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ABSTRACT 

Fallout mass-size distributions presently used at USNRDL are com- 
pared vith new distributions suggested by recent investigations. Avail- 
able data is unable to define the distribution parameters well enough 
to distinguish between lognormal and power-law distribution models., 



SÜMMAKY 

Problem 

To determine the differences between newly-proposed fallout mass- 
size distributions and distributions now in use. 

Findings 

Differences are trivial in comparison with the effects of current 
uncertainties in the distribution paraaeters. Planned sensitivity 
analyses need not explicitly treat the newly-proposed power-law distri- 
butions except as a matter of convenience. 
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INTRODUCTION 

The purpose of this report is to compare formulas for the size 
distribution of particle mass in the fallout from land-surface bursts. 
The distribution equations to be compared are basically the newly- 
proposed power-lav distribution and the lognormal distribution, although 
modifications of each are involved. Cumulative forms of the distribu- 
tions will be emphasized. Interest in such a comparison arises from the 
need to assess the impact of new information and suggestions (mainly due 
to Russell)! on present prediction techniques. The mass-size distribu- 
tion is of basic importance for predicting fractionation effects because, 
being equivalent to the volume-size distribution, it is primary input 
data. 

At this Laboratory both total particle mass and active particle 
mass are considered to have the same lognormal distribution, even though 
there may be some fifteen times as much inactive material as active 
material.2 The power-law distribution, proposed by Russell,^ refers 
only to total mass. The land-surfaces involved are both silicate 
(Nevada Test Site-NTS) and coral (Eniwetok Proving Grounds-ER}). 

The results of the mathematical comparison offered here will throw 
light upon the need of a sensitivity analysis for more detailed compari- 
son. 



* 

BACKGROUND 

For purposes of fallout prediction, the information required for 
input can be conveniently discussed in terms of cumulative logarithmic- 
probability graphs because any single-valued distribution curve on such 
a Gjraph is automatically normalized to 100 it.    Let us say that the pre- 
dictor is interested in the distribution of Mo99 in a local fallout 
field. Even though his computer can reasonably handle hundreds of par- 
ticle-size classes, the data on which his input is based need not be 
so detailed. Presumably he knows enough about the device to state the 
total quantity of Mo99 present. His next most urgent need is to know 
what fraction of this came down locally, or at early times, or in large 
particles. This corresponds to placing a point on the graph in the 
region of 25 to 50-M diameter particles. Such a point might conceivably 
come from several sources, e.g.r 

1. Prediction techniques in vogue, 
2. Partition inferred from the radiochemical analysis of cloud 

and ground samples, nq 
3. Integration of contours of Mo  surface density on the ground. 

Assuming a number is available to place this point, he still needs 
199 more numbers. These can be obtained from 

1. Prediction techniques in vogue, 
2. Determinining Mo99 distribution with particle size in a repre- 

sentative sample of the local field, 
3. Integration of contours of particle surface density as a func- 

tion of size, plus a knowledge of the relative Mo99 content of different 
particle-size classes, 

k.    Determining Mo99 distribution with particle size in a cloud 
sample which contains representative proportions both of the particles 
chosen above and of larger particles. 

The more observational data that can be incorporated, the less reliance 
need be placed on choice one and moreover, the better the quality of 
choice one that can be offered. If as few as five well-distributed 
points were available from observations, the predictor would be in good 
shape. 



These same considerations apply to the distribution of other par- 
ticle properties: individual radionuclides, mass, or fraction of the 
unpartitioned; unfractionated noimalization factor. Unfortunately, it 
is invariably necessary to rely on choice one to some extent. It is 
therefore incumbent upon the predictor to keep current the comparison 
of his techniques with published observations. 

THE LOGNOBMAL DISTRIBUTION 

To illustrate the notation we may introduce the lognormal distribu- 
tion by saying that, if the probability is % (a,b) that a randomly 
chosen particle in a distribution has a mass x: a < x < b, then the 
equations        , 

PM <a^ = f % W dx 

> 

PM {x>x+dxi = % (x) dx> 

define the probability density function R*(x), and for the lognormal 
distribution, 

R.(X) dx = •==— exp 
1 
2 (1) 

The parameter« K, and a are best determined from a cumulative log-prob- 
ability plot of the mass distribution. If a straight line gives a 
reasonable fit to the cumulative weight, then 

^1 = In 2M 

(where jc, is the particle diameter at 50 ^) 

O = In V«^ In \ 



where Xj^ and K^- are the particle diameters one slgma unit larger and 
smaller than x^ (i.e., at 8^.13 ^ and 13.8? it  respectively). The mass 
distribution currently in use at SRDL uses the lognormal distribution 
vith parameters x^ = 100 \i and o » 1.68?. 

The mass-distribution curve favored at NRDL is based upon (l) the 
assumption of constant volume-specific activity and (2) activity-size 
data from 73 to 3300 p.2 An argument can be made for assuming constant 
surface-specific activity Instead of constant volume-specific activity. 
The effect of this will be discussed below. 

THE POWER DISTRIBUTION 

In an unclassified section of a classified report,-1' Russell des- 
cribes his analysis of Johny Boy cloud samples, which analyses led him 
to the conclusion that the mass of the debris was so distributed that, 
down to about 90 n, equal size increments contained equal masses: 

PM {a,b) «(b-a) 

or 
u. = constant 

On the assumption of constant particle density and the usual spherical- 
particle approximation, this leads to a frequency distribution function 

PN {x,x+dx} « pjj (x)dx = k^dx 

where kjj is a normalization factor. 

Further investigation, especially by Nathans,* indicated variations from 
the power of three, so for generality we write 

PN {x,x-hix) = k^x'Six 

PM {x,x4dx} = k^x) dx = k^
3^ dx 

which bears little resemblance to Equation 1. The value of q appears 
to lie between 3 and k. 

*M. W. Nathans, Tracerlab, Inc., private communication. 



Completion of the distribution equation requires that some upper 
limit Xjnax be set to the particle size. Thus  the form of the equation 
becomes 

PM ia'biB J 
a 

b      /x /.max 

Various considerations led Russell to choose a value of 1000 \i for xmax, 
although References 2 and 3 indicate a higher value vould be more 
appropriate. 

Fi'T^ire 1 compares the power distribution with the lognormal distri- 
bution for several cases. The power distribution is plotted for typical 
values of q = 3.0 and 3.5, both with a cutoff of Xj^^ = 1000 \i,    A 
curve for q = 3*0 and Xjnax = 2000 \i  shows the effect of a reasonable 
change in cutoff diameter. 

For the case of q = 3*0 and Xp^ = 1000 n the mass distribution is 
extremely simple. The fraction of mass in particles of diameter x or 
less is then 

^M 1U,X^  1000 

For the case of q = 3*5 and x   = 1000 \i it is not much more com- 
plicated: 

x I 1000 

PM{0,x> = Jx-1/2dx/r        x^dx 

1000 

For the lognormal distributions the equations are derived according 
to the method of Reference k: 

X \ 

r, or constant volume-specific activity and 

for constant surface-specific activity. 
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THE TRUNCATED DISTRIBUTIONS 

The Truncated Power Lav 

It was immediately evident to Russell that the power-lav distribu- 
tion vas physically unrealistic as shown. Thus as x -• 0, the distribu- 
tion predicts an infinite number of particles. Therefore Russell chose 
a value of 1 ^ for the lower cutoff diameter x . . giving the final 
form of the distribution as ^ 

PM {a,b> = i 
x3-q dx 

pOO x3-q dx 

The small size cutoff has since been well documented by Nathans1 

work. 

The Truncated Lor;normal Distribution 

If pressed to the limit, the lognormal distribution vill predict 
some finite (if fractional) number of particles of any size, no matter 
how lar^e or small. A means of truncating the lognormal distribution 
at the small particle sizes x . vas employed in Reference k.    This 
involved simply making the substitution 

x -» x-x . 
min 

in the distribution function. If a cutoff at larger sizes is desirable, 
one needs another means of making the logarithmic term infinite. This 
can be easily supplied by first vriting 

In x - 
-^ 

and making the substitution 

1  1 1 
X X xmax 

which is equivalent to making the substitution 

x 
1 - x/x 

' max 



An obvious way to Incorporate both cutoffs simultaneously Is to make 
the single substitution 

max 

Appendix A describes how truncated graphs can be constructed from the 
parameters \L. and o with a minimum of effort. 

Comparison 

Figure 2 compares the lognormal and power-law distributions In 
truncated form. For comparison, all distributions are truncated at 1 
and 1000 \i.   With the truncated power-law distribution It Is possible 
to show the graph for q = k.    Therefore, Fig. 2 shews the full extent 
of uncertainty due to the uncertainty In q. POr the case of q = U: 

x      / 

PM{0,x> = J d In x / J 

= | log^ x(u) 

p1000 
d In x 

It is noteworthy that this q = U distribution is also the distribution 
of surface that would correspond to the q = 3 mass or volume distribution. 

The truncated lognormal distributions are shown for the assumptions 
of both constant volume-specific activity and constant surface-specific 
activity. The former lies well within the range of power-law distribu- 
tions . 

Variation in x  max 

As indicated above, the value of Xj^^ ^s not well known. The above 
equations are easily adapted to other values. Choosing 500 and 2000 for 
illustrations only gives the values shown in Table 1. The sensitivity 
to Xjjjg^ is seen to be strongly dependent on the value of q. Thus, the 
effect on % {0,x}  ranges from a factor of 1.2 for q = U up to a factor 
cf four for q = 3« 
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TABLE 1 

Effect of Varying x^^ on Fewer-Law Equations with Various Exponents 

Cutoff Diameter 
PM <0,x> 

<w> q = 3« 0 q = 3-t, q « l*.0 

500 n x-1 
h99 ~i:r 2^7 10g10 X 

1000 M V^Ti 
30.6 | loß10x 

2000 \i x-1 
1999 

V^i 
^3-7 3.3 loßl0 x 

SIGNIFICANCE 

As Fig. 1 illustrates, for the particle size range of 10-800 \i,  the 
extended power-law distributions for exponents of 3»0 and 3«5 lie between 
the lognormal curves based upon constant surface-specific activity and 
constant volume-specific activity. Below 10 fi, the divergence of the 
power-law distribution from the area bounded by the lognormal lines is 
at most about U ^ of the total mass. Above 800 \it  this divergence 
varies with large particle cutoff, and for a cutoff of 2000 \i the diver- 
gence is less than 5 ^. 

Figure 2 shows that, for truncated distributions, the lognormal 
curve based on the assumption of constant volume-specific activity lies 
well within the range of uncertainty in power-law exponents and does not 
differ greatly from the curve based on an exponent of 3.5. Although the 
lognormal curve for the assumption of constant surface-specific activity 
lies outside the range of uncertainty in power-law exponents, it does 
not differ greatly from the curve based on an exponent of 3.0. 

Figure 3 is a striking illustration of the similarity that can be 
achieved between the truncated power-law distribution and the truncated 
lognormal distribution. This figure compares the q = 3'5 power-law 
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Fig. 3 Achievable Similarity Between Power-Law and NBDL Lognormal 
Distributions. Lognorraal parameters are ^ = 500 n, x^. = 30 \x, 
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distribution with the 334 = 500 n, 3^- = 30 ji lognormal distribution. 
The agreement is such that if one curve is correct, the other will 
never be proved wrong. Presumably, equal similarity could be achieved 
with curves for other values for q. Presumably also, the agreement in 
Pig. 3 could be made still closer by either (a) a different choice of 
O and MM or (b) an equally reasonable method of cutting off the log- 
normal distribution at 1000 n, or (c) cutting off the lognormal distri- 
bution at seme equally defensible value like 950 n. 

Thus it appears that tiu differences between the two approaches 
are trivial. The lognormal distribution has the esthetic advantage of 
an observationally confirmed theoretical basis in the case of airburst 
debris. If truncation is required, the power-law distribution has the 
practical advantage of simplifying further calculations of particle 
surface distribution. Planned sensitivity analyses need not incorpor- 
ate power-law distributions explicitly, but may include them as a matter 
of convenience. 
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AHENDEC A 

GRAPHICAL CONSTRUCTION OP TRUNCATED LOGNORMAL DISTP.IHJTIONS 

Consider first the region of sizes less than x and assume that the 
effect of Xjjjg^ Is negligible In this region. The truncated curve can 
be calculated from the extended curve by simply replottlng percentages. 
Thus, for a cutoff of 1 n, the value of the extended curve for 1 n Is 
replotted at 2 \xf  the value for the extended curve at 2 p Is replotted 
at 3 H> etc. 

In the size region above x, assuming the effect of x^*- can be neg- 
lected, the procedure Is similar. Thus, for a value of 1000 \i for xmax, 
if one wishes to plot a value for 900 \it  one simply plots the value 
corresponding to 900/(l - 900/l000) or 9000 n on the extended curve. 
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