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ABSTRACT

This report is a study on some elementary information handling properties
of neuromime nets, giving most emphasis to the functioning of a single
neuromime component, and containing some discussion of the operation of
simple nets. Single component computation is treated from the point of
view of changes brought about in the internal structure by operations
performed during data flow. A geometrical model is presented which
illustrates the pattern measurement behavior of the component, and some
of the simpler differential equations of adaptation are solved to pruvida
some insight into the effect and interaction of the component control
parameters. Simple net behavior is concerned mainly with feedback inter-

action among couwponents, and gives some useful notation for describing net

operation.
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Section I

INTRODUCTION

This report is a description of the computations performed by a type
of neural net, and can function as a programming manual for this net.

The contract under which this report was prepared is a part of an
effort to develop more effective information handling systems, in the
sense of extracting usable knowledge from received signals.

More generally, the overall effort is concerned with the development
of information processing systems with capabilities approaching those of
the human brain. The approach being taken to solve this prcblem is to
analyze the behavior of the brain, breaking it down into functional components,
then analyzing each component until a basic component is reached which can be
constructed with present technology. These components are then constructed
(or simulated) and put together in various systems, and the behavior of these
systems compared with actual cognitive operations.

Emphasis has been placed on the functioning of individual components and
simple nets. Section II gives a basic description of the operations performed
by components, the kinds of net structures the component is designed to form,
and a general discussion of the computational parameters. Section III describes
informally the computations performed by a single neuromime, with particular
attention to adaptation. Section IV is a more rigorous discussion of the
computational processes of a component, section V of the adaptation process,
and section VI discusses simple nets. Section VII considers a number of
extensions, conjectures and unsolved problems that have arisen in connection

with this research.



Section II

GENERAL PROPERTIES OF NEUROMIME
AND NETS

The problem under consideration is that of building a flexible pattern-
recognizing device to be used in decoding signals produced by some sort of
sensory encoders. Instead of producing a device directly, it is desired to
investigate the design of a more general computation system that would be
self-organizing.

This report is an analysis of some of the mathematical properties of a
computation system developed by the contract menitor.* The system is modeled
after an organizational mechanism shown in Figure 2.1. There are a series of
computation areas with a number of transmission lines comnecting them with
each other, and with the outside, both input and output. The computer would
have the ability to alter the computation parameters of an area in such a
way as to alter its responses with time and it would also have the property
that some areas could be activated and others de-activated for periods of
time.

A computational element, called a neuromime, has been designed for
the system and is illustrated in Figure 2.2. There are four sets of 10
input lines each, called f* ; 5 §+, and g_. Each set can be regarded as
a 10 dimensional vector. Since all transmission to and from the element is
in the form of positive numbers, each element in each of the vectors is positive,

Associated with each input vector is a weighting vector, respectively
EI*’ Ei-, Eé+, and ES" The output R is computed as follows: [B is a bias--

used as the exciting or inhibiting mechanism, M. and M. are weighting

I S
factors ]
e > -»> -»>

= + e - = e

I =B+ MI(I GI+ I GI_)
> > +> >

= + . = =
S MS(S Gg+ - S GS_) (2.1)
R = max(I + S, 0)

*See Neuron Component Development, Semi-Annual Report, Contract AF33(616)-6805,
General Electric Co., 15 June 1960; Gracer and Orr, Neuromime Network Simula-
tion, Final Report, Contract AF33(657) 11194, Service Bureau Corp., li4 August
1964; Neural Network Simulator, Final Engineering Report, Contract AF33(657)-
8489, Teledyne Systems Co., January 1965,
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After the computation of R,
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with the same number of elements as A,
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-+ -+

G- = -Fy

the G's are altered to make them respond

z
are weighting factors, A 1is a vector
each equal to the average of the

> -+
f") + GI"'
> >

e+ R« (I"=~-1I7)+ Gy~

" N (2.2)
Ggt = Fg * R - (st - st) + Ggy

<+ > > >

Gg- = -Fg = R * (s~ -5~ )+ Gg-

subject to some restraint on the final value of each G vector.

One

restraint considered is that the sum of the elements in each G vector



should remain the same, another is that the sum of squares of the elements
in each G vector shonld be constant.

A computational area in the computer is composed of a number of these
elements. Inputs to the area from other areas or from the outside are
connected to I 1inputs of the neuromimes. The S inputs are connected
to the outputs of neuromimes in the same area to give feedback to the system.
The inputs B, F and M can be from anywhere in the system.

The overall combination of computational areas is called a net, and a
single area is called a level. The organization of a level is illustrated
in Figure 2,3, The I inputs to each component are taken from external
sources, while the outputs of some of the neuromimes are connected to the
S inputs of others. All S inputs in the level are taken from outputs
of other components in the same level, The external sources will be termed
the Input Space. ﬂ

Parameters affecting the computations of the level are MI’ MS’ FI’
FS’ and B. FI and FS are adaptation weights which have no immediate
effect on a particular computation, while B 1is a bias acting on each
component of the level., If MS = 0, then each of the components performs
a measurement on the Input Space independent of all other measurements in
the level, except, of course, of possible overlap and statistical correla-
tion between the inputs to the different components. When MS is nonzero
a degree of interaction is introduced.

These parameters are designed to yield the following behavior from a
level:

1. The output of a particular component can be either increased or
decreased by the output of a neighboring component.

2. The degree of interaction can be controlled on a global basis;
that is, the general degree of dependence of the outputs of components on
the outputs of other components can be controlled.

3. The degree of dependence of the output of a particular component

on the outputs of its neighbors can be controlled on a local basis.

4, The overall activity of the net can be controlled.
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i

Inputs to leveli+l

Figure 2.3, Example of Neuromime Net



Figure 2.4 shows how the first consideration is effected. The
component C has as an S+ input the output from component N,, and
as an S~  input the output from component N,. A large output from N,
will raise the output of C, and a large output from N, will lower the
output of C. The degree of interaction is given by the ratio of MI to
MS. 1f MI/MS >> 1, there will be little interaction, if MI/MS << 1,
there will be a great deal of interaction.

MI and MS are parameters common to each component on a level. An
adjustment in their ratio therefore increases or decreases the interaction
generally,

It is necessary to make use of a special kind of interconnection to
obtain the third consideration. In Figure 2.5, we see that the output of
component N 1is connected to both the s¥ and s~ inputs of component C.
The degree of interaction is thus dependent on the G_ set of C. The

S
effect of N on C 1is

+ - + =
Reg; - RNgj = Ry(g; - gj) (2.3)
T REE O P
where g; 1s an element of GS, gj is an element of GS’ and RN
+ -
is connected to the ith S  input and to the jth S  input.

Initially, gz = gj, so that there is no interaction. If PS
is nonzero, however, the Gs sets will be altered in the szame manner
as the GI sets are altered with PI. A positive FS will increase
g; and decrease gg, making the interaction of N and C positive,
and a negative PS will have the reverse effect, thus alterinyg the local
degree of interaction.

The bias, B, which can be either positive or negative, is a device
to adjust the activity threshold of each component in the level. If this
bias is low, the level will tend to be "aware" of only those inputs for
which it is set up to give a maximal response. Conversely, if the bias
is high, the activity will be increased, and the level will tend to be
"aware" of inputs which it formerly ignored (because R < 0)

For further discussion of the action of a level, it is useful to

have in mind the mathematical formulations and geometric models developed



in the following chapters. Most of the work has been for the special case
of constant inputs to a level, although in the last chapter some preliminary

formulations are given for time varying inputs,



Fijure 2.4. Sample Net showing Positive
and Negative Interaction

Fiure 2.5 Example of Interaction Alterable to either
Positive or Negative by Gs—set Adaptation



Section III

COMPUTATIONS PERFORMED BY A SINGLE WEUROMIML

A neuromime can be considered as an adaptive measuring device on an
input space., Its input consists of 2n 1lines, n of which are attached
to the il inputs, and n to the I  inputs. These lines can be con-
sidered as a 2n-dimensional time varying vector function ;(t), whose
first n components are inputs to I and the last n to I". The com-
ponents of X will be denoted as Xpseoes Xos X ineees X for the
present, we will consider z(t) to be constant over a period ts changing
as step functions, A typical component might have values as in Figure 3.1,

The values of the components are restricted to be between 0 and 1.

1 ]
xi(t)
0 1 [ i [] o }t
tl 2tl 3tl Htl Stl

Typical Sequence of Values for a Single
Input to a Heuromime

Figure 3.1

Within the neuromime are stored a set of weights correspondine to
the inputs. These weights may be denoted by the vector elements
BrsversBys Byysee a8y Since in Equation (2.1) the last n g-elements

are subtracted, it makes sense to consider in the following the vector g

10
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n+l

For a beginning in the discussion we will consider the simplest case
of the neuromime, with MS =0, B=0 and MI = 1. The computations given
by (2.1) reduce to

-> -
R=x-°¢g

(3.2)
R'

max(R,0)

The restriction on the g elements considered in this report is that

n
z g; = Y g; =1 (3.3)
There is a further restriction on each g-element

JE %- i=1,...,20 (3.4)

for a given integer p. This latter restriction means that a g-element
can saturate so that it cannot be increased. Its effect may be seen by
considering the adaptation process in Figure 3.2

Figure 3.2 gives an example of the adaptation for a particular input
on the excitatory inputs only. Part a) shows the input elements. Part b)

shows the deviation vector of Equation (2.2)

-+ > —.:
pt =1t - 17 (3.5)

which is used to guide the adaptation. Part c) shows the g-set before

adaptation. Note that g and g, are saturated. Part d) shows the

11
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g-set after adaptation, with an indication of the g-elements which were
unable to adapt by the full amount because of saturatien, There is a
mechanism in the simulator which adjusts for this occurence. Part e)
shows the g-set as it would be if this input were repeated sufficiently.
Using the deviation vector rather than the input vector in this
adaptation 1s justified by the normalization criterion that the sum of the

g-elements remain constant. The sum of the d-elements is zero, so that

(3.6)

ne~13
V2]
(=
+
oz}
—
<
"3
o
"
i t~13
[1e]

n
L (s; + FyRay) =
i=1 i

1 . i
Note that in Equation (2.2), the inhibitory deviation vector is subtracted
from the inhibitory g vector.

The terminal g-set is of interest because it in a certain sense picks
out those inputs of most significance and ignores the rest. On the excitatory
side it picks out the p largest inputs (those p which have the least
negative deviation), and on the inhibitory side it picks out the p smallest
inputs (those which have the least positive deviation). The component will
give an output only if most of the significant excitatory inputs are present
and most of the inhibitory inputs are absent. TFigure 3.3 shows three devia-
tion vectors which result in the same terminal g-set.

In practice, the g-sets will rarely achieve their terminal state, but
will fluctuate about some intermediate configuration., In the operation of
the net, the first input will generally find a neuromime for which it gives
a high response. This neuromime (neuromime A) will adapt its g-set more
toward this input than will any other, even thoush many neuromimes will
produce an output and will adapt to a degree. For subsequent inputs which
differ from the first, neuromime A will generally give a small output and
will adapt toward this new input relatively little, while others will .adapt
more. If the first input recurs reasonably soon, neuromime A will have an
even larger output relative to the others than before, and will continue
this differential adaptation. The first input, however, will probably not

recur often enough to drive neuromime A to a terminal state.

13
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Section IV

GEOMETRICAL MODEL OF COMPUTATIONS
PERFORMED BY A SINGLL H{ZUROMIME

Because of the vector nature of the operations in the neuromime, it
makes sense to look upon them in a geometrical model. The acaptation
restrictions given by equations (3.3) and (3.4) indicate that this model
is related to a higher dimensional octahedron. A discussion of the
formulation of this concept and an introduction to the notation and lan=-
guage of this model is given in Appendix I. The following discussion
assumes that the reader is familiar with this material.

Since the terminal state of a neuromime is relatively simple compu-
tationally, we will develop the model from it. We will assume that tii:
normalization is octahedral, as in equations (3.3), (3.4) and will con-
sider only the I+, I_  inputs by setting Ms = B = 0. We will specak
of the G-set as divided into two vectors G+ and G~ with elements {g;}
and {gg}, respectively., Each of the vectors I+, T G+, G~ will hav:

n elements.

The condition that the G-set is terminal means that cach g;. g; =quals
either 0 or ~L meaning that there are only p nonzero elements in each
of G+ G , denoted by {g ,...,gi } and {g ,...,g_ } respectively. Tne

]
computation of the neuromlme from p(2 1) rcduces to P

con] Fitn - 1

g. X,
221 z i 213231

DS

_.&
= (4.1)

—

We can further assume that the sets {il} and {jl} have no

numbers in common, co that we can consider the sum above to be

15



I:-B%I- E X, = 22P xiJ . (4.2)

221 's geptl Mg
Since the output R 1is computed by
R = max(I, 0),
we can say that

2
R>0 if and only if E X, > {) X . (4.3)
%=1 % f=ptl 2

The Input Space is a 2n-dimensional Euclidean space, restricted to the
principal section, and the points for which R > 0 are divided from those

where R = 0 by the hyperplane

X. + °°° + X, = X, + e + X, (4.4)
i i

1 P tptl *2p

which is a division of the principal section into two regions. If we

restrict the inputs so that

2
}? X; S 1 (4.5)
=1 L

we find that we have restricted the inputs to lie in the interior and
surface of 2n-dimensional octahedron. Furthermore, we can restrict our
attention to that 2p-dimensional octahedron, Q, determined by the vertices
vil,...,vi2 s which is also divided by the (2p-1)-dimensional hyperplane,
H, = af P

Xe +oecc X, =g + ces + X, (4.6)

or

We will denote by A the region where R > 0, and by A the region

where R = 0,

16



In the region A, R considered as a function

R: It x 17 x @t x g™ + (0, 1]

defines a set of equivalence classes, one for each possible value of R.

Geometrically, this equivalence class is a (2p-1)-dimensional hyperplane Hy:

Rg o+ oeertox. - X% = verwxg, ®yY for 0<y < 1. (4.7)
P ptl 2p

Hy is parallel to HO .

An example of this for the u4-dimensional case is given in Figure 4.1.
The figure shows the intersection of the 3-dimensional hyperplanes Hp and
Hi.with the face of the octahedron. The limiting case is the 2-dimensional
hyperplane x; + X = 1, X3 = X, = 0, which is a line in the x)x; coordi-
nate plane., This is shown as H, in the figure,

For the 2p-dimensional case, H is given by the equations

X. 4 oee xi = l’ xi = eeo T X, = o (’4-8)

and is thus a (p-1)-dimensional hyperplane, a degenerate member of the
(2p-1)-dimensional family Hy. As such, it is also parallel to Hj .

We will denote the vector (xi seveaX; ) as %*, We can thus interpret
R as a "distance" measure of the hyperplagg containing the input point X%
from a reference hyperplane H1 . R willbe 1 when x*e H, and 0 when
x* ¢ A, A response R = 1 does not identify the imput as a particular point,
but restricts it to a (p-1)-dimensional hyperplane. In the example given in
Figure 4.1, points (1, 0, 0, 0) and (0, 1, 0, 0) are both contained in H; .
An interval 0 <a <Rs<bg1 ((interval (a, b)) defines a neighborhood in
the space Q as the 2p-dimensional volume bounded by the (2p-1)-dimensional
hyperplanes Ha and Hb. This is a kind of "slice" of the octahedron Q, so
that two points can be in the same neighborhood even though their Euclidean
distance from each other might be very large, and can be in different intervals

even though it might be small.

17
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The more complicated non-terminal case can now be treated. Equation

(2.1) now reduces only to:

Setting R = R'/MI, we have

R = &% roeet En*n T Bna1™ne1 T 77T T €2n*2n - E ’ ; (&)
In addition, E is altered after the computation as follows:
g=T+R-d+g (%.10)
where
/ & d,
> &n > 4,
g = =2 aas d
n+l n+l
“&2n d2n
di = XI - xf s 1=1,..4,n
d. = %, = X~ i=1,440,n

and F 1is a constant parameter. For the present, we can take F = 1,

An example of this computation iterated until the G-sets become terminal

is given in Table 4,1 forn = 2 and p = 1.



If both the g; and X; are restricted as before to the interval

{0, 1] equation (4.9) for R = 0 determines
plane, H , dividing the principal section of

This hyperplane always contains the line X

gl + eoce +gn=gn+l+o-o +g2n_

by the octahedral normalization; and for

X, = o200 = X :a’

a (2n-1)-dimensional hyper-

a 2n-dimensional octahedron,

X = ece = X since
2 2n

I
(=]

gjat sec ¥ guac- Eny1® T 777 T Bpp? T a(gl st Eh T Epy1 T 7T T g2n)

= a(l-1)=0, (4.11)
for any a. The intersection of H with the 2nth order face therefore
3 3 = ie:em = -_l— 1 - = eee =
contains the point X, = = X0 T 5n e The line X, x, = = X0

will be denoted by L.

The orientation of H can be determined by considering the inter-

sections of H with the 2nd order faces (edges) of the octahedron. An

edge (vi, vj) is described by the set of 2n - 1 equations

X, =0 fort =1, 2,...,2n

L

2 #1iorj

The intersection of H with (Vi’ vj) is the point resulting from the

addition of one of the equations

1}
(o)

g;%4 + gjgj

8;%; - gjxj =0

(4.13)

(4.14)

to the set describing (vi, vj), making 2n equations in all. Equation (4.13)

appears if i and j are both either greater than n or less than n + 1;
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Table 4.1

Sample Iteration of a Four-dimensional G-set

4 -f_
X 1 x2 X 3 X Yy
5 .6 K3 .2
> >_
4 b 4, d, > q,
BT .1 .2 .2
il G R
Iteration B gz gg . _g.‘*_ =
1 .5 .5 .5 .5 1%
2 .49 .51 .u8 .52 .11
3 .u8 .52 U6 .54 .12
4 47 .53 .uy .56 .13
5 .45 .55 .l .59 .15
6 .43 .57 .38 .62 .16
7 .42 .58 .35 .65 .18%
8 .40 .60 .31 .69 .20
9 .38 62 .27 .73 .22
10 .36 64,23 .77 .24
1 .34 .66 .18 .82 .26
12 .31 .69 .13 .87 .29
13 .28 .72 .07 .93 . 32%
14 .25 .75 .01 .99 .35
15 .21 .79 0.0 1.0 .36
final 0.0 1.0 0.0 1.0 L40%*

*Indicates points taken for example in Figure 4.3
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Equation (4.14) appears otherwise. The former corresponds to the cases

where x, and x; are both in I' or I, and the latter to the cases
R .- .. -

where X, 1is in I and xj in I 9or x; 1s in I and x. is in

+

15

The solution to (4.12) + (4.13) is, for g; > 0,8, >0

g 5
X, = '—.-—-J— X. ® ——l'— ('4.15)

This solution lies outside the principal section of the octahedron, since
if Xs is positive, &g = gj must be negative, and if g; - gj is negative,
xj will be negative. Similarly, if gy - gj is positive, Xs will be
negative.

H and (Vi’ vj) can intersect only when gi = 0, or gj = 0, or both.
When g; = 0, the solution is X: = 1, xj = 0. When gj = 0, the solution
is xj =1, X, = 0. These points correspond respectively to Vs and v..
When g = gj = 0, every point in (vi, vj) is a solution. Geometrically,
the first case occurs when H passes through the vertex Vi’ the second
occurs when H passes through vj, and the third when all of (vi, Vi) lies
in H.

The solution to (4.12) + (4.14) is

g. .
K. £ sicatic F. = (4.16)

which clearly lies in the principal section. The point (xi, xn) will
lie closer to the vertex corresponding to the lesser of i gj, and will
be at the midpoint of the edge (vi, vj) when g; = gj. X

These solutions can be characterized by saying that H separates I
vertices from 1~ vertices. In other words, if the input X 1lies on the
side of the I~, there is no response, and if X lies on the side of the
I+, there is a response. We will speak of H dividing the principal

section intn a response region and a non-response region.
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An example is given in Figure 4,2 for the u-dimensional case, as seen

in the uth order face. H intersects the face in a plane H',

* <oz . N e~ =
I = (xl, xz), I = (xa, xu), g = 2D, g, = .5, g, o7, g, .3,

Note that H intersects the edges (vl, va), (vl, v“), (vz, va) and
(v,, Vu); the edge (v, vz) lies on the response side of H and the edge
(va,v“) lies on the nonresponse side of H.

The alteration of the 53-sets results in a rotation of H about the
line L. In the face this becomes a rotation about the center point. This
alteration can proceed until the terminal state., Recall that the terminal
state for the g-sets has each g; equal to 0 or %-. Taking every combi-
nation of g; and gj, we note the only possible combina;ion of values are
that both g; and gj are zero, that bo;h are equal to E— , and that one
is equal to zero and the other equal to 5 - In the first instance, (vi, vj)
lies entirely in H , in the second, H intersects (vi, vj) at its midpoint,
and in the last, H intersects (vi, vj) at the vertex corresponding to the
g-element equal to zero,

An example of the rotation process for n = 2 is given in Figure 4,3,
The sequence of numbers is that given in Table 4.l. Note that the angle
between H and (vz, vq) tends toward 90° and the angle between H and
(vys v3) tends toward 0° .

The angle between H and an edge (vi, vj) is of interest since it
tells how much the preponderance of X, over xj affects the output, which
is related to the distance of x from H . As the projection of X on the
xixj coordinate plane moves along tzg edge *(vi, vj), the output will change
as the cosine of the angle between x and g , the normal to H, as in
equation (2,2). If the angle between (vi, vj) with H becomes small, any
movement of x primarily in the xixj—coordinate plane zill have little effect
on the output, since this movement is perpendicular to g . In other words it
does not matter what value a particular X5 takes if the corresponding value
of g; is near zero.

Since the parameter p is the same for both ¢t ana @ s there will
always be the same number of nonzero elements in both sets. The terminal case
will, therefore, always have an even number of nonzero g; and an even number
of zero g The set of (vi, vj) such that both g; and gj are zero
determines a simplex of 2(n - p) dimensions. This simplex has as vertices

all those coordinates which contribute nothing to the input. These vertices
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response region.

non-response
region

V2 v3
Figure 4,2
Four-dimensional Case for g; = .5, gp = .5, g3 = .7, g, = .3

indicates midpoint of edge.
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response

non-response

>

2 iteration 13

figur: 4,3 Various Stages in the Rotation of H'

Data taken from Table 1.

response

non-response

non-
response

-

iteration 7

response A\ non-respume

YL

2 terminal ctate 3

for Four pimensions

Arrows indicate direction of movement of intersections with edges.
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can therefore be removed from the model, as in the discussion of the
terminal state model in Equation (4.1) and following. We are then left
with a 2pth order simplex. In the example of Figure 4.3, the terminal
simplex is the 2nd order (v2, vu).

As discussed in Section III, the terminal simmlex eventually reached is
given by the p largest (smallest) elements of I' and the p smallest
(largest) elements of I-, depending on whether F 1is positive or negative.
An example of inhibiting adaptation is given in Table 4.2, Note that the
adaptation becomes slower as R decreases.

Since the terminal state is given by the indices of the p largest
elements in D' and the p smallest elements in D , a large class of
inputs will give rise to the same terminal state. This class is given by
the region in the principal section determined by the set of (2n - 1l)-
dimensional hyperplanes described in detail in Appendix I. Each primary

region in Appendix I corresponds to one of the possible total orderings of

{xl,...,x2n}. One of these primary regions can be characterized by the
ordering xil >eee> xi2 . The class of inputs which gives rise to the

n . .
terminal simplex given by (vil,...,vip s vip+l"°"vi2p) is a union of

primary regions. Any ordering is included in the union in which all X, in
{xil,...,xip} are greater than any other X in {xl,...,xn}; and all X
in {xip+l"'°’xi2k} are less than any other x. in  {Xp4)9eee3%5p 1.

An example will clarify this concept. In the Figure 5 of Appendix I,
a 4-dimensional case, there are 24 primary regions characterized by the

orderings

Xu>X3>X2>Xl .

The terminal simplex is (v,, v,), so that the regions:
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Table 4.2

Inhibiting Rotation of Example of Table 4.1 (F = -1)

X T X X -f— X
3
U .6 .6 .
> >
4, o’ a, a, ° q,
-.1 .1 o2 =N
¢t G R
Iteration 5N o) &3 8y -
1 S} ) ) 3] el
2 Sop .49 52 .48 .09
3 592 48 .S4 .46 .08
L .53 Y B o 45 .07
5 .53 U7 «56 b .07
6 «Sh . 46 .58 42 .06
7 .54 46 .59 LUl .06
8 .55 U5 .60 40 «05
9 B 45 .61 039 05
10 «56 <44 .62 .38 .04
11 .56 Sl .63 W .036
12 .556 .auh ,637 .363 .034
13 0993 Ju47 644  ,356 .032
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2 3 4
X2 > X3 > Xl > Xl’
X2 > X3 > Xl’ > Xl
Xy > X, > X, > X, (4.18)
X3 > X2 > Xl’ > Xl
Bg 2 Xy =R, > gy

together contain all inputs which give rise to the terminal simplex of
Figure 4.3.

When there is a sequence of different inputs to the neuromime, the
rotation will be in the same direction for each one provided that the inputs
all lie in the same region. If some of the inputs lie in a different region,
there will be competition between the tWo rotations, and the attainment of the
terminal state will be delayed. The state which will predominate is not
immediately clear, since the order of inputs in the sequence is quite signif-
icant.

These unions of primary regions are the sets of inputs which the
neuromime considers similar in a certain sense, so that they indicate which
classes of inputs may most easily be identified by the neuromime. As seen
above, an attempt to force the neuromime to recognize a set of inputs lying
in different regions will result in varying results and slower adaptation.

At this point, it is useful to make a final examination of the vector
aspects of the computation of R , especially the algebraic aspects. The

definitions of the vectors involved are recapitulated below:

28



+ -
x1 xt
+ =
N X N xt
X = N m =
X X~
xn x~
(4.19)
+
d
1 / 8, \\
+
> d £Y
d = . g = *n
d -
1 gn+l
; )
n \ g2n.
we will need the identities
- ¥ >
X = d+m (14.20)
-+ -+ -+ -+ -+ > > >
xed = (d+m)-d = [d[2+d m (4.21)
> > _+ n _ n.
dem = x d; +x~ ) d, = 0 (4.22)
. i
i=1 i=1
so that
-+ > -
X e d = ldlz (4.23)

>
The space of possible x vectors is a vector space of 2n dimensions,

-+ -+ -+
denoted by X. . Each x € X, «can be written as d + m, and, from (4.22)

> > 2n 2n £
d+*m = 0. The components of each vector m satisfy the constraints
mgoE ocer E oMo, Mo, S e = om (4.24)

29



>
The vectors m therefore lie in a space M2 of two dimensions. M2

>
contains the zero vector. Since each component of each d satisfies the

constraints
d, + o0 7 dn = dn+l + oo + d2n =0, (4.25)
-5
The only d that is contained in M2 is the zero vector. X2n can therefore

be decomposed into

Xy, = M2®D2n-2 , (4.26)

>

with every d contained in D where (¥) denotes an orthogonal direct

2n-2 °?
sum as in Hoffman and Kunze (1961).

Considered as a hyperplane in the principel section of the octahedron,
M, is a plane passing through the origin, the center of the face, and the
centers of both the simplexes P and N given respectively by

x1 + ceo + X T a « X 4= =, 0F 0 (4.27)
and
Xy =oeee =X o , L SR R tx, =a (4.28)
O<axl

In other words, M2 is the direct sum of the orthogonal lines Q , Q'

given respectively by

X)Z o0 = X, (4.29)

and
xl = eso = xn s xn+l = ces = x2n 3 xl = -xn+l (4.30)
D2n-2 therefore is a hyperplane perpendicular to Mz--it corresponds

to the set of hyperplanes parallel to HO, where all the g-elements are equal.

The two components of M2 in Q and Q' can be thought of as determining
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respectively the distance from the origin to the face to be considered and
the distance from the center of the face to the hyperplane parallel to HO

e
containing x .
> > >
Define f and & to be the components of m in Q and Q' vrespec-

tively. Note that

g = 9 (4.31)
-gn+l

\ “&on

is the vector normal to H , and is not, in general, normal to HO 3

From (4.29) and (4.31)
> >
f+g = 0 (4.,32)

From (4.32) and (4.26)

-> -> - > -> -> -> -> - -+
gex=ge°e(f+2+d)=g-°2+g-°4d (4.33)
- ->
and if, in addition, g = g8y » noting (4.30),
> > > >
8y X =8p * t=a | (4.34)

From (4.30), a is the difference betwzen the average of the x; and
the average of the xi; and the output of a neuromime is never less
than 0; so that when a £ 0 , we have R =0 ,

This implies that the significant parameter in determining the initial

strength of an input is the difference between the average of the I and

the average of the I . In tables 4.1 and 4.2, we see that following (4.34),

xt = .5
X~ = .4

(4.35)
a = .1

R(0) = a = .1
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The terminal output for positive adaptation is given by the difference
between the average of the P largest in I and p smallest in I

In Table 4.1, this average is .4, so that

T (4.36)

and R will go no higher.

For negative adaptation, the terminal state will be reached only if
the average of the p smallest in ¥ is greater than or equal to the
average of the p largest in I , since otherwise R will go to zero
before the terminal state is reached. In the example of Table 4.2, this
difference is -,2. As can be seen, the g-sets are nowhere near a terminal
state, yet the output is very near zero. The adaptation equations developed
in Section 5 can be solved to get the g-set for which R becomes zero. These
are solved in Appendix II.

It remains to consider the effect cf the bias and thz: S inputs on
this geometrical model. These additional parameters can be regarded from
Equation (2.1) as constituting an additive constant to the measurement

Equation (4.1). Equation (2.1) becumes

c=B+

R =

XYy w
my 0

+c. (4,37)

> >

> >
Expressing x ¢ g as |x| |g|cos 0,

setting R =0, and

solving €4.37) for 6 , we have

n
|
0

x| |g| cos o

i < )
|g| |g| (4.38)

- >
Angle © 1is the angle between the x vector and the fixed g vector

->
which determines the locus of points for which R = 0 . Any x whose angle

= .

with g 1is greater than 6 will not produce an output. Note that the value
->

of this critical angle depends on the magnitude of x. Figure 4.4 shows a

>
sketch of 6 versus |[x| .
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Sketch of Critical Angle
g = cos-l‘- -—+—9-: )
ENE]
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\/ e alcE
|x|2 |22
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For ¢ > 0, 6 = 180° when |x| = =
|8
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As might be expected, for ¢ = 0, 8 = 0 for any value of |;| . This
corresponds to the hyperplane H of (4.11) which is the locus of ; or -
thogonal to E . When ¢ < 0, no ; will produce an output if its magnitude
is less than c/lgl, since no matter how close to E it is, the output can-
not overcome the negative bias. Conversely, when ¢ > 0, every ; whose
magnitude is less than c/lg| will produce an output, since no matter how
far from E it is, it cannot overcome the positive bias. 1In both cases,
as |;| increases, the effect of the bias is reduced in that as © approaches
90° , the critical value spproaches that for c¢ = 0.

The effect of the bias is to change the volume of the response area.

When ¢ < 0, the volume is decreased, and when ¢ > 0, it is increased.
It is somewhat difficult to visualize this phenomenon in the octahedron
model, but the hatched areas under the curves of Figure 4.4 give some
idea of how it works. For ¢ > 0, the response area is greater than for
¢ =0, and for ¢ > 0, the response area is less.

When the bias is large, the threshold hyperplane can be rotated by the
adaptation process so that when the bias is again reduced the components of
the level will give maximal response to new inputs. This property can be
used to cause neuromimes near terminal states to "forget'" their conditioning
so that they can be used for new tasks.

As described in Section II, the S inputs are interaction inputs
between different neuromimes on the same level, There is an adaption process
for these inputs as well as for the I inputs, which was described in
Section II when there is only one neighbor connected to both an s and an
S~ input. There can be a large number of such connections, and the S
g~-sets behave much like the I g-sets. It makes more sense, however, to
consider the S 1inputs in a model as in Section III and take the effect on
the geometrical model as one of additional bias.

The adaptation process on a large number of § inputs will cause the
degree of interaction to alter differentially among them, so that the
influence of those neighbors with high outputs will be altered diffcrently
from that of those with small outputs. As with the GI sets, the controlling
factors in the differentiation are the dispersion among the S inputs and the

maximum allowable value for an individual g+
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The equations involved are:

-
x;’_ are the individual components of S'°~
> -> >
DT - st L Fe
e >
d;*” are the individual components of D;’-
jes " ¥
5T - [ 3 7 [
GS GS + FS R DS
" >
gi’ are the individual components of Gg’-

Pg is the number of g; and g; allowed to reach a nonzero terminal state.

When FS is positive, those g; corresponding to positive d; will be
increased and those corresponding to negative d; will be decreased, while
those g; corresponding to positive dz will be decreascd and those g;
corresponding to negative d; will be increased. The terminal state is
that the g; corresponding to the pS highest d; and the g; correspond-~
ing to the Pg lowest d; will be equal to l/ps, while all other g;’_
will be equal to zero. When PS is negative, the reverse occurs.

In this manner, the degree of interaction among a component and its
neighbors can be limited to the most significant (FS positive) or to the
least significant (FS negative) for a particular class of stimuli.

It should be noted that the outputs of a level form the same sort of
signal space as the inputs, so that the outputs of one level can be used as

inputs to other levels.
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Section V

ADAPTATION IN A SINGLE NEUROMIME

A question of some importance in the operation of & neuromime is the
way in which the adaption process takes place and, in particular, how the
various parameters affect the adaptation. We will again deal with the
problem with MS = 0, but will allow a non-zero bias B. Later in the
section, the general case will be considered., We will assume throughout
piecewise constant inputs.

The adaption equations, given in Equations (2.2) in incremental form can

be expressed in differential form, using the notation of Section III,

d 7+ _ oo
It G = FRD
(5.1
d - _ >
It G = -FRD

where, using the notation of (4.9)

2n
Lexg - 1 ogx;) +B
1

n
R = MI z g.% )
=1 i=n+1l

The Equations (5.1) may be expressed as the system

a + _ R E U e I +
It & = Mildjxe) + tdixg)) + My(-dix,g, dyx B0 % EBd;

L4
L]
°
L]

(s e RN + + + ve + + + e i e S +
g E‘I.I(dnxlgl + + dnxngn) + FMI( dnxlgl dnxngn) + E‘Bdn
(5.2)
d-— -++ ee o -++ _----ooo_--- .
- gt 8y T PMpldxgey v e rdpxg) ¢ P (-dixig) dyXn8y) * FBd)
d - _ - + ¢ -+ + AT L AR B -
- af-gn - FMI(dn xlgl - +dnxngn) i FMI( dnxlgl dnxngn) b FBdn
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Adopting the definitions, as in Equation (4.10)

oQ ¥
n

The system (5.2)

-
where vt

e+

may be re-expressed in the more compact form

<>

dt

<>

-

g g=(( O v

-
is the transpose of v

-+

t >
) () g + FBu

(5.3)

(i.e., the row matrix representation)

and the operation C) represents matrix multiplication.

In Appendix III the solution to the system (5.3) is given by

where ¢

constants the

-+ *>
u s+ v

A=

-
is an arbitrary constant, and k

->

FB

+k-—ru

is a vector of 2n

last element of which is determined, and

n
FM_ z

n
M| )
M| )

i=1

|
i

-

e~

n
ot = - ==
d; (d; +x*) + ] d.(d; +x7)

a2
1 o
1

since from Equation (2.5),

g &
a'
i=1 *t

n

!

1

1=1

- - n
a2 + xt §
i :

1=1
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i=1

(5.4)

arbitrary

(5252



It will be convenient to simplify the notation, removing the
superscript + and - , and expressing the g; as functions of the

time t , as follows:

_ o+
gi(t) =g
8rei (t) = g.
N for 1 =1 ,..., n
d. = 4.
6 i
i - Y
so that (5.5) is expressed as
2n
- 2
r=mp ) oat (5.8)
1=1

The summation in (5.6) is important in the following, and will be referred to

by the symbol

2n
6= ) a2 (5.7)
. i
i=1
so that
A= FMIG (5.8)
The*system (5.4) becomes
_ FM_$t B
gl(t) = cdle I + kl - ﬁ;g dl
_ FM_&t B
gn(t) = cdne I™" + kn - MIG d.n
(5.9)
g . (t) _ _ FM_6t B
IR scdioren e T dsa
_ FM_6t B
e Easased ol Kot M6 don
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System (5.9) must be solved for the constants c¢ and kl TeEereRs kn

by evaluating for t = 0 and the initial values of the gi(t) .

B B
gl(O) = cdl + kl Mld dl

. ° . .
° . ° °
o L] ° .

H

8
3

+

=~
jo ]

1

|e=
da‘

g (0)
n I
(5.10)

) B,
8pp(0) = =cd,y -~ Ky * T8 95

with the addition of the constraint on k2n from Appendix III,

. ) E‘Mlxlkl + o + FMIxnkn + mlxnﬂknﬂ + coc + FMIXQn—lan-l
- ~FM
2n FhIXQH
(5.11)
s xlkl e Xnkn i xn+lkn+l oot x2n—lk2n—l
_x2n
Solving (5.10), we obtain
B
gl(o) - kl + _MIG dl
c = ) (5.12)
1
k., = g.(0) - cd, + <2< d ios o1 n
i i b1 MIG i 2i5E2405
k. = -g.(0) - cd, + =< d i = n+l 2n
b1 i i M. 8 i pooe s

I
kl can be obtained by equating the expressions for k2n in (5.11) and
(5.12), substituting the expression (5.12) for ki in (5.11) with

i=2 ,..e., 2n-1; and substituting for c¢ the expression in (5.12).
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B
sk e ‘g1(°) RS Y dl) ]

11 1 I B
+ ) ——|g.(0) - d. + — d
x2n i=2 -x2n 1 dl i MIG 1
g (0) -k, + == d 7
2n-1 xi 1 1 MIG B
+ -g.(0) - d. + —= d,
i=n+l *2n + d1 . MI6 =
B
(gl(o) -kt E—K-dl)
- _ I B
= -8y (0) a don * M 9on (5.13)

Multiplying both sides of (5.13) by -dlx2n and expanding,

L]

n
B B
o ) [figi(O)dl - %;8,(0)d; + x;k,d; - g dyx;d; + g dyx d;]

i=2 M6 M8 1
2n-1 B B
+ L 7% (0)d) - %58y (0)d; + xjkod; - e dyxd; ¥ e dyxgd;
i=n+l I I
(5.14)
) B B
= 8y (0)xy d) + xp 8, (0)dy - x) Kkydy + T Xon%2nd1 T Xondondy

Gathering terms in (5.14) noting that all terms containing EEE' drop out,
we obtain .

n 2n-1
Xy [xldl + iz x;d; + ) x;d; + x2nd2?] =

n n
d,x, 8, (0) + g,(0) x, d, - 122 dyx;g,(0) + 152 g,(0) x.d, (5.15)

2nil 2nil
+ d.x.g.(0) + g.(0) x.d.
i=n+l 14 i=n+l = 2
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The left side of (5.15) can be simplified,

2n 2n

= 2 -
Z x;d; =k, ] a?= k8 .

i=2 i=n+l i=1 i-1

2n-1
kl[ 14 z Xy d + z x;d, + x2 5 } = kl
(5.16)
The right side of (5.15) can also be simplified, by adding and subtracting

the term g, (0)x,d., and rearranging,

11
n 2n-1
g (0) x,d) + g,(0) .E %;d; + 8,(0) ._2 Xd g (0Rad
i=2 i=n+l
n 2n-1
d,x,g,(0) - .Z x;8;(0) + d) __2 x;8;(0) + dyx, g, (0)
1-2 i=n+1l
2n n 2n
= g,(0) .Z x;d; - d) .Z x;8,(0) - ) %8, (0) . (5.17)
i=1 i=l i=n+l
Defining, according to (5.1),
n 2n
R(O) =M | ] x,8,(0) - ] x.g,(0) +B (5.18)
1=1 i=n+l

and substituting (5.16) and (5.17), equation (5.15) becomes

- R(0) - B
k16 = gl(O)G - dl[ MI ] (5.19)
or
k, = g,(0) - E£ LS E ] (5.20)
1 & 3 M y y
Substituting (5.20) into the expression in (5.12) for ¢,
4 [Reo) - B] . B
gl(O) = gl(O) e g AT dl
c = L L (5.21)
dl

or, simplifying,

el
~
o
~

- _
c = ﬁ;§ [R(0) - B + B] = : (5.22)

=
o

4]



Substituting the expression for the ki from (5.12) into the

system (5.9) we obtain the solution to (5.1),

_ FM_§t
gl(t) = cdle I+ gl(o) - cdl
_ FM_é&t
gn(t) =cde I+ gn(O) - cd
(5.23)
_ FM_ 6t
Epeptt) T ed ge B =gy (0) scced
_ FM_&t
_g2n(t) - Cd2ne L - g2n(0) - Cd2n
In a vector notation, using the definitions in (5.1), (5.23) is
> > $ > ->
et (t) = opTef™1%t + ¢T(0) - ot
(5.24)
->_ —)_ 6 -)_ >
-G (t) = cD eFMI Gl (0) - ¢D

and in the form of the system (5.3); (5.23) is, substituting (5.22) for c,

> _ R(0O) > FM_6t R(0)
g(t) = v Y I + g(o) - s Y (5.25)
I i
or,
o O R O EE N (0D (5.26)
M 8

Note that there are two basic controlling factors in (5.26), an

exponential term and a constant multiplier term, The exponential term

A= FIMIG (5.27)

is controlled by the variance of the input and both the input level weight

and the learning factor. The constant term

u2



M.x * g(0) + B

o= RO I
MIG MIG
> ->
_x ° g(0) B
= S + T (5.28)

is dependent mostly on the bias term, since x - Eo can be of the same order
of magnitude as 4.

We are now in a better position to attack the general problem with
YMS # 0. There are several possible ways.

One important consideration is that we are interested in interconnec-
tions of the type used in Section II so that we want to determine the

adaptation of the m-element vector

<>

> >
K = Gg - G- . (5.29)

o~
o

This can be determined by differentiating (5.29)

d > _ 4 7+ d -
Frala St ol
(5.30)
>4 T+ G 2-
= FS RS -S') -[-F, R(S -5S)]
S
I'f
> >_ >
st =57 =3
5 .th e
and s; 1is the 1 element of S .,
Equation (5.30) reduces to
d - > g
d—t-K(t) = 2FgR(S - §) (5.31)

The simplest way of solving (5.31) is to consider the solution of the
system for MS = 0, then solve (5.31) with R held constant and the feedback
delay of the net large enough so that the value of S remains constant. The

solution is obtained immediately. Define

- ->

E=5-3 . (5.32)
Then

> >
K(t) = QFSREt . (5.33)
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A more realistic solution is to assume that R varies but that S
remains constant. In this case, following the same arguments as in (5.1), the

solution is

- >
Koy = BOL B _ 1) 4+ k(o) (5.34)
s°2
where
X = 2FSM862 (5.35)
m
s, =.Ze§ (5.36)
i=1
and

; Jith =
e; 1is the 1 component of E .,

The interactions between the two adaptations can be examined by
solving the two systems simultaneously. The complete system, (2.2), using

the notation of this section, is given by

+

: ey T :
—g.(t) = F 4. (M x.g.(t) - x.2.(t)] + B+ M s.k.(t)
dt®i T2 I 351 | ol 3 S ) 33

for 1i=1,...,5n

(’ n 2n m ‘1
- ---g (t) = Frd, (M, Z %585(t) - '_2 x5g5(t)| + B+ Mg Z 5k (1)
j=1 j=n+1l J
for i=n+ l,...,2n
: a5 i :
——-k (t) = 2F_e.(M x.g.(t) - X, g (t){ + B+ M s.k.(t)
dt S 1i\I 551 025 j=n+l j S 551 i3
45.537)
for i=1,...,m.
Following (5.3) system (5.37) can be expressed as
4 > > > > >
a—;y(t) = u@thy(t) + bu (5.38)

Ll



where

g, () Eiy B3y
g,(t) Frdy L
~8n4p () Frdns BeXoel
y(t) = . U = : R :
-g, (t) F.d
2n I™2n MIx2n
kl(t) 2FSel MSsl
km(t) 2FSem MSSm
and
b=3B

so that the solution is given by Appendix III as

;(t) = cﬁext +z - %-3
where
-> ->
A =u v
2n m
- 2 2
FoM .Z a? + 2F M, ] ef
1=1 i=]1
Letting
T )
5, = a , 6, = e2
Bl Y A o

A= FIMIdl % 2FSM862 .

Following the argument from (5.9) through (5.26),

R(0)

C =

A
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(5.40)

(5.41)
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where
-+ >
R(O) =y « x + B (5.u43)
and the solution is

R(0) A

A

> >
y(t) = ule

o) ¢y . (5.44)

The interaction between the two systems can be seen by examining in

detail the solutions for gl(t) and kl(t).

FIR(O)dl(eAt o)
g, (t) = + g.(0) (5.45)
1 FIM 8, + 2F MG, 1
2FSR(0)el(eAt - 1)
k. (t) = —= + k. (0) . (5.46)
i FM &+ 2F M6, 1

Again, we see that the variance and the weighting paramcters control the
exponential factor, and the bias is the main control in the wmltiplier
factor, with the additional control, the ratio of the FI and FS weights,

We are now prepared to give some answer to the question of the neuromime's
"memory". If a stimulus is presented and the g-sets altered according to
that stimulus for a time t, then another stimulus is presented and the g-sets
altered again, how much of the original adaptation remains?

The output of the neuromine at time t after the beginning of the

adaptation is, from (5.1)
R(t) = M_g(t) * X + B (5.47)

substituting (5.26) for E(t),

RCt) = M| - 1) RO T 4 Zoy| - X+ B
1 TR
S CULI Réo) WX+ UEO0) - X+ B
s R(0)e t (5.10)
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We will consider an input x. followed by an input ;2 , and will

1

then examine the effect of a repetition of M Parameters from (5.48) and

l L)
(5.26) will be subscripted according to the input concerned. We have, from

(5.48)

Alt

Rl(t) = Rl(O)e

gl(t) = E;g:- (e - l)dl + gl(O)

R,(0) = Mlgl(t) . 12 + B (5.49)
Agt

R,(t) = R,(0)e

s R2(0) A2t o o5

gg(t) = M162 (e - l)d2 + gl(t)

Applying the input 21 again, we have

R.(0) = M g (t) « x, + B
3 = Mg, (t X, + 5 (5.50)
The variable of main interest is the loss of adaptation

L = R3(0) - Rl(t) . (5.51)

Substituting the expressions in (5.50) and (5.49), into (5.51), we have

-
n

RS(O) - Rl(t)

> >
Mg, (t) = x, + B - R () .

. . >
Substituting for gz(t),
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Lo R,(0) : At
I1{¥.8 €

> - <>
5, - l)u2 + gl(t) * Xt B - Rl(t)

(Mlgi(t) . 12 + B)e © - 1)

+ Rl(t) - Rl(t)

[d . + .
Substituting for gl(t), noting that Rl(t) drops out, and expanding,

i At u ALt u
u u
L = Rl(O)(e LI 1) 3£-+ MIE (0)] » %, + g‘(e 2. . 1) mo *
i 1 1 2 ’f 5, 1
i At o+ ox At u
u, ¢ X u
= l - -—]'—_—-.-—2- -: . 5 2 2_ .
= Rl(O)(e 1) 5 + MIbl(O) Xy * B](e - 1)3— ®)
L 1 2
(5.52)
From the formulation in Equation (4.26), we know that
> I o (+ > ) = > >
GO TR T T B T
(5.53)
-+ > > -+ -+ _ > -+
u, ° X T u, (ul + ml) =u, s u o
Defining
-+ +
. = 1
MIgl(O) x, + B =R (o) , (5.54)
and
Alt A2t
c, = (e -1) , c, = (e - 1) (5.55)
we have, substituting (5.53), (5.54) and (5.55) into (5.52),
-+ - > -‘;
u, *u u, °
_ S 2 " 1
L = Rl(O)cl 3 + R'(0) Cy =3
1 2
({; - u,)? 4 -,
- ]
= Rl(O)clc2 6162 t c,R (0) "‘E;—' (5.596)



The dot product in (5.53) can be expressed in terms of the lengths of

the vectors and the cosine of the angle between them [5] as

> e e >
u ot = |ul| |u2|cose (5.57)
and since 6§ = |u|%, U, - 4, = /B, VB, cosb ,
1 2 1l 2
we have, from (5.56) if R(0) = ry and R'(0) = r,
2 6l
L = r,c,c,cos"6 + r,c, \/3;'008 6 (5.58)

The adaptation loss for x, after having applied X depends, therefore,

in great part on the angle betwien the two deviation vect<23rs, which is reason-
able since the adaptation of E is controlled by the deviation vector. Some
insight into the distribution of L may be gained by looking at the distri-
bution of cos@ and cos2e. If we assume that the lengths of the deviation
vectors are equal, we can imagine dl as the nozth pole gf a 2n-dimensional
hypersphere, and examine the angle 6 between d. and d . An element of

1 2
surface content of this hypersphere is derived in Appendix IV as

ds

(pde)(psined¢l)(psinesin¢ld¢2) (psinesin¢l coe sin¢2n_3d¢2n_2)

2n-1 . 2n-2, . 2n-3
P si n

n esi 9 °°° Sin¢2n_3d¢d¢l cee d¢2n-2 (5.59)

where p 1is the radius of the hypersphere, and 6, $yseeesdy o are the
successive hyperconical angles, corresponding to the latitude on a

3-dimensional sphere, ranging from 0 to w, while is the planar

¢2n-2
angle, allowed to range from 0 to = .
The probability of 6 occurring between 0 and & is the ratio of

the surface content of a segment of the hypersphere cut out by
0<6<60 . 0<¢i<n i=1,...,2n-3, 0<¢2n_2<2n

which is proportional to, from (5.59), (with p = 1)

8g . _2n-2 T_. 2n-3 T . 2w
< 0 soe
P(0<6,) fo s edGIOSIH ¢4, J081n¢2n-3d¢2n—3f0 d®n-2

K[eosin2n-2ede (5.60)
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2n-26 decreases for 6 # /2, the

Since as n 1increases, sin
probability that 8 deviates from /2 decreases as n increases, and
the averages of cos 6 and cos?6 approach 0. This lends justification
to the belief that, on the average, the adaptation loss L will be small,

so that a ncuromime will tend to '"remember'" its previous training.



Section VI

STRUCTURL AND OPERATIOW OF NoJRCUIME NoTS

With the development in previous sections, we can now discuss ian 2

unified manner the structure and behavior of a neuromime net, includinz

some ideas on the use of the net simulators currently under develooment.

Recall that nets are organized as a szries of computational areas or
logical levels, each area containing a number of neuromime componznts. The
S inputs of the components within an area come from the outputs of other
components in the same area, while the I inputs come from outside tne
arca, either from the pri mary sensory inputs or from the outputs of com-
ponents in other computational areas.

A neuromime net comdutation area is composed of a set of computing

elecments
{Ci|i=l,...,m}

together with their connections to the outside world. In addition, =ach
component has a number of state inputs which are outputs from othcr com-
ponents in the same area.

If rj is the output from component Cj’ the <ffect of tn. interaction
is given by an iterative process, which procezds until convergeac: is oo-
tained. At time 1i+1, Pj is computed from the outputs of tac other compo-

nents at time 1i:

rl(1+l) = k12r2(1) + ove + klmrm(l) + rl(O)
r2(1+l) = lerl(l) + k23r3(1) + oo + k2mrm(1) + p2(0) \
(6.1)
rm(1+l) = kmlrl(l) + eco ¢t km, . Rm_l(l) + rm(O)
where the kij are coupling coefficients. The indices can be interpreted

as the effect of the output of Cj on the output of Ci .
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The system (6.1) is a linear system of equations, and can be re-expressed

as
p(i + 1) = Mp(i) + p(0) (6.2)
where
v 1213 7" Ku
K10 Koyttt Ko
p = ¢ and M = . . .
L kml m, m=-1 01

and p(0) is the set of outputs before the computation of the interaction
has begun.

Since, at the beginning of the iteration,

p(1) = Mp(0) + p(0) (6.3)

(6.2) is by induction

o(1) = Hp(0) + M15(0) # wse + Hp(0) + 0(0)

Mj p(0) (6.4)
0

1]
I 1.

j
where M° 1is defined to be the identity matrix,

The example given in Figure 6.1 may help to clarify this process. The
example illustrates the simple situation where m = 2. On the left are the
symbolic interaction matrices for i = 0, 1, 2, 3, 4; and on the right are
the corresponding matrices with Ky, ==.1 and k,; = .2. At the bottom

is given the sum of the five matrices.
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i . i

M i M
symbolic numeric
1 0 hE
0
0 1 0
0 k1o 0
1
ka1 0 e
2
0 ka1kio 0
0 K3 k1 0
3
2
k51K 0 -.004
(ky,kp1)2 O +.0004
I
0 (k21k12)2 0
.9804
= 1
DL
1=0 .196

Fizure 5.1 Interaction Matrices of Dimension 2.

k12 = -,.1 ’ k21 = ,2
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If

v
p() = ¥ M p(0) (6.5)
120
then
rlcu) = ,9804 rl(O) - .098 rZ(O) (6.6)
rz(u) = .196 rl(o) + ,9804 r2(0) (6.6)

As might be expected, the output from C, 1is decreased and the output from
C2 is usually increased, unless rl(O) is very small compared with ré(O),
in which case the second order coupling of c, with itself, given by

M2),, = kjk, = -.02 (6.7)

becomes dominant.
A more complex example illustrating seennd order coupling more clearly,
is given in Figure 6.2, showing M2 for mw = 4. Each ent.y ip the fatris:

M2, (Mz)ij, is interpreted as the second order coupling of Cj - C.
b

Specifically,

2 = (6.8)
(M )11 k12k21 i k13k31 4 klukkl

is the coupling of C1 on itself through C2 , plus the coupling of C1 on
itself through 03 , plus the coupling of C1 on itself through Cq 2
Similarly,
2 = k (6.9)
L )3H k31kll+ ib k32 24

is the coupling of ¢, on C, through C; plus the coupling of ¢, on
C3 through C2 .

A problem of importance is whether the system will eventually produce a

stable output, which is the same as determining whether

i
lim M) =z mx
ive 320
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exists., It has been demonstrated in Appendix V that the system will be
stable if the determinant

T - M| >0 (6.11)

One scheme for interconnecting elements so as to obtain the most
flexible coupling coefficients is that discussed in Figure 2.5, where »r.
th .+

S

is connected to both the £ and S~ inputs of Ci . The interaction

given by

ey - + -
rjg2 - rjg2 = rj(gz gz) (6.12)

and the coupling coefficient is

kg = M (g, - g,) (6.13)
It is now possible to state in a unified way the operations performed
by a net of m components each of which has n inputs. We require a
number of definitions, and will re-define some of the symbols used in
previous sections to obtain a clearer statement.
Let N be the incidence matrix of the net, which describes its inter-

connection structure.

where nij = 1 1if the output of Cj is connected to the state input of
Ci . N is an mxm matrix.

The inputs to and parameters of each component will be included in a
series of mxn matrices, the ith row of which will correspond to the
associated vector of the ith component, These matrices are defined in

Table 6.1.
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mxn Matrix

Variable Matrices for Net Level

Table 6.1

the inputs to Ci ordered as in (4.19)
-

the vector m of Ci as in (4.19)

the g-set of Ci as in (4.19)

-
the vector 4 of Ci as in (4.19)

Parameters common to the net are:

8 - vector each of whose

parameter B of (2.1)

1

w_ - the parameter M. of (2.1)

2

There must be

at each component.

w. - the parameter M. of (2.1)

I

S

m components is the bias

a set of deviation vectors for the interaction inputs

These can be obtained from the output vector p and

the incidence matrix N as follows:

=1

=1
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The incidence matrix acts to pick out those outputs r, which are attached

to component Ci’ and the sum across row i of N is the number of r

attached to Ci 5

L

The result of adaptation may be expressed by multiplying each row of
the deviation matrices by an "adaptation coefficient" determined as in
Section 5. These coefficients will be gathered in the vectors Ay and A,

coefficients for the external inputs and state inputs, respectively. The

operation of multiplying the ith row of a matrix A by the ith component

of a vector o where A has p rows and @ has p elements, will be

denoted by

B = a(®A (6.15)
Another operation used is
u = diag(A) (6.16)

a is the vector whose elements are the diagonal elements of the matrix A.
We can now state the sequence of operations of a net. First, the out-

puts are computed:

me = § oM (6.17)

o = M*[diag(TG%) + 8]

Next, the matrices M and G are altercd according to the adaptation:
' =1, ®D+¢C
M' = w,d, DE +

Experimental nets can be constructed and tested using the simu-

lators under development. The general purpose digital sirulater
is currently operational, and its structure is closely related to the

theoretical structure developed in this report.
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An important property of this simulation is that nets can be constructed

on a statistical basis, freeing the programmer from tediously specifying the
interconnections among all of the components on an individual basis. In this
construction, a metrical structure is imposed on the net so that a distance

is defined from one component to another component on the same or a different
level, including a distance from the primary sensory inputs on the first level.
A standard distance function is available, but the programmer may arbitrarily
define a new one if he wishes.

The program generates a net, making connections between components on
a probabilistic basis, the probability depending on the distance in some
fastion, There are several standard probability fuuctions in the progranm,
and the programmer may also define new ones.

‘nother feature of this simulator is that it has a criterion for the
activiny level of a computational area, and automatically adjusts the hiasg
level %o reep the activity within a certain pre-established range. This
device controls the relative importance of the communication channels
between different areas, so that certain information paths are given more
weight than others on an a priori basis. It also functions as an overall

gain control,
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Section VII

UNSOLVED PROBLEMS

During the course of this program, a number of interesting problems
were formulated but not solved. These problems motivated the development
of the formalism of this report, and should be amenable to the attack of
these new tools. In addition, a number of extensions to the formalism
were suggested as the work proceeded, but were not on the main line of
endeavor, so are as yet undone. This section is a compendium of these
ideas, and they will form a basis for further research.

Our knowledge of the theoretical properties of neuromime nets must be
put to an experimental test to ensure that the model is valid. A natural
test is to make use of data generated by the laboratory's elaborate sound
generating and anditory system simulators.

Since the currently available neuromime net simuilation equipment
does not allow time varying inputs, we must restrict our attention to
quantities which are either independent of starting time or can be synchro-
r.ized in the sampling apparatus. This restriction limits us to considering
only fixed frequency transient signals or very noisy or periodical high
frequency signals, since the former can be generated with associated synchro-
nization pulse, and the latter can be considered as stationary time series
and has observable properties independent of the starting time.

A reasonable series of experiments would therefore begin by attempting
to differentiate simple transients, progressing to more complex transients.
An attempt could then be made to make equivalent certain sets of complex
transients while differentiating between sets. Later experimentation would
include high frequency continuous signals.

An important aspect of this series of experiments is an investigation
of the coupling between the neuromime net and its environment, especially
from the learning point of view. ¥eneed to know how the sequences of stimuli
should be presented and how we should reinforce the network. The work of Rosen-
blatt (1962) on the perceptron will be of great assistance in this area. It
is likely that neuromime nets have information processing capabilities equal
to or better than perceptrons, so we should be able to apply many of the

learning theorems which he has derived.
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Additional work should be done on this 'model in the areas of statistical
properties of interconnection matrices, both internal and extermal. It would
seem that concepts of information theory could be employed to good effect,
especially if related to the topological structure of the net.

A formulation which might be of use in this problem is that of channel

capacity density. We can define a cross section of an information channel

in such a way as to identify sets of points which a signal propagating

through the channel will occupy simultaneously. Some examples are given in
Figure 7.1. Part (a) shows a transmission line, where the cross section is

a point. Part (b) shows transmission along a plane, the cross section is

a line. Part (c) shows the transmission through a network, the cross sections
are sets of points.

If we defined a function giving channel capacity per unit of cross section,
we can consider this a channel capacity density function. By examining this
function, we should be able to derive many statistical properties of neuromime
net information handling. The work of Inselberg, Von Foerster, et al (1963)
is rclevant to this area.

The control theoretic formulation of the interactions in a net should
produce some more useful information. Appendix V discusses this area in
more detail. A possible approach here would be to combine the statistical
interconnections with the control formulation, and develop a statistical
control theory.

Implicit in the discussion in Section III is that a neuromime net can
be considered as a sort of flexible measuring device on classes of input
stimuli, measuring the presence of certain patterns, and recalibrating itself
as it proceeds. The output of a net can be considered as a sort of activity
layer, where activity is localized in spots corresponding to particular
patterns, as in Figure 7.2(a). If the net can be trained to respond to a
new pattern, while keeping its response to the old ones, a new output area
might be formed, displacing some of the others, as in Figure 7.2(b). It
would seem that this property of Heuromime net processing could be used to

develop a theory of the operations performed on patterned sets of stimuli.
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Homogeneous Plane Transmission

Cross section

(c)

Network Transmission

Figure 7.1. Channel Cross-sections
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Figure 7.2.

Neuromime Nets as Variable Measuring Devices
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Properties of patterhs that are relevant to the above structure are
that they require both a knowledge of the outputs from a set of sensors
and a knowledge of the location of these sensors in the outside world.

One may consider a sensory field with a topological structure as a window
on the world. The pattern measurement device has a number of different
kinds of sensors, and these are attached to the field, sometimes with
several different kinds attached to the same area. A pattern is defined
with two characteristics, a particular configuration of outputs from a set
of sensors, and a particular topological arrangement of that set of sensors.

In most cases, it is useful to have the pattern meter measure the degree
of presence or the probability of presence of a pattern rather than make the
outright statement that the pattern is or is not present. For this reason,
the pattern meter must measure not only how near is the sensory output
configuration to a standard, but also how near is the topological arrangement
of the sensors to its standard. For example, a straight line in = visual
field is determined both by a constant contrast level in a set of sensors,
and by the nearness to a straight line of the sensors exhibiting the desjred
configuration of outputs. An observer would say that the stimulus in Figurs
7.3(a) was a straight line, and would say also that the stimuli in (b), (c),
and (d) were nearly straight lines.

A neuromime component can, in itself, adjust the particular subfield
of the sensory field it observes (by setting some of its g-weights to zero),
and its output gives a measure of nearness of the input stimulus to a
standard, so we can hope that neuromime nets can be constructed to measure

both kinds of distances.

Besides the foregoing investigation of the properties of neuromimes
and nets which can be simulated by currently available programs, there are
extensions that should be made in the theoretical and conceptual structure
to give the study more direction.

One such extension is the reformulation of the neuromime equations so
that they make sense with rapidly time-varying inputs. It would be useful
if the time-varying formulation reduced to the constant formulation when the

inputs were constant.
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a. Straight Line b. Some Points Missing
(deficient in attributes)

L 4
1N

¢c. Points off Line d. Both deficiencies
(Deficient in Geometry)

Figure 7.3. Hearly Straight Line Stimuli
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A possible approach to this problem is linear prediction as described by
Wiener (1949) and extendcd by Allais (1954), Assume we have a2 randor function
f(t), and we wish to predict the value of f(t0 +1) for some future increment
T , Where t0 is the current time. We are free to use any information from
-  to to to determine f(t0 + 7). Viener, therefore, defines a Kernesl

function K(t,t), and a predictor

t
P(t , 1) = f 0 K(t, 1) f(t)dt (7.1)

-0

The goodness of the predictor is given by the mean square error
e(ty, 1) = E{[P(ty, 1) - £(t, + 7)I%} (7.2)

According to Allais, there is no reason why we must confine ourselves
to predicting the future values of f(t). This prediction theory applies
equally well to any function h(f, t) which is correlated with f; for example,
f could be an electrocardiogram, and h could presumably be a function which
is zero before the QRS complex and one after it, or, more interesting, a
function, which is one when the QRS complex passes a certain point in time,
and zero otherwise,

It would thus seem that if the g-sets were defined as predictor functions,
so that g(t) is a kernel function defined on the interval (-«, to), and the

output is computed by

t

4]
R(t ) = f 2(t) * x(t)dt (va)
2n t0
= 121 f g; (t) * x;(t)at
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we could treat the time-varying case. The problen of adapting the g-weights

could be handled in some such way as setting

2(t) = (ag(t) + (1 - a) ;(t))R(tO) ()

for (0 <a<1l) , Dbut this is a problem which merits some thought.

Note that the computation of R 1is similar to the constant case as in
(2.2). Component interaction could perhaps be defined in the same way as
in (2.2) since the feedback characteristics of a net are independent of the
input functions (See Appendix V).

A beginning on a theory of organization was made during this work. It
employs a value system--a hierarchy of goals which the system is to pursue.
A sample system is given in Figure 7.4, Some of the goals contribute to
others, and some are independent of each other,

A single goal-seeking unit is a mechanism which monitors a series of
inputs to determine the state of the world, performs some computations, and
issues a set of instructions to the set of mechanisms available to it to
change the state of the world. (The world can include the system itself.)
A schematic diagram of a box appears in Figure 7.5.

The key concept here is that the world can be thought of as a space of
states (perhaps a vector space). It is well known that a representation of

a vector in the form (al, a ecelly an) means a,a, + a.a_ + a.a_ t °°° + aa s

22 171 272 373
where (al,...,an) are a set of reference vectors, usually an orthonormal
-

basis. Ve can consider the sensory input vector I to be a representation

of the world in the set of reference vectors (a%, a%,...,ag), where each
a? can be considered to refer to that pcrtion of the world "seen" by the

kth sensory input mechanism. The reference vectors {a?} sre not necessarily
+
linearly independent. Similarly, the set C of commands to the system's

effector devices is a vector, represented in a set of reference vectors
m k
(aé,...,ac), where each an

a unit instruction to a particular effector device,

represents the change in the world produced by
->
The goal in the goal-seeking unit is represented by a vector G which
is the desired state of the external world as represented by the input
mechanism. The instruction vector is computed from the deviation between

the actual inputs and the desired inputs,
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Figure 7.4, Sample Goal Lattice
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D=1 -23. (7.5)

The desired action is to alter the world so that D will become 3,
so that the set of instructions to the effector set will represent a
change of state of the external world equal to the deviation of the input
vector I from the goal., This can be done by ccnsidering an m x n

transform T mapping {aI} into {ac}, so that
Ch=I 1D, (7.6)

T 1is not necessarily a linear transform.

Competition between various goals is introduced when contradictory
instructions are given to the effector set. To deal with this, it is
necessary to introduce a system of priorities. This is done by assigning
a unit value V to the primary goal. This value is distributed by the
primary goal to its subgoals, which in turn distribute value further down
the lattice. Sometimes a goal will receive value from two or more super-
goals, in which case the values can be considered to add together.

Not all of the value is transmitted, however. If a goal-seeking unit
has a capacity to give instructions to the effector set (some may
not--acting as logical goals and leaving all action to subgcals), some of
its value must be assigned to its commands. This is represented by V

C

in Figure 7.5. (Transmitted value is represented by VT')
: ->
A possible distribution system is to construct a vector U where

U. = v.C.u.. (7.7)

+ . . . . 3 3 . . .
W 1s a weighting vector which normalizes the utility of each individual

. T e ;
instruction., W 1is assigned so that

U, <V (7.8)

"ne-s

i=1
-
for all C which can occur in practice. This is to allow for assignment
of large value to emergency goals which are allowed to override normal
. + .
goals when need arises. Usually the U vector will be small enough so

that other instructions will take precedence.
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Precedence is decided by the effector mechanism concerned by some rule
according to the nature of its action. If it can execute only one instruction
at a time, it will execute the one with greatest value. If it is a distribu-
tion mechanism it can fill orders in order of value, in proportion to the
product of need and value, or in some other manner.

This sort of organization structure would be the organization of a "bug",
an organism completely pre-programmed to behave in a complicated way.
Neuromime nets are adaptive mechanisms, so it is reasonable to expect that
devices could be made with some of the following abilities.

S5 For a goal-seeking unit to construct its own T.

20 For the system to distribute value throughout itself so as to
optimize its behavior in scme way.

3. For a unit to seek new inputs if it cannot differentiate between
signals that it must differentiate, or throw away inputs if it does not neead
them,

4, If two units find themselves in competition to mutual disadvantage,
for them to form a coalition by generating a new super box which can regulate
them in some way.

5. For the system to be able to modify its goal-seeking units, even to
the extent of adding or deleting entire units.

Possible mechanisms for such adaptation might be gained by looking at
some natural mechanisms. One such mechanism, homeostasis,has been considered
in a primitive way by Ashby [11]. This is the tendency for a system to
attempt to return to an equilibrium state after being perturbed. It is the
mechanism behind the computations of a goal-seeking unit as described
previously.

Another mechanism which might be applicable is that possibly used by
nature in evolution. The parameters of the system are changed at random
and the resulting system evaluated for goodness of performance in some way.
If it is better than the old, it replaces the old, being otherwise discarded.

A conceptual structure which might cast some light on the organization
of such a system without a homunculus is Wiener's []2] concept of the brain
as a set of coupled nonlinear oscillators. This mathematical formalism might

also be relevant to the design of neuromimes with time-varying inputs.
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APPENDIX I

SOME PROPERTIES
OF THE n-DIMENSIONAL OCTAHEDRON

The development will be largely intuitive and what arguments are
given will be largely combinatorial in nature, For those unfamiliar with
n-dimensional geometry, a good mathematical treatment is given in
An Introduction to the Geometry of N-Dimensions by D. M. Y. Sommerfield,
Dover, 1958,

The Fourth Dimension Simply Explained edited by Henry P. Manning,

Dover, 1960, presents several intuitive ways of imagining higher

dimensional spaces,
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The n-dimensional octahedron may be defined to be that figure
bounding the region of space determined by n mutually perpendicular

coordinate axes X, sae, X fulfilling the condition

1’

e s 0 5 F
x|+ eee ¥ x| €1
The boundary is an (n-l)-dimensional surface determined by the equation

[x. | + =0 + |xn| = 1,

|
This concept may be developed intuitively by considering the cases
where n = 2 and n = 3. In the former, the boundary is the

l1-dimensional surface
PARACREES
in the latter the boundary is the 2-dimensional surface

lx + |x2| + |x3| =1

|
(see Figure 1).
If we restrict the range of the %, so that 0 S %y s 1, we

obtain the principal section, whose boundary is given by the coordinate

planes and the (n~l)-dimensional hyperplane determined by the boundary

equation, which becomes

X, + x_ t c°° + x = 1,
2 n
LY

This hyperplane is defined as an nth order face of the octahedron. There

n . . . <.
are clearly 2 nth order faces, since it is possible to divide the

. . . n . e .
interlor into 2 sections by restricting some of the X to the range
-1 £ X £ 0 and the others to the range 0 < Xy 2 1. (dach X, can be

restricted to either of two ranges, and there are n of the xi's.)
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Two~-dimensional Octahedron

X, boundary
lel - |x2| =1

Three-dimensional Octahedron

surface

Figure 1
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In each section a set of vertices, {vl, N0 vn}, is defined by
the intersection of the face with the coordinate axes., These vertices
define a region in the (n-1)-dimensional hyperplane, and this region is
an (n-l)-dimensional simplex with its interior. This corresponds to a
triangle in 2-dimensional space and a tetrahedron in 3-space. The edges
of the simplex are the set of lines connecting the vertices taken two
at a time. These edges are all of equal length, since each one forms
the hypotenuse of a right triangle whose sides equal 1, so that the
simplex is a regular simplex. This corresponds to an equilateral
triangle in 2-space and a regular tetrahedron in 3-space. (See Figure 2.)

The regular simplex has the property that if any r of its vertices
are taken away, the remaining n - r vertices define an
(n-r-1)-dimensional simplex. This corresponds to taking the intersection
of the nth order face with the (n-r-l)-dimensional hyperplane containing
n -r of the n coordinate axes., For n =4 and r =1 this
corresponds to the intersection of the hyperplane containing, say, the

X5 X,, and x, coordinate axes with the tetrahedron (v _, v_, Vi vu)

1> "2
of Figure 2, resulting in the equilateral triangle (vl, v, v3).

We will call the intersection with the nth order face of a
(k-1)-dimensional hyperplane containing k vertices in the principal

section a kth order face. This is a (k-l)-dimensional simplex containing

k of the n vertices.

Since a kth order face is a slice, as it were, of the nth order face,
the points of both its boundary and interior satisfy the boundary
equation (see Figure 2),

It is easy to count the number of kth order faces in an n-dimensional
octahedron. A single kth order face is a simplex whose vertices are k
of the n vertices of an nth order face. The number of combinations

of n things taken k at a time is

(:)= k!(nn-!- DT

n th . A G
There are 2 nth order faces, and each k  c¢rder face is iu coison to

n-i . :
2" sections, makin, (n) &
k|2

16



kth order faces in the .:ntire octahedron. (A first-order face is defined
to be a vertex, and a second-order face is an edge.)

It should be noted that a kth order face is a face of a k-dimensioral
octahedron as well,

We are going to want to divide the principal section into regions.
To do this, it is useful to consider the problem in the hyperplane of
the face, We can orient ourselves in this hyperplane by considering the
location of various solutions to the boundary equation.

Consider the case with n = 4, The boundary equation is
X +x +x%x_+x =1
1 2 3 L}

and this defines the interior and boundery of a regular tetrahedron, as
in Figures 2 and 3. Figure 3 is a map of this tetrahedron. The points

are given as quadruplets, having the values of the coordinates

N
The partitioning to be considered in detail is that defined by the

Xis X, Xgy X in order.,

inequalities x; > xj. In other words, we want to take every point whose
X coordinate is greater than its xj coordinate, the other coordinates
unconstrained, put them into a regicn, and put those points not fulfilling
that condition into another, The boundary between the two regions is the
hyperplane x, = xj. This is shown in the 2-dimensional and 3-dimensional
case in Figure 4, and in the 4-dimensional case in Figure 5.

We note that the set of hyperplanes X, = xj separate every kth
order face contained in the nth order face bounding the principal
section. This is true since two kth order faces are determined by

the equations:

»
+
+
x
1]
[
x
i

0 for i¢ {il’ SR ik}

o
+
+
x
H
[
b
1]

0 for j ¢ {jl’ s jk}

where there is at least one pair (xi, xj) not in common. The edge
(xi, xj) of the nth order face is bisected by the hyperplane X; = X,

]
separating the two faces.
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interior

X +x_ +x%x_=1

1 2

interior

X, + X+ Xx_+ X
1 2 3

Three-dimensional Simplex (Regular Tetrahedron)

Figure 2
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v

1
(1,0,0,0)

y
(0,0,0,1)

- center of triangle v,v,v,

A
B -
(o]
D

center of triangle v,v,v,

center of tetrahedron

- I - center of edges as indicated

Figure 3, Map of Tetrahedron
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(1,0) X,y

Two-dimensional Case--Plane Divided

Into Regions A and B by Line X =

v
3 2
(0,0,1) (o,%-,%—) (0,1,0)

Three-dimensional Case--Showing
Six Regions in Plane of Face, Above
Below, Stage in Construction

Xy

Figure 4
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Figure 5.

Four-dimensional Region Seen in Hyperplane
of a Face, Showing Intersection of
Four-dimensional Region with Face

in Tetrahedron v, ABC
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It is also the case that all the hyperplanes which intersect a given
kth order face intersect in a point which is the center of the face. This
can be seen by considering the particular kth order face determined by
the vertices (vi LT vik). The hyperplanes which intersect this face

1
are given by the equations

Xp TRy Xp T Xy oeeey X T X
1 2 1 3 i k
Ry T Ryos oeees Xoo =X
2 3 2 k
X4 = %y
k-1 k

This point is the center of the kth order face.

We can now see that a region defined by this set of hyperplanes will
be defined as an (n-1)-dimensional region determined by a series of vertex
points which can be described as a sequence of midpnints of successive
kth order faces, k going from 1 to n. This figure is a simplex in
n-1 dimensions, as can be seen for the 4-dimensional case in Figure 5.
The region is a tetrahedron, and the vertex points are v1-~a 1st order

face, A-~-the midpoint of the 2nd order face (v v“), B--the midpoint

>
of the 3rd order face (vl, v, v3), and C--t;e midpoint of the Uuth
order face.

With this in mind, we can count the number of regions determined in
an n-dimensional octahedron by the set of hyperplanes {xi = xj}. If we
examine the sequence of vertices dsfining the region in a combinatorial
sense, we see that we can choose first any vertex Vie Next, we must

have a midpoint of an edge, with the constraint that the edge include

the vertex V. chosen previously. In the same way the kth vertex point
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of the region is the midpoint of a kth order face which must contain the

(k-1)st order face whose midpcint was chosen for the (k-1)st vertex point.
Denoting the n vertices of the region by Pis eees Iy We See

that we have n choices for r, B - 1 choices for Pz’ «sey and only

1 choice for rn. There are thus

ne(n - 1)(n - 2)e(n -~ 3) *2¢ (1) = n!

regions.
The problem of partitioning the principal section into regions can
be treated more generally by considering a set H of hyperplanes in n

dimensions defined by the m equations

+1]
[an)

&
+1]
~
+
+
+1]
>
"
<

v
<

+
o
kS
+
+
[o1]
x
i
o

with the following restrictions
e at least one ai 0 1=1, eeayn

2.  the ordered set (a? k=1,2, ..., n) is a permutation of the

-

ordered set (ai 1= 1, 2y ceagmn) for k=1, 2, ceeym

3 m * the number of distinct permutations of (a; 1=l 20 e g )

4, the line xl X = eee = xn is contained in every hyperplane.

2
In the hyperplane of the nth order face F H becomes a set {'

of hyperplanes in n - 1 dimensions intersecting in the point

the center C of the nth order face. H' defines a set of simplexes
in F all of which have C as a vertex. 5y symmetry, all of these
simplexes are congruent, and the (n-1l)st order solid angle at C is
equal for each of them. The sum of these angles is the complete (n-1l)st

order solid angle at C, so that the number P of regions is equal
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to the complete (n-1)st order solid angle Sn_l at C divided by the

(n-1)st order solid angle v determined at C by a single

1l
(n-1)-dimensional simplex formed from n of the hyperplanes in H'.

In symbols,
- n-1
vn--l
Sn-l is the surface content of the unit hypersphere in n -1
dimensions,
n-1
S _ 2 2
n-1 r n-1
%]
2nk
= '(k—:-—l—)—!- for (n-l) even (= 2k)
= 2ﬂkk! 22k

= W for (n"'l) Odd (= 2k + l)-

Vn-l may be determined by considering the simplex cut out in the
hypersphere by the n (n-1)-dimensional hyperplanes forming the given
(n-1)st order solid angle. This simplex may be considered as a simplex in
an (n-2)-dimensional spherical space, and the problem is reduced to finding
the volume of this simplex.

One way that this can be done is to transform the equations from the
n-dimensional cartesian coordinate system {xl,...,xn} to an n-dimensional
cylindrical system {z, r, el""’en—z}’ with the z-axis on the line
Xp =Xy = eee=x . The resulting expressions with z = 1//h , r = 1 will
give the intersection of the set of hyperplanes with the unit hypersphere
circumscribing the nth order face. A simplex may be identified and its
volume computed by techniques peculiar to the particular set {a;} chosen
to define the set H of hyperplanes.
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APPENDIX II

EXAMPLE OF USE OF G-SET ADAPTATION EQUATIONS

We will demonstrate the usefulness of the vector formulations of the
g-set adaptation equations by solving the problem raised in Section IV
concerning the determination of the configuration of the g-set when the
output becomes zero during negative adaptation, using the adaptation
equation developed in (5.26).

Specifically, we wish to find g(t) such that

-+ -+
x »g(t) =0 (1)
From (5.26), we can expand g(t), so that (1) becomes

FIMIGt

%« 200) + 2O (o -1)x-d=o0 (2)
M_§
1
But, from (4.21),
X+d=8 (3)
and from (5.,47), with B = 0 ,
-»> -> R
x - g(0) = 2182 (1)
1
so that (2) becomes
RGOy T (5)
M—-e =0 .
1
Since FI<0, this will occur when t = «, therefore
F_M_.6t
e I1I o0 . (6)

Substituting (6) into the expression (5.26) for g(t), we have the

solution:

i~ +>
2w =g -2 g (7
I

In the numerical example from Table 4.2, we have

o f -.1

-+ +5 - .
L0 -.5 il .2 (8)

-.5 -2
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1]
[

=
(e8]

and

E(t)

R(0) = .1,

This is the correct answer, since

-+ -+
X ¢ g(t) = .24 + .24 - .42 - .6
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APPENDIX III

SOLUTION TO THE SYSTEM OF DIFFERENTIAL
EQUATIONS y' = uv' y + bu

The system of n simultaneous differential equations

''= uv +uv 4+ seo & oy v + bu
Y 11171 7YY 1'n¥n 1
' = uv + uv d: ese i v +b
Y2 27171 T YV YVn¥n * P,
'z + + oeee ¢ +
Y un unvzy2 vy, blun
can be conveniently represented in the form
-+ > -+
y' = Ay+bu (1)
where
' 7
i Y1\
)
1] \
Y 2 |
y' - y =]
1
\ ¥n I
Y11 WYt u1"n\
u V u V e e O u V
21 2 2 2 n 1
) \ +> . >t
and A = 5 : . = uev

<+
"
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>t . 5 il A
v~ 1s the transpose of v , i.e.,

=+t
V= (Vl’ V, e Vn)

and the operation (%) is the matrix product. The symbol (+) will be
omitted whenever possible.

The solution of this system is given by

> > >

y yhomogeneous * yparticular &2

where ; is the solution to the system
homogeneous

> >

y' = Ay (3)
and ; . is an additional particular solution to the non-

particular
homogeneous system.
For the homogeneous system, (3), we assume a solution of the form

;. = ﬁexx ()
where k 1is a vector of constants. Substituting into (3), we obtain

Aiexx = A-]:eAx
or

(A-AI)Xk = 0 (5)
To obtain a solution other than f = 0, the determinant

| A-2a1] = o (6)

It should be noticed that (6) is the characteristic equation for A,

having as solutions



for Al,lz s weesr the characteristic values of A. Associated with each
> > o =
Ai is a vector of constants ki' Each ki may be determined up to a single

arbitrary constant ¢ by substituting into (5) and solving the system

(A - ;1) Ki = 0 (7)

+ . - -
In order for (7) to hold, ki must be a constant times the characteristic

- + - 3 3 3
vector associated with Ai. If a; 1is this characteristic vector,

> >
ki E Ciai (8)

For all Ai distinct, (8) yields the complete solution for the system
(3) by the superposition principle:

2 ; e)‘lx PR ; Anx
A “n%n®
If the Ai are not distinct, but
I T T
1 2 3

then instead of (4) we must assume a solution of the form

vy = (;1 + izx + eoe + ijx(]-l)) el o (9)

In (3), the case at hand, we observe, following Wilf (1962), ch. 1, that

> 2t . 3
A = u (:) v~ 1is of rank 1, since for any vector z
> > >t -+ EY >t > > > >
iz = u®Ov1iOz = v Qv Oz = (vo2) 1, (10)
>t > ES >
v @ zZ = vlz1 b IO vnzn = voe g (11)

> > o .
(v = z is the inner or dot product of the vectors 3 and ;.) (6), therefore,

must reduce to
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7 SO 1(x = AO) = 0 (12)

having as solutions

A, = A, A, = A, = eee = A_ = 0. (13)

AO may be evaluated by recalling that the trace of a matrix is

equal to the sum of its characteristic values. (see Wilf (1962) In symbols:

tr(A) = ulv1 + uzvz + eeeo + unvn = Al + Az + e + An (11)

Substituting (13) into (14) and noting (11), we have

v o= A (15)

tr(A) = u -* .

>
The characteristic vector o associated with AO may be obtained

by observing that

>
(=X 4
I
™M
c
43
<

I
~
ey
<4
S’
(=24
u
P
o
=32

We have, therefore, that

>
o
0

and one solution to (3) is given by

> ->(++) > A
y = cue MR 0" (16)

The repeated characteristic value 0 causes us to look for the
remaining solution of the form (9) as
- = (n-2)
X i

- {+ - 2
y = k1 + KX + K, %%+ e b K

2 3 n-1 (17)

>
The constants h_ o ey % can be evaluated by substituting

(17) into

n-1



' -Ay =0 (18)

Differentiating (17), we obtain

L > > e _ > (1’1-3); 3
y = k2 + 2k3x + + (n 2)kn_1x 3 (19)
-2\
§oed L F s @) e G e e G o)

Subtracting (19) from (20) and gathering terms,

S . > > +_+] > 2
Ay - (@ kU - &, [ KU - 2K,k —_—
> > > > n-3 - > > +=} n-2  _
+ cee ¢ [(v kn_z)u - (n—2)kn_1:]x + (\(V kn_l)u_Jx = 0
Since the functions 1, x, %%, ... , 71 are linearly independent

(see [2]), we have the following n-2 equations by setting equal to zero

each coefficient of t’ j = 0, 21, ... , n-3
> > > >
ko= - k
2 v l)u
kK, = L@ %)
3 2 2

(22)

->
These equations are all dependent on kl’ since they form a nested

recursion relation. Solving them explicitly, they become:
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KZ = (K.fél)ﬁ (23)
-+ _1+.+‘+++=1+.++.++=1(“;.‘]:)‘J
k3 = E.[v (v kl)u]u E.(v u) (v kl)u EAO )
X _ 1 l1-1..3(—> —k>)+
n-1 CEIR B R T
(n-2)

From the coefficient of x in (21), we have the additional

information that

(3 . Ju = 0 (24)

3 # o by hypothesis, so that we must have

Ao

(25)
St o - n-3 (v k= (V%) = 0
. kn—1 -V !(n—Z)! Ao 1 (n-2)! 1
o
By the same argument as in (24), we must have
> >
LA ST (26)

Substituting (26) into (23), we obtain

A ST
2 "3 T Tpel

(17) therefore reduces to
> >
y = k

1

and substituting into (18), we have
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-
~Ak. = 0 (27)

If we define il = X, (27) may be solved

@O EOE = -9 =0

>
=¥
"

u # 0 , so that

kKev = 0
vk + e +v _k
or k = 11 n-l n-1 (28)
o -v
n

leaving n-1 arbitrary constants,

We now have the complete solution of (3) as

; = cﬁékx + ﬁ, for A = (1 V) (29)

The particular solution for the non-homogeneous system (1) is

obtained by considering the system

+ -+ +

y' - Ay = bu (30)
taking

y = Pbu, (31)

for P an n x n matrix, and substituting in (30), we have

- APbU = bu

(32)
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We observe that we can obtain a solution by taking
-> >t
p = -l g:;v) (33)
B A

(32) becomes

_(-JG;t)@(-E@?) @ 3 = S WG w2

3\2 (314)

[=
]
[=

Therefore

> >t >
> b(u (¢} v) > b

is a particular solution of (1).

Substituting (29) and (35) into (2), we have the complete solution

> -+ At >
y = cue + k
homogeneous
. R (36)
Yparticular -~ A °
and
; = cﬁekt + (37)

=¥
]
>
e+
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APPENDIX IV

DERIVATION OF SURFACE ELEMENT
FOR A HYPERSPHERE

The surface content of an n-dimensional hypersphere is a volume in

n-1 dimensions. According to Somcrville (1958), this volume is

Nojo

n-1
s = 21 v
(z)

where r is the radius of the hypersphere and I is the gamma function,
the generalized factorial. Note that

F(x) = (x - 1) T(x - 1)
and N (2)
r(3)= 7

To find the equation for a volume element, we must consider the
geometry of the space. An (n-l)-dimensional hypersphere has the property
that if a point be chosen on it as an origin, and a sequence of n-1
orthogonal great circles drawn, these circles will intersect again at a
point diametrically opposite the origin, the line connecting the two points
passing through the center of the hypersphere. These two points will be
termed respectively, the North and South poles of the hypersphere.

wé will use a spherical coordinate system for computing the volume,
with n coordinates: a radius p and n-1 angles, ¢1""’¢n-l .

As in 3-dimensional spherical coordinates, the angles ¢i are of different
kinds. In 3 dimensions, ¢l is a conical angle from the lorth pole and

¢2 is a circular angle in a plane parallel to the equatorial plane, as
illustrated in Figure 1. If p 1is fixed, x 1is constrained to lie on the
sphere of radius p and with poles S and N. If ¢ is then fixed,

% 1s constrained to lie on the circle C, of radius p sin¢l, the inter-
section of the sphere determined by p and the cone determined by ¢l.
Fixing ¢2 then determines the exact location of the point on C. Angle
¢l is measured from the line ON, and angle 99 is measured from the
plane determined by the line ON and the great circle Ll - more directly

from the point on C given by the intersection of C and L Note that

1
¢l, as a conical angle, ranges from 0 to 1w only, while ¢2, as a planer

angle, ranges from 0 to 2w .
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Figure 1. Three-dimensional Spherical Coordinate System

Figure 1. 3-Dimensional Spherical
Coordinate System
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This 3-dimensional system can be extended to n-dimensions in a
straight forward manner. Fixing p determines a hypersphere. Fixing ¢l
determines an n-dimensional hypercone, the locus of all points x such
that the line Ox is at an angle ¢l with the line ON., The intersection
of the two is clearly an n-1 dimensional hypersphere with radius psinel.
If we select arbitrarily a great circle L, on the n-dimensional hypersphere,

1
the intersection of L, with the (n-l)-dimensional hypersphere gives us a

North pole for the latter hypersphere.

We can continue this process inductively, defining successive (n"- i + 1)-
dimensional hyperconical angles which restrict x to successive (n - i)-
dimensional hyperspheres with radius psin¢l sin¢2 see sin¢i, until we come
to ¢n-2’ (which corresponds to the thre?-dimensional angle ¢l of Figure 1).
angle ¢ .
dimensional hypersphere by its intersection with line (great circle) Li of

is then a planar angle. We define the North pole of the (n - i)-

the (n - i + l)-dimensional hypersphere. The successive surfaces L
(Ll’
the original n-dimensional hypersphere.

l,
L2), (L), L,, L3)""’(Ll""’Ln-2) are coordinate surfaces imbedded in

A surface content element of the n-dimensional hypersphere is thus
dSn = (pd¢l)(051n¢ld¢2) XX (p51n¢l XN 51n¢n_2d¢n_l)

and the allowed intervals are 0 < ¢i < 7 for the hyperconical angles

¢l,..., ¢n—2 and 0 < ¢n-l < 2n  for the planar angle.
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APPENDIX V

CONTROL SYSTEM FORMULATION
OF NEUROMIME INTERACTION

A, Introduction
Problems of interacting outputs in neuromime nets are of such a nature

to lend themselves to analysis with control system techniques. This note
gives a control system formulation of the S input computations of

neuromimes. Figure 1 may be compared with Figure 2.5 of the text and the

structures seen to be of the same kind.
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B. Description of Model

Figure 1 is a block diagram of a two-element neuron net model,

Standard control engineering notation is employed, wherein r's represent
input time functions and c's represent output time responses. Each element
has a forward gain of unity and an output which interacts with each other
element by furnishing an additional input to each other element of a magni-
tude dictated by an "interaction coefficient (K12 and K,, in Figure 1).
This form of model can, of course, be generalized to an n-element net with
n(n-1) interaction paths.

The responses (c's) of this model to a set of inputs (r's) is controlled
by the values of the interaction coefficients. The analysis to follow will
investigate this relationship between the neuron output and the degree and
form of interaction associated with the other neuron outputs. The two-element
model will be employed throughout since it is the least cumbersome to handle

mathematically and produces conclusions which also hold for an n-element net,

C. Stability Criteria

The system equations for the two-element model of Figure 1 are

c, =, + Klzc (1)

1 2

C

) rz + KQIC (2)

1

In matrix notation this equation set is expressed as

. 12 =1 1

. . (3)
©2 a1 0 ©2 T2

or
Lo Kl a0 0
S ©2 T2

The output/input relationships obtained from simultaneous solution of

Equations (1) and (2) are
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el T i (5)
rp 1-KLK,

and
c +

K, .(r,/r,)
2. 21717 "2 (6)

r, 1-K.,K,

According to Clark (1962), Cquations (5) or (6) reveal that the outputs will
increase without bound for any condition where the denominator, 1 - K12K21’
is equal to or less than zero. In terms of the interaction coefficients,
the stability constraint is that the product of the interaction coefficients
be less than +1.

This stability criteria can be more concisely expressed by referring
to the matrix form of the system equations, Equation (4). The same stability
constraint can be specified in terms of the determinant of the coefficient

matrix, i.e.,

2 0 . (7)

For an n-element neuron net model the matrix form of the system equations

becomes
1 -K12 --K13 e o o c1 rl
-K21 1 -K23 ° o o c2 rz
Ky Ky 1 e 3 - 3 ®
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and hence the stability criteria is

1 Sy SRygw e
=K1 1 Kygr t e
“Kgy Ky 1o

v
o

We emphasize that this stability criteria is in no way dependent on
the inputs; only the signs and magnitudes of the interaction coefficients
determine the stability of the output responses. Of course, for any stable
set of interaction coefficients the output response will be directly affected
by the inputs.

D. Performance of Refined Model

In real physiological systems transmission times are finite. To
extend the utility of our basic neuron net model we are behooved to
incorporate this physiological fact,

We have found the Laplace transform to be a very useful tool. (1) It
enables us to obtain closed form expressions relating output to input
for any type of feedback system. (2) It affords easy handling of systems
which contain time delays.

Our initial efforts to incorporate these refinements of the neuron
model have produced some interesting results. For instance, for a model
containing neuron elements of +1 forward gain and positive interaction
coefficients less than unity:

1. A set of step function inputs results in a set of outputs which
are increasing, convergent "staircase" functions;

2. The final values of the staircase functions are determined by the
magnitudes of the interaction coefficients (The final value may be ascer-

tained from an equation of the form of (5) of Section C);
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3.. The time rates of convergence (time between steps of staircase)
are dependent on the magnitudes of the transmission time delays associated
with the forward paths of the neurons and the interaction paths between
neurons,

A typical example illustrating these results for a neuron net of two

elements is presented in Figure 2.

When values of +1 are assigned to all the interaction coefficients,
the staircase response function increases without bound -- just as predicted

by the stability criteria formulated in Section C.

E. Recommendations for Further Study and Refinement of lModel

Our initial study of the performance characteristics of this refined
neuron model indicate that it may be quite useful in aiding the understanding
of phenomena associated with neural networks such as 1) Summation,

2) Variability and modification of response, and 3) the independence of
the rhythms of stimulus and response.

Further study should involve:

1. Investigating model response for rectangular pulse inputs, impulse
inputs, and input sets which contain both positive and negative inputs;

2. Further study of pertinent physiological phenomena to determine

what additional refinements might be profitably incorporated.
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APPENDIX VI

COMPARISON OF ADAPTATION EQUATIONS
FOR TWO NEUROMIME SIMULATORS

The adaptation equations of the two neuromime simulators are slightly
different. The 7094 simulation program developed by Service Bureau
Corporation1 uses the equations discussed in the body of this report,

a4 = + >
a?g (t) = F « R(t) * (x - x) (1)
>
= F « R(t) = d for R(t) > O
=0 for R(t) <0

The special purpose computer designed by Teledyne? uses the equations:

Y

F.[R]-.d (2)

d -
Eg(t)

where

1 if R(t) >0
[R]

0 if R(t) <0

Note that both systems are zero when the output of the neuromimes is
zero, which means that they will both adapt only to a positive simulus. The
former, however, has a multiplicative factor R(t), while the latter has a
factor of 1 when it is adapting. This means that system (2) will adapt at
a constant rate independent of the output, while system (1) adapts at a rate

which increases exponentially with time.

lgracer, Franklin, and Orr, Kenneth, Neuromime Network Simulation,

Final Report, Contract AF33(657)-11194, Service Bureau Corp.,

14 August 1964,

2Neural Network Simulator, Final Engineering Report, Contract AF33(657)-8489,
Teledyne Systems Co., January 1965,
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A significant effect of this difference is that system (1) will have
greater differential adaptation capability and less adaptation retention
than system (2). Solving for R(t) in (1) (See Section V of report), we

have

FMIGt (3)
R(t) = R(0)e

-+
where M; is a constant and & = |a]?

and, solving (2), we have
R(t) = R(0) + Fét (4)

From (3) and (4), one can see that if two neuromimes have inputs with the
same & , then the difference between their outputs will be constant in
system (2), and will increase with system (1) if F > 0. If < 0, the

difference will decrease in system (1) and again remain the same in system (2).
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