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ABSTRACT 

The purpose of this note is to examine the relationships 

of the Kaiman filters which can be used to estimate the 

linearized state of two different state-variable repre- 

sentations of the  same nonlinear system.     It is shown 

that,   to within first order effects,   the choice of the co- 

ordinate system for the construction of the Kaiman filter 

is immaterial. 
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1.      INTRODUCTION 

It is often desirable to estimate the state of a re-entry vehicle,   satellite, 

etc.   by observing certain output signals,   using a radar,   in the presence of 

noise.     In general,   the equations of motion of the system are nonlinear; the 

nonlinear terms arise due to the inverse-square law and the nonlinear de- 

pendence of the drag force on the vehicle velocity. 

In such problems,   the fact that one is using a radar to make observations 

fixes the coordinate system in which the output signals are measured.     Thus, 

one usually observes 

a) range, 

b) azimuth,   and 

c) elevation 

in the presence of measurement noise,   which is in general assumed to be 

white. 

The prediction of the future system trajectory necessitates the estima- 

tion of the remaining state variables of the  system.     The estimation of these 

variables necessitates the definition of a coordinate system.     For example, 

for a radar-based coordinate system we must estimate 

a) range d)      range-rate 

b) azimuth e)      azimuth-rate 

c) elevation f)       elevation-rate 

On the other hand,   it may be desirable to estimate the state variables 

using a different coordinate system.     For example,   one may wish to use an 

inertial coordinate system or a vehicle-based coordinate system.     The 

choice of the coordinate system fixes the (nonlinear) differential equations 

of the chosen state variables (equations of motion) and the transformations 

linking the state variables to the output variables (range,   azimuth,   and 

elevation). 

Since we are dealing with one and the same physical system,   the various 

equations are related.    In point of fact,   given any one state variable repre- 

sentation one can 

a)      obtain,  via dynamic linearization techniques,   a set of 



linear perturbation differential equations,   and 

b)      construct the corresponding Kaiman filter for the 

estimation of the perturbation variables. 

It follows that each coordinate system yields a different linearized Kaiman 

filter.     The natural question that arises is:    is there any advantage in choos- 

ing any one particular state variable representation? 

It is shown in this report that if the linearized equations adequately rep- 

resent the system behavior,   then any choice of a coordinate system yields 

the same answer.     To accomplish this we proceed as follows.     In section 2 

we define two different state variable representations of the same system 

and with the same output variables.    In section 3 we state the mathematical 

relations which link the two state variable representations.     In section 4 

we obtain the linearized perturbation equations by linearizing about a 

nominal trajectory.    In section 5 we derive the equations of the Kaiman 

filters which can be used to estimate the perturbations of the state from the 

nominal trajectory; we then show that it is immaterial,   to within first-order 

terms,   which state variable representation is used to construct the Kaiman 

filter. 



2.      STATEMENT OF THE PROBLEM 

Let us suppose that we are given a nonlinear,   time-invariant,   dynamical 

system   Si    with state vector   x   and output vector   y_   related by the equations 

x    =   i (x) (2. 1) 
Sl 

I    =   h2(x) (2.2) 

We suppose that this system is completely observable. 

Now let us suppose that we represent the same system by using a differ- 

ent coordinate system in which the  state vector is   _z   and the output vector 

is still   y_.     We suppose that the vectors   _z   and   x     are related by 

z    =   £(x) (2.3) 

such that   g(. )   is differentiable,   one-to-one,   and onto for all   x.     Thus,   we 

suppose that for every   x   there is a unique   _z   and vice-versa.    In other 

words,   the inverse transformation   j*     (. ) exists and 

x    =   £"\z) (2.4) 

is well defined,  for all   x   and   _z. 

In the new coordinate system the dynamical system is described by the 

relations 

'   z    =   f,(z) (2.5) 
S2 

1    =   h2(z) (2.6) 

We next suppose that we cannot observe the output vector   yjt) in the 

absence of noise.     So we let   v(t)    denote a vector-valued white noise   process, 

with zero mean and covariance matrix   R(t),   i. e. 

v(t)|    =     0 (2.7) 

cov [v(t);   V(T)]   =   E [v(t)v*(T)|   =   R(t) 6 (t - T) (2.8) 

The basic problem is to estimate the state   x(t)    (or   ^(t) ) by observing 



the signal 

W(T)    =   2(T) + V(T) (2.9) 

over a period of time 

t     ^   T   ^   t (2. 10) 
o 



3.      SOME MATHEMATICAL RELATIONS 

In this  section we shall state some self-evident mathematical relations 

that relate the two system representations    S,    and   S?. 

First we start with the algebraic relation (2. 3),   i. e. 

z    =   £(x) 

We differentiate with respect to time and use the chain rule to obtain 

= I —<     x     = 
' o £ 

f,W 

where    (    o" j*/ öx)   is the Jacobian matrix of   j*(. ).     Now since 

then,   in view of Eq.   (3. 1),   we have 

i = i2 (£(*>) 

From Eqs.   (3.2) and (3.4) we deduce the relation 

-§— -i(-' = 4(£(-n  fora11 - 

Similarly,   from Eqs (2. 2) and (2. 6) we obtain,   in view of Eq.   (3. 1), 

the relation 

hjtx) =   h2^(iE)>      for a11  25 

Let us now define the matrix   G (x) by 

and the matrix £(z) (the Jacobian matrix of   g     (^))by 

I(5M hn 

(3. 1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 



Since 

and 

x   =   £(z)z (3. 10) 

it follows that 

G(x)£(_z) =   I        for all   x   and   z. (3.11) 

where   I    is the identity matrix. 



4.      DYNAMIC LINEARIZATION 

Let   t     be some initial time.     Let o 

denote some nominal initial state for the system   S,.     Let 

■*(t0) = *(2E*<ton 

denote the nominal initial state for the system   S?.     Let 

x* (t) ;        t   ^ t 

(4. 1) 

(4.2) 

(4.3) 

denote the nominal trajectory (solution) of the differential equation (2. 1) 

and let   _z' (t) ,   given by, 

z*(t)    =   £(x*(t) ) (4.4) 

denote the nominal trajectory (solution) of the system   S^. 

We shall denote by  _|(t)    small perturbations about the trajectory 

x   (t)    so that the actual state of   S,f x(t),is given by 

x(t)    =   x*(t) +J(t) (4.5) 

We shall denote by   J(t)    small perturbations about the trajectory   z   (t) 

so that the actual state of   S^MtJ.is given by 

^(t)    =    z  (t) + J(t) 

Then for the system   S,    we have 

x*(t) + l(t)   = ix(x(t)) + 

(4.6) 

aii 
x*(t)i(t) + o(I) (4.7) 

where   o(^)   are the (vector-valued) higher order terms.     We define the 

matrix   F, (x) 

[ *ii \ Fj(x) £ (4.8) 



and the matrix 

F*(t)   t   Fj(x*(t))   = 
'Sll 

5F x (t) (4.9) 

By neglecting the higher order terms in Eq.   (4. 7) we have 

1   =   Fi*(t)I (4. 10) 

In a similar mariner we have for the system   S? 

z*(t) + j(t)    =   £2(z*(t)) + 
siz 
"*I  , z*(t) 1W + 2<J) (4. 11) 

Define the matrices 

l hi 

and 

i2x-' 

F> 4 F2(/(t)) i;-^;z*(t) 

(4. 12) 

(4. 13) 

By neglecting the higher order terms    o(J)   in Eq.   (4. 11) we have 

J   ~   F2   (t) J (4. 14) 

We let  y_  (t) denote the nominal output of the system.     Let ]](t) denote 

the perturbations about the nominal output so that the actual output   yjt), 

for both  systems,   is 

Z(t)   = 2 (t) + 2<t) 

From Eqs.   (2. 1) and (4. 15) we have 

f*(t) +   ri(t)    =   hj <**(*) ) + 

(4. 15) 

aVt 
-^rix-(t) ^'T 2IM ?(t)+ o,(?) (4.16) 



while from Eqs.   (2. 6) and (4. 15) we have 

( S h2 | y  (t) + T](t)    =   h2(z   (t)) +    ^-Lj^       J(t) + Oj(J) 

Define the matrices: 

H, (x)   $ 
aHi 
3x~ 

ahj1 

H^t)     t   H,<x~(t))    =!^/is*(t) 

[ oh,\ 

H2W = hr 
* oh- 

H2(t)    *   H2(/(t))   *|-8^-J,*(t) 

Clearly 

Tj(t)    =   H* (t) |(t) + Oj (?)    =   H*(t)J(t)+ o^J) 

If we neglect the higher order terms    On (§) and   £i(J)   we have 

rj(t)   ST  H*(t)l(t) 

H(t)    ~   H*(t) J(t) 

Recall that (see Eq.   (2. 29) ) the observed signal is 

so that 

"(T)   =   y(T) + V(T) 

^(T)      =    £ (T)   +   r|(T)  +   V(T) 

(4.17) 

(4. 18) 

(4. 19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4. 24) 

(4.25) 

(4.26) 

Since   y_' (T)   is a deterministic and computable signal,   we can think of 

the observed signal as being 

W(T) - % (T)   =   T](T) + V(T) (4.27) 



The above linearization procedure yields the following results.     The 

linearization of the nonlinear system with   x   as the state vector leads to a 

linear and time-varying system,     L,,   with state vector and output 

vector    r\   related by 

I,. 
n = Hi MI 

(4.28) 

(4. 29) 

On the other hand,   the linearization of the nonlinear system with    z   as the 

state vector leads to a linear and time-varying system,   L-,,   with state 

vector   J   and output vector   r\   related by 

J    =   F2(t)J 

ll   =    H2*(t)J 

(4.30) 

(4.31) 

We shall now proceed to derive the relations which relate the matrices 

F*(t), H*(t), G*(t), F*(t), and H*(t) in Eqs. (4. 28) through (4. 31). To do 

this,   we start from Eq.   (4.4),   namely, 

z   (t)    =   l(x"(t) ) (4.32) 

Therefore, 

z  (t) + J(t)    =   £(x (t) +J(t) 

=   £<x (t) ) +   "37 x*(t)?(t) + o2(?) 

(4.33) 

(4. 34) 

Let   (see Eq.   (3. 7) ) 

G"(t)   g   G(x'"(t) )   | 51T" x"(t) 
(4.35) 

Then,   from Eqs (4.35),   (4.34),   and (4.32) we deduce the relation 

J(t)    =   G (t)S(t) + o,(?) ^2^ (4.36) 
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Neglecting the higher order terms    o?(£) we have for small   )| _|(t) || 

J(t)   -   G*(t)S(t) (4.37) 

Differentiating with respect to time we have 

J(t)    =   G*(t)§(t) + G*(t)I(t) (4.38) 

Substituting Eqs.   (4. 30) and (4. 28) into Eq.   (4. 38) we obtain 

?(t) (4.39) F2*(t)J(t)   -     G*(t) + G*(t)F*(t) 

Substituting Eq.   (4. 37) into Eq.   (4. 39) and noting that the ensuing relation 

must hold for all   j^(t)   we deduce that 

F*(t)G*(t)    =   G*(t) + G*(t)F*(t) (4.40) 

or 

F*(t)   =   G*(t)G*     (t) + G*(t)F*(t)G*~ (t) (4.41) 

Clearly,   Eq.   (4.41) links the matrices   F-,' (t) and   F   (t) appearing in Eqs. 

(4. 28) and (4. 30). 

Next,   we proceed to relate the matrices   H, (t) and   H? (t).    From 

Eqs.   (4. 29),   (4. 3 1),   and (4. 37) we conclude that 

H*(t)   =   H*(t)G*~ (t) (4.42) 

Let 

£*(t)   =   G*~ (t) (4.43) 

Then Eqs.   (4. 41) and (4. 42)  reduce to 

F*(t)   =   G*(t)£*(t) + G*(t)F*(t)£*(t) (4.44) 

H*(t)    =   H*(t)r*(t) (4.45) 

We remark that the above equations hold if and only if the various higher 

order terms are neglected. 

11 



5.  THE KALMAN FILTERS AND THE COVARIANCE EQUATIONS 

Let us consider the linear system   L,    defined by Eqs.   (4. 28) and (4. 29). 

The observed signal is    (see Eq.   (4. 27) ) 

U)(t)    -    Mt) +  v(t) (5. 1) 

We can construct a Kalman-Bucy filter (see Ref.     1    ) which will yield an 

estimate    ? (t)    of   £(t).     The filter is  specified by the equation 

3J-l(t)    =     F*(t)  - ^t)H*V)R~V)H*(t) §(t) 

-1 
+ ^:(t)H1   (t)R_1(t)a)(t)      ;       §(tQ)    =    0 (5.2) 

-V 

where   £c(t)    is the covariance matrix of the error vector    § (t)  -  ? (t) and 

it satisfies the Riccati matrix differential equation 

IF^S  =  £*(t)-§ + -5£*'(t> -^Sr'WR^t^SiV)^ (5.3) 

Similarly consider the linear system   L?    defined by Eqs.   (4. 3 0) and 

(4. 31) with the observed signal given by Eq.   (5. 1).    Again we can construct 

a Kalman-Bucy filter which generates an estimate   J(t) of J(t).     The filter 

is  specified by 

-^-J(t)   =  ,F*(t) -£j(t)H*'(t)R_1(t)H*(t)     J(t) 

+    fjttJH^VjR'^t)^!)   ;      J(tQ)   =   0 (5.4) 

where   £T(t)    is the covariance matrix of the error vector   J](t) - J (t)    and 
J 

it satisfies the Riccati equation 

1 Lj   -   F2*(t)_Zj + £jF*'(t) - JjHjVir'w H2*(t)rj (5. 5) 

We shall now show that the covariance matrices   ^dt) and   £T(t) are 

related by the relation 

12 



£»(t) = fdi^tir' (t) (5.6) 

To do this we proceed as follows.     Let 

x(t) I r*(t)ijj(t)r*'(t) (5.7) 

Then, 

-ii. x(t) = r:c(t)£j(t) r'(t) 

+ I::i(t)ij(t)_r*'(t) 

+ r<t)^j(t)r (t) (5.8) 

Substituting Eq.   (5. 5) into Eq.   (5. 8) we obtain 

x(t) = r*(t)Ej(t) £*'(t) + llti^(t) f*'(t) 
& i >:< i 

+ r WF^tifjWr (t) + £ *(t)^(t)F2 (t)_r (t) 

-   r^t)£J(t)H^'(t)R"1(t)H2(t)£J(t)r:'(t) (5.9) 

Next we substitute Eqs.   (4.44) and (4.45) into Eq.   (5. 9); we use the relation 

that (since from Eq.   (4.43),    £  (t) G  (t)    =   £ ) 

r*(t) = -r*(t)G*(t)£*(t) (5.io) 

to obtain 

x_(t) = -^(tjG^tjr^tjZjWif (t) 

-£*(t)SJ(t)r*'(t)G*,(t)r*,(t) 

+ r*(t)G*(t)r*(t)£J(t)i*'(t) 

+ r*(t) G*(t) F*(t)r*(t)£j(t) r*\t) 

13 



+ I*(t)jjJ(t)r*'(t)G*,(t)r*'(t) 

+ r (t)^j(t)r  (t)F   (t)G  (t)£  <t) 

-I*(t)2j(t)I*'(t) H*'(t)R_1(t)H*(t) fdl^tlfV)       (5. 11) 

Substituting Eq.   (5.7) into Eq.   (5. 11) we obtain 

X(t)    =   + X(t) F*'(t)G*'(t)r*'(t) 

- X(t)H*'(t)R-1(t)H*(t)X(t) (5. 12) 

Recalling that   £'(t)G(t)    =   I_   we see that Eq.   (5. 12) reduces further to 

X(t)   =   F*(t)X(t) + X(t)F*'(t) - XWH^tjR'^tlH^tJXft)      (5.13) 

Let us now compare Eqs.   (5. 13) and (5. 3).    We conclude that   X(t) and 

£p(t)  satisfy the same   matrix differential equations.     Furthermore,   from 

Eqs (5. 7) and (4.37),    X(tQ)    =   £*(tc) £j(t0) r*'(tQ) 

x(t0) = f(to)£j(to)r'(t0) 

= £*(t0)o*(t0) E {l(t0)l'(to)} G*'(to)r*'(to) 

=  E{l(t0)?'(to)j  *^to) (5.14) 

so that   X   and   £p    have the same initial conditions.     Therefore,   by the 

uniqueness theorem of solutions to differential equations we conclude that 

X(t)    =   £?(t) for all   t (5. 15) 

and,   hence,   from Eq.   (5. 7),   that 

£§(t) = r,:<(t)2j(t)r'(t) (5. i6) 

14 



Up to now we have shown that the two error covariances matrices 

r(t)    and   £;T(t)    are related by the linear equation (5. 16); this can also 

be written as 

i.j(t)    =   G>)£,(t)G*'(t) (5. 16) 

A r 

The next step is to compare the estimates    ;(t)    and    J(t)    of the two 

Kaiman filters (5. Z) and (5. 4).     We shall show that 

J(t)    =   G*(t)|(t) (5. 17) 

To do this,   define the vector 

5(t)   t  £*(t)J(t) (5. 18) 

Note that 

q(t0)    =   I*(t0)J(t0)    =   0   =    §(to) (5. 19) 

A 

We shall show that   q(t)   and   § (t)   satisfy the same differential equation; 

also,   by (5. 19) they have identical initial conditions; this would imply that 

q(t)    =   J_(t)   and,   therefore,   Eq.   (5. 17) would follow. 

From Eq.   (5. 18) we have 

-^   q(t)    =    r*(t)J(t) + £*(t)  A-J(t) (5.20) 

= - r*(t)G*(t)jr*(t) J(t) + r*(t) ^J(t) (5. zi) 

=   _ r-(t)G"(t)q(t) (5. ZZ) 

+ £*(t)F*(t) - r*(t) i j(t) H*'(t) R_1(t) H*(t)] J(t) 

+r(t)^(t)?2,(t^"1(t)*) (5-z3^ 

Substituting Eqs.   (4.44),   (4.45),   and (5. 16) into Eq.   (5.Z3) we obtain 

after some algebraic manipulations 

15 



3f  q(t)   =  (F*(t) -£^t)H*,(t)R"1(t)H*(t)J   q(t) 

+   £§(t)H*'(t)R"1(t)«(t) (5.24) 

Comparing Eqs.   (5.24) and (5. 2) we deduce that  JJt)   and   q(t)    satisfy 

the same differential equation.     Thus,   on the basis of our previous argument 

we conclude that 

J(t)   =   G (t)S(t) (5.25) 

The implications of this result will be discussed in the following 

section. 

16 



6.    Conclusions 

Let us recapitulate the development and the results up to now. 

We started with two different state variable representations of the same 

system (see Eqs.   (2.1),   (2.2) and (2.5),   (2.6)).    We linearized the system 

about the same nominal trajectory.    In this manner we derived two linear 

systems,   describing the equations of the perturbation vectors, L, and L,? (see 

Eqs.   (4.28) through (4.31)).     These systems were described by 

|(t) = F*(t)£(t) j 

  f (6.1) 
J(t) = A (t)J(t) J 

We showed that (see Eq.   (4.37)) 

J(t) = G*(t)§ (t) (6.2) 

to within first order terms where G (t) is a computable matrix from the 

problem data (see Eq.   (4. 35)). 

Next we showed how to generate the estimate £(t) of £ (t) and the estimate 

J(t) of JJt) using the Kakman-Bucy Filter.    After many manipulations we 

showed that the estimates _|_ (t) and ^J(t) were related by (see Eq.   (5. 25)) 

J(t) = G   (t)l (t) (6.3) 

In other words,   the estimates are related by the same linear transformation, 

G  (t),   as the perturbation vectors.    Since G (t) is a deterministic matrix we 

conclude that we can construct a Kaiman Filter based upon the linearized 

state equations in any one coordinate system to obtain the estimate, x (t),   of 

the state x(t) in that coordinate system by 

£(t) = x (t)+§(t) (6.4) 

17 



where   x  (t)   is the deterministic nominal trajectory.    If we chose a differ- 

ent coordinate system in which the state is    z(t)   and given that    z  and   x 

are related by 

z    =   g(x)   or   x   =   Y(£) (6. 5) 

Then if we let 

sw =nnrjx*(t) <6-6> 
then we can construct the estimate   _z(t) by 

z(t)   =   g(x*(t) ) + G*(t)i(t) (6.7) 

using the output of the previous Kaiman filter.     If higher order terms in 

the linearization scheme are negligible,   the estimate    z(t)    is optimal. 

The above discussion does not mean that there need not exist a co- 

ordinate system in which the linearization is more accurate than in another 

coordinate system.     However,   it is not known how to find such a coordinate 

system. 
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