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PREFACE 

This paper was presented as  a doctoral dissertatior. to Princeton 

University,   under the  supervision of Dr.   James  R.   Guard of Princeton 

University and Applied Logic  Corporation.     Portions  of the work were 

financed by a Science  Facalty Fellowship from the  National Science 

Foundation while  the  author was  on leave from "Washington College. 

The proble-n investigated is pertinent to the project on "Semi-Automated 

Mathematics" being carried out by Applied Logic,   originally for the Air 

Force,   Cambridge Research Laboratories  and currently for  the Advanced 

Research Projects Agency.     More  specifically,   the problem is proposed 

in the report listed as   [3]   in the bibliography. 
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ABSTRACT 

Formation rules  are presented for  an    CÜ-order  logic  with A 

operator  in which  each term has  a well defined type.      Transformation 

rules  are  given defining    A -conversion,   special conversion,   substitu- 

tion,   and alphabetic  change  of bound variables.      The notion of one 

term being an "instance"  of another  is  then defined using  these  trans- 

formation rules.      The main problem of the paper  is  to develop a 

"matching procedure" for pairs  of terms,   so that every comm:n in- 

stance  of the two given terms  is  an instance  of some  term produced 

by the  matching procedure.      This is  accomplished  by analysing the 

terms  according  to the formation rules,   matching  the  outermost parts 

first,   then proceeding  inductively inward.     Examples  are  given to  show 

that an infinite  set of terms  may be needed for  this purpose.     A pro- 

cedure   is  developed for  producing at least one  common instance,   if 

one  exists. 



CHAPTER 1 

CO -ORDER LOGIC 

Section  1.     Formation Rules 

The  basic   system with which we  shall be  dealing is  CO-order  logic,  where- 

in each term  has  a well-defined type.      The formation rules for  types  are 

quite  simple.     We  shall have  (at least) two basic types,     P    and   Q,   which 

are  intended to be  the  types   of propositions  and individuals,   respectively.     If 

f    is  a function of    n    variables  with types     T,,   ...   T       respectively,   and 
1 n 

with values  of type     T   ,    »   then    f    ^as  tyP6     (T, t   ...   T   .,)•     More formally, 

our  rules  will be: 

(1) P    is  a type. 

(2) Q    is  a type. 

(3) if    T.,   . . .   T    ,     are  types  ( 
i                 n+l 

then (T,,   ...   T    ,)    is a type 
1               n+l 

The formal system shall contain the following atomic  symbols: 

(1) infinitely many variables  and constants  of every type; 

(2) punctuation symbols  -).   { . ]    t   [   ,   and    ,   ; 

(3) quantifiers  - A,   E,   and X (Church's    \ operator,   see    TlJ ). 

Among the  constants  of type  (P,   P,  P)   we may have  the  usual propositional 

connectives, D   ,S/   ,     &,   and ^ ,   which may be employed in the  usual fashion 

(between arguments),   and among the constants  of type    (P,   P) we may have ^ , 

negation. 

We  shall present rules  for  the  construction of well forhied terms  (WFTs), 

each of which has  a type.     A    WFT    of type     P    will also be  called  "a well- 

formed formula (WFF)". 

-!• 



(1) Any constant or variable  of type     T    is  a WFT of type     T . 

(2) If    W.,..W     are    WFTs     of types     T,...T      respectivsly 
In in 

and    V    is a    WFT    of type    (T1,...T      )s   then CVj (W,,. . . W ) 
i n+A 1 n 

is  a    WFT    of type     T  .,'     wl   
win be  called "the  i-th argument 

of   V". 

(3) If    W    is a WFF    and    x    is a variable,   then   (Ax)(W)   and (Ex)(W) 

are    WFFs. 

(4) If    x , ...x      are variables  of types     T,, . . . T     respectively and 
In In 

W    is a    WFT    of type     T  ^,   then (Xx,,...x )(W)     is  a    WFT n+l 1 n 
of type (T,.... Tn+l) . 

We shall adopt the following conventions  on metavariables: 

b,   c,   d,   e represent types; 

f,   g,   ...   z represent (system) variables,   with the informal agreement 

f,   g,   and h will be preferred when the functional nature of the 

variable  is to be  stressed; 

B,   C,   D,   F,. . . N    represent constants  (A    and    E    being reserved for 

quantifiers); 

P,   Q,   R,   ...   Z represent    WFTs. 

Any metavariable may occur with or without subscripts  or     ! ,   and any 

variable  occurring as a subscript is  a numerical variable.     Variables  repre- 

senting terms  may occur with component well formed parts    (WFPs) displayed 

in parentheses,   with substitution indicated as  usual by replacement of displayed 

symbols.     Note  that    P(x,,. . .   v ) is  the  same    WFT    as     P,   the notation 
1 n 

simply calling attention to the variables   x  , ...x      which may  occur  inside  P. 

f p]   (x ,  .. . x ),   however,   represents  the  result of applying the function    P 

to the arguments    x.,  ... x Parentheses  or  brackets may be  omitted when 
i n 

there  is no possibility of confusion. 



Whenever  an algorithm calls  for  the  introduction of a new variable,   we 

assume  it to be  the first unused variable  of the proper type  in alphabetic 

order. 

Section 2.      Conversion Rules 

We need not be concerned with rules  of inference  in general,   but there 

are four  conversion rules  which we  must define. 

Alphabetic  change  of bound variable:     If    y    does not occur in    P ,  then 

from    {Ax)P   we  may get   (AyjP1 ,   where     P1     is  the  result of replacing every 

free  occurrence  of    x    in    P    by    y  .      The analogous  rules  apply to  (Ex)P 

and    (Ax.,   ...   x )P . 
i n 

Substitution:     If    R    and     T    are    WFTs    and    x    is  a variable  of the 

same  type as     T ,  then we may replace  every free  occurrence  of    x    in    R 

by    T ,   provided no free  variable of    T    is  captured by ?, quantifier  of    R . 

The  operation of replacing    x    by     T    will be written     "x -> T" .      The usual 

provision can be made for  simultaneous  substitution. 

A conversion:     From   C(Xxi'  •••  x )RH (T.,   ...   T ),     we may get    R1 

where    R1     is derived from    R    by    x, —w T,     .. . x ~> T    ,   unless  some free 

variable  of    T,     would be captured by this  substitution.     In that case,   we  first 

apply alphabetic change  of bound variable  to the  appropriate well formed part 

of    R .     Note  that    x      and    T      must have  the  same  type in order for  the 

original expression to be well formed. 

Special conversion:     From    (Ax,,  ... x )( CR3 (x  ,   ...   x )) ,   we may 
1 n 1 n 

get simply    R ,   and vice versa,   provided no    x.     occurs free in    R . 

If a WFT ,   B ,   is derivable from a    WFT ,   C ,   by successive applica- 

tions  of substitution to all of    C    and of alphabetic  change  of bound variable, 

A conversion,   and special conversion to    WFPs  of    C ,   then    B    will be 



called   "an instance  of C".    If   B   is an instance of   D   and. also an instance of   C , 

then   B   will be called "a common instance of   D. and   C",  and if   D   and   C   have 

any common instance,   they will be   said to  "match". 

Section 3.     Matching 

Our primary concern in this  paper will be  to find  a method of generating 

common instances for pairs  of    WFTs.      There  are   several  reasons  why this 

may be  important.     Suppose  we   ,vish  to draw a conclusion from premises     R 

and    S DT .     Suppose further  that    S'     is  a common instance  of    R    and    S , 

and that    T1     is  a corresponding instance  of     T    (results  from applying the 

same  substitutions  to     T    as were  applied to    S    in deriving    S1 ).     Since 

any instance  of a    WFF    is  a logical  consequence  of that    WFF ,   we  may 

conclude     T' .      This   sort of procedure,   called matching,   is   one  of the  basic 

techniques  in the  semi-automated mathematics  of    [2],    [3l,   and   t 'O • 

Other possible  applications  might involve  substitutivity of equality.     Sup- 

pose we have two assertations,     R - T   and   W ,  and some    WFP,   R1 ,   of    W 

matches    R .     We may then apply the  matching  substitutions  to    W    and re- 

place the  resulting instance  of R     by the  corresponding instance  of     T . 

It has  been  shown in   C 3]    that in first order  logic  any two formulas     P 

and    Q    A\hich match have  a general matching formula,   R,   with the properties: 

(1) R     is  a ccmrnon instance  of    P    and    Q 

(2) every common instance  of    P    and    Q    is  an instance  of    R . 

Thus,   in an    obvious   sense,     R     is  the most general common instance  of    P 

and    Q . 

An analogous concept for higher order logic is that of a general matching 

set (GMS). If P and Q match, then a set S of WFTs is said to be a 

GMS    for     P    and    Q    if: 



(1) Every    WFT    in    S    is  a common instance  of    P    and    Q . 

(2) Every common instance  of    P    and    Q     is  an instance  of  some 

WFT    in     S . 

(3) No    WFT    in    S    is  an instance  of any other     WFT    in    S . 

Unfortunately,   it is  not true  that every pair  of    WFTs    which match 

have  a   GMS .      Therefore,   we   shall introduce  the  concept of a major 

matching  set (MMS) for     P    and    Q ,   which satisfies  conditions   (1)  ard (2) 

above,   but not necessarily (3).     Obviously (except to intuitionists),   every 

pair  of matching    WFTs    does have  a    MMS ; namely,   the  set of all common 

instances.     It is  also obvious  that any pair of    WFTs    which have  a finite 

MMS    have  a    GMS .     Simply run through the   MMS    in any order,   discard- 

ing any    WFTs    which are  instances  of other     WFTs in the  set. 

However, it does not follow that any infinite MMS can be reduced to a 

GMS . Indeed, we shall exhibit several pairs of WFTs which have infinite 

MMSs    and no    GMSs    at all,   finite  or  infinite. 

■ 

: 

I 

I 

■ 
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CHAPTER 2 

THE MATCHING PROCEDURE 

Section  1.     Pielimiaaries 

Our  objective  in this  chapter will be to develop an algorithm,   called the 

matching procedure,   which will produce  a   MMS   for  any givan pair  of   WFTs. 

The   MMS   produced may be  infinite,   or  it may be  empty,   in which case  the 

WFTs   do not match.      Chapter  3 will attack (with partial  success)  the prob- 

lem of predicting when an infinite   MMS   is necessary.    Chapter  4 will handle 

the  problem of discovering,   in finitely many steps,   whether the   MMS   is 

empty or not. 

The matching procedure will be described inductively,   according to the 

formation rules  on page 2.     Note,   however,   that in matching two   WFTs   we 

rr ^y need to know more  than just the   MMSs   for  their  component parts.    We 

may need the  substitutions which lead  to those   MM5s.      Two  essentially dif- 

i'erent substitutions  may lead  to the  same  matching   WFT ,  but if the  variables 

replaced occur  elsewhere  in our  overall   WFTs ,   the  distinction between these 

substitutions  must be  maintained  (see  example   1).      Naturally any  substitu- 

tions  called for  must be  legitimate  in the larger  context.      For  exftrnple,   B(x) 

and B(y)  can be  matched by    x-y y ,   but (Ey)B(x)  and    (Ey)B(y)   do not match. 

Throughout our  matching procedure  any variable which is   replaced  in one 

WFT   must be  replaced  in the  same fashion in the  other   WFT ,      This  is  to 

prevent undoing the matching work which has  already been carried out.    Since 

no  such restriction is  present in the  definition  of  ''common instance", we shall 

start the matching procedure  by  replacing each free  variable  of our  first WFT 

which also occurs  in our  second   WFT   by an unused variable  of the 

6- 



proper  type.      Since  this   substitution is   reversible,   we  have not changed^he 

set of all instances  of the   WFT .     For  some  applications  it may be  de- 

sirable  to suppress  this  operation and insist on having  the  same variable 

occur free in both   WFTs . 

In order  to keep our   WFTs   in as  standard a form as  possible,   we  shall 

employ   A.conversion whenever  it can be  applied.     Also,   we  shall employ 

special conversion whenever it shortens  the   WFT , 

The  following techniques will be  useful. 

Direct elimination:     Suppose   S   is  a   WFP   of   T   and   S   occurs  in the i-th 

argument of a n-place variable   f .     Ma^e  the  substitution   f "^C \u ,  ...  u   ) 
1 n 

g(u ,   .. .  u.        u       ,  ...  u ) .      The  . e suiting   WFT   will closely resemble   T 
1 t-ij   i +1 n 

except for the absence  of an occurrence of   S   (and of any other   WFT  which 

occurred elsewhere as  the  i-th argument of   f ).      This procedure  is  said to 

"(directly)    eliminate   S   from   T ". 

There is  also an indirect method of eliminating   S  from   T ,   which causes 

more drastic  changes  in   T .     It will be discussed at the end of the chapter. 

Direcc reduction:    Suppose   P   is   f{W.,  ...  W )   and   P   has  the  same  type 
1 n 

as   W. .      The  substitution   f-t-( Au.,  ...  u )u.   is  said to  "(directly )reduce 
i *  1 n    i 

P   to   Wj ".     Not only will   P   be  replaced by   W^    as  a result uf this   substitu- 

tion,   but any other  occurrence  of   f  with arguments will be  replaced by its 

i-th argument. 

Indirect reduction:    Suppose   P   is   f(W  ,  .. .  W ),    P   and   W.    have type  b, 
in i 

.   has  type   (c   .  ...  c  ,b, c    _ ...  c    » 
j 1 p        ^3+2 m, 

and   W.   has  type   (c   ....  c  , b, c        ...  c    » b) .    Suppose further that the iden- 
1 p        p+Z 

tity function   (Xu,.»  ...  u   )u    '.   matches  (hence is  an instance  of)   W. .      Then 
;1 m   p+1 j 

the  substitutions .f-v{ Xu,....  u )u.(f (u  .  ..     u   ),  ... f (u,,  . . .  u ), 
1 njll n pl n 

ui»f   ,*(ui'  . . •  u ),  ...  f   (u ,  . . .  u ))  and W.—>-( Xu,,   . ..  u   )u    ,    are  said 
*    p+6    1 n ml n J*l m   p+1 



to   "(indirectly)  reduce   P   to   W.   ".      P   will be  replaced by   W.    as  a result 

of these  substitutions,   Hit occurrences  of  f  with other  arguments  may re- 

tain vestiges  of those  arguments. 

Indeed,   if some  other  argument of   f ,   W  ,   also matches  an iden ity 

function of the proper type,    Wj    can be  buried deeper  in the expression which 

replaces   f .     Assume for  simplicity that   W.   and   W  (j^k)   have  the  type  of 
1 K, 

singulary fum-f-ions.     Then the  substitute is   f-HAu  *  ...  u )u (u.(u ))), 

W.-HXUW,    and   W^-(Xv)v   will  reduce   f(vV  .   ...  W )   to   W.   .    Obviously 
k j In1 

it may be possible  to  "bury"   W.    even deeper than this,   but this burying' 

process is limited by   n .     Because  of type  considerations,   no occurrence  of 

a   u      may be utilized wit' in the  scope  of another  occurrence  of   u     .     In 
m m 

such a case,   we could replace  the  intervening functions  by identity functions, 

leaving   u      (or W    )   as  an argument of itself,   which is  impossible, m m 

See Example   I  for  ein example  of direct and indirect reduction. 

The purpose  of reduction is  to  transform   P   into  some   WFP,   Q,   of P, 

without introducing   Q   or any part   of   Q   via a substitution.      This will be 

particularly useful if   Q  contains a variable which is  bound by some quanti- 

fier whose  scope includes  all of   P . 

We  shall now proceed by cases,   according to the forms  of the   WFTs   to 

be matched.     Every   WFT   either: 

(1) is a single variable  or constant; 

(2) begins with a quantifier.   A,   E,   or X I     or 

(3) begins with a functional variable  or  constant followed by   trguments. 

Since  the formation and transformation rules  are  iat^Hcal for  the quantifiers 

A   and   E ,   we may safely ignore   A   and treat only   E .     Note  that in the 

WFT   CP3    (T ,   ...   T ),    P   cannot begin with   E .     Furthermore,   we  may 

assume   P   does not begin with \ ,   since we  could then apply X conversion. 

-8- 



In general,   we  may  safely treat    P    as  if it were  atomic.      That is,   we 

shall consider    f(T ,   ...   Tj     but not     [ [   gCl^,   . . .   T. ) ]    .. . ]      CT,   ...   T^). 

The  general case will always  follow in the  rame  manner as  the  specia."  case. 

Note  that these two    WFTs    are  instances  of each other,   using the  substitutions: 

f-f  (Xuj.   ...   un){ [C glUj,  ...u,)!    ...  ]    (u.,   ...un)) 

g^(Xu  ,   ...Uj) ...   (Xu,   ...   ^(Uj,   ...   un). 

Likewise we  shall,   with one  exception,   discuss    Fil^,  ...   T^    but not       CC G 

(T .   ...   T ) 1    ... 1    (T ,  . . .   T ) .    In Effect,   we  shall treat all the    T's x   I i   J j n 
in the last    WFT    as  arguments  of    G . 

Whenever we  assert that some   substitution    f->*T    is  to be  made,   it is  on 

the condition that    f    and    T    have  the  same type. 

Section 2.     Atomic    WFTs 

First,   let us match a single constant,   B,   to a    WFT,   P .     Clearly,   in or- 

der to have  a match,     P    must be: 

(1) B, 

(2) x,    or 

(3.       i{T.,   ...   T ) . 1 n 

In case  (2),   substitute    x-^-B.     In case  (3),   either  substitute   f->-(Xu
1»--« 

u )B ,   or  reduce     P    to  some     WFP    of the form  (1),   (2),   or  (3). 
n 

Example   1.     Match    B    to    f{x,y),   where     B    and    y    have type b,   x has 

type  (b,b),   and    f    has  type  ((b, b),b, b) .     There  are three ways  to perform the 

match. 

(1) f-XXu,v)B 

(2) f-XXu, v)v,   y-y B;  using direct reduction 

(3) f-v()^u, v)u(v),   x->(Xw)w,   y-*.B;  using indirect ^eduction. 

-9- 



The   WFT   produced is  the   same,   B,   in each case.      However,   we would need 

all three  substitutions  if the  given   WFTs   were  imbedded in,   say,   C(f, b)   and 

C(f, f(x, y)),    since none of the  three   WFTs   which replace   f   is  an instance  of 

any of the  others. 

Next,   let us match a single free variable,   x,   to a   WFT,  P.     If    x    does 

not occur  in    P ,   simply  substitute    x-VP •      There  is nothing to be gained 

by transforming    P    into    x,     as  if    x    were  constant.     Any such transforma- 

tion can still be applied after  the   WFTs   have  been matched by   x->-P ,  giving 

exactly the  same  result.     See  example  3.     However,   transfoTning   P   into   x 

and then substituting    x-f-P    may not give  the  same  result as   simply substi- 

tuting    x-V-P.     If    x    does  occur  in    P ,   we  must either eliminate  it and 

proceed as above,   or  reduce    P    to    x .      The  direct elimination of    x    is  de- 

scribed above,   the  indirect elimination is postponed until the last section of 

this  chapter. 

If    x    is  a bound variable which must be  matched to  some   WFT ,   Q , 

then we may neither  substitute for    x ,   nor introduce   x   via substitution. 

Consequently we must either eliminate    x    altogether  or else  reduce   Q , 

directly or indirectly,   to some    x    which is  already a   WFP   of   Q .   Similar 

remarks  apply to the  matching of any bound variable  with arguments,   say 

x(S,,  . . .  S ),   to some    WFT, Q .     (See  section 4.) 
1 n 

Section  3.     WFTs   which begin with a Quantifier 

To match   (^x)P(x)   and   (Ey)Q{y) ,   we first apply   alphabetic  change  of 

bound variable  to get   (E2)P(z)   and   (Ez)Q(z) .      Then match   P   and   Q   (re- 

membering,   of course,   that no  substitution is  allowed for   z ).      The  only 

other   WFTs   which can match   (Ex)P   are   y   and   f(T1,  ...   T ).    The former 
1 n 

has  been covered above and the latter will be  covered in Section 4. 

-10- 
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In similar  fashion,   we   start the  match  of  (Xx,*   . . .  x )P   to 1 n 

(X y # • • • y )Q   hy applying alphabetic  change  of bound variable.     In addition, 

we can match    (Xx,,   .. .  x )P   to   R   by applying  special  conversion to     R   to 
1 n 

Jjet   (Xx..,  ... x )(CR3{x,,  ... x )),   provided   R   is  of the proper  type.     (If 
1 n 1 n 

X:    occurs  in   R   we  change  to  some new variable   Z:   in both   WFTs).      Then 

we must match   P   and   CR3(x,,  ...  x ).     Also,   we  may match   (Ax.,  ...  x )P In in 

to   x   as  above  and to   f(T,,  ...   T    )   as  in Section 4. 
1 m 

Section 4.     Functional  Constants  with Arguments 

Next let us  match B (P  .  ...  P )   to   B(Q  .   ...  Q ) .      To do  so we first 
1 n 1 n 

match   P     and   Q    ,    making the  same  substitutions  in the  remaining  arguments. 

Then match the  new second arguments,    P '     and   Q  ' ,   and  so forth.     For ease 

of application,   it may be preferable  in some  examples  to match the  arguments 

in a different order. 

Example  2.     Match   K(x, B(x))   and   D(C(y, D), B(C(E, z,)) .     First match   x 

to    C(y, D) ,      This  can only be  done by  x->-C(y, D) .      Next we  must match 

B(C(y,D))   to   B(C{E,z)).      This  requires   y-y E   and   z-^-D.      The  only common 

instance  then is   K(C(ES D), B(C(E, D))) . 

Obviously   B(P,,   ...   P )   will not match   C(Q,,   ...  Q    ) . In 1 m 

Next,   let us  consider   f(T,,   ...   T )   and   C(S.,   . . . S    ) .      The  general pro- 
i n 1 m 

cedure  is  rather  complicated,   so we will start with an example. 

Example  3.      Match   P ,   which is   f(x, B) ,   to Q ,   which is   C(y),   where x,  y, 

C(y),   and   B   all have  the  betme  tv^e.     There are  two separate  approaches. 

First we  try to  reduce   P   to  soi FP   which matches   Q .      This  can only 
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be  done  by    f-HAu, v)u •      To complete  the  match we must substitute   x->-C(y) . 

The  other  approach in eff-^t replaces    f    by    C    composed with some arbi- 

trary new function.     Specifically,   substitute    f->-(X u, v/Ctg(u, v)) .     P    is thus 

replaced by    C{g(x, B)) ,   and we must match    g(x, B)   to    y .      This  can be 

done by any of the following: 

(1) y>g(x,B) 

(2) g-MXu, v)y 

P)      5-^{Xu»v)u:    y->x (or    x-yy) 

(4)       g-f(Xu.v)v;     y-^B 

Substitutions  (2),   (3),   and (4)  may all be discarded as  special cases  of (1). 

(Follow (1) by    g-ytA u, v)y,g-^{Xu, v)uf   or    g-HXu,v)v  respectively.)     To 

summarize,   we have  two ways  of matching    P    and    Q : 

(1) f^(Xu.v)u;     x-yC{y);     P.Q>C(y) 

(2) f-HXu,vK(g(u.v));     y^g[x,B);     P, Q->C(g(x, B)) 

Here  (1)  and  (2)  are  independent,   since  neither     (XuJv)u    nor     (Xu* v)Ctg(u, v)) 

is  an instance  of the  other. 

Now let us  return to  the  general  case  of matching     P ,   which is  f(T  .... 

T )»to    Q ,   which is     0(5, , . . . S    ) .     It is  clear  that either     C     must be  intro- n 1 m 
duced via  substitution for    f ,   or  else  it must be  introduced  into  some     T       or 

i 
found to be  already there.     (If instead of a constant,     C ,   we whould have  a 

bound variable,    x ,   then only the last of these  is possible.)     The  most gen- 

eral possible   substitution in the former  case  is     f-^(Xu ,   ...  u )C(f  (u , ...u ), 
I nil n 

...  f    (u ,   . . .  u )) .     In this  way    f(T  ,   ...   T )     is  replaced by     C     composed 

with    m    functions  of     T,,   . . .   T We  then have  to match  in  succession 
1 n 

MT.   . . .   T )    and    S. ,   for    i   =  1.   2,   . . .   m . 
*     i r. i 

In the  latter  case,      P    must have  the  same  type  as    T.     and     T.     must 
7 r i i 

match  some  initial  segment of    Q    (with brackets  removed,   unless  the  initial 

segment is  all  of    Q ).     We  shall now resort to a (partial)  analysis  of the 
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hierarchy of the   "arguments"  of    C .      Suppose     Q     is     CC{S  ,   ...   S )2 

(S     ,   ...   S   )     and     T:      matches     C(S  .   ... S    ).      Then we  must  substitute 
p+l, m i 1 p 

f->(Xu  .   ...  u )(ui(f        (u.,   ...   u ),   ...  f    (u  ,   ...u ))) .      P    is   thus  re- 
I n     i   p+i   -1 n mi n 

placed by     T (f       (T .   . . .   T ),   . . .  f    (T.,   ...   T )) .      To  complete  the match r 'ip+11 ^n ml n 
we  must match in  succession     T.      and    C(S  .   ...  S    ),   f   ^(T,,   ...   T )     and i 1 m       p+JL     1 n 

S x1   f    (T..   ...   T )     and    S      ... 
p+l,  ml n m 

Example  4.     Match    f(x,y)     and      [B(C)]     (D) ,    where     f    has  type 

(d,{dfe),e),   x has  type  d,   y has  type  (d, e),   B has  type{c, (d, e)),      C has 

type     c ,   and  D has   type  d.      No pertinent relations hold among  types    b,c,d, 

and  e .      First we  try    f-HAu, v)   CB(g(u, v))3     (h{utv)),   replacing  each "argu- 

ment"  of     B    in    tB(C)3   (D)     by an arbitrary function of two variables.    We 

must follow up by matching     g(x, y)     to     C     and    h(x, y)     to     D .      The first 

can  only be  accomplished by    g-HAu, v)C •      There  are two ways  to accom- 

plish the  second:     h-HAu.>v)D    and    h->-{Au,v)u,   x-^-D . 

Since  the  second argument of    f    matches  an initial WFP   (minus  the 

brackets,   of course)  of      ZB{C)2   (D) ,   we  must also try    f-f-(X vi, v)(v(h(u, v))). 

Then we  must match    y    to     B(C)     and   h(x,y)     to    D .      The first obviously 

requires    y-^-B{C) ,   and the   second leads  to the  same  two  substitutions  as 

before.     We  have  then a total  of four  ways  to  effect the  match: 

(1) f-HXu,v) tB(C)3   (D) 

(2) f-y(Xu,v) CB(C)J   (u);     x-^D 

(3) f->.{Xu,v) [v^ (D);     y-^B{C) 

(4) f^{Xu,v) Cv:   (u);     y^B(C);     x-^-D 

The four   sets  of substitutions  are  independent,   but in each case  the  resulting 

WFT    is      [:B(C)3   (D) . 

With minor  modifications  the  same  procedure  as  above  can be  applied to 

match  P,   which if    f(T,,   . . .   T ) ,   to     Q ,   which is  {Xu.,   ...  u    )S ,   or  to In 1 m 
R ,   which is     (Ex)S .     In this  case  no proper  initial  segment of    Q    or     R 
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can be well formed,   so the  situation is  a little  simpler.     If some    T.   matches 
J 

Q    or    R  ,    we  must try reducing    P    to    that    T. .     Also,   we  must try 

f-HXv..   ...  vnHAii  ,  ...  u^gfv^   ...  vn)  or    f-H^Vj.   ...  vn)(^x)g(v1,   ...  v^ , 

respectively.     With either  of these  substitutions,   we must complete  the  match 

by matching    gCT.,  ...  T )    and    S . 

Section 5.     Distinct Functional Variables with Arguments 

Next,   let us match    f(S,,   ...  S   )    and    g(T1,  ...   T ) .     Again we  shall 
1 m in 

give an example first. 

Example 5.     Match    P f   which is    f(K, B, C(D)) to    Q ,   which is    g(K(B), 

C, D) .     First we must match each argument of    f    to an arbitrary function 

of the arguments of    g ,   and vice versa.      There  are  six matches to consider: 

(1) K   to   g'fKfBKC^D) .      The  only match comes from    g'-^lX11, v, w;K . 

(2) B   to   g'fKfBhCD).     Substitute    .g'-y^ Xu, v, w)B . 

{3)   C(D)   to   gl(K(B),C, D) .     The matching substitutions are: 

g^Xu,v,w)C(D) 

" v(D) 
11 v(w) 

"       C(w) . 

(4) K(B)    to   f'fK, B, C(D)) .      The  matching  substitutions  are: 

f'-HXu,v,w)K(B) 

"       u(B) 

"       u{v) 

K(v) 

(5) C   to   f'(K,B,C(D)) .     Substitute    f,->(X u, v, w)C . 

(6) D   to   f,(K,B,C(D)) .     Substitute    r-y{Xii. v, w)X) . 
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Now we put all these matching  substitutions together,   using the appropri- 

ate bound variables  instead of the  actual arguments  of    f    and    g  .     We  gev: 

f-r(X u, v, w)h(u, v, w, w, w, v.s K(B), u(B), u(v). K (v), C, D); 

g-M,su, v, w)h(K, B, C(D), v(D), v(w), C(w), u, u, u, u, v, w); 

P, Q>h(K. B. C(D)f C(D), CtD), CID), K{B), K(B), K(B), K(B), C, D) . 

Any other matching substitution will be a special case  of this  one. 

Incidently,   this example  disproves the  conjecture  that    f(S ,  ...  S   )   and 

g(T ,  ...   T )    can be matched by regarding   f   and   g   alternatelv as held con- 
1 n 

stant.     If    g    is held constant here,   we  can not use  the the  third argument of 

f .     That is,   we must use  a substitution such as   f-y (X.U, v, w)g(u(v), C, D) . 

Likewise,   if    f    is held constant,   we  can not use  the first argument of    g . 

Returning to the  general problem of matching    P ,   v hich is    f(S ,  . . .  S   ), 

to   Q ,   which is    g(T,,  ...   T ) ,   here  too we must match each   S,    to   g, 0     1 n k k 
(T,,  ...   T )  and each   T.   to   f,(S,,   ...  S   ) .     With regard to types,   if each 
In j j    1 m 

S.    has type   b     and each   T.   has  type   c.,   then   g     must be  a variable  of 
K K j j K 

type    (c,.   ...  c  , b. )   and   f.   must be  a variable of type    (b  ,   . . .  b    ,c.) .    Un- 1 n    K j 1 m    j 
fortunately,   we may not be  able to combine  all these matches  into one pair  of 

substitutions  for   f   and   g ,   since  they may involve  different substitutions for 

variables  inside  the arguments  of   f   and   g . 

Suppose   x ,   ...  x     are  all the free variables of the    S's   and   T's .     Let 
1 d 

P      (S ',   ... S   •),...  P.      (S '.  ...  S   ') be any set of   WFTs   from a MMS  for 
hi    I «* J.a     1  : m 

J 

f.(S ,   ...  S   )   and   T.,   where   S '   is  the  instance  of   S     which results from 
j    1 m j p p 

the substitutions used in deriving the    WFT   in which it lies.     Likewise,   let 

Q,    .(T',   ...   T '),...  Q,   L  (T ',  ...   T ')   be  any  set of   WFTs   from a 
k, 1     1 n k, b,      1 n 

MMS   for   g.CT.,  ...   T )   and" S,   .     Now we must reconcile  the  different sub- k    1 n k 
stitutions made for   x  ,   ...  x     in all these   WFTs.    Suppose    P.,,   ...  R     are 

id 1 c 
all the  substitutions made  for    x     in the various matches.     We must find a 
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MMS   for  this  entire  set of   WFTs ,   extending  our  matctrng procedure  in- 

ductively from pairs  of   WFTs   to c-tuples  of   WFTs .      Let   W,»^«   ••-    be 

such a  (possibly infinite)   MMS .      Then we  adopt the  substitution   x ->-W 

and proceed to reconcile  the  substitution^  for    x   ,   then for x  ,   etc.      For 

each  q ,   etc. ,   we  have  a matching  substitution in: 

H.(XV ... »JT^.^V ... uj, ... Pli!L^v ... V 

•••   Pn.a (ui---- V-'W  ■•    Um); 
n 

g^.(Xui» ••• u )h(ui ••• u»' ••• u 'Qi i(ui' ••• uJ'^i ■> 0^^   %   1 n        1, 1 n     1,1    1 n       1,2 

(u ,   ...  u ),   ...  Q (u ,  ...  u )); 
1 n m, b        1 n 

m 
x.-V W ;    x ->- etc. 

We  return now to  our  MMSs for  S,    and   g. (T,,   .   .   T )   and for   T.   and 
k &k     In j 

f.(S  ,   . . .  S    ),   choosing a new combination of   WFTs   from them.     It is  not 
J    1 m 
actually necessary to try every combination.      If all  the  substitutions  for x's 

required by one match are  also    required by another,   there  is nothing to be 

gained by trying a combination of matches which includes  the   second but not 

the first. 

Before  we  give  another  example,   we will  show that every match between 

f(S ,  . . .  S    )  and    g(T  ,   ...   T )    can be  effected by  substitutions  of the form; 
1 m 1 n 

f-HXu,.   •■.  u    )h(P (u  ,   ...   u    ),   ...   P  (u  ,   ...  u    ),u  ,   ...  u    ); Nl .mil m al ml m 

g-MXvj»   •••  Vj^V   *"  Vn'Ql(vi'   "•  Vn^   "'■  Qb(Vl'   '"  Vn)' 

Where,   of course,     P.{T.,   ...   T )   is  to be  matched to   S,,  etc.     All  such 
1     1 n 1 

substitutions  are  special cases  of those  described  in the preceding paragraph, 

since  those were  constructed from   MMSs   for   g,(T  ,   ...   T )   and   S  ,  etc. 
11 n 1 

uei   f\o1,   ...  om ;     which is   fhe  same  as    Q'(T  ',   . . .   T  '),   be  a 
1 n 

common instance  of P,   f{S,,   ...  S    ),   and    Q,   g{T T ),   where   S ' is 
I re. In i 

the  instance  of S.   which results  from the   substitutions  used  in deriving   P' 
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from   P ,   etc.      Consider  the way  in which the   S  '    and   T.'   are  nested  in   P' . 
K j 

Each occurrence  of S '   is either  (1)  a proper part of an occurrence  of a  T', 
k J 

or  (2)  an expression   Q (T ',   ...   T ')   in zero or  more   T.'s.     Let us  number 
a 1      n J 

the occurrences of S ' in (2) as .S/, ,3 ', ...  S ' so that  S ' is k I   i-       c   I cm aK 
Q (T ',  ...   T ') .     Any occurrence  of a   T'   which is  not part of such an ex 

a    1 n J 
pression must be   an expression   PJJS.'I  ...  S    ')   in zero or more   S^s . 

Number these occurrences  as  above  so that   .T.'   is   P.i'0,'.   •••  S    ') , 
bj Di m 

Now   P»   can be  rep-rded as   Z(.S ',,8',   . • •  ^S    '.P (S ',   ...  S    '),  ... 11^1 cmll m 
pJ{S ',  ...  S   ')),   which is also   Z{QATK  ...  T ^^^(T',  ...   T '),  ... Q rd    1m Aln6in c 

(T  ',   ...   T  'KIT  ',   ...  dT  ') .     We can match   P   and   Q   by the   substitutions: 
1 n 1 n 

l+(\nv  ...  ujh^.u^  ...  u^P^u^   ...  uj.  ...  Pd 

(u^   ...uj); 

g-HXv  '"  Un^Ql(ur   ■"  V'02^!'   "*  Un^  •"  ^C^i*   •••  V' 
u.,   . . .u ); 

1 n 

sk>sk,; Tj->Tj' • 

The  original matching  substitution is  an instance  of this  match gotten through 

h-HXv ... *c+d)z(YV ••• W- 

Example  6.       Match    P ,   f(x),  and   Q ,   g{B,y),   where    x   and   B   have  typs   b 

and   y   has  type^-c. .     We must use the following: 

(1) Match   f (x)   and   B   by   f->(Xu)B. 

(2) " " " f-y(Xu)u,x^B . 

(3) Match   f2(x)   and   y   by   y-yf2(x) . 

(4) Match   g.iB.y)   and   x   by   x-^r P     i, y) • 

Since  (1)  does  not require  any  substitutions  for    x   or   y ,   we  may use  it in 

each substitution for   f   and   g .     Using  (1)  alone,   we have: 

fXXu)h(B);    gXXu,v)h(u);     P,Q-yii(B) . 
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Combining  (1)  and  (2),   we  have: 

f^(Xu)h(B,u);     g-y(Xu,v)h(u,u);     x-^B;     P,  0-Vh(B  B) . 

Combining  (1)  and  (3)     we  have: 

f-HXu)h{B,f2(u));    g-^{X u,v)h(u,v);     y>f2(x);     P,  Q>h(B,f2(x)) . 

Combining  (1),   (2),   and  (3),   we have: 

fXXu)h(B,u,f2(u));    j-V{Xufv)h(u,u,v);     x>B;     y+i^*). 

i.e..     y>f2(B);     P,  Q-yh{B,B. f2(B)) . 

Combining  (1)  and  (4),   we have: 

l:-HXu)hrB.u);     g-^(X u, v)h(u>g1(u, v));     x-^g^B.y).     P, Q-^MB^^B, y)). 

To cou bine  (1),   (2),   and  (4),   we  must reconcile  the  different substitu- 

tions for   x   in  (2)  and  (4)  by r.iatchiug   B   and   g  (B, y).      This  may hf>  done 

"by g —^(Xu, v)B   or by   g -^.(Xu,v)u,   but in either  case we  end up  substitu- 

ting   x-^-B,     f-^^Xu)h(E>uJ u),   and  g-y(X UJ v)h(u, u, u),    which is  clearly redun- 

dant. 

In combining  (1),   (3),   and  '-«),   we  encounter  a subtler  conflict of substi- 

tutions.     After  substituting    y-yf  (x), g  (B, y)   becomes   g  (B,f?(x)) .     We  can 

not simply gubstitute   x->g  (B, f (x)).,   but must match   x   and   g.lB.f  (x)) .      Due 

to a difference  of types,   the latter  can not be  reduced  to   x ,   but   x   can be 

eliminated  by   g.-yiAu, v)g   (u)   or  by   f-y (Au)z .      The  first elimination 

leads  to the  match: 

f XX u)h(B, u, f2(u));    g>{X u, v)h(ui g2(u), v); 

x^g2{B);     y-^g2(B));     P, Q->h(BJg2(B), 

f,(g-,(B))) . 

This  is moje  general  thein the  combination of  (1),   (2),   and  (3),   as  can be seen 

by making   g     the  identity function.      The   second elimination leads  to the  mEitch: 

f-V(X u)h{B, u,z);    g>{XuJv)h(uJ-g  (u, v),v); 

x-VgjfB.z);     j^-z;     P,   Q>h{B> g^B, z), z) . 

It is not really necessary to use a new variable,  z,  in this case.    The match can als 

be accomplished by: 
f-H X u)h{B, u, y);     g->-( \ u, v)h(uf g^ (u, v), v); 

x^-g  (B,y);     P.   Q->h(E,g  (B,y),y). 
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Seciion 6.      The  Same  Functional Variable  with Different Arguments. 

Finally let us  match    fiS,, . . . S )   and   fCT ,. . .   T ) .      This  is  one case 
1 n 1 n 

which may lead to an infinite  MMS ,     We  start with an axample. 

Example   7.     Match   P,   which is   B(i(x, M), f, x, y),   and     Q,   which is 

B(f{y, N), f, x, y),     where    x    and    y    are  singulary function variables  of the 

same  type.      To match    f(x, M)     and    f(y, N)    we must either  eliminate  the 

second argument of    f    directly,   or   "hide" it inside  the first argument,  and 

then replace  the  first argument.      There  are  two wayp  of eliminating     M 

and    N    directly: 

f-M/u,v)h;     P.   Q-^-R.   R being    B(h, (/u, v)h, x, y); 

and 

f-h(Xu,v)h(u);    x-fy:     P,   Q-^-W,     W    being 

B(h(y).(Xu,v)h(u)>y,y) . 

For  every    n,   n=l,2,3    we  can also match    P    and    Q    by: 

f-HXu.v)g  (u,u(f  {u,v)),. . .u(f  (u,v))); 
n 1 n 

x-^;Xu)r;     y-^{Xu)r;     P,   Q-^ Y^     Yn being 

B(g  ((Xu)r,r,...   r),(Xu,v)g  (u,u(f (u,v)), 
n n i 

...  u(f (u,v))).(Xu)r,(Xu)r). 
n 

For     k<i ,     Y,      is  an instance  of    Y.     but    Y.     is not an instance  of    Y. 

Using the fact that    {R,W,Y     Y  ,...}     is  a MMS for     P    and    Q,   we  shall 
L    f Cd J 

show that    P    und    Q    have no GMS.     Assume     JZ  ,...Z  ,...1     is  a GMS 

"or     P    and    Q .     Some     Z.      must be  an instance  of some     Y  ,   since   R   and 
b c 

W    alone  obviously do n     for  a   MMS .     Y     ,     is  in turn an instance  of some 7 c+1 
Z,.     If    d=b ,   then    Y     ,     is  an instance  of    Y    .     This  is false.     If   d=b ,   Z, 

d c+1 c b 
is  an instance  of    Z , .   by transitivity.      This  contradicts  the  definition of a 

d 
GMS .     Hence    P    and    Q    have no    GMS. 
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For  the  general case  of matching   P , £(5,  ...  S ),    and   Q,  f{T  .   ...   T ), B ^ 1 n In 
we  ahall assume  that   S.   and   T.   match for    I ij <m,   but do not match for 

J j 
m< j in        We  must consider  every subatitutior  for   f   of the form 

f-nXu.,   ...  u  )g(u  .   ...  u    ,u  »f (u  ,  ...  u ),f (u  .   ...  u ),   ... 1 n        1 m    i    i, i, i    i n     k, i, c    i n 

'I.I.P^V ••• ^^i^i.z.i^i' •'• \h ■■■ 'i.z.p^V ••• ^ ••• u2 
(f 

2,1, Mu.,  . . . u ),  . .. f (u .... u )),... u   (f (u .... u ),...)) . 
• 1 n 2,1, pi n mm, 1,11 n 

The first  subscript on   fv. .    is   the  same  as  that of the   n,    in whose  pcope 

it occurs,   the  second is free to run from   0   (vacuous) to ao   ,   and the bounds 

on the  third are determined by  the  type  of   CL   .     Some  of the    u 's   may be 

missing.      The  match is  completed  by matching  simultaneously the  correspond- 

ing arguments  of   g . 

To  show that this  gives  a MMS ,   assume   R   is a common instance  of   P 

and   Q .      Then   R   must have  been obtained from   P   and   Q   by substituting 

f->-(Xu.,   ...  u )V(u  ,   ...  u ).     We  may assume t^at u , m<kin,   occurs 
1 n        1 n k 

only within the  scope  of some    u.,   1 <j<m .     Any other  occurrence  of u 

must be eliminated by a substitution for  a free variable  of   V   (since  S,    and 

T     do not match),   and  such a substitution cm be  made  at the beginning to 

get a new   V .      Therefore   V   is  an expression in   u       . . .  u    ,    with and with- 
1 m 

out arguments,   the  arguments  being expressions  in   u  ,   . . .  u    .      V   is  thus 

an instance  of an expression of the  type given in the  above paragraph. 

Section  7.     Another  Use  of Indirect Elimination 

This  technique  of indirectly eliminating an argument by hiding it inside 

another  argument  can also be  applied to the problem of matching a single 

variable  to a    WFT .      Details   of ehe  general  case   are  omitted,   as  they are 

quite  similar  to wha^ we have just been through. 
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Example  8.     Match   B(x,i)   and   B(f(x,y).f) .      We  must either  reduce 

f(x,y)   to   x   by   f-V{XuJv)u,   or  else  eliminate   x   by: 

f-».(Xu.v)h(v,v{f1(u)),   ...  v(fn(u))), 

y->-{Xu)z 

x-yh({Xu)z, z, z,   . .   z) . 

Once  again we have  an infinite  MMi ,    n   being an arbitrary integer. 
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;HAPTER  3 

CONDITIONS F^R   THE  MMS  TO  BE INFINITE 

Section  1.      Necessary Conditions 

Let us  examine  the  conditions  under which the  matching  of   f(S,,   ...  S ) 
1 n 

and   f(T,,   .   .   T )   leads  to an infinite  MMS.     We assume  that these  WFTs '   1     . n 
occur  as parts  of larger  WFTs,    P   and   Q .     Otherwise a QMS   "esults from 

the  single  substitution  f-^-fAu »   ...  u )h .     Also,   we  acsume  that the context 

of a   WFP   unUer discussion does not require  its  elimination in the matching 

process.     For example,   we will not consider the  occurrences  of  f   in the cor- 

responding   WFTs   g(A(f))   and   g(B(f)) . 

As  shown by Example  7,   the key step in establishing an  Infinite   MMS   is 

"hiding" some  argument inside  another.     Accordingly,   the  following three  con- 

ditions  are necessary for  our   MMS   to be  infinite. 

First,   there must be  something to hide.     One possibility is  that some 

arguments,   say,    S     and   T ,    do not match,   so  that their  elimination,   direct 
n n 

or  indirect,   is  essential to any match.      The  other possibility is  that   S      and 

T     m?,tch,   but that matching them requires  an otherwise  unnecessary  substi- 

tution for  some variable which also occurs  outside   S     and   T If neither of 
n n 

these  is  the case,   we may match all the   S.   and   T.   in succession,   as  if   f 
3 J 

were a constant. 

As  an alternative,   we may have  to eliminate  some variable because  it 

occurs  in the wrong place,   as  in Example  8.     If it is necessary to eliminate 

S     from   f (S,,   ...  S )   because  it contains  a variable, x.,   which is  to be 
n 1 n 

matched to all of   f(S,,   ...  S ),    we may treat the case  as  if   x   were   f(S,,   ... In 1 
S     ,,T),    where   T   does  not match   S  .     Indeed,   after  eliminating   S  ,   we shall 
n-1 n n 

replace   x by whatever  remains  of   f(S,,   ...  S ) . 
1 n 
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Second,   there  must be  a hiding place.      Some  arguments,   say   S       and 

T  ,   must match in a way consistent wi'h the  matching  of the  rest  of   P   and 

0 .     Furthermore,   for   some k ,   it mu<ät be possible  to  eliminate   u     from 

C S. 3   (u.,   . . . u )   and C T. ] (u., . . .  u  ) .     Otherwise  it would be  necessary 
lip lip 

to  eliminate  the non-matching arguments,     S     and   T ,    directly. 

Third,   there  must be   something left of the  hidden arguments  after  the 

match is  completed.      This  means  that   f   must occur   somewhere  in   P   or   Q 

without   S     or   T     as  its  first argument.     Since  the  arguments  to  be  hidden 

in   S     and   T     are  to be  completely eliminaved eventually,   they could jast as 

well be  eliminated from   f(S S )   and   f{T  ,   ...   T )   directly if   f   did not 
In In 

also occur with some  other first argument or v/ith no arguments  at all. 

Section 2.      Sufficient Conditions 

If we  assume  in addition that all other occurrences  of   f   in   P   and   Q   are 

without arguments  and do not need to be matched to other   WFTs ,   then wc 

have  sufficient conditions  for the   MMS   of   P   and   Q   to be  infinite,   provided 

P   and   Q   match at all.     For  simplicity of notation,   assume  now and hereafter 

S     and   T     have  the  type  of singulary functions. 

Let  R     be   (A u ,  ...  u )h (u , u. (f. (u,,  ...  u )),  ...  u (f (u ,  ...  u ))) . 
q 1 nqllll n Iql n 

We  can match   P    and   Q   by substituting   f-^R  ,    followed by  the  substitutions 

which eliminate  the  arguments  of   S     and   T     and match the  rest of   P   and   Q . 

This  match is  not an instance  of any match derived from   f-V{Au  ,   ...  u ) 

h (u ,  . . .  u    ,u (f (u ,   . . .  u )),  . . .  u (f (u ,   ...  u )),u (g  (u ,   ...  u )),   . . .   ), 
si mill n Isl n       Z    1     1 n 

where    s < q .      If   u     is  not an argument of   h     in the  latter   WFT   (and  it can 
^ n * s 

not be  if   S     and   T     do not match),   then there  is  no way to introduce   u, (f   ., 
n n 1   s+1 

(u u )),...  u, (f (u,,   ...  u ))    as  arguments  in passing from   h     to   h    . 
1 n Iql n sq 

If   u     is  an argument of   h  ,   then   S     and   T     must be matched,   which requires 
n s n n 
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a  substitution  somewhere  else  in   P   and   Q   which was  not necessary following 

f^R  .      Thus we  need to make  substitutions  of arbitrarily great length for   f 

in order to get a   MMS   for   P   and   Q .     As  in Example   (,   ^here will be no 

CMS . 

The  above  argument is  not affected if,   besides  occurrinj without arguments 

and with arguments   S,,   ...  S     and   T .  , , .   T    ,    f   occurs  also in the  WFTs 0 1 n 1 n 
f (X.,  ...  X  )   and   i(Y.,   ...   Y  ),   which are  tobe  matched to each other, with 
In In 

the following provisos.      X     and   Y     must match  (consistantly with the  match 

of   P   and   Q ),   and either  for   some   k   it is  possible  to eliminate   u     from 

CX.l   {ulf   ...  u )   and   from  [Y,]   (u,,   ...  u ),   or  else   X     and   Y     match, 
lip lip nn 

If    f    occurs  only with arguments,   the  situation  is  quite  complicated. 

Some exmmples follow. 

Example  9.     Match    B(f(x, M), f{z, w), x, y)   and   B(f(y, N), f(z, w), x, y).     We 

shall list the matching  substitutions  and the  resulting  WFTs. 

f-HXu,v)h 

R: B(h,h,x,y) 

f-HXu,v)g0(u);     x-^y 

Y0: B'g0(y),g0(z),y,y) 

f-HXu,v)g  (u,u(f (u.v)),  ...  u(f (u,-))); 
' n 1 n 

x-HAu)r;     y-^-{Au)r 

Y  : B(g  ((Xu)r,r,   ...   r),g  (z,z(f (z.w),   ...  z(f (z, w))), (X u)r, (Xu)r) 
n n n i n 

Here     NR,   Y   ,   Y  ,   ..,/        is  a MMS,   but in this  case   Y     ,    is  an instance 
1 0        1 J n+1 

of   Y     gotten by substituting   g-HX«  ,  ...  u )g   , , (u,, u  (f (u , w),   ...  u (f 
n n i n   n+l    1     1    1    i In 

(u.fq))).     For    n=0 ,   add also  the  substitution   y->"(X')r'      Thus     JR,  Y   r 

is  a finite   GMS   for  these  two   WFTs. 

Example  10.      Match  the following: 
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(Ew)B(f(x,M),f(z,w),x.y) 

(Ew)B(f(y.N),f(z,w)lx,y) 

We  get a MMS   here  by using exactly  the   same  substitutions  as  in Ex- 

ample  9,   but in this  variation we  can not  introduce   w   via a  substitution 

in order  to reduce   Y     ,    to   Y    .      Therefore  there  is  no finite  GMS . 
n+1 n 

Example   11.     Match the  following: 

B{£(x,M).f(z,v;),f(w, D),x,y) 

B{i(Y,N),i{z,C),i{w,D),x,Y) 

The  technique of Example  9 which showed   Y to be  an instance  of   Y 

will not work here,   because   D   and   C   are different constants.     Again there 

is no finite   GMS . 
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CHAPTER  4 

FINDING A SINGLE  COMMON INSTANCE 

Section  1.     A Method which will not Work 

-Although an infinite  set of subs citations may be required to find a   MMS 

when we have  to eliminate  an argument from   f(S,,  . . .  S ),    it is  to be hoped 
1 n 

that a finite  set will  suffice  to tell whether  or not our   WFTs   match at all, 

For  instance,   it seems  reasonable  that we  could find a match,   if any existed, 

by using each eligible  argument as  a  ' aiding place" only once.      That is,   we 

should      y the  substitution   f->^Au ,  ...  u )h(u,,  ...  u    , u {f (u ,   . . . u )),u 
1 nl mill n       c. 

f (u ,  ...  u )),...  u    (f   (u.,   , . .  u ))) . 
2    1 n m   m    1 n 

However,   it turns  out that there  is no way of telling how many of our 

possible  substitutions we  must try before we  find  the  first match,   unless we 

examine  the  complete   WFTs   to be matched.      The following example  demon- 

strates  this 

Example  12.     The   WFTs   to   be matched are   f(x,B)   and   f(x, C),     as  im- 

bedded in: 

P : (Xy.z)I>(f(x.B),f(y,z)) 
n 

Q : (Xy.s)D(fix,C),G(y,y(H1(z)),   ...  y(H (z))) 
n in 

Since   y   and   z   ar-, bound variables,   they may not be  introduced by  substitu- 

tion.     In order  to match the  second arguments  of   D ,   therefore,   we must 

tuck the  second argument of   f   ino ie  the  first argument   n   times.      The short- 

est matching  substitution which we  can use  for  the  first arguments  of    D, 

f (x, B)   and   f(x, C),   is  therefore    X-V( A u, v)c{u, uih, (v)),   ...  u(h (v))) .      We can 
1 n 

then complete  the  match by substituting   g-^G , h ->-K ,   ... h ->-H Since   n 

is  an arbitrary integer,   we have  established our claim. 
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The use  of bound  variables  in this  example  can be  avoided by a change 

similar  to that used in passing from Example   10  to Example   11. 

We  can even modify Example   12 to show that examining all the  WFPs  of 

the   WFTs   to be  matched which contain   f   or  are  to be  matched to WFPs 

containing   f ,   will not be  sufficient to tell how long a substitution wc need for 

f .     Let   P   and   Q   be  as  follows: 

P: (Xy, z)D{f(x, Bhg.g) 

Q :        (Xy.z)D(f(x,C).f,G(y,y(H1(z)).  ... yiHjz))) 

Obviously  the  substitution   f*Vg   (or   g-yf )   is  required,   and this  leaves  us with 

essentially the  same   WFTs  as  in Example   12. 

Section 2.     A Successful Method 

Suppose we  are to match   P   and   Q ,   and among the    WFPs   of   P   and   Q 

which must be matched to each other we have   f(S.    .,. . .  S,     )   and   f'T.      , 
1,1 i, n 1,1 

. . .   T.     )    for i =1,2, . . .  k .     Arrange  the  arguments  so that for  every 
i, n 

i,S,   .   and   T.   .   are eligible   "hiding" places  (see p.       )  for   1 i j 1 m ,   and 

S.    .   and   T        match for    m < j ip ,    m   and   p   being the largest integers for 
1 »J i .J 

which this  is possible. 

Now we  temporarily ignore these parts  of   P   and   Q   and match the  rest of   P 

and   Q.     Each match may require  a substitution    f-MA^.i   ...  u )R(u , . . .  u ) 

If in   R   there  is  an occurrence of a   UL,    p<V^n#   which is  not inside the 

scope  of any   u,,    li j <m,   then that  substitution  must be  rejected as  incom- 

patible with the matching of   f(S    .....  S.    )   and   f(T>   .,  .. .   T.      ) .     If   u. , 
i, 1 i, n i» 1 i i a k 

1 < "k ^p ,   or   u, (Y   ,  . . .  Y  ) ,   occurs  not in the  scope  of any   u.,    i£ j ^m , 
~    "" k    1 q j 

then we must reconcile  the matching of   S.   .    and   T (or   S       (Y   ,  . . .  Y  ) s i.k x,k i,kl q 
and    T.      (Y  ,   ...  Y ) ) with the remaining substitutions  in that particular 

1 i K     1 q 
match of   P   and   Q ,     If   u ,   p< k <n ,   or  some   u ,   m< hSp ,    for which the 

matching of   S.   ,    and   T.   ,    is  incompatible with the matching oi the  rest of 
i , h l i h 

1 
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P   and   Q ,   occurs within the  scope  of   u.,   lijlm ,   then we must reconcile 

the  eliminaticm of that term with the  rest of the  substitutions. 

Any potential match which is not thrown out on one  of the  abovj  grounds 

can be  completed.      The  tentative  substitution for   f   must have  the form 

fXXu.,   ...  u )Z{u ,   ...  U,u  (Z       (u  .   ...  u )),   ...  u  (Z 0>>....  u )), 
I nl pll.ll n 11, n* n 

. , .  u    (Z      , (u,,   ...  u )),...  u    (Z ^u  .   . . .  u ))),     where   some  of the 
m    m, 1    1 n m    m, n       1 n m 

exhibited   WFTs   may be absent,   but none  occur  inside  each other.     We  can 

match   P  and  Q   by substituting  f-y^Au..  ... u )h(u ,  . . .  u , u (f      (u ,  . . . u )), 

...  u    (f (u  .   ...  u ))),   followed by  substituting    h-HAu,,   •••  ut)Z 
m   m, n        1 n lb 

m 
(u.»   ...  u ), f.   .-^(A11,»   ■••  u )Z.    .(u  ,   ...  u )  and also making those  sub- 

1 bi,j 1 n1,}! a 
stitutions which matv-h   S.    and   T^   li i ij>,  and those which eliminate the 

arguments of  S.,   li jim,   which must be eliminated. 

Thus,   in order to tell how long a substitution we need to match all the 

pairs   f(S.,l,   ...  S.,n)   and   f(T. , *,   ...   T.,n),     we must examine  the  substitu- 

tions  required for   f   by the  rest of   P   and   Q ,   and count the number  of times 

an argument occurs with other  arguments  inside  it. 
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