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"CLOSED NETWORKS OF QUEUES" 

ABSTRACT 

RICHARD J. SWERSEY 

A closed network of queues consists of a finite set of N customers, a 

finite set of M single-channel servers, and a set of arcs (1,J) which rep- 

resent the allowed Instantaneous movement from station 1 to station j. We 

also assume that all customers are Identical In their stochastic behavior, 

that movement is governed by a set of given transition probabilities such 

that they form an irreducible Markov chain, that service times are governed 

by an exponential distribution, and that the Imbedded Markov chain defined 

on the. Instants of service completions is Irreducible. 

Under these assumptions steady-state operating characteristics are 

derived through analyses of the time-average steady-state equations and 

of the underlying Markov chain. The general results are specialized to 

cyclic queues and to open networks of queues (Jobshop-like queuing sys- 

tems); the structure of the steady-state probabilities is the same as that 

of the cyclic queue. . We also show that the results can be generalized to 

a multi-channel server problem and that the number of customers at a given 

service center has an IFR (Increasing failure rate) distribution. 

Optimal allocation of labor (servers) from a fixed pool is considered 

and It is shown that, in a cyclic queue, maximum output is achieved from 

an equal allocation of labor to each service center. A discrete optimiza- 

tion problem Is then considered for a more general network that represents 

the operation of an airlines maintenance base.    f 

»■ ■ «■»- 
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Chapter I 

INTRODUCTION 

1. Queuing Networks 

Consider the operation of a haulage system In a coal mine. Shuttle 

cars are loaded at various working faces and travel to a common unloedlng 

point at a belt conveyor. The shuttle car, thus, Is served at two sta- 

tions—a randomly selected working face where it waits If and only if an- 

other car In Its loop Is being loaded, and the unloading point where cars 

from several loops may queue up to be served. This is a special case of a 

queuing network—It Is cyclic for a given car because the same operations 

are repeated continually, but has a more general network character because 

a randomly-chosen ear unloaded at the conveyor may return to one of 

several faces. 

A more complex structure is represented by the overhaul and mainte- 

nance base of an airline system. Here, an item is probably Inspected for 

unseen difficulties, as well as undergoing routine maintenance, and hence 

may go through various movements in the system before it returns to ser- 

vice. We have, in effect, a closed loop system with various Internal 

series-parallel movements, and congestion at every station within the sys- 

tem. 

These two examples have the following things in common: 

(1) The number of served units and service stations Is fixed, i.e., 

the system is closed (where In the second example the airplane 

In service is part of the system). 

1 
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(2) The possible internal movements from station to station provide 

a veil-defined network. 

(3) Variability of service times creates congestion in the form of 

random qnenes in front of each service station. 

For these reasons we shall refer to the models developed in this thesis as 

closed networks of qneues.   We shall determine their operating charact'eris- 

tics tinder assumptions specified below, and we will contrast their behavior 

with other models which have been analyzed in the literature       - cyclic 

queue», and open networks of queues  (jobshop-like queuing systems) 

2.   Analytic Framework 

We define a closed queuing network as consisting of 

(1) a finite set of t  .usto^ere (serviced units such as airplane, 

shuttle cars, machines) 

(2) a finite set of M single channel servers (service stations such 

as machines, repairmen, etc.) 

(3) a set of arcs (i,j) which represent the allowed (instantaneous) 

movement from station i to station j. 

We will also make the following assr-.ptions: 

(1) All customers i «1,  2,...N are identical units in terms of their 

stochastic behavior in movement ove. the network, and in selec- 

tion of a service time at some station J ■ 1,...M. 

(2) Hovement over the network is governed by a set of given transi- 

tion probabilities, p^i. 

p11 a * t customer moves to stationf J [ he ha« Just completed 

service at station i ] 

We assume that Zj^« - 1* and the associated Markov chain is 

irreducible. 
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(3) The service time distribution F(t;i,n) at station i is the sane 

for all customers, possibly dependent on the total numocr of 

customers at this station, n » 1,2...N. In particular, we 

assume: 

-Hi (n)t 
P(t;i,n) - 1 - e t s 0 

It is important to note that the model loses the identity of individual 

customers, and this is not suitable for special items which have unique 

paths through the system. For an analysis of a class of such problems see 

SwerseyC 9], Apart from the lost Identity of the customers, the most 

critical assumption is (3) • However, eliminating the exponential property 

yields insurmountable difficulties because it is Impossible to define 

appropriate Imbedding points which lead to a meaningful analysis and to 

significant results. In principle, however, one can extend the results to 

the Erlang distributions by the methor. of stages. 

3. Optimization Problems 

In addition to steady-state operating characteristics, we are also 

interested in system economics. For example, one can associate a cost with 

the time a customer waits in queue to be served and another cost with the 

time a server waits for a customer. If one is given a specific queuing net« 

work, it is of interest to compute the trade-off between expected costs of 

customer idle time, and expected costs of server idle time. One can then 

decide whether to buy new machines to decrease service times, or whether to 

add servers or customers to the system. Or, if the queuing network repre- 

sents a production cycle, one can compare the marginal value of extra out- 

put with the marginal costs of obtaining that output. And so on. 



Thus, the objective of this dissertation is twofold—to develop closed 

form expressions for steady-state probabilities,  expected waiting times, 

and other relevant operating characteristics of queuing networks, and to 

analyze some optimal operating policies ou some special structures of 

these models.   We will also compare these models.    We will also compare 

these models with Koenigsberg's [6] cyclic queues and Jackson's [4, 5] open 

networks of waiting lines. 

4.    Definitions and Notation 

i - index of a service center (i *> 1...M) 

fit * exponential service rate at 1 (independent of the number of 

customers). 

n^ « total number of customers at i, equal to those waiting for service 

plus the one in service 

M 
L   ni - N 

i-1 

(ni ,n2,...nM) - state vector: n^ customers at server 1, 

n2 at server 2, etc. 

wA. >■ set of all possible arrangements of (n....iO 

(N+M-1)L 
A - cardj^ ■ (N.I)j yt     (the dimension of,A) 

a,b,..." elements of \J\. 

a ■ (n,...!^) a point coordinate of interest 

a(i,j) ■ the neighboring point of a, 

(ni ,n2« • .nj+1, •. .ni-l,. • «nj^) 

P(a) * time average steady-state probability of being in state a. 

tu (a) <■ number of customers at station i for state a. 
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v/^C«) ■ set of all possible arrangements of (n^..«!^) such that property 

(0 holds. 

A(0 - cardvA(.) 

Id - Indicator function - {j " Prof "y (.) holds 
«•0 othen^rise 

q^ ■ steady-state average rate at which customers pass through station i. 

M 

11 " 1-1 ^'^       i ' 1*"M 

where ?< ^ it defined in assumption (2), Chapter I. 

?! - Vqi 

X^ ■ y^iy\ t  the relative mean service rate at i with respect to 

server 1. 

:/' 



Chapter II 

CYCLIC QUEUES 

1. Introduction 

In 1958, Koenigsberg published the first [6] of two [7] articles on 

cyclic queues. In his model, M, servers are linked in series with the last 

one In a closed loop with the first one. ( Figure 1 ) 

M 

2. 
■h 

Figure 1 

Cyclic Queue 

In terms of the more general network model this Is a special case 

where, 

A^Cn) ■ ßi  for all n-1, ...N(1-1...M) 

p1 1+1 - 1   i-l,...M(Mfl is defined as 1) 

p^j - 0   j f» 1+1 

and defining q^ ■ 1 ^q^ ■ 1  ^ ■ 2...M 

and hence   71 " Pi ^ ■ 1»«»M 



In this chapter we will discuss his results  and cast them into a uni- 

fied framework,  correcting some minor errors.    Our purpose is not just to 

illustrate the beginnings of research on queuing systems;  in later chapters 

we will show that even the most ccmplicatad network structure can be re- 

cast so  that the results have  the same form as Koenigsberg's original 

model!     It is this fact alone that makes analytical optimization of net- 

works of queues tractable.     (Chapter V) 

2.    Steady-State Equations 

Because the service  times are exponential,  we can immediately write 

down the steady-state equations  (after Kcenigsberg [ 6] ) : 

M . M 
PCa] T, y iCn^la] -   S PCadji+l^lCn-T^oUdji+l)] 

i-1 x i-1 x     i J. 

The solutions take the form, 

• v»/ * \"> 
n y^iCa) 

i-2 

or 

(2.1) P(a) - P(N,0,...0)   n  X. ^a; 

i-1 

and 
^ 

M       i^(a) 
i                -   s    n x^ 

P(1J,C....0)               aeJi i-l 

ri(v^: ) 
j-i      J 

^i 

Equation  (2.2) has been specifically evaluated for M ■ 1,...5.    See [6^ 
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3. Operating Characteristics 

We will repeat here some operating characteristics of cyclic queues. 

For details of the development, see [ 6J . 

Let D. ■ P Iserver 1 Is Idle X 

ThenDi-^P      (1 - 1...M) 

where .ZJ  Indicates that X^ is omitted from the summation In (2.2). 

Let 6.  the average number of customers served per unit times at sta- 

tion 1; then, 

(2.3) ^ = OL-V±)!i± 

and 9.«0.«0 for all i and j. 

Let EdCi)]     " expected number of custcmers at server 1.    Then 

(2.4) E[L(i)] »     1 .. ** 
titr 

an(j pfV (4)"]   ■ mean number of customers waiting at server i 

(2-5) , E[L(i)] - (1-Di) . 

4.    Cyclic Queues and Markov Chains 

In order; to find the average waiting-tine per customer at each server 

we will need to know the steady-state probabilities of the imbedded Markov 

chain.   After our own development of these probabilities we can correct 

Koenigsberg's result for average waiting-time. 

Because of assumptions  (3) and (4) of Chapter I, a cyclic queue with 

exponentially distributed service times is a continuous time Markov process 

with a discrete state space.    Since the customers are identical  (assumption 



(1), Chapter I)  the state space of the KarUov chain imbedded on the Instants 

of service completions at any service center, consists of all arrangements, 

u^t, and its dimensionality is A*    Number all possible states a,b ■ 1,2...A 

and let, 

^(a,b) ■ Markov transition probabilities between states 

(a) and (b) on the Instant of a service completion 

"(a) ■ stationary Markov chain probability of being In state a. 

Theorem II-l:    The Markov transition probabilities between states  (arrange- 

ments) a and b (a,b « 1,2...A) are: 

/   M 
S   m iCn^b) - n^a) - 1 ] 

(2.6)      ir(a,b) - 
i-1 

if a to b is possible 
M 

i-1 

N 0 otherdse 

Proof: First consider the special case, M - 3 and N ■ 2. The transition 

matrix is: 

(200)    (002)   (020)    (101)   (110)   (CU) 

O]- 

(200) 0 0 0 0 1 0 

(002) 0 0 0 1 0 0         | 

(020) 0 0 0 0 0 1      1 

(101) ^2 0 0 0 0 

(no; 0 0 
h^2 

^2 0 0 

(on) 0 
^2 

^3 
0 0 

V*3 
0          j 

Consider the transition  (110)«4(020) and call this event G. 

P(G) - P [service completion at Center 1 before a completion at 

Center 2] 

.   -(M1+P2)t 

^ J e     ■L dt - »i/Vi+V-z 
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since the only other competing transition is (110) -» (101), which requires 

a service completion at Center 2. The general result (2.6) follows 

directly from these observations. 

The formula (2.6) can also be derived from Billingsleyls[2] "intensity 

functions," where we interpret a term in the numerator as the intensity of 

a jump into the state it represents, and the denominator as the intensity 

of Jumps out of the current state. 

Theorem 71-2; The fl,(a,b)    of (2.6) are transition probabilities of a 

closed recurrent claso «f states and furthermore there exists a unique set 

of stationary probabilities of the Imbedded Markov chain given by the solu- 

tion to 

(2.7)       ff(b) .  S iT(a) 7r(a,b) 

acA 
S ff(a) - 1 . 

Proof; It is obvious that 

ff(a,b)    ^0 and 

S   ff(a,b) - l for allacjt 
h€J\ 

Since the p,,  form an irreducible Markov chain, all service centers com« 

municate.    That is,  a customer can move from any center i to any center  j, 

with non-zero probability, in a finite number of steps (^-l). 

Now states a and b differ from each other only in the placement: of a 

finite number (< N)   of customers.    By moving one customer at a tiir.e,  any 

state, a, can be changed to any other state, b,  in a finite number of steps 

(< KM)  and this set of changes occurs with non-zero probability.    Hence, 

some finite power of     [^(a,b)] is eventually non-zero, implying all 

states communicate;  communication implies  that all states of the chain be- 

long to a single irreducible class.    Furthermore,  since at least one state 

is persistent  (A is finite) the chain is irreducible ergodic. 

Theorem II-3;    The stationary probabilities of the associated Markov chain 

are given by: 

M      nt(b)   II r       | , 
I!  I, !•   Ht  iCr.XJlb] 

(2.8) 7r(b) -     i=l ifl 

bc^. i«l i«i 
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and furthermore they are related to the time-average probabilities by, 

M 
P(b)    I    wi Un^Olb) 

(2.9) TKb) iml 

M 
I    P(b)     I    y.   I[n >0|b] 

beX i-1 

Proof:    Formula  (2.8)  is obtained after much tedious manipulation of   (2.7). 

We know that the    ir(b)    are asymptotically equivalent to the ratio: 

Expected number of transitions Into state    b 
Expected number of transitions in the system 

The number of transitions out of state    b    differs by,  at most,  one from the 

number of transitions into    b    for some time period    T  .    The expected number of 

transitions out  of state    b    in a long time    T    is, 

M 
P(b)     I    M    l[n.>0|b]   • T 

i-1    1 1 

where P(b)  is a time-average probability, and the total number of transitions in 

the system during time T is 

M 
I    P(b) I    v    I[n >0|b] • T 
bex    i-1 

Hence,   as    T ->• o0  ,   n(b)     is given by  (2.9). 

Corollary  (II-3);    The time-average probabilities,    P(b)   ,  Theorem II-3 are given 

by formula  (2.1) . 

Proof;    From an examination of  (2.8)  and   (2.9) we conclude that 

M        n (b) 
P(b)  - C    n    X 

i-1 

where C is a constant. 

Let 

Then 

N  M   n^b) 
P(b) - 1/Z^  n X, 

*  i-1  i 

which is (2.1). 

N 
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From equation (2.8) we can derive all of the    Tr(b)    and use them to 

solve for the P(b)  in equations  (2.9).    No claim is made that computing 

P(b)  from the ir(b)   is easier than using equation (2.1); however,  if we 

consider a system that is a variation on the cyclic queue  (see[ 7]) the 

construction of the state space and solution for the    fr(b)    might prove to 

be an easier task than setting up the balance equations and solving for the 

P(b).    Koenigsberg's aporoach, however, yields the transient solutions if 

they are of Interest.     . ■ ation (2.9)  establishes the link between the 

theory of Markov chains and the time-oriented queuing formulation for cyclic 

congestion systems. 

Equation (2.8) can be chanf'd to a less cumbersome form, and we can do 

some cancellation: 

M       nUb)   M , 

(2.10) ir(b) .      i^i i-i. 
M       ntCb)   M      w    * 

bcjl i-1 i«l 

As in  [6}   define 

N M       njCb)     M 
(2.11) B   -       S      H  X^ S   ^r Iti^lb] 

M        bf^ i=l i-1 

After much algebra one obtains, 
N W-l       i 

B
2 - 

2^     *    % i-0 
r         N-l     3       ^ N-2 K-no-l no     n^ i 

,«     .   I 1 +   S     S rJ -K S S TL.    lo \ 
B3-r3PlL         M k-2^ ^=1 ryl ^    ^ J 
,N 
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and In general,  (M > 2)  (2.11) becomes 

(2 
w N-l     M j       K-2 N+MJt-Sn    M      n 

.12) Bg-Mk(i* s    r  V*   L .... r^1 nO) 
J-l   k-2    ^      n2ol        r^l J-2   ^ 

Therefore, an alternate form for  (2.10)  is, 

.N M ^(b)   K 
(2.13) ff(b).l/Ö"    (    n  X. J-        I   ^ lEn^lb] 

U      i-1   ^ LI 

We will use (2.8) directly In the next section in order to compute the 

average wait at each server, and we will use the Markov chain analysis In a 

later section on statistical Inference. 

5.    Customer-average Wait in Queue 

In order to find the average wait in queue at any station we must dis- 

tinguish between the average number in a queue, at an arbitrary Instant of 

time and the average number found by an arbitrary arrival. 

Define the random variables, 

R(i) ■ total number of customers at server 1 just after 

some arrival, 

Rq(i) ■ number of customers in queue at server 1 just after some 

arrival, 

NÄ'(ni2:l)    "   set of al1 possible arrangements of  (n^...,!^) for which 

n>l for some service center 1 



1^ 

Define: 

ff4 0>) " P [system in state b after the next arrival at station 1] 

7iOO ■ P [system In state b after the next transition |next transi- 

tion is an arrival to station 1] 

S M  ntCb) 
Theorem II-4; 

(2.14)  ff^b) 

MU,   n r. 
i°l i if atCb)*! 

RN 

where 

(2.15) 

Proof: 

\ 0 otherwise 

M     bcA-Cn^l) 

1-1 

S ^ I^j^lbCi-lA)] 
i-1 

From the definition of fl^ (b) , 

^(b) - ir(b(i-l,i)) ^..i/ S ^i iCnj^olbU-l,!)] 

PLnext transition is an ai-ilval to iJ 

We have already seen that in the steady state all service centers do the 

same amount of work; that is, they all have the same average transition 

rate 0 . Therefore, 

P [next transition is an arrival to i] ■ - * 

which by definition, is given by (2.15). We note that ^(b) is a proper 

probability sequence over  for all i . 

Corollary (II-4); 

(2.16)     ED^] - ^^      bCJUnt^l)  i-1 1-1.*..M 
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Proof; Trivially shown by the definition of Che expected value and the use 

of (2.14). 

We can also express (2.16) in a form similar to (2.5) by defining: 

Define: 

Q^ > number of customers at i after the next transition in the 

system 

Then, 

E(Ri) ■ 1 + mean number of customers at i (except arrivals at i ), 

averaged over all transitions. 

Recall that the probability a transition is an arrival at i is Just ^ . 

Then the mean number at i (except arrivals) averaged over all transitions is 

just, 

ECQ^}    when the transition is not an arrival at i 

E(QJ) - 1 when an arrival at 1 occurs. 

Thus, E(a,) - 1 + ECCL) (1-1) + CSCQi)^.) 1       1 - 1...M 
1 Fi M 

(2.16a)   E(R1) - £(0,) + 1-1 
M 

Noting, that 

„ M  n,.(b) K 
SB^n, --1  S ^(b) 11 £*   E ^ lCn.>0|b] 

K H, be  ■L   k-1 K    i-1     ^ 
M  r^Cb) 

+   Z,       ,   n ^k (i-2...M) 
bcJK^«.)  k-1 

we find v 
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Thus, an alternate form for (2.16) Is: 

(2.16b) 
EO^) - -(SB^/öHr) »i,  + 1    i-2..„M* 

4 
By similar arguments. 

(2.16b) EO^) - -(aBjJyä^) h    + N + 1 

4 Define: ^ 

W(i) ■ time spent at server 1 by a customer 

Wq(i) ■ queuing time at server i by a customer 

Then, 

E(W(i)) - ECECWCI)!^   at i after last arrival)] 

- E( nj/nt  ) - 1/u, Eir^) 

But n^ » R^, so: 

M M       n.(b) 
(2.17) E(W(i)) - £(1^)/^ -            ^S »i n  xk 

N      bcJU^l)      "i-l 

and 

(2.17.) E(W„{i)) - E(K(i)) - 1 
q 

We would like to correct here a result of Koenigsberg's [6]  (formulas 

(17),   (18), p.  28).    He claims that the wean wait in queue is just 

E(Lq(i))/nf 
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where E(Lq(l)) Is the time average number In the queue; but this result 

would be correct only if the arrival stream at each service center was 

Poisson. 

For the special case where all the service centers have the same rate, 

1 say, 
E(W (i)) - !W. 

K 

and Koenlgsberg gives    E(Wn(i)) - N(N-l) 
V 

M(N+iUl} 

A comparison of this discrepancy for various values of N Is given below: 

(M-3) 

N E(Wq(i)) E(Wq (Koenlgsberg) ) 

3 
4 
10 
100 
1000 

.667 
1 
3 

33 
333 

.4 

.667 
2.5 

32.3 
332 

Koenlgsberg's formula understates the mean wait in queue and Its use might 

cause difficulties in analyzing a real world situation. However, we wil? 

show later that as the number of customers in the system gets very large, 

that (2.12a) approaches Koenlgsberg1 s result. His other major results, 

formulas (2.1) - (2.6), here, are stated correctly in[6Ji One other operat* 

ing characteristic will be useful in Chapter IV. 

Define: 

T ■ time for an arbitrary customer to complete one cycle of 

the service systems. 

K 
T^en,   T - E W(i) 

i-1 
M 

E(T) -   E E(W(i)) 
(2.18) i-i 



• 

18 

6. Statistical Inference 

The previous sections all dealt with a system for which the service 

rates were known; however, in many real-world situations, the service rates 

are unknown. One method of estimating these rates would be to observe the 

system and note the transitions that actually occurred and the length of 

time between transitions. From methods developed by Billingsley [2] we 

could then estimate the service rates and test hypotheses concerning these 

estimates* 

The method used here (sec Swarsey [9]) parallels the development by 

Wolff [lO] for birth and death processes. 

If the system is observed continuously for a fixA^ time T, a sequence 

of S (where S is a random variable) transitions will be observed. We can 

then estimate the service rates by  the maximum likelihood method. Denote 

the likelihood function for the observed sequence by Ls(^) where Qm 

Let, 
irSi - 0/^ In Ls(ß) 

We are interested in the asymptotic properties of the function Us and of 

the maximum likelihood estimators, 9, obtained by setting. Ug s 0. 

As T -• • , S ■• •  a.s. 

As T "♦ • 

(2.19)     IL  *,  N(O,a(0)) 

7s 
where   o(9) is the variance-coveriance matrix of  Q .    Also, 

(2.20) 

(l-e) ^         -1    1 
.     -   N(0,  a   (9)) 

/s 
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The proofs for (^.19) and (2.20) are given by Billings ley & ] . 

Moreover, if we assume that 

H : fl - 6° o  — - 
and HQ   is true, then 

(2.21)   2CMaxlnL8(8) - lnLs(0
o)] - >^ 

0 

A statistical inference analysis of cyclic queues follows; note, however, 

that we are making statements only about asymptotic properties of esti- 

mators . 

Let tfn,a,b) - likelihood due to the n  transition, where the system moved 

from state a to state b. 

T (n,a,b) ■ time spent in state a on transition n » (tß*^ *), n ■ l.,.S 

Assuming exponential service times, it is easily shown that the density 

function of T (n,a,b) is given by 

M 
(2.22)  f(T(n,a,b) - E ^ ^[mCa)^] 

i-1   ^ ^ 

p        M 1 
L -T(n,a,b) S Uj ^Ci^Ca)^] J exp 

i-1 

where the indicator function now depends on n. The transition probability 

for the n  transition is obtained from (2.4). 

M 
11  23)   /    x   S. ^ ^^L^^ " »i^») " ^ QZ.ZJ;  ir(n,a,b) - jjl  ^^       

"M 

i«l   M * 
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Then (ßtt.a,!)) Is Just the product of (2.22) and (2.23). 

M 
(?(n,a,b) -  S m Ijfi^b) - ^(a)-!] 

i-1 

r        M -i 
exp[ -T(n,a,b) S ^ ^liiCa)^] . 

i»l 

We assuned S transitions occurred in time T. The probability that the 

(S+l)*' transition occurred after T is (tg <T) 

M 
PCTs+1>t-ts] - exp[ -(t-ts)   S  n, IgCi^Ca)^] 

Assume, also» that a stationary distribution in time exists. Then the 

observations start when the system is in state P(0), say. The likeli- 

hood function is asymptotically equivalent to 

M S 
Ls(e) - P(0)eocp[-(t-ts) £   H, IsCniCa^im   <p(n,a,b) 

0 i«l *i-l 

or more conveniently, 

II S 
In LgCe) - In P(0)-(t-ts) S h IgCn^a)*)] ♦ S IA <p(n,a,b) 

"''"" i«l n»l 
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In large sample theory, the starting conditions can be neglected. 

M S 
In Ls(8) - -(t-tg) L ^ IgCi^Ca)^] + £ In ^n,a,b) 

i»l n=l 

and ignoring end effects, we get 

S M 
In L (9) -   "C  In   S  h ijn (b) = n.Ca) - l] 

n»l       i»l 

S M 
-   S   T(n,a,b)   S   lit I Cn.(a)>0] 

n-1 l«l n   i 

In order to estimate the M parameters, ^ ,  it will be convenient to 

redefine the sum-nation indices. 

Let di ■ vhe number of times during T that the completion was at 

stage i. 

S 
-  S I M^) - UiCa) - 1] 

n»l 

Then, 

S    M M 
S In S ^ I [n.(b) - ruCa) - l] - S d. In ^ . 

n-1  i-1   n 1    ^       i-1 i 

Let y^ - the amount of time during T that ni(a) > 0 
S 

- Z   T(n,a,b) I^Ca)*)] 
n«l 
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Then, 
S II M 
S   T(n,a,b)   2^ iCn^la] •«    S  yi ^ 

n-1 i=l i«l 

and 
M M 

In L (u) -   S  dj In m -   Z yK ^ 
s i-1 i-l 

Let 
31a L (ji)/öp.1 - 0     , then 

d1/iil   - yj = 0 

and the maximum likelihood estimator of   t-^ is, 

^i - diAi i=l,...,II 

In order to obtain the variance-covariance matrix, we use a procedure 

of conditioning on a particular transition, then on the state, and 

finally removing the conditioning. 

Let 
G(lAi) - yb\h  In <o(n,a,b) 

M 

In <p(x\,a,b) - In S m I^CnjCb) = n,(a)-.ll 
i«l 

II 
- T(n,a,b) S m ^[n^la] 
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Consider a particular station 1, sa>. 

-l/m - T(n,a,b)      if at 
-T(n,a,b) If xki 
0 otherwise 

.2,*.. ...   ,     ^ .x       . ,   2 

b » nt |a - 1 
a>0 

r a /SMti   In ^n,a,b) - -I/Ms     if i-j and nj |b - n! ja -1 

J        0 otherwiae 

Then, under suitable regularity conditions on <p(nta,b)   (See Billlngsley 

[2] for conditions on Interchanging order of Integration and differenti- 

ation) 

V( CKMk^n^la ) - - E( G(^1Hi)fn,a,n|io|a ) 

^2 ^ 

i-1 

i-1 

Also, 

V( GCli,) ) - E( V(G(u1)|a ) ) -   S  VCßClijla) ff(a) 
a-1 

L ir(a) 
a£A.(n.^l) M 

i-1 

Substituting (2.9) for   ir(a) 
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S      P(a) 
(2.24)     n^M)  - agJl^yfl.) 

A      K 
H, S P(a) S ix. iCn.^la] 
a-1    i-1 *   a 

We have already defined (1-Dj) as the fraction of time the 1  stage Is 

working; the numerator of (2.24) Is precisely (l-D^). If we expand 

terms In the denominator ve have, 

V( GOi,) ) - 1-Di 

where R - (l-D^)U^ Is the output of the system and Is the same for each 

stage 1. Then, 

V( G(ji1) ) -1/M^2       =t  o(f) 

Is a diagonal matrix. 

We are Interested In the Inverse of    0(0), 

(2-24a) Vasynp(/S(^ " h)) ' MlV 

Note also that the asymptotic variance has a slightly different 

form If we normalize on T Instead of on S. The change Is equivalent 

to multiplying (2.9) by the limiting form of T/S which is clearly 

l/i,&i1(l-Di). The variance becomes 

(2.24b)   asyinP ^ 
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Now the dependence on the  time average probabilities appears formally. 

In order to test hypotheses on the   lij , we make use of equation (2.21) 

Noting that the maximum over  £ of the likelihood function is obtained 

when we substitute the maximum likelihood estimators,  the test that, 
0  /..o ..0, V- «(pj,....^) is given by 

2C S   <L la (cL/ViP?) +   £  y.n, - S] -X* 
i-1   ^ i-1       1 M 

We can define an appropriate constant for any level of significance and 

check that the test quantity does not exceed the constant. 

In particular, we might want to test the nested hypothesis that all 

of the  pt are equal.    The likelihood equation reduces to, 

M 
In Ls(]i) -Slnii-nL   y 

and ii « S/ E  y. 
i-1 

The appropriate test quantity becomes, 

2C S (L In {^M) ~ S ln(S/ S y ) ] - jg n 
i-1 i-1 1      x 
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7.    Customer-Dependent Service Rates 

The probability structure of the cyclic queue model can easily be ex- 

tended to the more general model in which the service rates are occupancy- 

dependent; i.e.: 
-h(n)t 

F(t;i,n) - 1 - e 

For example, in certain production systems it is possible that the service 

rate varies at the number of cus Comers gets larger or smaller at each sta- 

tion: the steady-state probabilities turn out to have a similar form to 

(2.1). 

Theorem II-5: For a cyclic queue with customer-dependent service rates, the 

steady-state probabilities arc given by. 

N-nWa) 
(2.25)       P(a) - P(N,0,....0)   n        u, (IJ-k+1) 

k*l   
K     ntCa) 
n    n    ^(k) 

i=2   k--l 
where a product is interpreted as unity if the upper limit is zero. 

Proof;    The steady state equations are given by, 

M It 
P(a)   S   ^(ntCa)) lEn^lal-   S nt-1(n1,1(a)+l)r(a(iJ.,i))lCn1>o|*(iJ.,i)] 

i-1 i»l 

From (2.25), 

P(a(i-l>i)) ■ P(N,0„#.0) nx     MN-k+l) 
     k«l ___« 
M       nA&) ivi iCahl rbU)-! 
n      ft    h(k) a       n, .(k) rr     ^(k) 

j-2      k-1       J       k-1 1"J-     k-1 

^(a) 
P(a(i-l,i)) - P(N,0,...0)   H        ikdWc+l) PiCruCa)) 

k^-l        x  
"S    nJD ' 
n      ri      ^(k) ^^(^^(a)*!) 

j-2   k-1 
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Therefore the right hand side reduces to 

r litCnjCa^lCn^la] P(a) 
i-1 

by assuming (2.25) is true. 

Unfortunately, no further reduction of (2.25) is possible for further 

analysis of operating parameters. Particular problems of interest, how- 

ever, shall be handled directly. 

For example, the multiple server problem can be analyzed directly 

using (2.25). 

S, 
Let 

r kiii      if 1 <   k < 
1*1 (k) -I S,iii    if    k> S,~ 

where S^ is *:ho number of parallel channels at service center i.    As a 

special case let S^ ■ S,  S^ " l(i ^ j).    The steady-state probabilities 

reduce to. 

if n^a) < S 
P(N,O,#..O) n ik^ 

k=l 

(2.26)           P(a) - 
nji 

8.    Conclusions 

P(N,O,..#O) n xk 
k=l 

n^aJ-S 
S« S J 

* 

if n^(a) i S 

We have stated Koenigsberg's key results for cyclic queues, and have 

indicated some extensions through analysis of the related Markov process. 

With these fundamentals as the base, we will next investigate more gen- 

eral queuing networks, and show that the structure of the state probabili- 

ties is similar to that of the simple cycle. Then, the results derived 

here will be used to analyze these more general structures. 



Chapter III 

GENERAL NETWORKS OF QUEUES 

1. Introduction 

W« now investigate general closed networks of queues.   The relationship 

between these networks and Koenigsberg's cyclic queue model will be further 

developed and we will compare our system to the so-called Jobshop system of 

Jackson [4] and Cs]. 

2. Jobshop Systems 

Jackson [4] and [5] has described what he calls a lobshop-like queuing 

system. Such a system is defined as obeying assumptions (1) - (3) of Chap- 

ter 1 (where N ■ *) plus the following: 

(4) customers from outside the system arrive at server i in a Poisson 

process with parameter 3i 

(5) once served in depaxtenant i , a customer goes to department j 

with probability Pj*  ; he leaves the system with probability 

l-   ^   Hi 
i-i XJ 

Obviously, these assumptions mean that the probabilities of movements of 

a given customer are independent of his previous history. As Wolff [Ml 

has pointed out, this is precisely not a jobshop model, as it allows u 

customer to cycle in the system forever without ever leaving it. In a typi- 

cal Jobshop, if an item returns to a machine for re-working, there is a 

strong likelihood that either the service time distribution is different 

than on Its first pass, or the movement probabilities are changed or both. 

28 
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Instead we vill refer to Jackson's system as an open network of queues. 

Kls results give insight into the closed or cyclic queuing networks, and 

they are also useful in the analysis of appropriate systems. 

Jackson's main result is as follows: 

Define: 

(3.0) V?0i(r'M)ni       "i-1"- 

where P0 - p[ Server i is idle ]      and 

K 
rt ■ p! + r p. T, = average arrival 

k-1 ^ * 

rate of customers to server i from any source. Then, (iff Tj < jlj) 

(3.1)   PCr^....^) - PniPn2 Pj r^I 

Equation (3.1) is a powerful result. The steady-state probabilities can be 

treated as though each service center were independent. The result is simi- 

lar in form to that for queues in tandem. 

Based on equation (3.1), we might expect that for the cyclic queuing 

network the steady-stat probabilities take a form similar to the series 

cyclic queuing formula (2.1). Jackson [4] has extended his model to in- 

clude the cases where the service rates depend upon the number present; how- 

ever, he has not eliminated the assumptions that belie the Jobshop descrip- 

tion. We will now define such a system in detail and prove that our 

intuitive feeling is correct. 

3. Closed Queuing Networks 

A closed queuing network was defined in Chapter I. We will repeat it 

here for clarity. 
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We define a cl^ad queuing network as consisting of 

(1) a finite set of N customers  (serviced units such as airplane» 

shuttle cars, machines) 

(2) a finite set of M single channel servers   (service stations such 

as machines, repairmen,  etc.) 

(3) a set of arcs  (1,J) which represent the allowed  (Instantaneous) 

movement from station 1 to station J. 

We will also make the following assumptions: 

(1) All customers 1 =• 1,2,«..^ are identical units in terms of their 

stochastic behavior in movement over the network, and in selec- 

tion of a service time at some station J ■» 1,.. .M. 

(2) Movement over the network is governed by a set of given transi- 

tion probabilities, p^i. 

p.. ■• P   [ customer moves to station J    | he has ju$t com- 

pleted service at station 1   ] 

We assume tnatjEp *i ■ 1, and the associated Markov chain 

is Irreducible. 

(3) The service time distribution F(t;i,n)  at station 1 is the same 

for all customers, possibly dependent on the total number of 

customers at this station, n « 1,2...N.    In particular, we 

assume: 
-h (n)t 

F(tji,n) - 1 - e 

For clarity consider a typical network as Illustrated In Figure 2a. 
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Figure 2a Figure 2b 

Closed Quelng Network and Improper Network 

Note that we do not preclude subloops anywhere in the network. If we con» 

sider station 1 as being in a main loop, note that stations 2, 3, and 4, 

and A, 5 form subloops. This implies that any customer could cycle Indefi- 

nitely within the network without ever returning to station 1; however, 

from assumption (2) this event has probability zero. Figure 2b represents 

an improper network; stations 4 and 5 and 6, 7 do not communicate with the 

rest of the network, thereby voicing assumption (2). 

We defined q. in Char car I; they may be found from 

M 
(3.2) i-l,....M 

Note that if they were normalized by using (3.2) and 

M 
S q, - 1 

they would represent the steady-state probabilities of finding a given 

customer (N - 1) at station 1, of the Markov chain. 

Note also that the absence of any subloops other than those contain- 

ing station 1 makes the solution of equations (3.2) almost trivial; this is 
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caused by the ttear-cric-gularity of the set of equations. 

Using the same notation as in Chapter II,  the time average steady- 

state equations are. 

<3-3) M MM 
P(b) S ^ iCnjXjlb] -   E    S  n, p,, P(b(j,i)) lCn$>0|bCj,i)] 

i"l J»i i-i 

We note that these equations cover all of the possible transitions in the 

imbedded irreducible Markov chain for if a particular center j does not con- 

nect directly to center i, Pj j • 0, and that term is eliminated from the 

equations. 

Theorem III-l;    The solution to system (3.3)  is given by, 

(3.4) 
M      n,(b) 

p(b) - P(N,O,..,O) n xi 
1 

i-1 

Proof;    From all of the previous assumptions about the process it is enough 

to show that (3.4)  satisfies  (3.3). 

Define: , ,      K      n.Cb)       n (b) 
Y(b) -Ho1     / q   1 

i-2 ^ ■L 

where b represents the usual point coordinates of    .    From this definition, 

it is clear that  (3.4)  is equivalent to, 

M n,(b) 
P(b) - P(N,0,...0)    n   (^/u ) 1       Y(b) 

Also, from physical reasoning, 

I(b(j,i)) - Y(b) q^       (j^i) 

If (3.4) is correct, 

^ Pji pCbUA)) - P(K,O,...O)L n (^/Mi) ±   J   p   y(b(j,i)) 
i«l i J 
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For j - 1, 
P(b(l,i)) - P(b) y^ 

ani     \ hip(b) Vyi"p(b) qi hi yi 

Therefore, equations  (3.3) reduce to, 

K , M M 
P(b) T   ^ iCx^^lb] - P(b)C S ( Pii Vi q! +   S  n^qj ^Cx^Xjlb] ] 

— 

M 

h/*± *2 Pji ^ - ^A(qi - ^Li ^i) 

■ ^i - yi Pu ^1 

but 

and the right hand side has been reduced to 
M 

P(b) S   u   iCm^lb] 
i-1   i 

so relations  (3.3) and (3.4) are equivalent. 

Theorem 111*1 is a powerful tool because the forms of the tüne-average 

results of Chapter II can be used here with suitable modification. 

Let: 

0^ ■ average number of customers served at center i per unit time. 

Then obviously, 

(3.5)       0i - (1 - D^  where (1 - D^ - PÜserver i is busy] 

Note that 
ei ^ e.j    J-1,...M 

i.e., the number of customers served per unit time is not identical at each 

state as in Chapter II. To show this, (3.5) can be expanded so that, 

ei " ^ «li ZM-I        (i-l...M) 

In Chapter II,    qi - qj (i,j - 1...M) and hence Bi m6\  • 

But in our general network, q^ jt qj and 
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ei-ejai. 

or the nomallzed service rate at station 1 equals the normalized arrival 

rate as we would expect. 

We can relate all of the output rates to ^, say, 

(3.5a)     Öj. - Öl Qi/^L , 

and the mean number of customers served in the system per unit time is, 
M M 

i-l    x   ■*■ i-1 ^L 

Then, 

(3.6) P [a glyen transition is out of state i] ■ ö.^ 

- Qi/ S q± 
i-l 

We see that In the case of a cyclic queue where qi ■ qj (l,j - 1...M), 

(3.6) reduces to, 

r -,     l 

P L transition is out of state 1 J s ^ 

Before we Investigate the mean wait, it will be necessary to find the 

steady-state probabilities,   ir(b), of the associated Markov chain, and show 

that they retain the properties of the cyclic queue. 

Theorem III-2;    The Markov chain steady-stati probabilities are given by, 

M     M       ^(b) M 
(3.7) ff(b)-:L/B£     nx, ^       L   ^ lCn.>0|b] 

i-l   x        i-l 1 

We recognize  (3.7) as the same form as  (2.13), where the general network 

structure Is Incorporated into the definition of Xj,.    I.e., 

xi - yi/y± - (»V^AvV 
Our assumptions here are the same as those of Theorem II-l and hence the 

are the probabilities of a single irreducible Markov chain.    There- 

fore It is enough to show that (3.7)  solv^« 



35 

C3-8)     jr(b) - S tr(b,a) ff(a)     (b€A) 
acA 

Equations (3.8) can be written as, 

MM M 
ffCb) -   S     S   ff(b(i,j)) up.. iCn^lb]/   E   n, lCn,>0|b] 

■'-1 j-l 1 x:i      J i*l   i      i 

If  (3.7)  Is true, then after some cancellation 

M       n (b) M 
^(b(i,3)) - (iM) x.   n X, ^      X.   Sti  lCn,>0|b] 

Then, 

N     M   M M       a (b) 
ff(b) - (l/Bj) S    S  l/q     n   X   "      u   q^ p     I[n >o|b] 

1-1 j«l      J k-1   k i ^   a-d       J 

Now Interchange the order of summation and, 

M  M n. (b) M M 
ff(b) - (iM) nx.11   SCl/qJu. lCn,>0|b] S p  o. 

M k-1 K   M  J J  J   i-1 iJ 1 

but   ^ PJ j Qj ■ q.       by definition, and the theorem ts proved. 
^ ij i  j 

Thus, the Markov chain probabilities also retain the same form as in 

N 
the series cyclic queue. We should note, however, that BM cannot be 

determined by using formula (2.12). 

4. Customer-average Wait in Queue 

Analogously to Section 5 of Chapter II, define: 

ff^(b)    " P [system In state b just after the next arrival to 
w 

station J ] 

Then, 

M 
S ff(b(i,j)) p., p.. iCa^lb] 

ir (b) .  1^1 1   12       J  

PCnext transition is an arrival to j] E ji iCn.^olb] 
i-1 *•     1 

We know from (3.6) that, 

r M 

P L next transition Is an arrival to j ] - q / E a 
J i-1 ^ 

Therafora, from (3.6) and (3.7) 
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„  M     M  n.(b) 
(3.9) (y,/Bg)( I) q^) U ^ 

r   J     i-i ^ k-i ^ 

Define the random variable: 

Rj • number at station 1 Just after an arrival at 1. 

Then, 
M  M M  n. (b) 

(3.10) E(R)-(yX) E q     E  % n, D I ^ 

and the mean wait Is given by, 

(3.11) E(Wi)-E(R,)/iii 

if nj >1 

otherwise 



Chapter IV 

MISCELIAN^OUS EXTENSIONS 

1, Approximations to Open Systems 

Gordon [3] has also formulated a general closed network model. He has 

left the solution to the steady-state equations In a more cumbersome form 

than (2.1) and he has not shown the reduction in form to the cyclic queue 

case. His formulation is used to analyze the following two problems: 

a - Asymptotic results for the marginal distribution of the number of 

customers at a service center as N - », M finite; and as M -• », 

N finite, 

b - Cyclic queues with limited storage space for customers between 

sfervice centers. 

His results on the Jlrst of these problems are relevant here. He has shown 

that as N becomes unbounded one can make two meaningful observations: 

(1) the number of customers at the slowest service center, S, also 

becomes unbounded and hence the center Is always busy; 

(2) the marginal probability distribution for the number of customers 

at stage 1 ( &*>&<.  ), becomes geometric in the single channel 

case. That is, 

PCiii) - P^X^i 

Suppose we treat the slowest center as a Poisson input stream to the rest 

of the network. Using Jackson's definitions from Section 2, Chapter III 

we get, M 

rs-v   ri-i;^rk   li*a) 

37 
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It can easily be shown that F. reduces to 

Hence, 
ri " "s \ 

p^) - p/ (ly./1. P/ x^ 
which Is Gordon's result. Thus, the closed network system Is asymptoti- 

cally equivalent to an open network system. If more than one service cen- 

ter has the slowest service rate, Gordon's result holds only for the 

remaining centers with faster service rates. 

2. Customer-Dependent Service Rates 

For a general network structure we can easily handle a service distri- 

bution which is of the form 

-M.. (n)t 
F(tji,n) = 1 - e :L 

We assume that the internal movement probabilities remain fixed with respect 

to the number of customers at a service center.    Then,  it is easily shown 

that, 

N-n. (a) M       n. (a) 
p(a) - P(N,O,...O)  n1   ^(::-k+i)n ^ :L 

k=l        "• 1=2        _ 
"K £TD N-IL (a) 

H n n,(k) a      ■L 

i-2 k-1 '        ■L 

where ^n upper limit of zero in a product is interoreted as unity.    We 

can specialize this result to. 
{kn.    if l^k^S. 

pi(::) "   Si ^i   if k ^i 
where S^ ■ number of parallel channels at service center i.    Letting S^ ■ S 

and Sj » 1 (j ^ i) we get the same result as  (2.26), i.e., 

I  v \^ P(N,0,.., 0)   IT X 
if ^(a) < S 

P(a) - »i i 

P(N,0,...0) (1/S' S 1 )UK lf HM * s 
k-1 K 
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3.    Comparison of a Single Customer  (N=l)  and a Two Customer OS"!)  Svsteai 

For a single customer system there Is no interference anywhere in the 

system.    The steady-state results can be summarized as follows: 

if n^a) - 1 

otherwise 

if n^Ca) • 1 

otherwise 

if niCa) = 1 

otherwise 

P(a) - 
VSXi i-1 

^0 

ir(a) - 

1      M 

i-iu 

1° 

\(a) - 
(i 

1° 
EC^) - i 

Li\) - 1/^   , and E(Wq(i)) - 0. 

We note that the Markov chain probabilities are independent of the service 

rates whereas the time average probabilities depend upon both service 

rates and normalized arrival rates (q^). If the q^ were normalized by 
M 
S q.  » 1 , 

i-1 i 

the Markov chain probabilities of the process would be identical to the 

Markov chain probabilities of a random walk through tht network, i.e.. 

"(a) $■ 

if nj» - 1 
otherwise 

For purposes of con.parison with a two-customer system the most mean- 

ingful parameter that shows interference is £(w (i))   the mean wait in 

queue. Omitting the details we get, 



E(W ) - q^2 +   E   TT )/ S   qi B^ 
j^L   ^^ J    i-1 

E(Wq(i)) - ^ X^lq, B^ 

E(WJ 
Lot L^ b« the ratio of "SIwTiT) r 

For N ■ 1, we get 1^ " w ,no  interference. 

For N - 2, we get. 

L. - 2 + il/X..)   S X, 
1 jri 1 

" 2 + (Vvx)^ 

Asy^ gets large, L^ increases linearly. One can increase y. by increasing 

the service rate or by decreasing the probabilities of reaching service 

center 1. Thus, for a center with a fast service rate and small probability 

of being reached L. is large and we have little or no interference; for a 

center with a slow service rate which can be reached with high probability, 

Li decreases and we have more interference. Notice that if p is large but 

finite we always get some interference. In fact for N ■ 2, 

ir(a) - X^/feJ;    if ^(a) « 2 

" *>i2 V*i 4 

the probability is inversely proportional to p. and hence is small; it can 

be neglected if "V^ is large enough. 



As we Increase N, the Interference terms get larger and it is not 

apparent that even for fast service centers the mean delay In queue will 

be close to zero. 

A. The Marginal Distribution of the Number of Customers at Service Center i 

Reference has been made to Gordon's (3 Iwork on marginal distributions 

of the number of customers at service center 1. He has concluded that not 

much can be said In general about these distributions and he has developed 

asymptotic results for them. We can, however, prove a property of these 

distributions that will be of value in one of the optimization problems to 

be considered In Chapter V. 

Define: 

Pl(k;N) ■ P Ck customers at service center i when there are K in the 

system ] 

Theorem IV-1; Pi(k;N) has an IFR (Increasing failure rate distribution). 

Proof; The failure rate function is defined as, 

N 
r. (kjN) - PiCkjN)/ S p (j-N) 

It is necessary to show, 

(4.1)     r^kjN) ^ r^k+l;!!)      for k - 1,....1WL 

where N Is arbitrary , 

We proceed by induction on N, 

S-l: r^d;!) - 1 by definition 

r^O;!) - p^O;!) <1 irsplyins ^(O;!) * r^aji) 
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Now assume ^(k;^') ^ r^k+ljN) for k = 1,..#,N-1 

and we will show (4,1) for N+l. From the definition of t<(k;N), (4.5) 

reduces to 

M n. (a)  N r^(a) 
Pi(lc;N)/p. (k+ljN) ^ 1 + (  S    KIL*   )/   Z xk^ 

x a^ni-k) k-1 K    j-k+1 acA^ni-j) 

or 

k N-k  N   . „ . 
(4.2)  p.(k;N)/p.(k+ljN) ^ 1 + (X, Z^)/ S ^ C? 

11 J»k+1 ^ 

N 0 where 2« is defined by (2.2) and Z^r = 1. We need to show 

p^lKD/p^ljN+l) ^ 1 + (X.k 2^+1)/ ^ ^ ^+1 

NOW'        p^N-D/p^i^i) - ^V*1^ - «f^S 
- Pi(k-ljN)/pi(k;N) 

But we have assumed the result is true for N.    Therefore, 
k-1 N-k+1     N     j    N-J 

p (kjN+D^Ck+ljN+l) < 1 + ^     ^    )/SXi   Z^ 
J«k 

But, 
N     J   N-J N+l       j   N-j+1 
El    Z^.dA)    s    x    ^ 

j-k i x   j«k+l 
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Therefore, 

k N-k+1  N+l   j N-J+l 
PiCkjN+D/piCk+l^+l) ^ 1 + (X ^   V s ^ ^L 

establishing the induction. Hence p^O^N) is an IFR distribution. 



Chapter V 

OPTIMIZATION PROBLEMS 

1.  Introduction 

Managers of service systems are concerned with more than an analytic 

description of steady-state operating characteristics; they face economic 

problems, such as maximizing output, subject to resource constraints. For 

example, service rates in a coal mine may be linearly related to the num- 

ber of workers doing a specific Job; given a limited total number of 

workers in the mine, the problem is to allocate them to the work stations 

in order to maximize output. Or, a manager of an engine overhaul facility 

is Interested in adding parallel production lines to increase output, or to 

reduce the probability of having no engines in service, and wishes to know 

if the benefits obtained will offset the extra cost. 

These two examples offer a contrast in approaches to optimization 

problems. The former is more or less s. continuous decision problem in the 

control variables, while the latter is a matter of costing and comparing 

specific alternatives using the results of Chapter III. In this chapter 

we shall examine the continuous decision problems in order to see if we 

can infer some general properties of the operating parameters of such sys- 

tems. An example of discrete selection can also be found in Section 5. 

2. Cost-Performance Alternatives 

The two examples of optimization problems stated above provide a natu- 

ral focus for two major classes of problems. These are: 

44 
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1 - Allocation of resources to an existing queuing network. 

2 - Design of a new queuing network and/or alteration of the structure 

of an existing network. 

In both classes of problems the decision maker is usually interested in 

optimizing cost or performance, or in evaluating tradeoffs between cost and 

performance.    Let us consider some possible forms for these problems. 

For allocation problems we can identify the following major elements: 

1 - Objective function - minimum cost, maximum production,  etc. 

2 - Technology - the necessary work stations In a network to process 

the customers,  the arrangement of the work stations, the rules that 

define movement in the network,  the relationships between resource 

inputs and service rates. 

3 - Resources - labor, machines, capital, equipment that can change 

the technology, etc. 

A typical mathematical form for such a problem is, 

Max F(JO subject to 
(7,1) M 

i-1   i 

^ i 0 

where 
»*- 0^....^) 

Here, k^ is the amount of resource (such as labor or capital) allocated 

to service center i, L is the maximum amount of the resource, and the 

service rate depends upon the allocation of the resource; F(p ) might be 

production rate, or cost rate, and its form depends upon the technology 

of the system. 
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We night also consider the possibility that the technology represented 

by the network can be altered by changing the internal movement probabili- 

ties. For example, suppose that revenue is generated each time a customer 

is served at service center i and that a cost, cj* (per hour of operation), 

is associated with his movement to service center j. We can program the 

^11 ky t:^e following problem: 

M 
Max G(l-D.) - S c, .p..     subject to 

(V.2) ^  j-1 1J 1J 

M 

^ P-M =:L '       Pii ^ 0 

where G ■ revenue per customer 

The first term In the objective function is the average revenue per hour 

and the second term is the average transportation cost per hour. Note that 

the p^j appear implicitly in the first term in the defiultion of D,. In 

solving problem (V.2) one must be sure that the programed p.-, do not 

violate the assumption of irreducibility of the associated Markov chain; 

such a violation could occur if one or more of them had a zero value. 

Next, consider a cyclic queue model of airline maintenance operation 

where a plane is served at two maintenance stations and than goes into 

flight.  (.Figure 3) 

-^ dB        ^- 

Flgure 3 

Airline Maintenance - Cyclic Queue 



A plane earns $1 for every hour in service and it costs $ r for every hour 

of waiting time in queue. It would be of interest to describe the function 

of net revenue versus the number of planes, N, in the system in order to 

determine the marginal cost of congestion. On every cycle through the sys- 

tem the net revenue is, (expected value) 
3 

1 - r E  E(W (i)) 
i-1   q 

This type of problem is a typical example of a design problem.    Another 

type of design problem would be the measurement of increased system output 

by increasing the number of service channels at a station end comparing 

the cost of increased service to the value of extra output.        See    [6]    and 

[7] for example. 

3.    Maximization of Production Rate 

Let us reconsider problem (V.l) as applied to a cyclic queue where the 

service rates are proportional to the resource and the objective is maximi- 

zation of production rate, i.e.. 

Max F(li) - (W^) P. subject to 

(V.la) M 
S   n.  *L 

i-1   1 

U. ^ 0       for all i»l,..,,M 
i 

where       H. - CK., q« 1 for all i, 

and C is a constant. 

The problem can be reformulated as, 
M 

(5.1) Max SKu) - F(n) - a( E   u   - L) 
i-1   i 

where   cr is the well known Lagrangian multiplier.    If F( a) was a concave 

function the solution of (5.1) would ' z at hand for the condition for a 

stationary point. 
SO/a^ - 0       i-l,.,,.M 
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is given by, 

(5.2) (i-jy - ^ ao^a^ - (IJK) - ^ SDj/au i,j - I,##..M 

Concavity of F(n ) could not be shown because of the difficulty of analyzing 

ratios of polynomials. For example, consider the elements of the Hessian 

matrix of F(n): 

(5-3) 2 
^ ^p/a^Z . Var(L(i))Di - ( E(L(i)) )\ - E(L(i))Di 

(5.4)   ^ A/a^öji - Covar(L(i),L(j))Di - E(L(i))E(L(3))D - E(L(j))Di 

*(E(L(j))+l)  S    n.Ca) nx.^^ 
aC(r.-0)  0   k K 

a 1 
These terms have proven too difficult for analysis in general and hence we 

cannot conclude that F( lO is or is not concave. However, we can solve 

problem (V.la) without requiring concavity. 

Theorem V-l; The optimal allocation of resources for problem (V.la) is 

\i± - L/to  for all i»l,.,.#M 

Proof; 

We state the obvious fact that F(p,) Is homogeneous of order one. 

Therefore the solution lies in the plane, 

M 
E u » L 
i"l 

Next we prove. 

Lemma (5.1) - F(^)  is concave In its orthogonal directions, i.e., 

aSp/a^2 < o 
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Proof: From equation (5.3) it is only necessary to shrw, 

(5-5)     Var(LCi)) < ( E(L(i)))2+ S(L(i)) 

2 
Define K » coefficient of variation of the distribution of L,. 

Since E(L(i)) > 0 ,    (5.5) reduces to 

K2 <1 + lA(L(i)) 

By Theorem (IV-1) the distribution of L. is IFR; Barlow and Proschan (j[] 

have proven that if a distribution is IFR, 

2 
K ^"1  and hence,    o 

K < 1 + l/E(L(i)) 

proving the Lemma. 

We also note that F( IJL) is synmetric with respect to the service 

center, i.e. If (i0 is a permutation of {: , then P(|i0) ■ F(ji) 

Now let, M 
Gi - f p, | L ^ - L } - set of all vectors,^, in the 

i«l        plane. 

Consider some (i C G, and let 

G, - {\L.,,,.0vJ 
r        I.,    M 1 such that if 

^ c (^ and Hj e G2 ,     \i.± >  n^  for all i,j 

Now consider some other vector p. e G, such that 
P-.0 - ^ + 8^ €  for all M^ C % 

^.0 - ^ - ^ c  for all ^ € G2 

where  €>0     is arbitrarily small,  m.  i 0, n. ^ 0 , 
k M ii 

and   S a,. ■ 1 ■  S  rii 
i-1 :L    i-k+l 

Because the solution plane cuts the space of ^ symmetrically, one can move 

to any vector ^0for which the service rates are more out of balance than 

In |i , by the indicated operation. The symmetry of F with respect to the 

service centers allows us to consider vectors only on one side of the 

balance point. The directional derivsf.ion of F trom M- to ^0 is given by. 



50 

k K 
ap/Ö^i - € ( E m. ap/on. -  S n. öF/S^ ) 

i-1 1      i-k+1 1   :L 

Let u. ■ l-Iin ^ and u - Max p« 
ic^       s  i^ ^ 

As a consequence of Lemma (V.l), if p, ^ |i 

öF/ö^ i ap/au # 

Then, 
k 11 

aF/aii < c ( öF/öii     E  a, - ÖF/Sa      S    n.  ) 
r i-l   ^^ s i-k+l   1 

or 
ZF/hv- < < ( öF/ön   - öF/ap    ) 

* S 

But n ^ (i  by previous assumptions implying 
•C   s 

SF/Sn s ÖF/Op 
•       s 

Therefore, 
ap/afi < 0 . 

Now if n « (jj'/HfL/ti) then for every vector pi0 € u, 

ap/au s 0 Which implies FCy.0) < F(L/H,...LAl) 

Hence, production rate in a cyclic queue model can be maximized by equaliz- 

ing the service rates. Without much difficulty, we will show that this 

result can be extended to a more general class of networks. 

Corollary (V-l); Given a network for which, 

q» q   for all i,j 

the optimal solution to problem (V.la) is, 

Uj-l/fc  i-l,...M 

Proof; The proof of Theorem (V-l) rests on two major characteristics of 

cyclic queues. These are: 

(1) (1-J^) u- Öi - 9   i.l,....M 

(2) LJL has an IFR distribution. 
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We have previously shown (Chapter III) that if q. ■ q,. , 

(1-^) H   - 0i » 0 i=l,....M 

and that L^ has an IFR distribution for any network. Therefore, TheoremC/-1) 

is valid here. 

This type of network corresponds to one in which there i*  completely 

random internal movement such that each service center It equally likely to 

be visited by a customer. 

The treatment of problem (V.la) for a network where the q* are arbi- 

trary is analytically untractable for the following reasons; 

1 - F(^) - (l-Dj) Pi is not a constant for all I • 1...M. 

2 -  F( p.) may not be concave. 

3 - F( (i) is not symmetric with respsct to 1 except In the special 

case noted In Corollary (V-l). 

Let us suppose that the production rate is measured at a single service 

center, i, whose service rate is fixed; our problem reduces to allocating 

the resource to the M-l other centers in order to maximise (1-D<) \J,J. 

Let us fix our attention on the single-customer network (N ■ 1). 

Theorem V-2; For a single-custoner (N ■ 1) closed network of queues and 

the following problem: 
llax (1-Di) pu   subject to, 

the optimal solution is. 

(5.6) (i - Li/qJL/o 
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Proof: Differentiating the Lagrsngisn function, 

(l-^i) n. - or( L n - L) 

yields (5.6) as the stationary point. It is only necessary to show that 

this point is a maximum. Omitting the details, it is easily shown that the 

principal minors of the determinant of the Hessian matrix, of (l-Dj) p,  , 

alternate in sign and hence (5.6) represents an optimal solution. 

For a system with an arbitrary number of customers, we can start out 

with (5.6) as a solution and then check to see how close we are to the 

stationary point. One can then iterate a few times In an attempt to get 

closer to the stationary point. It has been our experience that this pro- 

cedure is computationally feasible, and furthermore. It produces a near- 

optimal solution. 

4. The Marginal Cost of Co'.^esticn 

We stated earlier the problem of marginal cost of congestion in an 

airlines maintenance system. Net revenue is given by, 

3 
C - 1 - r S   E(W (i)) 

i-1       ^ 

and we wish to find C as a function of the muaber of customers, N.    We here 

already shown in Chapter IV that for 

N - 1,   E(W (i)) - 0 and for 
q 2   2   M 

N - 2,    E(W (i)) - oX   /B     £   q. 

Let X! - 1 qi » 1/3 

Xj - 2 q2 - 1/3 

x3 - 10 %  - 1/3 

After much calculation,  for K - 3, we get. 
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1 0 

2 1 -    .89 

3 1 - 1.89 
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CCM) 

Figure 4 

Marginal Cost  of Congestion 

If we treat N as a continuous variable, the cost curve has the form 

that Is illustrated In Figure 4. With such a curve, a manager can decide 

how many customers (planes) can be handled profitably In the system. If 

the revenues and costs are marginal values, then the system is  saturated 

at the value of N for which C (N) ■ 0 (Nil). 

5. PCA Airlines «• A Discrete Selection Problem 

FCA Airlines is a computer service between San Francisco and Los 

Angeles. Their fleet of planes consists of 5 Starstream Propjets; four 

of the planes run the regular service and the fifth one is held as a 

spare to be used when one of the others breaks down. PCA has heavy compe- 

tition on its route and whenever they do not have four available planes, 

customers are lost to other airlines. Presently the planes have a mean 

failure time of 150 hours which accounts for planned services as well as 

random breakdowns. The planes ace serviced in a two stage service station 
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where In-the first stage they are inspected, diagnosed and cleaned and in 

the second stage they are repaired or overhauled; the mean service time? 

are 2 and 10 hours respectively. Management has noticed that there are 

various times when they do not have four available planes and hence there 

Is a loss of revenue. They wish to consider several possible improvements 

in the maintenance system in order to cut lost revenues. 

The present system is illustrated in Figure 5. 

•3«. 
1            V *3t 

• 3c 
1    ; 2^^^ 

«>3of 

Figure 5 

Present System - PCA Airlines 

It consists of a 3 station cyclic queue, with 4 parallel channels at the 

third (or operating) station, and 5 planes in the system. Assuming that 

the distributions are exponential with mean service rates, 

\ - 1A 
it -1 Ao 

P3 - 1A50 

We can use the results of previous chapters to compute average lost revenue. 

Revenue is lost whenever there are fewer than 4 planes at center three. 

Therefore, (from 2.1 and summing to obtain the marginal distributions) 

P (n3 - 0) w 0 

P (n3 - 1) - .0017 

P (n3 - 2) - .0125 

P (nß - 3) - .0623 

P (n3 sc 3) - .0763 
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Hence 7.68 percent of the time at least one of the operating channels Is 

idle. 

The revenue statistics per plane are as follows: 

Capacity - 100 passengers 

Avg. Load Factor - .90 

Avg. Length of Flight       •• 1 hour 

Avg. Fare - $12.00 per flight 

Annual Flying Hours per Year - 4,500 

Avg. Annual revenue per plane ■ 100 (.90) $12 x 4,500 

- $4.85 million 

Avg. revenue lost per year ■ $4.85 x 10 I 1(.0623) + 

2(.0125) + 3C0017,» + 4(0) ] = $447,500 

Total avg. ip.venue per year «4 ($4.33 x 10 ) - 447,500 

- $18,95i,! 00 

The lost revenue represents 2.3 percent of total revenue« 

PGA Is considering installing a new maintenance facility that will 

improve the breakdown rate of the planes but will require the seme average 

service times. The new facility will incrc.se the mean tine between 

failures to 200 hours. Recalculating th<* me&^ures of Interest ve get 

P (n3 s: 3) - .0408 

and 

Avg. revenue lost per year « $202,000 

Hence, if the annual cost of the new facility is less then $245,500, It 

pays to Install it. We note here, that in these optimisation problems 

we are not directly concerned with flow rate but we are concerned with 

reducing the probability of not having enough planes to fly. There is 

also the possibility that with the new system the servicing technology 

cm change. With a little more time at the first station there is a 0.4 
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probability that a plane can go directly to the flight line and bypass the 

second stage. This structure is illustrated in Figure 6. 

Figure 6 

Modified System - PCA Airlines 

Assume that the new service rates are 

^ - 1/4      Y1 - 1/4 

K2 H2 - 1A0     To • V6 

H - 1/200 y3 - 1/200 

Recalculating the results, we get 

P (n3 ^2) - .0273 

Avg. revenue lost per year - $149,000 

Hence, if the new facility and new technology costs less than $298,500, it 

pays to install it. One could go on and compute the effects of many'other 

proposals; as long as we have closed form expressions the process could be 

computerized for larger problems. 

It might be of interest to note the effects of having 5 planes in the 

system rather than 4. Under the last proposal, there is a probability of 

.81 of having all 5 planes available. This means that 81 percent of the 

time a plane is idle and not generating any revenue. Consider the same 

system with just 4 planes. 

P (03 ^ 3) - .1825 

and 

Avg. revenue lost per year - $990,000. 
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The lost revenue Is about twice the annual capital cost of one of these 

planes and therefore the extra plane is economically Justified; note, that 

It may also be justified purely on a service level basis because an 18 per- 

cent chance of a cancelled flight nay not be tolerable to the public. 

' 

v 
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