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ALL SHORTEST ROUTES FROM A FIXED ORIGIN IN A GRAPH

by
G. B. Dantzig¥*, W. Blattner** and M. R. Rao**

A shortest route is sought between a fixed origin node 1 =0

to n other nodes in a graph when directed arc distances ¢ are

13
given and the values of ciJ may be positive, negative, or zero

i ;4 J . No values ¢ 13 are specified unless there is an arc from
i to J . This problem (as is well known) includes the
travelling salesmen problem with distances diJ > O because one can
set [cij = diJ - K] where K > 81 ZJ diJ and look for a minimum
route from O back to itself. Therefore our objective will be more

modest: To find a negative cycle in a graph if one exists or if none

exists then to find all the shortest paths from the origin.

The method is inductive. On step k , there is a set Sk

consisting of the origin and k - 1 other nodes. Restricting arcs
to those that belong to the subgraph of Sk , the minimum distances

from the origin along these arcs to nodes 1 € Sk are assumed

known and have value Il It is also assumed that no negative

i °
cycles exist in the subgraph of Sk . It follows that

(1) Hi + ¢ ZZHJ for all 1 €8 , Je Sy °

* Stanford University
** U, S. Cteel




Theorem 1: Let DiJ denote the length of the shortest route from 1

to § alung arcs of the subgraph of Sk containing no negative

cycles and let (1) hold, then

(2) o,,> @, -1

iJ J i

Proof: Let the sequence (i ; i 12,...,11 ; J) denote the nodes

along & minimum route from i to J in Sk , thenby (1),
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Adding these inequalities together yields the desired relation.

Assuming now that we know the minimal distances Hi for Sk ’

we wish to augment Sk by including a node gq ﬁ Sk . We denote
= %

Sk+1 = {sk ’ q} and wish to determine minimal distances Hi from

the origin along arcs of the subgraph of Sk+l to nodes

ie Sk+l . The theorem below permits us to determine Ha

immediately.
Theorem 2: Let q £ S, , snd §, - {gk , q} then a shortest
route from O to q in § ., has as last arc of the route

(p, @) where pe€ 5, satisfies

)

I. +c = Min I +c
(3) M+, 1esk(i

and H; = Hp + cpq is the minimum distance from the origin to q

iq

in Sk+l 3
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Proof: Suppose false and a shorter route is via p € S, » then

- - <II +
2T % " p ¥ pq

contradicting (3) . This theorem is true even if S, has negative

i
distance without cycles from the origin.

cycles. The II; and II, would then represent the shortest

Knowing I[; , Theorem (4) below may now be applied to
determine for another node A4 €5, ., , its minimn distance nz
from the origin along arcs of the subgraph of Sk+l . Knowing I[;
and I[z we reapply Theorem (4) again and again, each time
finding a least distance for another node in Sk a4 This is done
until all nodes are exhausted in Sk 4 °F the optimality co.xdition
5 13 > 0 of Theorem 3 below is satisfied in which cese the
remaining I 1 values are also optimal for Sk 4 °F the negative

cycle condition of Theorem 5 1s satisfied.

Theorem 3: Let T be any subset of nodes i whose minimum distance

*
Iy from the origin along routes in the subgraph of S, + is known,

let q€T; let Sk and T contain no negative cycles; let

(&) 51.1f“’1”’°1.1'“3 1eT, 4T
then, if
(5) 51330 forall 1 €T, J£T

the minimum distance for all remaining nodes is

=1 for all J £ T




This theorem is true even if T contains negative cycles but requires a

different proof.

Proof: The conditions for optimality in Sk 1 analogous to (1) are: |
(7) 51J=‘n;+cij-ndzo 1 eT, Jf T
My +cyy =M, 20 1 fT, 3¢ T
n¥ + Cyy ~ Hg >0 1 eT, Je T
“1”13'“3?-0 1 g7, 3e T

The first of these holds by hypothesis (5), the second by (1), the
third by hypothesis that the T set is optimal in S,  (and there

are no negative cycles in T); finally the fourth because

IIH SIIJ and (1) holds.
On the other hand if the optimality conditions & 13 20 of
Theorem 3 does not hold for all 1 €T, J £ T, then 8,y = Min 513< 0

holds for some t € T and AL # T. Tt will be shown in Theorem k&,
that the minimum distance from the origin along arcs of the subgraph
Thus Theorem 4

of S to node L is given by II}"’ = HL + b

k+l tL
may be reapplied until there are no longer any nodes in Sk +1 not in
T or condition (5) holds, or a negative cycle is detected, but we

will speak more about this later in Theorem 5.

Theorem 4: Let Sk and T contain no negative cycles where T 1is

any subset of nodes 1 whose minimum distances from the origin in
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S, 1sTH . If forsome teT, LT

(8) B, f“m513<° 1€M JEAT

then

(9) Wf=Tp+ By =T+ey

is the minimal distance from the origin along arcs in the subgraph of

1)

Su 0 mode [
Proof: On the contrary, if there is a shorter route to /Z , then this
route must include the node q and perhaps some other nodes of T
(otherwise IIL would be minimum but we know I[E < I& vy (8) and
(9). Along this shorter route let (t , .Z) be the last arc such
that t € T, § # T. Then the distance along the route from J

to /Z , may be denoted by DU (see Theorem 1) because

the nodes from l to [ are all elements of S, - By Theorem (1)

(10) D;

T )

L 1
On the other hand by virtue of the assumed shorter route through
t, ¢

*

(11) nt +c‘El+Dll <I[:+ctL

l>'.['h:l.s theorem also holds if T contains negative cycles and Ii¥
are the shortest distances from the origin along routes without

cycles.




Subtracting (10) from (11) and rearranging

*
r.J - - * -
Ht + ctl HL < Ht + ctL HL

or 5£i < 6,& by (4) which contradicts hypothesis (8) of
Theorem 4.

Theorem 5: If Sk’ T contain no negative cycles and the shortest

and T is

distance from the origin in S for 1€ 7T is ]I*i" <I

k+l p
augmented to T* ={T,ﬂ§ where Q is as defined in Theorem 4, then a

a necessary and sufficient condition that T* contain a negative

cxcle ig

(12) IIE+c - ¥ 0

o <
14 q fa

Proof: Since II;" <1, holds the optimal route from the origin to },

s

in Sk +1 passes through q . If (12) holds, then the cycle

consisting of the optimal route from q to f and then arc (1,, q)
has negative length. This may be seen by summing the relations

]I; + ey 3 Hg along the route from q tof and then adding it
to (12). If, on the other hand, (12) does not hold, then
we will show that II¥ + c, 3 > IIE for all ie T*, JeT* which

implies that no negative cycle in T* exists (as one can see by
summing such relations over the arcs of a cycle.)
We need now only rule out for some io and ,jo ;é q that

m* +c

i 13 <I* . This would mean we could lower the value of l‘[g

] © o 4

by making i the node that precedes Jj ., along the optimal
- ]

route instead of some i, . This deletion of the arc (fl.l JO) from

1

-
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the treea) of optimal routes and entering the arc (1°J°) into the
tree either would provide a shorter route to J. or it would cause
a cycle to form which (by an earlier argument) is negative.
However neither is possible because the former implies a shorter

route to ‘1. (because 113 was lowered) while the latter implies

[}
a negative cycle not involving q . The cycle cannot involve gq

because all shortest routes i € T* from the origin pass through q
and there are no directed arcs into q along the tree of optimal
routes in T* . But a negative cycle in Sk is contrary to

assumption.

Thus a negative cycle will always be found if there is one by

(12). If one is found the inductive process terminates.

The following theorem due to M. Sakarovitch (verbal
commnication) permits one to find the minimal distance in Sk H to

several nodes at once.

Theorem 6 (Sakarovitch): Let L be the nodes in the tree of

optimal routes in sk which are su.ccessors3 ) of J, as defined in

Theorem 4, then

% -
(13) ni.‘ni+5u for 1€l .

é)No*l:.e: If there are no negative cycles in Sk and T in Sk +1

there is a tree of optimal routes to 1 € T branching out

from the origin; also the added arc (t, L) with t e T, LA T still
yields a tree of shortest routes without cycles in 1 € T* .,

3 )The tree of optimal routes from the origin forms a partiélly ordered
set. The "successors" of { are those nodes reached through [ .

e —T v~ -



Proof: One notes first that the distance I[i + stl can be realized
by first going along the optimal route to L and then along the
former route from J, to 1 €L . Now assux;le on the contrary that
there 1s a better route to i . As in proof of Theorem %, let tL
be the last arc of a better route such that t € T and L £ T ,
then nE +epp + Dpy <T, 48y . Subtracting Dy 2Ty- T, ,

yields 5€l< 8t1, contrary to (8) .
For completeness we give the following well known theorem, [3].

Theorem 7: If ¢,, >0 and I, of are known to be the
= ~i3 = — s

minimal distances from the origin for the k nodes of S, using

arcs of the full n-node problem, then Itq = IIp + cpq is the minimal

distance for q f Sk where

(%) ]'[P + cpq'-":Min (IIi +c1J) » P €S
iesk
JE S,

Proof: 1If not, then q is reached via some shorter route that
has nodes in common with Sk (since sk includes the origin); Let

(£ , q) be the last arc on the shorter route with £ e 8, end

aﬁsk,then

(15) e + cta * (min distance q to q) < I[p + ey

but this relation contradicts (14%) because minimum distance from

c'i to q 1is non-negative when cy 3 >20.

We are now in a position to give a count on the number of

W I B e~ i e s
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additions. Associated with each set of additions such as for (14)
is the same nmumber of comparisons (or possibly one less). In the case

Cyy > 0, the same sums occur in S, and § ., for the same (1, J).

Since at step k+1 we do not need to consider the arcs back to Sk ’
the total additions do not exceed the total number of arcs. We will
denote this total by A . The procedure is to sort the I[i +c 13
values as generated from low to high. Let the lowest sum on this

list be ]Ii + cy g This sum on the list is deleted if I 3

[ ] []
has previously beqn determined; 1if not then II j = II " + c TR
[ ] -, [}

Neky) the isuns HJ. ik cJ.k are computed for all arcs (J, k) and
made part of the sorted list. The process is then repeated. Sorting
requires effort, however, and so that the two theorems that follow

are misleading.

Theorem 8: If all distances c¢,, > O , then the number of additions

1J

using formula (14) does not exceed A , the number of arcs.

Theorem 9: The nmumber of additions in the general case, when

formula (3) and (8) 1is used does not exceed

(16) A+nfl+(n-l)f2+...fn

wvhere n 1is the number of nodes, fk is number of arcs directed

forward from the k-th node to enter the induction.

This suggests preordering from low to high the nodes by the

number of their forward arcs. If this is done, the bound reduces to

(17) A+nt +(n-1)£,+...2 <(n+3) A2

_ . N — )
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