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ABSTRACT 

This report is a study on some elementary information handling properties 

of neuromime nets, giving most emphasis to the functioning of a single 

neuromime component, and containing some discussion of the operation of 

simple nets. Single component computation is treated from the point of 

view of changes brought about in the internal structure by operations 

performed during data flow. A geometrical model is presented which 

illustrates the pattern measurement behavior of the component, and some 

of the simpler differential equations of adaptation are solved to proviso 

some insight into the effect and interaction of the component control 

parameters. Simple net behavior is concerned mainly with feedback inter- 

action among components, and gives some useful notation for describing net 

operation. 
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Section I 

INTRODUCTION 

This report is a description of the computations performed by a type 

of neural net, and can function as a programming manual for this net. 

The contract under which this report was prepared is a part of an 

effort to develop more effective information handling systems, in the 

sense of extracting usable knowledge from received signals. 

More generally, the overall effort is concerned with the development 

of information processing systems with capabilities approaching those of 

the human brain.    The approach being taken to solve this problem is to 

analyze the behavior of the brain, breaking it down into functional components, 

then analyzing each  component until a basic component is reached which  can be 

constructed with present technology.    These  components  are  then constructed 

(or simulated) and put together in various systems, and the behavior of these 

systems  compared with actual cognitive operations. 

Emphasis has been placed on the functioning of individual components  and 

simple nets.    Section II gives  a basic description of the operations performed 

by components,  the kinds of net structures the component is designed to form, 

and a general discussion of the  computational parameters.     Section III describes 

informally the computations performed by a single neuromime, with particular 

attention to adaptation.     Section IV is  a more rigorous discussion of the 

computational processes of a component, section V of the adaptation process, 

and section VI discusses simple nets.    Section VII  considers a number of 

extensions,  conjectures and unsolved problems that have  arisen in  connection 

with this  research. 



Section II 

GENERAL PROPERTIES  OF NEUROMIME 

AND NETS 

The problem under consideration is that of building a flexible pattern- 

recognizing device to be used in decoding signals produced by some sort of 

sensory encoders.    Instead of producing a device directly, it is desired to 

investigate the design of a more general computation system that would be 

self-organizing. 

This report is an analysis of some of the mathematical properties of a 

computation system developed by the contract monitor.*    The system is modeled 

after an organizational mechanism shown in Figure 2.1.    There are a series of 

computation areas with a number of transmission lines  connecting them with 

each other, and with the outside, both input and output.    The computer would 

have the ability to alter the  computation parameters of an area in such a 

way as to alter its responses with time and it would also have the property 

that some areas could be activated and others de-activated for periods of 

time. 

A computational element, called a neuromime, has been designed for 

the system and is illustrated in Figure 2.2.    There are four sets  of 10 
"*"+    "*•-    "*"+ "*"- 

input lines each,  called    I   ,  I   ,  S  ,  and S   .    Each set can be regarded as 

a 10 dimensional vector.    Since all transmission to and from the element is 

in the form of positive numbers, each element in each  of the vectors is positive 

Associated with each input vector is  a weighting vector, respectively 

G_+, GT_, G„+,  and G__.    The  output    R    is  computed as follows:     [B    is  a bias — 

used as the exciting or inhibiting mechanism,    M_    and    M-    are weighting 

factors] 

I = B + MI(I
+   •  GI+ - I~  • Gj.) 

S = Mg(S+  • Gs+  - S"  •  Gs_) (2.1) 

R = max(I + S,  0) 

*See Neuron Component Development, Semi-Annual Report,  Contract AF33(616)-6805, 
General Electric Co.,  15 June 1960; Gracer and Orr, Neuromime Network Simula- 
tion, Final Report, Contract AF33(657)-11194,  Service Bureau Corp.,  14 August 
1964; Neural Network Simulator,  Final Engineering Report, Contract AF33(657)- 
8489,  Teledyne Systems Co., January 1965. 



Sensory Inputs 

4V J^ 

Outputs 

rigure  2.1.     Computational  Structure   for Soli-ors.anizinj  Computer 
Showing Transmission  Lines  and Computational  ^rfeas 



Logical Diagram of the* Steele Neurcmime 

Figure 2.2 

After the confutation of   R ,    the    G's    are altered to mafce them respond 

better to the input signals.    [FJt Fg    are weighting factors,    A   is a vector 

with the same number of elements as   A, each equal to the average of the 

elements of    A.] 

Gj+ = Fj  •  R •  (I+ - I*) + Gx+ 

6j- =  -Fj  •  R •  (I" - I") + Gj_ 

Gg+ = Fg  • R •  (S+ - S+) + G S+ 

(2.2) 

G0. =  -F_  •  R •  (S~ - §~  ) + G__ 

subject to some restraint en the final value of each    G   vector.    Ctae 

restraint considered is that the sum of the elements in each    G   vector 



should remain the same, another is that the sum of squares of the elements 

in each G vector should be constant. 

A computational area in the computer is composed of a number of these 

elements.  Inputs to the area from other areas or from the outside are 

connected to I inputs of the neuromimes. The S inputs are connected 

to the outputs of neuromimes in the same area to give feedback to the system. 

The inputs B, F and M can be from anywhere in the system. 

The overall combination of computational areas is called a net, and a 

single area is called a level. The organization of a level is illustrated 

in Figure 2.3.  The I  inputs to each component are taken from external 

sources, while the outputs of some of the neuromimes are connected to the 

S inputs of others. All S inputs in the level are taken from outputs 

of other components in the same level. The external sources will be termed 

the Input Space. 

Parameters affecting the computations of the level are MT, M_, FT, 

F„, and B.  FT and F  are adaptation weights which have no immediate 

effect on a particular computation, while B is a bias acting on each 

component of the level.  If M„ = 0, then each of the components performs 

a measurement on the Input Space independent of all other measurements in 

the level, except, of course, of possible overlap and statistical correla- 

tion between the inputs to the different components. When M  is nonzero 

a degree of interaction is introduced. 

These parameters are designed to yield the following behavior from a 

level: 

1. The output of a particular component can be either increased or 

decreased by the output of a neighboring component. 

2. The degree of interaction can be controlled on a global basis; 

that is, the general degree of dependence of the outputs of components on 

the outputs of other components can be controlled. 

3. The degree of dependence of the output of a particular component 

on the outputs of its neighbors can be controlled on a local basis. 

1.  The overall activity of the net can be controlled. 



Inputs to level 
i+1 

Figure 2.3#  Example of Neuromime Net 



Figure 2.4- shows how the first consideration is effected. The 

component C has as an S  input the output from component N,, and 

as an S  input the output from component N . A large output from N. 

will raise the output of C, and a large output from N  will lower the 

output of C.  The degree of interaction is given by the ratio of M  to 

M .  If M /M  >> 1, there will be little interaction, if MT/M^ <<    1, 

there will be a great deal of interaction. 

M  and M„ are parameters common to each component on a level. An 

adjustment in their ratio therefore increases or decreases the interaction 

generally. 

It is necessary to make use of a special kind of interconnection to 

obtain the third consideration.  In Figure 2.5, we see that the output of 

component N is connected to both the S  and S  inputs of component C. 

The degree of interaction is thus dependent on the G  set of C. The 

effect of N on C is 

Vi - Vj = v^i - 9 (2-3) 

+ "••+ •*- 
where g.  is an element of G , g. is an element of Gr, and ii, 

1 on o si 
is connected to the ith S  input and to the jth S  input. 

Initially, g.  = g., so that there is no interaction.  If F 
1      ] b 

is nonzero, however, the G„ sets will be altered in the same manner 

as the G  sets are altered with F .  A positive F  will increase 

g.  and decrease g., making the interaction of N and C positive, 

and a negative F  will have the reverse effect, thus altering the local 

degree of interaction. 

The bias, B, which can be either positive or negative, is a device 

to adjust the activity threshold of each component in the level.  If this 

bias is low, the level will tend to be "aware" of only those inputs for 

which it is set up to give a maximal response.  Conversely, if the bias 

is high, the activity will be increased, and the level will tend to be 

"aware" of inputs which it formerly ignored (because R < 0) 

For further discussion of the action of a level, it is useful to 

have in mind the mathematical formulations and geometric models developed 



in the following chapters. Most of the work has been for the special case 

of constant inputs to a level, although in the last chapter some preliminary 

formulations are given for time varying inputs. 



N- 

Figure 2.*+. Sample Net showing Positive 
and Negative Interaction 

Fijure 2.5  Example of Interaction Alterable to either 
Positive or Negative by G„-set Adaptation 



Section III 

COMPUTATIONS PERFORMED BY A SINGLE WEUROMIi-lE 

A neuromime can be considered as an adaptive measuring device on an 

input space.  Its input consists of 2n lines, n of which are attacned 

to the I  inputs, and n to the I  inputs.  These lines can be con- 

sidered as a 2n-dimensional time varying vector function x(t), whose 

first n components are inputs to I  and the last n to I . The com- 

ponents of x will be denoted as x. ,..., x , x ......, x .  for tne r _^      l'  ' n' n+1     2n 
present, we will consider x(t) to be constant over a period t , cnanging 

as step functions. A typical component might have values as in Figure 3.1. 

The values of the components are restricted to be between 0 and 1. 

x^t) 

2t. 3t. 4t. 
^t 

5t, 

Typical Sequence of Values  for a Single 
Input to a bleuromime 

Figure  3.1 

Within the neuromime are stored a set of weights corresponding, to 

the inputs.  These weights may be denoted by the vector elements 

g1,...,sn, Sn+1»" ,g 2n Since  in Equation  (2.1) the  last n g-elements 

are subtracted,  it makes sense to consider in the  following the vector    g 

10 



g(t) = -g (3.1) 
n+1 

\ -g 2n 

For a beginning in the discussion we will consider the simplest case 

of the neuromime, with M„ = 0, B = 0 and MT = 1.  The computations given 

by (2.1) reduce to 

R = x • g 

Rf = max(R,0) 
(3.2) 

The restriction on the    g    elements  considered in this report is that 

2n 

I &i   =      I     &i =  1 

i=l i=n+i 
(3.3) 

There is a further restriction on each    g-element 

0  < gi < -   i = l,...,2n (3.4) 

for a given integer p. This latter restriction means that a g-element 

can saturate so that it cannot be increased. Its effect may be seen by 

considering the adaptation process in Figure 3.2 

Figure 3.2 gives an example of the adaptation for a particular input 

on the excitatory inputs only.  Part a) shows the input elements. Part b) 

shows the deviation vector of Equation (2.2) 

I - I (3.5) 

which is used to guide the adaptation. Part c) shows the g-set before 

adaptation. Note that g  and g  are saturated.  Part d) shows the 
6        2 

11 
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a) Input 

xxxxxxxxxx 
12 3456789 10 

.6 

~j      b) Deviation 

x - x 

-.6 dddddddddd 
1        2 3 4        5 6 7 8       .9        10 

.2 

c) g-set before adaptation 

gl        g2     g3        g4        g5     g6        g7        g8        g9        g10 

+ 

1    + 

+ 
2  - 

— 

* 
— 

t 

gl        g2        g3        g4     g5        g6        g7        g8        g9     g10 

d) g-set  after adaptation 
g elements marked    + 
have saturated 

e) Terminal g-set 
which would be 
unchanged by this 
adaptation 

gl   g2   g3   gH  g5   g6   S7   g8  g9   g10 

Figure 3.2. Example of Excitatory Adaptation with FT = .1 
and Showing Saturation 

12 



g-set after adaptation, with an indication of the g-elements which were 

unable to adapt by the full amount because of   saturation.    There is  a 

mechanism in the simulator which adjusts for this occurence.    Part e) 

shows the g-set  as it would be if this input were repeated sufficiently. 

Using the deviation vector rather than the input vector in this 

adaptation is justified by the normalization criterion that the sum of the 

g-elements remain constant.    The sum of the d-elements is zero, so that 

j(gi + FIRd.)=    U+FjRl d.  =   jg. (3.6) 
i=l i=l i=l i=l 

Note that in Equation (2.2), the inhibitory deviation 'vector is subtracted 

from the inhibitory g vector. 

The terminal g-set is of interest because it in a certain sense picks 

out those inputs of most significance and ignores the rest. On the excitatory 

side it picks out the p largest inputs (those p which have the least 

negative deviation), and on the inhibitory side it picks out the p smallest 

inputs (those which have the least positive deviation).  The component will 

give an output only if most of the significant excitatory inputs are present 

and most of the inhibitory inputs are absent.  Figure 3.3 shows three devia- 

tion vectors which result in the same terminal g-set. 

In practice, the g-sets will rarely achieve their terminal state, but 

will fluctuate about some intermediate configuration. In the operation of 

the net, the first input will generally find a neuromime for which it gives 

a high response. This neuromime (neuromime A) will adapt its g-set more 

toward this input than will any other, even thouph many neuromimes will 

produce an output and will adapt to a degree. For subsequent inputs which 

differ from the first, neuromime A will generally give a small output and 

will adapt toward this new input relatively little, while others will .adapt 

more.  If the first input recurs reasonably soon, neuromime A will have an 

even larger output relative to the others than before, and will continue 

this differential adaptation. The first input, however, will probably not 

recur often enough to drive neuromime A to a terminal state. 

13 
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5 negative 

.6    - 
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b.     4 positive 
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•6    1 

-.6 

J        c     6  positive 
4 negative 

2    1 

5i     s2     g3     g4   g5     g6     g?     gQ     gg     g 10 

d.     Common Terminal 
G-set 

Three Deviation Vectors  Resulting in the Same 

Terminal G-set 

Figure   3.3 
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Section IV 

GEOMETRICAL MODEL OF COMPUTATIONS 
PERFORMED BY A SINGLE HSUROMIME 

Because of the vector nature of the operations in the neuromime, it 

makes sense to look upon them in a geometrical model.  The adaptation 

restrictions given by equations (3.3) and (3.4) indicate that this model 

is related to a higher dimensional octahedron.  A discussion of the 

formulation of this concept and an introduction to the notation and lan- 

guage of this model is given in Appendix I.  The following discussion 

assumes that the reader is familiar with this material. 

Since the terminal state of a neuromime is relatively simple compu- 

tationally, we will develop the model from it.  We will assume that th'j 

normalization is octahedral, as in equations (3.3), (3.4)  and will con- 

sider only the 1,1  inputs by setting M B 0.     We will speak 

of the G-set  as  divided into two vectors    G       and    G      with elements     (g.) 

and    (g.),     respectively.     Each of the vectors     I   ,  I   , G   , G      will hav3 

n    elements. 

The   condition that   the  G-set   is  terminal m^ans  that  each    g.,  g.   equals 

either 0 or •*-, meaning that there are only p nonzero elements in each 
+  - +      +        -      - 

of G , G , denoted by {g. ,...,g, } and {g. ,...,g. }  respectively.  Tne 
p p 

computation of the neuromime from (2.1) reduces to 

I = M, £ gl xi - i A xi 

= M, 

x.       x. 

4*- f 4 
4=1 £=1 

(4.1) 

X .  -  )  X . 

=i i     a=i   H 

We can further assume that the sets  H»}  and  {j.}  have no 

numbers in common, oo that we can consider the sum above to be 

15 



p 
?       r 

£=1    *£       £=p+l    X£ 
(4.2) 

Since the output    R    is computed by 

R = max(I, 0), 

we can say that 

R > 0 if and only if .    >     I      x.     .   (4. 
1„ „ , i. 

3) 
£=1       £     £=p+l       £ 

The Input Space is a 2n-dimensional Euclidean space, restricted to the 

principal section, and the points  for which    R > 0    are divided from those 

where    R =  0    by the hyperplane 

x.     +  ••• + x.     = x. +  •••  + x. 
XP Vl X2P 

(4.4) 

which is a division of the principal section into two regions.  If we 

restrict the inputs so that 

U 
£=1  £ 

S 1 (4.5) 

we find that we have restricted the inputs to lie in the interior and 

surface of 2n-dimensional octahedron.     Furthermore, we  can restrict our 

attention to that 2p-dimensional octahedron,    Q,  determined by the vertices 

v.   ,..,,v.     ,    which is also divided by the  (2p-l)-dimensional hyperplane, 

„;>= af ^ 

or 

X.      +   •••   +  X.      =   X. +   •••   +  x. 
Xl xp        Vl X2p 

x.    +  ••• + x.     - x. -  •••  - x.       = 0. 
Xl Xp Vl X2p 

(4.6) 

We will denote by    A    the  region where    R >  0,  and by    A    the  region 

where    R = 0. 

16 



In the region    A,    R    considered as a function 

R:    I+ x i" x G
+
 x G" •*• (0, 1] 

defines a set of equivalence classes, one for each possible value of    R. 

Geometrically, this equivalence class is a (2p-l)-dimensional hyperplane H   : 

x.    +  ••• + x.     - x. -  •••  - x.       = y    for    0 <  y aC 1.   (4.7) 
1l Xp        ap+l 12p 

H      is parallel to    H.   . 

An example of this for the 4-dimensional case is given in Figure 4.1. 

The figure shows the intersection of the  3-dimensional hyperplanes    HQ    and 

Hi  with the face of the octahedron.     The limiting case is the 2-dimensional 

h/perplane    xi+X2 = l»X3 = Xit = 0, which is a line in the    xjX2 coordi- 

nate plane.    This is shown as    H,     in the figure. 

For the 2p-dimensional case,    H      is given by the equations 

x.     +  •••  + x.     = 1,       x. =   ••'  = x.       =0 (4.8) 
Xl Xp Vl "2P 

and is thus a (p-1)-dimensional hyperplane, a degenerate member of the 

(2p-l)-dimensional family    H .    As such, it is also parallel to    H0   . 

We will denote the vector (x.   ,...,x.     )    as    $*.    We can thus interpret 

R    as a "distance" measure of the hyperplane containing the input point    x* 

from a reference hyperplane    H    .    R    will be    1    when    x* e H,     and    0    when 

x* e A.    A response    R = 1    does not identify the input as a particular point, 

but restricts it to a (p-l)-dimensional hyperplane.    In the example given in 

Figure 4.1, points  (1,  0, 0, 0)    and    (0, 1, 0, 0)    are both contained in    Hi   . 

An interval    0<a<R<b<l ((interval    (a, b)) defines a neighborhood in 

the space    Q    as the    2p-dimensional volume bounded by the (2p-l)-dimensional 

hyperplanes    H      and    H,.     This is a kind of "slice" of the octahedron    Q, so 

that two points can be in the same neighborhood even though their Euclidean 

distance from each other might be very large, and can be in different intervals 

even though it might be small. 

17 



(i 0,0,i) (£,0,0,|) 

(0,ii,0) (0,£,£,O) 

Figure 4.1 Four-dimensional Cose;—Intersection with Face of 

x, + x -x -x = y showing H  for 
1   2   3   4 ' y 
y=0, y  « i , y = l 
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The more  complicated non-terminal case  can now be treated.    Equation 

(2.1) now reduces only to: 

M, 
n 2n 

.E «ixi ' . E *i8i 1=1 i=n+l 

Setting    R = R'/M   ,    we have 

R = g,x,   +   ••• + g *    - g  ,,x al   1 6n n      6n+l n+1 
• • •      — g2nX2n = g  '  X (4.9) 

In addition,    g    is altered after the  computation as follows: 

g =  F •  R •   d + g (4.10) 

where 

/    gl 

3n+l 

>2n 

n 

n+1 

\    Sn 

d. 
I 

= x.   - r i = 1,... ,n 

d.  = x.   - x~     , i = 1,...,n 

and    F    is  a constant parameter.     For the present, we can take    F = 1. 

An example of this  computation iterated until the G-sets become terminal 

is given in Table 4.1 for n = 2 and p = 1. 
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If both the    g.     and    x.     are restricted as before to the interval 

[0, 1] equation (4.9)  for    R = 0    determines a (2n-l)-dimensional hyper- 

plane, H  , dividing the principal section of a 2n-dimensional octahedron. 

This hyperplane always contains the line    x   = x    =  •••  = x„      since 

gl + '"  +gn = gn+l + '" + g2n = X 

by the octahedral normalization; and for 

Xl = '" = X2n " a' 

gxa t ... + ^a - g^a - ... - g^a = a(gl t ••• + gn - gn+1 g2n) 

= a(l - 1) S 0, (4.11) 

for any a. The intersection of H with the 2n  order face therefore 

contains the point x. = ••• = x_ = -r—  . The line x. = x = ••• = x„ 

will be denoted by L. 

The orientation of H can be determined by considering the inter- 

sections of H with the 2   order faces (edges) of the octahedron. An 

edge  (v., v.) is described by the set of 2n - 1 equations 

x. + x. = 1 
i   3 

x = 0 for I  -  1, 2,... ,2n 

X, 4  i or j 

The intersection of H with (v., v.) is the point resulting from the 

addition of one of the equations 

g^ + g_.gj = 0 C+.13) 

gixi " gjxj = ° (4.14) 

to the set describing (v., v.), making 2n equations in all. Equation (4.13) 

appears if i and j are both either greater than n or less than n + 1; 
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Table 4.1 

Sample Iteration of a Four-dimensional G-set 

I I 
Xl X2 x3 XU 
.4 .6 .6 .2 

dl 
D+ 

d2 -3 S" d4 

"" • . L .1 .2 -.2 

Iteration gl 
G+ 

g2 
G" 

g3 g4 
R 

1 .5 .5 .5 .5 a* 
2 .49 .51 .48 .52 .li 

3 .48 .52 .46 .54 .12 

4 .47 .53 .44 .56 .13 

5 .45 .55 .41 .59 .15 

6 .43 .57 .38 .62 .16 

7 .42 .58 .35 .65 .18* 

8 .40 .60 .31 .69 .20 

9 .38 .62 .27 .73 .22 

10 .36 .64 .23 .77 .24 

11 .34 .66 .18 .82 .26 

12 .31 .69 .13 .87 .29 

13 .28 .72 .07 .93 .32* 

14 .25 .75 .01 .99 .35 

15 .21 .79 0.0 1.0 .36 

• 
final 0.0 1.0 0.0 1.0 .40* 

*Indicates points taken for example in Figure 4.3 
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Equation (4.14) appears otherwise. The former corresponds to the cases 

where x.  and x.  are both in I  or I~, and the latter to the cases 
+ 

where x.  is in I  and x.  in I  or x.  is in I  and x.  is in 

The solution to (4.12) + (4.13) is, for g. > 0, g. > 0 

~gi gi 
» *A   ~ Z ~ (4.15) 1  gi " gj     3   H '  «j 

This solution lies outside the principal section of the octahedron, since 

if x.^ is positive, g.^ - g. must be negative, and if g. - g. is negative, 

x. will be negative. Similarly, if g. - g. is positive, x. will be 

negative. 

H and (v., v.) can intersect only when g. = 0, or g. = 0, or both. 

When g. = 0, the solution is x. = 1, x. = 0. When g. = 0, the solution 

is x. = 1, x. = 0.  These points correspond respectively to v.  and v.. 

When g. = g. = 0, every point in  (v., v.) is a solution. Geometrically, 

the first case occurs when H passes through the vertex v., the second 

occurs when H passes through v., and the third when all of (v-» v.) lies 

in H. 

The solution to  (4.12) + (4.14) is 

g.              g. 
 3      x. =  i  (4.16) 

h + gj i gi  + gj 

which clearly lies in the principal section. The point  (x. , x ) will 

lie closer to the vertex corresponding to the lesser of g., g., and will 

be at the midpoint of the edge  (v., v.) when g. = g.. 

These solutions can be characterized by saying that H separates I 

vertices from I~ vertices.  In other words, if the input x lies on the 

side of the i", there is no response, and if x lies on the side of the 

I , there is a response.  We will speak of H dividing the principal 

section int<-» a response region and a non-response region. 
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An example is given in Figure 4.2 for the 4-dimensional case, as seen 

.3. 

in the 4      order face.     H    intersects the  face in a plane    H'. 

I    =   (Xj, x2),    I~ =   (x3, x^),    g1  =   .5,    g2 =   .5,    g3 =   .7,    g^ 

Note that H intersects the edges  (v., v ), (v1, v(), (v , v ) and 

(v , v ); the edge (v., v ) lies on the response side of H and the edge 

(v »vit) lies on the nonresponse side of H. 

The alteration of the 3-sets results  in a rotation of    H    about the 

line    L.     In the face this becomes a rotation about  the  center point.    This 

alteration can proceed until the terminal state.     Recall that the terminal 

state for the g-sets has each    g.     equal to    0    or    — .     Taking every combi- 

nation of    g.     and    g.,    we note the only possible combination of values  are 

that both    g.     and    g.    are zero, that both are equal to    —    ,    and that one 
J r 

is equal to zero and the other equal to — . In the first instance,  (v., v.) 

lies entirely in H , in the second, H intersects (v., v.) at its midpoint, 

and in the last, H intersects  (v., v.) at the vertex corresponding to the 

g-element equal to zero. 

An example of the rotation process for n = 2 is given in Figure 4.3. 

The sequence of numbers is that given in Table 4.1.  Note that the angle 

between H and (v„, v ) tends toward 90° and the angle between H and 
2   4 

(v., v ) tends toward 0° . 

The angle between H and an edge (v., v.) is of interest since it 

tells how much the preponderance of x.  over x. affects the output, which 

is related to the distance of x from H . As the projection of x on the 

x.x. coordinate plane moves along the edge (v., v.), the output will change 

as the cosine of the angle between x and g , the normal to H, as in 

equation (2.2). If the angle between (v., v.) with H becomes small, any 

movement of x primarily in the x.x.-coordinate plane will have little effect 

on the output, since this movement is perpendicular to g .  In other words it 

does not matter what value a particular x.  takes if the corresponding value 

of g. is near zero. 

Since the parameter p is the same for both G  and G  , there will 

always be the same number of nonzero elements in both sets. The terminal case 

will, therefore, always have an even number of nonzero g.  and an even number 

of zero g. . The set of (v., v.) such that both g.  and g.  are zero si i' j &i     &j 
determines a simplex of 2(n - p) dimensions. This simplex has as vertices 

all those coordinates which contribute nothing to the input.  These vertices 
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vi 

response region 

non-response 
region 

Figure 1+.2 

Four-dimensional Case for g\  -   .5, g£ 

x indicates midpoint of edge. 

•5» §3 = «7> Zh  ~   «3 

24 



response 

non-response 

iteration 1 

non- 
\ response 

iteration 7 

non-response 

iteration 13 terminal state 

Fi-urj 4.3 Various Stages in the Rotation of H' for Four Dimensions 

Data taken from Table 1. 

Arrows indicate direction of movement of intersections with edges. 
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can therefore be removed from the model, as in the discussion of the 

terminal state model in Equation (4.1) and following. We are then left 

with a 2p  order simplex. In the example of Figure 4.3, the terminal 

simplex is the 2  order (v , v ). 

As discussed in Section III, the terminal sinrolex eventually reached is 

given by the p largest (smallest) elements of I  and the p smallest 

(largest) elements of I , depending on whether F is positive or negative. 

An example of inhibiting adaptation is given in Table 4.2. Note that the 

adaptation becomes slower as R decreases. 

Since the terminal state is given by the indices of the p largest 

elements in D  and the p smallest elements in D , a large class of 

inputs will give rise to the same terminal state. This class is given by 

the region in the principal section determined by the set of (2n - 1)- 

dimensional hyperplanes described in detail in Appendix I. Each primary 

region in Appendix I corresponds to one of the possible total orderings of 

{x.,...,x9 }. One of these primary regions can be characterized by the 

ordering x,-  >•••> x,-  . The class of inputs which gives rise to the 11       2n , 
terminal simplex given by (v* ,...,v- , v.-   »"^>vi„ ) is a union of 

•^1 xp        xp+l 2p 
primary regions.     Any ordering is  included in the  union  in which all x.   in 

{xi   ,...,X£  } are greater than any other    x.     in    {x1,...,Xn};    and all    x. 

in    {x^    .,...,X£     }    are less than any other    x.     in     {xnti»«••»x2n^* 

An example will clarify this  concept.     In the  Figure 5 of Appendix I, 

a 4-dimensional case, there are 24 primary regions  characterized by the 

orderings 

xl  > x2   >  x3 >  x4 
xl  > x2  >  x4  >  x3 
xl  >  x3  >  x2  > x4 
Xl     >    Xg    >    X1+    >   Y-2 

x4  > x3 > x2  > xl 

The terminal simplex is     (V2,  v^),  so that  the  regions: 
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Table 4.2 

Inhibiting Rotation of Example of Table 4.1 (F = -1) 

-*•+ •*- 
I I 

xl      x2 X3     X4 

.4     .6 .6     .2 

dl 
D+ 

d2 d3 

-.1 .1 .2 

•+ 

G 

-.2 

R 

Iteration h g2 g3 g
4 _ 

1 .5 .5 .5 .5 .1 

2 .51 .49 .52 .48 .09 

3 .52 .48 .54 .46 .08 

4 .53 .47 .55 .45 .07 

5 .53 .47 .56 .44 .07 

6 .54 .46 .58 .42 .06 

7 .54 .46 .59 .41 .06 

0 .55 .45 .60 .40 .05 

9 .55 .45 .61 .39 .05 

10 .56 .44 .62 .38 .04 

11 .56 .44 .63 .37 .036 

12 .556 .444 .637 .363 .034 

13 .553 .447 .644 .356 .032 
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x2 > Xj > x3 > x^ 

x2 > x3 > Xl > x, 

x2 > x3 > x4 > Xl 

x > x > x > x (4.18.) x3  x2  x: ?  x^ 

x3 > x2 > x„ > xx 

x3 > x^ > x2 > x1 

together contain all inputs which give rise to the terminal simplex of 

Figure 4.3. 

When there is a sequence of different inputs to the neuromime, the 

rotation will be in the same direction for each one provided that the inputs 

all lie in the same region. If some of the inputs lie in a different region, 

there will be competition between the tw,o rotations, and the attainment of the 

terminal state will be delayed.  The state which will predominate is not 

immediately clear, since the order of inputs in the sequence is quite signif- 

icant. 

These unions of primary regions are the sets of inputs which the 

neuromime considers similar in a certain sense, so that they indicate which 

classes of inputs may most easily be identified by the neuromime. As seen 

above, an attempt to force the neuromime to recognize a set of inputs lying 

in different regions will result in varying results and slower adaptation. 

At this point, it is useful to make a final examination of the vector 

aspects of the computation of R , especially the algebraic aspects. The 

definitions of the vectors involved are recapitulated below: 
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n 

\   x 

m 

/ 

(4.19) 

d    = 
-> 
g 

sn 

-g n+1 

Vg2n / 

we will need the identities 

d + m 

x  •  d    =     (d + m)   •   d    =     |d|2 + d •  m 

(H.20) 

(4.21) 

m 
.      n n 

y dt + x~ y dT 
i=i i=l 

(4.22) 

so that 

(4.23) 

The space of possible x  vectors is a vector space of 2n dimensions, 
-»• ->•-»• 

denoted by X„  .  Each x e X0  can be written as d + m, and, from (4.22) 
.       2n ?n 

d • m = 0 . The components of each vector m satisfy the constraints 

m. ••  =  m , m .. 
n' n+1 

m 
2n (4.24) 
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The vectors    ra    therefore lie in a space    M„    of two dimensions.    M 
* 2 + 2 

contains the zero vector.     Since each component  of each    d    satisfies the 

constraints 

d,   +  ••• + d    =  d    ,+•••+ dL    = 0   , (4.25) 1 n        n+1 2n ' 

-»• 

The only    d    that is  contained in    M„    is the zero vector.     X„       can therefore J 2 2n 
be decomposed into 

X2n = M2©D2n-2     • (i+'26) 

->• 

with every d contained in D? _ , where (+) denotes an orthogonal direct 

sum as in Hoffman and Kunze (1961). 

Considered as a hyperplane in the principal section of the octahedron, 

M2 is a plane passing through the origin, the center of the face, and the 

centers of both the simplexes P and N given respectively by 

x + ••• + x = a . x   =•••>= x_ =0 (4.27) 
1        n       n.tl        2n 

and 

x, = ••• = x =0  ,  x  ,+•••+ x„ = a (4.28) 
1        n        n+1        2n 

0<a<l 

In other words, M  is the direct sum of the orthogonal lines Q , Q' 

given respectively by 

x1 = ••• = x2n (4.29) 

and 

xl   '   "•  = xn   • Xn+1 =   •"   = x2n   •    xl   = "Xn+1 (4'30) 

D therefore  is  a hyperplane perpendicular to    M—it  corresponds 

to the set of hyperplanes parallel to    H   , where all the g-elements are equal, 

The  two components of    M       in    Q    and    Q'     can be thought  of as  determining 
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respectively the distance from the origin to the face to be considered and 

the distance from the center of the face to the hyperplane parallel to H„ 
-*• 

containing x 
->•->• -*• 

Define f and I    to be the components of m in Q and Q' respec- 

tively.  Note that 

g = 
n 

-g n+1 

U 2n 

(4.31) 

is the vector normal to H , and is not, in general, normal to H . 

From  (U.29)  and (4.31) 

f ' g (4.32) 

From (4.32) and (4.26) 

g • x = g ° (f+£+d)=g°£+g»d (4.33) 

and if, in addition, g = g  ,  noting (4.30), 

g • x = g0 • * = a . (4.34) 

From  (4.30), a is the difference between the average of the x.  and 

the average of the x.; and the output of a neuromime is never less 

than 0; so that when a < 0 , we have R = 0 . 

This implies that the significant parameter in determining the initial 

strength of an input is the difference between the average of the I  and 

the average of the I In tables 4.1 and 4.2, we see that following (4.34), 

x+ = .5 

x- = .4 

a = .1 

R(0) = a = .1 

(4.35) 
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The terminal output for positive adaptation is given by the difference 

between the average of the P largest in I  and p smallest in I~ 

In Table 4.1, this average is .4, so that 

Rfinal=.4 (4.36) 

and R will go no higher. 

For negative adaptation, the terminal state will be reached only if 

the average of the p smallest in I  is greater than or equal to the 

average of the p largest in I  , since otherwise R will go to zero 

before the terminal state is reached.  In the example of Table 4.2, this 

difference is -.2.  As can be seen, the g-sets are nowhere near a terminal 

state, yet the output is very near zero.  The adaptation equations developed 

in Section 5 can be solved to get the g-set for which R becomes zero. These 

are solved in Appendix II. 

It remains to consider the effect of the bias and the S inputs on 

this geometrical model. These additional parameters can be regarded from 

Equation (2.1) as constituting an additive constant to the measurement 

Equation (4.1). Equation (2.1) becomes 

c = B + S 

R = x • g + c . (4.37) 

->•->•      -*•-*• 

Expressing x • g as  |x| |g|cos 6 , 

setting R = 0 , and 

solving (4.37) for 8 , we have 

|x| |g|  cos 6 = -c 

8=C08"Twi7r) 
-*• >      -»• 

Angle 0 is the angle between the x vector and the fixed g vector 
-> 

which determines the locus of points for which R = 0 . Any x whose angle 
->- 

with g is greater than 8 will not produce an output. Note that the value 
-*• 

of this critical angle depends on the magnitude of x.  Figure 4.4 shows a 

sketch of 8 versus  txl . 
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180°-r 

90° 

Figure 4.4 

Sketch of Critical An^le 

6 = co: -1 

r Hi I*I ) 

Justification: 

for    c> 0, c=0, c<0 

d6 
dx 

1 - 

0 as   |x| -K    CO 

For    c > 0,    0 =    180°    when     |x|     = -%- 

1*1 
For    c < 0      6 = 0°    when     |x| 

lgl 
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As might be expected, for c = 0, 6=0 for any value of |x| . This 
->• 

corresponds to the hyperplane H of (4.11) which is the locus of x or - 
->• •*• 

thogonal to g . When c < 0, no x will produce an output if its magnitude 
,->. •+ 

is less than c/|g|, since no matter how close to g it is, the output can- 
-*• 

not overcome the negative bias.  Conversely, when c > 0, every x  whose 

magnitude is less than c/|g|  will produce an output, since no matter how 

far from g it is, it cannot overcome the positive bias.  In both cases, 
.->• 

as  [x|  increases, the effect of the bias is reduced in that as 6 approaches 

90° the critical value approaches that for c = 0. 

The effect of the bias is to change the volume of the response area. 

When c < 0, the volume is decreased, and when c > 0, it is increased. 

It is somewhat difficult to visualize this phenomenon in the octahedron 

model, but the hatched areas under the curves of Figure 4.4 give some 

idea of how it works. For c > 0, the response area is greater than for 

c = 0, and for c > 0, the response area is less. 

When the bias is large, the threshold hyperplane can be rotated by the 

adaptation process so that when the bias is again reduced the components of 

the level will give maximal response to new inputs. This property can be 

used to cause neuromimes near terminal states to "forget" their conditioning 

so that they can be used for new tasks. 

As described in Section II, the S inputs are interaction inputs 

between different neuromimes on the same level.  There is an adaption process 

for these inputs as well as for the I inputs, which was described in 

Section II when there is only one neighbor connected to both an S  and an 

S  input. There can be a large number of such connections, and the S 

g-sets behave much like the  I  g-sets.  It makes more sense, however, to 

consider the S inputs in a model as in Section III and take the effect on 

the geometrical model as one of additional bias. 

The adaptation process on a large number of S inputs will cause the 

degree of interaction to alter differentially among them, so that the 

influence of those neighbors with high outputs will be altered differently 

from that of those with small outputs. As with the GT sets, the controlling 

factors in the differentiation are the dispersion among the S inputs and the 

maximum allowable value for an individual g.. &i 
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The equations involved are: 
-*• 

x.'" are the individual components of S *" 

Dg»" = S+'~ - S+»" 

,+ »" are the individual components of    D  '" 

<•" = k9~+ Fs •R • °sf" 
g. '  are the individual components of G '" 

p  is the number of g.  and g.  allowed to reach a nonzero terminal state. 
• + + 

When Fg is positive, those g.  corresponding to positive d. will be 

increased and those corresponding to negative d. will be decreased, while 

those g.  corresponding to positive dT will be decreased and those g. 

corresponding to negative d. will be increased.  The terminal state is 

that the g.  corresponding to the p  highest d.  and the gT correspond- 
3» o X X 

ing to the pc lowest d.  will be equal to l/pc, while all other g.* 
O 1 b 1 

will be equal to zero.  When F  is negative, the reverse occurs. 

In this manner, the degree of interaction among a component and its 

neighbors can be limited to the most significant (F„ positive) or to the 

least significant  (Fg negative) for a particular class of stimuli. 

It should be noted that the outputs of a level form the same sort of 

signal space as the inputs, so that the outputs of one level can be used as 

inputs to other levels. 
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Section V 

ADAPTATION IN A SINGLE NEUROMIME 

A question of some importance in the operation of c neuromime is the 

way in which the adaption process takes place   and, in particular, how the 

various parameters  affect the adaptation.    We will again deal with the 

problem with    M„    =    0, but will allow a non-zero bias      B.     Later in the 

section, the general case will be considered.    We will assume throughout 

piecewise constant inputs. 

The adaption equations, given in Equations  (2.2)  in incremental form can 

be expressed in differential form, using the notation of Section III. 

-£-G+    =     FRD+ 
at 

d  •*•- •*•« 
~6       =  -FRD 
dt 

(5.1) 

where, using the notation of (4.9) 

The Equations   (5.1) may be expressed as  the system 

•kA -  •I<dlX14 +   -  +  dIXX)  +  WI(-<Vl "   -  -d+lXngn}  + FBdl 

•s-g* =  FMT(d
+xtgt +   •••  +  d+x+g*)  +  FMT(-d

+x7gT  -   •••  -d+x g~)  +  FBd+ 

dt ^n In 161 n n6n I      n 1&1 n nfan n 

(5.2) 

. £g- =  FMl(d-x^ +  ...  •d^xjgj)  +  FMl(-d-x-g; d'x^)  •  FBd" 

- •£• g~  = FMT(d" xtgt + '.» +d~x+g*) t FMT(-d~x"g7 - • •• -d"x"g") + FBd" dt 6n    In 1&1       n n^n     I  n 1&1       n n&n      n 
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Adopting the definitions, as in Equation (4.10) 

g    = 
-8i 

/*: 

u 

FMIX1 \ 
\ 

1 
• 

•I< + 

FMjxJ 
=  FMjX 

•g. n n FMTx I n 

The system (5.2) may be ire-expressed in the more compact form 

•*       -*• •*•. 

4-g =   (u   0   v*)   0   g + FBu (5.3) 

where v  is the transpose of v (i.e., the row matrix representation) 

and the operation 0 represents matrix multiplication. 

In Appendix III the solution to the system (5.3) is given by 

g = cue  + k r- u (5.4) 

where    c    is an arbitrary constant, and    k    is  a vector of    2n    arbitrary 

constants the last element of which is determined, and 

X = u •  v = FM„ 

= FM, 

n n 
y d.x. + y d. x. 

1=1 1=1 

n n 

=  FM, 

=  FM, 

I    d!  (dT +x+) +    I  dT(dT + x") 
.**..     ii .*•,   l    l 
i=l i=l 

E    d+*+    I    d"2 + x+    l    dttx"    I    d" 
i=l i=l i=l i=l 

n n 
I    d!    +     y     dV 

_i=l i=l 

since from Equation  (2.5), 

n n 
I   dj-   I   d- = o 

1=1 1=1 

(5.5) 
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It will be convenient to simplify the notation, removing the 

-•script t and - 

time t , as follows: 

superscript t and -  , and expressing the g.  as functions of the 

gi(t) . gr 

gn+i 
(t) • *I 

di = d! 

d ., = d. 
n+i   1 

for i = 1 ,..., n 

so that (5.5) is expressed as 

2n 
A = FMT I  d? (5.6) 

1 i=l X 

The summation in (5.6) is important in the following, and will be referred to 

by the symbol 

i=l 

so that 

2n 
6 = T  d? (5.7) 

X = FM 6 (5.8) 

The*system (5.4) becomes 

gl(t) = cdxe  I  t kJ_ - 0-d1 

© o 

FMT6t  ,     B 
g (t) = cde'"!"" + k - rr-v d 

n  M.j.5  n 

g  ,(t) FMT6t   ,      B 6n+l   = -cd ^.e I  - k _,,+ TT-T- d _,, n+1        n+1 11 j6    n+1 

e • • o        • 
• o o •        0 
a© © a • 

... FMT6t  .     B  , 
S2n

(t) = "Cd2ne 1 -  k2n + M^ d2n 

(5.9) 
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System (5.9) must be solved for the constants c and k, ..... k 
1 n 

by evaluating for    t  = 0    and the initial values of the    g.(t)   , 

gl(0)=  cd1+k1-^d1 

^n(0)  =  cdn + kn-M7dn 

sntl(0) = -cdntl-kntl + M^ dn+l 

(5.10) 

(5.11) 

S2n
(0) = "Cd2n " k2n + M^ d2n 

with the addition of the constraint on k   from Appendix III, 

FM.x.k. + •<>• + FMTx k + FMTx A.k _,. + ••• + FMTx0  ,k-  , 
111 Inn I n+1 n+1 I 2n-l 2n-l 

k2n -FMTx„ I 2n 

_  Xlkl +   —  + Xnkn + Vlkntl +   °"  + x2n-lk2n-l 

-X2n 

Solving (5.10), we obtain 

si(0) " ki + O di 
c =  T  (5.12) 

dl 

k. = g.(0) - cd. t jj^-d. i -  1  n 

ki = -g^O) - cdi + fi-j dj. i = n+1 ,..., 2n 

k  can be obtained by equating the expressions for k   in (5.11) and 

(5.12), substituting the expression (5.12) for k.  in (5.11) with 

i = 2 ,..., 2n-l; and substituting for c the expression in (5.12). 
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x,k,        n      x. 

+    I    — -X 
2n      i=2      2n 

k(0) - ki+ o- di. 
gi(0) -   ! ^ di + M~5 

di 

2n-l    x. 
t      I      — 

i=n+l    x2n 
-g.(0) - 

gl(0) "kl + M^T di) 

l      M..5     1 

=  "g 2n 

(«i(0)-ki + !CTdi) 
(0) - S 3 i 1 dn   + A 

M 5    2n 
(5.13) 

Multiplying both sides of (5.13) by -d,x   and expanding, 

n r xikidi+ I kgi(0)di - xigi(0)di+ xikidi - o dixidi+ o- dixidil 
x=2[_ * x 

2n-l  ,- 

•       I 
i=n+l 

-X.g.(0)d1   -   K^COdj   +   Xik1di   -  gSy d^.d.   +  j^y d^.d.l 

(5.1I+) 

= g2n(0)x2ndl + X2ngl(0)d2n " X2nkld2n + M^ X2nd2ndl " tfy X2nd2ndl 

g 
Gathering terms in  (5.14) noting that all terms  containing    77-r-    drop out, 

we obtain 

[n 2n-l 
X d    +    I    x.d.  +      I      x.di + 

1 X      i=2 i=n+l 
x2nd2n 

dlx2ng2n(0) + gl(0) X2nd2n " j2 
dlxigi(0) + j2 

gl(0) Xidi (5'15) 

2n-l 2n-l 
+      I      djX^CO) +      I      g1(0) xidi 

i=n+l i=n+l 
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The left side of (5.15)  can be simplified, 

n 2n-l 
,d.   +    y    x.d.  +      7       x.d.   + x0  d 
11      •_„    i i      ..,    ii        2n: i=2 i=n+l 2n 

2n 2n 
k       I    x d    = k       I     df  = k  6     . 

i=l •"• i-1    x        x 

(5.16) 

The right side of (5.15)  can also be simplified, by adding and subtracting 

the term    g    (0)x d      and rearranging, 

2n-l 
gl(0) Xldl + gl(0) J    Xidi + gl(0)  I      xidi + gl(0) x2nd i=2 i=n+l 2n 

2n-l 
-d^g^O) -d1 I    x.g.(O) t dx      I      x.g.(O) + dlX2ng2n (0) 

i=2 i=n+l 

2n 
= g (0) I    x.d. - dl 

1=1 

n 2n 
I    xiSi(0) -  I       x.g.(O) 

i=l i=n+l 

Defining, according to (5.1), 

R(0) = M 
n 2n 
I    x.g.(O) -      I      x.g.(O) 

i=l i=n+l 
+ B 

and substituting  (5.16)  and (5.17), equation  (5.15) becomes 

R(0) - B" k±6 = g;L(0)6 - dx M, 

(5.17) 

(5.18) 

(5.19) 

or 

d,   r, 
ki = gi<°> " T 

R(0)  - B 
M, 

Substituting  (5.20) into the expression in  (5.12)  for    c, 

(5.20) 

gjL(0)  - gl(0)  + -f 
R(0)  - B 

M, 
B 

(5.21) 

or, simplifying, 

= . giy DUO)  -  B •  BJ  . M0> (5.22) 
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Substituting the expression for the k.  from (5.12) into the 

system (5.9) we obtain the'solution to (5.1), 

gx(t) = cdie
FMI6t + gL(0) - c^ 

o o O V 

0 0 • o 
• 0 • O 

gn(t)  = cdneFMI6t + gn(0)  - cdn 

(5.23) 

"Sn+l
(t) "  cdntleFMl6t " Sn+1  

(0) 'dcdn+l 

-^2n(t)  =  ^n6•16"  " g2n(0) "  cd2n 

In a vector notation,  using the  definitions in  (5.1),   (5.23)  is 

G+(t)  =  cDe    I       + G+(0)  -  cD 

-G   (t)  =  cD er   I       - G  (0) -  cD 

(5.21+) 

and in the form of the system (5.3); (5.23) is, substituting (5.22) for c, 

"%+i R(Q)  -" FMT6t   ,   •»,„, R(0)    • ,_  ocv g(t) = M^rue J   + g(0) - gjr u (5-25) 

;(t).    I^LZ(e•I6t-l)+l(0) (5.26) 

Note that there are two basic controlling factors in (5.26), an 

exponential term and a constant multiplier term.  The exponential term 

A = F M 6 (5.27) 

is controlled by the variance of the input and both the input level weight 

and the learning factor. The constant term 
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R(0)        V   "   8(0)   +   B 

c = 
M 6 M  6 

-  x   »   |(Q) B 
 6 + Hj6 (5*28) 

is dependent mostly on the bias term, since    x  •   g    can be of the same order 

of magnitude as    6. 

We are now in a better position to attack the general problem with 

"Ac  i  0,     There are several possible ways. 

One important  consideration is that we are interested in interconnec- 

tions of the type used in Section II  so that we want  to determine the 

adaptation of the m-element vector 

K = G*  - G~     . (5.29) 
S o 

This can be determined by differentiating (5.29) 

If 

d * . d p       d +- 
dt K " dt Gs " dF Gs 

= Fg R(S
+ - S+) - C-Fg R(S" - S")] 

s = s" = s 

(5.30) 

th "*" and    s.     is the     i element  of    S   . 
* 

Equation   (5.30) reduces to 

af-K(t)  =  2FgR(S  - f) (5.31) 

The simplest way of solving (5.31) is to consider the solution of the 

system for M = 0, then solve (5.31) with R held constant and the feedback 

delay of the net large enough so that the value of S remains constant. The 

solution is obtained immediately.  Define 

1=1-1 . (5.32) 

Then 

K(t) = 2FsREt  . (5.33) 
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A more realistic solution is to assume that    R    varies but that    S 

remains  constant.     In this  case,  following the same arguments as in (5.1), the 

solution is 

K(t) = ^i.E(eXt - 1) t K(0) 
KS62 

(5.34) 

where 

X  =  2FSMS62 

m 
52 -M 

i=l 

(5.35) 

(5.36) 

and 

,th 
e.     is the    i component of    E 

The interactions between the two adaptations  can be examined by 

solving the two systems simultaneously.     The  complete system,  (2.2), using 

the notation of this section, is given by 

_d 
dt&i 

j, I  = PA  £j 
n 2n 
I x g  (t)  -       I    x g  (t) 

j=l 
]   ] j=n+l 3  3 

+ B + M    I s^k^(t); 
j=l 

for    i = 1,... ,n 

3   3 

dt 
g.(t)  =  Fld.  ^ 

n 2n 
I    x.g.(t)  -       I    x g  (t) 

L3 = l 
3   3 

dt    i' 'Si' bib 

j=n+l 

2n 

3   3 

m -N 

B + M-    7    s.k.(t) I 
S j=l    3   3 J 

1   k..(t)   =  2Fc,e,<MT     I     x g   (t)   -       I     x g   (t) 
J   J j=n+l  J   J 

for    i = n + 1,... ,2n 

m 
+ B + M       I     s.k.(t) 

«   J-.     3   3 
3 = 1 

(5.37) 

for    i = l,...,m. 

Following    (5.3) system  (5.37)  can be expressed as 

->• •*•+-»• -*• 

r^y(t)  =  u0vt0y(t)  + bu (5.38) 
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where 

gx(t) FIdl MI*1 

y(t) 

gn(t) 

-§n+i
(t) 

-s2n
(t) 

kx(t) 

u = 

FIdn 

FIdn+l 

FId2n 

2FSel 

MTx 
I n 

MTX   Al I n+1 

MIx2n 

MSS1 

and 

m 2Fc;em b  m 

b =  B 

so that the solution is given by Appendix III  as 

y(t)  = cue      + z - -r- u 

where 

X  = u   •  v 

2n m 
FTMT     y    d? + 2F M„     I e? I   I   .L.     l S  S   .L.   1 

1=1 1=1 

Letting 

2n m 
6, =  y  d? , 6. =  y  e?   , 

1       .**,     l *     2       .L,     l     ' 
1=1 1=1 

A  = Wl + 2FSMS62       ' 

Following the argument  from (5.9)  through  (5.26), 

. _ R(o) 

MSSm 

(5.39) 

(5.40) 

(5.41) 

(^.»l^) 

45 



where 

R(0)  = y   •  x +  B (5.1+3) 

and the solution is 

•* R(O) •*•   Xt -*• 
y(t) = S^LL U(e r - 1) + y(0)     . (5.44) 

X 

The interaction between the two systems  can be seen by examining in 

detail the solutions for    g  (t)    and    k  (t). 

F R(0)d (e,Vt -1) 

*l(t)  =  FIMI61 t 2FgMs62 
+ Hi0) (5'45) 

2F R(0)e  (eAt - 1) 
kl(t)  -       FIHI61 • 2FSMS62 + kl(0)     ' (5'46) 

Again, we see that  the variance and the weighting parameters  control the 

exponential factor, and the bias is the main control in the multiplier 

factor, with the additional control,  the ratio of the    Fj    and    F      weights. 

We are now prepared to give some answer to the question of the neuromime'e 

"memory".     If a stimulus  is presented and the g-sets  altered according to 

that stimulus  for a time    t, then another stimulus  is presented and the g-sets 

altered again, how much of the original adaptation remains? 

The output of the neuromine at time    t    after the beginning of the 

adaptation is, from (5.1) 

R(t) = Mjgtt)   •  x + B (5.47) 

substituting  (5.26)  for    g(t), 

R(t) = MT 
,  Xt       ..  R(0) •>  .   -»-,A, 
(e      " 1} WT~ U + g(0) x + B 

=   {e*t  -l)5i°Ii  .  x- + MT!(0)   •  £+B 
o i 

=  R(0)eXt (5.40) 
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We will consider an input x  followed by an input x^ , and will 

then examine the effect of a repetition of x .  Parameters from (5.48) and 

(5.26) will be subscripted according to the input concerned. We have, from 

(5.48) 
At 

Rx(t)  =  R^Oe 

R (0)       At 
gi(t) = WT~~ (e       _ 1)di + gi(0) 

R  (0)   =  Mjg  (t)   •   x2  +  B (5.49) 

At 
R2(t)  = R2(0)e * 

+ R (0)       At + 
g
2
(t) = wjrr (e    - 1)d2+ «i<*>  • 

Applying the input x  again, we have 

R (0) = Mjg (t) • x + B  . (5.50) 

The variable of main interest is the loss of adaptation 

L = R3(o) - Rx(t)  . (5.51) 

Substituting the expressions in (5.50) and (5.49), into (5.51), we have 

L = R3(0) - Rx(t) 

= Mjg2(t) • x±  + B - R1(t)  . 

Substituting for g5(t), 
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L = M, 
R2(0)      At +        ^ 

M^7(e        -Du2 + gl(t) • x1 + B - R (t) 

+              +                V            u    •  X 
= (Mjgjft)  • x2 + B)(e        - 1) -^ i + Rx(t) - Rx(t) 

Substituting for    g,(t), noting that    R (t)  drops out, and expanding, 

c Xlt "l 
R^OXe X    - 1) ^i+ Ml8l(0) 1     V U2      - •  x2 + B  (e - 1) -^- •  : 

62      "1 

Alt Ul  '  X2 R1(0)(e - 1)     ± 6 + MIg1(0)   •  x2 + B 

From the formulation in Equation  (H.26), we know that 

(e *    - iwi - K, 
62 1 

(5.52) 

-•• -+• -*• .-*•        -*•.-*•        -*• 

\  '  X2  =  Ul 
u,   •  x„ = u,   •   (u2 + m2) = xx^  •  u2 

-»• -»- -+• -»• "+1     x "*• "*" 
u2  •  xx = u2  •   (Uj + m1) = u2  •  ux 

Defining 

(5.53) 

Mlg;L(0)  •  x2 + B =  R'(0)     , (5.54) 

and 

At At 
c± =  (e x    - 1)     , c2 =  (e *    - 1) 

we have, substituting  (5.53),   (5.54)  and  (5.55)  into (5.52), 

(5.55) 

L = 
u    •  u 

R1(0)c1        6        + R'(O) 
u2; Ul 

"2       6„ 

(u.  • u )z u,   • u 
R1(0)C1C2      6^ + C2R'(0) "V" (5-56) 
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The dot product in  (5.53)  can be expressed in terms of the lengths of 

the vectors and the cosine of the angle between them [5] as 

u,   • Uj *   luj   |u2|cos6 (5.57) 

and since    6 =   |u|   , u.   •  u_ = /&7   /$~ cos8  , 

we have, from (5.56) if    R(0) = r.     and    R'(0) = r„     , 

* 
L = r-c-c-cos 6 + re        V/s^" cos   e (5.58) 

The adaptation loss for    x.     after having applied    x      depends, therefore, 

in great part on the angle between the two deviation vectors, which is reason- 

able since the adaptation of    g    is controlled by the deviation vector.    Some 

insight into the distribution of    L    may be gained by looking at the distri- 
2 

bution of cos6 and cos  0.     If we assume that the lengths of the deviation 

vectors are equal, we can imagine    d.     as the north pole of a 2n-dimensional 
-»•-»• 

hypersphere,  and examine the angle    9    between    d      and    d_     .    An element oi 

surface content of this hypersphere is  derived in Appendix IV as 

dS =  (pd8)(psin0d(j>. )(psin8sin<J>1d<f»9)       (psinSsin^    •••  sin<(>        d$      _) 

2n-l  .   2n-2.   .   2n-3, . ,_  __» 
= p        sin        8sin        $    ••• sm^^d^d^ •••   &$2n-2 (5.59) 

where    p    is the radius of the hypersphere, and    8,  $.,...,$_    „ are the 

successive hyperconical angles, corresponding to the latitude on a 

3-dimensional sphere, ranging from    0    to    tr, while    <J>      9    is the planar 

angle,  allowed to range  from    0    to    v  . 

The probability of    8    occurring between    0    and    6f)    is the ratio of 

the surface content of a segment of the hypersphere cut out by 

0<9<80    ,      0<+j<w i = l,...,2n-3, 0<*2n-2<2ir 

which is proportional to,  from (5.59),  (with    p = 1) 

P(8<8n)  =   fe0sin2n"2edef1,sin2n"3*.d*1   •••   Kin*0     ,d*0     J2* d*0     , 
0        Jo Jo 1    i Jo       r2n-3 y2n-3j0       y2n-2 

"f e°sin2n"28d8 (5.60) 
0 i+9 



Since  as    n    increases,  sin 9    decreases for    9 f TT/2 , the 

probability that    6    deviates from    TT/2 decreases  as    n    increases,  and 

the averages  of    cos  9    and    cos29    approach    0.     This  lends  justification 

to the belief that, on the average, the adaptation  loss    L    will be small, 

so that a neuromime will tend to "remember"  its previous training. 



Section VI 

STRUCTURL AND OPERATION OF iteUROMIME NETS 

With the development in previous sections, we can now discuss in 9 

unified manner the structure and behavior of a neuromime net, including 

some ideas on the use of the net simulators currently under development. 

Recall that nets are organized as a series of computational areas or 

logical levels, each area containing a number of neuromime components.  The 

S inputs of the components within an area come from the outputs of other 

components in the same area, while the I inputs come from outside tne 

area, either from the pri mary sensory inputs or from the outputs of com- 

ponents in other computational areas. 

A neuromime net computation area is composed of a set of computing 

elements 

(C. |i=l m} 

together with their connections to the outside world. In addition, each 

component has a number of state inputs which are outputs from other com- 

ponents in the same area. 

If r.  is the output from component  C, the effect of tnj interaction 

is given by an iterative process, which proceeds until convergence is OD- 

tained.  At time i+1, r.  is computed from the outputs of the other compo- 

nents at time i: 

r.(i+l) = k.r(i) + • *• + k. r (i) + r.(0) 
1       12 2 1mm      1 

r2(i+l) = k21rx(i) • k23r3(i) + ... • k^r^i) + r2(0) 
(6.1) 

r (i+1) = k ,r,(i) + ••• + k    , R ,(i) + r (0) 
m       ml 1 m, m-1 m-1      m 

where tho k..  are coupling coefficients.  The indices can be interpreted 

as the effect of the output of C.  on the outout of C. 
1 i 
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The system (6.1) is a linear system of equations, and can be re-expressed 

as 

p(i + 1) = Mp(i) + p(0) 

where 

(6.2) 

P = 

/ ri I 

w 
and M 

°  k12k13 
k21° k23 

... v  \ 
lm \ 

...  V- 
2m 

\ k ,  k    .  0 / 
\  ml   m, m-1    / 

and p(0) is the set of outputs before the computation of the interaction 

has begun. 

Since, at the beginning of the iteration, 

p(l) = Mp(0) + p(0) (6.3) 

(6.2) is by induction 

p(i) = M1p(0) t M  p(0) + ••• + Mp(0) + p(0) 

= I  Mj  p(0) 
j=0 

where M° is defined to be the identity matrix. 

(6.4) 

The example given in Figure 6.1 may help to clarify this process. The 

example illustrates the simple situation where m = 2.  On the left are the 

symbolic interaction matrices for i = 0, 1, 2, 3, H; and on the right are 

the corresponding matrices with kj = -.1 and k_, =  .2. At the bottom 

is given the sum of the five matrices. 
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M 
symbolic 

0 

ki: 

M 
numeric 

/I 

V 

-.1\ 

'21 

1 7    7 1 

k21k12 

kl2k2i 

k21kl2     0 

'(k12k21)
2  0 

\0 (k2iki2)
2/ 

4  . 

I"1 

i=0 

.2 

-.02 

-.02; 

•.002\ 

-.004   0    / 

/+.0004  0 

/.9804 

r196 

+.0004; 

-.0981 

.9804 

Figure 6.1     Interaction Matrices of Dimension 2. 

k12 = -.1 , k21 = .2 
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If 

then 

4 
p(4)   =     I    M1  p(0) (6.5) 

i=0 

1^(4) =   .9804 r (0)  -   .098 r (0) (6.6) 

^(4)  =  .196 r (0) +  .9804 r (0) (6.6) 

As might be expected,  the output  from    Cj     is  decreased and the output  from 

n 
2 

C2 is usually increased, unless r.(0) is very small compared with ro(0), 

in which case the second order coupling of C. with itself, given by 

(M2)22 = k1k2 = -.02 (6.7) 

becomes dominant. 

A more complex example illustrating seonna order coupling more clearly 

is given in Figure 6.2, showing M2 for m = 4. Each eni^ ^n t^e matrix 

M2,  (M2). ., is interpreted as the second order coupling of C. v~> Q 
i] J i  ' 

Specifically, 

(M2)11   =  kl2k21   +  k13k31   +kl,\l (6'8) 

is the coupling of    C      on itself through    C    ,    plus the  coupling of    C      on 

itself through    C    ,  plus the  coupling of    C      on itself through    C    . 

Similarly, 

(M2)  ,   = k    k      + k    k (6.9) 
34 31   14 32   24 

is the coupling of C^ on C. through Cl    plus the coupling of C^ on 

C3 through C2 . 

A problem of importance is whether the system will eventually produce a 

stable output, which is the same as determining whether 

lim I  M^ = M< 
i-H»  j=o 
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exists. It has been demonstrated in Appendix V that the system will be 

stable if the determinant 

I - H > 0 (6.11) 

One scheme for interconnecting elements so as to obtain the most 

flexible coupling coefficients is that discussed in Figure 2.5, where    r. 
th    + ^ is connected to both the    I      S      and    S      inputs of    C.     .    The interaction 

given by 

rjgI " rjg* = rj(gI " g? (6.12) 

and the coupling coefficient is 

kij = MS(g£ " g£) (6.13) 

It is now possible to state in a unified way the operations performed 

by a net  of    m    components each of which has    n    inputs.    We require a 

number of definitions, and will re-define some of the symbols used in 

previous sections to obtain a clearer statement. 

Let    N    be the incidence matrix of the net, which describes its inter- 

connection structure. 

N=  (n..) 

where n.. = 1 if the output of C. is connected to the state input of 

C.  . N is an m*m matrix. 
i 

The inputs to and parameters of each component will be included in a 

series of mxn matrices, the i   row of which will correspond to the 

associated vector of the i   component. These matrices are defined in 

Table 6.1. 
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Table 6.1 

Variable Matrices for Net Level 

m*n Matrix 
.th l        row 

X the inputs to C. 
1 

ordered as in (4.19) 

X 
->• 

the vector    m of C.     as in (4.19) 

G the g-set of 

-*• 

C. 
1 

as in  (4.19) 

D the vector    d of C.     as  in  (4.19) 

Parameter's common to the net are: 

6 - vector each of whose m components is the bias 

parameter B of (2.1) 

w - the parameter MT of (2.1) 

w - the parameter M  of (2.1) 

There must be a set of deviation vectors for the interaction inputs 

at each component. These can be obtained from the output vector p and 

the incidence matrix N as follows: 

E. . = N.. 
ID   ID 

m 

l.h 
r. - 1=1 

iTi 

1        r 

1=1 

(6.14) 
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The incidence matrix acts to pick out those outputs r  which are attached 

to component C., and the sum across row i of N is the number of r 

attached to C. . 
1 

The result of adaptation may be expressed by multiplying each row of 

the deviation matrices by an "adaptation coefficient" determined as in 

Section 5. These coefficients will be gathered in the vectors A,  and A?, 

coefficients for the external inputs and state inputs, respectively. The 

operation of multiplying the i   row of a matrix A by the i   component 

of a vector a where A has p rows and a has p elements, will be 

denoted by 

B = a© A (6.15) 

Another operation used is 

a =  diag(A) (6.Jfi) 

a is the vector whose elements are the diagonal elements of the matrix A. 

We can now state the sequence of operations of a net.  First, the out- 

puts are computed: 

T = WjX 

i=0 
(6.17) 

p = M*[diag(TGi;) + 6] 

Next, the matrices    M    and    G    are altered according to the adaptation: 

6'  = Aj0D + G 

M'   = w2A?0E t M 

Experimental nets Cc_in be  constructed and tested using the simu- 

lators  under development.     The  general purpose  digital si'-nalator 
is  currently operational, and its structure is  closely related to the 

theoretical structure developed in this  report. 
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An important property of this simulation is  that nets  can be  constructed 

on a statistical basis, freeing the programmer from tediously specifying the 

interconnections among all of the  components on an individual basis.     In this 

construction, a metrical structure is imposed on the net so that a distance 

is  defined from one component to another component on the same or a different 

level, including a distance from the primary sensory inputs on the first level. 

A standard distance function is available, but  the programmer may arbitrarily 

define a new one if he wishes. 

The program generates  a net, making  connections between components  on 

a probabilistic basis, the probability depending on the  distance in some 

fashion.     There  are several standard probability function*  in the program, 

and the programmer may also define new ones. 

Another feature of this simulator is that it has a criterion for the 

activity level of a computational area, and automatically adjusts the bi*s 

level  ~o r.eep the  activity within  a certain pre-established range.     This 

device  controls the relative importance of the  communication channels 

between different areas, so that certain information paths are given more 

weight  than others on an a priori basis.     It  also functions as an overall, 

gain control. 
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Section VII 

UNSOLVED PROBLEMS 

During the course of this program,, a number of interesting problems 

were formulated but not solved. These problems motivated the development 

of the formalism of this report, and should be amenable to the attack of 

these new tools. In addition, a number of extensions to the formalism 

were suggested as the work proceeded, but were not on the main line of 

endeavor, so are as yet undone. This section is a compendium of these 

ideas, and they will form a basis for further research. 

Our knowledge of the theoretical properties of neuromime nets must be 

put to an experimental test to ensure that the model is valid.  A natural 

test is to make use of data generated by the laboratory's elaborate sound 

generating and anditory system simulators. 

Since the currently available neuromime net simulation equipment 

does not allow time varying inputs, we must restrict our attention to 

quantities which are either independent of starting time or can be synchro- 

nized in the sampling apparatus. This restriction limits us to considering 

only fixed frequency transient signals or very noisy or periodical high 

frequency signals, since the former can be generated with associated synchro- 

nization pulse, and the latter can be considered as stationary time series 

and has observable properties independent of the starting time. 

A reasonable series of experiments would therefore begin by attempting 

to differentiate simple transients, progressing to more complex transients. 

An attempt could then be made to make equivalent certain sets of complex 

transients while differentiating between sets.  Later experimentation would 

include high frequency continuous signals. 

An important aspect of this series of experiments is an investigation 

of the coupling between the neuromime net and its environment, especially 

from the learning point of view. Veneed to know how the sequences of stimuli 

should be presented and how we should reinforce the network.  The work of Rosen- 

blatt (1962) on the perceptron will be of great assistance in this area.  It 

is likely that neuromime nets have information processing capabilities equal 

to or better than perceptrons, so we should be able to apply many of the 

learning theorems which he has derived. 
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Additional work should be done on this model in the areas of statistical 

properties of interconnection matrices, both internal and external.  It would 

seem that concepts of information theory could be employed to good effect, 

especially if related to the topological structure of the net. 

A formulation which might be of use in this problem is that of channel 

capacity density. We can define a cross section of an information channel 

in such a way as to identify sets of points which a signal propagating 

through the channel will occupy simultaneously. Some examples are given in 

Figure 7.1.  Part (a) shows a transmission line, where the cross section is 

a point.  Part (b) shows transmission along a plane, the cross section is 

a line. Part (c) shows the transmission through a network, the cross sections 

are sets of points. 

If we defined a function giving channel capacity per unit of cross section, 

we can consider this a channel capacity density function. By examining this 

function, we should be able to derive many statistical properties of neuromime 

net information handling. The work of Inselberg, Von Foerster* et al (1963) 

is relevant to this area. 

The control theoretic formulation of the interactions in a net should 

produce some more useful information. Appendix V discusses this area in 

more detail.  A possible approach here would be to combine the statistical 

interconnections with the control formulation, and develop a statistical 

control theory. 

Implicit in the discussion in Section III is that a neuromime net can 

be considered as a sort of flexible measuring device on classes of input 

stimuli, measuring the presence of certain patterns, and recalibrating itself 

as it proceeds. The output of a net can be considered as a sort of activity 

layer, where activity is localized in spots corresponding to particular 

patterns, as in Figure 7.2(a).  If the net can be trained to respond to a 

new pattern, while keeping its response to the old ones, a new output area 

might be formed, displacing some of the others, as in Figure 7.2(b).  It 

would seem that this property of Neuromime net processing could be used to 

develop a theory of the operations performed on patterned sets of stimuli. 
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\ 
Cross section 

(a) 

Line transmission 

Cross section 

(b) 

Homogeneous Plane Transmission 

T 

Cross section 

(c) 

Network Transmission 

Figure 7.1. Channel Cross-sections 

62 



Inputs 

•  •  • 

Pattern  Sensitive  Areas 

a. Original Pattern Sensitive Areas 

Inputs 

Newly Discriminated Pattern Area 

b.  Addition of New Area 

Figure 7.2.  Neuromime Nets as Variable Measuring Devices 

63 



Properties of patterns that are relevant to the above structure are 

that they require both a knowledge of the outputs from a set of sensors 

and a knowledge of the location of these sensors in the outside world. 

One may consider a sensory field with a topological structure as a window 

on the world. The pattern measurement device has a number of different 

kinds of sensors, and these are attached to the field, sometimes with 

several different kinds attached to the same area. A pattern is defined 

with two characteristics, a particular configuration of outputs from a set 

of sensors, and a particular topological arrangement of that set of sensors. 

In most cases, it is useful to have the pattern meter measure the degree 

of presence or the probability of presence of a pattern rather than make the 

outright statement that the pattern is or is not present.  For this reason, 

the pattern meter must measure not only how near is the sensory output 

configuration to a standard, but also how near is the topological arrangement 

of the sensors to its standard. For example, a straight line in a visual 

field is determined both by a constant contrast level in a set of sensors, 

and by the nearness to a straight line of the sensors exhibiting the desired 

configuration of outputs. An observer would say that the stimulus in Figur* 

7.3(a) was a straight line, and would say also that the stimuli in (b), (c), 

and (d) were nearly straight lines. 

A neuromime component can, in itself, adjust the particular subfield 

of the sensory field it observes (by setting some of its g-weights to zero), 

and its output gives a measure of nearness of the input stimulus to a 

standard, so we can hope that neuromime nets can be constructed to measure 

both kinds of distances. 

Besides the foregoing investigation of the properties of neuromimes 

and nets which can be simulated by currently available programs, there are 

extensions that should be made in the theoretical and conceptual structure 

to give the study more direction. 

One such extension is the reformulation of the neuromime equations so 

that they make sense with rapidly time-varying inputs.  It would be useful 

if the time-varying formulation reduced to the constant formulation when the 

inputs were constant. 
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a.  Straight Line b.  Some Points Missing 
(deficient in attributes) 

c.  Points off Line 
(Deficient in Geometry) 

d. Both deficiencies 

Figure 7.3. Nearly Straight Line Stimuli 
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A possible approach to this problem is linear prediction as described by- 

Wiener (1949) and extended by Allais (1964). Assume we have a randor. function 

f(t), and we wish to predict the value of f(t +T) for some future increment 

T , where t  is the current time. We are free to use any information from 

-oo  to t  to determine  f(t + T).  Wiener, therefore, defines a Kernel 

function K(t,t), and a predictor 

r P(t , T) =   ° K(t, T) f(t)dt (7.1) 

The goodness of the predictor is given by the mean square error 

e(tQ, T) = E{[P(tQ, T) - f(tQ + I)]
2} (7.2) 

According to Allais, there  is no reason why we must confine ourselves 

to predicting the future values of f(t).     This prediction theory applies 

equally well to any function h(f,  t)  which is  correlated with f;  for example, 

f could be an electrocardiogram, and    h    could presumably be  a function which 

is  zero before the QRS complex and one after it,  or, more interesting, a 

function, which is one when the QRS complex passes a certain point  in time, 

and zero otherwise. 

It would thus seem that if the g-sets were defined as predictor functions, 

so that    g(t)  is a kernel function  defined on the  interval  (-",  t   ),  and the 

output is computed by 

R(tQ) =   I     g(t)   •  x(t)dt (7.3) 

^0 
=     I §i(t)   •  x 

i=l    J 
(t)dt 
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we could treat the time-varying case.     The problem of adapting the g-weights 

could be handled in some such way as setting 

g(t) =   (ag(t) +  (1 - a) x(t))R(tQ) (7.»0 

for (0 < a < 1)  ,  but this is a problem which merits some thought. 

Note that the computation of R is similar to the constant case as in 

(2.2).  Component interaction could perhaps be defined in the same way as 

in (2.2) since the feedback characteristics of a net are independent of the 

input functions (See Appendix V). 

A beginning on a theory of organization was made during this work. It 

employs a value system—a hierarchy of goals which the system is to pursue. 

A sample system is given in Figure 7.4.  Some of the goals contribute to 

others, and some are independent of each other. 

A single goal-seeking unit is a mechanism which monitors a series of 

inputs to determine the state of the world, performs some computations, and 

issues a set of instructions to the set of mechanisms available to it to 

change the state of the world.  (The world can include the system itself.) 

A schematic diagram of a box appears in Figure 7.5. 

The key concept here is that the world can be thought of as a space of 

states (perhaps a vector space).  It is well known that a representation of 

a vector in the form (a,, a , ... , a ) means a,a, + a a    t a,a + ••• + a a  , 1'     2' n 11 22 33 nn' 
where     (a   ,...,a  ) are a set of reference vectors, usually an orthonormal in _>. 
basis. We can consider the sensory input vector I to be a representation 

of the world in the set of reference vectors (a,, aT,...,aT), where each 
k 

aT can be considered to refer to that portion of the world "seen" by the 
•*• j< 

kth sensory input mechanism.     The reference vectors    {aT}    are not necessarily 
-+• •*• 

linearly independent.     Similarly, the set    C    of commands to the system's 

effector devices is a vector, represented in a set of reference vectors 

(a  ,...,a   ),  where each    a      represents the  change in the world produced by 

a unit instruction to a particular effector device. 

The goal in the goal-seeking unit is represented by a vector    G    which 

is the desired state of the external world as represented by the input 

mechanism.  The instruction vector is computed from the deviation between 

the actual inputs and the desired inputs. 
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Figure  7.!+.        Sample Goal Lattice 
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Sensory 
Mechanisms 

Effector 
Set 

C 

' U \i 
T 

u 

D =  I  - G 

1 

1 
C =  -TD 

i 

-> 
U. 

1 
=  V .'W.'C. 

r   i    i 

To 
Subgoals 

Fi^ursa 7.5. Goal-seeking Unit with its Connection to the World 
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D = I - G. (7.5) 

The desired action is to alter the world so that D will become 0, 

so that the set of instructions to the effector set will represent a 

change of state of the external world equal to the deviation of the input 

vector I from the goal. This can be done by considering an m x n 

transform T mapping {aT> into {<*„}, so that 

£ = -TD. (7.6) 

T is not necessarily a linear transform. 

Competition between various goals is introduced when contradictory 

instructions are given to the effector set.  To deal with this, it is 

necessary to introduce a system of priorities.  This is done by assigning 

a unit value V to the primary goal.  This value is distributed by the 

primary goal to its subgoals, which in turn distribute value further down 

the lattice.  Sometimes a goal will receive value from two or more super- 

goals, in which case the values can be considered to add together. 

Not all of the value is transmitted, however.  If a goal-seeking unit 

has a capacity to give instructions to the effector set (some may 

not—acting as logical goals and leaving all action to subgoals), some of 

its value must be assigned to its commands.  This is represented by V 

in Figure 7.5.  (Transmitted value is represented by V .) 

A possible distribution system is to construct a vector U where 

ff. = VcC.l. (7.7) 

W is a weighting vector which normalizes the utility of each individual 

instruction.  W is assigned so that 

n 
I     " < V (7.8) 

i=l     L 

for all C which can occur in practice.  This is to allow for assignment 

of large value to emergency goals which are allowed to override normal 

goals when need arises.  Usually the U vector will be small enough so 

that other instructions will take precedence. 
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Precedence is decided by the effector mechanism concerned by some rule 

according to the nature of its action.  If it can execute only one instruction 

at a time, it will execute the one with greatest value.  If it is a distribu- 

tion mechanism it can fill orders in order of value, in proportion to the 

product of need and value, or in some other manner. 

This sort of organization structure would be the organization of a "bug", 

an organism completely pre-programmed to behave in a complicated way. 

Neuromime nets are adaptive mechanisms, so it is reasonable to expect that 

devices could be made with some of the following abilities. 

1. For a goal-seeking unit to construct its own T. 

2. For the system to distribute value throughout itself so as to 

optimize its behavior in seme way. 

3. For a unit to seek new inputs if it cannot differentiate between 

signals that it must differentiate, or throw away inputs if it does not need 

them. 

4. If two units find themselves in competition to mutual disadvantage, 

for them to form a coalition by generating a new super box which can regulate 

them in some way. 

5. For the system to be able to modify its goal-seeking units, even to 

the extent of adding or deleting entire units. 

Possible mechanisms for such adaptation might De gained by looking at 

some natural mechanisms.  One such mechanism, homeostasis,has been considered 

in a primitive way by Ashby [11].  This is the tendency for a system to 

attempt to return to an equilibrium state after being perturbed.  It is the 

mechanism behind the computations of a goal-seeking unit as described 

previously. 

Another mechanism which might be applicable is that possibly used by 

nature in evolution. The parameters of the system are changed at random 

and the resulting system evaluated for goodness of performance in some way. 

If it is better than the old, it replaces the old, being otherwise discarded. 

A conceptual structure which might cast some light on the organization 

of such a system without a homunculus is Wiener's []2] concept of the brain 

as a set of coupled nonlinear oscillators.  This mathematical formalism might 

also be relevant to the design of neuromimes with time-varying inputs. 
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APPENDIX I 

SOME PROPERTIES 

OF THE n-DIMENSIONAL OCTAHEDRON 

The development will be  largely intuitive and what arguments are 

given will be largely combinatorial in nature.     For those unfamiliar with 

n-dimensional geometry,  a good mathematical treatment is given in 

An Introduction to the Geometry of N-Dimensions by D.  M.  Y.  Sommerfield, 

Dover,  1958. 

The Fourth Dimension Simply Explained edited by Henry P.   Manning, 

Dover,  1960,  presents  several intuitive ways  of imagining higher 

dimensional spaces. 
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The n-dimensional octahedron may be defined to be that figure 

bounding the region of space determined by    n    mutually perpendicular 

coordinate axes    x   ,   ..., x      fulfilling the  condition 

|x,I  + ••• +  |x  I  S l. 
'   1 • '   n 

The boundary is an (n-l)-dimensional surface determined by the equation 

lx, I + • °• + x I = 1. ' 1'        ' n1 

This  concept may be  developed intuitively by  considering the  cases 

where    n  =  2     and    n =  3.     In the  former,  the boundary  is  the 

1-dimensional surface 

|xj   +   |x2|   =  1, 

in the latter the boundary is the 2-dimensional surface 

l*3l 

(see Figure 1). 

If we restrict the range of the x.  so that 0 ^ x. ^ 1, we 

obtain the principal section, whose boundary is given by the coordinate 

planes and the (n-l)-dimensional hyperplane determined by the boundary 

equation, which becomes 

x, t x + • •• + x = 1. 
1    2 n 

This hyperplane is defined as an nth order face of the octahedron.  There 

are clearly 2  nth order faces, since it is possible to divide the 

interior into 2  sections by restricting some of the x.  to the range 

-1 < x. < 0 and the others to the range 0 £ x. £ 1, (£ach x.  can be 

restricted to either of two ranges, and there are n of the x.'s.) 
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Two-dimensional Octahedron 

boundary 

-1 

Three-dimensional  Octahedron 

1 

-1 

surface 

!X3l   =   * 



In each section a set of vertices,    {v  ,   ..., v  },    is defined by 

the intersection of the face with the coordinate  axes.    These vertices 

define a region in the  (n-l)-dimensional hyperplane, and this region is 

an  (n-l)-dimensional simplex with its interior.    This  corresponds to a 

triangle in 2-dimensional space and a tetrahedron in  3-space,     The edges 

of the simplex are the set of lines  connecting the vertices  taken two 

at a time.    These edges are all of equal length, since each one forms 

the hypotenuse of a right triangle whose sides equal 1, so that the 

simplex is a regular simplex.    This corresponds  to an equilateral 

triangle in 2-space and a regular tetrahedron in 3-space.     (See Figure 2.) 

The regular simplex has the property that if any    r    of its vertices 

are taken away, the remaining    n - r    vertices  define an 

(n-r-l)-dimensional simplex.     This  corresponds to taking the intersection 

of the nth  order face with  the   (n-r-l)-dimensional hyperplane  containing 

n - r    of the    n    coordinate axes.     For    n = 4    and    r =  1    this 

corresponds to the intersection of the hyperplane  containing, say,  the 

x  ,    x  ,    and    x      coordinate  axes with the tetrahedron    (v  , v  , v  , v  ) 

of Figure 2, resulting in the equilateral triangle     (v  , v  , v ). 

We will call the intersection with the nth order face of a 

(k-l)-dimensional hyperplane  containing    k    vertices  in the principal 

section a kth order face.    This is a (k-l)-dimensional simplex containing 

k    of the    n    vertices. 

Since a kth order face is a slice, as it were, of the nth order face, 

the points of both its boundary and interior satisfy the boundary 

equation  (see Figure 2). 

It  is  easy to count the number of kth order faces  in  an n-dimensional 

octahedron.    A single kth order face is  a simplex whose vertices are    k 

of the    n    vertices of an nth order face.    The number of combinations 

of    n    things taken    k    at a time is 

nt n! 
k/     k!(n - k)!   * 

There are    2      nth order faces,  and each    k   ' order  facs id  in co.vion to 

2 sections, makin;i     [nj   ^ 
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kth order faces in the intire octahedron.  (A first-order face is defined 

to be a vertex, and a second-order face is an edge.) 

It should be noted that a kth order face is a face of a k-dimensional 

octahedron as well. 

We are going to want to divide the principal section into regions. 

To do this, it is useful to consider the problem in the hyperplane of 

the face. We can orient ourselves in this hyperplane by considering the 

location of various solutions to the boundary equation. 

Consider the case with n = 4. The boundary equation is 

X  +x  +x  +x  =1 
12    3   4 

and this defines the interior and boundary of a regular tetrahedron, as 

in Figures 2 and 3.  Figure 3 is a map of this tetrahedron.  The points 

are given as quadruplets, having the values of the coordinates 

x.x.x.x  in order. 
1 *  2*  3'  4 

The partitioning to be considered in detail is that defined by the 

inequalities x. > x..  In other words, we want to take every point whose 

x.  coordinate is greater than its x.  coordinate, the other coordinates 

unconstrained, put them into a region, and put those points not fulfilling 

that condition into another.  The boundary between the two regions is the 

hyperplane x. = x..  This is shown in the 2-dimensional and 3-dimensional 

case in Figure 4, and in the 4-dimensional cas<= in Figure 5. 

We note that the set of hyperplanes x. = x. separate every kth 

order face contained in the nth order face bounding the principal 

section.  This is true since two kth order faces are determined by 

the equations: 

x. + ••• + x.  =1    x. = 0 for i i  {i i. } 
xl ik        i l*     k 

x.  + ••• + X.  =1    x.=0  for j i  {j , ..., j } 
Dj        Dk        J 1     Jk 

where there is at least one pair (x., x.) not in common.  The edge 

(x., x.)  of the nth order face is bisected by the hyperplane x. = x., 

separating the two faces. 
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x„   + x„   =   1 2 3 

Two-dimensional Simplex (Equilateral Triangle) 

Three-dimensional Simplex (Regular Tetrahedron) 

Figure  2 
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1 
(1,0,0,0) 

(0,0,0,1) 

(0,^,0,i) 
(0,1,0,0) 

A 

B 

C 

D 

center of triangle v.v3v4 

center of triangle v
2
v3vii 

center of tetrahedron 

I - center of edges as indicated 

Figure 3. Map of Tetrahedron 
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1 v(0,l) 

\/^Xl  + x2  =  1 

A       y\A>¥ 
yL      B       Ny 

/    xi = "atV 

(1,0) x2 

Two-dimensional Case—Plane Divided 
Into Regions    A    and    B    by Line    x, 

(1,0,0) 

- x. 

(§-,p0) 

(0,0,1) (o ,§-,§-) (0,1,0) 

Three-dimensional Case—Showing 
Six Regions in Plane of Face, Above 
Below, Stage in Construction 

Figure 4 

bo 



(1,0,0,0) 

(j,o,o,|o 

figure 5. Four-dimensional Region Seen in Hyperplane 
of a Face, Showing Intersection of 
Four-dimensional Region with Face 
in Tetrahedron vx ABC 
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It is also the case that all the hyperplanes which intersect a given 

kth order face intersect in a point which is the center of the face. This 

can be seen by considering the particular kth order face determined by 

the vertices (v. , ..., v. ).  The hyperplanes which intersect this face 

are given by the equations 

X •   — X •  *   X.   ~ X.  •  • • • • X .   — X. 
1,   11    1 '   ' 1    1, 
12     13        Ik 

Xc     ~  X .   *   • • a *  X .     —  X » 

2     3        2    k 

X.     = X. 

Vi     xk 

all of which are satisfied by the point 

X.        =X.        =    • • •    =   X.        =   T-. ii l.       k 
1 2 k 

This  point   is  the  center of  the kth  order face. 

We  can now see that a region defined by this set  of hyperplanes will- 

be   defined as  an   (n-l)-dimensional  legion  determined by  a series   of vertex 

points which  can be  described as  a sequence  of midpoints  of successive 

kth order faces,    k    going from     1    to    n.     This  figure  is  a simplex in 

n-1    dimensions,  as  can be seen  for the  4-dimensional case  in  Figure  5. 

The  region  is   a tetrahedron,   and the vertex points   are     v —a  1st  order 

face,    A—the midpoint of the  2nd order face  (v   ,  v  ),     B—the midpoint 

of the  3rd order face     (v   ,  v  ,  v  ),     and    C—the midpoint of the  4th 
14       3 

order face. 

With this   in mind,  we  can  count  the number of regions   determined in 

an n-dimensional octahedron by the  set  of hyperplanes     {x.   =  x.}.     If we 

examine  the sequence  of vertices  defining the  region  in  a combinatorial 

sense, we  see that we  can  choose  first  any vertex    v..     Next, we must 

have  a midpoint  of an edge,  with  the  constraint  that  the  edge  include 

the  vertex    v.     chosen previously.     In the same way  the kth vertex point 
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of the region is the midpoint of a kth order face which must contain the 

(k-l)st order face whose midpoint was chosen for the (k-l)st vertex point. 

Denoting the n vertices of the region by r , ..., r , we see 

that we have n choices for r , n - 1 choices for r , ... , and only 
1 2 

i choice for r .  There are thus 
n 

n«(n - l)«(n - 2)«(n - 3) ••• (1) = n! 

regions. 

The problem of partitioning the principal sertion into regions can 

be treated more generally by considering a set H of hyp^rpl an<=><5 in n 

dimensions  defined by the    m    equations 

an + a*x,   +   •••  +  a*x    =  0 Oil n n 

m m a,, +  a,x,   +  • • •  +  a x    =0 Oil n n 

with the following restrictions 

1. at least one a. =0 i = 1, ..., n 

2. the ordered set (a.  k = 1, 2, ..., n) is a permutation of the 

ordered set  (a.  i=i, 2, ...,n) for k = 1, 2, ..., m 

3. m - the number of distinct permutations of  (a:  i = 1, 2, ..., n) 

4. the line x =x = ••• = x  is contained in every hyperplane. 
12 n 

In the hyperplane of the nth order face F H becomes a set H1 

of hyperplanes in n - 1 dimensions intersecting in the point 

1 
X, = X  = • • • = x  = —, 
12        n  n' 

the center C of the nth order face.  H1  defines a set of simplexes 

in F all of which have C as a vertex.  By symmetry, all of these 

simplexes are congruent, and the (n-l)st order solid angle at C is 

equal for each of them.  The sum of these angles is the complete (n-l)st 

order solid angle at C,  so that the number P of regions is equal 
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to the complete (n-l)st order solid angle S    at C divided by the 

(n-l)st order solid angle V    determined at C by a single 

(n-1)-dimensional simplex formed from n of the hyperplanes in H'. 

In symbols, 

Sn-1 
P - v  * 

n-1 

S    is the surface content of the unit hypersphere in n-1 

dimensions. 

S 2TT 

n-1 
2 

2*k 

(k - D! 

*ic!~2k 2Trk! 2 
(2k)! 

for (n-1) even (= 2k) 

for (n-1) odd (= 2k + 1). 

V    may be determined by considering the simplex cut out in the 

hypersphere by the n (n-1)-dimensional hyperplanes forming the given 

(n-l)st order solid angle. This simplex may be considered as a simplex in 

an (n-2)-dimensional spherical space, and the problem is reduced to finding 

the volume of this simplex. 

One way that this can be done is to transform the equations from the 

n-dimensional cartesian coordinate system {xj,...,x } to an n-dimensional 

cylindrical system {z, r, 0,,...,8  }, with the z-axis on the line 

x, «Xj« •••!! . The resulting expressions with z = 1/JK , r = 1 will 

give the intersection of the set of hyperplanes with the unit hypersphere 

circumscribing the nth order face. A simplex may be identified and its 

volume computed by techniques peculiar to the particular set la}}    chosen 

to define the set H of hyperplanes. 
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APPENDIX II 

EXAMPLE OF USE OF G-SET ADAPTATION EQUATIONS 

We will demonstrate the usefulness of the vector formulations of the 

g-set adaptation equations by solving the problem raised in Section IV 

concerning the determination of the configuration of the g-set when the 

output becomes zero during negative adaptation, using the adaptation 

equation developed in  (5.26). 

Specifically, we wish to find   g(t)    such that 

X • g(t) • 0 

From (5.26), we can expand g(t), so that (1) becomes 

(1) 

; . |(0) + M21 (e
FiMi6t . JJ J . t , 0 

(2) 

But, from (4.21), 

x • d = o 

and from (5.47), with B = 0 , 

(3) 

x • g(0) = R(0) 
M, 

(4) 

so that (2) becomes 

R(0) FIMI6t  „ x~e        = ° • (5) 

Since F <0, this will occur when t = °°, therefore 

PA«t 
e     =0 (6) 

Substituting (6) into the expression (5.26) for g(t), we have the 

solution: 

In the numerical example from Table 4.2, we have 

(7) 

g(0) = 

.5 

.5 

-.5 

I-5 / 

d = 

-.1 

.1 

.2 
(8) 

-» 
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Mx = 1, 6 = .1, R(0) = .1, 

so that 

R(0) .. . 
M_6 

(9) 

and 

g(t) = 

/  *6 \ 
.4 

\ -la I 
(10) 

This is the correct answer, since 

x • g(t) = .24 + .24 - .42 - .6 = 0 (11) 
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APPENDIX III 

SOLUTION TO THE SYSTEM OF DIFFERENTIAL 

EQUATIONS y'  =  u v* y + bu 

The system of n simultaneous differential equations 

y' =     uvy    +uvy    + •»•  + u v y +bu 
•'l               1   r 1          1   2J2                        1 nJn 1 
y' =    uvy.+uvy    + • • •  + u v v +bu J2              2   r 1          2  2J2                       2 n'n 2 

y'     =     uvy    +uvy    +   • • •   + u v y    +bu Jn n   r 1 n 2 2 n nJn 1 n 

can be conveniently represented in the form 

y'     =    A y + b  u (1) 

where 

y' 

y2 

y   = 

\'i 

and 

uv uv • • •    uv 
11 12               in 

UV UV • • •     uv 
2   1 2  2              2 n 

•*• ^- -*-t 
u . •; v 

u v       u v    •••    u v    / 
n  1      n 2 n n / 

• / n / 

v 

. 

V. / 
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(2) 

v  is tne transpose or v , i.e., 

v  = (vlt v2 ... vn) 

and the operation  (•)  is the matrix product. The symbol (•) will be 

omitted whenever possible. 

The solution of this system is given by 

-*• -V •+ 
V  =  V + V J Jhomogeneous   particular 

where y, is the solution to the system 
•'homogeneous 

y'  = Ay (3) 

and y  ..     is an additional particular solution to the non- Jparticular r 

homogeneous system. 

For the homogeneous system, (3), we assume a solution of the form 

y = ke (4) 

where k is a vector of constants. Substituting into (3), we obtain 

XkeXx = Ai^eXx 

or 

(A - XI) k = 0 (5) 

To obtain a solution other than k = 0, the determinant 

| A - XI |  = 0 (6) 

It should be noticed that (6) is the characteristic equation for A, 

having as solutions 

A  —  A, A  —  A -  • . ,  , A  —  A 
1       2     '      n 
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for X ,X  X   the characteristic values of A. Associated with each 
1 2 '    n        ^       + 

X. is a vector of constants k.. Each k. may be determined up to a single 

arbitrary constant c. by substituting into (5) and solving the system 

(A - X.I) £. = 0 (7) 

In order for (7) to hold, k. must be a constant times the characteristic 

vector associated with X..  If a. is this characteristic vector, 
l       l 

k.  = c.a. (8) 
l     li 

For all X. distinct, (8) yields the complete solution for the system 

(3) by the superposition principle: 

•*•      •*• X,x •*•    Xnx y = c,a e * + • •• + c a e " 3 11 n n 

If the X. are not distinct, but 
l 

A •    "*   A«    —       "*   A •    —   A % 

then instead of (1) we must assume a solution of the form 

(j-lK  X x xVJ *') e o (9) y =  (k  + kx+ •••+£. 3 1     2 J 

In (3), the case at hand, we observe, following Hilf (1952), ch. 1, that 

A = u [£j    v  is of rank 1, since for any vector z 

Az =  [u 0 v ] O z = u © [v* 0 z] =  (v«z) u,       (10) 

v \sj   z  = v z  + ••• + V Z  = V • i (11) 
11        n n v  ' 

(v • z is the inner or dot product of the vectors v and z.)  (6), therefore, 

must reduce to 
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An " 1(A - XQ)  = 0 (12) 

having as solutions 

X,  = X , X  = X  s ... r x  =0.        (13) 
1     0 ' 2     3 n 

X  may be evaluated by recalling that the trace of a matrix is 

equal to the sum of its characteristic values, (see Wilf (1962) In symbols: 

tr(A)    =    uv    +uv    +  ••• + u v      =    X,  + X    +   ••>• + X (14) 
112  2 n n 12 n 

Substituting (13) into (14) and noting (11), we have 

tr(A) = u • v =  X . (15) 
0 

-> 
The characteristic vector a      associated with X  may be obtained 

0 0   J 

by observing that 

A 'vL; u =  [u <!.. v ] {*J  u =  (u • v)u = X.u 

We have, therefore, that 

a  = u 
0 

and one solution to (3) is given by 

•*     •* (u°v)x     -*•  A x ,„_. 
y = cue      = cue o (16) 

The repeated characteristic value 0 causes us to look for the 

remaining solution of the form (9) as 

y =  Ikj + k2x r k3x
2 + ••• h *n_l

X    ' (17) 

The constants r     , ... , K    can be evaluated by substituting 

(17) into 
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y'   - Ay     E  0 (18) 

Differentiating  (17),  we  obtain 

y'     =     Ik    +  2k x +   •••   +   (n-2)k       x(n~3)! (19) 3 2 3 n-1 

Av    =    u   ."•'•  v*     •     v    =;  u       (v«k  )     +     (v-k   )x +   •••+  (v°k     ,)x 1(20) 
J -   •>        > ^ 2 n-1 

Subtracting  (19)  from  (20)  and gathering terms, 

Ay - y« =     L(v*k!)u " k
2J

+    L(v'Vu " 2k3_j* (21) 

•   .-.  +   f(v  • £       )u  -  (n-2)k       Ix11"3  +   f(v  •  k     ,)ulxn'2     =    ° L n-2 n-1 J L n-1      J 

9        n-l 
Since the functions 1, x, x , ... , x    are linearly independent 

(see [2]), we have the following n-2 equations by setting equal to zero 

each coefficient of t j = 0, 1, ... , n-3 

k  =  (v • k )u 
2 1 

k  =   (v • k )u 
3    r      2 

(22) 

-(v • k   )u 
n-l    n-2      n-2 

These equations are all dependent on k , since they form a nested 

recursion relation.  Solving them explicitly, they become: 

yi 



k 

k. 

(u • k )u 

i. [v * (v • k )u]u 
2 1 

(23) 

— (v • u)(v • k, )u = iX  (v • k )u 
2 0      1 

n-l    (n-2) t  0 
.n-3 •*•      *  .-»• 
X.  (v • k,)u 

From the coefficient of x     in (21), we have the additional 

information that 

(v • k  )u = 0 
n-1 

(24) 

u i    o    by hypothesis, so that we must have 

k 
n-l 

= v . [   1    Xn~3 (v • k 
I (n-2)!  A0       ] 

rt 
,n-2 

7—T, (v • k ) 
(n-2)!      » 

(25) 
0 

By the same argument as in (24), we must have 

v • k (26) 

Substituting (26) into (23), we obtain 

-»•        -*• 

K  = k 
2      3 

k  ,  = 0 
n-l 

(17) therefore reduces to 

y = K 

and substituting into (18), we have 
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-Ak1  =0 <27) 

If we define k  = k, (27) may be solved 

or 

Ak =  (u 0 v*) 0 £ =  (k • v)u = 0 

u ^ 0  , so that 

k • v  =0 

vk + • • • + v .k 
k  -  * * "-1 "-J- (28) 
n _v 

n 

leaving n-1 arbitrary constants. 

We now have the complete solution of (3) as 

y = cue^ + k, for X = (u • v) (29) 

The particular solution for the non-homogeneous system (1) is 

obtained by considering the system 

-*•    •*• •*• 

y1 - Ay = bu (30) 

taking 

y = Pbu, (31) 

for P an n * n matrix, and substituting in (30), we have 

- APbu = bu 

- u 0 v  0 P0J = S 
(32) 
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We observe that we can obtain a solution by taking 

-•t 
P = -(u Q v ) (33) 

(32) becomes 

,-* /T\  -»-tv r\  (~u O v ) (7s +        •*• (v • u)(v • u)   •*   , , (u ti v ) (J  «  [*)   u = u  -j  = u    (34) 
X2 

Therefore 

•>      b(u (•> v ) -»-      bu 
V = ~S u = - — 

X (35) 

is a particular solution of (1). 

Substituting (29) and (35) into (2), we have the complete solution 

•*• -• At    f 
y, = cue   + k Jhomogeneous 

-»• -b -»• 
v   . = — u Jpartlcular X 

(36) 

and 

y = cueXt + k.-(b *] (37) 
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APPENDIX  IV 

DERIVATION  OF SURFACE ELEMENT 
FOR A HYPERSPHERE 

The surface  content of an n-dimensional hypersphere is a volume in 

n-1 dimensions.     According to Somerville  (1958), this volume  is 

n_ 
„  2    n-1 

S_  (1) n 

11) 
where r is the radius of the hypersphere and T    is the gamma function, 

the generalized factorial. Note that 

T(x) = (x - 1) r(x - 1) 

and <2> 

1*1'* 
To  find the equation  for a volume element,  we must  consider the 

geometry of the space.    An  (n-l)-dimensional hypersphere has the property 

that if a point be chosen on it  as  an origin,  and a sequence of    n-1 

orthogonal great  circles drawn, these  circles will intersect  again at a 

point  diametrically opposite the origin,  the  line  connecting the  two points 

passing through the  center of the hypersphere.    These two points will be 

termed respectively, the North and South poles of the hypersphere. 

We will use a spherical coordinate system for computing the volume, 

with    n    coordinates:     a radius    p    and    n-1    angles,   <f>  ,...,<J> . 

As in  3-dimensional spherical coordinates,  the angles     <t>.     are of different 

kinds.     In  3 dimensions,  <J>      is  a conical angle  from the North pole  arid 

4> is  a circular angle  in  a plane parallel to the  equatorial plane,  as 

illustrated in Figure 1.     If    p     is  fixed,    x    is  constrained to lie on the 

sphere of radius    p    and with poles    S    and    N.     If    <{)      is then fixed, 

x    is  constrained to lie on the  circle    C,  of radius p   sin<j>   , the inter- 

section of the sphere determined by    p    and the cone  determined by  <p  . 

Fixing    <}>9    then determines the exact  location of the point on    C.     Angle 

<(>..     is measured from the line    ON, and angle    <*>      is measured from the 

plane  determined by the line    ON    and the great  circle    L    - more  directly 

from the point on    C    given by the intersection of    C    and    L  .    Note that 

4>1 , as  a conical angle, ranges  from    0    to    TT    only, while    $  , as a planar 

angle, ranges  from    0    to    2ir  . 
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x = (P, •j, *2) 

Figure 1. Three-dimensional Spherical Coordinate System 

Figure 1. 3-Dimensional Spherical 
Coordinate System 
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This 3-dimensional system can be extended to n-dimensions in a 

straight forward manner.    Fixing    p    determines a hypersphere.    Fixing    $ 

determines an    n-dimensional hypercone, the locus of all points    x    such 

that the line    Ox    is at an angle    <}>      with the line    ON.    The intersection 

of the two is clearly an    n-1 dimensional hypersphere with radius    psinG... 

If we select arbitrarily a great circle    L.    on the    n-dimensional hypersphere, 

the intersection of    L1    with the    (n-l)-dimensional hypersphere gives us a 

North pole for the latter hypersphere. 

We can continue this process inductively, defining successive  (n - i + D- 

dimensional hyperconical angles which restrict    x    to successive (n - i)- 

dimensional hyperspheres with radius    psin<J>..  sin<j>.  •••  sin<j>., until we come 

to    $    0,  (which corresponds to the three-dimensional angle    ^     of Figure 1). 

Angle    <J> is then a planar angle.    We define the North pole of the  (n - i)- 

dimensional hypersphere by its intersection with line  (great circle)    L.    of 

the     (n - i + l)-dimensional hypersphere.    The successive surfaces    L1, 

(L1 ,  L  ),   (L, ,  I»0, L„),...,(L L    „)  are  coordinate surfaces imbedded in 

the original n-dimensional hypersphere. 

A surface content element of the n-dimensional hypersphere is thus 

dSn =  (pd<fr-)(psin$.d<>2)  •••  (psin^ ••• sirn^^d^^) 

and the allowed intervals are    0 < Q.   < IT    for the hyperconical angles 

$.»•••»$    2    and    0 < $        < 2ir    for the planar angle. 
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APPENDIX V 

CONTROL SYSTEM FORMULATION 

OF NEUROMIME INTERACTION 

A.  Introduction 

Problems of interacting outputs in neuroraime nets are of such a nature 

to lend themselves to analysis with control system techniques. This note 

gives a control system formulation of the S input computations of 

neuromimes. Figure 1 may be compared with Figure 2.5 of the text and the 

structures seen to be of the same kind. 
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B. Description of Model 

Figure 1 is a block diagram of a two-element neuron net model. 

Standard control engineering notation is employed, wherein    r's represent 

input time functions and c's represent output  time responses.     Each element 

has a forward gain of unity and an output which interacts with each other 

element by furnishing an additional input to each other element of a magni- 

tude dictated by an "interaction coefficient"  (K      and    K..     in Figure 1). 

This form of model can, of course, be generalized to an n-element net with 

n(n-l) interaction paths. 

The responses  (c's) of this model to a set of  inputs  (r's)  is controlled 

by the values of the interaction coefficients.    The analysis to follow will 

investigate this relationship between the neuron output and the degree and 

form of interaction associated with the other neuron outputs.     The two-element 

model will be employed throughout since it is the  least cumbersome to handle 

mathematically and produces conclusions which also hold for an n-element net. 

C. Stability Criteria 

The system equations for the two-element model of Figure 1 are 

Cl = rl + K12C2 

c = r + K„,c, 
2   2   21 1 

(1) 

(2) 

In matrix notation this equation set is expressed as 

V 
C2 

= °        Kl2" 
°2 

+ 
ri 
r 

2 
(3) 

or 

1 

-K 
21 

-K 12 
(<0 

The output/input relationships obtained from simultaneous solution of 

Equations (1) and (2) are 
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o 

•H 
Q 

•X. 
O 
O 
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1 *  K12(W 
1 - K12K21 

(5) 

and 

1   - K12K21 
(6) 

According to Clark  (1962), Equations (5) or (6) reveal that the outputs will 

increase without bound for any condition where the denominator, 1 - K.   K    , 

is equal to or less than zero.     In terms of the interaction coefficients, 

the stability constraint is that the product of the interaction coefficients 

be less than    +1. 

This stability criteria can be more concisely expressed by referring 

to the matrix form of the system equations, Equation  (4).     The same stability 

constraint can be specified in terms of the determinant of the coefficient 

matrix, i.e., 

-K 12 

21 
(7) 

For an n-element neuron net model the matrix form of the system equations 

becomes 

21 

"K12  "K13 

-K 
23 

"K31  "K32   X 
(8) 
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and hence the stability criteria is 

-K. 21 

-K12  -K13. • • 

-K  • • • *2 3 

"K31   "K32  X 

> 0 . 

We emphasize that this stability criteria is in no way dependent on 

the inputs; only the signs and magnitudes of the interaction coefficients 

determine the stability of the output responses. Of course, for any stable 

set of interaction coefficients the output response will be directly affected 

by the inputs. 

D.  Performance of Refined Model 

In real physiological systems transmission times are finite. To 

extend the utility of our basic neuron net model we are behooved to 

incorporate this physiological fact. 

We have found the Laplace transform to be a very useful tool. (1) It 

enables us to obtain closed form expressions relating output to input 

for any type of feedback system. (2) It affords easy handling of systems 

which contain time delays. 

Our initial efforts to incorporate these refinements of the neuron 

model have produced some interesting results. For instance, for a model 

containing neuron elements of +1 forward gain and positive interaction 

coefficients less than unity: 

1, A set of step function inputs results in a set of outputs which 

are increasing, convergent "staircase" functions; 

2. The final values of the staircase functions are determined by the 

magnitudes of the interaction coefficients (The final value may be ascer- 

tained from an equation of the form of (5) of Section C); 

102 



3.  The time rates of convergence (time between steps of staircase) 

are dependent on the magnitudes of the transmission time delays associated 

with the forward paths of the neurons and the interaction paths between 

neurons. 

A typical example illustrating these results for a neuron net of two 

elements is presented in Figure 2. 

When values of +1 are assigned to all the interaction coefficients, 

the staircase response function increases without bound — just as predicted 

by the stability criteria formulated in Section C. 

E.  Recommendations for Further Study and Refinement of Model 

Our initial study of the performance characteristics of this refined 

neuron model indicate that it may be quite useful in aiding the understanding 

of phenomena associated with neural networks such as 1) Summation, 

2) Variability and modification of response, and 3) the independence of 

the rhythms of stimulus and response. 

Further study should involve: 

1. Investigating model response for rectangular pulse inputs, impulse 

inputs, and input sets which contain both positive and negative inputs; 

2. Further study of pertinent physiological phenomena to determine 

what additional refinements might be profitably incorporated. 
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APPENDIX VI 

COMPARISON OF ADAPTATION EQUATIONS 
FOR TWO NEUROMIME SIMULATORS 

The adaptation equations of the two neuromime simulators are slightly 

different. The 7094 simulation program developed by Service Bureau 

Corporation1 uses the equations discussed in the body of this report, 

A-g (t) = F • R(t) • (x -5) (1) 

= F • R(t) • d for R(t) > 0 

= 0 for R(t) < 0 

The special purpose computer designed by Teledyne2 uses the equations: 

^g(t) = F • CR] • d (2) 

where 

= 1 if R(t) > 0 

CR] 

= 0 if R(t) < 0 

Note that both systems are zero when the output of the neuromimes is 

zero, which means that they will both adapt only to a positive simulus. The 

former, however, has a multiplicative factor R(t), while the latter has a 

factor of 1 when it is adapting. This means that system (2) will adapt at 

a constant rate independent of the output, while system (1) adapts at a rate 

which increases exponentially with time. 

1Gracer, Franklin, and Orr, Kenneth, Neuromime Network Simulation, 
Final Report, Contract AF33(657)-1119H, Service Bureau Corp., 
It August 196U. 

2Neural Network Simulator, Final Engineering Report, Contract AF33(657)-8U89, 
Teledyne Systems Co., January 1965. 
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A significant effect of this difference is that system (1) will have 

greater differential adaptation capability and less adaptation retention 

than system (2). Solving for R(t) in (1) (See Section V of report), we 

have 

R(t) = R(0)e 
FMI6t (3) 

where    M_    is a constant and    6    =    |d|2 

and, solving (2), we have 

R(t) = R(0) + F6t (4) 

From (3) and (4), one can see that if two neuromimes have inputs with the 

same 6 , then the difference between their outputs will be constant in 

system (2), and will increase with system (1) if F > 0. If < 0, the 

difference will decrease in system (1) and again remain the same in system (2), 
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