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ABSTRACT 

A study has been made of the effects of klystron saturation, and phase 

and amplitude distortion, on the performance of a wideband high-power CHIRP 

radar system. Mathematical analysis of a general non-linear model for a 

klystron indicates that satisfactory operation of themdar system can still be 

achieved in the face of the grossly non-ideal character of the tube, with 

suitable restrictions, if appropriate compensation is applied. Extraneous 

paired echoes in the signal at the klystron input (whether present because of 

previous distortion, or deliberately introduced by a transversal equalizer) 

are shown to have a specific relationship with paired echoes at the klystron 

output. 

A FORTRAN computer program has been written to simulate the performance 

in a CHIRP system of any suitable klystron (or other high-power amplifier tube, 

such as a twystron or TWT). The inputs to the program include measured tube 

data, such as the CW amplitude versus frequency and phase versus frequency 

characteristics and the input versus output saturation curve. The user of the 

program specifies what he feels is the useable bandwidth of the tube. The 

program simulates a pure CHIRP signal of that bandwidth and delivers plots of 

the weighted compressed pulse that would appear at the receiver output. 

In addition, by inspection of the output compressed pulse plots, one can 

estimate transversal equalizer settings to cancel the spurious sidelobes, 

introduce the equalized CHIRP pulse into the program in place of the former 

undistorted input, and observe the degree of compensation in the output pulse. 

The report includes reproductions of the output plots generated by the 

simulation program, for a representative set of klystron data. 

Accepted for the Air Force 
Franklin C. Hudson 
Chief, Lincoln Laboratory Office 
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A Preliminary Study of Klystron Distortion in a CHIRP Radar System 

I.  INTRODUCTION 

The development of modern wideband high-power klystron tubes has placed 

heavy emphasis on optimization of bandwidth, pass band flatness, and output 

power, with relatively little regard for linearity of the phase versus frequency 

characteristic. For applications in which a constant-frequency pulse is trans- 

mitted this factor need not be considered. For a CHIRP radar system, however, 

any deviations from phase linearity (and/or amplitude flatness) give rise to 

spurious time sidelobes, degrading the performance of the system. 

In undertaking the design of a wideband high-power CHIRP radar it has 

become apparent that, if an existing klystron is to be used, its phase and 

amplitude distortion will be primary contributors to time sidelobes in the 

received signal. Thus there arises the problem of predicting the performance 

in a CHIRP system of available klystrons (as well as other devices, such as 

twystrons and traveling wave tubes), with the two-fold objective of a) aiding 

in selection of the best tube type, and b) studying the problem of compen- 

sating the distortion introduced by the tube. 

The general goal of the present work is pragmatic in nature: a mathemat- 

ically tractable non-linear model is devised, which can be fitted to measured 

characteristics of an actual klystron, and applied to the specific problem of 

analyzing klystron behavior in a CHIRP radar. The model is useful over a 

reasonable range of operating conditions, and is sufficiently general to permit 

application to many different tubes. Some preliminary calculations were 

performed (see Appendix B) to determine the effects of a general soft-limiting 

phase- and amplitude-distorted device upon a CHIRP signal; the detailed inform- 

ation about specific tubes, however, is generated by a fairly complex computer 

simulation, as described in succeeding sections. 

One of the most interesting results of the work is definite indication 

that, with suitable restrictions, a transversal equalizer preceding a klystron 

can effectively cancel much of the tube's distortion. 



II.  SIMULATION ALGORITHM 

A. Philosophical Considerations 

One may imagine many types of measurements to make upon a klystron, each 

valid over a more or less restricted operating range, such as 

1. amplitude versus frequency (which is a function 

of drive level, beam voltage, and filament current) 

2. phase versus frequency (also a function of drive, 

beam and filament operating levels) 

3. the non-linear input versus output characteristic, 

or saturation curve (vhich varies somewhat with 

frequency) 

k.    the non-linear coupling between input amplitude 

and output phase (also a function of frequency) 

All of these measurements are presumed to be made at a series of discrete 

frequencies, with pulsed CW. In utilizing this data in a model to be used 

with a CHIRP signal, one must adopt the point of view that the signal is 

actually CW, with a slowly-varying center frequency; as a matter of fact, the 

sawtooth plot of frequency versus time for a typical radar CHIRP signal is much 

narrower-band than the other attributes of the signal. 

The operating-point dependence of the tube's characteristics could surely 

be reflected by a sufficiently complex model. Regarding the tube as part of 

an operational system, however, in which tube and signal parameters are fixed, 

the approach here has been to take tube data over some sort of "average" 

operating region, assuming that the variations in question would contribute 

only to second-order effects. 

The critical problem in specification of the model was selection of its 

components, and their relative locations. Clearly linear filters could be used 

to represent the measured phase and frequency distortions; their effects can be 

handled nicely by means of paired-echo theory (see Appendix A). An attractive 

option for representing tube saturation is a linear-phase frequency-independent 

soft limiter, both for analytic calculations (see Appendix B) and for the 

computer algorithm. The dilemma, however, is in deciding the locations of these 

devices relative to each other. The three possibilities are diagrammed in Fig. 1. 
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There is no prima facie evidence to indicate vhich scheme corresponds to 

the actual process in a klystron (if, indeed, the phenomena occur in discrete 

steps). The first diagram is clearly unsatisfactory, since a constant-amplitude 

pure CHIRP signal applied to it would simply "be attenuated by the limiter, with 

the result that the klystron model would be nothing more than a linear filter. 

For the second diagram, which is probably more realistic, it is impossible to 

determine by external measurements how the true phase and amplitude distortion 

should be distributed between filter A and filter B. In the interest of 

simplicity, therefore, it was decided for present purposes that filter B should 

be simply an ideal low-pass (or "zone") filter, to suppress the harmonics 

generated by the ideal soft limiter. If the zone filter is regarded as combined 

with the limiter, one has the configuration in the third diagram. 

The effects of the non-linear coupling between input amplitude and output 

phase are discussed analytically in Appendix B. The initial version of the 

computer simulation does not include this effect, although it can be added with 

relative ease. 

In view of the foregoing comments, it should be clear that results obtained 

with this model must be interpreted with due regard for their approximate nature. 

An attempt has been made to balance precision of the representation against 

complexity and computer running time, with the objective of obtaining insight 

and quasi-quantative data on klystron operation in a CHIRP radar. 

B. Description of Simulation Algorithm 

The computer mechanization of the problem is basically equivalent to gener- 

ating a distorted transmitted pulse using the klystron model, receiving a noise- 

less replica of it, and processing the received signal in a rudimentary "STRETCH" 

receiver, whose output is a plot of the weighted compressed pulse with distortion- 

induced spurious time sidelobes. The TW product of the CHIRP signal is taken 

to be very large, permitting the usual simplifying approximations. 

The following block diagram presents the skeleton of the algorithm: 
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The linear filter in Fig. 2 represents the resultant (through the fifth 

harmonic) of the Fourier components of the actual measured amplitude and phase 

characteristics of the klystron under consideration. The signal entering the 

limiter is computed in the program as the sum of a pure CHIRP signal plus 

leading and lagging echoes corresponding to the Fourier components of the filter 

characteristics. 

The ideal soft limiter in the figure has as its amplitude characteristic 

the input versus output saturation curve of the klystron, measured at the 

klystron's nominal center frequency. 

The signal entering the correlation mixer consists of the superposition of 

a distorted CHIRP signal and a number of distorted leading and lagging echoes 

at the original carrier frequency, as well as components at odd-integral 

multiples of the carrier frequency (see Appendix B. The soft limiter, an odd- 

symmetric device, generates odd-order harmonics of the input frequency.) At 

the output of the ideal low-pass filter following the correlation mixer (which 

cuts off somewhat above f.f, where f  « f ), the signal is the superposition 

of a number of rectangular CW pulses, with center frequencies distributed about 

f.f,  corresponding to the main pulse and the paired echoes.  (See Appendix C 

for a description of the computer simulation of the low-pass filter.) The IF 

signal is the time-domain analog of the spectrum of the distorted CHIRP pulse. 

When weighted in the time domain and Fourier transformed, the signal becomes 

the frequency-domain analog of the weighted compressed pulse produced by an 

ordinary matched-filter CHIRP receiver. 

Figure 3 is a simplified flow diagram of the actual FORTRAN program for 

simulating the klystron, to be explained in more detail in the next section. 

C. Program Operation 

The user must provide the following data cards: 

1. NSAMPL, 110 format - the length of the arrays 

AMPL and PHAS below 

2. DELTAF, F12.2 - the frequency interval (MHz) 

between measured data 

3. FFIRST, F12.2 - the frequency (MHz) corre- 

sponding to the first point of array AMPL(l) 
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ifff. AMPL(l), 2X, 7F10.2 - as many cards as 

necessary to transmit the NSAMFL values 

of output power versus frequency data 

5ff. FHAS(l), 2X, 7KL0.2 - NSAMFL values of 

phase versus frequency data 

6.   NSAT, 110 - the number of points in array 

SAT(I) below 

Tff. SAT(I), 2X, TF10.2 - NSAT values of input 

level versus output level saturation curve 

data 

8-13. First set of signal parameters 

8. NRUN, 110 - the consecutive identifying 

number of the current set of signal 

parameters 

9. EDGE, F12.2 - the value of AMPL at the edge 

of the band specified for the current run, 

as a fraction of the value of AMPL at band 

center 

10. WIDTH, F12.2 - the useable tube "bandwidth 

specified for the current run 

11. FLEFT, F12.2 - frequency (MHz) corresponding 

to the point of AMPL at the left-hand edge 

of the selected "band 

12. TIME, F12.2 - duration in microseconds of the 

desired CHIRP pulse for the current run 

13. OPPT, F12.2 - value to which input signal 

amplitude is to be normalized (specifies 

the current operating point on the saturation 

curve) 

Ik.        SR, F12.2 - the sampling rate for generation 

of the input CHIRP signal. The  value 25,000 

has been found in practice to provide a 

satisfactory balance of accuracy and program 

running time. 
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15-21, 22-28, etc. - the program may be used to 

investigate as many different signal config- 

urations as desired, each requiring a set of 

seven data input cards similar to 8-14 above 

Last Card in the data deck must have a zero in column 

10, -which causes the program to terminate 

The following comments provide additional explanation and description of the 

data cards and their implications in the program. 

A reasonable value for NSAMPL, to insure accuracy of the simulation, might 

be on the order of 100 or greater. No upper limit for NSAMPL is specified. 

Note that the array AMPL(l) is assumed to be in the form of output power 

versus frequency. The program converts it to an output voltage characteristic, 

assuming an impedance of 377 ohms. 

The array PHAS(l) must be the "unfolded" phase. The manufacturer's phase 

data will probably be given modulo 36O degrees, necessitating correction before 

use of the data in the program. The phase data will have a linear ramp component, 

in general, which corresponds to a fixed delay. Since fixed delay may be ignored 

for simulation purposes, but the length of the delay is not known, the program 

subtracts off the least-mean-square-error ramp from the phase data. 

The saturation curve is presumably provided by the manufacturer in the form 

of a few values of output power versus input power, in the vicinity of the knee 

of the curve. This data must be manually rescaled (assuming appropriate input 

and output impedances, which for practical purposes might be taken to be 377 ohms), 

so that the curve represents output voltage V versus input voltage V. , where 

a. V. ranges from 0 to 1, and V has about the same range; 

b. the knee of the curve occurs at about V. =0.7; 

c. if the original data does not extend all the way down 

to V. ■ 0, then a straight line is drawn from zero 

to the first (rescaled) data point; 

d. if the original data extends beyond the point where 

the curve acquires negative slope, those data points 

are replaced by a straight line of zero slope 

(corresponding to the assumption that the actual 

operating level never rises much beyond the point 

of zero slope) 

9 



V. must be divided into NSAT equal increments (where NSAT might be 20 

or more); the array SAT(l) represents the corresponding values of V on the 

rescaled and modified curve. The first value, SAT(l), is not zero; it corre- 

sponds to V  = l/NSAT. 

There are two advantages in performing this relatively simple processing 

by hand, rather than in the computer: the programming task is substantially 

simplified, and the matter of selecting the operating point OPFT on the satur- 

ation curve is much easier when one has the normalized and rescaled curve at 

hand. 

Presumably the user of the program will have made a rough plot of the raw 

data of output power versus frequency. By inspection, he will select what he 

feels is a useable portion of the curve for the first run, thereby determining 

the values EDGE, WIDTH, and FLEFT to provide on data cards 9, 10, and 11. The 

program will generate a CHIRP pulse of frequency sweep equal to WIDTH, duratior 

of TIME microseconds, and center frequency equal to the center of the useable 

band selected by the program user. 

Additional sets of six signal parameter cards are to be provided, if the 

user wishes to investigate other possible specifications of the "useable band" 

of the tube. 

D. Outputs Provided by the Program 

In order to decrease quantization error, the members of the input array 

SAT(l) are spread apart by the program, and connected by straight lines, to 

approximately fill an array of length 1000. A graph of this modified curve is 

the first output from the program. 

For each run (i.e., for each set of six signal parameter data cards), the 

following output information is provided: 

1. A printed table of the sine and cosine coefficients, to 

the fifth harmonic, the results of Fourier analyzing 

the amplitude and phase data 

2. A plot of the amplitude curve, reconstructed from the 

Fourier coefficients, superimposed upon a plot of the 

original data 

10 



3. A plot of the input phase data 

k.    A graph of the fine structure of the phase data, 

after removal of the ramp component, superimposed 

upon its Fourier reconstruction 

5. A plot of the kO db weighted compressed pulse, 

incorporating the effects of the amplitude 

distortion alone 

6. A plot of the weighted compressed pulse, when 

only the phase distortion is present 

7. A plot of the weighted compressed pulse, showing 

the effects of both amplitude and phase distortion 

Should the extra information provided by plots (5) and (6) turn out to have 

relatively little value, the computer running time can be reduced by about half 

by deleting the program sections leading to these plots. 

III. TYPICAL RESULTS 

Figures k -  10 below are the results of operation of the program with a 

set of representative klystron data. 

Figures 8,9> and 10, which represent time-domain compressed pulses, have 

their x - axes calibrated in frequency, because they are in fact magnitudes of 

spectra of rectangular pulses.  Their axes should be rescaled to correspond to 

the pulse duration T and frequency sweep W of the CHIRP signal (10 ^isec and 

U75 MHz, in this case). Thus the k MHz point on these graphs corresponds to 

t = 0, and the 1 MHz and 7 MHz points correspond total j-^_ microseconds, or 

t = ± 63.2 nanoseconds, respectively. This rescaling will be made an automatic 

feature of the program in the near future. 

11 
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APPENDIX A 

Paired-Echo Theory 

The well-known results of paired-echo theory are briefly summarized here, 

in a generalized form that is particularly useful in the present study. 

Suppose that a system function is given by 

H(f) = A(f) eJ B(f) 

in which 

00 

ao+     L   LanC08~vr   +bn8in—J> ~2*f < + 2 
n=l 

A(f) 

0 , elsewhere 

and 

n=l 

(Note that the coefficients b and c above would vanish in the case of a 
n    n 

realizable linear filter, but are included here for generality.) 

As the first step, assume all the coefficients in the sums above are zero, 

except the coefficients with n « k. Using the expansion 

oo 

j a cos 
* = JQ(a) + 2 Y     CO* Jj(a) cos I cp 

i=l 

and the approximations (to first order in a) 

J0(a) S 1 

19 



~ a V) s 1 
J (a) » 0, n > 2 

we may write 

= e    [l 4. j ck cos — J [1 + j ^ sin —J 

Writing out the product A(f) eJ *  ',  and dropping all terms of second and highe] 

order in the (small) quantities a, , b,, c, , and d,, we arrive at the expression 

H(f)   S   aQ e      ° [l + Plx e V ^       V' + Pae^a >J 

where 

pii 

p2k 

*V^)H-^ 

r„     =   tan"1    I}- ~ V*0]    J and 

T2k   =   tan ■i r \+ vaoi 
K+ vaoJ 

Clearly, then, if the input signal is some arbitrary complex function f(t), the 

output can be written as 

20 



f0(t) - aQ e° 
C° [f(t) + pj, eJ *» f(t + §) + p^ e° ^ f(t - *)]  , 

a replica of the input signal plus a pair of small leading and lagging echoes 

of the input signal. 

Returning to the general case in which all the coefficients in A(f) and 

B(f) may he non-zero (hut all are assumed smal1 except a and c ), it is a 

simple matter of hook-keeping to verify that, to first order, a signal f(t) 

transmitted through H(f) can he written as 

where, for each value of k, the coefficients p_. , p , y^, T— are defined 

exactly as hefore. 
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APPENDIX B 

Analytic Model for a Klystron in a CHIRP System 

I. Block Diagram and Description of Model 

Figure B-l is a block diagram of a proposed klystron model similar to "that 

used in the computer simulation, whose components are so defined that the model 

and its implications can be analyzed mathematically. 

The amplitude-phase coupling block is discussed in Section II below, but 

temporarily ignored in Sections III and IV, where the phaseless soft limiter and 

the linear filter are discussed. 

It is shown that the model leads to specific predictions of spurious time 

sidelobes at its output, corresponding to the measured amplitude and phase data, 

saturation curve, and input amplitude-output phase coupling of a klystron. 

Furthermore, it is shown that a transversal equalizer preceding the klystron 

gives rise to predictable paired-echo configurations at the output of the model. 

II. The Amplitude-Phase Coupling 

A saturated klystron, while maintaining constant output amplitude as input 

level is increased, exhibits non-linear coupling between input amplitude and 

output phase. 

This phenomenon is to be modeled as a "black box" whose output contains an 

additive phase term ö(t), a function of the input level. Assume that this 

coupling function, as measured for some representative klystron, can be 

adequately approximated over a suitable range by three terms of a Taylor series: 

0(t) S kQ + 1^ A(t) + k2 [A(t)]
2 

where A(t) is the amplitude of the input signal. If the input is an undistorted 

CHIRP signal, then e(t) is merely a constant. Suppose, however, that the input 

signal has a single pair of echoe»,  at At = ± ^ seconds, due to a transversal 

equalizer; in this case, the signal can be written in the form 

22 
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8l(t) = [l + a cos %&]    cos 2« (fct + §f + b sin ^) 

The additive phase term 0(t) at the output, computed from the coupling equation 

above, has the form 

e(t) = Cl  sin (??& + cpjj + c2 sin ^ + cp2) + ^ 

where the constants c , cp, cp1, cp?, and cp~ are easily determined. 

It is clear that the output signal still has a pair of echoes at ± r; 

seconds, but with modified amplitudes and phases. In addition, there are echoes 

at ± -TT- seconds, with amplitudes proportional to the (small) coefficient k~ in 

the above expression for ö(t). 

This result can be extended with little effort to show that each pair of 

echoes in a more complex TE-modified signal gives rise to two pairs of echoes 

at the phase-amplitude coupler's output, with the relationship described above. 

At the cost of considerable labor, these altered paired echoes can be 

followed through the linear filter and soft limiter described in the next sections. 

The important point is that specific transversal equalizer settings at the 

model's input lead to precisely predictable paired echoes at the output.  (Note 

that one would not ordinarily be interested in actually making these predictions. 

In using a TE in a radar system, one adjusts the TE by trial and error until 

the sidelobe structure in the receiver compressed pulse is visually optimized.) 

III. The Fhaseless Soft Limiter 

In Chapter 2 of Middleton, Introduction to Statistical Communication Theory, 

(McGraw-Hill., New York, N.Y., i960) there is an excellent treatment of a tech- 

nique for analyzing a device with the following characteristics: 

y  = y(t) = input 

z(t)= g(y) = output 

2k 



g(y) = 

ß y1/v    ,  y > o 

-Ply I 
l/v y < 0 

A representative g(y) is shown in Fig. B-2. 

One may model an idealized soft limiter with such a device, if the input 

y(t) is suitably restricted in magnitude (since the magnitude of the device 

output z(t) does not asymptotically approach a constant). The free parameter 

v is to he chosen to give a good fit to the measured saturation curve of a 

klystron. 

The limiter characteristic may be broken into two parts, 

g+(y)  = {g 

gjy) = { 

g(y) 

g(y) 
o 

y < 0 
y > 0 

y < 0 
y > 0 

and 

in order to obtain its two-sided complex Fourier transform: 

f(ju) *>W  *"J U ^Im u < 0 
o 

o 

+ /  g_(y) e-J 
U y «^ u > 0 

-00 

= f+(ju) + fjju) 

Note that, because g(-y) ■ -g(y), we need retain only f.(ju), and we may write 

the inverse transform as 

g(y) m  i   j    f+(Ju) sin C^) du 

25 
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Carrying out the transformation for the limiter characteristic g(y) above, ve 

find 

ß r(J + 1) 
f.(ju) =  1  

- + 1 
(ju)V 

where the u-plane contour C for the inverse transformation is the entire real 

axis, with a semicircular indentation below the origin. 

Let y(t) be a CHIRP signal with possible amplitude and phase modulation, 

y(t) = A(t) cos[w t + <&(t) + cp] 

where w is the carrier frequency. Substituting this expression for y in the 

inverse-transform equation above, and using the expansion 

sin(a cos cp) =  \    (-i)'*"1"2 2 J^(a) cos 4 cp 

odd I 

we have 

i(t) = g(y) =  Y   B^(t) cos 4[u>c t + $ (t) + cp] 

odd & 

where 

., .x(4-l)/2   r 
B4(t) ■ ^^  J        f+(ju) J^uACt)] du 

and J*(a) is the Bessel function of the first kind, I     order. Thus z(t) 

contains all odd-order harmonics of the input signal. 

If the limiter is followed by a suitable low-pass filter one obtains 

zx(t) = Bj^t) cos [u> t + $(t) + cp] 
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B.(t) can be evaluated, using an equation on page 121 of Middleton; the result 

is 

BjOO = ß^v) [A(t)]l/V 

Thus the final output has the same phase as the input CHIRP signal, "but the 

amplitude modulation has been raised to the l/v power and multiplied by a 

constant. 

IV. Combination of the Linear Filter and Soft Limiter 

The paired-echo theory summarized in Appendix A provides a convenient 

means for dealing with the distorted phase and amplitude characteristics of a 

klystron, visualized as a linear filter preceding the soft limiter model. 

Initially, suppose the amplitude and phase characteristics of a particular 

klystron -were so simple that they could each be represented by a single (small) 

Fourier component. The corresponding linear filter, with a unit amplitude 

CHIRP input y(t), would produce an output signal 

yx(t) = y(t) + ^ y(t-T) + a2 y(t+r) 

We now repeat the soft limiter analysis in Section III above, using y1(t) as 

the input to the limiter, and making approximations to first order in the small 

parameters a, and ap. Thus we assume, for example, that 

J^) » i   , 

Ji(ai) a 1*1 ' 

which are essentially the same approximations made in deriving paired-echo theory. 

The resulting sequence of calculations, while quite straightforward, is very 
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lengthy;  only the results are stated here. In effect, the output of the low- 

pass filter following the limiter is 

+ c2|a2|
1/v y(t-K)] 

where the constant 

\   "   i f   V") f0") du 

r(i + i) 

2vr[|(i + D]r[|(± + 3)] 

and €1 and ep are unit-magnitude constants whose signs correspond to the original 

signs of a_ and ap. 

Thus z.(t) still has paired echoes at ± T seconds, but with increased 

amplitudes relative to the main lobe (since |a| ' > | a | , if | a | <1 and 

v > 1. 

This result is readily generalized to the more realistic case in which the 

linear filter (representing klystron phase and amplitude distortion) requires 

many Fourier components for adequate descriptions of its magnitude and phase. 

As we have seen, paired echo theory predicts that, with an input y(t), the 

filter output will have the form 

yx(t) = y(t) + £ ^ y(t - rk) + £ b^ y(t + xk) 

to first order in all the a. and b,, which are assumed to be small. 

The details of determining the soft limiter modelt output are omitted 

here, for the sake of brevity. The task is a straightforward but very tedious 

matter of plugging y,(t) into the analysis in Section III above, writing out 

all the expressions and cross products, and dropping all terms of higher than 
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first order in the eu and b, ,  with the simple and intuitively satisfying result 

that the output is given "by 

Zl(t) * ß T>O [y(t) ♦ £ «* I \ 11/v y(* - \) 

in which b has the value given above, and the e  . and e,, again serve to carry 

along the original signs of the a, and b,. 

Observe that each echo at the limiter input has a corresponding echo at 

the limiter output, with the same time displacement, but somewhat increased 

amplitude. 
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APPENDIX C 

Digital Lov-Pass Filter 

An elegant tool for the design of digital computer algorithms to simulate 

linear filters, the Z-transform, is treated in detail in Lincoln Laboratory 

Technical Note 1965-63, "Digital Filter Design Techniques", by Rader and Gold. 

Basically, the Z-transform is the digital analog of the Laplace transform in 

linear systems theory. 

An ordinary differential equation, considered in the context of sampled 

time functions and digital approximations, becomes a difference equation, vhose 

solution can be attacked by means of the Z-transform, defined as 

00 

F(Z) =  Y  f(nT) Z" r^nr; I 

n=0 

where T is the sampling interval. For a linear filter one defines a system 

function H7(z), related to the Z-transform H(Z) of the filter's impulse response 

h(t) by the equation 

F +(Z) 

H'(Z): Y%T=   TH(Z) 

The extra factor T above is explained by noting that a unit impulse u (t) should 
1 ^ 

be represented by a single sample of height = (equivalent to a rectangular 
T i 

pulse of height = and width T, with unit area). Since one actually represents 

an impulse by a single sample of unit height, the system function must be 

multiplied by T. 

For the particular application in the present study, a digital realiz- 

ation was desired for a filter with s-plane system function 

H(s) 
(s + a)3 

which is equivalent to the cascade of three sub-filters 
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H» cx ' s + a 

The impulse response of the sub-filter is 

(0     ,   t < 0 
hc(t) " \      -at (a e at ,   t > 0 

whose Z-transform is 

M -1..—*• -1 *- s-v - ^-r^ 
UPO 

from which we obtain the system function 

«•» - rr^vi 
Writing 

H'(z)    -   ^S Hc(z)  " f^zT 

(where F  (z) and F_(Z) are the sub-filter output and input), and solving for 

Fout<Z>' * find 

Fout<z> - öyzj + ^z"1^) 

From the definition of the Z-transform, we find that a delayed time function 

g(t - T) 

has the transform 

z"1 o(z) 
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where G(Z) is the transform of g(t)# 

Thus we find that the digital realization of the desired filter has the 

form shown in Fig, C-l 
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1-42-10224 I 

INPUT 

SAMPLES '^l^g>^0 ^g>^0 _g^0 
OUTPUT 
SAMPLES 

NOTES E> 
© 

MEANS MULTIPLY BY x 

MEANS "DELAY T SECONDS' 

Fig. C-l. Digital realization of three-pole filter. 
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