elementary nondlmensional 
free vortex velocity profile as hypothetically bounded by the wall of 
the vortex chamber,   to describe the confined velocity profile as 
indicated by the results obtained in Reference 50. 

Thompson, using a semi empirical analysis, has indicated that 
the vortical velocity profile is of the form 

CO»™« ^ ^ (137) 

where   ^30   is Cornish's modified Coles' wake function (reference 51) 
which,  according to the theory developed in this report, may   be 
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approximated by the exponential function 

e'x ~   1-630- 
Thus, equation (137) becomes 

(l-e"x)+^) 
^rml\x ^ (138) 

which may be recognized as a solution of  the linearized equation of 
motion,  equation  (3-b).    The velocity given by equation  (138)  does not 
satisfy some of the imposed physical  conditions of the problem,  but 
shows sufficient agreement with  experimental results. 

Using Thompson's experimental  results,   the above-stated possibility 
of extending Abraraovich's concept for this type of motion has also been 
investigated.     It was found that the corresponding free vortex profile 
may be used  (:o  describe the core of confined vortex motion in the middle 
section of  the vortex chamber where  the end wall interaction is not 
large. 

It was also found that a velocity profile of equation  (135)  or 
equation  (33) may  be used to describe this  type o2 motion with  suffi- 
cient accuracy. 

In general,   as for jet ejector design,  two nondimensional param- 
eters may be used  to describe the confined motion.     One  is 

-LK. b      5 

which relates the radius of the vortex to that of the tube.  The other 
parameter is 

*  = Jzr- b ' 
which relates the local to the free radius. 

The constancy of the circumferential mass flow may be assumed 
only if 

R_ 
L.  OO constant. 

Similarly,   for the nondimensional velocity profile,  where 

X   ^ 
Xl   ^ 
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p 
the mass flow may be constant only if     7y       rO     constant and 

^"^rvY^AX /V>   constant.    These conditions are valid only if Zi = constant. 
which can be expected if no losses occur during the motion. 
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CHAPTER FIVE 
COMPARISON OF  PRESENT THEORY WITH EXISTING 

THEORIES  AND EXPERIMENTAL RESULTS 

In Chapter Four,  a set of  solutions of the  linearized equations of 
motion of  free and confined jet-wakes  and vortices was  developed that, 
as was  indicated, may be used  to describe, turbulent motion using a 
suitable  "viscosity function'1,   "virtual origin" or "characteristic 
thickness". 

In this chapter,   these solutions will be compared to other theoret- 
ical  profiles  and to collected and developed experimental data. 

It was verified (see Figures  6 and 7)  that  the  two-dimensional 
wake  law of Cornish and Coles   (references 53 and 5A),   which governs the 
turbulent  entrainment process  at  the citer edge of a  turbulent boundary 
layer, may be approximated very  accurately by equation  (11),  when   X    is 
replaced by   X    as given by equation  (66) or equation  (84) . 

Using  the  same analytic  expression,  equation  (11),  and a different 
"virtual  origin",  the semiempirical  Coles1 wake function as modified 
by Cornish and Fario  (reference  51)  may be deduced.     This  function and 
the solution presented in this  paper may be used to describe the 
experimental results obtained by Paris  (reference 51)  with very good 
accuracy  for  the case of an axisymmetric jet emerging  in a stationary 
surrounding (see Figure 8). 

Comparing the velocity profiles obtained by Tollmien (reference 
62),  Görtier  (reference 12),  and the present theory  (Figure 9),  it can 
be verified that all of these are in very good agreement at  the core 
region,  but that there is  a small difference at the outer boundaries of 
the jet.     The same difference may be observed between  the above theoret- 
ical  profiles and the experimental results of Reichardt.    An explanation 
for  chis  overestimation is  that at  the outer jet  region the normal 
stress which has been neglected in all previous analyses has  some 
significant value if it is compared to the other  fluid motion components 
at the outer region. 

However,  if two or three  forms of the general solution,  equation 
(11),  are used,   the small defect may be smoothed out  and the agreement 
of this  theory with the experimental results  thereby becomes much better 
(Figures   10 and 11). 

The analytic expression by Reichardt (reference   16)  for the dynamic 
pressure  profile of a free axisymmetric jet,  obtained by using his 
"inductive theory of turbulence",  is of the same  form as the elementary 
solution given by equations  (II  and 84) when the nondimensional parameter 
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Is used. 

= (+)' 
Both theories are In good agreement with the experimental results 

presented In Reference 16 (see Figures 10, 11, and 12).  Finally, the 
present theory agrees with the experimental results obtained by 
Forthrnann and Relchardt for the axial velocity distribution of a 
two-dimensional turbulent jet (references 16 and 55) as can be verified 
in Figures 12 and 15. 

Therefore, it has been verified that, although present theory is 
basically developed by the use of a small perturbation analysis for 
the case of a jet in a co-flowing surrounding some distance downstream 
of the initial plane, in practice it can be used to predict the motion 
of a jet in a stationary medium as accurately as any of the much more 
elaborate processes used in the past. 

For the case of a jet in a co-flowing surrounding, there are very 
few existing experimental results.  However, in Figure 16 it is indi- 
cated that the experimental data obtained in References 58 and 66 for 
the case of a jet spreading through the co-flowing air coincides with 
the present theoretical results.  Also, a satisfactory agreement is 
obtained with the results of References 5, 59, and 61 (see Figures 13, 
14, and 17.  The small defect at the core region where theory overesti- 
mates the actual velocity of the jet may be regarded as within the 
accuracy of any experimental measurement.  The velocity distribution 
obtained by using the present theory predicts very accurately the 
experimental results shown in Reference 56 for an axisymmetric wake 
(Figure 1«3) as well as the experimental results of Reference 5 for the 
two-dimensional wake behind a circular cylinder. 

For the confined jet, the results obtained by Reference 39 can be 
approximated by the same general velocity profile given by equation (11) 
(see Figures 19 and 20), where for this  case the nondimensional parameter 
^C is given by equation (110).  However, the existing agreement becomes 
poor downstream of the initial plane as the boundary layer of the wall 
of the mixing chamber approaches nonregliglble thickness relative to the 
diameter of the tube. If, instead of the general solution, the core 
part of the elementary solution given by equation (48) as stated by 
Abramovlch (reference 42) is used, it Is apparent that the velocity 
profile at the broader part of an ejector chamber is described with 
sufficient accuracy (see Figure 21) . 

For all the above cases, the maximum velocity distribution along 
the Z  axis may be approximated by a function of the general form of 
equation (24), where K  may be an Integer or a nonlnteger. The elemen- 
tary distribution for a tvo-dlmensional jet is obtained with K = 1/2, 
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and for  free and confined jets with   K    =1.    These  two elementary dis- 
tributions  predict existing experimental results   (Figure 22). 

However,  the concept of virtual origin z =  z -f z^ permits one  to 
use an expression of the  form 

=      c 

(indicated in Figures  22  and 23)   to describe  the maximum velocity varia- 
tion some  distance downstream of  the initial  plane. 

Thus,   the obtained solutions  for the case of two- and three- 
dimensional jets and wakes  that are of the  same nondimensional general 
form agree very accurately with the existing experimental results.     This 
indicates  that the entrainment processes in these types of motion are 
of  a universal nature. 

Also,  in many cases  the velocity profile deduced from laminar flow 
analysis  may identically  describe  turbulent motion.     The reason for 
this  similarity is  that at a sufficient distance  downstream from the 
initial  plane,  the turbulent velocity field develop«'  independently of 
the mean-velocity field,   and the  turbulent motion becomes negligible 
when compared to the mean velocity of the motion.    Thus,   the velocity 
field at  that region may  be approximated by  the  corresponding velocity 
of  a continuously developed laminar flow.    When the  laminar velocity 
profile  in the intermediate region fails  to describe  the motion,  a 
conveniently estimated "viscosity function" may be used to modify the 
laminar solution to one describing turbulent,  not fully developed motion. 
The  accuracy that can be obtained using this  technique is as good as 
that of any of the other more elaborate methods. 

For vortical velocity,  as indicated in the  preceding parts of this 
report,   the existing experimental  data are not of a nature which allows 
verification of the necessary assumption that  leads to profiles repre- 
senting the actual case.     However,  physical conditions used to restrict 
the set of existing solutions  to those representing the actual motion 
are not necessarily strictly valid. 

The agreement obtained between the elementary solution, equation 
(34-a),  and experimental results of Reference 52 is  indicated in 
Figure 25,  and is not sufficient  to permit the deduction of any definite 
conclusion.    However,   the existing defect between theory and experimen- 
tal values may be due  to existing difficulties  involved in measuring 
flow quantities such as  the vortical velocity,  and the defect may also 
be  due to some misadjustment of the general  solution due to the use ot 
conditions which do not exist for actual motion.     In this respect,  if 
the  imposed condition 

W   ^ O i8 ne6i.ected. 
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two or three of the. solutions given by equation (34) may be superimposed 
to approximate the actual velocity profile very accurately. 

For confined vortex motion, the results obtained by Reference 50 
may be approximated by the solutions given by equations (135) or (138), 
both of which are solutions of the linearized equation of motion and 
which, under proper definition of the variable X , may satisfy all of 
the existing restrictions of the motion.  Also, the extension of 
Abramovich's verification for the case of the vortex motion may be 
valid with sufficient accuracy only when a generalized solution of 
equation (34) is used. The elementary solution of this equation 
describes very accurately the core of the vortex but fails to accurately 
describe its outer regions (see Figures 26 and 27). 

In the previous discussion, it has been indicated that the exis- 
tence of some "negative velocity" or "back flow" may permit the pre- 
diction, with sufficient accuracy, of the outer part of axial or vorti- 
cal jet or wake motions. Here, this possibility will be investigated 
very briefly. 

In Figures 28 and 29, the first few terms of the solution given 
by equations (11) and (34) are plotted separately, assuming that 

on 

and 

A^= B^= 1 

2 = 1. 
All of these,  except  for the elementary solution,  present  some nega- 
tive regions at the outer part of the jet or the vortex. 

The superposition of these solutions may  produce velocity profiles 
of the form indicated in Figures  30 and 31.     Such velocity  profiles 
have been obtained theoretically in the past by Terazawa and Shigemltsu 
(references  63 and 57)  for the decay of  two-dimensicnal vortex motion. 
In searching for experimental evidence that may indicate the existence 
of such velocity profiles,  the experimental work of Reference  64 on 
the formation and growth of vortices  behind plates m.iy be recalled where, 
in many of  the obtained pictures,   the outer part of  the main vortex is 
split into  secondary vortices representing regions of "back flow" or 
counterrotating motion. 

The same result was obtained for the case of a trailing vortex in 
Reference 65  (see Figure 3).    Although in this case the vortex is 
formed in ground proximity,  there is  a noticeable ground effect  in the 
lower part of the outer region of  the vortex.     Similarly,  a "negative 
velocity" region can be obtained at  the boundary of a jet or at  the 
wake of a cylinder or sphere. 

In Figures 4 and 5,  the velocity field in the wake of a cylinder is 

58 



indicated by using the newly developed flow visualization technique, 
smoke generation on a hot wire (reference 67), where the region of 
back flow at the middle part of the waVe is very large. 

Thus, in general, it is reasonable to use velocity profiles of 
equation (11) or equation (34) with the nondimensional variable  X 
given by equation (66) or equation (84) to describe jet-wake and vor- 
tex motion. 

At this point it may be noted that t^c obtained solution of the 
simplified equations of laminar motion, vlth the aid of the "viscosity 
function", can predict with very good accuracy all the existing experi- 
mental results, and are of reasonable agreement with all the existing 
theories. 

The question now arises as to why all these theories based on so 
questionable an assumption as "mixing length", "eddy viscosity", and 
"viscosity function" produce results that are so close to the experi- 
mental results.  To answer this question, the Important role of dimen- 
sional considerations and of boundary and physical conditions in the 
solution of all the problems must first be realized.  If, for instance, 
the process and results in the analysis of jets or wakes of this report 
and of References 2, 3, 5, 8, and 16 are evaluated, it is quickly 
observed that both the form of the transformed partial differential 
equation of motion and the final solution obtained are largely based 
on these considerations and conditions. Also, the quantities of 
primary Importance related to the described phenomenon are not very 
highly affected by any of the assumptions made in relating stress to 
rate of strain. Thus, the same results are obtained following more 
than one assumption when, in many cases, these assumptions are contra- 
dictory ones. 

However, it must be noted that, at the present time, none of the 
semiempirlcal formulas used by turbulence theories (references 13, 14, 
15, and 17) can produce analytic expressions for the velocity profiles 
of the different flow motions, since each one of them is valid only 
for a specific problem or a category of problems.  A generally valid 
theory for the representation of turbulent motion does not exist, and 
it is probably more attractive, at least from an engineering point of 
view, to treat the equation of motion by assuming an unknown "viscosity 
function" that can be determined by using the experimental results. 
This could be done in such a way that the final analytic expression 
for tne velocity profiles would agree with those results.  This 
approach can be used instead of introducing some semiempirlcal rela- 
tion which, in many cases, would complicate the differential equation 
of motion and finally produce results that would be valid in a limited 
flow field re^nn. Furthermore, all the previously mentioned theories 
are developed for two-dimensional motion, and they cannot be used for 
the present axisymmetric motion. 
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In closing this discussion,   the existing similarities of the axial 
and rotational momentum equations of motion In the conveniently trans- 
formed coordinate system that can be used identically to describe jet- 
wa1 as and vortices should be eaiphaslzed.    Also,  nhe obtained solutions, 
equations  (11)  and (34),  are of  >;he same nondlmensional  characteristic 
form,  and may be used for free and confined cases by proper adjustment 
to the corresponding boundary and physical conditions for every case- 
So,  on the basis of the present  theoretical analysis and all the 
existing and above-mentioned experimental results,   it may be stated 
that  the  laws governing the entrainment  process of jet-wakes and vor- 
tices  for  laminar and turbulent motions  and for free and confined 
surroundings are of the same universal nature. 

Finally,  if critical experiments are performed,   as  suggested in 
the body and the appendixes of this report,  to supply the additional 
information necessary for the calculation of the different induced 
constants,   the given analytic relations between the flow or jet 
ejector component and parameters will be an extremely useful  tool for 
any engineering application. 
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CHAPTER SIX.  SUMMARY AND CONCLUDING REMARKS 

On the basis of an extensive account of the present ideas and 
development on the subject of jet-wakes and vortex flow, the general 
principles of the motion of a free, laminar jet have been analyzed and 
reviewed, and from an extension of these principles, an understanding 
of the very complex behavior of a turbulent jet has been obtained. 

Also, under a more general assumption that the term "jet" means 
the motion of a fluid on a side of a tangential separation surface, the 
similarities of the entrainment process of the flow field of jet-wakes 
and vortices were investigated.  More specifically, using a linearized 
form of the Navier-Stokes equations of motion, a set of solutions was 
obtained which describes the axial, rotational and radial laminar velo- 
city profiles. 

In order to verify the possibility of extending laminar solutions 
to describe turbulent cases, the general equations of motion have been 
reconsidered using the existing "statistical" and "free turbulent" 
theories. 

It was then proved that, by introducing a "viscosity function" to 
the simplified equations of laminar motion, solutions of the same 
general analytic form, but with a different nondi.aensional variable, 
can be obtained which are capable of describing the turbulent cases. 

For the case of confined jets and vortices, two different 
approaches have been used to simplify and solve the equations of motion, 
one valid very close to the initial plane, and one valid some distance 
downstream. The set of solutions obtained is of the same nondimensional 
form.  Using the elementary solutions of this set, analytic expressions 
for the different characteristics involved in the design of jet ejectors 
were calculated.  Also, a process for the estimation of the different 
parameters for the optimum design of a jet pump or thrust augraenter was 
included. 

It was finally indicated that the generalized nondimensional 
analytic expressions, calculated by this study to describe the dif- 
ferent field components of free or confined jet-wakes and vortices, 
are in very good agreement with all the existing experimental results. 
On the basis of this agreement, it is concluded that the linearization 
techniques used herein and the introduction of the "viscosity function" 
may be used to predict all those velocity fields as accurately as with 
any of the other elaborate methods of the past. 

Also, by comparing the conveniently transformed basic equations 
of motion and the final form of the solutions obtained to describe 
laminar and turbulent jet-wakes and vortices in free and confined 
surroundings, the similarity of the mechanisms of the entrainment 
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process of these flow fields proposed by Cornish (reference 68) is 
supported. 

Finally, for vortex motion and confined jets, some critical experi- 
ments are suggested in the body and appendixes of the present study, 
which would be useful in supplying some additional information necessary 
for the calculation of the different induced constants, or for the esti- 
mation of the validity of some of the boundary and physical conditions 
used. 
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Figure 3. Tip Vortex in Ground Proximity. 
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Figure 6.    Cornish's Modified Coles' Wake Law and Present Theory. 
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Figure 7.     Faris'   and Coles'  Wake Law and Modified  Present Theory. 

68 



o 

c 
0) 
m 
(U 
M 

ß 
CD 

(U 

r-l 
CD 
> 

to •u 
ö 
0) 
e 

•H 

0) 

W 

0) 

CO 
U4 

oo 

0) 
M 

3, 

(X¥WTTAO   AJ.f0013A   fWX*   y*HO/9NaiHiaNON 

69 



-1 

»0 0 4 

>   1 * 

- 
'■ 

/// 

j 1 
M 

f 
/ 

/ 

/ 

/ 

r 

N 

^ 

~ 

«0 

I 
i 

! 

U5 
0) 

•H 
U 
O 

C 
M 
0) 
U 

C 
CD 

c 

O 
H 

O 

c o 
to 

•H 
M 
CO 

ON 

70 



m 
■u 
C 

I 
J-i 

w 
to 

XI 

tD 

o 
•H 

Cd 

o 
u 

o 
o 

T-l 

> 

TO 
O 

•H 
■U 
0) 

o 
(1) 

c 
a) 
J-I 
a» 

«4-1 

c 
o 
to 

TA 
U 
CO 

I 

N 
^ < ^ •? ^ *• 

(*y*7f/»J   AU./0073A   WXV   7WO/SN3W/aNON 
i 

00 
•H 

71 



I 
I 

u 
o 
0) 

4J 
c 
w 
OJ 
u 

to 

c 
TO 

(1) 

o 

U 

0} 

^ X 
§ < 
^ u 

n 
M M-i 

1 tn 
4J s <-< «v 3 
tn 

>i 0) 
f Ki 

CO 
■U 
c 
(1) 

^ B 
^ •H 

§ 

X) 
M 

u 
•H 

0) 
M 

ä 
•H 

(Wft/t?) AJ./3073A  IV/XV  -TWO/S/YSH/afVOW 

72 



(****/•») AJLf0O13A   WXV lVNOISN3*ttaN0N 

0) 

TO 
c 
o 

•H 
W 
c 
01 
e 

O 

CO 
■U 
r-l 

3 
M 

c 

i-i 
0) 

w 
to 

■u 
XI 
u 
CD 

JS 
o 

•H 

00 

CN 

0) 

3 
00 

73 



u o 
Q) 

H 
u 
C 
0) 
M 
<ü 
U 

PM 

T) 
C 
TO 
to 

o 

TO 
4J 
c 
0) 
B 

•H 

0) 
a 
x w 

4-1 
•H 
O 
o 
0) 
> 
to 
to 
1) 
u 
X 
w 
M-l 
O 

a o 
to 

•H 
M 
TO 
a 
§ 

f-) 

0) 

00 
•■-I 

(XWyt/Yp AJJ0079A   1WXV 7VHO/SNS*i/aMON 

lu 



r 
^ 

^ 

^ 

^ 

fa 
«^ 

% 

/a 

X 

pj a > 

/* 

/ 
' 

■/ 

/ 

X 

/ 

A 
> 

/ 

▼ 

1 

O 

>» u 
0 
0) 

s 
■u 
Ö 
Q) 
w 
0) 

£ 
T) 
C 
tD 

a; 
'^ T-\ 

> •H 

1 14-1 

0 

>^ 
«H 4J 

g •H 

^ 
O 
O 

*> 

.-1 

> 

s 
0) 

>j Ü 

5 
| 

r-l 
03 

^ g 
O 

•rH 
>l CO 
^ C 

I § Q 

j* O 

S £ 
^ .-1 

| 
TO 
4J c 

^ <U 
e 

•H 
M 
a» 
a 
* w 

u 

•H 

75 



III 
il 
e < 

r 

r 

i 
f 

1 
n/y 

c 

c 

o Jf 

k J 
c 

? 
J 

tf 

•/ 

/ 

/ 

f 

I- i                < 

^ 

>• u 
N o 

(X4 

o 
u 

^ 
N 0) 

5 

J}} 
•u 

•-> 

•s. u >s 0) 
Q r-i 

1 3 

$ § 
•H 

5i 
0) 
C 

1 
^ Q 

♦ «» l 
O 

•4 ^ 
^ 

?| 
TO 

C 
ü T-( 

a Ö 

I 
o 

3 
•r-i J 4J 

»i 

u 
o 

> 

in 

0) 

00 
•H 

N 
^j v* ^ cy O 

N I* 

76 



to 
u 
g 
M 
0) a. x w 

T3 
a 
to 

o 
u 

>s 
u 
•H 
Ü 
O 

■-I 
0) 
> 

M • 
U v£> 
0) v£> 

§ T) 
>,  C 
CO (0 

< u-i 

co co 
co ai 
01 
ü 
* 

Ü 
c 
u 
QJ 

M   0) 
o oä 
0) 

4J CO 
C U 
0) >-l 
CO 3 
<u at 
u v 

CM 06 

M 

ä 
•H 

«I r N ^ «n >• ^ «V 

77 



u 

c 

U 

U 
to 

r-l 
3 
u 
i-i 
•H 
o 

c 
-M 
C 

« 
0) 

A!     • 
CD   00 
s c 

•H 
r-l *J 
TO X 
C    Ü 
0 -H 

•H   r-l 
w j: 
c o 
01 CO 
B 

•H   O 
O   4-1 

O   0) 

CO 

c 
o 

•H 

u >> 

M O 
•H ID 

•H C 
U 0) 
o w 

r-l 4) 
0) M 
> PM 

01 

ä 
•H 

S*i22Bspl\ Ai/jo7wi J33*3a wxv wioisNaHiaNon 

7b 



I 

1 > 
/ 

/ 

/ 

/ 

/ 

/ 

J / 

/ 

/ 

r 

/ 1 

^ 
^ 

>• 
^ a 

o 
r-i 
w 

^ 
«< i 

r-l 
r-l 
HI 

EC 

U-l 
o 
CO 
4J 
^-l 

> 

3 
to 

g pa 

^ ^ R to 
4J 

5 C 
0) 

,* 1 
u 

^ >i (U 

5 
^ 

w u 
>1 3 
5 o 

N ^ •H 

1 4J 
a) 

S | 

s| to    • 

1 < o 
a> g »w ,c 

* 5 o §-• 
C  ■" 
o c 
to    (U 
•H    CO 

>» 
a PW 

o o 
O   *J 

oo 

3 
00 

^ 
X r «^ ^ > ^ ^ 

Jnr*%ii3 JUJJ07MA   109J3<r WXV   lVN0tSN3IWaN0N 

79 



— 

§ 

% 

5* 

<«  o  [   1 

1 
! 

* 

■* 

) 

* 

^ 

<1 

/ / 

f * 

^ 

// 

N 

% /A 
// 

//o 

L 
i 

N 

/■ 

0/ 

/ 

V 

/ 

T 

A 
f T 

\ 
0 

o 
4J 
U 
0) 
•n 
w 
c 
03 

>4-l 

O 

A 
■u 
00 
Ö 
(U 

,-1 

ss 
1-1 1 Ö 
M 

Q) 

\ 
•U 

\ c 
I CO 
*) OJ 
> i-l 

^ •H 
U-t 

1 O 
H 

§ ■u 

^ •H 
O 
O 

>1 T-\ 

^ (U 

^ > 

§ r-l 

(0 (0 s 4J 

b* QJ 
^ 0 $ •H 9 M 

1 0) 
a 
w 

* ^ 
r 5      § 

mZB-if AI/JC7*\ JLouaa wxr imotsNwwaNON 

X) 
a 
0] 

CO 
ü 

•H 
*J 
(U 
M 
O 
0) 

ON 
^-( 
0) 
»4 

■H 

80 

-1 



1^ 

r 
h 

k 
r 
i 
r u 
i 
1 
'i 

o 
4J 1    S^^ 

«•IN 

•""■II 

r  

U 
01 

•r-j 
W 

CO 

O 

»I 

4J 

4J 
a» 

r-l 

M 

// 
// 

// 
// 

m 
(U 

i-i 
•H 

1/ 

1 
7 

o 

*// O 
o 
0) 
> 

/ 

CO 
4J 
c 

} / 

B 
•H 
H 
0) 

/ 

w 

CO 

A 
f* I-I 

CO 
o 

0) 

\ 

»-1 
o 

.U      —1 * / 
j                i 

^ 
o 

!         1 0 <1> 

7 SU/M 39490 l¥tJt¥ 

i     « 

7V/fO/S vrw 

>-i 

S) 
•H 

81 



<u 

A \ 

< < 

<J 
< 

^ x 

I 

82 



1 
PS 

m 

|            O    0<> 

f 
r 

d 

/ 

/ 

^ 

X 
i 

 c^ ̂  

Q 
^ 

§ 

I 

u 
o 

> 

d 

M 
QJ 
iJ 

c 
Oi 
u 
1-1 • 
oa ^ 
•u 0) 
C XI 
OJ i e TO 

■r-l X. 
U CJ 
v 
o. 60 
X Ö 
w •H 

X 
-a •H 
ß a 
CO 

M 
t—i o 
ca ■u 

o 0 
•M u 
4-1 ••-) 
QJ w 
U 
O c 
0) CO 

ö d 
•H 

IW 
o C 

o 
c •H 
o 4J 
w 3 

•H Xi 
u •H 
TO U 
ex ■U 

w 
o •H 

CJ n 

• 
CM 
CNI 

<u 
M 
3 
bO 

•H 
Ü. 

C**/*) AMDOISA   HZ/Xtf 3/1/7 2/3J./V90   •7r/VO/&/)f3H//a/VO/>/ 

83 



>1 
■u 

<J 
o 
.-I 
9) 
> 

c 

u 

Ö 
0) 
u 

•u 
Ö 
0) 
B 

•H 

a 
x 
w 

ß   • 
IU 

-I •-) 
to 
o  <u 

•H    <U 
u  u 
a» fe 
o 

o 

o 

M 
0 

d 
o 
•u 
3 

M  -H 
CO    U 

6   to 
o «w 
U Q 

en 
CM 

n 
3 
00 

ta 

§ I 
sun BJunaj -rvHotsNgHiaNoN 

84 



4 o   | 

/ 

< 
i / 

/ 

J 
/ 

/ 
/ 

/ 

/ 

^ 
— 

W 

0 
< 

< 

V 

i 

i 

0) 

Ö 
0) 
u 

u 
C 

e 
•H 
U 

o. 

w 

c 
TO 

«0 
Ü 
•H 

W 
M 
O 
0) 

Ö 
o 

•H 

3 
XI 
•H 
M 
JJ 
W 

Q 

^ 
4J 
•H 
Ü 
O 

O    0) 
u > 

u 

•H 

s* • • • • • • • 

85 



CO 

C 

u 
O 
O 

.-I 
V 
> 

m 
ö o 

4-1 

O 

CO 
•u 
(1) 

n 
<u 
a. 
X 
w 

Ö 
CO 

CD 
O 

J-i 
O 
a; 

X 

o u 
o a > 

o 
CO   ex 

•i-l -H 
U H 
CO     I 
a- öo 
g c 
5 «H 
o 5 

in 

u 

•H 

86 



8 
• 

V)                   <u 

il 
^ < ^ 

< il 

o 

o 

o 

o 

> 

x                 o 
1     0 

v 
o f/ 
/ 

/" 

-A 
/a 

o 

r? 

So 

* 
s o 

O 

—  

QJ 
4J 

1             > 
•H 

^o* ^o^ 

■ ^ 

"""^""l 

—2-—2. 

i ^ 

t i 
AJ. 

> 

% 

/O 013* 1   -76W OfJ.bUC •>3 

(     ^ 

87 



5 

u 
•H 
O 
0 

.-I 

> 

CO 

C 
o 

•H 

a 
•u 
o 

TO 
•u 
c 

I 
0) 
o-   • 
w (u 

u 
•a n 
ö o 
to > 

i-l XI 
(0   0) 
o  C 
4J  HH 

0) 
M 
o u 

«4-1 

c 
o 

c 
o 

•H 
•U 
3 

(0   >-i 
a, -u 
§(0 

O  Q 

CM 

U 

ä 
•rl 

88 



' 

O  a   4 

■ 

■ 

\ b 

l 
/ 

/ 

J 
V 
/ /   i 1 

/ 

r 

/ J 
/ 

/ A y 
r 

y 
^ 

X S 
if 

1 f 
5        3 \    •> i        \ »        ^J r             « >        \ 

>   \ '     T 

v» 
^ 

\ 

«1 

^ 

5 

% 

«y 

i 
I 

I 
•4 

I 

O 

u 
4J 
Ü 

>■< 

03 

a 

o 
o 
i-i 

> 

< 

00 
(N 

0) 
u 
a 
00 

•H 
PM 

(XWif/yp AJL/OOISA IV/*V iVHQisiiawaHati 

89 



i                               ! 

fsPf 
0   a  0 

1 
* 

^ l 
\ 

1 
«ft 

/ 

] 

7 
/ i "1 

1 
1 A h 

f 

/ A 1 
b 

I. 

\ 

1L 

\     \ 1 N 
• »               1 

J>     » mm*.** 

>        ^ f 1          ^ 
r 

o 

•H 

U 
QJ 

o 
ta 
n 
(0 

u 

Ü 
o 
cu 
> 

CO 

Ö 
o 

•H 
•U 

CO 

CN 

u 

to 

AMOOIWA   •7VNOU.VJ.Oa 

90 



o 

>v 
4J 
•H 
O 
O 

r-l 

> 

u 
•H 
W 
W 

•H 
U 
<U 
u 
u 
u 
TO 

•a 
•H 

•H 

o 
en 

u 
3 
00 

•H 

P^Tf/iy AU/OOISA    IVtXV  lVHOI$N3W/aHON 

91 



i 
! 

en 
0) 

•H 

2 ;' 
4-1 

^ ^ U 

.* 

O 
r-l 

01 
> 

N  ^i r-l 

g CO 

^ c 
o 

N5 
•H 

•U 

Q ä 

4-1 
W 

•H 
U 
OJ 
4-; 

u 
03 
u 

X! 
a 
XI 
0) 

o 

•H 

^t s        ^        ^        «v        ^ 
ÄJ./0073A    IVHOUVjLOa   OUS)*3J.OVa*HD 

N 
I" 

92 



REFERENCES 

1. Schlichting, H., Boundary Layer Theory, Fourth Edition, McGr-'w-Hill 
Book Company Inc., New York, New York, 1960. 

2. Schlichting, H., "Laminare Strahlausbreitung", ZAMM 13 260, 1933. 

3. Gortier, H., "Decay of Swirl in an Axially Symmetrical Jet", 
Publicado en la Revista Mathematica Hispano Americana ,4^ Serie 
Tomo XIV Nums 4y5. 

4. Pai, S., Fluid Dynamics of Jets, D. van Nostrand Company Inc., 
New York, 1954. 

5. Schlichting, H., "Über Das Ebene Windscha Henproblem", Thesis 
Gottingen Ing-Arch 1, 533-571, 1930. 

6. Pai, S., "Viscous Flow Theory", I-Laninar Flow, D. van Nostrand 
Company Inc., New York, 1956. 

7. Newman, B. G., "Flow in a Viscous Trailing Vortex", Aeronautical 
Quarterly, Volumn X, May 1959. 

8. Blasius, H., Grenzschichten in Flüssigkeiten Mit Kleiner Reibung", 
Z. Math, u. Fhys. 56, 1, 1908, Engl. transl. in NACA T.M. No. 
1256. 

9. Taylor, G. I., On the Dissipation of Eddies, No. 598, A.C.A. - R & M, 
1918. 

10. Squire, li. B., The Growth of a Vortex in Turbulent Flow, 16,666, 
Aeronautical Research Council, 1954. 

11. Boussinesq, J., "Essai sur la Theorie des Eaux Courantes", Mem. 
Acad. Science, 23, 1-680, Imprimerie National Paris, 1877, 
pp. 24-46. 

12. Go'rtler, H., "Berechnung von Aufgaben dez frein Turbulenz auf Grund 
eines neuen Nah erungsansat-^es", ZAMM 22, 244-254, 1942. 

13. Prandtl, L., "Über die Ausgebildete Turbulenz", ZAMM 5, 136, 1925. 

14. Prandtl, L., "Bemerkung zur der Theories der freien Turbulenz", 
ZAMM 22, 5, 1942. 

15. Taylor,  G.   I.,   "The Transport of Vorticity and Heat Through Fluids 
in Turbulent Motion",  Proe.  Roy.  Soc.,  London A,  135,  828,  685, 
1932. 

93 



16. Reichardt,  H.,   "Gesetzmassigkei  ten der freien Turbulenz",  VDI- 
Forschungsh 414,  1951. 

17. Mattioli,  G.   D.,  "Theoria Dinamical  dei Regimi Fluidi Turbolenti", 
XV Gedam,   Padova,   1937. 

18. von Karman,   Th., Mechanische Ähnlichkeit und Turbulenz,  TM 611, 
Transl. N.A.C.A,,   1931. 

19. von Karman, Th., "Progress in the Statistical Theory of Turbulence", 
Proc. Nat. Acad. Sei., S30-539, Washington 34, 1948. 

20. Broszko, M. Ann., Acad. Sei. Pol. Sei Techniques, 1945, p. 145, and 
Bull Acad. Polen. Sei.-et LeHers-I, 1951, p. 243. 

21. Squire, W., "Some Aspects of Turbulent Flow", Proc. Sem. Aer. 
Seien.. Volumn I, N.A.L. Bangalore, 1961, p. 179-195. 

22. Townsend, A. A., The Structure of Turbulent Shear Flow, Cambridge 
University Press, Massachusetts, 1936. 

23. Goldstein, S., ed.. Modern Developments in Fluid Dynamics, Oxford 
at the Clarendon Press, England, 1938. 

24. Reichardt,  H., "Über eine Neue Theorie de Freien Turbulenz", ZAMM 
21, 257, 1941. 

25. Mowforth, E., "Details of Measurements in a Turbulent Trailing 
Vortex", Appendix in Reference 7. 

9» 

26. Tollmien,  W.,   "Die von Karmansehe  Ahnliehkeitshypothese   in der 
Turbulenz  -  Theorie und das ebene Windschatten problem",  Ing. 
Arch 4,   1,   1933. 

27. Helmbcld,  H.   B.,Contribution  to Jet  Pump Theory,   Report No.   294, 
University of Wichita,  Kansas,   September  1957. 

28. Helmbold,  H.   B.,  Luessen,   G.,   and Heinrieh,  A.  M.,  An Experimental 
Comparison of Constant-Pressure   and Constant-Diameter Jet  Pumps, 
Report No.   147, University of Wichita, Kansas,  July  1954. 

29. HeImboId,  H.   B.,    Energy  Transfer  by Turbulent Mixing Under a 
Longitudinal Pressure  Gradient ,    E.   S.   182,  University of Wichita, 
Kansas,  August 1955. 

30. Cruse,  E.  R.,  Tontini,  R.,   "Research on Coaxial Jet Mixing", 
Convair/G.   D.   - G.  D./C 62-354A,  November  1962. 

31. Squire,  H.   B.,  and Trouncer,  J.,   "Round Jets  in a General  Stream", 
British A.R.C. R * M 1974,   1944. 

94 



32. Rabenneck,  G. L.,  Shumpert,   P. K.,  and Sut.ton,  J.  F.,  Steady Flow 
Ejector Research Program,  Lockheed Georgia Company, December  1960. 

33. Johnson, J. K.,  Shumpert,  P. K,  and Sutton,  J. F.,  Steady Flow 
Ejector Research Program,  Lockheed Georgia Company,  September 
1961. 

34. Flügel,  G.,  The Design of Jet Pumps, N.A.C.A.   - T.M. No.  982, 
July  1941. 

35. Fox,  N.  L., Analytical Solution for Gross  Thrust Change,  Report No. 
SM-13881,  Douglas  Company,  December  1950. 

36. von Karman,  T.,   "Theoretical Remarks of Thrust Augmentation", 
Reissner Anniv.  Vol., J.   W.  Edwards,  Ann Arbor, Michigan,   1949. 

37. Lockwood, R.  M.,  Investigation of the Process of Energy Transfer 
from an Intermittent Jet  to an Ambient Fluid,  Report No.  ARD-238, 
Hiller Aircraft Company,  June 1959. 

38. Wells, W.  G-,  Theoretical  and Experimental  Investigation of a High 
Performance Jet Pump Utilizing Boundary Layer Control,  Research 
Report No,   30,  Aerophysics Department,  Mississippi State Univer- 
sity,  State College, Mississippi,  June  1960. 

39. Wan,  Chia-an,    A Study of Jet Elector Phenomena,     Report No.   57, 
Aerophysics Department, Mississippi State University,   State 
College, Mississippi, November 1964. 

40. Knox,  R. M.,  A Study  of Optimized Constant  Pressure Jet Pumps, 
Report 5827, Marquardt Company,  December  1960. 

41. Yakovlevskiy,  0.  V.,   The Mixing of Jets  in a Channel with Variable 
Cross-Section.  A.F.S.C.,  FID-TT,  62-1571,  Translated by Foreign 
Technical Division,   1962. 

42. Abramovich,  G. N.,  Applied Gas Dynamics,  Gostekhnizdat,  Moscow, 
1953. 

43. Cars law, H. S., and Jaeger, J. C, Conduction of Heat in Solids. 
Oxford at the Clareston Press, England, 1948. 

44. Pai, S. I., "Axially Symmetrical Jet Mixing of a Compressible 
Fluid", Quarterly of Applied Mathematics, Volume 10, No. 2, 
July 1952, pp. 141-148. 

45. Rosenzweig, M. L., Lewcllen, W. S., and Ross, D. H., Confined 
Vortex Flow with Boundary Layer Interaction, Report No. ATN-64 
(9227) -2, Aerospace Corp., California, 1964. 

95 



46. Lewellen, W.   S.,  aad Grabowsky,  W.  R.,  "Nuclear  Space Power Systems 
Using Magnetohydrodynamics Vortices",  ARS J. ,  May  1962. 

47. Long,  R.   R.,  A Vortex in an Infinite Viscous Fluid,  TR.   11  (ONR)  or 
TR 14,   John Hopkins University, Department of Mechanics, Maryland, 
1961. 

48. Anderson,   0.,  Theoretical  Solutions for  the Secondary Flow on the 
End Wall of a Vortex Tube,   UAC Research Laboratories,  Report 
R-2494-1,  United  Ale  Corporation. 

49. Ross,  D.   H.,  An Experimental  Study of  Secondary Flow  in Jet-Driven 
Vortex Chambers.  Report No.   ATN-64(9227)-l,   Aero and Propolsion 
Research Laboratory,   Aero.   Corporation,  Florida,   January 1964. 

50. Thompson,   J.  F.,   Jr.,  The  Structure of Free  and  Confined Turbulent 
Vortices,  Research Report No.   4^,  Aerophysics Department, 
Mississippi State University,   State College,   Mississippi,  May 
1963. 

51. Faris,   G.   N.,  Some Entrainment Properties of a  Turbulent Axi- 
Symmetric Jet,  Research Report No.   39,  Aerophysics Department, 
Mississippi State University,   State College,  Mississippi,   January 
1963. 

52. Gasparek,   E.   P.,   and Dosanjh,   D.   C.,  Decay of  Viscous Trailing 
Vortex. 

53. Cornish,   J.   J.,   III,     A  Universal Description  of Turbulent:  Boundary 
Layer Profiles With or Without TranspirationT    Research Report 
No.   29,   Aerophysics Department,  Mississippi   State University, 
State  College,  Mississippi,   June 1960. 

54. Coles,   D.,   "The Law of   the Wake  in the Turbulent  Boundary Layer", 
Journal  of Fluid Mechanics,   Volumn 1,   London,   1956,   p.   191. 

55. Forthmann,   E. ,   "Über Turbulente  Strahlausbreitung",   Ing.   Arch  5, 
42  1934,  NACA T.M 789,   1936. 

56. Hislop,   G.   S.,   and Hall,   A.   A.,   "Velocity and Temperature Distri- 
bution  in the Turbulent Wake  Behind  a  Heated  Body  of Revolution", 
Proc.   Cambridge Phil.   Soc.   34,  345,   1938. 

57. Shigemitsu,  Yutaka,   "Statistical  Theory of Turbulence  I.  Hypothesis 
of Vortex Chaos Motion",   Journal of the Physical  Society of Japan, 
Volumn 10,  No.   6,  June  1955,   pp.  472-482. 

58. Forstall,  W.,  and Shapiro,   A.   H.,   "Momentum and Mass Transfer in 
Coaxial Gas Jets",   Journal  of Applied Mechanics.   17, 4,   399,   1950. 

96 



59. Forstall, W.,  Osterle,   J.  F.,  and Weinstein,   A.   S.,   "Momentum 
Diffusion From a Slot Jet into a Moving Secondary",  Journal  of 
Applied Mechanics,   23 9 437,   1956. 

60. Abramovich,   G.   N.,   "Turbulent  Jets  in a  Stream",   Trudy  Soveshch 
po.   Prike.   Gass.   Dinam.   Izd.   AN Kaz.   SSR,   Alma-Ata.,   1956. 

61. Albertson,  M.   L.,  Dai, Y.   B.,   Jensen,   R.   A.,   and Rouse,   H.,   "Diffu- 
sion of  Submerged  Jets",  Proclamation American Society Civil 
Engineers,   74,   1751,   1943. 

62. Tolltnien, W.,  Calculation of Turbulent Expansion Processes,  Trans. 
N.A.C.A.   -  T.M.   1085,   September  1945. 

63. Terazawa,  K.,  On the Decay of Vortical Motion in Viscous Fluid, 
Report No.  4,   Aeronautical Research  Institute,  Tokyo Imp.   Uni- 
versity,   Japan,   1922. 

64. Pierce,  D.,  Photographic Evidence of  the Formation and Growth of 
Vorticity Behind Plates Accelerated From Rest in Still Air, 
R.A.E.  T.N.   Aero 2745, March 1961. 

65. Smith,  M.   R.,   "Personal Communication",   Aerophysics Department, 
Mississippi  State University,   State College, Mississippi,  May 
1965. 

•«        •* 
66. Trupel, T. , "Über die Einwirk ung eines Luftstrahles auf die 

Umgebende Luft", Zeitschrift fur das ge.sammte Turbinenwexy 5-6, 
1915. "  "" '" "~       "     ' '  "~  

67. Cornell, D,,  Smoke Generation for Flow Visualization» Research 
Report No. 54, Aerophysics Department, Mississippi State Univer- 
sity, State College, Mississippi, November 1964. 

68. Cornish, J. J. , III, "Personal Communication", Aerophysics Depart- 
ment, Mississippi State University, State College, Mississippi, 
December 1964. 

97 



DISTRIBUTION 

US Army Materiel Command 5 
US Army Aviation Materiel Command 6 
Chief of R&D,  DA 2 
Director of Defense Research and Engineering 1 
US Army R&D Group (Europe) 2 
US Army Aviation Materiel Laboratories 18 
US Army Engineer R&D Laboratories 2 
US Army Limited War Laboratory 
US Army Human Engineering Laboratories 
US Army Ballistic Research Laboratories 
US Army Research Office-Durham 
Plastics Technical Evaluation Center 
US Army Engineer Waterways Experiment Station 
US Army TeBt and Evaluation Command 
US Army Electronics Command 2 
US Army Combat Developments Command,   Fort Belvoir 2 
US Army Combat Developments Command Experimentation 

Command 3 
US Army War College 1 
US Army Command and General Staff College 1 
US Army Aviation School 1 
US Army Tank-Automotive Center 2 
US Army Armor and Engineer Board 1 
US Army Aviation Test Activity,  Edwards AFB 2 
Air Force Flight Test Center,  Edwards AFB 2 
Air Proving Ground Center,   Eglin AFB 1 
US Army Field Office,   AFSC,   Andrews AFB 1 
Air Force Flight Dynamics Laboratory,  Wright-Patterson AFB 1 
Systems Engineering Group,  Wright-Patterson AFB 3 
Naval Ship Engineering Center 1 
Naval Air Systems Command,  DN 8 
Office of Naval Research 5 
Marine Corps Liaison Officer,  US Army Transportation School 1 
Lewis Research Center,  NASA 1 
Manned Spacecraft Center,  NASA 1 
NASA Scientific and Technical Information Fac'lity 2 
NAFEC Library (FAA) 2 
National Tillage Machinery Laboratory 1 
US Army Aviation Human Research Unit 2 
US Army Board for Aviation Accident Research 1 
Bureau of Safety,  Civil Aeronautics Board 2 
US Naval Aviation Safety Center,  Norfolk 1 
Federal Aviation Agency,  Washington,  D.   C. 1 

98 



Civil Aeromedical Research Institute,  FAA 2 
US Army Medical R&D Command 1 
Defense Documentation Center 20 

99 



APPENDIX  I 

TWO-DIMENSIONAL WAKES AND JETS 

For  the case  of steady two-dimensional motions of  a  jet  or wake, 
the Navier-Stokes   equations of motion may be  simplified by using 
boundary layer  approximations  to  give   (in Cartesian coordinates) 

Z 
TT ^ _LTT ^ -     I   <5P   .   o cTa 

(139) 

Also,  the continuity is 

cTCX     _L   h\5     _    Q 

^z       ö^ (uo) 

where 2: denotes distance measured along  the direction of motion and 
'X,    the distance  from the axis of  symmetry   ^  . 

For  the case  of a co-flowing surrounding  fluid,   the axial  velocity 
"UL   may be  equated   to  the  algebraic  sum of  the  free-stream velocity   UL0 

and  the defect  velocity   VX• 

IX =   UL0 + o< U^ (141) 

where oC  has  the  same value as  for  axially  symmetric  flow. 

Then,   substituting  the velocity  in   equation   (141)   into  equation 
(139)  and using an order-of-magnitude  evaluation, we have 

ao^ "   ^-h^- (142) 

The  solution of  the  above  equation may  describe  the  laminar velocity 
profile of a jet or wake  at sufficient distance downstream of  some 
initial plane,   and was  first given in that  form  (reference  1)   to describe 
the wake of a  flat-plate at zero incidence. 

But,  also,   if we replace the kinematic viscosity by the virtual 
kinematic viscosity  (references  3,  4,   and  5),   or if some other "viscosity 
function"  is used  to relate stress  to rate of  strain,   equation   (94),   the 
velocity profile of a turbulent flow may be obtained. 

As for the axisymmetric case,   the above partial differential 
equation is transformed   to an ordinary differential equation by intro- 
dv cing the  transformation 
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uu   ~ ^a^ßke)J (143) 

where e -   I/E6 

This  gives 

-// 

e^"+ e ^'pMäH 6   /t; 
)SZ ^V H+il a(a-l) 

L   r* ^ev J = 0. 
(144) 

If it is now assumed that this equation represents a self-preserving 
velocity field, then 

B = Zw Z ro 
2     :£V Xj 

where 
\e i = -e-£. 

For a  laminar case where kinematic viscosity is constant,  as previously 
explained. 

"J   = >2    and    6 s " 1 j 

but,   in general,   for a turbulent flow,  a relation of  equation (84) may 
be used. 

Then,  by applying a  tranformation 

h =  x"^ * Cx)J 
the result is 

*\+^[V + x]-^l^+fl=0' (145) 

The corresponding equation in a Laplacian coordinate  system is 

^(3+1)3 + * [s^l 

because      $> (o) ^  O. 

if   + if  + e -M= -V^o), 
(146) 
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The solution cf equation (146) is 

(147) 

where,  in view of the boundary conditions,   the constant of integration 
is taken as zero. 

The boundary conditions in the  t &  coordinates  system are given 
by equations   (20),   (2]),  and  (22). 

Also,   the axial momentum integral has  to be constant  as expressed 

M =  S j  a.0(ao + oCLt)d^J 
or 

>J o 

The velocity  function that must satisfy the above conditions is  given 
by c 

Using elementary processes,  it may be deduced that for the  laminar 
case there is  one  solution that  ratisfies  all the above conditions: 

(148) 

^+\a 
= 

i 

z ■ 
Any other solution of the form 

«+^ = — i-i 
where flO =  1,   2,   3,  

; 

satisfies  the boundary conditions  and produces a  zero momentum integral 
as can be expected  in view of the mathematical form of equation  (142). 
The elementary solution   flO  = 0 as  given by Reference  1  is 

a      A o ^      ^    - (149) 
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(149-a) 

(149-b) 

For    o^   =  1. 3 

u. = A, 2     (\-Zx)e' , 
For nr\ = 2, 5 

Again,   any  linear combination of the elementary   solution with any of 
equation  (148)  for which   CC\  =  1,   2,    ,   satisfies   the equation of 
motion (142),   the boundary conditions,  and the momentum considerations. 
Ao   can be calculated from momentum considerations and    A-^,    A^,   ... 
may be  found experimentally.    Finally,  all other  solutions of equation 
(142)  £or 

or  for nonintegral rf\   do not satisfy the constancy of  the momentum. 

It may be noted here   that  the  solution 

ao+o^u.^AoZ^e (150) 

is  also  a  solution that  satisfies  all boundary  conditions and the 
constancy of the momentum. 

Thus,   the final  form of the analytic expression of the velocity 
profiles may be selected only on the. basis  of experimental results. 

Turbulent Flow 

In Reference  1,   the   process  of extending  the  solution of  the 
laminar velocity profile  of the wake of a flat-plate  at  zero incidence 
to  describe  the  turbulent  motion of a wake  is  discussed.    Prandtl's 
virtual kinematic viscosity  is used, which for  this case  is 

E\/    =     KiXirmAX^      =  a constant, 

and  it  is  indicated that   the velocity profile,  equation (149),   is 
expected to describe  turbulent  flow far from the  origin. 

Also,  using "mixing  length hypothesis",   Schlichting  (reference  5) 
has   presented a solution  in his  thesis  for  the  case of a two-dimensional 
wake  behind a single body,  where  the velocity  profile  is given by 

a 
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Here, Q is the width of the wake 

and C and Ci are constants that can be calculated from the drag of 
a cylinder. 

b = 

Reichardt  (reference 16),   using his  "momentum transfer  length" 
hypothesis,  has presented a  solution similar to the  integral   form of 
the one given by equation  (66)   for an axially symmetric  jet. 

Finally,  Tollmein  (reference  26),   using von Karman's hypothesis 
(reference  18),   and Gortler   (reference  12),  using Prandtl's  "mixing 
length  theory", have preseated  solutions in series  form for  the same 
problem. 

As has already been indicated under an assumption of "viscosity 
function"  and  an accurate expression of characteristic width of the 
layer   b   with axial distance,   it may be expected  that  the  solution of 
the  form of  equation  (147) may be  extended  to describe  the   turbulent 
velocity profile  In dimensional or nondimensional   form. 

More  specifically,   the condition 

£a 8 6 + 
due to the constancy of the momentum, may be rewritten as 

€    .    a 1 

Then, substituting into equation (147), we have 

^ = (s+oj r to___s'* 
S1"^       J      #     (S+l)1'^ 

(152) 

Now, if   9 ~ /Zj  as for the Reichardt solution where the nondimensional 
parameter is of the form X. s= Cz/£) ** ,  an infinite number of solutions 
of exponential or polynomial form can be obtained.  The elementary 
solution satisfying all conditions of the problem, with 

7J = £ = ^- I 
in the (t^Z)   coordinate system, is 
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^    (a-;   -Ci 

(153) 

/V  and Cj^ are constants that can be defined using given conditions 
of the problem. 

Also, if the noadimensional parameter is of the form 

as for laminar flow or for turbulence (reference 5), then the elementary 
solution may be identical to equation (149). 

Using relations corresponding to equations for two-dimensional 
flow, we may transform the laminar velocity profile, equation (149), 
to describe turbulent motion. Then, the relation established is in 
nondimensional form: ^ 

a OTIAX 
Finally, the same nondimensional turbulent velocity profiles 

have been obtained using equation (147) for the values £ = ^ =/S 
and CL-V" ^ = — 1 > for which 

or      —    feJ 

^rmAX U^mAx (154) 

This  corresponds  to  the  derivative of  the elementary solution obtained 
by Reichardt  (reference  16) . 
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APPENDIX II 

AXIALLY SYMMETRIC JET UNDER PRESSURE GRADIENT 

For the case of a steady, axially symmetric jet, the Navier-Stokes 
equations of motion using Prandtl's boundary layer approximotion may be 
simplified to give equations (1), (2), and (3), and the continuity 
equation is given by equation (4). 

In the previous chapters, it has been possible to obtain solutions 
by various techniques that, under the concept of "virtual origin" or 
"viscosity function", may approximate with sufficient accuracy the 
existing experimental results. However, the solutions that have been 
obtained are valid for isobaric motion for almost every case. 

Some possible techniques that can be used to simplify equation 
(1) in an integrable form will now be discussed.  It will also be 
shown,by assuming different forms of the "viscosity funtion" or pres- 
sure gradient along the Z axis, how the modified form of the final 
differential equation of motion can be affected. 

However, the final solution is highly affected by the existing 
different boundary and physical conditions of the problem; in this 
respect, reference is made to the work of Tollmein (reference 26), 
Gortler (reference 12), and others who, by using different "free turbu- 
lence theories", have obtained equations that give very similar results 
under the proper conditions. 

The complete solution of the problem of an axisymmetric jet under 
a pressure gradient will be given in a separate paper, and will include 
the especially interesting case vf  confined motion (jet ejectors). 

The motion that will be considered in this appendix is axisymmetric, 
which the rotational velocity is zero.  This condition reduces the 
number of previously required equations, (1), (2), (3), and (4). to only 
two equations, (1) and (4). 

As has already been indicated in Chapter Three, this system of two 
equations contains three unknown functions and can be solved only if 
some additional relation exists between them. 

In order to transform the partial differential equation to an 
ordinary one, the same process as for equation (1-b) may be used. Thus, 
for the present problem, a stream function similar to the one used by 
Schlichting (reference 2) for the case of a circular isobaric jet is 
assumed. 
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Then,   letting 

^ = Z^V-Ce) (155) 

where _ &      ^iC 

the continuity equation  (4)  gives 

a=    i   ^ 
^  a^ (156) 

and 

(157) 

In terms of  (1 

^   =     ^ ^j   Ö  F '^ (158) 
and 

Or 

u =-jt; 2"7oLF(e)-^eFCe))     (159) 

Substituting into equation (1), we have, after some simplifications, 

$|_6G F +geF Öß-4) + F r«-46+4)1 + 

6F//F(a6)-e(:F/fCSY+ae) + 

(160) 

where T \1 

§   =    20=1 
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The  "viscosity function"  is  given by  equation  (94).    To  further 
simplify the above equation,   some  form for the viscosity and pressure 
function must be assumed. 

In the  following cases,   some possible processes  are indicated  that 
can be used  to lead to a  simple modified equation of motion. 

Case 1: 

First assume that CL=  1.     This  implies  that    $ =  V >  anci'>   from 
dimensional considerations, we have   V*0  constant.     Then,   if  ^= — ^f =  1, 
the equation of motion takes  the  form 

v[eV/-F"e+F/U OF'V + 
GCF'j   -F  F -     %    ^i  ,  (161) 

or,  by proper  'rans format ion and  rearrangement,   gi^s 

5     äz ■     <162) 
The right  side of  tljls  equation  is  similar  to  the  one  given by 
Schlichting   (reference 2),   and may be integrated  twice  to give 

T " J^-!-"^ ctede .     (163) 
This equation is of Reccati's form, and by transforming 

then 

^ r'    o^r    ,   i rJlrz-^S%*? Z? ZQ  $'Ze£ + Ze  £ =\QYf-fjrdede. 

= 0. 
(165) 

The final  form of the equation  (165) depends on the pressure distribution 
along  the  longitudinal axis.     In general,   the pressure may be regarded 
as  independent of the radial distance. 
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This assumption, along with dimensional considerations, leads to 
the pressure function 

A P ro 
=£* 

that will transform the above equation to a Bessel or Laguerre type  of 
equation. 

Case 2: 

Alternatively, it is observed that for %    =2, equation (160) may 
be simplified to give 

4>[4eÄF//V4GF"]+GF/'F£a.- 
3 ^Z 

e(F')2(^a)=^5r{r-4-||--(1 2^3        S   ££     (166) 

For further simplification, assume that u) = constant, a condition 
that implies: 

\)rj C     0.= ^ 

^ ^ g     0.--Z 

Then, for a = — "g" , we have 

2$[eF + F ]+f FCL= ^-llt (167) 

Under the above assumption, the axial velocity function takes the form 

Again, the final equation of motion will be highly affected by 
the decision made relative to the pressure functions. If 

^P    ,    1 
ä^ ^V    J (168) 

and  if the motion is of  self-preserving or universal character,   then 

OP    ,     i 
32 5-cu 
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Finally,  if an axial velocity function is  desired, 

that corresponds  to a radial velocity 

then the  differential equation of motion may  take   the  form 

2$rGF"+F"]+*(F'f=   4^'-f ^r- XL J / 4- gd^ (169) 

For different values of   the constants    CU,    O J   Y  >  and on  the 
basis  of  dimensionless  considerations,   different  differential equations 
of motion are obtained. 

An indication,  relative   to some algebraic relation existing 
between the  induced constants,  may be obtained by  the use of  the momen- 
tum and continuity  integrals. 

However, at  the present  stage of this research,  no definite 
decislca will be made  for the  value of  the  induced constants  or  the 
pre.«  w re  distribution along  the  longitudinal  axis.     Instead,   it will 
only   )e  noted that,  in an "arbitrary pressure gradient mixing tube", 
the pressure distribution along the axis of  symmetry may be adjusted 
using boundary  layer  suction or blowing techniques  and a proper mixing 
tube  profile. 

The  solutions of equation (169),  as  they may be adjusted to  satis- 
fy the  physical  and boundary conditions  of  the  problem (under a given 
pressure  function - and the  integro-differential  relations  - equation 
(130))   of maximum augmentation factor,  will be  presented in a separate 
paper. 

It  is  believed that  the   solution of the outlined problem,  when 
necessary experimental  information is availalbe,  will prove  to be  a 
very useful  tool  for  the  design of a high-thrust augmentation factor 
ejector or high-performance  jet ejector  pump. 
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