
AFCRL- ^6-781

O

CO

A MATCHING PROCEDURE FOR W-ORDER LOGIC

by

William Eben Gould

APPLIED LOGIC CORPORATION
ONE PALMER SQUARE

PRINCETON, NEW JERSEY

Contract No. AF 19(628)-3250

Project No 8672

Scientific Report No. 4

October 15, 1966

Distribution of this document is unlimited

This research was sponsored by the Advanced Research
Projects Agency under ARPA Order-\No*—»700—.

Prepared
for

(J
r? LLL

n { FEB 1 0 1967

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

M| m n.

AFCRL- 66-781

A MATCHING PROCEDURE FOR W-ORDF.R LOGIC

by

William Eben Gould

APPLIED LOGIC CORPORATION
ONE PALMER SQUARE

PRINCETON, NEW JERSEY

Contract No. AF 19(62e)-3250

Project No 8672

Scientific Report No. 4

October 15, 1966

Distribution of this document is unlimited

This research was sponsored by the Advanced Research
Projects Agency under ARPA Order No. 700

Prepared
for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

PREFACE

This paper was presented as a doctoral dissertatior. to Princeton

University, under the supervision of Dr. James R. Guard of Princeton

University and Applied Logic Corporation. Portions of the work were

financed by a Science Facalty Fellowship from the National Science

Foundation while the author was on leave from "Washington College.

The proble-n investigated is pertinent to the project on "Semi-Automated

Mathematics" being carried out by Applied Logic, originally for the Air

Force, Cambridge Research Laboratories and currently for the Advanced

Research Projects Agency. More specifically, the problem is proposed

in the report listed as [3] in the bibliography.

*-

TABLE OF CONTENTS

ABSTRACT

Chapter 1. CO-ORDER LOGIC

Section 1. Formation Rules

Section ?,. Conversion Rules

Section 3. Matching

Chapter 2. THE MATCHING PROCEDURE

Section 1. Preliminaries

Atomic WFTs

WFTs which begin with a Quantifier

Functional Constants with Arguments

Distinct Functional Variables with Arguments

The Same Functional Variable with Different

Section 2.

Section 3.

Section 4.

Section 5.

Section 6.
Arguments

Section 7. Another use of Indirect Elimination

Chapter 3. CONDITIONS FOR THE MMS TO BE INFINITE

Section 1. Necessary Conditions

Section 2. Sufficient Conditions

Chapter 4. FINDING A SINGLE COMMON INSTANCE

Section 1. A Method which will not Work

Section 2. A Suv -essful Method

BIBLIOGRAPHY

DOCUMENT CONTROL DATA - R&D

Page

1

1

3

4

6

6

9

10

11

14

19

20

22

22

23

26

26

27

29

30

ABSTRACT

Formation rules are presented for an CÜ-order logic with A

operator in which each term has a well defined type. Transformation

rules are given defining A -conversion, special conversion, substitu-

tion, and alphabetic change of bound variables. The notion of one

term being an "instance" of another is then defined using these trans-

formation rules. The main problem of the paper is to develop a

"matching procedure" for pairs of terms, so that every comm:n in-

stance of the two given terms is an instance of some term produced

by the matching procedure. This is accomplished by analysing the

terms according to the formation rules, matching the outermost parts

first, then proceeding inductively inward. Examples are given to show

that an infinite set of terms may be needed for this purpose. A pro-

cedure is developed for producing at least one common instance, if

one exists.

CHAPTER 1

CO -ORDER LOGIC

Section 1. Formation Rules

The basic system with which we shall be dealing is CO-order logic, where-

in each term has a well-defined type. The formation rules for types are

quite simple. We shall have (at least) two basic types, P and Q, which

are intended to be the types of propositions and individuals, respectively. If

f is a function of n variables with types T,, ... T respectively, and
1 n

with values of type T , » then f ^as tyP6 (T, t ... T .,)• More formally,

our rules will be:

(1) P is a type.

(2) Q is a type.

(3) if T., . . . T , are types (
i n+l

then (T,, ... T ,) is a type
1 n+l

The formal system shall contain the following atomic symbols:

(1) infinitely many variables and constants of every type;

(2) punctuation symbols -). { .] t [, and , ;

(3) quantifiers - A, E, and X (Church's \ operator, see TlJ).

Among the constants of type (P, P, P) we may have the usual propositional

connectives, D ,S/ , &, and ^ , which may be employed in the usual fashion

(between arguments), and among the constants of type (P, P) we may have ^ ,

negation.

We shall present rules for the construction of well forhied terms (WFTs),

each of which has a type. A WFT of type P will also be called "a well-

formed formula (WFF)".

-!•

(1) Any constant or variable of type T is a WFT of type T .

(2) If W.,..W are WFTs of types T,...T respectivsly
In in

and V is a WFT of type (T1,...T)s then CVj (W,,. . . W)
i n+A 1 n

is a WFT of type T .,' wl
win be called "the i-th argument

of V".

(3) If W is a WFF and x is a variable, then (Ax)(W) and (Ex)(W)

are WFFs.

(4) If x , ...x are variables of types T,, . . . T respectively and
In In

W is a WFT of type T ^, then (Xx,,...x)(W) is a WFT n+l 1 n
of type (T,.... Tn+l) .

We shall adopt the following conventions on metavariables:

b, c, d, e represent types;

f, g, ... z represent (system) variables, with the informal agreement

f, g, and h will be preferred when the functional nature of the

variable is to be stressed;

B, C, D, F,. . . N represent constants (A and E being reserved for

quantifiers);

P, Q, R, ... Z represent WFTs.

Any metavariable may occur with or without subscripts or ! , and any

variable occurring as a subscript is a numerical variable. Variables repre-

senting terms may occur with component well formed parts (WFPs) displayed

in parentheses, with substitution indicated as usual by replacement of displayed

symbols. Note that P(x,,. . . v) is the same WFT as P, the notation
1 n

simply calling attention to the variables x , ...x which may occur inside P.

f p] (x , .. . x), however, represents the result of applying the function P

to the arguments x., ... x Parentheses or brackets may be omitted when
i n

there is no possibility of confusion.

Whenever an algorithm calls for the introduction of a new variable, we

assume it to be the first unused variable of the proper type in alphabetic

order.

Section 2. Conversion Rules

We need not be concerned with rules of inference in general, but there

are four conversion rules which we must define.

Alphabetic change of bound variable: If y does not occur in P , then

from {Ax)P we may get (AyjP1 , where P1 is the result of replacing every

free occurrence of x in P by y . The analogous rules apply to (Ex)P

and (Ax., ... x)P .
i n

Substitution: If R and T are WFTs and x is a variable of the

same type as T , then we may replace every free occurrence of x in R

by T , provided no free variable of T is captured by ?, quantifier of R .

The operation of replacing x by T will be written "x -> T" . The usual

provision can be made for simultaneous substitution.

A conversion: From C(Xxi' ••• x)RH (T., ... T), we may get R1

where R1 is derived from R by x, —w T, .. . x ~> T , unless some free

variable of T, would be captured by this substitution. In that case, we first

apply alphabetic change of bound variable to the appropriate well formed part

of R . Note that x and T must have the same type in order for the

original expression to be well formed.

Special conversion: From (Ax,, ... x)(CR3 (x , ... x)) , we may
1 n 1 n

get simply R , and vice versa, provided no x. occurs free in R .

If a WFT , B , is derivable from a WFT , C , by successive applica-

tions of substitution to all of C and of alphabetic change of bound variable,

A conversion, and special conversion to WFPs of C , then B will be

called "an instance of C". If B is an instance of D and. also an instance of C ,

then B will be called "a common instance of D. and C", and if D and C have

any common instance, they will be said to "match".

Section 3. Matching

Our primary concern in this paper will be to find a method of generating

common instances for pairs of WFTs. There are several reasons why this

may be important. Suppose we ,vish to draw a conclusion from premises R

and S DT . Suppose further that S' is a common instance of R and S ,

and that T1 is a corresponding instance of T (results from applying the

same substitutions to T as were applied to S in deriving S1). Since

any instance of a WFF is a logical consequence of that WFF , we may

conclude T' . This sort of procedure, called matching, is one of the basic

techniques in the semi-automated mathematics of [2], [3l, and t 'O •

Other possible applications might involve substitutivity of equality. Sup-

pose we have two assertations, R - T and W , and some WFP, R1 , of W

matches R . We may then apply the matching substitutions to W and re-

place the resulting instance of R by the corresponding instance of T .

It has been shown in C 3] that in first order logic any two formulas P

and Q A\hich match have a general matching formula, R, with the properties:

(1) R is a ccmrnon instance of P and Q

(2) every common instance of P and Q is an instance of R .

Thus, in an obvious sense, R is the most general common instance of P

and Q .

An analogous concept for higher order logic is that of a general matching

set (GMS). If P and Q match, then a set S of WFTs is said to be a

GMS for P and Q if:

(1) Every WFT in S is a common instance of P and Q .

(2) Every common instance of P and Q is an instance of some

WFT in S .

(3) No WFT in S is an instance of any other WFT in S .

Unfortunately, it is not true that every pair of WFTs which match

have a GMS . Therefore, we shall introduce the concept of a major

matching set (MMS) for P and Q , which satisfies conditions (1) ard (2)

above, but not necessarily (3). Obviously (except to intuitionists), every

pair of matching WFTs does have a MMS ; namely, the set of all common

instances. It is also obvious that any pair of WFTs which have a finite

MMS have a GMS . Simply run through the MMS in any order, discard-

ing any WFTs which are instances of other WFTs in the set.

However, it does not follow that any infinite MMS can be reduced to a

GMS . Indeed, we shall exhibit several pairs of WFTs which have infinite

MMSs and no GMSs at all, finite or infinite.

■

:

I

I

■

•5-

CHAPTER 2

THE MATCHING PROCEDURE

Section 1. Pielimiaaries

Our objective in this chapter will be to develop an algorithm, called the

matching procedure, which will produce a MMS for any givan pair of WFTs.

The MMS produced may be infinite, or it may be empty, in which case the

WFTs do not match. Chapter 3 will attack (with partial success) the prob-

lem of predicting when an infinite MMS is necessary. Chapter 4 will handle

the problem of discovering, in finitely many steps, whether the MMS is

empty or not.

The matching procedure will be described inductively, according to the

formation rules on page 2. Note, however, that in matching two WFTs we

rr ^y need to know more than just the MMSs for their component parts. We

may need the substitutions which lead to those MM5s. Two essentially dif-

i'erent substitutions may lead to the same matching WFT , but if the variables

replaced occur elsewhere in our overall WFTs , the distinction between these

substitutions must be maintained (see example 1). Naturally any substitu-

tions called for must be legitimate in the larger context. For exftrnple, B(x)

and B(y) can be matched by x-y y , but (Ey)B(x) and (Ey)B(y) do not match.

Throughout our matching procedure any variable which is replaced in one

WFT must be replaced in the same fashion in the other WFT , This is to

prevent undoing the matching work which has already been carried out. Since

no such restriction is present in the definition of ''common instance", we shall

start the matching procedure by replacing each free variable of our first WFT

which also occurs in our second WFT by an unused variable of the

6-

proper type. Since this substitution is reversible, we have not changed^he

set of all instances of the WFT . For some applications it may be de-

sirable to suppress this operation and insist on having the same variable

occur free in both WFTs .

In order to keep our WFTs in as standard a form as possible, we shall

employ A.conversion whenever it can be applied. Also, we shall employ

special conversion whenever it shortens the WFT ,

The following techniques will be useful.

Direct elimination: Suppose S is a WFP of T and S occurs in the i-th

argument of a n-place variable f . Ma^e the substitution f "^C \u , ... u)
1 n

g(u , .. . u. u , ... u) . The . e suiting WFT will closely resemble T
1 t-ij i +1 n

except for the absence of an occurrence of S (and of any other WFT which

occurred elsewhere as the i-th argument of f). This procedure is said to

"(directly) eliminate S from T ".

There is also an indirect method of eliminating S from T , which causes

more drastic changes in T . It will be discussed at the end of the chapter.

Direcc reduction: Suppose P is f{W., ... W) and P has the same type
1 n

as W. . The substitution f-t-(Au., ... u)u. is said to "(directly)reduce
i * 1 n i

P to Wj ". Not only will P be replaced by W^ as a result uf this substitu-

tion, but any other occurrence of f with arguments will be replaced by its

i-th argument.

Indirect reduction: Suppose P is f(W , .. . W), P and W. have type b,
in i

. has type (c c ,b, c _ ... c »
j 1 p ^3+2 m,

and W. has type (c c , b, c ... c » b) . Suppose further that the iden-
1 p p+Z

tity function (Xu,.» ... u)u '. matches (hence is an instance of) W. . Then
;1 m p+1 j

the substitutions .f-v{ Xu,.... u)u.(f (u . .. u), ... f (u,, . . . u),
1 njll n pl n

ui»f ,*(ui' . . • u), ... f (u , . . . u)) and W.—>-(Xu,, . .. u)u , are said
* p+6 1 n ml n J*l m p+1

to "(indirectly) reduce P to W. ". P will be replaced by W. as a result

of these substitutions, Hit occurrences of f with other arguments may re-

tain vestiges of those arguments.

Indeed, if some other argument of f , W , also matches an iden ity

function of the proper type, Wj can be buried deeper in the expression which

replaces f . Assume for simplicity that W. and W (j^k) have the type of
1 K,

singulary fum-f-ions. Then the substitute is f-HAu * ... u)u (u.(u))),

W.-HXUW, and W^-(Xv)v will reduce f(vV W) to W. . Obviously
k j In1

it may be possible to "bury" W. even deeper than this, but this burying'

process is limited by n . Because of type considerations, no occurrence of

a u may be utilized wit' in the scope of another occurrence of u . In
m m

such a case, we could replace the intervening functions by identity functions,

leaving u (or W) as an argument of itself, which is impossible, m m

See Example I for ein example of direct and indirect reduction.

The purpose of reduction is to transform P into some WFP, Q, of P,

without introducing Q or any part of Q via a substitution. This will be

particularly useful if Q contains a variable which is bound by some quanti-

fier whose scope includes all of P .

We shall now proceed by cases, according to the forms of the WFTs to

be matched. Every WFT either:

(1) is a single variable or constant;

(2) begins with a quantifier. A, E, or X I or

(3) begins with a functional variable or constant followed by trguments.

Since the formation and transformation rules are iat^Hcal for the quantifiers

A and E , we may safely ignore A and treat only E . Note that in the

WFT CP3 (T , ... T), P cannot begin with E . Furthermore, we may

assume P does not begin with \ , since we could then apply X conversion.

-8-

In general, we may safely treat P as if it were atomic. That is, we

shall consider f(T , ... Tj but not [[gCl^, . . . T.)] .. .] CT, ... T^).

The general case will always follow in the rame manner as the specia." case.

Note that these two WFTs are instances of each other, using the substitutions:

f-f (Xuj. ... un){ [C glUj, ...u,)! ...] (u., ...un))

g^(Xu , ...Uj) ... (Xu, ... ^(Uj, ... un).

Likewise we shall, with one exception, discuss Fil^, ... T^ but not CC G

(T T) 1 ... 1 (T , . . . T) . In Effect, we shall treat all the T's x I i J j n
in the last WFT as arguments of G .

Whenever we assert that some substitution f->*T is to be made, it is on

the condition that f and T have the same type.

Section 2. Atomic WFTs

First, let us match a single constant, B, to a WFT, P . Clearly, in or-

der to have a match, P must be:

(1) B,

(2) x, or

(3. i{T., ... T) . 1 n

In case (2), substitute x-^-B. In case (3), either substitute f->-(Xu
1»--«

u)B , or reduce P to some WFP of the form (1), (2), or (3).
n

Example 1. Match B to f{x,y), where B and y have type b, x has

type (b,b), and f has type ((b, b),b, b) . There are three ways to perform the

match.

(1) f-XXu,v)B

(2) f-XXu, v)v, y-y B; using direct reduction

(3) f-v()^u, v)u(v), x->(Xw)w, y-*.B; using indirect ^eduction.

-9-

The WFT produced is the same, B, in each case. However, we would need

all three substitutions if the given WFTs were imbedded in, say, C(f, b) and

C(f, f(x, y)), since none of the three WFTs which replace f is an instance of

any of the others.

Next, let us match a single free variable, x, to a WFT, P. If x does

not occur in P , simply substitute x-VP • There is nothing to be gained

by transforming P into x, as if x were constant. Any such transforma-

tion can still be applied after the WFTs have been matched by x->-P , giving

exactly the same result. See example 3. However, transfoTning P into x

and then substituting x-f-P may not give the same result as simply substi-

tuting x-V-P. If x does occur in P , we must either eliminate it and

proceed as above, or reduce P to x . The direct elimination of x is de-

scribed above, the indirect elimination is postponed until the last section of

this chapter.

If x is a bound variable which must be matched to some WFT , Q ,

then we may neither substitute for x , nor introduce x via substitution.

Consequently we must either eliminate x altogether or else reduce Q ,

directly or indirectly, to some x which is already a WFP of Q . Similar

remarks apply to the matching of any bound variable with arguments, say

x(S,, . . . S), to some WFT, Q . (See section 4.)
1 n

Section 3. WFTs which begin with a Quantifier

To match (^x)P(x) and (Ey)Q{y) , we first apply alphabetic change of

bound variable to get (E2)P(z) and (Ez)Q(z) . Then match P and Q (re-

membering, of course, that no substitution is allowed for z). The only

other WFTs which can match (Ex)P are y and f(T1, ... T). The former
1 n

has been covered above and the latter will be covered in Section 4.

-10-

a« -"3*—

In similar fashion, we start the match of (Xx,* . . . x)P to 1 n

(X y # • • • y)Q hy applying alphabetic change of bound variable. In addition,

we can match (Xx,, .. . x)P to R by applying special conversion to R to
1 n

Jjet (Xx.., ... x)(CR3{x,, ... x)), provided R is of the proper type. (If
1 n 1 n

X: occurs in R we change to some new variable Z: in both WFTs). Then

we must match P and CR3(x,, ... x). Also, we may match (Ax., ... x)P In in

to x as above and to f(T,, ... T) as in Section 4.
1 m

Section 4. Functional Constants with Arguments

Next let us match B (P P) to B(Q Q) . To do so we first
1 n 1 n

match P and Q , making the same substitutions in the remaining arguments.

Then match the new second arguments, P ' and Q ' , and so forth. For ease

of application, it may be preferable in some examples to match the arguments

in a different order.

Example 2. Match K(x, B(x)) and D(C(y, D), B(C(E, z,)) . First match x

to C(y, D) , This can only be done by x->-C(y, D) . Next we must match

B(C(y,D)) to B(C{E,z)). This requires y-y E and z-^-D. The only common

instance then is K(C(ES D), B(C(E, D))) .

Obviously B(P,, ... P) will not match C(Q,, ... Q) . In 1 m

Next, let us consider f(T,, ... T) and C(S., . . . S) . The general pro-
i n 1 m

cedure is rather complicated, so we will start with an example.

Example 3. Match P , which is f(x, B) , to Q , which is C(y), where x, y,

C(y), and B all have the betme tv^e. There are two separate approaches.

First we try to reduce P to soi FP which matches Q . This can only

11.

be done by f-HAu, v)u • To complete the match we must substitute x->-C(y) .

The other approach in eff-^t replaces f by C composed with some arbi-

trary new function. Specifically, substitute f->-(X u, v/Ctg(u, v)) . P is thus

replaced by C{g(x, B)) , and we must match g(x, B) to y . This can be

done by any of the following:

(1) y>g(x,B)

(2) g-MXu, v)y

P) 5-^{Xu»v)u: y->x (or x-yy)

(4) g-f(Xu.v)v; y-^B

Substitutions (2), (3), and (4) may all be discarded as special cases of (1).

(Follow (1) by g-ytA u, v)y,g-^{Xu, v)uf or g-HXu,v)v respectively.) To

summarize, we have two ways of matching P and Q :

(1) f^(Xu.v)u; x-yC{y); P.Q>C(y)

(2) f-HXu,vK(g(u.v)); y^g[x,B); P, Q->C(g(x, B))

Here (1) and (2) are independent, since neither (XuJv)u nor (Xu* v)Ctg(u, v))

is an instance of the other.

Now let us return to the general case of matching P , which is f(T

T)»to Q , which is 0(5, , . . . S) . It is clear that either C must be intro- n 1 m
duced via substitution for f , or else it must be introduced into some T or

i
found to be already there. (If instead of a constant, C , we whould have a

bound variable, x , then only the last of these is possible.) The most gen-

eral possible substitution in the former case is f-^(Xu , ... u)C(f (u , ...u),
I nil n

... f (u , . . . u)) . In this way f(T , ... T) is replaced by C composed

with m functions of T,, . . . T We then have to match in succession
1 n

MT. . . . T) and S. , for i = 1. 2, . . . m .
* i r. i

In the latter case, P must have the same type as T. and T. must
7 r i i

match some initial segment of Q (with brackets removed, unless the initial

segment is all of Q). We shall now resort to a (partial) analysis of the

-12-

hierarchy of the "arguments" of C . Suppose Q is CC{S , ... S)2

(S , ... S) and T: matches C(S S). Then we must substitute
p+l, m i 1 p

f->(Xu u)(ui(f (u., ... u), ... f (u , ...u))) . P is thus re-
I n i p+i -1 n mi n

placed by T (f (T T), . . . f (T., ... T)) . To complete the match r 'ip+11 ^n ml n
we must match in succession T. and C(S S), f ^(T,, ... T) and i 1 m p+JL 1 n

S x1 f (T.. ... T) and S ...
p+l, ml n m

Example 4. Match f(x,y) and [B(C)] (D) , where f has type

(d,{dfe),e), x has type d, y has type (d, e), B has type{c, (d, e)), C has

type c , and D has type d. No pertinent relations hold among types b,c,d,

and e . First we try f-HAu, v) CB(g(u, v))3 (h{utv)), replacing each "argu-

ment" of B in tB(C)3 (D) by an arbitrary function of two variables. We

must follow up by matching g(x, y) to C and h(x, y) to D . The first

can only be accomplished by g-HAu, v)C • There are two ways to accom-

plish the second: h-HAu.>v)D and h->-{Au,v)u, x-^-D .

Since the second argument of f matches an initial WFP (minus the

brackets, of course) of ZB{C)2 (D) , we must also try f-f-(X vi, v)(v(h(u, v))).

Then we must match y to B(C) and h(x,y) to D . The first obviously

requires y-^-B{C) , and the second leads to the same two substitutions as

before. We have then a total of four ways to effect the match:

(1) f-HXu,v) tB(C)3 (D)

(2) f-y(Xu,v) CB(C)J (u); x-^D

(3) f->.{Xu,v) [v^ (D); y-^B{C)

(4) f^{Xu,v) Cv: (u); y^B(C); x-^-D

The four sets of substitutions are independent, but in each case the resulting

WFT is [:B(C)3 (D) .

With minor modifications the same procedure as above can be applied to

match P, which if f(T,, . . . T) , to Q , which is {Xu., ... u)S , or to In 1 m
R , which is (Ex)S . In this case no proper initial segment of Q or R

13-

can be well formed, so the situation is a little simpler. If some T. matches
J

Q or R , we must try reducing P to that T. . Also, we must try

f-HXv.. ... vnHAii , ... u^gfv^ ... vn) or f-H^Vj. ... vn)(^x)g(v1, ... v^ ,

respectively. With either of these substitutions, we must complete the match

by matching gCT., ... T) and S .

Section 5. Distinct Functional Variables with Arguments

Next, let us match f(S,, ... S) and g(T1, ... T) . Again we shall
1 m in

give an example first.

Example 5. Match P f which is f(K, B, C(D)) to Q , which is g(K(B),

C, D) . First we must match each argument of f to an arbitrary function

of the arguments of g , and vice versa. There are six matches to consider:

(1) K to g'fKfBKC^D) . The only match comes from g'-^lX11, v, w;K .

(2) B to g'fKfBhCD). Substitute .g'-y^ Xu, v, w)B .

{3) C(D) to gl(K(B),C, D) . The matching substitutions are:

g^Xu,v,w)C(D)

" v(D)
11 v(w)

" C(w) .

(4) K(B) to f'fK, B, C(D)) . The matching substitutions are:

f'-HXu,v,w)K(B)

" u(B)

" u{v)

K(v)

(5) C to f'(K,B,C(D)) . Substitute f,->(X u, v, w)C .

(6) D to f,(K,B,C(D)) . Substitute r-y{Xii. v, w)X) .

14-

Now we put all these matching substitutions together, using the appropri-

ate bound variables instead of the actual arguments of f and g . We gev:

f-r(X u, v, w)h(u, v, w, w, w, v.s K(B), u(B), u(v). K (v), C, D);

g-M,su, v, w)h(K, B, C(D), v(D), v(w), C(w), u, u, u, u, v, w);

P, Q>h(K. B. C(D)f C(D), CtD), CID), K{B), K(B), K(B), K(B), C, D) .

Any other matching substitution will be a special case of this one.

Incidently, this example disproves the conjecture that f(S , ... S) and

g(T , ... T) can be matched by regarding f and g alternatelv as held con-
1 n

stant. If g is held constant here, we can not use the the third argument of

f . That is, we must use a substitution such as f-y (X.U, v, w)g(u(v), C, D) .

Likewise, if f is held constant, we can not use the first argument of g .

Returning to the general problem of matching P , v hich is f(S , . . . S),

to Q , which is g(T,, ... T) , here too we must match each S, to g, 0 1 n k k
(T,, ... T) and each T. to f,(S,, ... S) . With regard to types, if each
In j j 1 m

S. has type b and each T. has type c., then g must be a variable of
K K j j K

type (c,. ... c , b.) and f. must be a variable of type (b , . . . b ,c.) . Un- 1 n K j 1 m j
fortunately, we may not be able to combine all these matches into one pair of

substitutions for f and g , since they may involve different substitutions for

variables inside the arguments of f and g .

Suppose x , ... x are all the free variables of the S's and T's . Let
1 d

P (S ', ... S •),... P. (S '. ... S ') be any set of WFTs from a MMS for
hi I «* J.a 1 : m

J

f.(S , ... S) and T., where S ' is the instance of S which results from
j 1 m j p p

the substitutions used in deriving the WFT in which it lies. Likewise, let

Q, .(T', ... T '),... Q, L (T ', ... T ') be any set of WFTs from a
k, 1 1 n k, b, 1 n

MMS for g.CT., ... T) and" S, . Now we must reconcile the different sub- k 1 n k
stitutions made for x , ... x in all these WFTs. Suppose P.,, ... R are

id 1 c
all the substitutions made for x in the various matches. We must find a

-15-

MMS for this entire set of WFTs , extending our matctrng procedure in-

ductively from pairs of WFTs to c-tuples of WFTs . Let W,»^« ••- be

such a (possibly infinite) MMS . Then we adopt the substitution x ->-W

and proceed to reconcile the substitution^ for x , then for x , etc. For

each q , etc. , we have a matching substitution in:

H.(XV ... »JT^.^V ... uj, ... Pli!L^v ... V

••• Pn.a (ui---- V-'W ■• Um);
n

g^.(Xui» ••• u)h(ui ••• u»' ••• u 'Qi i(ui' ••• uJ'^i ■> 0^^ % 1 n 1, 1 n 1,1 1 n 1,2

(u , ... u), ... Q (u , ... u));
1 n m, b 1 n

m
x.-V W ; x ->- etc.

We return now to our MMSs for S, and g. (T,, . . T) and for T. and
k &k In j

f.(S , . . . S), choosing a new combination of WFTs from them. It is not
J 1 m
actually necessary to try every combination. If all the substitutions for x's

required by one match are also required by another, there is nothing to be

gained by trying a combination of matches which includes the second but not

the first.

Before we give another example, we will show that every match between

f(S , . . . S) and g(T , ... T) can be effected by substitutions of the form;
1 m 1 n

f-HXu,. •■. u)h(P (u , ... u), ... P (u , ... u),u , ... u); Nl .mil m al ml m

g-MXvj» ••• Vj^V *" Vn'Ql(vi' "• Vn^ "'■ Qb(Vl' '" Vn)'

Where, of course, P.{T., ... T) is to be matched to S,, etc. All such
1 1 n 1

substitutions are special cases of those described in the preceding paragraph,

since those were constructed from MMSs for g,(T , ... T) and S , etc.
11 n 1

uei f\o1, ... om ; which is fhe same as Q'(T ', . . . T '), be a
1 n

common instance of P, f{S,, ... S), and Q, g{T T), where S ' is
I re. In i

the instance of S. which results from the substitutions used in deriving P'

-16-

from P , etc. Consider the way in which the S ' and T.' are nested in P' .
K j

Each occurrence of S ' is either (1) a proper part of an occurrence of a T',
k J

or (2) an expression Q (T ', ... T ') in zero or more T.'s. Let us number
a 1 n J

the occurrences of S ' in (2) as .S/, ,3 ', ... S ' so that S ' is k I i- c I cm aK
Q (T ', ... T ') . Any occurrence of a T' which is not part of such an ex

a 1 n J
pression must be an expression PJJS.'I ... S ') in zero or more S^s .

Number these occurrences as above so that .T.' is P.i'0,'. ••• S ') ,
bj Di m

Now P» can be rep-rded as Z(.S ',,8', . • • ^S '.P (S ', ... S '), ... 11^1 cmll m
pJ{S ', ... S ')), which is also Z{QATK ... T ^^^(T', ... T '), ... Q rd 1m Aln6in c

(T ', ... T 'KIT ', ... dT ') . We can match P and Q by the substitutions:
1 n 1 n

l+(\nv ... ujh^.u^ ... u^P^u^ ... uj. ... Pd

(u^ ...uj);

g-HXv '" Un^Ql(ur ■" V'02^!' "* Un^ •" ^C^i* ••• V'
u., . . .u);

1 n

sk>sk,; Tj->Tj' •

The original matching substitution is an instance of this match gotten through

h-HXv ... *c+d)z(YV ••• W-

Example 6. Match P , f(x), and Q , g{B,y), where x and B have typs b

and y has type^-c. . We must use the following:

(1) Match f (x) and B by f->(Xu)B.

(2) " " " f-y(Xu)u,x^B .

(3) Match f2(x) and y by y-yf2(x) .

(4) Match g.iB.y) and x by x-^r P i, y) •

Since (1) does not require any substitutions for x or y , we may use it in

each substitution for f and g . Using (1) alone, we have:

fXXu)h(B); gXXu,v)h(u); P,Q-yii(B) .

17-

Combining (1) and (2), we have:

f^(Xu)h(B,u); g-y(Xu,v)h(u,u); x-^B; P, 0-Vh(B B) .

Combining (1) and (3) we have:

f-HXu)h{B,f2(u)); g-^{X u,v)h(u,v); y>f2(x); P, Q>h(B,f2(x)) .

Combining (1), (2), and (3), we have:

fXXu)h(B,u,f2(u)); j-V{Xufv)h(u,u,v); x>B; y+i^*).

i.e.. y>f2(B); P, Q-yh{B,B. f2(B)) .

Combining (1) and (4), we have:

l:-HXu)hrB.u); g-^(X u, v)h(u>g1(u, v)); x-^g^B.y). P, Q-^MB^^B, y)).

To cou bine (1), (2), and (4), we must reconcile the different substitu-

tions for x in (2) and (4) by r.iatchiug B and g (B, y). This may hf> done

"by g —^(Xu, v)B or by g -^.(Xu,v)u, but in either case we end up substitu-

ting x-^-B, f-^^Xu)h(E>uJ u), and g-y(X UJ v)h(u, u, u), which is clearly redun-

dant.

In combining (1), (3), and '-«), we encounter a subtler conflict of substi-

tutions. After substituting y-yf (x), g (B, y) becomes g (B,f?(x)) . We can

not simply gubstitute x->g (B, f (x))., but must match x and g.lB.f (x)) . Due

to a difference of types, the latter can not be reduced to x , but x can be

eliminated by g.-yiAu, v)g (u) or by f-y (Au)z . The first elimination

leads to the match:

f XX u)h(B, u, f2(u)); g>{X u, v)h(ui g2(u), v);

x^g2{B); y-^g2(B)); P, Q->h(BJg2(B),

f,(g-,(B))) .

This is moje general thein the combination of (1), (2), and (3), as can be seen

by making g the identity function. The second elimination leads to the mEitch:

f-V(X u)h{B, u,z); g>{XuJv)h(uJ-g (u, v),v);

x-VgjfB.z); j^-z; P, Q>h{B> g^B, z), z) .

It is not really necessary to use a new variable, z, in this case. The match can als

be accomplished by:
f-H X u)h{B, u, y); g->-(\ u, v)h(uf g^ (u, v), v);

x^-g (B,y); P. Q->h(E,g (B,y),y).
1 -18-

Seciion 6. The Same Functional Variable with Different Arguments.

Finally let us match fiS,, . . . S) and fCT ,. . . T) . This is one case
1 n 1 n

which may lead to an infinite MMS , We start with an axample.

Example 7. Match P, which is B(i(x, M), f, x, y), and Q, which is

B(f{y, N), f, x, y), where x and y are singulary function variables of the

same type. To match f(x, M) and f(y, N) we must either eliminate the

second argument of f directly, or "hide" it inside the first argument, and

then replace the first argument. There are two wayp of eliminating M

and N directly:

f-M/u,v)h; P. Q-^-R. R being B(h, (/u, v)h, x, y);

and

f-h(Xu,v)h(u); x-fy: P, Q-^-W, W being

B(h(y).(Xu,v)h(u)>y,y) .

For every n, n=l,2,3 we can also match P and Q by:

f-HXu.v)g (u,u(f {u,v)),. . .u(f (u,v)));
n 1 n

x-^;Xu)r; y-^{Xu)r; P, Q-^ Y^ Yn being

B(g ((Xu)r,r,... r),(Xu,v)g (u,u(f (u,v)),
n n i

... u(f (u,v))).(Xu)r,(Xu)r).
n

For k<i , Y, is an instance of Y. but Y. is not an instance of Y.

Using the fact that {R,W,Y Y ,...} is a MMS for P and Q, we shall
L f Cd J

show that P und Q have no GMS. Assume JZ ,...Z ,...1 is a GMS

"or P and Q . Some Z. must be an instance of some Y , since R and
b c

W alone obviously do n for a MMS . Y , is in turn an instance of some 7 c+1
Z,. If d=b , then Y , is an instance of Y . This is false. If d=b , Z,

d c+1 c b
is an instance of Z , . by transitivity. This contradicts the definition of a

d
GMS . Hence P and Q have no GMS.

-19-

For the general case of matching P , £(5, ... S), and Q, f{T T), B ^ 1 n In
we ahall assume that S. and T. match for I ij <m, but do not match for

J j
m< j in We must consider every subatitutior for f of the form

f-nXu., ... u)g(u u ,u »f (u , ... u),f (u u), ... 1 n 1 m i i, i, i i n k, i, c i n

'I.I.P^V ••• ^^i^i.z.i^i' •'• \h ■■■ 'i.z.p^V ••• ^ ••• u2
(f

2,1, Mu., . . . u), . .. f (u u)),... u (f (u u),...)) .
• 1 n 2,1, pi n mm, 1,11 n

The first subscript on fv. . is the same as that of the n, in whose pcope

it occurs, the second is free to run from 0 (vacuous) to ao , and the bounds

on the third are determined by the type of CL . Some of the u 's may be

missing. The match is completed by matching simultaneously the correspond-

ing arguments of g .

To show that this gives a MMS , assume R is a common instance of P

and Q . Then R must have been obtained from P and Q by substituting

f->-(Xu., ... u)V(u , ... u). We may assume t^at u , m<kin, occurs
1 n 1 n k

only within the scope of some u., 1 <j<m . Any other occurrence of u

must be eliminated by a substitution for a free variable of V (since S, and

T do not match), and such a substitution cm be made at the beginning to

get a new V . Therefore V is an expression in u . . . u , with and with-
1 m

out arguments, the arguments being expressions in u , . . . u . V is thus

an instance of an expression of the type given in the above paragraph.

Section 7. Another Use of Indirect Elimination

This technique of indirectly eliminating an argument by hiding it inside

another argument can also be applied to the problem of matching a single

variable to a WFT . Details of ehe general case are omitted, as they are

quite similar to wha^ we have just been through.

• 20.

Example 8. Match B(x,i) and B(f(x,y).f) . We must either reduce

f(x,y) to x by f-V{XuJv)u, or else eliminate x by:

f-».(Xu.v)h(v,v{f1(u)), ... v(fn(u))),

y->-{Xu)z

x-yh({Xu)z, z, z, . . z) .

Once again we have an infinite MMi , n being an arbitrary integer.

21-

;HAPTER 3

CONDITIONS F^R THE MMS TO BE INFINITE

Section 1. Necessary Conditions

Let us examine the conditions under which the matching of f(S,, ... S)
1 n

and f(T,, . . T) leads to an infinite MMS. We assume that these WFTs ' 1 . n
occur as parts of larger WFTs, P and Q . Otherwise a QMS "esults from

the single substitution f-^-fAu » ... u)h . Also, we acsume that the context

of a WFP unUer discussion does not require its elimination in the matching

process. For example, we will not consider the occurrences of f in the cor-

responding WFTs g(A(f)) and g(B(f)) .

As shown by Example 7, the key step in establishing an Infinite MMS is

"hiding" some argument inside another. Accordingly, the following three con-

ditions are necessary for our MMS to be infinite.

First, there must be something to hide. One possibility is that some

arguments, say, S and T , do not match, so that their elimination, direct
n n

or indirect, is essential to any match. The other possibility is that S and

T m?,tch, but that matching them requires an otherwise unnecessary substi-

tution for some variable which also occurs outside S and T If neither of
n n

these is the case, we may match all the S. and T. in succession, as if f
3 J

were a constant.

As an alternative, we may have to eliminate some variable because it

occurs in the wrong place, as in Example 8. If it is necessary to eliminate

S from f (S,, ... S) because it contains a variable, x., which is to be
n 1 n

matched to all of f(S,, ... S), we may treat the case as if x were f(S,, ... In 1
S ,,T), where T does not match S . Indeed, after eliminating S , we shall
n-1 n n

replace x by whatever remains of f(S,, ... S) .
1 n

-22-

Second, there must be a hiding place. Some arguments, say S and

T , must match in a way consistent wi'h the matching of the rest of P and

0 . Furthermore, for some k , it mu<ät be possible to eliminate u from

C S. 3 (u., . . . u) and C T.] (u., . . . u) . Otherwise it would be necessary
lip lip

to eliminate the non-matching arguments, S and T , directly.

Third, there must be something left of the hidden arguments after the

match is completed. This means that f must occur somewhere in P or Q

without S or T as its first argument. Since the arguments to be hidden

in S and T are to be completely eliminaved eventually, they could jast as

well be eliminated from f(S S) and f{T , ... T) directly if f did not
In In

also occur with some other first argument or v/ith no arguments at all.

Section 2. Sufficient Conditions

If we assume in addition that all other occurrences of f in P and Q are

without arguments and do not need to be matched to other WFTs , then wc

have sufficient conditions for the MMS of P and Q to be infinite, provided

P and Q match at all. For simplicity of notation, assume now and hereafter

S and T have the type of singulary functions.

Let R be (A u , ... u)h (u , u. (f. (u,, ... u)), ... u (f (u , ... u))) .
q 1 nqllll n Iql n

We can match P and Q by substituting f-^R , followed by the substitutions

which eliminate the arguments of S and T and match the rest of P and Q .

This match is not an instance of any match derived from f-V{Au , ... u)

h (u , . . . u ,u (f (u , . . . u)), . . . u (f (u , ... u)),u (g (u , ... u)), . . .),
si mill n Isl n Z 1 1 n

where s < q . If u is not an argument of h in the latter WFT (and it can
^ n * s

not be if S and T do not match), then there is no way to introduce u, (f .,
n n 1 s+1

(u u)),... u, (f (u,, ... u)) as arguments in passing from h to h .
1 n Iql n sq

If u is an argument of h , then S and T must be matched, which requires
n s n n

• 23-

a substitution somewhere else in P and Q which was not necessary following

f^R . Thus we need to make substitutions of arbitrarily great length for f

in order to get a MMS for P and Q . As in Example (, ^here will be no

CMS .

The above argument is not affected if, besides occurrinj without arguments

and with arguments S,, ... S and T . , , . T , f occurs also in the WFTs 0 1 n 1 n
f (X., ... X) and i(Y., ... Y), which are tobe matched to each other, with
In In

the following provisos. X and Y must match (consistantly with the match

of P and Q), and either for some k it is possible to eliminate u from

CX.l {ulf ... u) and from [Y,] (u,, ... u), or else X and Y match,
lip lip nn

If f occurs only with arguments, the situation is quite complicated.

Some exmmples follow.

Example 9. Match B(f(x, M), f{z, w), x, y) and B(f(y, N), f(z, w), x, y). We

shall list the matching substitutions and the resulting WFTs.

f-HXu,v)h

R: B(h,h,x,y)

f-HXu,v)g0(u); x-^y

Y0: B'g0(y),g0(z),y,y)

f-HXu,v)g (u,u(f (u.v)), ... u(f (u,-)));
' n 1 n

x-HAu)r; y-^-{Au)r

Y : B(g ((Xu)r,r, ... r),g (z,z(f (z.w), ... z(f (z, w))), (X u)r, (Xu)r)
n n n i n

Here NR, Y , Y , ..,/ is a MMS, but in this case Y , is an instance
1 0 1 J n+1

of Y gotten by substituting g-HX« , ... u)g , , (u,, u (f (u , w), ... u (f
n n i n n+l 1 1 1 i In

(u.fq))). For n=0 , add also the substitution y->"(X')r' Thus JR, Y r

is a finite GMS for these two WFTs.

Example 10. Match the following:

• 24-

(Ew)B(f(x,M),f(z,w),x.y)

(Ew)B(f(y.N),f(z,w)lx,y)

We get a MMS here by using exactly the same substitutions as in Ex-

ample 9, but in this variation we can not introduce w via a substitution

in order to reduce Y , to Y . Therefore there is no finite GMS .
n+1 n

Example 11. Match the following:

B{£(x,M).f(z,v;),f(w, D),x,y)

B{i(Y,N),i{z,C),i{w,D),x,Y)

The technique of Example 9 which showed Y to be an instance of Y

will not work here, because D and C are different constants. Again there

is no finite GMS .

• 25-

CHAPTER 4

FINDING A SINGLE COMMON INSTANCE

Section 1. A Method which will not Work

-Although an infinite set of subs citations may be required to find a MMS

when we have to eliminate an argument from f(S,, . . . S), it is to be hoped
1 n

that a finite set will suffice to tell whether or not our WFTs match at all,

For instance, it seems reasonable that we could find a match, if any existed,

by using each eligible argument as a ' aiding place" only once. That is, we

should y the substitution f->^Au , ... u)h(u,, ... u , u {f (u , . . . u)),u
1 nl mill n c.

f (u , ... u)),... u (f (u., , . . u))) .
2 1 n m m 1 n

However, it turns out that there is no way of telling how many of our

possible substitutions we must try before we find the first match, unless we

examine the complete WFTs to be matched. The following example demon-

strates this

Example 12. The WFTs to be matched are f(x,B) and f(x, C), as im-

bedded in:

P : (Xy.z)I>(f(x.B),f(y,z))
n

Q : (Xy.s)D(fix,C),G(y,y(H1(z)), ... y(H (z)))
n in

Since y and z ar-, bound variables, they may not be introduced by substitu-

tion. In order to match the second arguments of D , therefore, we must

tuck the second argument of f ino ie the first argument n times. The short-

est matching substitution which we can use for the first arguments of D,

f (x, B) and f(x, C), is therefore X-V(A u, v)c{u, uih, (v)), ... u(h (v))) . We can
1 n

then complete the match by substituting g-^G , h ->-K , ... h ->-H Since n

is an arbitrary integer, we have established our claim.

-26-

The use of bound variables in this example can be avoided by a change

similar to that used in passing from Example 10 to Example 11.

We can even modify Example 12 to show that examining all the WFPs of

the WFTs to be matched which contain f or are to be matched to WFPs

containing f , will not be sufficient to tell how long a substitution wc need for

f . Let P and Q be as follows:

P: (Xy, z)D{f(x, Bhg.g)

Q : (Xy.z)D(f(x,C).f,G(y,y(H1(z)). ... yiHjz)))

Obviously the substitution f*Vg (or g-yf) is required, and this leaves us with

essentially the same WFTs as in Example 12.

Section 2. A Successful Method

Suppose we are to match P and Q , and among the WFPs of P and Q

which must be matched to each other we have f(S. .,. . . S,) and f'T. ,
1,1 i, n 1,1

. . . T.) for i =1,2, . . . k . Arrange the arguments so that for every
i, n

i,S, . and T. . are eligible "hiding" places (see p.) for 1 i j 1 m , and

S. . and T match for m < j ip , m and p being the largest integers for
1 »J i .J

which this is possible.

Now we temporarily ignore these parts of P and Q and match the rest of P

and Q. Each match may require a substitution f-MA^.i ... u)R(u , . . . u)

If in R there is an occurrence of a UL, p<V^n# which is not inside the

scope of any u,, li j <m, then that substitution must be rejected as incom-

patible with the matching of f(S S.) and f(T> ., .. . T.) . If u. ,
i, 1 i, n i» 1 i i a k

1 < "k ^p , or u, (Y , . . . Y) , occurs not in the scope of any u., i£ j ^m ,
~ "" k 1 q j

then we must reconcile the matching of S. . and T (or S (Y , . . . Y) s i.k x,k i,kl q
and T. (Y , ... Y)) with the remaining substitutions in that particular

1 i K 1 q
match of P and Q , If u , p< k <n , or some u , m< hSp , for which the

matching of S. , and T. , is incompatible with the matching oi the rest of
i , h l i h

1

27-

P and Q , occurs within the scope of u., lijlm , then we must reconcile

the eliminaticm of that term with the rest of the substitutions.

Any potential match which is not thrown out on one of the abovj grounds

can be completed. The tentative substitution for f must have the form

fXXu., ... u)Z{u , ... U,u (Z (u u)), ... u (Z 0>>.... u)),
I nl pll.ll n 11, n* n

. , . u (Z , (u,, ... u)),... u (Z ^u u))), where some of the
m m, 1 1 n m m, n 1 n m

exhibited WFTs may be absent, but none occur inside each other. We can

match P and Q by substituting f-y^Au.. ... u)h(u , . . . u , u (f (u , . . . u)),

... u (f (u u))), followed by substituting h-HAu,, ••• ut)Z
m m, n 1 n lb

m
(u.» ... u), f. .-^(A11,» ■•• u)Z. .(u , ... u) and also making those sub-

1 bi,j 1 n1,}! a
stitutions which matv-h S. and T^ li i ij>, and those which eliminate the

arguments of S., li jim, which must be eliminated.

Thus, in order to tell how long a substitution we need to match all the

pairs f(S.,l, ... S.,n) and f(T. , *, ... T.,n), we must examine the substitu-

tions required for f by the rest of P and Q , and count the number of times

an argument occurs with other arguments inside it.

-28-

: ■J-UP.J ■ I..

BIBLIOGRAPHY

til Church, Alonzo, Ihe Calculi of Lambda-Conversion, Annals of

Mathematics studies, No. 6, Princeton University Press,

Princeton, New Jersey, 1941.

[21 Bennett, J. H. , Easton, W. B. , Guard, J. R., Loveman, D. B.,

and Mott, T. H. , "Somi-Automated Mathematics: SAM IVM,

Scientific Report F . 3, AFCRL 64-827, October 15, 1964.

1133 Guard, J. R. , 'Automated Logic for Semi-Automated Mathematics"

Scientific Report No. 1, AFCRL 64-411. March 30, 1964

[.411 "CRT-Aided Semi-Automated Mathematics", Semi-annual Report,

Applied Logic Corporation, December 31, 1965.

-29-

-

BLANK PAGE

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classificaUnn of title, body of abstract and indrxmf annotation mint be rUrred when thr overall report is classified)

i ORIGINATING ACTIVITY (Corporate author)

Applied Logic Corporation, One Palmer Sq.
Px-inceton, New Jersey

2a. REPORT SECURITY CLASSIFICATION

Unclassified
2b. GROUP

1 REPORT Tl LE

A Matching Procedure for W-Order Logic

«. DESCRIPTIVE NOTES (Type of report and inelusivt dates)

Inter im Scientific Report
5, AUTHORW (Last name, ,'irst name, initial)

Gould, William Eben

. REPORT OATE

15 October 1966
»J. CONTRACT OR GRANT MO. AKPA Urder 71T7
AF19(628)-3250
b. PROJECT AJCMXXJS*

8672
c. OOD ELEMENT

6154501R
d. OOD S'JBELEMENT

N/A

7a TOTAL NO. OF PAGES

35
7ik MO. O- REFS

4
»a OAIGIMATOR'S REPOXT HUUBtntS)

Scientific Report #

tk. OTHCH HcpoKT HO(S) (Any oliier numbers that may be
assigned tfus report)

AFCRL-66-781

10- AVAILABILITY/LIMITATION NOTICE!»

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ii. SUPPLEMENTARY NOTES prepared for I •* ^öMömSS Hiirmstv ACTIVITY

Hq.AFCRL,OAR (CRB) I A, ,n ^ ^
Un->ed States Air Force I Advanced Research Projects
L. G. Hanscom Field. Bedford. Mas j Agency

13. ABSTRACT 14. nnsinMV' v

Formation rules are presented for an t^-order logic with A
operator in which each term has a well defined type. Transforma-
tion rules are given defining X-conversioa, special conversion,
substitution, and alphabetic change of bound variables. The notion
of one term being an "instance" of another is then defined using
these transformation rules. The main problem of the paper is to
develop a "matching procedure" for pairs of terms, so that every
common instance of the two given terms is an instance of some
term produced by the matching procedure. This is accomplished
by analysing the terms according to the formation rules, matching
the outermost parts first, then proceeding inductively inward.
Examples are given to show that an infinite set of terms may be
needed for this purpose. Conditions under which such an infinite
set is needed a.T 3 discussed. A procedure is developed for pro-
ducing at least one common instance, if one exists.

DO ro'"' 1473 '"' I JAN «4 W*

UNCLASSIFIED
Security Classification

-30-

i «

!

UNCLASSIFIED
Security CImssificaiion

14.
KEY WORDS

Symbolic matching by computer.

Omega-order logic, matching in

Man-machine mathematics, techniques
for

INSTRUCTIONS

1. ORICi^lATINC ACTIVITY: Enter ihr name «nd «ddre».
o(tbe contractor, •nbcontractor, grutee, Department of
Defense activity or other organization (corporate author)
iaaaing the report.

ia. BEPOHT SECUWTY CLASSIFICATION: Enter the over-
all aecurity clasaification of the report. Indicate whether
"Restricted Data" ia included. Marking ia to be in accord-
ance with appropriate security regulation«.

26. CROUP: Antooicic downgrading is specified in DoD
Directive 5300.10 and Armed Forces Induatrial Manual.
Eater the group number. Also, when applicable, auow that
optional markinga have been used for Croup 3 and Croup 4
aa authorized.

3. REPORT TITLE: Eater the complete report title in all
capital letters. Titles in all caaea sl.ould be onclaaaified.
If a meaningful title cannot be aelected withoal classifica-
tion, ahow title clasaification in all r«pii.-'s in paremhe«is
immediately following the title.

4. DESCRIPTIVE NOTES- If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the nsmefs) of sutr.oiKa) aa ehown on
or in the report. Enter last name, first name, middle initial.
If military, ahnw rank and branch of aervice. The name ol
the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report aa day,
month, year, or month, year. If more than one date appears
on ihr report, uae dale of publication.

7o. TOTAL NUMBER OF PACES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing iolonnation.

7b. NUMBER OF REFERENCES: Enter tbe .Mai number of
references cited in tbe report.

8o. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

86, 8c, t 8d. PROJECT NUMBER: Enter the appropriate
military department tdenlification, such aa project nun.b^-.
aubproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPOHT NI'MBER<S): Enter the ofii-
cial report number by which the document will be idtnlified
and controlled by the originaiing activity. This number must
be unique to this report.

96. OTHER REPORT NUMBER»): If the report has been
assigned any other report numbers feithrr by the ongina'or
or by the sponsor), alao enter this numbeHs).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limi-
tations or further dissemination of the report, other than those
imposed by security classification, using standard slatemenle
such as:

(1)

(3)

'^Qualified requesters may obtain copies of this
report from DOC."
"Foreign announcement and dissemination of this
report by ODC is not authorized."
"II. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "V. S. military agencies may obtain copies ol this
report directly from ODC. Other qualified users
shall request through

M

(5) "All distribution of this report is controlled. Quali-
fied DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for »ale to the public, indi-
cate thia fact and «n(er the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional enplana-
tory notes.

12. SI-ONSORINC MILITARY ACTIVITY: Enter the name ^
the departmental project office or laboratory .sponsoring ^pay-
">* for) the research and developr... nt. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of ;he report, even
tbouch it may also appear elsewhere in the body of the tech-
nical report. If additional space is required, a continuation
sheet shall be attached.

It is highly desirabH that the abstract of classified re-
ports be unclassified. Each paragraph of the abstract shall
end with an indication of the military security classification
of the information ii> the paragraph, represented aa fTS), (S),
(C), tr(V).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used aa
:nde« entries for cataloging the report. Key words must be
solected so thai no security classification is required. Identi-
fiers, such as equipment model designation, trade name, mili-
tary project code name, geographic location, may be used aa
key words but will be followed by v> indication ol technical
context. The assignment of links, rules, and weights is
optional.

UNC LASSIFIE D_
Security Classification

-31.

