AFCRL-

ADE 16560

66-781

A MATCHING PROCEDURE FOR W-ORDER LOGIC
by
William Eben Gould

/APPLIED LOGIC CORPORATION
ONE PALMER SQUARE
PRINCETON, NEW JERSEY

Contract No. AF 19(628)-3250
Project No 8672
Scientific Report No. 4

October 15, 1966

Distribution of this document is unlimited

This research was sponsored by the Advanced Research
Projects Agency under ARPA Order\No;—700-.

;
H
Prepared FEB 10 1967
for :
s u s
Cf
AIR FORCE CAMBRIDGE RESZARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

ARGIIVE GOPY

3
E
=
%
g
3
£
=
E
5
E
t
=

4 El‘ﬂg
it i

AFCRL-

66-781

A MATCHING PROCEDURE ¥OR W-ORDER LOGIC

by
William Eben Gould

APPLIED LOGIC CORPORATION
ONE PALMER SQUARE
PRINCETON, NEW JERSEY

Contract No. AF 19(628)-3250
Project No 8672

Scientific Reporiv No. 4

October 15, 1966

Distribution of this document is unlimited

This research was sponsored by the Advanced Research
Projects Agency under ARPA Order No, 700

Prepared
for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

PREFACE

This paper was presented as a doctoral dissertatior to Princeton

University, under the supervision of Dr. James R. Guard of Princeton
University and Applied Logic Corporation. Portions of the work were
financed by a Science Faculty Fellowship from the National Science
Foundation while the author was on leave from Washington College.
The problem investigated is pertinent to the project on ''Semi-Automated
Mathematics'' being carried out by Applied Logic, originally for the Air
Force, Cambridge Research Laboratories and currently for the Advanced
Research Projects Agency. More specifically, the problem is proposed
in the report listed as (3] in the bibliography.

TABLE OF CONTENTS

ABSTRACT
Chapter 1. W -ORDER LOGIC
Section 1. Formation Rules
Section 2. Conversion Rules
Section 3. Matching
Chapter 2. THE MATCHING PROCEDURE
Section 1. Preliminaries
Section 2. Atomic WFTs
Section 3. WFTs which begin with a Quantifier
Section 4. Functional Constants with Arguments
Section 5, Distinct Functicnal Variables with Arguments
Section 6. The Same Fuactional Variable with Different
Arguments
Section 7. Another use of Indirect Elimination
Chapter 3. CONDITIONS FOR THE MMS TO BE INFINITE
Section 1. Necessary Conditions
Section 2. Sufficient Conditions
Chapter 4. FINDING A SINGLE COMMON INSTANCE
Section 1. A Method which will not Work
Section 2. A Suc ~essful Method
BIBLIOGRAPHY

DOCUMENT CONTROL DATA - R&D

Page

L N * I R

11
14

19
20
22
22
23
26
26
27
29
30

et st ank 0 s

e bbbt

-

ABSTRACT

Formation rules are presented for an (U -order logic with >\
operator in which each term has a well defined type. Transformation
rules are given defining)\-conversion, gpecial conversion, substitu-
vion, and alphabetic change of bound variables. The not.on of one
term being an '"instance' of another is then defined using these trans-
formation rules. The main problem of the paper is to develop a
"'matching procedure' for pairs of terms, so that every comm:n in-
stance of the two given terms is an instance of some term produced
by the matching procedure. This is accomplished by aralysing the
terms according to the formation rules, matching the outermost parts
first, then proceeding inductively inward. Examples are given to show
that an infinite set of terms may be needed for this purpose. A pro-
cedurc is developed for producing at least one common instance, if

oqae exists,

CHAPTER 1

W -ORDER LOGIC

Section 1. Forr.ation Rules

The Lasic system with which we shall be dealing is (J)-order logic, where-
in each term has a well-defined type. The formation rules for types are
quite simple. We shall have (at least) two basic types, P and Q, which

are intended to be the types of propositions and individuals, respectively. If

f is a function of n variables with types Tl' Tn respectively, and
. h .
with values of type T ., then f has type (Tl, Tn_+1) More formally,
our rules will be:
(1) P is a type,
(2) Q is a type,
(3) if Tl' Tn+1 are types (for n=1,2, ...}
y +00 T i .
then (T1 n+1) is a type

The formal system shall contain the following atomic symbols:

(1) infinitely many variables and constants of every type;
(2} punctuation symbols -), (,] , [, and , ;
(3) quantifiers - A, £, and X(’Church‘s A\ operator, see [1]).

Among the constants of type (P, P, P) we may have the usual propositional
connectivzs, D ,v , &, and =, which may be employed in the usual fashion

(between arguments), and among the constants of type (P, P) we rnay have~,

negation,

We shall present rules for the construction of well formed terms (WFTs),
each of which has a type. A WFT of type P will also be called "a well-
formed formula (WFF)",

-l-

(1) Any constant or variable of type T is a WFT of type T .

(2) If Wl. o o .Wn are WFTs of types Tl' ce Tn respectively
and V isa WFT of type (T;,...T), then (vl (wl,...wn)
is a WFT of type Tn+1' Wl will be called ''the i-th argument
of V"

(3) I W is a WFF and x is a variable, *hen (Ax)(W) and (Ex)(W)
are WFFs,

(4) If xl, e X are variables of types Tl' ce Tn respectively and

W is a WFT of type T

n+l))
‘Ne shall adopt the following conventions on metavariables:

ntl’ then (/(xl,...xn)(W) is a WFT

of type (Tl....T

b, ¢, d, e represent types;
f, g ... z represent (system) variables, with the iniormal agreement
f, g, and h will be preferred when the functional nature of the

variable is to be stressed;

B, C, D, F,...N represent constants (A and E being reserved for
quantifiers);

P, Q R, ... Z represent WFTs,

Any metavariable may occur with or without subscripts or ', and any

variable occurring as a subscript is a numerical variable. Variables repre-
senting terms may occur with compcnent well formed parts (WFPs) displaved
in parentheses, with substitution indicated as usual by replacement of displayed
symbols. Note that P(xl,... .';n) is the same WFT as P, the notation

simply calling attention to the variables x ‘X which may occur inside P .

K
C] (xl. o xn), however, represents the result of applying the function P

to the arguments x o X Parentheses or brackets may be omitted when

1’
there is no possibility of confusion.

Whenever an algorithm calls for the introduction of a new variable, we
assume it to be the first unused variable of the proper type in alphabetic

order.

Section 2. Conversion Rules

We need not be ccncerned with rules of inference in general, but there

are four conversion rules which we must define.

Alphabetic change of bound variable: If y does not occur in P » then
from (Ax)P we may get (Ay)P', where P' is the result of replacing every
free occurrence of x in P by y . The anzlogous rules apply to (Ex)P
and (Xxl.‘, xn)P.

Substitution: If R and T are WFTs and x is a variable of the
same type as T, then we may replace every free occurrence of x in R
by T, provided no free variable of T is captured by = quantifier of R .
The operation of replacing x by T will be written 'x = T", The usual

provision can be made for simultaneous substitution.

)\conversion: From [()\xl, .o xﬂ)R] (Tl’ Tn)’ we may get R!

where R' is derived from R by xl_>T roe X Tn » unless some free

i,
variable of Tl would be captured by this substitution. In that case, we first
apply alphabetic change of bound variable to the appropriate well formed part
of R . Note that X and Tl must have the same type in order for the
original expression to be well formed.

Special conversion: From ()\xl, xn)(E.R] (xl, xn)) » We may

get simply K, and vice versa, provided no x., occurs free in R .

1
If a WFT, B, is derivable from a WFT, C, by successive applica-
tions of substitution to all of C and of alphabetic change of bound variable,

XConversion, and special conversion to WFPs of C » then B will be

called "an instance of C'. If B is-an instance of' D and also an instance of C ,
then B will be calied ""a common instance of D _and C", and if D and C have
any common instance, they will be said to ''match'.

Section 3. Matching

Our primary concern in this paper wili be to find a method of generating
common instances for pairs of WFTs. There are several reasons why this
may be important. Suppose we wish to draw a conclusion from premises R
and S OT. Suppose further that S' 1is a common instance of R and S,
and that T' 1is a corresponding instance of T (results from applying the
same substitutions to T as were applied to S 1in deriving S'). Since
any instance of a WFF 1is a logical consequence of that WFF , we may
conclude T'. This sort of procedure, called matching, is one of the basic

techniques in the semi-automated mathematics of [2], [2], and [4].

Other possible applications might involve substitutivity of equality. Sup-
pose we have two assertations, R =T and W, and some WFP, R', of W
matches R . - We may then apply the matching substitutions to W and re-

place the resulting instance of R by the corresponding instance of T.

It has been shown in [3] that in first order logic any two formulas P

and Q which match have a general matching formula, R, with the properties:

(1) R 1is a ccmrnon instance of P and Q

(2) every common instance of P and Q 1is an instance of R.
Thus, in an obvious sense, R 1is the most general common instance of P
and Q.

An analogous concept for higher order logic is that of a general matching

set (GMS). If P and Q match, then a set S of WFTs 1is said to be a
GMS for P and Q if:

{1) Every WFT in S 1is a common instance of P and Q.

(2) Every common instance of P and Q is an instance of some
WFT in S.

(3) No WFT in S is an instance of any other WFT in S.

Unfortunately, it is not true that every pair of WFTs which match
have a GMS . Therefore, we shall introduce the concept of a major
matching set (MMS) for P and Q, which satisfies conditions (1) ard (2)
above, but not necessarily (3). Obviously (except to intuitionists), every
pair of matching WFTs does haw}e a MMs3 ; namely, the set of all common
instances. It is also obvious that any pair of WFTs which have a finite
MMS have a GMS. Simply run through the MMS in any order, discard-

ing any WFTs which are instances of other WFTs in the set.

However, it does not follow that any infinite MMS can be reduced to a
GMS . Indeed, we shall exhibit several pairs of WFTs which have infinite
MMSs and no GMSs at all, finite or infinite.

S LT LN S TP N T T e A

CHAPTER 2

THE MATCHING PROCEDURE

Section 1. Preliminaries

Our objective in this chapter will be to develop an algorithm, called the
matching procedure, which will produice a MMS for any given pair of WF Ts.
The MMS produced may be infinite, or it may be empty, in which case the
WFTs do not match. Chapter 3 will attack (with partial success) the prob-
lem of predicting when an infinite MMS is necessary. Chapte:: 4 will handle
the problem of discovering, in finitely many steps, whether the MMS is

empty or not.

The matching procedure will be described inductively, according to the
formation rules on page 2. Note, however, that in matching two WFTs we
r iy need to know more than just the MMSs for their component parts. We
may need the substitutions which lead to those MMSs. Two essentially dif-
ierent substitutions may lead to the same matching WFT, but if the variables
replaced occur elsewhers in our overall WFTs , the distincticn between these
substitutions must he maintained (see example 1). Naturally any substitu-
tions called for must bz legitimate in the larger context. For exarnple, B(x)

and B(y) can be matched by x-%» y, but (Ey)B(x) and (Ey)B(y) do not match.

Throughout our matching procedure any variable which is replaced in one
WFT must be replaced in the same fashion in the other WFT . This is to
prevent undoing the matching work which has already been carried out. Since
no such restriction is present in the definition of ''common instance', we shall
start the matching procedure by replacing each free variable of our first WFT

which also occurs in our second WFT by an unused variable of the

proper type. Since this substitution is reversible, we have not changed the
set of all instances of the WFT . For some applications it may be de-
sirable to suppress this operation and insist on having the same variable

occur free in both WFTs .

In order to keep our WFTs in as standard a form as possible, we shall
employ)\conversion whenever it can be applied. Also, we shall employ

special conversion whenever it shortens the WFT.
The iollowing techniques will be useful.

Direct elimination: Suppose S is a WFP of T and S occurs in the i-th
argument of a n-place variable i . Maxnz the substitution f-*()\ul, 000 un)
g(gl-, ui-l,ui RUERE un) . The .esuiting WFT will closely resemble T
except for the absence of an occurrence of S (and of any other WFT which
occurred elsewhere as the i-th argument of f). This procedure is said to

"(directly) eliminate S from T ".

There is also an indirect method of eliminating S from T, which causes

more drastic changes in T . It will be discussed at the end of the chapter.

Direct reduction: Supposz P is f(Wl. Wn) and P has the same type
a8 W‘_1 . The substitution f=»(Xul, un)ui is said to "(directly)reduce
P to W;". Not only wiil P be replaced by W; as a result uf this substitu-
tion, but any other occurrenc.e of f with arguments will be replaced by its

i-th argument.

Indirect reduction: Suppose P is f(Wl, Wn), P and Wi have type b,

4>y

and Wj has type (:1, Cp’b’%+2 cee € b) . Suppose further that the iden-

tity function ()\ul, um)up_':1 matches (hence is an instance of) W, . Then
the substitutions ,f—‘r(Xul....°. un)uj(fl(ul' .. un), v fp(ul, un),

u,n), fm(u) ees un)) and Wj-+()\u1, um)u are said

"1 1 p+l

'f . Y P o o e
p+£(11

-7-

to "(indirectly) reduce P to W ". P will be replaced by Wi as a resuit
i
of these substitutions, Fut occurrences of f with other arguments may re-

tain vestiges of those arguments.

Indeed, if some other argument of f, Wk, also matches an idern ity
function of the proper type, W, can be buried deeper in the expression which
replaces f. Assume for simplicity that W and W (J#k) have the type of
singulary functions. Then the substitutic 1s f+()\u cee un)uk(uj(ul))),
\V-+()\u)u, - and W-}-(Xv)v will reduce f{W UREE Wn) to Wi . Obviously
it may be possible to "bury" WJ even deeyer than this, but this burying!
process is limited by n. Because of type considerations, no occurrence of
a u ~may be utilized wit’ in the scope ~f another occurrence of u - In

such a case, we could replace the intervening functions by identity functions,

leaving um (or Wm) as an argument of itself, which is impossible.
See Example 1 for an example of direct and indirect reduction.

The purpose of reduction is to transform P into some WFP, Q, of P,
without introducing Q or any part. of Q via a substitution. This will be
particularly useful if Q contains a variable which is bound by some quanti-

fier whose scope includes all of P .

We shall now proceed by cases, according to the forms of the WFTs to

be matched. Every WFT either:

(1) is a single variable or constant;
(2) begins with a quantifier, A, E, or A ; or

(3) begins with a functional variable or constant followed by .rguments.

Since the formation and transformation rules are iacatical for the quantifiers
A and E, we may safely ignore A and treat only E. Note that in the
WFT [P (Tl' - Tn), P cannot begin with E . Furthermore, we may

assume P does not begin with)\ » Since we could then apply)\ conversion.

-8

In general, we may safely treat P as if it were atomic. That is, we

shall consider f(Tl, Tn) but not [[g(Tl, Ti)] cee] (Tj, oo T)
The general cas= will always follow in the gsame manner as the specia’ case,

Note that these two WZFTs are inatances of each other, using the substitutions:
fo (Xul, un)(N g(ul, ...ui)] coe) (uj, ...un))
g_,.()\ul, ceslg) o ()\uj, un)f(ul, un).

Likewise we shall, with one exception, discuss F(Tl, Tn) but not ([G

(Tl' oo TY] 0] (Tj, ’I‘n) . In Effect, we shall treat all the T's
i

in the last WFT as arguments of -G.

Whenever we assert that some substitution f-»T is to be made, it is on

the condition that f and T have the same type.

Section 2. Atomic WFTs

First, let us match a single constant, B, to a W=T, P. Clearly, inor-
der to have a match, P must be:
(1) B,
(2) x, Or

3 e s e T) .
(3, f(T1 n’

In case (2), substitute x ->B. In case (3), either substitute f-p-(Aul,
un)B , or reduce P to some WFP of the form (1), (2), or (3).

Example 1. Match B to f(x,y), where B and y have type b, x has
type (b,b), and f has type ((b,b),b,b) . There are three ways to perform the
match,

(1) =9 (Au,v)B

(2) f—-)-()\u, v)v, y-y B, using direct reduction

(3) f—-»(Xu,v)u(v), x—-;..()\w)w, y - B; using indirect geduction.

The WF7 produced is the same, B, in each case. However, we would need
all three substitutions if the given WFTs were imbedded in, say, C(f,b) and
C(f,f(x,y)), since none of the three WFTs which replace f is an instance of

any of the cthers.

Next, let us match a single free variable, x, to a WFT, P, If x does
not occur in P, simply substitute x-¥»P . There is nothing to be gained
by transforming P into x, as if x were constant. Any such transforma-
tion can still be applied after the WFTs have been matched by x—-> P, giving
exactly the same result. See example 3. However, transforming P into x
and then substituting x -y P may not give the same result as simply substi-
tuting x4 P . If x does occur in P, we must either eliminate it and
proceed as above, or reduce P to x . The direct elimination of x is de-
scribed above, the indirect elimination is postponed until the last section of

this chapter.

If x is a bound variable which must be matched to some WFT, Q,
then we may neither substitute for =x, nor introduce =x via:substitution.
Consequently we must either eliminate x altogether or else reduce Q,
directly or indirectly, to some x which is already a WFP of Q. Similar
remarks apply to the matching of any bound variable with arguments, say

x(Sl, Sn)' to some WFT, Q. (See section 4.)

Section 3. WFTs which begin with a Quantifier

To match (Tx)P(x) and (Ey)Q(y) , we first apply alphabetic change of
bound variable to get (Ez)P(z) and (Ez)Q(z) . Then match P and Q (re-
membering, of course, that no substitution is allowed for z). The only

other WFTs which can match (Ex}P are y and f(Tl, Tn)' The former

has been covered above and the latter will be covered in Section 4.

=10~

In similar fashion, we start the match of ()\ xl, xn)P to
()\ AURER yn)Q by applying alphabetic change of bound variable. In addition,

we can match (Xx xn)P to R by applying special conversion to R to

1’
get ()\xl, cot xn)(CR:I (xl, xn)), provided R is of the proper type. (If

X'

; occurs in R we change to some new variable z; in both WFTs). Then

we must match P and [R] (xl, xn). Also, we may match (x Xys oo xn)P_

to x as above and to f(Tl, Tm) as in Section 4.

Section 4. Functional Constants with Arguments

Next let us match B(Pl' Pn) to B(Ql, Qn) . To do so we first
match P1 and Q1 , making the same substitutions in the remaining arguments.

Then match the new second arguments, PZ" and Qz' , and so forth. For eace
of application, it may be preferable in some examples to match the arguments

in a different order.

Example 2. Match K(x, B(x)) and D(C(y, D), B(C(E, z,)) . First match x
to C(y,D). This can only be done by x-> C(y, D) . Next we must matcil
B(C(y,D)) to B(C{E,z)). This requires y=»>E and z-»D. The only comm>n
instance then is K{C(E, D), B(C(E, D))) .

Obviously B(P,, ... P_) will not match C(Q., ... Q).
1 n 1 m

Next, let us consider f(Tl, Tn),a.nd C(Sl, ...Sm) . The general pro-

cedure is rather complicated, so we will start with an example.

Example 3. Match P, which is f(x,B), to Q, which is C(y), where x, vy,
C(y), and B all have the same tvra. There are two separate approaches.

First we try to reduce P to so ‘P which matches Q. This can only

-11-

be done by f+(>\u, vlu. To complete the match we must substitute x—»C(y) .
The other approach in eff:.t replaces f- by C composed with some arbi-
trary new function. Specifically, substitute f+()\ u,v)C{g(u,v)) . P is thus
replaced by Clg(x,B)) , and we must match g(x,B) to y. This can be

done by any of the following:

(1) y-gix,B)
(2) g>{(Aw vy

3) grA\wvu y>x (or x3y)
(4) gw(Awvlvi y>B

Substitutions (2), (3), and (4) ma}} all be discarded as special cases of (1).

(Follow (1) by g+(k u,v)y,g-y()\u,v)u, or g—y()\u,v)v respectively.) To

summarize, we have two ways of matching P and Q:

(1) f3(Au,v)u; x¥Cly); P,Q>Cly)
2) f-(Au,vIT(glu, v)); y= g(x, B); &, Q-rC(g(x, B))

Here (1) and (2) are independent, since neither ()\ u,v)u nor (X u, v)C(g(u, v))

is an instance of the other.

Now let us return to the general case of matching P, which is f(Tl, ce
T)ito Q, which is C(S;,...S). It is clear that either C must be intro-
duced via substitution for f, or else it must be introduced into some Ti or
found to be already there. (If instead of a constant, C, we whould have a

bound variable, x, then only the last of these is possible.) The most gen-

eral possible substitution in the former case is f+(x Upy o un)C(fI(uI, ...un),
. y e . hi f(T., ... i
fm(u1 un)) In this way (T1 Tn) is replaced l_)y C composed
with m functions of Tl’ Tn . We then have to match in succession
£(T, ... T) and S,, for i =1, 2, ... m.
171 r i ’

In the latter case, P must have the same type as Ti and Ti must
match some initial segment of Q (with brackets removed, unless the initial

segment is all of Q). We shall now resort to a (partial) analysis of the

-12-

hierarchy of the 'arguments' of C. Suppose Q is CC(SI, Sp)]

(Sp+,1,'” Sm) and T; matches C(Sl, ... S p). Then we must substitute
E-(Augs ooou Mug (e, e w), ... f (u, .ou)). P ois thus re-
placed by Ti (fp+l(Tl, 'I\‘n), fm(Tl, Tn)). To complete the match
we must match in succession Ti and C(b‘l, Sm), £p+l(T1' Tn) and
Sp+1’£m(T1, ... T) and Sm

Example 4. Match f£(x,y) and [B(C)] (D), where f has type
(d,(d,e),e), x has type d, y has type (d,e), B has typel(c,(d,e)}, C has
type c, and D has type d. No pertinent relations hold among types b,c,d,
and e. First we try f->()\u, v) EB(g(u,v))] (h(u,v)), replacing each 'argu-
ment" of B in [B(C)] (D) by an arbitrary function of two variables. We
must follow up by matching glx,y) to C and h(x,y) tec D. The first
can only be accomplished by g->(>\ u,v)C . There are two ways to accom-

plish the second: h-)-()\u,v)D and h->(>\u,v)u, x»yD.

Since the second argument of f matches an initial WEFP (minus the
brackets, of course) of [B(C)] (D), we must also try f-r(Xu,v)(v(h(u, v))).
Then we must match y to B(C) and h(x,y) to D. The first obviously
requires y-=>B{(C), and the second leads to the same twu substitutions as

before. We have then a total of four ways to effect the match:

(1) f(Au,v) [B(C)] (D)

2) f(Auwv) [BC)I (w); x-+D

(3) f»(Au,v) [v1 (D) y-+B(C)

(4) fa(\u,v) [v] (u); y>B(C); x-¥D

The four sets of substitutions are independent, but in each case the resulting

WFT is [B(C)1 (D).

With minor modifications the same procedure as above can be applied to
match P, which if £(T,, ... T), to Q, which is ()\u , ... u)5, or to
1 n 1 m

R, which is (Ex)S. In this case no proper initial segment of Q or R

-13-

can be well formed, so the situation is a little simpler. If some T, matches
Q or R, we must try reducing P to that Tj . Also, we must try

f-}()\vl, vn)(Xul, um)g(vl, vn) or f—)—()\vl. vn)(;x)g(vl, vn))
respectively. With either of these substitutions, we must complete the match

by matching g(Tl. Tn) and S.

Section 5. Distinct Functional Variables with Arguments

Next, let us match f£(S,, ... S) and g(T,, ... T). Again we shall
1 m 1 n

give an example firsrt.

Exaraple 5. Match P, which is {(K,B,C(D)) to Q, which is g(K(B),
C,D). First we must match each argument of f to an arbitrary function

of the arguments of g, and vice versa. There are six matches to consider:

(1) K to g'(K(B),C,D). The only match comes from g'-)-()\u,v,wa .
2) B to g'(K(B),C,Dj. Substitute g'—=»{Au,v,w)B.
(3) C(D) to g'(K(B),C,D). The matching substitutions are:
g'-+{ A u, v, w)C(D)
00 v(D)
" v(w)
" C(w) .
(4) K(B) to f'(K,B,C(D)). The matching substitutions are:
£15(A u, v, w)K(B)
" u(B)
" u(v)
it K{v)
(5) C to £'(K,B,C(D)). Substitute f'=»(Au,v,w)C.
(6) D to f'(K,B,C(D);. Substitute f'=>(Au,v,w)D.

-14-

Now we put all these matching substitutions together, using the appropri-

ate bound variables instead of the actual arguments of f and g . We geu

f*(x u, v, W)h(us vV, W, W, w, v/, I{(B)n U(B)n '.I(V), K (v)n Cn D);
g-"l-\ul Vv, W)h(Ks B, C(D)n V(D): V(W)o C(W), u,u,u,4,v, W);
P, Q+h(K, B, C(D), C(D), C(D), C(D), K(B), K(B), K(B), K(B), C, D) .

Any other matching substitution will be a special case of this one.

Incidently, this example disproves the conjecture that f(Sl, Sm) and
g(TI, Tn) can be matched by regarding f and g alternately as held con-
stant. If g 1is held constant here, we can not use the the third argument of
f. That is, we must use a substitution such as f-?(,Xu,v,v:)g(u(v),C,D) .

Likewise, if f is held constant, we can not use the first argument of g .

Returning to the general problem of matching P, which is f(Sl, Sm),
to Q, which is g(Tl. Tn) , here too we must match each Sk to g,
(Tl' Tn) and each Tj to fj(Sl. Sm) . With regard to types, if each

Sk has type bk and each Tj has type cj, tiien B must be a variable of

type (cl’ cn, bk) and fj must be a variable of type (bl, bm. Cj) . Un~

fortunately, we may not be able to combine all these matches into one pair of
substitutions for f and g, since they may involve different substitutions for

variables inside the arguments of f and g.

Suppose x_, ... xd are all the free variables of the S's and T's. Let

1
P. (s.,...8 ", ... P, _(S.', ... S ') be any set of WFTs from a MMS for
Js]v 1 m : aj) R m

fj(Sl, Sm) and Tj’ where S ' is the instance of Sp which results from

the substitutions used in deriving the WFT in which it lies. Likewise, let
T.', ...) B Yy e ! £

Qk,l(1 Tn) Qk,b (T1 , Tn) be any set of WFTs from a

MMS for gk(Tl' v Tn) a,ndk Sk . Now we must reconcile the different sub-

stitutions made for xl, xd in all these WFTs, Suppose Rl' ... R are
c

all the substitutions made for xl in the various matches. We must find a

~-15-

MMS for this entire set of WFTs , extending our matcbing procedure in-

ductively frorn pairs of WFTs to c-tuples of WFTs . Let WI’WZ’ ... be

such a (possibly infinite) MMS . Then we adopt the substitution x1—+-Wq

2 then for x3, etc. For

each q, etc., we have a matching substitution in:

and proceed to reconcile the substitution: for x

f—?()\ul, coou TR(P, (w3), pl,al(ul’ coeu),
pn,an(ul' um)u],ul, .. um);
\

g.,(,\ul, un)h(ul, R UREE un’Ql,l(ul’ un)’Ql,Z

(ap o u)e e @ (ugy e u)
m

X, >W ; x2+ etc.

1
We return now to our MMSs for Sk and gk(Tl' S Tn) and for Tj and
fj(Sl, e Srr)’ choosing a new combination of WFTs from them. It is not

actually necessary to try every combination. If all the substitutions for x's
required by one match are also required by another, there is nothing to be
gained by trying a combination of matches which includes the second but not

the first.

Pefore we give another example, we will show that every match between

f(Sl, Sm) and g(Tl, Tn) can be effected by substitutions of the form:

f—H)\ul' um)h(Pl(ul’ um), Pa(ul’ um),ul, um);
g-)-(le, vn)h(vl, vn,Ql(vl, vn), Qb(vl, vn)).

Where, of course, Pl(Tl, Tn) is to be matched to Sl' etc. All such

substitutions are épecial cases of those described in the preceding paragraph,

T) and S_, etc.
n

since those were constructed from MMSs for gl(T 1

R

1 ! !
Eet P("l e Sm) which is the same as Q'(Tl', Tn'), be a

common instance of P, f(S,, ... S), and Q, g(T,, ... T), where S 'is
1 . 1 n 1

the instance of S1 which results from the substitutions used in deriving P!

-16-

from P, etc. Consider the way in which the S ' and Tj' are nested in P'.

k
Each occurrence of Sk' is either (1) a proper part of an occurrence of a Tj'.
or (2) an expressiop Qa(Tl', Tn') in zero or more Tj's. Let us number
~ ' 3 \ ! ' ! [
the occurrences of Sk in (2} as 1S1 PO csm 30 that ask is

Qa(Tl', Tn') . Any occurrence of a Tj' which is not part of such an ex.

pression must be an expression Pb(Sl', Sm') in zero or more S 's.

k
Number these nccurrences as above so that T, is P (', ... S ").
b’j b 1 m
1 o 1 1 1 ' '

Now P' can be rep-rded as Z(IS1 ,281) e csm’Pl(sl) ees Sm,,
pd(sl', Sm')), which is also Z(Ql(Tl', Tn'),QZ(Tl', P R PR Qc
(T,"s ... Tn'),lTl', dTn'). We can match P and Q by the substitntions:

f+(>\u1, um)h(ul,ul, um'Pl(ul' um) C e Pd
(@, oo u)

g-(Aups «on w Th(Q (o, oe w) @puyy o w) e Qeluyy oo w),
u
: te. ! : [
Sk+Sk, Tj+Tj :
The original matching substitution is an instance of this match gotten through

h-)-()\ul, uc_‘_d)é(ul’uz, uc+d) .

Example 6. Match P, f(x), and Q, g(B,y), where x and B have typz b

and ¥ has type..¢ . We must use the following:

(1) Match £ (x) and B by fl—y()\u)B.

(2) " z " £1—+(>\u)u,x—)zB :
(3) Match fz(x) and y by y+fz(x) .

(4) Match gl(B,y) and x by x-)rgl 3,v) .

Since (1) does not require any substitutions for x or y, we may use it in
each substitution for f and g . Using {l) alone, we have:

f9{\uwh(B); g-3(Au,v)h(u); P,Q->h(B).

-17~

Combiring (1) and (2), we have:

£ (Auwh(B,u); g(Au,vih(ue,u); x+B; P, Q+h(B B).

Combining (1) and (3). we have:

T-(AWK(B, £,{w): g+ uvhle,v)i y¥i,(x)i P, Q¥h(B,f,(x) .

Combining (1), (2), and (3), we have:
£ (A WhB, u, £, (W) g>(Auw V)hw,u, v xB; y¥i,(x),
i.e., y+fZ(B); P, Q-yh(B,B,fZ(B)) .

Combining (1) and (4), we have:
1= (A u)h(B, u); g—)—()\u,v)h(u.gl(u. v})i x+4g,{B,y); P,Q%h(B,g (B,y)).

To cow bine (1), (2), and (4), we must reconcile the different sﬁ.bstitu-
tions for x in (2) and (4) by raatching B and gl(B, y). This may be done
by gl._).(Xu,V)B or by gl+(Xu, v)u, but in either case we end up substitu-
ting x<B, f-p;>\u)h(B,_u, u), and g-’y(ku, v)h(u, u, u), which is clearly redun-
dant.

In combining (1), (.‘.),"'a."m4 ‘4), we encounter a subtler conflict of substi-
tutions. After substituting y—)—fz(x), gl(B,y) becomes gi(é:fz(x)). We can
not simply substitute x—\pgl(B, fZ(x)), but must match x and gl(B,fZ(x)). Due
to a difference of types, the latter can not be reduced to x, but x can be
eliminated by gl-‘r()\u,v)gz(u) or by f? (>\u)z . The first elimination

leads to the match:

f+()- u)h(B, u, fz(u)); g-?()\ u, v)h(u, gz(u), v);
x-rg,(B) y¥ifg,(B)); P, Q¥h(B,g,(B),
fz(gz(B))) ;

This is mo.e general than the combination of (1), (2), and (3), as can be seen

b& making g, the identity function. The second elimination leads to the match:

£+(X wh(B,u,2); g (Au, v)h(u,g, (3, V), v);
x-*,-{g1 (B,z); y>»z; P, Q+h(B,g1(B, z),z) .
It is not really necessary to use a new variable, z, in this case. The match can als

be accomplished by:
f-3()\ whiB, u, y); g+(>\u.V)h(u.g1(u.V).V);

X+g1(B. y; P. Q->h(BE, gl(B, Y, y).
-18-

Secition 6. The Same Functional Variable with Different Argumeats.

Finally let us match f(Sl,...Sn) and f(Tl,... 'I‘n) . This is one case

which may lead to an infinite MMS . We start with an example.

Example 7. Match P, which is B(f(x,M),{, x,y), and Q, which is
B(f(y,N),f,x,y), where x and y are singulary function viriables of the
same type. To match f(x,M) and f£(y,N) we must either eliminate the
second argument of f directly, or "hide'" it inside the first argument, and
then replace the first argument. There are two ways of eliminating M
and N directly:

f—+ (Ku,v)h; P, Q &+ R, R being B(h,(Au,v)h,x,y);
and

f->(Au,v)h(u); x-+y; P, Q-»W, W being

B(h(y), (Aw v)h{u),y,y) .

For every n, n=1,2,3,..., we can also match P and Q by:
£ (Ku,vig_u, a(f (0, v)), . u(f_(w, v)));
x> Awri y—(Awr;i P, Q+Y , Y being
B(gn((A ur,r,... r), (K u, v)gn(u,u(fl(u,v)),
g u(fn(u,v))),(ﬂ u)r,(x u)r).

For k«j, Yk is an instance of Yj but Yj is not an instance of Yk

Using the fact that {R,W,Y1 YZ""} is a MMS for P and Q, we shall
show that P and Q have no GMS. Assume {Zl""zn""} is a GMS

“>r P and Q. Some Zb mus¢ be an instance of some Yc' since R and

W alone obviously do n for a MMS. Yc+1 is in turn an instance of some

Z.. If d=b, then Y is an instance of Y . This is false. If d=b, Z
d c+l c b

n is an instance of Zd . by transitivity. This contradicts the definition of a

b GMS. Hence P and Q have no GMS.

also

-19-

rev——

For the general case of matching P, f(S1 Sn)' and Q, f(Tl, Tn)'
we shall assume that Sj and Tj match for 1¢j £m, but do not match for
m¢j&n. We must consider every subatitutior for f of the form
f+(>\ul, un)g(ul, um'ul‘fl,l,l(ul' un)'fl,l,Z(ul' un),

{ . y e y e) e y e
f1,1,p1‘“1’ u w5ty upy) f1,2,pl(“1 u) %
(f .
'2,1,1(u1, un), fZ,l,pZ(ul' un)), um(fm,l,l(ul' un), oo N

The first subscript on fhj K is the same as that of the u in whose scope

it occurs, the second is free to run from 0 (vacuous) to oo , and the bounds
on the third are determined by the type of W - Some of the uh's may Dpe
missing. The match is completed by matching similtaneously the correspond-

ing arguments of g .

To show that this gives a MMS , assume R is a common instance of P

and Q. Then R must have been obtained from P and Q by substituting

f+(>\u1, un)V(ul, un). We may assume trat . m<k€n, occurs
only within the scope of some uj, l1¢j¢m . Any other occurrence of u
must be eliminated by a substitution for a free variable of V (since S, and

k
Tk do not match), and such a substitution ccn be made at the beginning to

get a new V. Therefore V is an expression in u . u , with and with-

) R m

out arguments, the arguments being expressions in Ups ove W V is thus

an instance of an expression of the type given in the above paragraph.

Section 7. Another Use of Indirect Elimination

This technique of indirectly eliminating an argument by hiding it inside
another argument can also be applied to the problem of matching a single
variable to a WFT . Details of the general case are omitted, as they are

quite similar to what we have just been thirough.

-20-

i

Example 8. Match B(x,{) and B(f(x,v),f) . We must either reduce
f(x,y) to x by f—'r()\u,v)u, or else eliminate x by:
£ (A w, VKLY, vif (), oo viE (W),
y+{Au)z
x—}h((ku)z,z,z, ..oz).

Once again we have an infinite MM3, n being an arbitrary integer.

-21-

B ——
e — — N

vHAPTER 3

CONDITIONS F™R THE MMS TO BE INFINITE

Section 1. Necessary Conditions

Let us examine the conditions under which the matching of f(Sl, Sn)

and f(Tl, Tn) leads to an infinite MMS . We assume that these WFTs
occur as parts of larger WFTs, P and Q. Otherwise a GMS ‘esults from
the single substitution £+(>\ LA un)h . Also, we acsume that the context

of a WFP under discussion does not require its elimination in the matching
process. For example, we will not consider the occurrences of f in the cor-

responding WFTs g(A(f)) and g(B(f)) .

As shown by Example 7, the key step in establishing an ‘nfinite MMS is
'""hiding'' some argument inside another. Accordingly, the following three con-

ditions are necessary for our MMS to be infinite.

First, there must be something to hide. One possibility is that some
arguments, say, Sn and Tn, do not match, so that their elimination, direct
or indirect, is essential to any match. The other possibility is that Sn and
Tn match, but ithat matching them requires an otherwise unnecessary substi-
tution for some variable which also occurs outside Sn and Tn . If neither of
these is the case, we may match all the Sj and ’I‘j in succession, as if f

were a constant.

As an alternative, we may have to eliminate some variable because it
occurs in the wrong place, as in Example 8. If it is necessary to eliminate
Sn from f(Sl, Sn) because it contains a variable, x., which is to be
matched to all of f(Sl, Sn), we may treat the case as if x were f(Sl,
Sn_l,'I’), where T dres not match Sn. Indeed, after eliminating Sn, we shall

replace x by whatever remains of f(Sl, Sn) .

-22-

Second, there must be a hiding place. Some arguments, say S1 and

T., must match in a way consistent wi'h the matching of the rest of P and

1,
(.. Furthermore, for some k, it must be possible to eliminate \J.k from
[SIJ (ul, ...up) and l'_Tl] (ul, up) . Otherwise it would be necessary

to eliminate the non-matching arguments, Sn and Tn’ directly.

Third, there must be something left of the hidden arguments after the
match is corapleted. This means that f must occur somewlere in P or Q

without S, or T1 as its first argument. Since the arguments to be hidden

1
in S1 and T1 are to be completely elimina.ed eventually, they could jast as
well be eliminated from f(Sl, Sn) and f(Tl, Tn) directly if f did not

also occur with some other first argument or with no arguments at all.

Section 2. Sufficient Conditions

If we assume in addition that all other occurrences of f in P and Q are
without arguments and do not need to be matched to other WFTs , then we
have sufficient conditions for the MMS of P and Q *#o be infinite, provided
P and Q match at all. For simplicity of notation, assume now and hereafter

S1 and T1 have the type of singulary functions.

Let R be (Au, ... a, .
et q e { u, \J.n)hq(a1 _ul(fl(ul un)) ul(fq(u1 un)))
We can match P and Q by substituting f-)'Rq, followed by the substitutions

which eliminate the arguments of S, and T, and match the rest of P and Q.

1 1
This match is not an instance of any match derived from f-’r(Xul, ce un)
hs(ul, um,ul(fl(ul, '1n)), ul(fs(ul, un)).uz(gl(ul, ces un)),),
where s<{(q. I u is not an argument of hs in the latter WFT (and it can

not be if Sn and Tn do not match), then there is no way to introduce u.l(f8+1

(ul, un)), ul(fq(ul, un)) as arguments in passing from hs to h

If u is an argument of hs' then Sn and Tn must be matched, which requires

-23-

——— e e

a substitution somewhere else in P and Q which was not necessary following
f¥R . Thus we need to make substitutions of arbitrarily great length for f

in order to get a MMS for P and Q. As in Example 7, there will be no

GMS .

The above argument is not affected if, besides occurring without arguments

y o+ S and T, .., T , { occurs also in the WFTs
1 n 1 n

f(Xl, Xn) and f(Yl, Yn), which are to be matched to each other, with

and with arguments S

the following provisos. Xl and Y1 must match (consistantly with the match

of P and Q), and either for some k it is possible to eliminate u, from

EXI] (ul' up) and from [YIJ (ul’ up), or else Xn and Yn match.

If f occurs only with arguments, the situation is quite complicated.

Some examples follow.

Example 9. Match B(f(x,M),{(z,w),x,y) and B(f(y, N),f(z,w),x,y). We
shall list the matching substitutions and the resulting WFTs.

f-+(A u, v)h
R: B(h'h9x1 Y)
fa(Au,v) g)i xry
Y Blg,(y) go(Z), Y, y)
£ Ay, v)g_(w,ulf (w,v)), ... alf_u,-3));
x-y()\u)r; Y—H)\u)r
Y : Blg_((Aur,r, ... 1) g (22l (z,w), ... 2(f_(z, %)) (Au)r, (Au)r)
Here {R, Yﬁ, Yl' } is a MMS, but in this case Yn+1 is an instance
of Y gotten by substituting gn+()\ul, o dg (e (E (W),

(ul,q))). For n=0, add also the substituticn y-}-()\r')r. Thus {R, YO}
is a finite GMS for these two WFTs,

Example 10, Match the following:

~24-

(EW)B(f(x: M)v f(zv W): X, Y)
(Ew)Bl(f(y, N), f(z, w), %, y)

We get a MMS here by using exactly the same substitutions as in Ex-
ample 9, but in this variation we can not introduce w via a substitution

in order to reduce Y'n to Yn . Therefore there is no finite GMS .

+1
Example 11. Match the dllowing:
B(f(x, M), {(z, ©), f(w, D), %, y)
B(t(y, N), {(z, C), £(w, D), x, y)

The technique of Example 9 which showed Yn+ to be an instance of Yn

1
will not work here, because D and C are different constants. Again there

is no finite GMS .

-25-

TN NS—

CHAPTER 4

FINDING A SINGLE COMMON INSTANCE

Section 1. A Method which will not Work

Although an infinite set of subscitutions may be required to find a MMS
when we have to eliminate an argument from f(Sl, e Sn)' it is to be hoped
that a finite set will suffice to tell whether or not our WFTs match at all.
For instance, it seems reasonable that we could find a match, if any existed,
by using each eligible argument as a 'aiding place' only once. That is, we
should ‘v the substitution f-H)\ Uy e un)h(ul. um, ul(fl(ul, ...un)),uz
fz(ul. un)), um(fm(ul, un))).

However, it turns out that there is no way of telling how many of our
possible substitutions we must try before we find the first match, unless we
examine the complete WFTs to be matched. The following example demon-
strates this.

Example 12. The WFTs to be matched are f(x,p) and f(x,C), as im-
bedded in:

P: {Ay 2)Dlix, B),fly, 2))

Q: (Ay.=)Dlfix, C), Gly, y(H, (2)), ... y(H_(2)))

Since y and z ar-~ bound variables, they may not be introduced by substitu-
tion. In order to match the second arguments of D, therefore, we must
tuck the second argument of f ine'1e the firet argument n times. The short-
est matching substitution which we can use for the first arguments of D,

f{x, B) and f(x,C), is therefore '+(>\ u, v)glu, u(hl(v)), u(hn(v))) . We can
then complete the match by substituting g+G ,hl-)-Hl, oo hn-)-Hn . Since n

is an arbitrary integer, we have established our claim.

-26-

-

The use of bound variables in this example can be avoided by a change

similar to that used in passing from Example 10 to Example 11.

We can even modify Example 12 to show that examining all the WFPs of
the WFTs to be matched which contzin f or are to be matched to WFPs
containing f, will not be sufficient to tell how long a substitution wc need for

\
f. Let P and Q be as follows:

P: i\ v, z)D{f(x, B), g, g)
Q: (A y, z)Dif(x, C), £, G(y.y(Hl(Z)). V(Hn(Z)))

Obviously the substitution fg (or g-»f) is required, and this leaves us with

essentially the same WFTs as in Example 12.

Section 2. A Successful Method

Suppose we are to match P and Q, and among the WFPs of P and Q

S,) and f"Ti ,

'1,... l'n ’1

. Ti,n) for i =1,2,... k. Arrange the arguments so that for every
i'si,j and Ti,j are eligible '"hiding' places (see p.) for 1£ j{m, and
Si,j and Ti..j match for m<¢j{p, m and p being the largest integers for
which this is possible.

which must be rnatched to each other we have f(Si

Now we temporarily ignore these parts of P and Q and match the rest of P
and Q. Each match may require a substitution f.-)-()\ ul, un)R(ul, e un) .
If in R there is an cccurrence of a Uy p¢k¢n, which is not inside the
scope of any b 1£j€m, then that substitution raust be rejected as incom-
UREE Si,n) and f(T'i,l' Ti_‘,n)' If uo
1¢<k¢p, or uk(Yl' Yq) , occurs not in the scope of any uj, 1{j{m,

patible with the matching of £(S,
Y

then we must reconcile the matching of Si and Ti,k (or Si,k(Yl' - Yq)

k
’
and Ti k(Yl' Yq)) with the remainiig substitutions in that particular
match of P and Q. If u, p<¢ k £n, or some u, s m<{h¢p, for which the
matching of § h and T, h is incompatible with the matching of the rest of

i ’

-27-

e e e ettt o et

= = 5

P and Q, occurs within the scope of U 1€£j¢{m, then we must reconcile

the eliminaticn of that term with the rest of the substitutions.

Any potential match which is not thrown out on one of the abov: grounds
can be completed. The tentative substitution for f must have the form

f+()\ul, un)Z(u], up,ul(Zl,l(u . un)), ul(Z (3ypr .. u)),

1 n

- un))). where some of the

1’ l,n

oou (2 (u

- [l
mtZm, 1% ...un)),...u (2 u

’ .
m m,h 1
m

exhibited WFTs may be absent, but none occur inside each other. We can

match P and Q by substituting f—p(kul, un)h(ul, up'ul(fl,l(ul' un)),
. um(fm, nm(ul, un))), followed by substituting h—-‘r()‘\ ul, ub)Z
(s oo ub), fi.,j_).()\ul' un)zi,j(ul' un) and also making those sub-

stituti ons which match S, and T, 1£i £p, and those which eliminate the

arguments of Sj’ 1£ j$ m, which must be eliminated.

Thus, in order to tell how long a substitution we nced to match all the
pairs f(Si,l, Si,n) and f(Ti,L, Ti’ n), we must examine the substitu-
tions required for f by the rest of P and Q, and count the number of times

an argument occurs with other arguments inside it.

-28-

€1l

(2]

£33

[4]

BIBLIOGRAPHY

Church, Alonzo, The Calculi of Lambda-Conversion, Annals oi

Mathematics studies, No. 6, Princeton Univ~rsity Press,'

Princeton, New Jersey, 1941.
Bennctt, J. H., KEaston, W. B., Guard, J. R., Loveman, D. B.,
and Mott, T. H., "Semi-Automated Mathematics: SAM IV",

Scientific Report M . 3, AFCRL 64-827, October 15, 1964.

Guard, J. R., igutomated Logic for Semi-Automated Mathematics'

Scientific Report No. 1, AFCRL 54-411, March 30, 1964

"GRT-Aided Semi-Automated Mathematics', Semi-annual Report,

Applied Logic Corporation, December 31, 1965.

-29-

BLANK PAGE

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be eatered when the overall report is classified)

| ORIGINATING ACTIVITY {Corporate author)} 20. REPORT SECURITY CLASSIFICATION
Applied Logic Corporation, One Palmer Sq. | L{,ﬂdaSSlerd
SROU

Princeton, New Jersey

1 REPORY Ti 'LE

A Matching Procedure for W-Order Logic

4. DESCRIPTIVE NOTEs (Type of report and inclusive dates)
Interim Scientific Report

S. AUTHORS) (Last name, [irst name, initial)

Gould, Williamn Eben

+ REPORT QOATE 7a. TOTAL NO. OF PAGES 784 NO. O~ REFs

15 October 1966

863 CONTRACTORGRANT NOo. AR PA OUrder 7\ U |sa oriGINATOR'S REPORT NUMBEN(S)

AF19(628)-3250

b PROJECT ABCDINICIEN Scientific Report #.
8672
€. DOD ELEMENT 9b. OTHER REPORT NQ(S) (Any other number; that may be
6154501R b
d. DOD SUBELEMENT AFCRL-66-781
N/A

10. AVAILABILITY/LIMITATION NOTICES

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

11. SUPPLEMENTARY NOTES prepared ior [12 SPONSORING MILITARY ACTIVITY

Hg. AFCRL, ODAR (CRB) _ .
Gnirerd States Air Force J Advanced Research Projects

L. G. Hanscom Field, Bedford, Mas Ageacy

13. ABSTRACT

Formation rules are presented for an W -order logic with >\
operator in which each term has a well defined type. Transforma-
tion rules are given defining >\-conversioa, special conversion,
substitution, and alphabetic change of bound variahles. The notion
of one term being an "instance'' of another is then defined using
these transformation rules. The main problem of the paper is to
develcp a ''matching procedure'" for pairs of terms, so that every
common instance of the two given terms is an instance of some
term nroduced by the matching procedure. This is accomplished
by analysing the terms according to the formation rules, matching
the outermost parts first, then proceeding inductively inward.
Example: are given to show that an infinite set of terms may be
needed for this purpose. Conditions under which such an infinite
set 1s needed ar: discussed. A procedure is developed for pro-
ducing at least one common instance, if one exists.

] T

DD, oM 1473

1 JAN 64 UNCLASSIFIED

Security Classification

-30-

UNCLASSIFIED

Security Classification

L, LINK A LINK & LiNz C
e WORDS ROLE wT) RO—LE wT ROLE wT
Symbolic matching by computer.
Omega-order logic, matching in
Man-machine mathematics, techniques
for
B INSTRUCTIONS

1. CRIGINATIRG ACTIVITY: Enter the name and address
of the contractor, anbcontractor, grantee, De, nt of
Defense activity or other organization (corporate cuthor)
issuing the report.

%a. REPORT SECURITY CLASSIFICATION: Enter the over-
all secwity clasaificatios of the report. Indicate whether
“’Restricted Data’ ia incloded. Marking in to be in accord-
ance with appropriate secwity regulations.

2b. GROUP: Antoms'ic downgrading is apecified is DoD
Directive 5200.10 and Armed Forcea Industrial Manual.
Enter the group number. Alao, when applicable, ai.ow that
optional markings have bees used for Group 3 and Group 4
as authorized.

3. REPORT TITLE: Enter the complete report title in all
capital letters, Titles in all casea skonld be unclassificd.
If a meaningful title cansot be aelected without clasaifica-
tion, ahow title clasalfication in all capit~la is parenthenia
immediately following the title.

4. DESCRIPTIVE NOTES- If sppropriate, enter the type of
report, e.g., interim, progreas, numurr, annual, or final.
Sive tbe isclusive dates whes a specilic reporting period ia
covered.

5. AUTHOR(S): Enter the name(a) of autl.or(a) aa ahown on
or in the report. Enter last name, firat name, middle initial.
If military, ahow rank and branch of aervice. The name of
the principal author is anabsolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year, or month, year. lf more than one date appeara
on the teport, use date of publicetion.

7a. TOTAL NUMBER OF PACES: The total page count
shonld follow normal paginatios procedurea, i.e., enter the
number of pagea containing information.

78. NUMBER OF REFERENCES: Enter the \>tal sumber of
referencea cited in the report, :

8a. CONTRACT OR GRANT NUMBER: If appropriate, ester
the spplicahle nnmber of the contract or grant under which
the report was writtes.

8b, 8¢, & 8d. PROJECT NUMBER: Enter the appropriate
military de nt identification, auch as project nunchr-,
aubproject nnmber, system cumbers, task number, etc.

9a. ORIGINATOR'S REPQAT NUMBER(S): Enter the ofii-
cial report number hy which the document will he identified
and costrolled hy the origirating activity. Thia number must
be unique to thia report.

9b. OTHER REPORT NUMBER(S): If the repcrt has been
asaigned any other report numbers (either by the origina‘or
or by the sponsor), also enter this number(s).

-

10. AVAILABILITY/LIMITATION NOTICES: Enater any limi-
tationa on further diasermr:nstion of the report, other than those
imp:sed hy secuwrity claasification, using standard staiements
such aa:

() *Qualified reBueslers may obtain copies of this
report from DDC."

(®} "Foreign announcement and dissemisation of this
report hy DDC is not authorized.”

(3} **U. S. Government agencies may ohtain copies of

this report directly from DDC. &her qualified DDC

uaers ghall request through

(4) "U.S. |r;ililury agencies may ohtain copies of this
report directly from DDC. Other quslified users
ahall regnest through

**All diatribution of this report is controlled. Quali-
fied DDC users shall request through

(5)

If the report has been furnished to the Office of Technicaf
Services, Department of Commerce, for aale to the public, indi-
cate thia fact and ~nter the price, if known.

il. SUPPLEMEZNTARY NOTES: Use for sdditional explans-
iory notes.

12, SIONSORING MILITARY ACTIVITY: Enter the name
the depantmental project office or lzboratory sponsoring (poy-
ing for)the research snd developn.. at. Include address.

f3. ABSTRACT: Enter an ahstract giving a brief and factual
summary of the document indicative of :he report, even
ll!onfh It may also appear elsewhere in the hody of the tech-
nical report, If additional space is required, a continuation
sheet shall he attached.

It is highly desirahl~ that the abstract of classified re-
porta he unclassified. Each paragraph of the shstract shall
end with an indication of the military security classification
%‘lhe |(a{jt;rmluon ir the paragraph, represented as (TS), (5),

5w (U)

There is no limitation on the length of the ahstract. How-
ever, the suggeated length is from 150 to 225 words.

f4. XEY WORDS: Ke& words are technically meaningful terma
or short phrases that characterize a report and may he used as
index entries for cataloging the report. Key worde must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, mili-
lary project code name, geographic focation, may he used as
key words hut will be fcllowed hy ar indication o; technical
context. The assignment of links, rules, and weights is
optional.

-31.

~_ UNCLASSIFIED
~ Security Classification

3

.A: 1«(%ﬂh:ﬂﬁﬁ_& 4

g
|
?

D

s

»

>

N

