LSD-TR-67-20

ESD-TR-67-20 ESTI FILE COPY

RETURNET TO SCIENTIFIC & TECHNICAL INFORMATION DIVISION ESD ACCESSION LIST ESTI Call No. AL 54838 Copy No. C /

Technical Note

M. Athans

1967-6

On the Equivalence of Linearized Kalman Filters

Prepared for the Advanced Research Projects Agency inder Electronic Systems Division Contract AF 19 (628)-5167 by

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lexington, Massachusetts

11 January 1967

AD646550

The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology. This research is a part of Project DEFENDER, which is sponsored by the U.S. Advanced Research Projects Agency of the Department of Defense; it is supported by ARPA under Air Force Contract AF 19(628)-5167 (ARPA Order 498).

This report may be reproduced to satisfy needs of U.S.G. vernment agencies.

Distribution of this document is unlimited.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY

ON THE EQUIVALENCE OF LINEARIZED KALMAN FILTERS

M. ATHANS

Consultant, Group 42

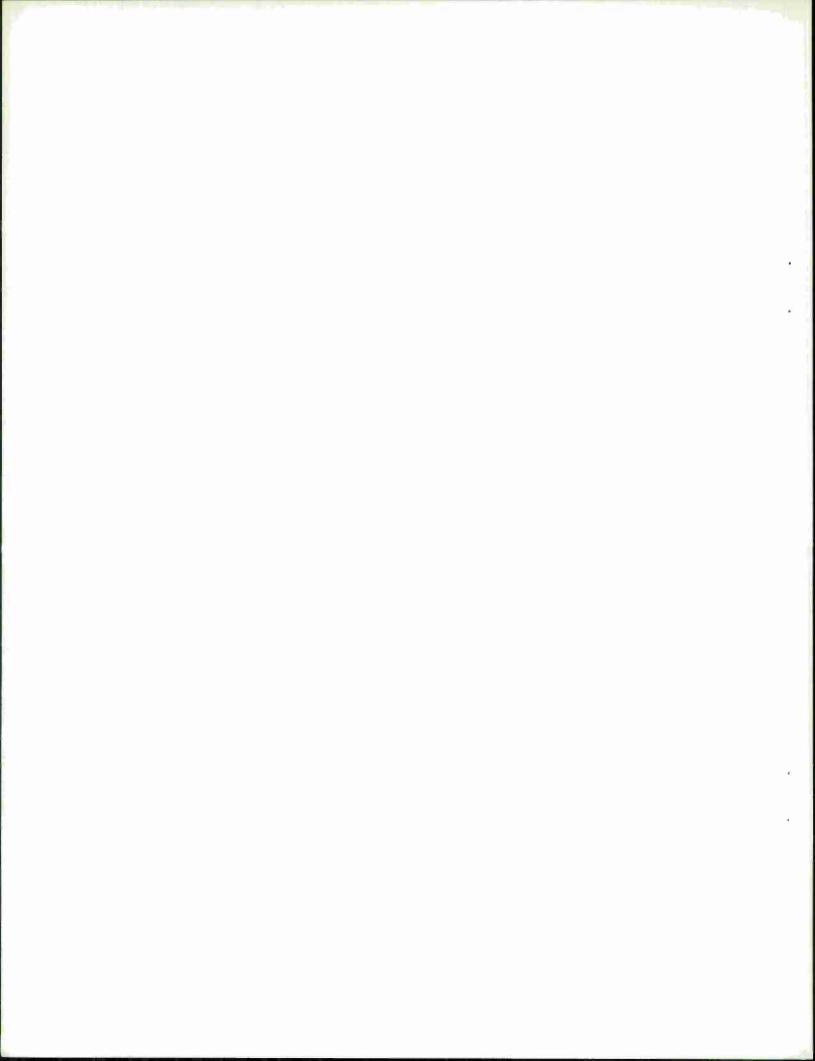
TECHNICAL NOTE 1967-6

11 JANUARY 1967

Research completed 24 September 1966

LEXINGTON

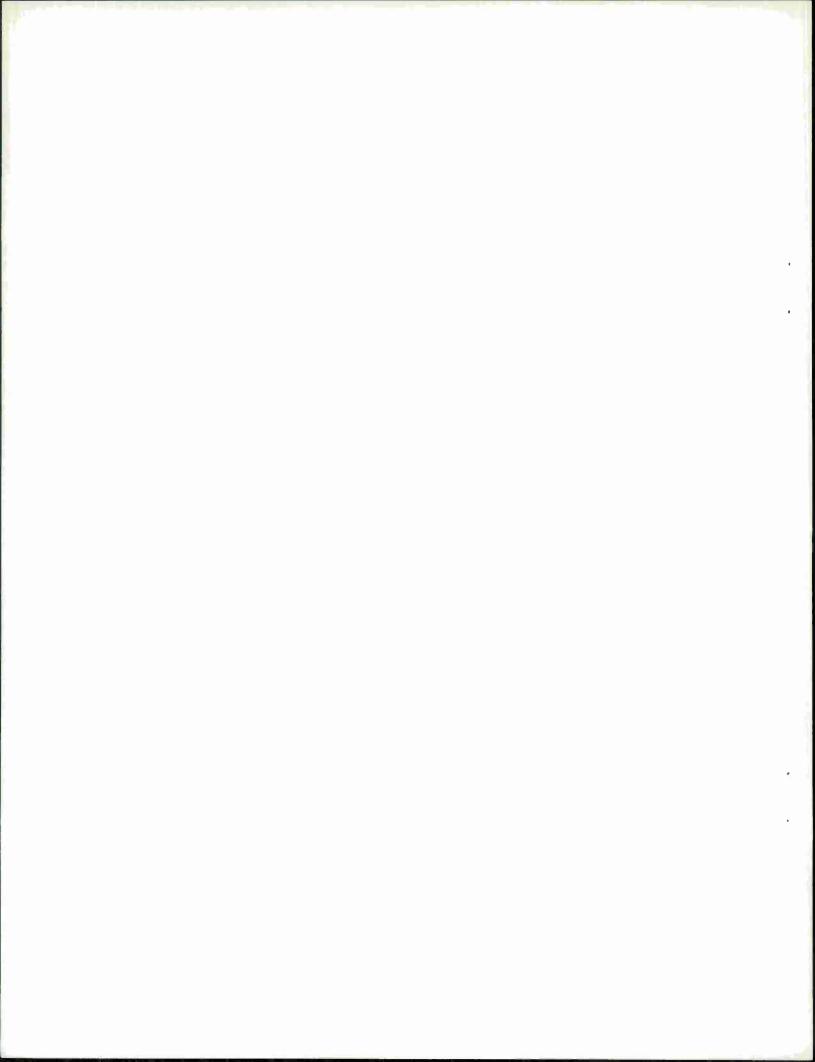
MASSACHUSETTS



ABSTRACT

The purpose of this note is to examine the relationships of the Kalman filters which can be used to estimate the linearized state of two different state-variable representations of the same nonlinear system. It is shown that, to within first order effects, the choice of the coordinate system for the construction of the Kalman filter is immaterial.

Accepted for the Air Force Franklin C. Hudson Chief, Lincoln Laboratory Office



1. INTRODUCTION

It is often desirable to estimate the state of a re-entry vehicle, satellite, etc. by observing certain output signals, using a radar, in the presence of noise. In general, the equations of motion of the system are nonlinear; the nonlinear terms arise due to the inverse-square law and the nonlinear dependence of the drag force on the vehicle velocity.

In such problems, the fact that one is using a radar to make observations fixes the coordinate system in which the output signals are measured. Thus, one usually observes

- a) range,
- b) azimuth, and
- c) elevation

in the presence of measurement noise, which is in general assumed to be white.

The prediction of the future system trajectory necessitates the estimation of the remaining state variables of the system. The estimation of these variables necessitates the definition of a coordinate system. For example, for a radar-based coordinate system we must estimate

2)	range		(b	range-rate
----	-------	--	----	------------

b)	azimuth	e)	azimuth-rate
c)	elevation	f)	elevation-rate

On the other hand, it may be desirable to estimate the state variables using a different coordinate system. For example, one may wish to use an inertial coordinate system or a vehicle-based coordinate system. The choice of the coordinate system fixes the (nonlinear) differential equations of the chosen state variables (equations of motion) and the transformations linking the state variables to the output variables (range, azimuth, and elevation).

Since we are dealing with one and the same physical system, the various equations are related. In point of fact, given any one state variable representation one can

a) obtain, via dynamic linearization techniques, a set of

1

linear perturbation differential equations, and

b) construct the corresponding Kalman filter for the estimation of the perturbation variables.

It follows that each coordinate system yields a different linearized Kalman filter. The natural question that arises is: <u>is there any advantage in choos-ing any one particular state variable representation?</u>

It is shown in this report that if the linearized equations adequately represent the system behavior, then any choice of a coordinate system yields the same answer. To accomplish this we proceed as follows. In section 2 we define two different state variable representations of the same system and with the same output variables. In section 3 we state the mathematical relations which link the two state variable representations. In section 4 we obtain the linearized perturbation equations by linearizing about a nominal trajectory. In section 5 we derive the equations of the Kalman filters which can be used to estimate the perturbations of the state from the nominal trajectory; we then show that it is immaterial, to within first-order terms, which state variable representation is used to construct the Kalman filter.

2. STATEMENT OF THE PROBLEM

Let us suppose that we are given a nonlinear, time-invariant, dynamical system S_1 with state vector x and output vector y related by the equations

$$S_{1} \begin{cases} \frac{\dot{x}}{1} = \underline{f}_{1}(\underline{x}) \\ \underline{y} = \underline{h}_{1}(\underline{x}) \end{cases}$$
(2.1)
(2.2)

We suppose that this system is completely observable.

Now let us suppose that we represent the same system by using a different coordinate system in which the state vector is \underline{z} and the output vector is still y. We suppose that the vectors \underline{z} and \underline{x} are related by

$$\underline{z} = \underline{g}(\underline{x}) \tag{2.3}$$

such that $\underline{g}(.)$ is differentiable, one-to-one, and onto for all \underline{x} . Thus, we suppose that for every \underline{x} there is a unique \underline{z} and vice-versa. In other words, the inverse transformation $\underline{g}^{-1}(.)$ exists and

$$\underline{x} = \underline{g}^{-1}(\underline{z}) \tag{2.4}$$

is well defined, for all \underline{x} and \underline{z} .

In the new coordinate system the dynamical system is described by the relations

$$S_{2} \int \frac{z}{\underline{z}} = \underline{f}_{2}(\underline{z}) \tag{2.5}$$

$$\sum_{\underline{y}} = \underline{h}_2(\underline{z})$$
(2.6)

We next suppose that we cannot observe the output vector $\underline{y}(t)$ in the absence of noise. So we let $\underline{v}(t)$ denote a vector-valued white noise process, with zero mean and covariance matrix R(t), i.e.

$$E \left\{ \underline{v}(t) \right\} = \underline{0} \tag{2.7}$$

$$\operatorname{cov}\left[\underline{v}(t); \underline{v}(\tau)\right] = \operatorname{E}\left\{\underline{v}(t)v'(\tau)\right\} = \underline{R}(t)\delta(t - \tau)$$
(2.8)

The basic problem is to estimate the state x(t) (or $\underline{z}(t)$) by observing

the signal

$$w(\tau) = y(\tau) + v(\tau)$$
 (2.9)

over a period of time

$$t_{o} \leqslant \tau \leqslant t \tag{2.10}$$

3. SOME MATHEMATICAL RELATIONS

In this section we shall state some self-evident mathematical relations that relate the two system representations S_1 and S_2 .

First we start with the algebraic relation (2.3), i.e.

$$\underline{z} = \underline{g}(\underline{x}) \tag{3.1}$$

We differentiate with respect to time and use the chain rule to obtain

$$\frac{\mathbf{z}}{\mathbf{z}} = \left(\frac{\partial \mathbf{g}}{\partial \mathbf{x}}\right) \cdot \mathbf{x} = \left(\frac{\partial \mathbf{g}}{\partial \mathbf{x}}\right) \cdot \mathbf{f}_{1}(\mathbf{x})$$
(3.2)

where $(\partial g / \partial x)$ is the Jacobian matrix of g(.). Now since

$$\frac{\mathbf{z}}{\mathbf{z}} = \frac{\mathbf{f}_2(\mathbf{z})}{\mathbf{z}} \tag{3.3}$$

then, in view of Eq. (3.1), we have

$$\underline{z} = \underline{f}_2(\underline{g}(\underline{x}))$$
(3.4)

From Eqs. (3, 2) and (3, 4) we deduce the relation

$$\left(\frac{\partial \underline{g}}{\partial \underline{x}}\right) \underline{f}_{1}(\underline{x}) = \underline{f}_{2}(\underline{g}(\underline{x})) \text{ for all } \underline{x}$$
(3.5)

Similarly, from Eqs (2.2) and (2.6) we obtain, in view of Eq. (3.1), the relation

$$\underline{h}_{1}(\underline{x}) = \underline{h}_{2}(\underline{g}(\underline{x})) \quad \text{for all } \underline{x}$$
(3.6)

Let us now define the matrix G(x) by

$$\underline{\mathbf{G}}\left(\underline{\mathbf{x}}\right) \stackrel{\Delta}{=} \left(\frac{\partial \underline{\mathbf{g}}}{\partial \underline{\mathbf{x}}}\right) \tag{3.7}$$

and the matrix $\underline{\Gamma}(z)$ (the Jacobian matrix of $g^{-1}(\underline{z})$) by

$$\underline{\Gamma}(\underline{z}) \triangleq \left(\frac{\partial \underline{g}^{-1}}{\partial \underline{z}}\right)$$
(3.8)

Since

$$\frac{1}{Z} = \underline{G}(\underline{x}) \cdot \underline{x}$$
(3.9)

and

$$\frac{1}{\underline{x}} = \underline{\Gamma}(\underline{z})\underline{z}$$
(3.10)

.

it follows that

$$G(x)\Gamma(z) = I$$
 for all x and z. (3.11)

where \underline{I} is the identity matrix.

4. DYNAMIC LINEARIZATION

Let t be some initial time. Let

denote some nominal initial state for the system S_1 . Let

$$\underline{z}^{*}(t_{o}) = \underline{g}(\underline{x}^{*}(t_{o}))$$

$$(4.2)$$

denote the nominal initial state for the system S2. Let

$$\underline{x}^{*}(t) \quad ; \quad t \ge t_{o} \tag{4.3}$$

denote the nominal trajectory (solution) of the differential equation (2.1) and let \underline{z}^{*} (t), given by,

$$\underline{z}^{*}(t) = \underline{g}(\underline{x}^{*}(t))$$
(4.4)

denote the nominal trajectory (solution) of the system S₂.

We shall denote by $\underline{5}(t)$ small perturbations about the trajectory $\underline{x}^{*}(t)$ so that the actual state of $S_{1}, \underline{x}(t)$, is given by

$$\underline{\mathbf{x}}(t) = \underline{\mathbf{x}}^{*}(t) + \underline{\mathbf{5}}(t)$$
(4.5)

We shall denote by $\underline{J}(t)$ small perturbations about the trajectory $\underline{z}^{*}(t)$ so that the actual state of $S_{2,2}\underline{z}(t)$, is given by

$$\underline{z}(t) = \underline{z}^{*}(t) + \underline{J}(t)$$
(4.6)

Then for the system S_1 we have

$$\underline{\dot{x}}^{*}(t) + \underline{\dot{\xi}}(t) = \underline{f}_{1}(\underline{x}^{*}(t)) + \left(\frac{\partial \underline{f}_{1}}{\partial \underline{x}}\right) \underline{x}^{*}(t) - \underline{\xi}(t) + \underline{o}(\underline{\xi})$$
(4.7)

where $\underline{o}(\underline{\xi})$ are the (vector-valued) higher order terms. We define the matrix $\underline{F}_1(\underline{x})$

$$\underline{\mathbf{F}}_{\mathbf{l}}(\underline{\mathbf{x}}) \triangleq \left(\frac{\partial \underline{\mathbf{f}}_{\mathbf{l}}}{\partial \underline{\mathbf{x}}} \right)$$
(4.8)

and the matrix

$$\underline{\underline{F}}_{1}^{*}(t) \stackrel{\text{a}}{=} \underline{\underline{F}}_{1}(\underline{\underline{x}}^{*}(t)) \stackrel{\text{a}}{=} \left(\frac{\partial \underline{f}_{-1}}{\partial \underline{\underline{x}}}\right) \underline{\underline{x}}^{*}(t)$$
(4.9)

By neglecting the higher order terms in Eq. (4.7) we have

$$\frac{\dot{\underline{\xi}}}{\underline{\xi}} \cong \underline{\underline{F}}_{1}^{*}(t) \underline{\xi}$$
(4.10)

In a similar manner we have for the system S_2

$$\underbrace{\overset{*}{\underline{z}}}_{\underline{z}}^{*}(t) + \underbrace{\overset{}{\underline{J}}}_{\underline{z}}(t) = \underbrace{\underline{f}}_{\underline{z}}(\underline{z}^{*}(t)) + \left(\frac{\partial \underline{f}}{\underline{z}}\right) \underbrace{\underline{z}}_{\underline{z}}^{*}(t) \underbrace{\underline{J}}(t) + \underline{o}(\underline{J})$$

$$(4.11)$$

Define the matrices

$$\underline{\mathbf{F}}_{2}(\underline{z}) \stackrel{\Delta}{=} \begin{pmatrix} \frac{\partial \underline{\mathbf{f}}_{2}}{\partial \underline{z}} \end{pmatrix}$$
(4.12)

and

$$\underline{\mathbf{F}}_{2}^{*}(t) \triangleq \underline{\mathbf{F}}_{2}\left(\underline{\mathbf{z}}^{*}(t)\right) \triangleq \left(\frac{\underline{\partial}\mathbf{f}_{2}}{\underline{\partial}\underline{\mathbf{z}}}\right) \underline{\mathbf{z}}^{*}(t) \qquad (4.13)$$

By neglecting the higher order terms o(J) in Eq. (4.11) we have

$$\frac{J}{J} \simeq \underline{F}_{2}^{*}(t) \underline{J}$$
(4.14)

We let $\underline{y}^{*}(t)$ denote the nominal output of the system. Let $\underline{n}(t)$ denote the perturbations about the nominal output so that the actual output $\underline{y}(t)$, for both systems, is

$$\underline{\mathbf{y}}(t) = \underline{\mathbf{y}}^{*}(t) + \underline{\mathbf{y}}(t)$$
(4.15)

From Eqs. (2.1) and (4.15) we have

$$\underline{\mathbf{y}}^{*}(t) + \underline{\mathbf{\eta}}(t) = \underline{\mathbf{h}}_{1}(\underline{\mathbf{x}}^{*}(t)) + \left(\frac{\partial \underline{\mathbf{h}}_{1}}{\partial \underline{\mathbf{x}}}\right)_{\underline{\mathbf{x}}}^{*}(t) - \underline{\boldsymbol{\xi}}(t) + \underline{\mathbf{o}}_{1}(\underline{\boldsymbol{\xi}})$$
(4.16)

while from Eqs. (2.6) and (4.15) we have

$$\underline{y}^{*}(t) + \underline{\eta}(t) = \underline{h}_{2}(\underline{z}^{*}(t)) + \left(\frac{\partial h_{2}}{\partial \underline{z}}\right) \underline{z}^{*}(t) \underline{J}(t) + \underline{o}_{1}(J)$$
(4.17)

Define the matrices:

$$\underline{H}_{1}(\underline{x}) \triangleq \left(\frac{\partial \underline{h}_{1}}{\partial \underline{x}}\right)$$
(4.18)

$$\underline{H}_{1}^{*}(t) \triangleq \underline{H}_{1}(\underline{x}^{*}(t)) \triangleq \left(\frac{\partial \underline{h}_{1}}{\partial \underline{x}}\right) \underline{\underline{x}}^{*}(t)$$
(4.19)

$$\underline{\mathrm{H}}_{2}(\underline{z}) \triangleq \left(\frac{\partial \underline{\mathrm{h}}_{2}}{\partial \underline{z}}\right) \tag{4.20}$$

$$\underline{H}_{2}^{*}(t) \triangleq \underline{H}_{2} \left(\underline{z}^{*}(t) \right) \triangleq \left(\frac{\partial \underline{h}_{2}}{\partial \underline{z}} \right) \underline{z}^{*}(t)$$

$$(4.21)$$

Clearly

$$\underline{\underline{n}}(t) = \underline{\underline{H}}_{1}^{*}(t) \underline{\underline{\xi}}(t) + \underline{\underline{o}}_{1}(\underline{\underline{\xi}}) = \underline{\underline{H}}_{2}^{*}(t) \underline{\underline{J}}(t) + \underline{\underline{o}}_{1}(\underline{J})$$
(4.22)

If we neglect the higher order terms $\underline{o}_1(\underline{\xi})$ and $\underline{o}_1(J)$ we have

$$\underline{\underline{\eta}}(t) \cong \underline{\underline{H}}_{1}^{\hat{\pi}}(t) \underline{\underline{\overline{5}}}(t)$$
(4.23)

$$\underline{\eta}(t) \cong \underline{H}_{2}^{\mathbb{R}}(t) \underline{J}(t)$$
(4.24)

Recall that (see Eq. (2.29)) the observed signal is

$$\underline{\omega}(\tau) = \underline{y}(\tau) + \underline{v}(\tau) \tag{4.25}$$

so that

$$\underline{\omega}(\tau) = \underline{y}^{*}(\tau) + \underline{\eta}(\tau) + \underline{v}(\tau)$$
(4.26)

Since $\underline{y}^{*}(\tau)$ is a deterministic and computable signal, we can think of the observed signal as being

$$\underline{\omega}(\tau) - \underline{y}^{*}(\tau) = \underline{\eta}(\tau) + \underline{v}(\tau) \qquad (4.27)$$

The above linearization procedure yields the following results. The linearization of the nonlinear system with \underline{x} as the state vector leads to a linear and time-varying system, L_1 , with state vector $\underline{\xi}$ and output vector η related by

$$L_{1} \begin{cases} \frac{1}{2} = \underline{F}_{1}^{*}(t) \underline{\xi} \\ \underline{n} = \underline{H}_{1}^{*}(t) \underline{\xi} \end{cases}$$
(4.28)
(4.29)

On the other hand, the linearization of the nonlinear system with \underline{z} as the state vector leads to a linear and time-varying system, \underline{L}_2 , with state vector \underline{J} and output vector $\underline{\eta}$ related by

$$L_{2} \begin{cases} \frac{\mathbf{j}}{\mathbf{J}} = \underline{\mathbf{F}}_{2}^{*}(\mathbf{t}) \, \underline{\mathbf{J}} \tag{4.30} \end{cases}$$

$$\underline{\eta} = \underline{H}_{2}^{*}(t) \underline{J}$$
(4.31)

We shall now proceed to derive the relations which relate the matrices $\underline{F}_{1}^{*}(t)$, $\underline{H}_{1}^{*}(t)$, $\underline{G}^{*}(t)$, $\underline{F}_{2}^{*}(t)$, and $\underline{H}_{2}^{*}(t)$ in Eqs. (4.28) through (4.31). To do this, we start from Eq. (4.4), namely,

$$\underline{z}^{*}(t) = \underline{g}(\underline{x}^{*}(t))$$
 (4.32)

Therefore,

$$\underline{z}^{*}(t) + \underline{J}(t) = \underline{g}(\underline{x}^{*}(t) + \underline{\xi}(t))$$
(4.33)

$$= \underline{g}(\underline{x}^{*}(t)) + \left(\frac{\partial \underline{g}}{\partial \underline{x}}\right) \underline{x}^{*}(t) \quad \xi(t) + \underline{o}_{2}(\xi) \quad (4.34)$$

Let (see Eq. (3.7))

$$\underline{G}^{*}(t) \triangleq \underline{G}(\underline{x}^{*}(t)) \triangleq \left(\frac{\partial \underline{g}}{\partial \underline{x}}\right) \underline{x}^{*}(t)$$
(4.35)

Then, from Eqs (4.35), (4.34), and (4.32) we deduce the relation

$$\underline{J}(t) = \underline{G}^{*}(t) \underline{\xi}(t) + \underline{o}_{2}(\underline{\xi})$$
(4.36)

Neglecting the higher order terms $\underline{o}_2(\underline{5})$ we have for small $\|\underline{5}(t)\|$

$$\underline{J}(t) = \underline{G}^{*}(t) \underline{\xi}(t)$$
(4.37)

Differentiating with respect to time we have

$$\underline{J}(t) = \underline{G}^{*}(t) \underline{\xi}(t) + \underline{G}^{*}(t) \underline{\xi}(t)$$
(4.38)

Substituting Eqs. (4.30) and (4.28) into Eq. (4.38) we obtain

$$\underline{\mathbf{F}}_{2}^{*}(t) \underline{\mathbf{J}}(t) = \left[\underline{\mathbf{G}}^{*}(t) + \underline{\mathbf{G}}^{*}(t) \underline{\mathbf{F}}_{1}^{*}(t)\right] \underline{\underline{5}}(t)$$
(4.39)

Substituting Eq. (4.37) into Eq. (4.39) and noting that the ensuing relation must hold for all $\frac{5}{5}$ (t) we deduce that

$$\underline{F}_{2}^{*}(t) \underline{G}^{*}(t) = \underline{G}^{*}(t) + \underline{G}^{*}(t) \underline{F}_{1}^{*}(t)$$
(4.40)

or

$$\underline{F}_{2}^{*}(t) = \underline{G}^{*}(t) \underline{G}^{*-1}(t) + \underline{G}^{*}(t) \underline{F}_{1}^{*}(t) \underline{G}^{*-1}(t)$$
(4.41)

Clearly, Eq. (4.41) links the matrices $\underline{F}_{2}^{*}(t)$ and $\underline{F}^{*}(t)$ appearing in Eqs. (4.28) and (4.30).

Next, we proceed to relate the matrices $\underline{H}_{1}^{*}(t)$ and $\underline{H}_{2}^{*}(t)$. From Eqs. (4.29), (4.31), and (4.37) we conclude that

$$\underline{H}_{2}^{*}(t) = \underline{H}_{1}^{*}(t) \underline{G}^{*-1}(t)$$
(4.42)

Let

$$\underline{\Gamma}^{*}(t) \stackrel{\Delta}{=} \underline{G}^{*-1}(t) \tag{4.43}$$

Then Eqs. (4.41) and (4.42) reduce to

$$\underline{\underline{F}}_{2}^{*}(t) = \underline{\underline{G}}^{*}(t) \underline{\underline{\Gamma}}^{*}(t) + \underline{\underline{G}}^{*}(t) \underline{\underline{F}}_{1}^{*}(t) \underline{\underline{\Gamma}}^{*}(t)$$
(4.44)

$$\underline{H}_{2}^{*}(t) = \underline{H}_{1}^{*}(t) \underline{\Gamma}^{*}(t)$$
(4.45)

We remark that the above equations hold if and only if the various higher order terms are neglected.

5. THE KALMAN FILTERS AND THE COVARIANCE EQUATIONS

Let us consider the linear system L_1 defined by Eqs. (4.28) and (4.29). The observed signal is (see Eq. (4.27))

$$\widetilde{\omega}(t) = \underline{\eta}(t) + \underline{v}(t)$$
(5.1)

We can construct a Kalman-Bucy filter (see Ref. $\begin{bmatrix} 1 \end{bmatrix}$) which will yield an estimate $\frac{\hat{\underline{\xi}}}{\underline{\xi}}$ (t) of $\underline{\xi}$ (t). The filter is specified by the equation

$$\frac{\mathrm{d}}{\mathrm{dt}} \stackrel{\circ}{\underline{\underline{\beta}}}(t) = \left[\underline{\mathrm{F}}_{1}^{*}(t) - \underline{\Sigma}_{\underline{\beta}}(t) \underline{\mathrm{H}}_{1}^{*'}(t) \underline{\mathrm{R}}^{-1}(t) \underline{\mathrm{H}}_{1}^{*}(t) \right] \stackrel{\circ}{\underline{\underline{\beta}}}(t) \\ + \underline{\Sigma}_{\underline{\beta}}(t) \underline{\mathrm{H}}_{1}^{*'}(t) \underline{\mathrm{R}}^{-1}(t) \underbrace{\underline{\widetilde{\omega}}}(t) ; \quad \underbrace{\underline{\underline{\beta}}}{\underline{\underline{\beta}}}(t_{0}) = \underline{0}$$
(5.2)

where $\underline{\Sigma}_{\xi}(t)$ is the covariance matrix of the error vector $\underline{\xi}(t) - \underline{\xi}(t)$ and it satisfies the Riccati matrix differential equation

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\Sigma}{-\xi} = \underline{\mathrm{F}}_{1}^{*}(t) \underline{\Sigma}_{\xi} + \underline{\Sigma}_{\xi} \underline{\mathrm{F}}_{1}^{*'}(t) - \underline{\Sigma}_{\xi} \underline{\mathrm{H}}_{1}^{*'}(t) \underline{\mathrm{R}}^{-1}(t) \underline{\mathrm{H}}_{1}^{*}(t) \underline{\Sigma}_{\xi}$$
(5.3)

Similarly consider the linear system L_2 defined by Eqs. (4.30) and (4.31) with the observed signal given by Eq. (5.1). Again we can construct a Kalman-Bucy filter which generates an estimate $\hat{J}(t)$ of $\underline{J}(t)$. The filter is specified by

$$\frac{\mathrm{d}}{\mathrm{dt}} \underline{\hat{\mathbf{j}}}(t) = \left[\underline{\mathbf{F}}_{2}^{*}(t) - \underline{\boldsymbol{\Sigma}}_{\mathbf{J}}(t) \underline{\mathbf{H}}_{2}^{*'}(t) \underline{\mathbf{R}}^{-1}(t) \underline{\mathbf{H}}_{2}^{*}(t) \right] \underline{\hat{\mathbf{j}}}(t) + \underline{\boldsymbol{\Sigma}}_{\mathbf{J}}(t) \underline{\mathbf{H}}_{2}^{*'}(t) \underline{\mathbf{R}}^{-1}(t) \underline{\widetilde{\boldsymbol{\omega}}}(t) ; \underline{\hat{\mathbf{j}}}(t_{0}) = \underline{\mathbf{0}}$$
(5.4)

where $\sum_{J}(t)$ is the covariance matrix of the error vector $\underline{J}(t) - \underline{\hat{J}}(t)$ and it satisfies the Riccati equation

$$\frac{\mathrm{d}}{\mathrm{dt}} \frac{\Sigma}{-\mathrm{J}} = \underline{\mathrm{F}}_{2}^{*}(\mathrm{t})\underline{\Sigma}_{\mathrm{J}} + \underline{\Sigma}_{\mathrm{J}}\underline{\mathrm{F}}_{2}^{*'}(\mathrm{t}) - \underline{\Sigma}_{\mathrm{J}}\underline{\mathrm{H}}_{2}^{*'}(\mathrm{t})\underline{\mathrm{R}}^{-1}(\mathrm{t})\underline{\mathrm{H}}_{2}^{*}(\mathrm{t})\underline{\Sigma}_{\mathrm{J}}$$
(5.5)

We shall now show that the covariance matrices $\frac{\Sigma}{-\xi}(t)$ and $\frac{\Sigma}{-J}(t)$ are related by the relation

$$\underline{\Sigma}_{\dagger}(t) = \underline{\Gamma}^{*}(t) \underline{\Sigma}_{J}(t) \Gamma^{*}(t)$$
(5.6)

To do this we proceed as follows. Let

$$\underline{X}(t) \triangleq \underline{\Gamma}^{*}(t) \underline{\Sigma}_{J}(t) \underline{\Gamma}^{*}(t)$$
(5.7)

Then,

$$\frac{\mathrm{d}}{\mathrm{d}t} \underline{X}(t) = \underline{\Gamma}^{*}(t) \underline{\Sigma}_{J}(t) \underline{\Gamma}^{*'}(t) + \underline{\Gamma}^{*}(t) \underline{\Sigma}_{J}(t) \underline{\Gamma}^{*'}(t) + \underline{\Gamma}^{*}(t) \underline{\Sigma}_{J}(t) \underline{\Gamma}^{*'}(t)$$

$$(5.8)$$

Substituting Eq. (5.5) into Eq. (5.8) we obtain

$$\underbrace{\underline{X}}(t) = \underbrace{\underline{\Gamma}}^{*}(t) \underbrace{\underline{\Sigma}}_{J}(t) \underbrace{\underline{\Gamma}}^{*'}(t) + \underbrace{\underline{\Gamma}}^{*}(t) \underbrace{\underline{\Sigma}}_{J}(t) \underbrace{\underline{\Gamma}}^{*'}(t) + \underbrace{\underline{\Gamma}}^{*}(t) \underbrace{\underline{\Sigma}}_{J}(t) \underbrace{\underline{\Gamma}}^{*'}(t) + \underbrace{\underline{\Gamma}}^{*}(t) \underbrace{\underline{\Sigma}}_{J}(t) \underbrace{\underline{\Gamma}}^{*'}(t) \underbrace{\underline{\Gamma}}^{*'}(t) + \underbrace{\underline{\Gamma}}^{*}(t) \underbrace{\underline{\Sigma}}_{J}(t) \underbrace{\underline{\Gamma}}^{*'}(t) \underbrace{\underline{\Gamma}}^{*'}(t) + \underbrace{\underline{\Gamma}}^{*}(t) \underbrace{\underline{\Sigma}}_{J}(t) \underbrace{\underline{\Gamma}}^{*'}(t) \underbrace{\underline{\Gamma}}^{*'}(t) + \underbrace{\underline{\Gamma}}^{*}(t) \underbrace{\underline{\Gamma}}^{*'}(t) \underbrace{\underline{\Gamma}}^{*'}(t) \underbrace{\underline{\Gamma}}^{*'}(t) + \underbrace{\underline{\Gamma}}^{*}(t) \underbrace{\underline{\Gamma}}^{*'}(t) \underbrace{\underline{\Gamma}}^{*'}(t) \underbrace{\underline{\Gamma}}^{*'}(t) + \underbrace{\underline{\Gamma}}^{*'}(t) \underbrace{\underline{\Gamma}}^{*''}(t) \underbrace{\underline{\Gamma}}^{*'}(t) \underbrace{\underline{\Gamma}}^{*'}(t) \underbrace{\underline{\Gamma}}^{*'}(t) \underbrace{\underline{\Gamma}}^{*'$$

Next we substitute Eqs. (4.44) and (4.45) into Eq. (5.9); we use the relation that (since from Eq. (4.43), $\underline{\Gamma}^{*}(t) \underline{G}^{*}(t) = \underline{I}$)

$$\underline{\Gamma}^{*}(t) = -\underline{\Gamma}^{*}(t) \underline{G}^{*}(t) \underline{\Gamma}^{*}(t)$$
(5.10)

to obtain

$$\underbrace{\underline{X}}(t) = -\underline{\Gamma}^{*}(t) \underbrace{\underline{G}}^{*}(t) \underline{\Gamma}^{*}(t) \underbrace{\underline{\Sigma}}_{J}(t) \underline{\Gamma}^{*'}(t)$$

$$- \underline{\Gamma}^{*}(t) \underbrace{\underline{\Sigma}}_{J}(t) \underline{\Gamma}^{*'}(t) \underbrace{\underline{G}}^{*'}(t) \underline{\Gamma}^{*'}(t)$$

$$+ \underline{\Gamma}^{*}(t) \underbrace{\underline{G}}^{*}(t) \underline{\Gamma}^{*}(t) \underbrace{\underline{\Sigma}}_{J}(t) \underline{\Gamma}^{*'}(t)$$

$$+ \underline{\Gamma}^{*}(t) \underline{\underline{G}}^{*}(t) \underline{F}^{*}(t) \underline{\underline{\Sigma}}_{J}(t) \underline{\Gamma}^{*'}(t)$$

$$+ \underline{\Gamma}^{*}(t) \underline{\Sigma}_{J}(t) \underline{\Gamma}^{*'}(t) \underline{G}^{*'}(t) \underline{\Gamma}^{*'}(t)$$

$$+ \underline{\Gamma}^{*}(t) \underline{\Sigma}_{J}(t) \underline{\Gamma}^{*'}(t) \underline{F}^{*'}(t) \underline{G}^{*'}(t) \underline{\Gamma}^{*'}(t)$$

$$- \underline{\Gamma}^{*}(t) \underline{\Sigma}_{J}(t) \underline{\Gamma}^{*'}(t) \underline{H}_{1}^{*'}(t) \underline{R}^{-1}(t) \underline{H}_{1}^{*}(t) \underline{\Gamma}^{*}(t) \underline{\Sigma}_{J}(t) \underline{\Gamma}^{*'}(t)$$
(5.11)

Substituting Eq. (5.7) into Eq. (5.11) we obtain

$$\underbrace{\underline{X}}^{\bullet}(t) = + \underline{X}(t) \underline{F}_{1}^{*'}(t) \underline{G}^{*'}(t) \underline{\Gamma}^{*'}(t) - \underline{X}(t) \underline{H}_{1}^{*'}(t) \underline{R}^{-1}(t) \underline{H}_{1}^{*}(t) \underline{X}(t)$$
(5.12)

Recalling that $\underline{\Gamma}^{*}(t) \underline{G}^{*}(t) = \underline{I}$ we see that Eq. (5.12) reduces further to

$$\underbrace{\underline{X}}_{\underline{X}}(t) = \underline{\underline{F}}_{1}^{*}(t) \underline{X}(t) + \underline{X}(t) \underline{\underline{F}}_{1}^{*'}(t) - \underline{X}(t) \underline{\underline{H}}_{1}^{*'}(t) \underline{\underline{R}}_{1}^{-1}(t) \underline{\underline{H}}_{1}^{*}(t) \underline{X}(t)$$
(5.13)

Let us now compare Eqs. (5.13) and (5.3). We conclude that $\underline{X}(t)$ and $\underline{\Sigma}_{\underline{\xi}}(t)$ satisfy the <u>same</u> matrix differential equations. Furthermore, from Eqs (5.7) and (4.37), $\underline{X}(\underline{t}_{o}) = \underline{\Gamma}^{*}(\underline{t}_{o}) \underline{\Sigma}_{J}(\underline{t}_{o}) \underline{\Gamma}^{*'}(\underline{t}_{o})$

$$\underline{X}(t_{o}) = \underline{\Gamma}^{*}(t_{o}) \underline{\Sigma}_{J}(t_{o}) \underline{\Gamma}^{*'}(t_{o})$$

$$= \underline{\Gamma}^{*}(t_{o}) E \left\{ \underline{J}(t_{o}) \underline{J}'(t_{o}) \right\} - \underline{\Gamma}^{*'}(t_{o})$$

$$= \underline{\Gamma}^{*}(t_{o}) \underline{G}^{*}(t_{o}) E \left\{ \underline{\xi}(t_{o}) \underline{\xi}'(t_{o}) \right\} \underline{G}^{*'}(t_{o}) \underline{\Gamma}^{*'}(t_{o})$$

$$= E \left\{ \underline{\xi}(t_{o}) \underline{\xi}'(t_{o}) \right\} \triangleq \underline{\Sigma}_{\xi}(t_{o}) \qquad (5.14)$$

so that \underline{X} and $\underline{\Sigma}_{\xi}$ have the same initial conditions. Therefore, by the uniqueness theorem of solutions to differential equations we conclude that

$$\underline{X}(t) = \underline{\Sigma}_{\xi}(t) \quad \text{for all } t \quad (5.15)$$

and, hence, from Eq. (5.7), that

$$\underline{\Sigma}_{\xi}(t) = \underline{\Gamma}^{*}(t) \underline{\Sigma}_{J}(t) \underline{\Gamma}^{*}'(t)$$
(5.16)

Up to now we have shown that the two error covariances matrices $\frac{\sum_{i=1}^{\infty}}{2}(t)$ and $\frac{\sum_{i=1}^{\infty}}{2}(t)$ are related by the linear equation (5.16); this can also be written as

$$\frac{\Sigma_{J}}{2}(t) = \underline{G}^{*}(t) \underline{\Sigma}_{\xi}(t) \underline{G}^{*}(t)$$
(5.16)

The next step is to compare the estimates $\hat{\underline{f}}(t)$ and $\hat{\underline{J}}(t)$ of the two Kalman filters (5.2) and (5.4). We shall show that

$$\hat{\underline{J}}(t) = \underline{\underline{G}}^{*}(t) \hat{\underline{\xi}}(t)$$
(5.17)

To do this, define the vector

$$\underline{\mathbf{q}}(\mathbf{t}) \triangleq \underline{\Gamma}^{*}(\mathbf{t}) \, \underline{\hat{\mathbf{j}}}(\mathbf{t}) \tag{5.18}$$

Note that

$$\underline{\mathbf{q}}(\mathbf{t}_{0}) = \underline{\mathbf{1}}^{*}(\mathbf{t}_{0}) \, \underline{\mathbf{j}}(\mathbf{t}_{0}) = \underline{\mathbf{0}} = \underline{\underline{\boldsymbol{\xi}}}(\mathbf{t}_{0}) \tag{5.19}$$

We shall show that $\underline{q}(t)$ and $\underline{\hat{\xi}}(t)$ satisfy the same differential equation; also, by (5.19) they have identical initial conditions; this would imply that $q(t) = \underline{\hat{\xi}}(t)$ and, therefore, Eq. (5.17) would follow.

From Eq. (5.18) we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \underline{q}(t) = \underline{\Gamma}^{*}(t) \underline{\hat{J}}(t) + \underline{\Gamma}^{*}(t) \frac{\mathrm{d}}{\mathrm{d}t} \underline{\hat{J}}(t)$$
(5.20)

$$= -\underline{\Gamma}^{*}(t) \underline{\overset{\bullet}{G}}^{*}(t) \underline{\Gamma}^{*}(t) \underline{\overset{\bullet}{J}}(t) + \underline{\Gamma}^{*}(t) \frac{d}{dt} \underline{\overset{\bullet}{J}}(t)$$
(5.21)

$$= -\underline{\Gamma}^{*(t)} \underline{\dot{G}}^{*(t)} \underline{q}^{(t)}$$
(5.22)

$$+ \left[\underline{\Gamma}^{*}(t) \underline{F}_{2}^{*}(t) - \underline{\Gamma}^{*}(t) \underline{\Sigma}_{J}(t) \underline{H}_{2}^{*'}(t) \underline{R}^{-1}(t) \underline{H}_{2}^{*}(t) \right] \underline{\hat{J}}(t)$$

+
$$\underline{\Gamma}^{*}(t) \underline{\Sigma}_{J}(t) \underline{H}_{2}^{*'}(t) \underline{R}^{-1}(t) \underline{\tilde{\omega}}(t)$$
(5.23)

Substituting Eqs. (4.44), (4.45), and (5.16) into Eq. (5.23) we obtain after some algebraic manipulations

$$\frac{\mathrm{d}}{\mathrm{dt}} \underline{q}(t) = \left[\underline{\mathrm{F}}_{1}^{*}(t) - \underline{\Sigma}_{\xi}(t) \underline{\mathrm{H}}_{1}^{*'}(t) \underline{\mathrm{R}}^{-1}(t) \underline{\mathrm{H}}_{1}^{*}(t) \right] \underline{q}(t) + \underline{\Sigma}_{\xi}(t) \underline{\mathrm{H}}_{1}^{*'}(t) \underline{\mathrm{R}}^{-1}(t) \underline{\widetilde{\omega}}(t)$$
(5.24)

Comparing Eqs. (5.24) and (5.2) we deduce that $\underline{\hat{\xi}}(t)$ and $\underline{q}(t)$ satisfy the same differential equation. Thus, on the basis of our previous argument we conclude that

$$\hat{\underline{J}}(t) = \underline{G}^{*}(t)\hat{\underline{\xi}}(t)$$
 (5.25)

The implications of this result will be discussed in the following section.

6. Conclusions

Let us recapitulate the development and the results up to now.

We started with two different state variable representations of the same system (see Eqs. (2.1), (2.2) and (2.5), (2.6)). We linearized the system about the same nominal trajectory. In this manner we derived two linear systems, describing the equations of the perturbation vectors, L_1 and L_2 (see Eqs. (4.28) through (4.31)). These systems were described by

$$\frac{\dot{\underline{\xi}}(t) = \underline{F}^{*}(t) \underline{\underline{\xi}}(t)}{\underline{\underline{j}}(t) = \underline{\underline{A}}^{*}(t) \underline{\underline{j}}(t)}$$
(6.1)

We showed that (see Eq. (4.37))

$$\underline{J}(t) = \underline{G}^{*}(t) \underline{5}(t)$$
(6.2)

to within first order terms where $\underline{G}^{*}(t)$ is a computable matrix from the problem data (see Eq. (4.35)).

Next we showed how to generate the estimate $\underline{\xi}(t)$ of $\underline{\xi}(t)$ and the estimate $\underline{J}(t)$ of $\underline{J}(t)$ using the Kakman-Bucy Filter. After many manipulations we showed that the estimates $\underline{\xi}(t)$ and $\underline{J}(t)$ were related by (see Eq. (5.25))

$$\hat{\underline{J}}(t) = \underline{\underline{G}}^{*}(t) \hat{\underline{\xi}}(t)$$
(6.3)

In other words, the estimates are related by the same linear transformation, $\underline{G}^{*}(t)$, as the perturbation vectors. Since $\underline{G}^{*}(t)$ is a deterministic matrix we conclude that we can construct a Kalman Filter based upon the linearized state equations in any one coordinate system to obtain the estimate, $\underline{x}(t)$, of the state x(t) in that coordinate system by

$$\hat{\underline{x}}(t) = \underline{x}^{*}(t) + \hat{\underline{\xi}}(t)$$
(6.4)

where $\underline{x}^{*}(t)$ is the deterministic nominal trajectory. If we chose a different coordinate system in which the state is $\underline{z}(t)$ and given that \underline{z} and \underline{x} are related by

$$\underline{z} = \underline{g}(\mathbf{x}) \text{ or } \underline{\mathbf{x}} = \underline{\gamma}(\underline{z}) \tag{6.5}$$

Then if we let

$$\underline{\mathbf{G}}^{*}(\mathbf{t}) \stackrel{\texttt{a}}{=} \frac{\left\langle \begin{array}{c} \partial \underline{\mathbf{g}} \\ \partial \underline{\mathbf{x}} \end{array} \right\rangle}{\mathbf{x}}^{*}(\mathbf{t}) \tag{6.6}$$

then we can construct the estimate $\hat{z}(t)$ by

$$\underline{\hat{z}}(t) = \underline{g}(\underline{x}^{*}(t)) + \underline{G}^{*}(t)\underline{\hat{\xi}}(t)$$
(6.7)

using the output of the previous Kalman filter. If higher order terms in the linearization scheme are negligible, the estimate $\hat{2}(t)$ is optimal.

The above discussion does not mean that there need not exist a coordinate system in which the linearization is more accurate than in another coordinate system. However, it is not known how to find such a coordinate system.

ACKNOWLEDGMENT

The author expresses his sincere thanks to Dr. Richard P. Wishner and Mr. Michael Gruber for their helpful comments and discussions.

7. REFERENCES

 R. E. Kalman and R. S. Bucy, "New Results in Linear Filtering and Prediction Theory," J. of Basic Engineering, Trans. ASME, <u>83D</u>, 1961, pp 95-108.

.

DISTRIBUTION

Director's Office

Division I

R. E. Rader

Division II

F. C. Frick

Group 21

K. E. Ralston

Group 22

W. Z. Lemnios D. H. Pruslin

Division III

S. H. Dodd, Jr.

Group 35

K. Kresa

Division IV

J. Freedman G. F. Watson H. G. Weiss

Group 41

D. L. Clark H. M. Jones J. B. Resnick

Group 42

M. E. Austin
A. Bertolini
D. R. Bromaghim
G. F. Dalrymple
D. F. DeLong
A. A. Galvin
H. M. Heggestad
E. M. Hofstetter
O. A. Z. Leneman
B. Loesch

J. Margolin G. R. McCully J. P. Perry C. M. Steinmetz J. A. Tabaczynski J. O. Taylor R. P. Wishner (10) Group 43 R. C. Butman Group 44 C. Blake Group 45 W. W. Camp V. L. Lynn S. J. Miller Group 46 C. W. Jones C. E. Muehe Division VI W. E. Morrow, Jr. Group 62 K. L. Jordan I. Stiglitz Group 64 P. E. Green R. T. Lacoss Group 66 T. J. Goblick B. Reiffen Division VII J. F. Hutzenlaub Division VIII A. L. McWhorter

DISTRIBUTION

Massachusetts Institute of Technology

Prof. M. Athans (20) Prof. R. W. Brockett Mr. J. Burchfiel	Room ''	24-306 24-302 24-316
Mr. R. Canales	11	24-316
Mr. A. Debs	11	24-316
Prof. M. Dertovzos	11	32-100
Prof. L.A. Gould	11	32-102
Mr. D. L. Gray	11	24-316
Mr. S. Greenberg	11	24-316
Mr. D. L. Kleinman	11	24-316
Mr. W. Levine	11	24-316
Mr. A. Levis	11	24-316
Prof. G.C. Newton	11	32-106
Prof. F.C. Schweppe	11	24-308

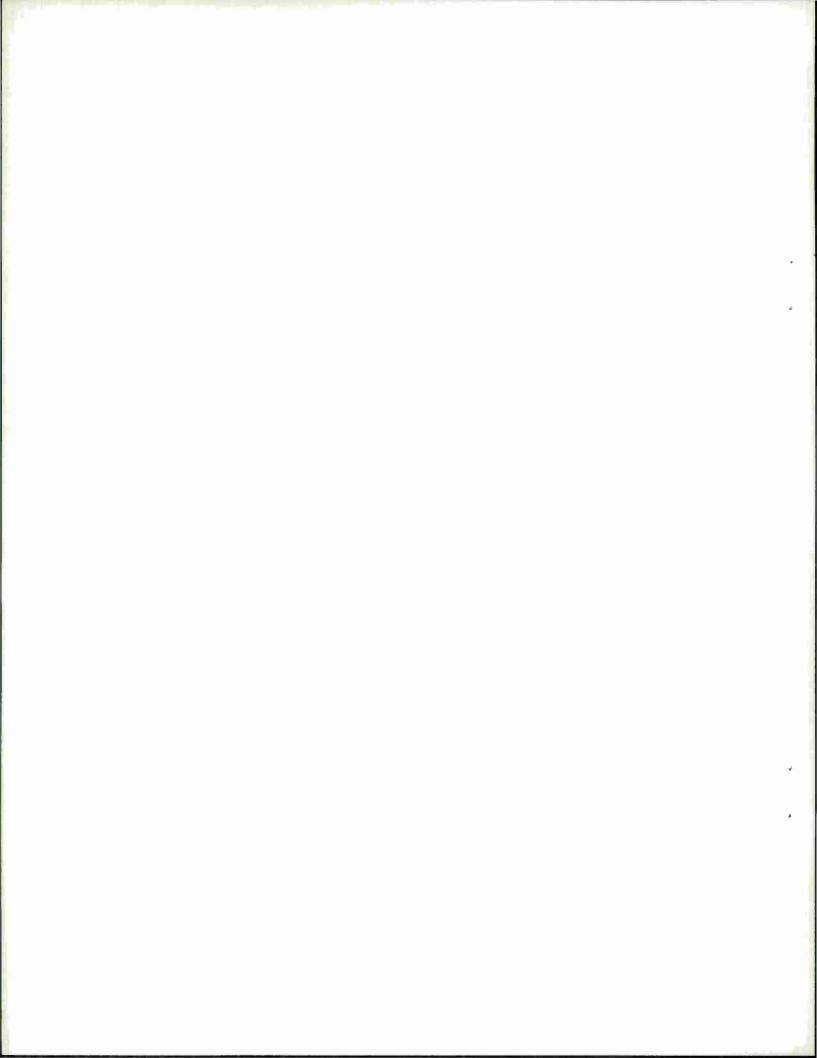
Massachusetts Institute of Technology Department of Electrical Engineering

> Prof. W. Davenport Prof. A. Drake Prof. R. Gallager Prof. R. Kennedy Prof. L. D. Smullin Prof. H. L. Snyder Prof. H. VanTrees

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL	DATA -	R&D					
(Security classification of title, body of abstract and indexing annota			rall report is classified)				
1. ORIGINATING ACTIVITY (Corporate author)		2a. REPORT SECURITY CLASSIFICATION Unclassified					
Lincoln Laboratory, M.I.T.		2b. GROUP None					
3. REPORT TITLE							
On the Equivalence of Linearized Kalman Filters							
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Technical Note							
5. AUTHOR(S) (Last name, first name, initial)							
Athans, Michael							
6. REPORT DATE	7a. TOTAL	NO. OF PAGES	7b. NO. OF REFS				
11 January 1967		28	1				
8a. CONTRACT OR GRANT NO.	9a. ORIGI	NATOR'S REPORT N	NUMBER(S)				
AF 19(628)-5167 5. PROJECT NO.	Т	echnical Note 196					
ARPA 498	9b. OTHER REPORT NO(5) (Any other numbers that may be						
	assigned this report)						
d. 10. AVAILABILITY/LIMITATION NOTICES	E:	SD-TR-67-20					
11. SUPPLEMENTARY NOTES		ORING MILITARY A					
None	Advanced Research Projects Agency, Department of Defense						
13. ABSTRACT							
The purpose of this note is to examine the relationships of the Kalman filters which can be used to estimate the linearized state of two different state-variable representations of the same nonlinear system. It is shown that, to within first order effects, the choice of the coordinate system for the construction of the Kalman filter is immaterial.							
14. KEY WORDS Kalman filters	nonlir	lear systems					
linearized filters		tories					



a •

17

and the second s

.

۲