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ABSTRACT

Fallout mass-size distributions presently used at USNRDL are com-
pared with new distributions suggested by recent investigations. Avail-
able data is unable to define the distribution parameters well enough
to distinguish between lognormal and power-law distribution models. .
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SUMMARY

Problem

To determine the differences between newly-proposed fallout mass-
size distributions and distributions now in use.

Findings
Differences are trivial in comparison with the effects of current

uncertainties in the distribution parameters. Planned sensitivity

analyses need not explicitly treat the newly-proposed power-law distri-
butions except as & matter of convenience.
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INTRODUCTION

The purpose of this report is to compare formulas for the size
distribution of particle mass in the fallout from land-surface bursts.
The distributicn equaticns to be compared are basically the newly-
proposed power-law distribution and the lognormal distribution, although
modifications of each are involved. Cumulative forms of the distribu-
tions will be emphasized. Interest in such a comparison arises from the
need to assess the impact of new information and suggestions (mainly due
to Russell)l on present prediction techniques. The mass-size distribu-
tion is of basic importance for predicting fractionation effects because,
being equivalent to the volume-size distribution, it is primary input
data.

At this Laboratory both total particle mass and active perticle
mass are considered to have the same lognormal distribution, even thoush
there may be some fifteen times as much inactive material as_active
material.2 The power-law distribution, proposed by Russell,1 refers
only to total mass. The land-surfaces involved are both silicate
(Neveda Test Site-NTS) and coral (Eniwetok Proving Grounds-EFG).

The results of the mathematical comparison offered here will throw
ligcht upon the need of a sensitivity analysis for more detailed compari-
son.
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BACKGROUND

For purposes of fallout prediction, the information required for
input can be conveniently discussed in terms of cumulative logarithmic-
probability graphs because any single-valued distribution curve on such
a graph is automatically normalized to 100 %. Let us say that the pre-
dictor is interested in the distribution of Mo99 in a locel fallout
field. Even though his computer can reasonably handle hundreds of par-
ticle-size classes, the data on which his input is based need not be
so detailed. Presumably he knows enough about the device to state the
total quantity of Mo39 present. His next most urgent need is to know
what fraction of this came down locally, or at early times, or in large
particles. This corresponds to placing a point on the graph in the
region of 25 to 50-p diameter particles. Such a point might conceivably
come from several sources, e.g.,

1. Predicticn techniques in vogue,

2. Partition inferred from the radiochemical analysis of cloud
and ground samples, 99

3. Integration of contours of Mo”” surface density on the ground.

Assuming a number is available to place this point, he still needs
199 more numbers. These can be obtained from

1. Prediction technigues in vogue,

2. Determinining Mo99 distribution with particle size in a repre-
sentative sample of the local field,

3. Integration of contours of particle surface density as a func-
tion of size, plus a knowledge of the reiative Mo99 content of different
particle-size classes,

4. Determining Mo9? distribution with particle size in a cloud
sample which contains representative proportions both of the particles
chosen above and of larger particles.

The more observational data that can be incorporated, the less reliance
need be placed on choice one and moreover, the better the quality of
choice one that can be offered. If as few as five well-distributed
points were available from observations, the predictor would be in good
shape.




These same considerations apply to the distribution of other par-
ticle properties: individual radionuclides, mass, or fraction of the
unpartitioned; unfractionated normalization factor. Unfortunately, it
is invariably necessary to rely on choice one to some extent. It is
therefore incumbent upon the predictor to keep current the comparison
of his techniques with published observations.

THE LOGNORMAL DISTRIBUTION

To illustrate the notation we may introduce the lognormal distribu-
tion by saying that, if the probability is By (a,b) that a randomly
chosen particle in a distribution has a mass x: a <x < b, then the
equations b

Py {s,t} = J’ Py (x) dx

\

Py {x,x+dx} = By (x) dx)

define the probability density function pM(x), and for the lognormal
distribution,

pM(x) dx = (1)

1
“\/ 2n
The parameters and ¢ are best determined from a cumulative log-prob-

ability piot of mass distribution. If a straight line gives a
reasonable fit to the cumulative weight, then

lnxuM2
1 B ) d 1n x
exp ‘2( 0_ 0 [

My = 1n Xy

(where Xy 1s the particle diameter at 50 %)

c=1n m"'z ln ﬁ
XM M-
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where xy; and Xy- are the particle diameters one sigma unit larger and
smaller than xy (i.e., at 84.13 % and 15.87 %, respectively). The mass
distribution currently in use at NRDL uses the lognormal distribution
vith parameters xy = 100 p and g = 1.687.

The mags-distribution curve favored at NRDL is based upon (1) the
assumption of constant volume-specific activity end (2) activity-size
data from 75 to 3300 p.2 An argument can be mede for assuming constant

surface-gpecific activity instead of constant volume-specific activity.
The effect of this will be discussed below.

THE POWER DISTRIBUTION

In an unclassified secticn of a classified report ,1 Russeli des-
cribes his analysis of Johny Boy cloud samples, which analyses led him
to the conclusion that the mass of the debris was so distributed that,
down to about 90 u, equal size increments contained equal masses:

B, {a,b} «(b-a)

or
pM = constant

On the assumption of constant particle density and the usual spherical-
particle approximation, this leads to a frequency distribution function

Py {x,x+dx} = Py (x)dx = kNx-3dx

vwhere kN is a normalization factor.

Further investigation, especially by Nathans,* indicated variations from
the power of three, so for generality we write

Py {x,x+dx} = k.Nx-qu
B, {x,x+dx} = ko (x) ax = kx3"% ax

which bears little resemblance to Equation 1. The value of q appears
to lie between 3 and L.

*M, W. Nathans, Tracerlab, Inc., private communication.




Completion of the distribution equation requires that some upper
limit xpax be set to the particle size. Thus the form of tre equation
becomes

; 3-q = 3-q
Py {a,b} = I x° % dx I x° % dx
a o

Various considerations led Russell to choose a value of 1000 u for
althouch References 2 and 3 indicate a higher value would be more
appropriate.

max?

Fiqure 1 compares the power distribution with the lognormal distri-
bution for several cases. The power distribution is plotted for typical
values of q = 3.0 and 3.5, both with a cutoff of x,, = 1000 p. A
curve for q = 3.0 and Xpgx = 2000 p shows the effect of a reasonable
change in cutoff diameter.

For the cese of q = 3.0 and Xmax = 1000 p the mass distribution is
extremely simple. The fraction of mass in particles of diameter x or
less is then

X
By {00) - K8

For the case of q = 3.5 and Xoax = 1000 p it is not much more com-
plicated:

X 1000
By {0,x} = I x-l/2 ax [ | x-l/2 dx
o

o
For the lognormal distributions the equations are derived according
to the method of Reference k4:

X
! exp /1 [1n [x(microns)/100] 2} a1
By (0%} = 682 £ {  [elme JERLE

for constant volume-specific activity and
X

1 1 (1n [x(microns)/1693])°
PM {0,x}=1-:-6-52—-_\/—§-_; leXP {-5( n_ix 1?1(;828 )}dlnx

for constant surface-gpecific activity.
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Fig. 1 Comparison of Extended Distributions




THE TRUNCATED DISTRIBUTIONS

The Truncated Power Law

It was immediately evident to Russell that the power-law distribu-
tion was physically unrealistic as shown. Thus as x = O, the distribu-
tion predicts an infinite number of particles. Therefore Russell chose
a value of 1 ¢ for the lower cutofi diemeter xmin’ giving the final
form of the distribution as

b
I x3-q dx
PM {a)b} = d
JlOOO x3-q ax
1

The small size cutoff has since been well documented by Nathans'!
work.

The Truncated Lornormal Distribution

I7 pressed to the limit, the lognormal distribution will precict
some Tinite (if fractional) number of particles of any size, 10 matter
how larce or small. A means of truncating the lognormal distribution
at the small particle sizes x was employed in Reference 4. This
involved simply making the sug%%itution

X = X=X
min

in tuhe distribution function. If a cutoff at larger sizes is desirable,
one needs another means of making tne logarithmic term infinite. This
can be easily supplied by first writing

Inx = - 1n b
X
and making the substitution
1l 1 1
—-— ) o= =
X X X

which is equivalent to making the substitution

X = l - x7x

max

-]




T

An otvious way to incorporate both cutoffs simultaneocusly is to make
the egingle substitution

x_.x-xmm
1o XX

Apperdix A describes how truncated graphs can be constructed from the
perameters My and 0 with a minimum of effort.

Cmison

Figure 2 compares the lognormal and power-law distributions in
truncated form. For comparison, all distributions are truncated at 1 u
and 1000 g. With the truncated power-law distribution i% is possible
to show the graph for q = . Therefore, Fig. 2 shows the full extent
of uncertainty due to the uncertainty in q. For the case of q = k:

X 000
PM{O,X}=Idlnx/r d 1n x
i 1l

= -;— logl0 x(p)

It is noteworthy that this q = 4 distribution is also the distribution
of surface that would correspond to the q = 3 mass or volume distribution.

The truncated lognormal distributions are shown for the assumptions
of both constant volume-specific activity and constant surface-gpecific
activity. The former lies well within the range of power-law distribu-
tions.

Variation in xmax

As indicated above, the value of Xpax I8 not well known. The above
equations are easily adapted to other values. Choosing 500 and 2000 for
illustrations only gives the values shown in Table 1. The sensitivity
to xpo is seen to be strongly dependent on the value of q. Thus, the
effect on Py {0,x} ranges from a factor of 1.2 for q = 4 up to a factor
cf four for q = 3.
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TARLE 1
Effect of Varying Xpax OB Pover-Law Equaticas with Various Exponents
Cutoff Diameter By {0,x}
(xmx) q = 300 q = 30"/ q = l‘oo
500 1 x-1 Lo 1
59 . 2.7 1980 ¥
1000 ¢ %% Vx-1 1 08 . x
oY 30.6 3 “%0
2000 ¢ x-1 Vxa 2 o x
1999 §3.7 3.3 610
SIGNIFICANCE

As Fig. 1 illustrates, for the particle size range of 10-800 p, the
extended power-law distributions for exponents of 3.0 and 3.5 lie between
the lognormal curves based upon constant surface-specific activity and
constant volume-specific activity. Below 10 u, the divergence of the
power-law distribution from the area bounded by the lognormal lines is
at most about 4 % of the total mass. Above 800 u, this divergence
varies with large particle cutoff, and for a cutoff of 2000 p the diver-
gence is less than 5 %.

Figure 2 shows that, for truncated distributions, the lognormal
curve based on the assumption of constant volume-specific activity lies
vell within the range of uncertainty in power-law exponents and does not
differ greatly fram the curve based on an exponent of 3.5. Although the
lognormal curve for the assumption of constant surface-specific activity
lies outside the range of uncertainty in power-law exponents, it does
not differ greatly from the curve based on an exponent of 3.0.

Mgure 3 is a striking illustration of the similarity that can be

achieved between the truncated power-law distribution and the truncated
lognormal distrivbution. This figure compares the q = 3.5 power-law
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distribution with the xy = 500 u, Xy = 39 ¢ lognormal distribution.
The agreement is such that if one curve is correct, the other will
never be proved wrong. Presumably, equal similarity could be achieved
with curves for other values for q. Presumably also, the agreement in
Fig. 3 could be made still closer by either (a) a different choice of
o and py or (b) an equally reasonable method of cutting off the log-
normal distribution at 1000 u, or (c) cutting off the lognormal distri-
bution at some equally defensible value like 950 pu.

Thus it appears that th: differences between the two approaches
are trivial. The lognormal distribution has the esthetic advantage of
an observationally confirmed theoretical basis in the case of airburst
debris. If truncation is required, the power-law distribution has the
practical advantage of simplifying further calculations of particle
surface distribution. FPlanned sensitivity analyses need not incorpor-

ate power-law distributions explicitly, but may include them as a matter
of convenience.
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APPENDIX A

GRAPHICAL CONSTRUCTION OF TRUNCATED LOGNORMAL DISTEIBUTIONS

Consider first the region of sizes less than X and assume that the
effect of x,,. is negligible in this region. The truncated curve cen
be calculated from the extended curve by simply replotting percentages.
Thus, for a cutoff of 1 u, the value of the extended curve for 1 u is
replotted at 2 u, the value for the extended curve at 2 pu is replotted
at 3 u, ete.

In the size region above X, assuming the effect of can be neg-
lected, the prccedure is similar. Thus, for a value of B for Xp.ys
if one wishes to plot a value for 900 p, one simply plots the value
corresponding to 900/(1 - 900/1000) or 9000 p on the extended curve.
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