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ABSTRACT

A compilation of techniques of analysis for ortho-
gonally stiffened, flat, rectangular plates, with
various combinations of loading and support conditions,
is presented. The specific types of plates considered
are sandwich, corrugated, rib-reinforced, and integrally
stiffened. Orthotropic plate theory is used as the
major form of solution throughéut the report.

A complete bibliography, consisting of more than

three hundred references, is included.
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INTRODUCTION

Historically, the first example of a stiffened plate
was a flat slab, reinforced by attached unidirectional
girders. Later, stiffening was provided by transverse,
as well as longitudinal, beams. Such configurations are
still prevalent in the construction of ships and bridges.
Concern about saving weight, while retaining strength,
in the design of aircraft resulted in the development
of sandwich construction, in which two thin plates which
carry tensile and compressive loads surround a light-
weight, but relatively thick, core designed to transmit
shear. Corrugated plates also have been a popular form
of construction for many years. However, the most recent
developments have been in the area of integrally stiffened
plates such as "waffle" and "dimple." The principle upon
which all of the latter are based is the removal of
material from the neutral axis of a flat plate by rolling,
pressing or punching, or upon the reduction of an origin-
ally flat thick plate by milling into a thin plate with-
ribs.

It is interesting to note, from the curve shown
below, that interest in orthogonally stiffened plates
has been increasing steadily. This, in itself, demon-

strates a need for this survey of work in the field.
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History of Interest in Stiffened Plates

A great deal of work in the area of structural
analysis of orthogonally stiffened plates has been per-
formed during the past twenty years. Many unique tech-
niques of solution have been presented and a great
number of specific problems have been solved. But, due
to such a wide scattering of work in this area, it has
been extremely difficult for the practicing engineer to
find, in a reasonable amount of time, solutions to
specific cases. For this reason, the writer felt that
there was a definite need for consolidation of this
research into a single report.

This study, therefore, represents a survey of the

most common analytical techniques in the area of
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orthotropic plates. Within the body of the paper, methods
of solution for sandwich, corrugated, rib-stiffened, and
integrally stiffened flat, rectangular plates under static
loading conditions are presented. In addition, a complete
bibliography is provided for researchers who desire to
study specific problems in more detail. Since the titles
of most of the listed papers quite satisfactorily explain
the contents of the papers, the bibliography should prove
to be a useful tool.

Basically, there are three major techniques of
analysis of orthogonally stiffened flat plates. The
first method is based upon the replacement of the actual
plate with a grid system of bars. The major flaw of
this method of attack is the neglect of torsional
rigidities resulting from interactions of the bars. A
second technique is based upon energy concepts. This
is rather straight-forward but errors are often intro-
duced due to a failure to satisfy all boundary conditions.
The third method of analysis is orthotropic plate theory,
which provides continuity of the plate. Although the '
latter method requires rather difficult solutions for
complex boundary conditions, this technique is the most
general and most accurate. For this reason, orthotropic

plate theory is employed throughout most of this report.
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The characteristic equation is first developed and it is
then applied to various plate configurations, loading
cases, and support conditions. Finally, experimental
techniques for determining orthogonality constants are
discussed.

The writer wishes to express his gratitude to the
U. S. Navy Marine Engineering Laboratory for ianitially
arousing his interest in this area. This report is, to
a large extent, based upon work the writer performed for
USNMEL during the summers of 1964 and 1965. The writer
also wishes to thank Dr. Michael C. Soteriades of the
Catholic Univerity of America for his kind advice and
to Dr. Richard D. Mathieu of the U. S. Naval Academy
for his encouragement during the preparation of this
paper. In addition, the writer wishes to thank

Mrs. Kathy Jones for typing the manuscript.
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PART 1 - DIFFERENTIAL EQUATION OF DEFORMED PLATE

The derivation of the differential equation of the
deformed orthotropic plate appears in many of the refer-
ences (1, 6, 7, 37, 4O, 41, 58, 97, etc.) cited here.

In the derivation, it is assumed that: the load
acting on the plate is normal to the middle plane,
planes normal to middle surface of undeformed plate
remain normal after deformation; loads are reacted in
shear and flexure; transverse shear deformation can be
neglected (this constraint will later be removed in a
refinement of the theory).

An element of the plate (Figure 1) is considered.
The directions shown are considered positive (right-hand
rule is used for moment vectors), and the coordinate
axes are chosen to coincide with the principal axes of

orthotropy.

1.1 Expressions for Stress and Strain

In order to evaluate the forces and moments of
Figure 1, it is first necessary to write the expres-
sions for the strains and the stresses. Letting the

subscripts define directions, and using Hooke's Law:



oy (M« DM
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Figure 1
Element dx-dy (positive directions)
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where
€, ¥ = normal and shearing strains, respectively,

GET‘- normal and shearing stresses, respectively,
E,& = moduli of elasticity and rigidity, respectively,

M = Ppisson's ratio.

Solving these expressions simultaneously gives the

stress equations:
E,
- €y *M_E
I“Ml#‘la ( . - 1),

E .
T ey e, + MU € 2
Y V- '1‘4,‘ ( Yy ” ;) J ( )

TIY 3 T'Y G’y

“t is generally convesnient to write the strains in
terms of simplified constants with matrix subscripts.

Then, the expressions for strains (Egs. (1)) become:

i"e,'ﬁ g's s, o-‘! T,

Gl % s ofn @
i : ]

%, o Sef LT

where



Sy = ‘/E, s‘n ® ‘/E'
5': s - u.’/EY 5’. . - My, E,
S“. |/6-7

But, due to symmetry:
' ‘_"_’.‘Y - Ay 2 S‘g = S

?
Ex EY “
and there remain four elastic constants of the ortho-

tropic plate.

1.2 Geometry

Consider a plate element deformed as shown in

Figure 2.

Figure 2
Deformed Element dx-dy
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The slspe of tl.e deformed surtace,

Ow

m, < 5 (m, - ?1') : (s)

Trne curvature of the deformed surfacs,

\ w 1 Aw
P (?v - 5.7‘), $2

where (o is the radius of curvature. The "twist" of

the surface,

{ - Dw
-é-ly h BK ay ' (7)

If w is the normal distance from the middle sur-
face of the plate to an investigated point, the strains

can be written in terms of the geometry:

€ = - % = -2 ?:! )
€x S‘x‘
I Ow
Gy eY ® 372 > (8)
- 22 9w
TI7 exy 2% ,ax,ay’

1.3 Final Stress Expressiorns

The final stresses are evaluated from Eq. (3),

by inverting the matrix of elastic constants:
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1.4, Bending and Twisting Moments

Recalling that #is the normal distance from the
neutral surface, the stress couples can be evaluated

from Egqs. (11), (12), and (13):

'i -
M‘ ::*S Qidi
2
o ‘t‘ [st ":‘-‘ s B:S,J r('4)
12(SuSp-s3) L™ O T oyt
t
L -
M7 = S ¢1 Ed% / ’
-% | > (15)
L NEC R
12 (S“Sn. s') " 9‘/‘ n 3 |
t
2 -
M,, : S’E zde
Yo )
t .2 2 > (10)
-t 2w
S, ’37 ]
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1.5 Rigidity Constants

The bending moment expressions can be rewritten in

a simplified form:

Y Y - ol
. Fw
M,y D, v
!
where .
D, - oot

* " 20-a,4,,)

= flexural rigidity in x-direction,

SESEE
Dr 2 ("M-, “7-)

= flexural rigidity in y-direction,

a G‘ t;
D= =

= torsional rigidity.

12
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21)
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It should be noted, at this point, that various
systems for indexing of these rigidity constants are
found in the literature. This variety of nomenclatures
is extremely confusing due to the fact that a symbol
may appear in several technical papers with a different
meaning attached to it by each author. Most of the
confusion arises from the assignment of symbols to the
torsional rigidity constant. .The symbol D8 has been
chosen here because it does not appear in the reviewed
literature, and, it is hoped, will help to avoid

misunderstandings.

1.6 Shear Forces

With reference to Figure 1, the equation of

equilibrium of forces in the z - direction:

g_Q‘ + (B_QY 4 F = O. ()
ox Cay

The equation of equilibrium of moments about the

X - axis:
M, _ My L qQ, - O. (24)
O x 'ay )

From the equilibrium of moments about the y - axis:
'aM' -_— ,a—h—/'—" b = O (ZS)
9x ’ay x g

35



after substitution of
M ‘7 = MYI E <%)
Substituting Eqs. (17), (18), and (19) into Egs. (24)

and (25), and solving for the shears,

ek ’a\ﬂ w

Q--0h [’3:&‘ e 'axay ]- & ox2y* ? (@7
W Pk Dw

- -p[2 iy, B]p B
07 [ s au‘ay] D‘ '3&'37

1.7 Differential Equation of Flexure

Substitution of Eqs. (24) and (25) makes possible
the writing of the equilibrium equation (23) in terms

of the moments and the load:

DM, _ 5, M, '™, __ 29
a3 % Bxay T 3y P @)

Finally, from the substitution of Eqs. (17), (18) anc

o

(19), the general differential equation of flexure of

the orthotropic plate is written:

'B‘W 'w 'w .
D [?EL+JﬁW12.*ﬂH.Eﬂé;q%} +]%'§;' P (30)

For simplicity, the final form of this equation is given

as.:

. a
Q%%"’ZQ, %%7‘1-13727? =P (3
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where

Ezy =D + é (fhyIl -+a“,;t%). | (32)

1.8 Consideration of Shear Effects

It is recalied that one of the assumptions of the
above derivation was the negligible effect of trans-
verse shear. It must be recognized, however, that such
an assumption is not always permissible. In some plates,
such as sandwich (see Part 5), a low stiffness gives
great importance to the contribution of shear to
deflection.

For this reason, several investigators have con-
sidered this effect. Reissner (Refs. 78, 169) first
recognized this problem, and it has since been applied
to orthotropic plates by Crawford and Libove (Ref. 305),
Girkman and Beer (Ref. 21), Libove and Batdorf (Ref. 155),
March (Ref. 159), Medwadowski (Refs. 62, 63), Suchar
(Ref. 93), and Wang (Ref. 177), among others.

Using matrix notation consistent with that of ' |

Eq. (3), the stress-strain relationship is given by:




- P - p= L
€. i Su S Sg © © © \\ P
eY S« S, Sy © © O Ty
€e S S 5, @ © © T
s . . (55)
Yy © o0 o 5,0 O Tye
i O O O O 5,0 T
o s
L 1“74 L © 9 O G L1:’a

Due to symmetry,

Su=$") S -S

3 32 / 5'3 * s’l ’

and the elastic properties of the plate are character-
ized by nine elastic mater:ial constants. Thus, the
effect of transverse shear, together with that of
transverse normal stress, is considered.

Medwadowski (Ref. 62) applies nonlinear theory of
elasticity to the derivation of the characteristic
equation of the orthetropic plate. He formulates the
problem by using a system of sixteen simultaneous
equations -- Eq. (33), equilibrium equations, and
strain-displacement relationships. The problem is
reduced to a two-dimensional one by the introduction
of body-force resultants, X" and Y", and weighted

displacements, u, v, and w. With the introduction of

the Airy stress function, é, Medwadowski reduces the

16
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number of equations to the following four:

an.;.’a?y_’_P_Pz_‘_Z X'%:_'Y'%'O-Q

Dx Oy > (34)
= O, |
@ *A'?HAQ’% - ASH A Bx; r<as)
+A (2"' o) * P ’_B_Z X +Auax(3( ‘13“ Q
20, R, Dw
Q AS fa 1. A ‘Q A'I 'axsey Al “ay 1(%)
T A K oW, Y'Iv_ o),
A -Z) AT Y AR (XETE-Q):
4 ?‘__é; 4 i
Su 'axg (25|2 + 6“) “ j\l ray l-P »(37)
] ,31. ’a‘w ) P . ST
(ax'ay) oo By (82 +50) 55 -6us )ay ¢

where

Aﬁ“ constant, depending on elastic properties
and thickness of plate,

P»R* loads acting on upper and lower faces of
plate, respectively,

P= resultant body-force potential,

x‘,Y:Z',X:Y. = body-force resultants,

P . Airy stress functions,

P Dw
Q Qg 'a‘ Q'y'S;-BV!; + Q, ré-yz. ’
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and the remaining symbols have their normal meanings,
as used throughout this paper.

The effect of an elastic foundation at face
Z ='t’2 is considered, and a system of four partial
differential equations, governing the oscillations of
an orthotropic plate, is written. The system is then
linearized and reduced to a single partial differential

equation of sixth order through the choice of

F(x,y,;) = stress function.

The values of the constants contained in this fundamental

expression are then given, and the solution of the
equation is taken to be of the Lévy-type.

When the body-force terms and the effect of trans-
verse normal stress are neglected and elastic foundation
modulus is set equal to zero, Medwadowski's linearized
equations which govern the bending behavior reduce to
the less complex expressions of Libove and Batdorf
(Ref. 155).

Since the Libove-Batdorf paper uses a definition
of plate rigidities which is somewhat unique, no attempt
is made here to make these conform to the definitions

used in the previous derivations. Therefore, let

18
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D - Qgrbh" ) W
/At (2
_ My
D5 = == a‘!w/gyt. ’ J

analogous to the constants defined by Egs. (17) and (18).

The twisting rigidity retains its definition as given

by Eq. (19):

D My
5 Gr“ﬂéaxiay

In addition, Poisson's ratios are defined in terms of

curvatures:

T
Vo - o 2%eyr ’
7% fatw/ax‘_

W, ™
\’; r i - /é‘ = ¢
w/é 7’ y
The refinement to the orthotroric plate theory,
which was presented in the first part of this section,
is introduced in the form of shear stiffnesses,
Qe
D = L) 2
w
Q, /9x (+0)

19




Q -
DQ, = —,5:'-/-;-;- . *(‘O/

The bending moment equations which originally conteined

flexure terms only (Eqs. (17), (18), and (19)) are now

refined by the consideration of the shear contribution:

_[2.__ [9; 1 QQ- +V, (Q_':' _ 1 g_@y)}, @)

M, -I-V' Ay D 'bx " '37‘ ]) By
__D, [ow ! 2 w _ L ’QQ)

M, -|_v,‘ [3)' D .ayv +V,, (5:__ .D > }, (42)
- ow_ _ 1 2q.

M, = D [axa, 2D, 2y } ' ()

Substituting the above equations into Eqs. (24) and

(25), and applying the equation of vertical equilibrium:
2%, 20, __ Fw A W |
zxn.., ’377 P + N, e + zu‘fﬁy+NV ,_ay~, (44)

three equations in w, Qx’ and Qy are written:

20
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>(45)

< + ' D 81- _ ‘] Q‘ P(%)

(‘ = 'V;,v") DQ‘ 'a ;"

l o D 3
e S S %y i O
£ D-, ,a*a)' (l—V;YV;,,)DQ, '3)(37 1 Q’

23 3 >
-D P _ b P) 27\l 7
{ & Bx"ay L= Viy Vi, (Vy’ 2x"dy '27')_ v
1 B ¥, BV 3%
+| - — + »(47)
[2 D,, ox2y (1=, VOB, @9y “
+ i 2" 2:- 4 D5 Qt - l}o 20
{2 D, 2 (-v,v0% 17

These equations are then solved for w, Q , and Qy

by means of determinants.

21




1.9 Summary

In general, orthotropic plate theory which omits
the effects of transverse shear gives good results for
orthotropic or orthogonally stiffened flat plates.

Due to the complexity of the problem, it is often
worthwhile to "trade off" a small degree of accuracy
for a great amount of computational labor. However,
the analyst must take care that these errors do not
become significant.

Summarizing the results of the bending theory of
orthotropic plates, the differential equation of flexure
is recalled:

B‘ g ?_4.!‘. =
Du 3.‘ 2D"'I '3"3)"‘ * DY y‘ P

where
S
D - E.t ,
120 - M)
D - E’ t‘ 4
Y i1z (1- Ay Adyy)

D‘Y = G—'a-- -+ "é (A“YDl + }47‘ D,)

The stresses, as given by Eqs. (11), (12), and (13),



> 1w gtw I
T - - 5 ¥ _g 2w
= S“Sn- 50: [ 7 O e 371.‘ ’
2 'B‘w ’a‘w ]
T e W dw |,
" S [ oy T B

T . 22 tw ,
K 5%6 ﬁ;;i;>

where
J \
S“"'E > 5!2- "E—y ’
|
S =~ My o - My S
12 E, E' (17 a.’

The practical application of orthotropic plate
theory depends upon the solution of the lateral de-
flection, w. This function is found by solving the
fundamental equation (31) for a given set of boundary
conditions. Then, it is possible to evaluate stresses,
strains, moments, and shears. The application of the
theory to specific cases of bending is considered in

the following section.
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PART 2 - METHODS OF SOLUTION - TRANSVERSE LOADING

The solution of the basic differential equation (31)

of the orthotropic plate,

'
‘Du x733y+D’/'—)7‘= d

is accomplished by one of the following methods:

2.1 Navier Solution

A double Fourier series solution of the form

{(x,y) ZS - SN "-g—rx S In “-—EY ) (48)

"Mal "l

was used by a majority of investigators. Huber (Refs.
37 - 41) was the first to give his attention to ortho-
gonally reinforced plates and his approach was based

on the Navier-type function. Some of the other in-
vestigators to employ this method of attack were Csonka
(Ref. 220), Giencke (Ref 239), Heller (Ref. 309),
Kaczhowski (Refs.48, 49), Nowacki (Ref. 71 ), Raville
(Ref. 168), Robinson (Ref. 79 ), Schumann (Ref. 278),
Soper (Ref. 90), Timoshenko and Woinowsky-Krieger

(Ref. 79), and Tolotti and Grioli (Ref. 290).

PRECECING
PAGE BLANK
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The Navier soluticn is simple and straight-
forward, even for complex loading conditicns. Yowever,
the method becomes cumbersome in appliczzicn due to its
relatively slow convergence property. It is mosvy
undesirable, from a computational standpoint, when
nigher derivatives of the deformation function, w,

are involved.

2.2 Léyy Solution

s L] . . .
The Levy-trpe soluticn is tased on a single series

expression of the form:
(-]
m Ty
w g 49)
= Z Y; Sin o> ’ (

where Ym is dependent upon y and independent of x. This
technique, which is generally more efficient than the

above type, was employed by several investigators, amorng

them Ando (Ref. 209), Cornelius (Ref. 12), Hajek (Ref. 25),

Lekhnitsky (Ref. 58), Schade (Refs. 273-276), and

Timoshenko and Woinowsky-Krieger (Ref. 97).

2.3 Other Solutions

Most of the recent work has been concerned with

improving upon the computational labor involved in

L

. ; |

—



solving the fundamental equation. Solutions have been

submitted in many forms:

2.3.1 Maclaurin's Series

Rajappa and Reddy (Ref. 77) have applied Maclaurin's

series to the problem of the simply supported rectangular

plate and written the deformation equation:

w(x,y) = w (0,0) +Z(x§ * 7%)'. \1(_:;.9.) ; (50)

with che origin of the coordinate system taken at the

center of the plate.

2.3.2 Affine Transformation

Brilla (Ref. 8) makes use of the transformation,

-
La X, y = v /2, (s1)

to solve this problem which satisfies the condition:
o

2 - /5.0, - (s

The condition of Eq. (52) was recommended by Huber
(Ref. 40) for reinforced concrete slabs, and is dis-

cussed by Timoshenko and Woinowsky-Krieger (Ref. 97).



2.3.3 . Perturbagion r=glisiuas
Vinson with Brul: 2nd Hess (Ref's. 2, 201-173%) zke
use of the same transformation as Brilis (2. (£1)). an:

then go on to obtain & perturtation sxranst .. v sz
a for plates with rigidity ratics which caviziy
condition,

D, . JT_D,
D D,

]

a3
Nl
W,

The parameter, a, measures the deviatior frc: tiis o, -
) ]

dition and is given by:

D 5
o(=2\-r=_"7). (54
This exprescion, together with the transformation,
changes the basic differential equation (31) to:
4
4 w .
VW - o E £ (35

'35?5;9’ - D,

A comparison between this method and the standard
techniques is made in Refererice 10i. 1t is shown tret
for the case of a uniformly loaded rectangular orsii--
tropic plate on simple supports, the perturbation
solution gives results of reasonable accuracy, while
requiring considerably less computation time than the

Navier and Lévy techniques.

2.3.4 Complex Variables

Mader (Ref. 61) considers the special condition

specified by Eq. (52). Here, the basic differential




equation (31) is written:
- : ‘
D, 2D, m + D m -0, (se)

where

The solution has the form:

w = [C e¢(9+£¢)y -a(@-4id) 7+ C -d(e,,;ﬂy*

‘ + Cte ’c
ok (S-£d) y r(57)
+ C e ]sw ax '
where
4
D
o = a[‘;: )
b :tx(02id) = ma.

Suchar (Ref. 93) introduces the complex variables,
= X-o-i)l 2= X"*'Y) (58)

and parameters suggested by Lekhnicky (Ref. 58),
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K = Lriu, k, - LErim, (s9)
b -apu, ! =AM,

to rewrite the basic d'::icieutial equation of nh2

orthotropic plate:

[kl g] (' kk;)aaaa kpg-ygikgae (""k;'é.)g;gs*&%‘!’t
=0,
in which

(60)

W(X',y) = w (%/2)
is a real solution of the characteristic equation.

In addition, Morkovin (Ref. 65) also employs a

complex variable approach to the problem.

2.3.5 Energy Technique

A direct method of calculating stresses in ortho-

LY

tropic plates, without the usual intermediate step of

calculating deflections, is presented by Coull (Ref. 13).

The method of least work is employed.

The total straln energy due to bending is given as:
?

0~ & [ (e a g - 20,0,
°©-c -(61)
+ E- (!ﬂ +N i]cir.dx p

-
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where the constants,

£

O, Sl s _E.
A“ EKE,- :', At‘ E“E” E.'}
= "'—-"—— = ._|_
At E, - £, An Giuy
B = -
(1] 6'

The plate considered is supported along, and parallel
to, the y-axis, and it is free along the two remaining
edges.

The moments and forces in the plate are expressed
in terms of a single series, and two loading cases,
symmetrical and antisymmetrical, are utilized. The
solution involves an assumption of an n-th order
polynomial for the bending moment Mx’ which makes possible
the writing of a set of n linear differential equations

with constant coefficients.

2.3.6 Design Application

An interesting and useful set of tables for the
design of orthotropic plates with various edge supports
and under various loadings is given in a dual-language

(English and German) book by Krug and Stein (Ref. 57).
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The basic equation (31) is used,

2w 2*w -
Q,g‘,‘q*z‘?.,:a;rgyu+l>, —;-"4' P

and the following notations and transformations are

introduced:
D D
D,D, D,
x 4
& T n = 'E‘_ VA (%)
s !'-'-f-' = ‘;7 J 64
Ly - L= 7 vV (64)

Using the above notation, the differential equation of

the unloaded plate becomes

CRY 2w 2w )
3¢t TP g T St T O =

In order to reduce the number of parameters necessary

to define a particular plate from three to two (X and € ),

the loading is referred to the §, @ —coordinate system
(Fig. 3) and the ratio,
LY s LQ

e = — = — ) . (66)
al L;

‘N
")

| S ]



is introduced.

W1
—_—
L, 3
< L‘ o
Figure 3

Transformed Plate

In the book, charts are drawn for the values,

e « 2.00;1.25;1.00,0.80,0.50.

X =0.80,040.0.
The dimension L , from Egs. (63) and (64) is chosen by the

user of the influence surfaces, such that the length of
the shorter side of the transformed plate becomes either
20, or 16, or 10, corresponding to the given €. Some
results of this procedure are shown in the following

chapter.



PART 3 - FLEXURAL BEHAVIOR

In this part, the bending problem, for various
combinations of edge supports and loadings, is
considered. The chapter is subdivided into sections
according to the support conditions, with further sub-
divisions made for different conditions of loading.

In the accompanying drawings, the following notation

is used for edge supports:

(@) = clamped,
(ﬁD = free,
Q§> = simply supported.

3.1 Simple Supports

The basic differential equation (31) of the ortho-

tropic plate is recalled:

'w w 'w .
D' 'ﬂ‘ + 2121,57;5-7, + [DY ?Y‘ P °

where the loading term is a function of x and y,

p = f(x,y), (67)

and it can represent any type of transverse loading on
the plate. The double Fourier series (Navier) form of

this function is:

— wed
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$(x,y) = ZZ A...

where

mIiTx

SN—-—S

) LT (68)

number of sinusoidal hélf-waves in the

Xx-direction,

number of sinusoidal half-waves in the

y-direction.

The total deflection of the plate shown in Figure 4

is then calculated as the sum of the partial deflec-

tions produced by the partial sinusoidal loadings of

Eq.

(68).

oY

!
}
/

8

5
o

Figure 4
3imply Supported Plate
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The general expression for the deformation of a
simply supported rectangular orthotropic plate, in

the Navier form, is given by:

sua'iﬂi sin "0V
L
ZZ“‘ D M4 +ZD( D( ) . aﬁ)

An alternate form of solution (discussed in Part

2) is the single-series expression attributed to Lévy.
This solution is based upon the equation,

W = Z Ym Sin '%T-x ? (70)

m
in which Ym is a function of y alone and the b - edges

(x = 0,a) are simply supported.
Both methods, in addition to any of the additional
techniques described in Part 2, will be utilized here

whenever they are applicable.

3.1.1 Uniformly Distributed Load over Entire Surface

The case of a simply supported plate, acted upon
by a load, Po’ uniformly distributed over its entire

surface is shown in Figure 5 and considered here.



M

- ?/@ .,.

Figure 5
Simple Supports - Uniform Load
The Navier solution, as given in Reference 97, is
first utilized. To evaluate the coefficient Amn of
Eq. (69), it is found from Eq. (68) that
mTrx lr '
A= X X{(x,y) sin 2 ¥ gy bY dy dx . ()

oo
For the uniform loading,

f‘(x)Y) = F. ) (72)



and the coefficient thus becomes:
ab

A, = 45_50355»3 '%:I" SN "-g)’ Ay dx

o o

- 16
T mn

- (73)

The substitution of Eq. (73) into Eq. (69) yields the

deformation expression for a uniformly loaded,

supported plate:

‘GF ZZ nﬁTl i n_'T_[?
W= —I*
T mn( *ZDI' ‘?-;‘ D )

simply

(74)

Using the Lévy form of solution, Ando (Ref. 209)

writes the deformation equation:

Wi 4]:.::" (I + K_C +§,.5.)5“1~_\Ix
DTE m*
- ™

where

2
.- SRS

swu‘oth‘t + Cos'd_ U

>

(15)

P b e



A

™ S, t +cosK U

,. milt miTu
Ca cosH -?Y cos -2-‘/ ;

S = sinH "'1&7 Sin MIUy
a a

.t i \[J-D_l-l_)y*'Duy

2

U = JVE“_D; — D"’ | ’
' 2
D,

,, = '"-T—r‘/)
a

O = subscript indicating initial condition.

The same problem is solved by Hess and Vinson
(Ref. 34) using a perturbation technique. The basic

equation is written in the form:

4 D, 2 D '
s - 2 Mg+ Y =0 (76
Dx Dx ’ )

which has the roots,
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x x

There are, thus, three cases of solution, which are
dependent upon the elastic properties of the ortho-

tropic plate:

CASE 1I:

%) 3

x
The deformation function for this case is given by:

2
W = 51 | cosn s,ﬁux + (\-cosu 5.9
] 8

n:l,3,...
.,‘ T

S, |- cosn S, a.a
sl.“ﬂ 5.2"]“'5:‘:—;-}[@5“ S;A'x +( Sian sz%“a) (7&)

. SN s;X,,x_] + 1} @ sS\M %,,\/ .

CASE IT:

% 3

®
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CACE

- = An | - cosu A,s
W = Z{[ 1. ;ﬁ( o R..s?ag)] cosH A 5%

- <as;c7\!,5,a-l AA.Sy _ goun A
[ Sindn ).saq ( 2 SimH AS, a)

-~ '):%zx]swu ﬁ.s,x} % siN A X .

&
" Z :—-’%"%, {{- cos\, 5y y(eosDsea-cosn LX)

(casu'A 5,8~ Cos A, $¢Q)
nzi3,...

> e
(swdsa 450758 guu As ‘a> Sins 'X,,ssx] cosu A,5,%

. 2
+ [(“ < 7\“5‘4 ~ msuks‘a) (- SINK A S, +s‘_‘.._s‘$m&s‘a)
(cosw’ AS.a- cos’ A”s‘a) 23$¢

- Cos A, Sq #3475 g )\hs‘x]smu ).s4x] sw A,y
2545

41
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In the above equations, the roots:

50" \/zf:" ']

The coordinates and elastic constc..ts are taken

according to Figure 5, and the parameter,

ngmp—

b

Using these equations as models, design curves are

x.-“-h

plotted using the dimensionless parameters,

Woa D : Mxtw ) Mv(wuo
——11—1?. X ———LF. e ) _—B o )

as functions of the three independent variables,

QY > D.-‘-" ) -é
D ) a

42



3.1.2 Uniformly Distributed Load over Part of Surface

A simply supported plate, acted upon by a uniformly
distributed load over a portion of its surface (Fig. 6)

is now considered.

- %R

Figure 6
Simple Supports - Partial Load (I)

First, the Navier solution is applied. Recalling
the equation giving the loading coefficient (Eq. (68))

and applying the proper conditions:
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+Yh +% .
4p. wTx nT.
A.“ ] ;—E. SIN “= SIN —b.y d’ C(%
t-Ye -2 (81
- .‘—6-&. sm'.'."lr_x SIN r.‘l-rn SN m.—‘_E‘ SIN ﬂr-v .
Timn o) b 2a 2b }

Substitution of this into Eq. (69) gives the defor-

mation expression:

\6 R SIN n—}‘ S .-%‘Gm ”-':—a“ sm"-gﬂu '-:?smh'
W= ~d o 7 & | (82)
"‘"(D Z,+2D -.g‘"" +D, &)

m n

Next, the Lévy-type solution, as given by Ando
(Ref. 209) is examined. The x-coordinate is changed

(Fig. 7) to coincide with the center of the plate.
TY
I ®

b ® ©) -

N

=]

/

11 ©®

|
-lt.L
§s

Figure 7
Simple Supports - Partial Load (II)
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Deflection expressions are written for three regions

the plate:

CASE I: 9, % Yy € n:

W, = Z(A- +C, cosm "'_1';_”‘7 + C,smn ”'-?7

™
+ C, cosu ”‘:‘.‘é%’ +C, SwNv "‘?%‘I) S\~ "Eﬂ" .

CASE II: n =y = b/, :

=

Wy = Z(C,_ Cosn MVAY + C_ siwm "‘%Y

+ CT Cosu HI;?T -+ Cl S ""%lf):uu 'L‘:" :

CASE III: -bf < YR -

Wg = Z (Cq CosH ".'_1;.2‘7 + C‘. S 184 ml:_'}y
[ ]

+ C" CosH m%-’-“l + Cu SiNK "'J‘aZ-‘Y) SN "‘..-d!" 5

The constants of the above equations are evaluated

from boundary values:

5

of

(82

(84)

| (e5)
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€, 4\z{'l‘ [com "T2% 4 com mT2n,
' xl.- _x._

- (,.N" mITAR, _ gun m“’“l.,) TANK @Y]i )
a a a

e
C, - -A-P{ A [SmH "1-[2 " + siun ml‘?_‘?s
g ] ? .xq. a —

_ mlAn, _ wmlA ‘.) m'“k]
(f-esu o - cesw _a_‘z co ._a.y 5

C‘ 3 }_\_ﬂ{—?;:-[«:osu ”Izﬂl 4+ Cospn M-E—Z‘-Qa.
Z (A=t a a

- (smu mlAn, = siam m'_“'}m) TANN "-‘-‘571};
a a a

C -« ﬁ“{_}.\;:_[smu "'E?. + SinaH "'l—_’-‘.'h
2 'x‘:_'x\. a a

» (Cosrl "‘_1%’?. -~ COsH “‘-.‘_:%.'2\) o™ "‘%57]} )

o\

= A»{L [o:osu "‘_TD‘I. ~ cosh ™NAn,

Z = . “
JA A
- (smu "‘__;‘?. - SiuH "‘la- '7‘> TAnH "'%57]}/

C‘ = A { A [smu mITAY, _ s MmBAn,

Q a

= (‘gs“ MD_Q| - COSM mlr_x.'?l> CoT™ @7]})
a (-

N

=z AE?‘{—&-[COSH ”—!}Y. - CosH "'-“.:'?\.
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In deriving the influence surfaces of their book

mi &

- -

of tables (Ref. 57), Krug and Stein make use of a

transformation from the real stiructure (Fig. 8a) to a ]

"new" structure (Fig. 8b).

o

= N

AL
T______.
ho——
L 1rle
L |
£
o L.

a) Real Structure
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b) Transformed Structure

Figure 8
Simple Supports - Partial Load (III)

The method of transformation is given in Eqs. (62)

through (65), and the bending moments in the plate are:

T

M, =Bt
&T

9

‘b [
J j ME(E’Q) d& ‘A? )
a R >(86)

_f__l-f & '
My * “‘: X g N“ (a,'I) d& d'? ¢
LY A
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Numerical values given by these integrals, for given
geometry and constants of orthotropy, are given in

the tables.

3.1.3 Concentrated Force

" The next problem to be considered here is that of
the simply supported plate under the action of a con-
centrated load, P.

The writer applied the Navier form of solution to
this case in Reference 309. This is considered first

(Figure 9).
pY

Figure 9
Simple Supports - Concentrated Load (I)
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The load coefficient for the double-series solution,
from Eq. (68), is written:

. —— SIN
™o ab

Sin (‘7)

a b

The deformation expression is derived from the sub-

stitution of this quantity into the general equation

(69):
W& — Z Z i 1‘ a t 11N "1{_‘! G\N ""* SI1N '%1 . (55)
bT* n’
a Q a"b 5 b‘

Ando (Ref. 209) solves the problem using the single

series solution. Using a coordinate system chosen such
that the x-axis is located at the center, rather than
*he edge, of the plate (Fig. 10), he writes two expres-

. ions for the deformation:

CASE I: neys< bs:

Z C cosH "‘-‘m)’ + C, sinu "‘—D‘Y

(sq)
cosy m'ﬂ'?\\, +C, smu "'1%7] s wllx |

< a




CASE II:

arw——

N' = Z [‘C":B'IH "'IT-:T-“Y + (:.‘ SinH "‘_?,

+ C‘hﬂl ““T;-if + C‘ S el "Il..—ir] i @'_Ep 3

Sl 3

"
L
|

P

®

|

-

l—

DO

g &

Figure 10

» X

Simple Supports - Concentrated Load (II)
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The constants of Eqs. (89) and (90) are the following:

= PQ‘XX‘ — [- SINK an - (CO!M mﬂlf
\ .D. »\'17'()"-}‘) a a

s TanH WL:Y)] SN M_}& 3

2 )\i" " miTAp m¥UA
) annm'(x-i‘) [c M == + (Sinn _4.’2

+ COH “‘_Fal‘y)] SN v%l:ﬁ N

P . WAg su mITA
S Remaml Y T (om 2e

* TANH '!-{37)) SN "_‘._':_& )

= far At [- éosu miAv (smu LY
4 DY a =

- CoTH 'LB‘/)] sin mlE&
A 5 A

As in the previous case, Krug and Stein (Ref. 57)
make use of the transformation of coordinates, as illus-

trated in Figures lla and 1llb.
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Figure 11 -
Simple Supports - Concentrated Load (III)




Using the transformations given by Egs. (62) through

(65), the moments are given:

L 4D
M = ST‘_ — p(&,ﬂ) M‘(‘NQ) )
D, ()

My - g B P B M G

Obviously, superposition is used for the calcu-
lation of deflections in the first two solutions, when
more than one concentrated load is acting, and the

latter solution (Eq. (91)) can be rewritten in the form:
M s ""' Z P(‘ "Zt) M (5.,'1.) (qz)

.. Line Loadin

In solving the problem of the simply supported
plate under the action of a linear load parallel to the
x-axis (Figure 12), Ando (Ref. 209) uses Eqs. (89) and
(90) to give the deformation for the ranges @ <y < b/2
and y < np , respectively. The constants are evaluated

as follows:

et e et]
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t. z( 1._3-1

C,- £“1;x‘ (Stﬂﬂ "‘ﬂ? -(Cosu ”‘B?TAHH NIZAY)JI
z(.x‘-_ )t) | a a

Cgu®

AN . "IN o T2
LS

and
§

SN "'-NE‘
£, - I F(§) g .

g
The load, F (& ) is represented as a single trigono-
metric series.
Should one considér the special case where the
load acts on the x-axis (¢ = 0), the constants simplify
to:
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Figure 12
Simple Supports - Line Load (I)

A more general inclination of the line load is
considered by Krug and Stein (Ref. 57). As previously
described for other ioadings, the coordinates are trans-
formed from those of Figure 13a to those of Figure 13b,
according to Egs. (62) through (65).

The bending moment expressions are then given for

the general case of variable loading, § :




gt WAL,
I —— ¥ ”'—Mapﬁ\‘lﬂ'-vﬂ

i
¥
l :

h |
M, " & 79‘ \/""—‘#'-*— Cf-es&)l.ff(sm ®dp, @

M, - -.. /— [v o Tad (cosé)L Sj-(p)M (p)dp . (%)

AT

sY

=

Y

-

-
Vo

W

.,,k
g

.=

PO S iy s |

a) Real Structure




b) Transformed Structure

Figure 13
Simple Supports - Line Load (II)

For the special case of a load uniformly distributed
along a line, of course, (P ) =§,and it is placed in

front of the integral sign.
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M D d Along a Line

The problem of a simply supported plate under the
action of a uniform moment distributed along the y=b
edge (Fig. 14) is considered by Vinson and Brull (Ref. 103).

M
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Figure 14
Simple Supported - Edge Moment
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Using the transformations,
- $ o 4
Y - Y\/-%_: ) b = b/- ) (%)

the boundary conditions are:

w(x,0) = w(x,b) = w(O,i) - w(a,i) = 0,

=l

-

'w 95v d'w
* N L = O, >@6)
**ha ) T oK (a,7) 3Y" ken,0
(K)b) s .

o

If the perturbation solution is limited to cases where
the rigidity ratios (Dy/Dx) and (ny/Dx) are nearly
equal, the basic equation (31) of the orthotropic plate

is rewritten:

'w _ A'w Jw .
e " “seay Ay "B L
where

x.z(l- %D)'z_(' /D.)

The solution is taken as 'a series in powers of

W = %h (KJ?) n{ﬂ ’ (q‘)

which makes q (97) become:

'3+ Z[ v, - ;i;,']«”hg-e e
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where the operator,

t _ > - D

5 * 5y

Since the curvature vanishes along edge y = 5, the

v

moment ,

M (X,B) — M =y D 2_‘%(")5) ’ (100)

Y

and by substituting Eq. (98) into Eq. (100),

a_-'t(xb) 3—%

Y _ (1o1)
Shob) Thob |, Sabs, [
% %} 4

The governing equation for the first term of the

solution is
4 — (
Q v é. (X,Y) = O’ (voz)
and- the boundary conditions are:

§» s O 2. ALL EDGES

‘; = O " A= O,q .
r(\os)

914 o O 2., Y= O
a‘e} M = b
= e T 7’ 3
% 5 :
62
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The solution is taken in the form:

& - Yy +$GHHIM (104)
where Y. satisfies homogeneous boundary conditions
and '
- | _'i’ - _ |
'5‘(7)"56[2 - by]. (105)

From previous conditions, the function,

‘1{(";7) . 2 [(C,l + qx) cosH A_ X

% (C,+C‘x) SINK )\,,,x] SINALY

where the constants,

C- 2Mb (-1)"
W )
C, - __an(-l) | -cosn A, a ,
D m‘v‘ SINK % a
C. - Mb‘(- |) (-cosn A aXA.a-25muA, a)
3 D m SINW® A a
C - - AM b‘ -1
D >3
and
T
m
AL T



The second term is taken in the form,

$ (x3) - Ze_ (x) s Ay o

where the functions 6,,(!) are evaluated by:
8,(x) - (C,+C5x +A X +A X ) cosn A a
7
+(c, *+Cqx +Azx"+A’x3) SINH A _a Ve

where the constants,

C, -0, |
3A.a cosu A.a
C6 = ZA a - x ('A"q + $lNH;7\,.q
[ |+ 2 A cosn Ana
SlNH -
- 3A Ag Aa
2x(1+ Jogemaa )],

C, - -‘X-A—;:T‘X:q ()‘,_a CosH A a + Sinm k‘a)

A. atCoﬂ’A‘i !
+ S A (27\~a$ NHA a +3)coau)_a)

+ Aﬁt (CosH Aa smud a +2Aa+ha smn‘A.a)
a /

7\~swu A.
Ajg"

A swn A _a

+ 2\ a sinNd" A_a) 5

+ (3 cosnAa smnd a + 3} a

€4



and
= (C.%- + CQ)%"
8
C, A\
24’
(C5 xn + C& ) )\-
8

s

» >
] [ ]
1

n

| Co N
¥ 24

> >
0w
1

The evaluation of these terms is necessary before the
deformation equation (98) can be solved.
A more general case of a non-uniform moment dis-

tributed along any line parallel to the x-axis (Fig. 15)
is considered by Ando (Ref. 209).
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Y Figure 15
Simple Supports - Line Moment



The problem is solved by using the solution of Part
3.1.4 for a line loading. If a linear load, such as
that of Figure 12, acts on the plate, and another

load of the same intensity, parallel and very near

to it is allowed to act simultaneously in the opposite
direction, a line couple is created. This is shown

in Figure 16.
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Figure 16
Simple Supports - Line-Load Couple
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Thus, as
('?z"?c) — O,
the loading of Figure 16 approaches that of Figuré 15,

and

M (x) = (ﬁ;o F(x) (o,-%) - (108)

Thus, the deformation for two regions is again given
by Eqs. (89) and (90), and the constants for this

loading condition are:
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and the loading term,

b
g mil.
E.= DT%‘ M(§) sm 225 df .
é

The problem is greatly simplified, of course,
when the line of the moment coincides with the
x-axis. Then, the constants become:

z-
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3.2~ 2 Opposite Edges Clamped and the Other Two Simply

Supported

Since the problem of an orthotropic rectangular
plate having two opposite sides built in and the two
remaining sides simply supported is of some practical
importance, it deserves discussion here. Several
loading conditions are considered and the method of

Ando (Ref. 209) is utilized.
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3.2.1 Uniformly Distributed Load

A plate with a uniformly distributed loading
acting over the entire length, b, and over a portion
of the length, a, is considered (see Figure 17).

The notation (g) is again used to indicate simple

supports, and Q@)designates clamped edges.
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C) ‘'S -ff) - Uniform Load
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The deformation equations (83), (84), and (85)
are again used as the basic expressions. Due to the

boundary conditions:

wz.o.?-a-;-"t AT 7--;5,
w‘_o__:’élv, aT 7--‘2’, J

and because of the simplification of the loading
(relative to that shown in Figure 7), the constants
become:

A\ sinm '"lai-“/

= = S -—
Acosn "‘—127 S "i?‘/ - Acosu "-‘;‘A-"smu ”'%M

C'-C5=Cﬁ=
C,=C~C=C =-C ~C, =0,

mi A
Cs = C‘7 -C, " An) s 2o

Acosn ”—?’smu "‘--‘?’ - Acosw "l-:j] Sinn “—E’Y

These values are substituted into Eqs. (83), (84),
and (95) and deflections are found in any of the three
regions. For the case of a uniform loading over the
entire surface, §; = 0 and §, = a, in the evaluation

of the load parameter,
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3.2.2 Concentrated Force

Next, the orthotropic rectangular plate of Figure
10 is considered. Here, however, the edge conditions
are:

x =0, a ——— simply supported,
y = & b/2 ———= clamped.
Eqs. (89) and (90) are used to describe the deformed

condition, and the constants for these boundary

conditions become:

22 _3 mIAY \3Y cosw ™I
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In the special case of the load P acting on the

x-axis,

'Z'O)

and the constants become:
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When the concentrated load is located at the center

of the plate,
QSO, a.%)

and the constants are simplified further:
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3.2.3 Line Loading

The plate illustrated in Figure 12 is considered

next. The edge conditions are:
x =0,a —e simply supported,

y = fb/2 —_— clamped.

The deformation equations (89) and (90) are again
used to give the forms of the deflected surface for the
two regions of y. For the boundary conditions con-

sidered here, the constants become:
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where fL is defined in Paragraph 3.1.4 and the
parameters Y and 5 are given in the preceding
paragraph.

For the particular case of the line load F

being applied along the x-axis,
2 =0,

and the constants simplify to:

ANz _

C 26030 (AY, -2Y,) - <,
f. 22 i}

1T Zen) T Ceo

3.3 Infinitely Long Plate

An infinitely long plate with the long sides
simply supported is now considered. Since the ratio
of b/a is very large, the use of the single series,
Lévy-type, solution is justified and the deformation

is taken in the form of Eq. (49):

W = ZY.' SN ’:'-1&



and Y, satisfiés the condition:
ST 41 ¢
DY-2p, =R Y +R=H Y. - 0. (v

The roots of the characteristic equation have four

forms:
roots = ¥ mil 12‘.'* x /Ev - D . ()
“VD VO g

Using the parameters,

4
/D D,
% = bt ) }" = =l J)
three cases (as discussed in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>