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ABSTRACT

. The vortex ring is an essential and ubiquitous phenomenon that
has been rather neglected in serodynamice end technology, perhaps
because it is ususlly construed, unfortunately, ms a mere exercige in
old-fashioned mathematics. The existi g venerable theories of this
phenomenon are at once little known, difficult, uncoordinated, in-.
sufficient and inconsistent. They are reviewed, modified and combined,
and asre thus made ready for the long-overdue experimental tests. An
essential mathemsatical preliminary, the theory of straight vortices,
ig discussged.in an appendix.
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FOREWORD

The U. S. Army Limited War Laboratory has an interest in the
potentialities of vortex rings in applications to problems of counter-
insurgency. Mr., Serge Zarocodny of the U, S. Army Ballistics Research
Laboratory was known to have done some work in this field. Because of
this, BRL was asked on 29 January 1965 to prepare a "study of the
state-of-the-art in the field of vortex rings with some attention to

their generation and decay...". The paper thet follows was prenared
in response to the LWL request.
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INTRODUCTION

The Tascination of the vortex ring lles in the fact that it is
neture's way of transporting a finite body of fluid through some
ambient fluid by rolling rather thar by sliding; so that the role of
viscosity of the filuld i3 minimized. Hence in aerodynamics the vortex
ring i1s ublguitous: whenever a finite body of fluid is woving through
gome ambient fluid without external constraints, or is made to move so,
it probably moves so because 1t hes been formed as a vortex ring, or
it is forming itself into a vortex ring., It can indeed be seid that
this way of transport obviates the basic difficulty of aerodynamics,
the boundary layer; and that the trensport is achleved practically
without dreg. For thls reason the theory of the vortex ring is one of
the reletively few hydrodynamical phenomens which in principle can be
treated sufficiently well by the clessical theory of potential flow;
and this is how &1l theories of the vortex ring are indeed construed,
In reality, of course, the phenomenon is not entirely free of this
basic difficulty. Since in the potential flow there is some shear,
and a consequent diffusion of vorticity, there survives some analog of
drag: there 1s a weak wake, the ring grows, decelerates and dissipsates.
Yet this dissipation is distinctly secondary to the fundemental "drag-
less", or steedy, cheracter of this phenomenon.

Sometimes the vortex ring is conspicuous, precisely because its
steadiness, or perseverance, is of interest; sometimes it is there,
but remeins unsuspected; often it is rather overshadowed by other
complexities and coustitutes but a secondary aspect of some more
complicated phenocwenon; but often it is only a helpful abstraction,
and is of interest not so much by virtue of its steadlness, or pre-
cisely because of its mortality; for the vortex ring is the barsic
constituent of any turbulence, Thus, the vortex ring ie obvious in a
lenticular cloud around & mountein, in squid's ink, in the disturbance
lef't on the surface of the water by sn car stroke, in an explosion of
a misgile in flight, or in the wmushroom of an explosion at the surface
of the earth (e.g., sometines iv the mushroom of an atomic explosion
the thin fiery thread of the core of the vortex ring is distinctly
visible) and on some rare occasions - for reasons which are still not
entirely understood - a large and long-lasting smoke ring forms out
of the blest from a large cannon. A vorlex ring is easily recognizable
in the blllowing of smoke from a learge (and unsteady) fire, and in the
nearly-spherical puff's of cumulous clouds; it is less clearly defined,
but still urmmistekable, in any muzzie blast, in the intermittent fiow
around the spike of a spike-—osed projectile, aund in the early stages
of any wake from a moving body - whether & rushiag trein or e
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projectile. It is less wldely recognized, but ie no less essentisl,
as a constituent, or "fire structure", of a meteorological "thermal",

ar radar "angels" [12], ir the paths of soaring birds [11], and in the
structure of the formations of birds and fishes,

But in such phenomensa as the laminar fiow in a pipe, the rockes
exhaust, the flow about a projectile, or in the general turbulence,
the vortex ring becoues an abastraction, or an individual vortex line
or vortex tube, not possessing all of the features of & well-defined
toroidsl ring. 1In such cases we have, rather, a combination of wany
distributed vortex rings. This "aszsembly" of rings often is similar
to a cylindrical coil of wire, rather than to an individuel cireuler
wire loop; viz., it may be a tubular core of & "long" ring, continvally
being regenerated (or "re-wound"”) on one end, and continually flaring
end breaking out into individusl, not particularly well formed, rings
on the other end. Yet even in suech case the regort to the concept of
vortex rings often allows us to discern & somevhat simpler system in
the general complexity. For iustance, attention is oi'ten enough drawn
to the fact that cigarette smoke starts as e smooth and long Jjet, and
then quite sudienly breaks into swirle. The terms "laminar" and "tur-
bulent" here, of course, only deseribe rather than explain, The vortex
ring here is invisible, consisting of the air surrounding the smoke Jjet.
As the sncke is sucked into this ring along i%s axis, 1t accelerates,
and the narrowing of the Jet counterascts its spread due to the
diffusion; thus, the steady, or leminar, character of fluw is eupha-
slzed. As the smoke passes to the front of the rings, it rether sud-
denly deviates from the axis in one or ancther direction, roteting
about this invisible core; thus the apperent sudden onset of the tur-
bulence is basically the "steady" behaviour of the fluid in a vortex
ring. In the meanwhile the core moves up, too, though at a lower
velocity, and in a more compiicated manner than in an idealized single
vortex ring; and the more quiet the ambient alr, the farther this
smooth jet, in this tubular core, extends before the upper end of this
core begins breaking up into individual rings. With a little concen-
tration one can almost see the individusl rings about which the smoke
strand is "wrapping itself up'. Simllarly, a vortex ring is at least
quelitatively recognizable in such phenomena as projectile weke, the
profile of the turbulent boundary layer, the formation of the sub-
laminar houndary layer, ete.

In the demise of & vortex ring one ~an discern two aspects,
which may be termed decay and distortion; meening by decay the effects
of iiffusion, with a hypothecated preservation of the circular
sy -metry of the ring; and by distortion the effects of the inherent
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instabllity of the circular shape of a vortex, with the neglect of

the decay (the straight and the circular shapes of & vortex are but
shapes of unstable equilibrium)., By far the simpler, and the prior,
form of the demise is the decey: the ring seems to decey flrst, and
only then starts distorting, passing into the general large-scale tur-
bulence. In air, particularly, the decay is quite strong, and the
distortion is entirely too complicated for any deteailed consideration:
a ring which starts distorting practically "blows up", or disapnears,
Yet. even in the swirling of tobacco smoke the vortex-ring netu-e of
turbulence is strongly pronounced: each cegment of & vortex m«:/es asg
though il were & part of a vortex ring and the wonder is not so much
that diffusion occurs, but how long the individuel strands of smoke
persist, and how weak is the diffusion., This mechanism of mixing is
in feet much stronger than mere diffusion: vortices move so as to

be always in contact with a fresh mass of air, thus speeding up the
mixing, The distortion i-. more readily seen in water rather than in
air, apparently because e decay there is less repid, due to the
lower kinematic viscosi.,. A drop of ink or dy«é wvater gently let
into stiil water presently "cascades'", or breeks up into a complicated,
and yet remsrkably systematic, tangle of fine (ihat is, still no%
thoroughly diffused) thread [ 21, 22], Figs. 19-20; yet even there the
decay distinctly precedes the distortion. The drop at once forms a
ring which rapidly travels down, slowing down and expanding, viz.,
decaying, The subsequent distortion, however, is so remarkably
systematic only because of the presence of another, little understood,
vortex pheromenon: the axial movement of the fluid along the vortex,
viz., the spilling of the dyed fluid down the vortex &s if down a
chimney; this effect of gravity is unmistaksble even when the dif-
ferences in dengity are very slight. As the lmperfections of the cir-
cular shape of the ring mske it approximate a polygon, the corners of
this polygon ect as rings of smeller radius, having higher velocity;
they travel ahead of the straighter sectionsg, and as the ink spills
into them, form u horseshoe vortex which presently forms a "derivative"
(viz., not "seamless") ring, to the center of which there runs e
vanishing "umbilical” vortex pair (Fig. 19); this ring then breaks in
two (Fig. 20), and so on, Thus, theoretically, a single continucus
circuit could be treced through the resulting tangle; but the
elementary concepts of the continuity of the circulation arocund such
a filament in the "inviscid" fluid will require much modification.

The stretched umbilical vortex pair vanishes because of viscosity.

Technological applications of the vortex ring as a purposely-made
artifact - as distinguished from its "vatural", or unintended, occur-
rence - seem to have been limited, so far, to toys and edvertising, or
tobacco and perfume, The latter use is particularly interesting
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because of the remarkmbly weal concentrations of gas sufficient for
olfectory sensation, Such occasional uses of the vortex ring (in-
cluding, perhaps, theatrical technology) can be expected to recur, but
are not likely to lead to much serious study. Less innocent applications
suggest themselves readily. Most probably, the principal applications
would lie simply in the unconstrained, but directed and selective,
trangport of gas, smoke, dust and serosol. Used for such purpose, the
vortex ring will elways have difficulty in competing with a proJjectile;
but it is ea=y to visualize many diverse hypothetical circumstances of
human conflict in which a vortex ring may have, over & p.ojectile, the
advantages of stealth, silence, perhaps invisibility, and puzzlement:
e.g., & bush on the wayside, or a particular individual in a wmob,
might not be worth the expenditure of a tear-gas grenade, but might be
worth & few vortex-ring puffs; a quick dash through e field of fire
might be only advertised by the launching and the burst of a smcke
grenade, btut may conceivebly be disguised by smoke conveyed as vortex
rings. In any case, man's reaztion to smoke or gas conveyed in vortex
rings is bound to be entirely different from his reaction to a grenade,
One ought not suppose, though, that the effects of a vortex ring
manifested in the transport of energy, and perhaps of momentum (say,
by production of disturbances of pressure at a distance) must always
be non-competitive with a projectile: there has not been much serious
effort to produce particularly strong and efficlent vortex rings, and
we really do not have enough experience to conclude that a vortex ring
must always be "impractical". In matters of unconstrained transport
of fluid, the vortex ring might even echo the role of the laser in
optics.

However, were we to attempt a serious feasibility study of
technological appiications of vortex rings, we could not do so with
the present standard theory: for today we lack not only the experi-
mental technigues for detecting, recognizing and evaluating a passing
vortex ring, and the quantitative understanding of the decny (not to
speak of the distortion) of & vortex ring: but we lack even a suf-
Ticiently clear understanding of the structure of the ring. The
known theories of the vortex ring appear to have arisen mainly through
the curiosity of mathematicians, as exerciser in the general aero-
dynamic theory; one may suppose that the purely analytical approach
has reached its point of diminishing returns, and that the further
cuantitative progress will ensue mainly through the use of computing
machlies ~nd experiment,




EXISTING THEORIES OF VORTEX RINGS

With an exception that will presently be noted [15], there seem
to exist but two theories of vortex rings, both heavily qualified by
assunptions.

The classical, and by far the more popular one, is that of
Helmholtz, dating to 1858; or to 1867, when it was expounded by
Sir W. Thomson, who considered it in comnection with his "vortex eatom"
theory. Today his theory may be viewed as one of the precursory grop-
ings toward quantum mechanics, particularly interestiag because coming
from the proverbial expcuert of "classical" physics. For our present
purposes, however, it caan Y2 said simply that, with Helmholtz's set-
ting aside the aspects of the demise of the vortex ring, Kelvin was
particularly impressed with the aspects of the permanence of the
ring [26]. This theory is concerned with thin-cored rings; heuristical-
ly, this is merely a direct mathematical analog of the magnetic field
of a current-carrying wire, and is not particularly meent to epply to
actual, reasonably diffused, vortex rings. The main accomplishment of
this theory is a resolution of certain mathematical, and rather arti-
ficial, indeterminacies. Tnis theory is particularly interesting
because it describes quite a variety of possible structures of a vortex
ring.

less widely known, ard perhaps unnecessarily modest, is M, J, M,
Hill's theory, dating to 1894, This theory is concerned mainly with
the flow inside the core, end assumes that vortlcity has been thor-
oughly spread throughout the core in a certain wanner. From the sum-
mary by Lamb [1], this theory is known by ite one thoroughly-completed
phase, the theory of the "spherical vortex": 1i.e., a vortex ring in
which the body of transported fluid has a sphericel shape. In princil-
ple, the theory describes an even greater variety of possible
structures of a vortex ring than Helmholtz's theory dces; but the flow
outside the core is manageably simple only for the sphericel-vortex
case,

Both of these theories use three basic assumptions:
1. Inviscid fluidj viz., they consider only the steady vortices.

This restriction, however, still might provide a good picture of an
instantaneous structure of & vortex ring.

2. Incompressible fluid; viz., both theories restrict the
problem to that of hydrodynamics. In comparison with the other
asgumptions, this restriction secems quite reasonsble,




3, The field of flow is sherply divided in two regicns: the
fleld of outer, irrotational and potential flow, and the field of a
core contalning vorticity, the latter being agsumed to be distributed
uniformly in & certain sense., Mathematically, this feature is much
like the "lumped parameters" approximation to any continuum problem,
which is usually forced upon us whenever we have difficulty in
gpecifying the detailled distribution of & physical quantity. This
artificial division of the field into the rotational and irrotational
flows should not be confused with another important, legitimate and
sharp division: that into the fluid transgorted with the vortex ring,
and the ambient fluid. The latter division occurs in the outex flow,
the core forming distinctly a part of the transported fluid. In a
real ring this division is somewhat blurred by the decay [15].

With assumptions 1 and 2 the real problem of the hydrodynamics of
a vortex ring lies in the fact thet fluid has both vorticity and "shear",
of these two concepts vorticity being the simpler one (sec Appendix).
Assumption 3 divides the problem accordingly. In the outer flow
vorticity is "assumed out of problem”, and in Helmholtz's core shzar
is "assumed out of problem", viz., the core is viewed as & rigid body
not having any shear deformation. In reality, of course, vorticity is
negligible only in regions far from the core, while shear is negligible,
in addition, only near a certain curved "axis" of the core. Everywhere
else shear exists, and can be said - somewhat contrary to the famous
Helmholtz's dictum (see Appendix) - to "generste" vorticity; or more
precisely, to cause & redistribution of vorticity. Yet assumptions
1 and 3 taken together are eminently legltimate at this stage of the
game; they purport merely to describe spproximamtely the instantanecus
structure of a real ring.

Helmholtz's and Hill's theories of the vortex ring are briefly
reviewed in the encyclopaedic text by Lamb [1l], where they are treated
apparently merely as exercises in the introduction of the more
advanced methods of hydrodynamics preparatory to the more popular
problems of aerodynemlcs; but these theories seem progressively abridged,
and even omitted entirely, in the more modern texts [2, 3, 4, 6] ,
perhaps for the reascn that vortex rings as such have not had, so far,
direct application to serongutics. It has been said that a proper
modern theory of vortex rings should start with Navier-Stokes equations;
but such an approach is too laboriocus for our present purposes. It
will have its place some day in & formulation of a theory of the decay
of vortex rings. The classical introductory theorles, reviewed here,
constitute in effect a serles of shortcuts tc the Navier-Stokes
approach, and deserve & caveful consideration. Souwe of these shortcuts




might be not especially fortunate, and if applied mechanistically
lead to contradictions, infinities, indeterminacies, etc.; but
something useful is t¢ be learned even from such pitfalls, and
most of these shortcuts are excellent idealized models of reality,

We feel that the shortcomings of the existing theories llie not so
much in any lack of merit of assumptions 1, 2, 3, which axe so neatural
at this stage of the game, but in the fact that these theories have
traditionally been viewed &s isolated mathemstical exercises. The
facts that Helmholtz's end Hill's theories heve never (to our know-
ledge) been combined, nor s'ibjected to experimental tests, are cases
in point, It may even be sald figuratively that these theories,
viewed as priwitive preliminaries to some omniscient, but in practice
unachievable, general theory, have served to discourage engineers
from organizing thorough experiments, or gstudies of technological
applications, of vortex rings. 1In fact, of course, ithese theories
were meant to help precisely this type of student; for, while he does
need some theoretical background, he does not have to be & full-fledged
aerodynamicist, or expert on partial differential equations. By the
time he does become such an expert, he will probably be lured %o
subjects more glamorous than vortex rings.
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MATHEMATICAL PRELIMINARTES

The following peculiarities distinguish the theories of vortex
rings from those cf straight vortices, discussed in the Appendix.

Because of the axial symmetry, the obvious coordinate system is
the cylindricel, rather than rectilinear; e.g., a study of Hill's
original paper f28] would show that treatment in the rectilinear system
is quite feasible, but unnecessarily laborious. Traditionally, the
axls of the ring is denoted by x, and the component of velocity of the
fluid along that axis, by u. Two important and readily-interchangeable
alternatives should not be confused: the coordinate system may be
stationary, or 1t may move with some steady velocity U. In the former
case the flow is distinctly not sleady: e.g., the plane x = 0 is the
central plane of the ring only at the instant when the ring is passing
through that plane; u at infinity is zero. In the latter case u at
infinity is - U, and the ring velocity is diminished by U. In
particular, 1f U 1s in fact the steady velocity of the ring, the flow
is steady, viz., the streamlines are also the pathlines; the plane
x = 0 remaing the central plane of the ring, and the pathlines passing
through certain stagnation points delineate the volume of the fluid
which 1s transported with the ring., This concept applies, of course,
only by the virtue of assumption 1, for in reality the ring is
decelerating.

The radial coordinate, viz., the distance from the axis, Jye + 22
is often dencted by Eﬁ buu little confusion, greater convenience, and
a better parallel with the wathematics of tha* essential preliminary,
the vortex pair, results if this coordinate is denoted simply by y.
The corresponding component of fluid veloeity is traditionally denoted
by v, as in the rectilinear system, An occasional reversion to the
rectilinear system will remain necessary, but 1t will be clear in
context, and will not call for a change of notation,

The third, circumferential, component of fluid veloclty is
generally taken as zero; this may be reckoned as our fourth basic
assumption, 4. There are some literally-nebulous indications thst
this may not necessarily be so with actual rings occurring in the
atmosphere; but such refinements are outside our scope.

To describe the field offlow fully it 1is hoth uecessery and
sufficient to describe u and v in terms of x and y. Most of the
consequent mathematical difficultiez stem from this basic problem of
display of two functlons of two variebles. Yet, here this problem of
digplay is so much simpler than the basic problim of hydrodynamics




(which may be that of displeying four functions, u, v, w, p a8
functions of x, y, z). In the more general and advanced hydrodynsmics
it is customary to resort to slightly more sophigticated concept; and
in particular, it is often desirable tc specify a single scalar
function of the coordinates x and y from which both u and v are in
principle determinable. Three such possible functions should te
mentioned, though only the third seems used.

1. This function could be simply the velocity potential ¢, such
that the velocity g is - V §. In our case this simplifies to

1= - agfax, v = - 3p/dy

However, with vortices this concept is not convenient. It is com-
venient only for the specification of those parts of u and v which
are the result of the presence of definite sources and sinks in the
flow; e.g., for the uniform flow of veloeity - U, § = Ux. One
limitation of this concept is that only the irrotational flow (the
region where VX g = 0) can be s0 described; e.g., this concept can-
not describe so simple a phenomenon as the rotation of a rigid body.
Another limitation is that when the streem'ines are closed, i.e.,
link & core, ¢ is multiple-valued, and so requires an adOption of
some convention, Still another limitetion is that with vortex rings
expressions for ¢ are quite involved [1]. However, 1f u and v are
known in any way, one can alweys estimate ﬁ as -.I . 48, whe re ds is
the element of distance, and draw the equipotential surfaces, these
surfaces can be of help in visualizing the flow.

2. This function could be the vector potential of velocity, say
P, a function such that q=VXP, Ingeneral, specification of P
implies specifying three scalar funciions of X,¥,2, and 8o is no
simpler than the direct specification of velocity components. But
with vortex rings the components of P in the x,y plane can be put
equal to zero, and the surviving circumferential component, P, ig in
fact a scalar function., There results

= P/y + 3Pf3y, v = - aP/3x,

which now holds in the presence of vorticity (when vVXgq # O) as well;
and there are no difficulties with the rmltiple-valuedness of P when
streamlines loop a vortex. The uniform flow q = - iU can be repre-
sented by P = - Uy/2 in cylindrical coordinates (and alternatively, by
P = JUz or by P = - kUy in rectilinear coordinates). There are, _
however, certain difficulties. The fact that only "divergenceless”



S od

pyows

Y™ S

12

(viz., "solencidel”, or incompressible) flow can be so represented is
hardly a difficulty with vortex rings; but the fact that a simple
rotation in the x,y plane turns out to be represented by a rather
strange function P, 18 indeed a difficulty. The physical significance
of P (which is that of the "potential of the circulation") is far
from obvious, and the lines of P = const can easily be confused with
streamlines. So this concept is used only in derivations, rather
than in the final specification of a flow field; it turns out that
this concept is useful only as a peculiar sophisticated simplification
of Ampere's law - which law could be used more directly.

3. The customarily used function is the Stokes stream function ¢ .
In our axisymmetric case, in particular, the lines of § (x,y) = const
are the streamlines; and the value of ¥ is 1/27 times the rate of flux
of the fluld through the circle which is centered on the axis x and
passes through the point x,y (lying in the plane normal to x). In
fact, streamlines ere much more convenient for visualizing the flow
than the lines of $ = const. The relation between y and P is § = - yP.
This is derived by noting the flux of the fluid through that cirecle is
the ares integral of v X P, and hence can be computed, by Stoke's
theorem, as the line integral of P around the circumference of that
circle. Thus the computation of | amounts to & sophisticated applica-
tion of Ampere's law, which for a while may remain unrecognized by
the student. Fluid velocity is determined frou ¢ by

a=- (3y/3y)/y, v =+ (3y/3x)/y

ysical significance of which expressions becomes more clear if
:flects that 3y/dy is the rate of flow through an elementary unit
¢ 18, while 3y/3x is the rate of flow through an elementary unit
1o of a cylindrical surfece, except for the factor 1/2m; the
divi. on by y represente the division of the rate of flux by the area
2Ty. The concept of ¥ is particularly useful when computation of u
and v is easy; this is in fact the case with Hill's vortices, but less
so with Helmholtz's flow., The dimensions of ¢ are L3/T, while those
of ¢ and P are I2/T. For uniform flow of velocity u = - U, we have
¥ = Uy®/2] and the addition of this latter function to ¢ is equivalent
to a transfer into the moving coordinate system.

The concept of an analogous, but different, function also named
"stream function" is particularly useful in the theory of straight
vortices (sez Appendix), where it dovetalls with ¢ to form a complex
potential, With vortex rings, however, those mathematical tricks are
denied us, In brief, the condition of the irrotationality of the
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flow, V X g = 0, which 1s the necessary and sufficient condition for
existence of ¢, has in the cylindrical coordinate system the form
d3u/dy = 3v/ax,  just as with the straight vortices; and it does
provide one of the two Cauchy-Riemann equations necessary for the
existeace of g camplex potentisl. But the condition of incompres-

s8ibility, or of "divergencelassnese', of the flow, é? 0, now has
the more complicsted form 3(yv)/3y = - 3(yu)/3x, or au/ = - 3v/ay
v/ thies is the necessary and sufficient condition for existence

of § , but because ¢f the presence of the addend - v/y, it is no
longer the second of the Cauchy-Riemann equations. The similarity of
the latter expression to the relations between P, u and v leads to
Glebsch's trensformation, but that is entirely too advanced for our
present purposes.

The differsntial °quation for ¢, holding for the irrotational

region on Leplace equatlon '72¢ 0, which in our coordinates
becomes a ¢/By + (6¢/B /y2 T@f differential equation
for ¢ , holding everywhere, is 3°y/ax° + B ¢/

- Gv/aw)/y = yo ,
where 0 = av/3x - 3w dy 1is the vorticity; the equation arises from
the definition of ¢, with u and v expressed in terms of ¥ . Both
equations hold in coordinate systems moving with any velocity U; the
differences in the patterns as affected by U are a matter of the
boundary velues. These equations are sometimes referred to as the
principal forms of the Stokes-Belhami equation [ 20].
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HEIMHOLTZ'S VORTEX RING: GENERAL DESCRIPTION

The essential assumption of Helmholtz's theory is simply this:
the field of the irrotational flow is that of an "effective line
vortex", viz., a core of zero thickness.

The assumption is eminently reasonable at fair distances from
this idealized core; but in the viecinity of this core some difficultizs
naturally erise. Carried all the way, this assumption leads %o
abgurdities - infinite energy and infinite velocity of the ring - and
requires an obvious modification: the assumption of a finite, though
small, thickness of the core. The subsequent further assumption that
the cross-section of the core is eircular, with the center of the
circle on the line vortex, and that the vortiecity in the core is
uniform (viz., the aseumption ot the "rigidity" of the core) is a
carry-over from the theory of straight vortices; ususlly it is not
spelled out specifically, but is rather inherent in the basic assumption.
Both the finiteness and the rigidity of the core are contradictory to
the basic assumption; but it will be shown that with a few refinements
both of these auxiliary assumptions can be made rather rigorous.

The field of Helmholtz's flow is simpler in the stationary
coordinate system, Although this field is that of the very simple
and essential concept in electromagnetics, the magnetic field of a
circular current-carrying wire, it ic aot entirely simple from the
computational viewpoint; and for this rcason, perhaps, is not
discussed in most standard texts on electromagnetics. If the radius
of the ring and the strength of the vortex are taken ss units, the
ptream function is the dimensionless quantity

cos 6 9
(x,y)--yf ae

where © is the angle in the plane of the ring from the axis y to the
element d8 of the unit circle, and r = r(x,y,8) is the distance to
that element from the point in the x,y plane. If the radius is s,
and strength is S, naturally ¢ carries also the dimensional factor
Sa, and velocities derived from it carry the factor S/a. This field
is illustrated in Figs., 1 a, b. Fig. la, taken from (1], is properly
drawn for equal increments of ¢ . Fig. 1lb is drawn, as an exercise
necessary for drawing the more complicated patterns, for equal
increments of y < 1 in the plane x = 0; this form of exhibit of ¢ 1is
convenient and sufficient for our purpoges; for with few refinemente
the values of ¥ on the streamlines can be determined, whenever needed.
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It is now necessary to note thrat the integral is "improper"; also,

at the vortex the stream function, all fluid velocities, and the
kinetic energy of the fluid are infinite. Hence the determination of
the velocity of Helmholtz's ring requires a resolution cf certain -
mathematical indeterminecies. At the center of the ringu =1.

If this field is now viewed in & coordinate system moving with
some velocity U, the pattern of the streamlines changes as it is
gshown in Figs. 2-6, drawn for U = m/k, n/2, 3n/k, m, 5n/k. With U <O
the pattern is that of the magnetic field of a coil reinforcing a
uniform field [17]{or, of & flow through an orifice); with U > 0, that
of a coll bucking the uniform field. With 0<U < mthere are two
"stagnation" points on the axis (Figs. 2-4); for U-0O these points
recede to infinity (Fig. 1); for U = T the two points coslesce (Fig. T);
with U > mthe "stagnation” region becomes & ring within the vortex
ring (Fig. 6). If U is actuelly the velocity of the ring, as mentioned,
the streamlines passing through the stagnation points delineate the
volume of fluid transported with the ring. For small U this volume
first appears as a very large sphere; then it generally reseubles an
oblate ellipsold of revolution; then a balloon pinched in the center;
and finally it becomes a toroid (and the vortex ring becomes a "true
ving", rather than a "blob", since some of the ambient fluid now is
flowing through this ring).

In comparison with the theory of the vortex pair (see Appendix)
the curious thing is that in principle all of these patterns may
indeed exist - although the "true" rings may be difficult to produce.
The key feature of Helmholtz's theory is that the velocity U of the
ring depends upon the size of the core, becoming logarithmicaily
infinite as core thickness approaches zern. Most of the difficulties
of the theory stem from the questions: Just what is the relation
between core thickness and ring velocity and, in particular, to how
thick a core can this theory be extended. The traditional theory,
developed in the pre-computer erm, tackles this quesiion by way of
resolution of the mathematicel indeterminacies. Today it is
practicable to approach this question in a diff'erent, and more natural,
manner. We may postulate a veloclity U; determine its pattern of
streamlines; and inspect whether some of these streamlines may not be
such as might represent a rotation of a rigid body. If there is one,
and only one, such pathline, it represents the "profile" of a hypo-
thetical rigid core corresponding to the postulated ring velocity U.
Tais wes the original object of our study. Our conclusion is that
the plausible ring size for a given U is generally considerably
smaller than computed on the basig of the commonly-used formule; and
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corversely, that the plausible ring velocity for a given core thick-
ness is considerably less than is conventionally considered., This is
discussed in the section entitled "Velocity of Helmholtz's Vortex
Ring": but here we are not concerned with the thickness of the core
as yet.

The components of fluid velocity are glven by the integrals

1 W
- 00 COS E
q = J” 1 Ccos 6 de - U’ v =X I 3 ae
r3 T
0 0

which can be derived from ¢ (u requires some integration by parts);
however, these integrals are more easily derived directly by Ampere's

law,
1 J‘I;Xdi

Q=5 |7

1Tz |73
where the integral 1s taken over the circumference 2w of the ring;
the factor 1/2 is the result of a rather unfortunate hydrodynamic
terminology, whereby the strength S of a vortex (circulation/?n)
norresponds not to a current i, or to the quantity (magnetomotive
force)/hﬂ; but to 2i. Reverting briefly to the rectilinear coordinates
X,¥,2 we have the components

of r, as -X3; cos B - Y3 sin @;
and of ds, as H - sin § 48y cos ¢ ds.

Thus the x-component of the product Eng_ is

T, ds, - r, dsy (cos g - y) cos 6dg - sin g ( - sin g dg)

(L - y cos g) d¢

and the y-component is r,dsy - ryds, = x cos @ dg. The z-component
cancels out upon integration around the circle. The factor 1/2 drops
out when the domain of integration (0, 27) is changed to (O, 7). The
integrals for u and v then follow.

The computation of the integrals for ¢ , u and v, unfortunately,
is rather laboriocus. While it can be done in a number of ways, the
customery method is to express these integrals in terms of the complete
elliptic integrals of the first and second kind,

Y




2L

n/2 n/e
K(x) = f dv/Ay and E{k) = [ bo do
0 0

"o

vhere Ay (read "delta-amplitude of o") is defined as the elliptic

function [16]

Ao =«/ 1 - kasinaa

These integrals can be viewed as known functions of some "independent
variable” such as the modulus k, or the parameter k©, or the modular
angle sin"lx , or the complementary modulus k' =+ 1 - K2 , ete.;
except that in this application this "independent" variable is just
another function of x,y, that can again be defined in & number of ways.
The business of expressing the functions ¢, u and v of x and y with
the assistance of the auxiliary functions k, k', K and E of x and y can
become quite involved, since in the theory of elliptic integrals there
are many transformations that can be resorted to as a matter of con-
venience of computations., But in principle the relevance of elliptic
integrals to our problem arises as follows. Since

2= x4 (cos & - y)2 + sinae = X + y2 +1 - 2y cos @

= x2 + y2 +2y +1 - 2y{(1 - cos 8)

i

[x° + (y + 1)%] - by sin(e/2)

we can write r = R'Ay if we put

g2 =x° + (3 + 1)2, a = 8/2, K = l+y/R‘2

If we 8lso use the natural trensformations such as

(x° + y° + 1) - (x2 + v + 1 - 2y cos 8)

2y
(which of course introduces a basic "weakness" of computations, viz.,
the expression of & quantity as a difference between two large
numbers), it readily follows, for instance, that

cos § =

. /2 5 > )
( + + 1) - ;
0




e5

m/2 /2
=-(x2+y2+l)[‘dﬂ/r+rrdaf
0 0

2 2
=_£__+§'L_2K+RIE

In evaluating the integrals for u and v, the terms which contain
the cancelling factor r2 lead to K; while the other term, with r3 in
the denominator, requires the use of the formule*

-%“’- = E(k)/k'°
A

R

o3
n

There results

u= KR - (& +y° - DE/R K

- (x/y) KR - G +y° + DE/R K]

<
]

Since
o]
R'Zk'z = R'2(1 - 1+y/ 7Y = R12 - by = x2 + (y - 1)2 = R"2, say,
the above can be written as

K - (2 + y2 - LB/R"C)/R"

- (x/y)[K - (B 4+ ¥F + LEAREYR

whereby the role of R" 1s exhibited more directly (R" and R' are the
shortest and the greatest distances from the point x,y to the vortex).
At grest distances from the vortex, when k-0, these formulas describe
the dipole field; et x = O and y = 4+ 1, we have k = 1, and { , u and

v become infinite. The transfer to a system moving with velocity U

is accomplished simply by subtracting U from u, or by adding Uy /? to §.

u

1}

v

¥Perhaps the simplest way of deriving this formula (not prominently ex-
hivited in a number of handbooks) is the following. Note that

(d/do)(cos a/ba) = (B - 1) s1n o/0a, and (d/dv)(sin a/da) = cos a/b%x.
Multiply the integrand by cos®y + sin’a, regroup, integrate by parts,
note the cancellations of the integrated terms between O and ﬂ/2 add the
remaining integrals, recognize A%a and cancel, recognizing E(k).
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Itmy be noted that with smell k, elliptic integrals do not constitute
e "strong" method of computation, since certain small quantities have
to he determined as differences between large numbers.

In practice the expression ¥ (x,y) = const is not a convenient
algebraic equation in x and y. Streamlines can be drawn much more
easily by noting that (at the given instent, and in a coordinate system
wmoving with eny velocity U) we have

dx/dt =u aend ady/dt =v

in the Lagrangian sense (where t is time, and x and y refer to a
particular particle); viz., by noting that the differential equation
for the streamlines is dy/dx = v/u, and solving it numerically.

In the economy of a computing machine severasl refinements are
necessary in order to make the computations "stronger". We found that
one convenient transformation of these equations is

“FgR'3u= x' = X% - Fy + FpR'3U
~F2R'3v sy' = - kex .
where Fy = E/F3

Fp = (1 - kB)/2r,
F3 =[E - 2(1 - ¥2) (K - E)/%x®]/%°,

where k, R', K and E are functions of x and y as before, and where the
primes on x and y denote differentiastion with respect to & new
independent variable T ("machine time") related to t by dt/aT = - FQR’3.
The resultant system is well-behaved in the sense that no infinities
occur: velocitles x' mud y' are zero at the vortex (the situation
thereby is madg somewhat gnalogous to that with Hill's vortex, q.v.).
Functions F, (k%) and Fo(k®) are particularly convenient in that they
are nearly }1near end are emasy to represent in the machine.

Besides giving & general qualitative description of thLe
irrotational flow field, the part of Helmholtz's theory described by
the above mathematics and exhibited in Figs. 2-6 yields a number of
substantive results. It outlines the profile of the fluid transported
with the ring. It shows that the pathlines are indeed substantially
circles, though for larger circles their centers become displaced
toward the axis, and thelr shape becomes distorted so as to approximate

- e ey v
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eventually the half-profile of the transpcrted fluid. 1In

particular it shows that for the most-probable, low, values of U the
existing theory is not well applicabdle (see the section entitled
"Velooity of Helmholtz's Vortex Ring"). Finally, of course, from
thege patterns one can in principle work out all other informmtion on
the irrotaticnal flow, such as the distribution of pressure and shear
in the fluid. The pressure, of course, has a "hnmp" in the stagnation
regions and a "drop” at the "equator" of the transported fluid shape,
this drop increaping rapidly as one approaches the vortex itself

(sec Appendix). While the inviscid fluid 1s supposed to be without
ghear stress, the distribution of "snear" in the sense of rate of
shear deformetion 18 of interest; it indicates, at least quallitatively,
the ways in which a real vortex ring will depart from this ideslized
plcture. The shear most directly indicated by these patterns is the
one in the plenes normsl to the axisl (x,y) pianes and at 45° to the
streamlines; this shear is much like that in the lrrotationsl flow
sbout straight vortices (see Appendix), and is grester near the vortex
itself, and on the "equator" of the transported fluid, Less directly
indicated is the shesr in the planes which are at 450 to the normal tc
the x,y plane; this shear results from the fact that ezach elewentary
torus on the pathline is alternately shrunk and stretched ams it
epproaches, or recedes from, the axis. Its magnitude reflects
essentially the redial veloelity couponent v, vanishes in the plane

x = 0 and at infinity, end reaches somge maximum at some Ixi near y = 1.

Further information on the size and the shape of the body of
transported fluid is given in Fig, T.
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HILL'S SPHERICAL VORTEX

Hill's theory is concerned mainly with flow within the core of &
vortex ring. Indeed, the rigld core postulated by Helmholtz is an
excellent concept for straight vortices, but it cannot properly be
"hent" into e torus; that is, vorticity in the core cannot be uniform.
As regards the variation of vorticity on each pathline in the ¢ore, it
can readily be seen thet vorticity must be proportional to the
distance y from the axis. Indeed, consider an elementary torus on
this pathline. As it "spins" about some "center of circulation" in
the core, both its volume and its circulation must remain constant;
its length is proportional to y, hence its cross-sectionel area is
proportionel tc l/y; so the vorticity o, which is ecirculation per unit
area, comes out as ¢ = By, with B = B (¥ ) being a constant for each
pathline. The pathline can be viewed as & projection on the x,y plane
of & section of the surface 0(x,y), representing the vorticity distribu-

ion, by a plane passing through the x-axie at a slope B to the y-axis.
Generally one could expect that the inner pathlines have & greater
slope B, this slope becoming zero gredually.

The very reasonable assumption of Hill's theory is that B = O in
the ambient fluid, but that the vorticity has spread throughout the
transported fluid so that B is the same for all pathlines in that fluid.
Thus as regards the presence of a sharp boundary between the rotational
and the irrotational fluid, this theory is much like that of a rigid
straight vortex. Yet there is now & good reason for this boundary
(the embient fluid is being continually replaced), and the difference
in vorticity is great only in a small part of the circumference of
the "core'", viz., near the "equator" of the vortex. At the forward
"pole" where particles of ambient and transported fluid "meet", both
are irrotational; but as they proceed side by side along the meridian
(so to say without forming a boundary layer), the former remains
irrotational, while the inner acquires vorticity through some Coriolis
forces which are too complicated for our present purposes. In a real
fluid there would then commence a diffusion of vorticity (its form
being simply that the inner particle will not gain as much, while the
outer will gein some), but here this is neglected. Thus the assumption
of inviseldity of the fluid here appears gquite reasonable.

With o = By the differential equation for the stresm function
7ithin the core becoumes

3%y /3x° + 3%y /3y° - (By/dy)/y = ¥B(¥)

With Hill's ussumption that B is constant this equation is
saticflied by the simple expression
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¥ = y%(ax® + By + ),

provided 2A + 8B = 8. Here A,B,C are constants, and we revert

temporarily to standsrd units. The value of B is mwadily seen, and
those of A and B can be shown, to be invariant with respect to our
choice of the velocity U of the coordinate systew; but the value of

C is obviously affected by the transfer term Uv~/2. In the following
the coordinate system moving with the ring is assumed,

The wost lmpcrtant streamline, of course, is the separatrix,
§ = 0. It consists of the "gvancescent cylinder" on axis x (the line
y = 0) and the conic Ax® + By® + C = O, which meet at the stagnation
points. Since near y = O we have u > 0, it follows that 9¢/dy < O,
and so ¥ < 0 throughout the core; it can easily be shown, aéso, that o
¢«<C, A>0, B>O, and the conic is an ellipse. ILetting A=BQ ", C= - B,
we can write

¥ = By? (%% + y2 - ®9),

whernce the semi-axes of the ellipse %r R/Q gn x-gxis, and R on y-axis.
‘The fluid velocities are u = - 2B(Q°x° + 2y© - R ) and v = 2BQ?xy. At
£ =0,y = RAZ, both u and v vanish; this will be called the "center
of circulation",

The particulsarly simple case, of course, is that 8§ the spherical

vortex, when Q = 1, and ¥ can be written as By2(r? - . Then B = 10B.
The total cir-ulation in the half-circle y> 0, r<R is easily seen
to be

n/2

oms = f (BR sin 1)(2R cos 6)d(R sin A) = 2R3B/3 = (20/3)ER]
whence B 2.315/83. At x = Oand y = R we have u - - 2BR® = - .6mS/R.

The irrotational flow outside the core is given by another well-
known and particularly simple function

¥ = (1/2)uy?(1 - R3/r3)

which at x = O and ¥ = R has the velocity = - 3U/2. Identifying

- .6ms/R = - 3U/2,

we have the velocity of Hill's spherical vortex as

U = .bmg/R
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in standard units. To relate that to the velocity of Helwholtz's
ring (see the section on "Helmholtz's Vortex Ring: General
Description" and also the section on the "Velocity of Helmholtz's
Ring"), where S and the radius a of the effective vortex were taken
as units, we need only note that the radius most nearly corresponding
to a here is RL/B. In these analogous units

= Um//E = .889

The concept of the spherlcal vortex is particularly attractive
because with it the outer flow matches the inner flow everywhere on
the meridian r = R. The fact that the irrotational flow of tlis
vortex does not differ much from Helmholtz's flow can be demonstrated
by showing that at great distances the latter tends to become the
dipole flow, too {in doing that one should remember that with k-0
both K and E tend to m/2 with the relation (K - E)/k q'n/h) The
spherical vortex is illurtrated in Fig, 8.

Tt is a remarkable feature of any Hill's vortex (whether spherical
or ellipsoidal) that any one of its pathlines may be & candidate for
the profile of the core; that is, if the remalinder of the flow outside
of this pathline is replaced by a speciasl irrotational flow that matches
this pathline, the flow within this pathline will not be affected. This
feature well deserves being called the "vortex analog of Faraday's cage',
the analog of the absence of gravity within & shell-like planet. Iis
proof amounts to a sophisticated re-inspection of Ampere's law, which
is discussed in the Appendix,

The difficulty with the spherical vortex, however, is that its
inner pathlines are not circlesg, and so are not sultable candidates
for the core of Helmholtz's ring - for which, Figs. 2-6 show, the
cross-gsection of the core must indeed be circular. The fact that the
inner pethlines of the spherical vortex are ellipses elongated along
the x-axis in ratio 2: 1 can easily be seen by 1lnspeccing a pathline
ve(x° + y = const and putting y = 1 + ¥, Y « 1. There results

x® + 4Y2 + (terms of higher order in x and Y) = const.

The attractiveness of the concept of core cross-section rotating as e
rigid body lies, of course, in the absence of shear in such a motion:
one naturally supposes that as the processes in a real vortex ring go
on, the situation would eventually become such that at least the

central filaments of the core have no internal shear, viz., rotate as
a rigid body. The importance of this concept, however, should not te
overemphagized. Even though the core be small, and rotate as a rigid
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VELOCITY OF HELEHOﬁTZiS VORTEX RING

With the above preliminaries we may attempt to tie together the
theory of the vortex ring by inspecting the relation between the
veloclity of the Helmholtz ring and the thickness of the core. Usually
this is given by the much-quoted formula, which in our units reduces to

U = [1n(8/6) - 1/u4]/2 (1)

where § is the ratio of core and ring radii. In the standerd units, of
course, velocity U hes also the dimensional factor S/a. Our object
here is to show certain inconsistencies implied by this formula, and to
propose a modification for it. The seemingly more direct argument, via
a criticism of the derivation of (1), unfortunately, is out of our
scope, It may be noted, though, that (1) is meant only as approximation
heavily relying upon the assumption § ¢ 1 and utilizing a number of
other simplifications in the manipulation of the elliptic integrals
(which, as mentioned, do not constitute a particularly "strong" method
of computation). In his two-page outline of the derivation, Lemb [1]
mentions that this formula was stated by Kelvin in 1867 without proof,
and was formally derived by Hicks (in fifty-five pages) only in 1885
[27]. In perticular, Sommerfeld [6] specifically points out that the
derivation is quite complicated, that the subtrahend 1/4 is not quite
exact, and that the whole concept of expressing the relation between

U and § is "einigermassen illusorisch”.

Amorng the simplifications consequent on the assumption 8<€1
utilized in (1) there are the relations

k' =8/2, R=2, K=1n(k/k'), E=1 (2)

Using substantially the same simplifications, we find that the
mathematical model of Helmholtz's vortex ring can be made internally
more consistent, and can be extended to lerger & than is impliied by
(1), if the velocity is reckoned as

U = [1n(8/8) - 1/21/2 (3)

with certain qualifications as to how the radius of the ring (here
taken as 1) is to be measured (see Figs, 10 and 11). The
incongistencies in question arise from the ease of confusion between
the three distinct concepts:

(1) The outer Helmholtz's flow of the section entitled "Helwholtz's
Vortex Ring: General Description”, both in the ambient and in the
transported fluid, with its "center' at the effective line vortex;

A
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(11) The inner, Hill-0'Brien, flow of the section entitled
"0'Brien's Oblate Vortices", with its "center of circulation" * and

(111) The concept of the center of the core interpreted as the
center of the circular shape of the core. The "rigidity of the core"
concept of 1858 is clearly a carry-over from the discoveries of about
1820 concerning the magnetic field around a straight wire (since
heuristically the vortex core of fluid mechanics is nothing but a
current-carrying wire). While this rigid core cannot be bent - viz.,
the core of a vortex ring cannot rotate as a rigid body - if we inter-
pret the assumption of the incompressibility of the fluid literslly,
there survives this much of this concept: the circumference of a
fairly-thin core indeed may move as & rigid body. This concept is not
esgsential, but is very convenient in tying up the concepts (1§ and (ii).

Our whole point 1s that these three centers are not coinecident.
Formula (3) results from the fact that as long as the pathlines in
Figs. 2-6 and 9 can be approximated by circles, these three concepts
can be made coherent if the three centers are arranged as is shown in
Fig. 11: the radius of the effective line vortex is teken as the unit;
the center of circulation is displaced outward from that radius by
82/4; and the center of the rigid circumference is displaced toward
the axis by‘&a/h, The rigid circle then constitutes, approximately, a
pathline in both Helmholtz's snd Hi1l-0'Brien flow, and so forms &
transition between these two regimes.

Thus the qualifications for (3) are that the profile of the core
be small enough merely to be reckoned as circular; that the radius of
the ring be measured not to that cirele but to the effective line
vortex of the outer flow; that the radius to the center of that ecircle
be 1 - 52/4; and that the radius to the center of circulation of that
core be 1 + 62/4, The formula may be viewed as & primitive form of
U= (K -E/2)/(2+ ...), but formula (3) happens to be particularly
fortunate in this connection: for the quantity K - E/2 is epproximated
by %ngh/k') - 1/2 much more closely than either K or E are approximated
vy (2).

One way of showing the correctness of (3) and of the arrangement
of Fig. 11 is to work out, for both flows, the velocities u and v for
two points on each diameter of that circle, using the condition 8 «1;

*It may be noted that the location of Hill's "center of circulation"
does depend upon the velocity U of the coordinate system in which the
flow is viewed (the location of the effective line vortex, which implies
infinite velocities, is invariant with respect to U).

- — T e T i T = -
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O'BRIEN'S OBLATE VORTICES

Strictly, the facts that the meridian of the body of transported
fluid may be an ellipse as well as a clrcle, and that the core need
not extend throughout this ellipse but may be defined by any one inner
pathline, have been mentioned by Hill. Yet, since this is not
mentioned in Iamb or in other introductory texts, and since ellipsoidal
vortices have been studied iu greater detail by O'Brien [18, 19] it is
convenient to use the latter name to distinguish the ellipsocidal
vortices from the spherical ones.

Theoretically, the elllpse may be either prolate ur oblate. But
with vortices - rather curiously, and contrary to our experience with
rigid bodies ~ the oblate shape is the more efficient. A prolate
ellipsoid would have both a much more elongated ellipse for its inuer
pathlires, and a much longer arc of its meridian near its equator for
the diffusion of vorticity. As noted, Helmholtz's flow has no prolate
spheroids,

Particularly interesting is the case of @ = 2 (Fig. 9); with
these proportions of the ellipse the inner pathlines can easily be
shown to be indeed circles, and hence suitable candidates for the
core of Helmholtz's ring.

The velocity of a "full” O'Brien vortex of these proportions in
our units differs remarkably little from that of the spherical vortex.
The following preliminaries ensue simply from a re-inspection of the
derivation of the velocity of the spherical vortex: A = 4B; B = 16B;
oms = R38/3 = (16/3)8R3; B = 3MS/8R3; at x = O and y = R (in standard
unitg), u = - BR® as before = - 3MS/UR. Unfortunately, the irrotational
flow about an oblate ellipse, although presumsbly an old problem of
potential theory, is not entirely simple; nor does it match the O'Brien
vortex as well as the flow around a sphere matched the spherical vortex.
We shall therefore resort to certain approximations, again determining
U from matching of u at tha*t point in both flows. Dr. O'Brien [23]
has kindly shown us that in the outer flow at that point u = - 1.42(3U/2).
Identifying as before, we have

3mS/UR = 1.42(3u/2), or U = mg/(2 x 1.42)R,

or in the units of S and Rﬁ/ﬁ, U = .782. It will presently be seen
(ef. Fig. 10) that this, curiously, is practically the theoretical

velocity of the Helmholtz vortex ring extrapolated to the "formal"

core thickness of 6=1.




and to show that components v average to O, compouents u average to U
of (3), and that the vectorial differences of velocities at these two
points, divided by 26, are indeed 1/86€ - which is the angular velocity
corresponding to the average vorticity 2/6€ of a circle having un area
786< end a circulation &r (viz., strength S = 1), as assumed. Here we
shall only sketeh primitively how this arrangement can be arrived at.

Consider, in Helmholtz's flow, points 1 and 2 at x = 0, y = 1 +
61 and 1 - 8o; &and points 34, 3_aty =1, x = £ 6. It can readily
be shown that

uy = Ky /(2 + 8;) - Ey/6y, with k] = 8;/(2 + 8y)
wy, = Kp/(2 - 8p) + Ep/bo, with kb = 8,/(2 - 65)
uz = (K3 - E3)/”h + 83L with k' = 6 /(M

If we assume for s moment that the circular core is centared on
the effective line vortex, we have 8] = 8o = 3 say. Using (2)
we find that (u +u2)/2 K/2, while u, = TK - i)/c. The principal
inconsistency o% this commonly- 1mp11eé construction lies not in the
fact that these expressions differ from (1), but simply ian the fact
that they are not the same: viz., the circle dues not wove as s rigid
body .

Consider now points 1 and 2 in the Hill-0'Brien flow, the center
of circulation of which coincides, for a moment, with the effective
lire vortex. The requirement that both of these points lie on the
same streamline, viz., have the same stream function, is
2( 2

y(y© - 2) = constant, or

(1 v ) 1+ 807 -2 = (1= 8)°T(1 - 8,) -

which leads to
61(1 4 6]/2) = 52(1 - 62/2) = &, say.

Utilizing the requirement § <« 1, we obtain

2 2,
6126—6/2, 52:6+6/L,

that is, the center of the circular oore must be displaced from the
center of circuletion by the distance § /2 Now, the mean of uj and u
computed for these §; and 6’ in Helmholtz's flow turns out to be

(K - 1)/2, just what we had for u,. Since points 3;, 3 now represent
a chord, and no lonr-er a diameterf of that circle, we compute u for

e
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points L , b at x =4+ 6,y =1 - 6?/2, obtaining u) = K/2. The
inconsistency is as great &s before, but now, curiously, it is

reversed. Obvigusly, some averaging is in order: the values of §; and

§p must be §F §5/4; for this will yield (u, + u2)/2 = u., say = (K - 1/2)/2.
To preserve the distance 62/2 between the center of the’circle and the
center of circulation, we need merely to place the latter at the

distarne 62/h above the effective vortex; hence the arrangement of

Fig. 11. The fact that points 1 and 2 belong to the same pathline in
Helmholtz's flow as well can be seen by inspecting the stream

function of that flow,

b= - (2 +y2+ 1K/R' - R'E + Wy?/2,
various refinements of these arguments calling for mere aigebra.

Our modification of (1) into (3), and the arrangement of Fig. 11
go a long way toward removing the limitation § « 1; but some of this
limitation remains, since the really-thick cores depart strongly from
the ¢jrecularity of their cross-section. Primitively, § is limited by
1- 82/ =5, or § = 2(,/B-1) = .828; for this § we get from (3)
formally U = .885, practically that of the idealized Hill's spherical
vortex. As Fig. 2 shows, the pathlines which are conceivabtle
candidates for the profile of the core at such low U are strongly non-
circular; it seems rather clear, in fact, that one should not expect
to meet rings of such low U, or such large 3, in reality. Our theory
would surely apgly to § as great sz .2; Fig. 3 shows that with 6§ = .21,
U = 1.57, and §</4 = .011 the theory applies excellently. The theory
might conceivably be crudely applicaeble to rings with 6§ up to, say,
1/2 (Fig. 2); but with such rings it appears rather doubtful if our
basic assumption (of B = constant within the core, and B = 0 outside
the core) is at all a useful approximation.

Yet one possibility, perhaps merely academic, might be mentioned.
With thick-cored rings we must first give up the circularity of the
core, together with the idea that the pathline which forms both the
border and the tie between the two regimes of flow must be rigid. 1Its
rigidity, and its consequent circularity, is for our purposes merely
a convenience. The basic property we seek for such a pathline is
merely steadiness; and this ensues as soon as this pathiine is found
to belong to both steady flow regimes simultaneously. In both flow
regimes the shape of pathlines departs from circularity in much the
same way, circles changing into ovoids which eventuslly become half
of an oval. Thus in the relatively narrow range of "extra-thick-cored
rings", viz., in the range of §, say, from .5 to .8, or very low U
from 1.5 to .9, it should be possible to find, for each U, a pair of




pathlines - one from each regime - that match most nearly; this ovoid
can then be taken for the core corresponding to the eszsumed U, Our
belief in the existence, e&nd uniqueness, of such a determination rests
on no more than physical intuition, end on the defense than merely an
approximate agreement is sought. As guidelines for such a search,

we have, so to say, three "degrees of freedom": change of scale
between the two regimes, viz.,, & choice of the separation between the
effective line vortex and the center of clrculation; choice of
proportions Q of Hill's ellipse; and the choice of the individual
pathline in each flow. In this way one could arrive at an "atlas of
the possible structures of a thick-cored ring of a certain type";

so that with an actual ring the few possible experimental observations
would enable one to "fit" this ring among this series of theoretical
structures.

Fig. 19 exhibits formulas (1) and (3), &nd shows how well they
gseem to "blend" with the values of U = .889 and .782 for the "full"
spherical and O'Brien vortices (Q =1or 2). It 18 not clear at which
values of & these value of U should be marked at this plot (i.e.,
whether at the values of § = .828, 1 or whatever); this would depend
upon the manner of the definition of the quantity 8 for the "ext~a-
thick-cored" rings, and the detailed definition might just as well be
made so as to fit (3). Fig. 10 2lso indicates .uar present idea about
the probable range of the applic bility of this theory.

f .r"; ,




REMARKS

The blggest gap in our understanding of vortex rings is the
poverty of our understanding of the mechanism of the dissipation of
the ring., A proper approach to this subject will have to wmake quite
& break with the classical theories reviewed here. These theories
are meant to achieve no more than an idealized representation of the
instantaneous structure of a vortex ring, and should not be used
mechanistically to infer the rstes of decay. E.g., a ring which at a
given instant can be fairly well represented by Fig. 4 may, after a
certain time, be better represented by Fig. 3 (with a larger radius a
and a smeller strength S); but this is not the same &s to say that
Fig. 4 actually evolves into Fig. 3. The dissipation depends upon the
diffusion of vorticity, viz., upon the gradients of the surface o(x,y);
and the actual surface ies not the truncated cylinder assumed in these
theories, but more nearly & "hump" rounded off everywhere. Attempts
to epply theories, such as Navier-Stokes, that involve second dzrivatives
of functions, to discontinuous functions (here, o) are fraught with
spurious mathematical difficulties. It is with the object of illustrat-
ing this type of difficulties (at first entirely unsuspected by us)
that we find it instructive to review, in the Appendix, the only
thoroughly solved analogous problem, the decay of a straisht vortex.
Experimental approach to this problem has been badly neglected.

Some inkling of the sort »f results that & thorough theory will
furnish may be gathered from common observations and conjecture.
Rings seem to heve a finite range, and in their travel describe a sort
of trumpet-like surface, first moving fast with little decay, presently
expanding and practically stopping their forward motion, end finally
starting to distort; sometimes, depending upon the manner of the
formation of the ring, this history is preceded by a brief regime of
convergence of a ring. One may suppose that in & fast ring the pre-
dominant process is the growth of the core of a Helmheltz's ring;
while in s 0ld and weak ring the predominant process 1s the induction
cf the subient fluid into the ring. There are & number of ways in
which the mechanism of decay may be interpreted [17], but perhaps the
vest way, suggested in particular by Turner [15], is the latter
process, the induction of ambient fluid. The key procesc here is that
as soon as the "amblent" fluid acquires some vorticity, it is likely
to become & part of the vortex ring (it mey =lso pass into a wake ).
In particular, the "full" Hill-O'Brien vortices seem rather improbable,
since the outer pathlines in the transported fluid in such rings will
probably consist of nearly-irrotational recently-induced fluid. 1In
the experiment cited in [18] the induction of the ambient fluid and
the formation of the "evanescent cylinder" is prevented by the surface

-
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tension. The process seems particularly interesting from the view-
point of transportation of the fiuid or amerosol in the ring: the ring
so to say builds 1ts own envelope, thus counterscting the diffusion
and the centrifugal precipitation of t.e aseroegol, and so reducing the
loss of the originel contents of the ring in the traversed space.

In principle, today's computing mechines allow us a fairly
rigorous 'brutal numerical” approach to the decay of the vortex ring
[24, 25]. For example, by postulating a plausible instantaneous
structure of the ring, it is possible to compute its subsequent history,
including its decay; and in particular, if a reasonable variety of
such plausible structures lead to substantially the same subseqrent
nistory, this subsequent history may indeed be identified with the
actuael ring. In practice, though, such an undertaking remains a large
and expensive job, is often fraught with unsuspected Cifficulties,
and may distract the atteution from the long-needed - and in the long
range, unavoidable - experimentsl approach.

The most immediate present need is for development of experimental
techniques for evaluating a passing ring. Techniques for measuring a
and U ere obvious enough [13, 15], but new techniques are needed for
measuring S and 8§, the latter concept possibly needing & refinement
which would smount to some specification of the surface o(x,y). The
basic technique might be simply photographing a finite-duretion flash,
delivered as a thin sheet in the meridionsl plane of the ring, with
the ring formed in & dust-laden atmosphere, and/or passing through the
ambient atmosphere laden with dust of possibly different kind. Length
of the streaks would indicete the velocity, and the circulation 2ms
would be given by integrating this around any closed path. There are
many interesting possibilities as to the development of the detailed
techniques for analyzing the photogrrphs. Opticel sweep of the image
with the expected velocity U would allow the direct photographing of
pathlines instead of the pattern of the type of Fig. 1. Some
automation is needed for taking the integral of the velocities. One
should cxpect thet eventually most of the labor of the analysis would
coneist of twirling of a few knobs s0 &s to achieve the matching of
the photograph to a certain series of patterns built into a special-
purpose computer. With the development of such techniques it will
become possible to start testing formulas suvch as (3), repiscing them
by empirical formulas, formulating the decay qualits.cively,
optindzing the designs of vortex-ring generators, <nd generally,
improving the theory.
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APPENDIX
STRAIGHT VORTICES
RNecessary Mathematical Preliminary to Vortex Rings

Foreword. In compiling this review we found that much critical
reinspection of the fundamentals is necessary. This is so not merely
because simplifying anmlogies often help; rather, this is so because
certain analogies which persistently suggest themselves tend to
distract our attention from the more essentiml differences, and
actually cause difficulties to the student.

&. Patterns of flow in a straight vortex psir are unquestionably
similar to those of Figs. 1-6; in fact, we found the theory of vortex
pairs an indispensable exercise. But the simllarity conceals the
more essentlal difference in the mechanisms of a pair and a ring. In
the siraight pair the translutional velocity of an element of a core
is in no way caused by the core itself: it is fully the result of
the existence of the opposite core. 1In & ring, however, the diametrally-
oppoeite elements of the core contribute very little to the velocity
of an element of the core; mogt of the velocity is due to "nearly-
neighboring" elements of the core, or to the curvature of the core.
Thus there is a sharp and rether artificial division in the theory
between the straight and curved vortices. In reality, of course, the
stralghtness, just as the perfect circularity, is but an abstraction;

& better theory would "blend"” these cases, allowing a slight curveture
of & nearly-straight vortex. It does not seem spelled out in any text,
howevey, that the theory of straight vortices achieves its zimplifica-
tions not by eliminating some small refinement, but by the very radical
step of bypeseging the basic mathemetical difficulty, the indeterminacy.

b. A+tempt to compute the velocity of an ideslized Helwholtz's
ring Teads to ' 'improper" integrals; attempt to resoclve the indeterminacy
by purely wmathemstical means - without the aid of physical common-
sense assumptions - leads to an even worse absurdity, infinite velocity.
Practically all of the lebor and all of the controversies of the theory
thus amount to the resolution of ruther artificial mathematical
indeterminacies by rather arbltrary physlcal assumptions; this is all
traceable to tradition end to the historical development of the ideas
end the technological means at our disposal. Were our object no more
that the production of the specific results, or engineering, we could
arrange the whole approach so that these indeterminecles just do not
arise; we tried to do so in the section entitled " Veloeity of
Helmholtz'a Vortex Ring". But when cur object is to lay grounds for
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tackling some larger problems, or education, we feel that a mere
veiling of the difficulties will not do; something useful cen come
from learning that those indeterminacy pitfalls exist, and from
learning that there are mnslogous problems - here, the straight
vortices - which are free from those pitfalls.

c. Complex potentiasl method applied to straight vortices appears
to the student at first as & powerful general method; but the teuts
seem to gloss over, and the student is somewhat disappointed to learn,
the fact that this method is not applicable tc rings. Glebsch's
transformation is usually mentioned incidentally, as & not-especially-
powerful method; its analogy to the method of complex potential seems
to methematicians too obvious to deserve mention, and may remain
entirely unsuspected by the student. Such bits of information, even
if not directly applicable at once, seem of value.

d. Practically nothing is known on the decay of rings; and 1t is
legitimate to see what is known on the decay of straight vortices.
Even there the problem is solved only for that peculier ebstraction,
the straight "single" vortex; on inspection this turns out to be not
"single", and full of mathematical indeterminacies of its own. Now
the artificial difficulties arise merely from postulating discontinuities
in & function governable by & second-order part’al differential equation.
Some future theory of ring decay will bypass such difficulties; but
today the student is better off if warned.

In view of such considerations we feel that a rcview of the
state-of -the-art on vortex rings must be in the nature of a "student's
summary' .

Electromagnetic Analogy. Tue relation between the field of fluid
velocity and vortex lines is practicelly the same as between the
magnetic field and the lines of steady electric current. This fact
is sometimes viewed as a curious coincidence [1], sometimes dismissed
as irrelevant, and sometimes used to assert a sort of priority of
mathematics over physics. The legltimacy >f this analogy is
particularly obvious 1f this analogy is viewed in the historic
perspective, roughly sketchable as follows:

1820: basic discoveries of electromagnetics (Faraday, Oersted,
Biot, Savart, Ampere, Weber), done against & background in which the
rudimente of vector analysis exist (Newton, Gauss), but coacepts of
fotatiﬁn end Aeformation are still limited mainly to the rigid vody

Euler).
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1837: a "proprietary"” form of vector analysis (Hamiltou).
1858: adaptation 4o fluid mechanics (Helmholtz, Stokes).

1865: effective vector analysis for electromagnetic theory
(Maxwell), end the multiple-algebra approach (Grassman).

1879: hydrodynamics comes of aga: first edition of Lamb's.
1900: vector analysis as we now know it (Gibbs).

1903: e&erodynamics gets its real impetus from meronautics.
today: computer revolution in progress.

While this anslogy is no less than the ldentity of the basic
mathematics, it by no means constitutes an identity of the two
branches of physies. Rather, one is more impressed by the imperfections
of this analogy:

One artificial difference is the traditional, but arbitrary,
factor of 2, resulting essentlally from a definition of vorticity as
distingulished from angular velocity. Sommerfeld's avoidance of this
factor, and Lamb's use of the symbol W for vorticity, in practice
only serve to aggravate the possible confusion for the student, unless
the analogy be constantly kept in mind. Other differences are more
subgtantive:

The surface of & wire is sharply defined; a vortex is basically
diffuse.

A wire can be extremely thin; vortices of interest are rather "fat".
A wire can be fixed mechanically; vortices basically change and
move., The obvious and time-dependent process of the motion of some

"1liquid" wire is not identical with the motion of vortices.

The magnetic field in the precise center of the wire is of little
specific interest; but the velocity of a vortex is an essentisl concept.

Magnetic moment is a rather subtle concept; angular momentum is

cne of the most essential physicaml quautities, is conserved, aud is
never infinite.

B e T e
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The easily-produced steady current is in fact & cause of the
magnetic field; but after all is said and done, & vortex is but an
expression of the structure of the field of fluid's velocity.

Vorticity. In princivle, the vorticity of a fluid is nothing
but the angular velocity of a small element of the fluid, with two
qualifications. The first is the traditionel, rather erbitrary, and
somewhat bothersome factor of 2. In a rigid body the angular velocity
is @ =V XV /2 vorticity is traditionally defined as g =V X ¥ = 2u
The second quallflcation is simply that vorticity specifiee the -
rotation of an element that may at the same time be changing its shape.
For example, in two-dimensional flow vorticity is sometimes defined
as the sum (rather than mean) of the angular velocities of two
instantaneously perpendicular lines in the fluid., Vorticity is a
vector, a vroperty of each element of the fluid (independent of the
choice of origin, or of translational velocity of the coordinate
system), and its fleld is fiL 1y defined by the field of velocity.

Circulstion is the line integral of velocity around & closed
circuit; or, by Stoke's theorem, thig is the integral of vorticity
over the area inclosed by this circuit, viz., the "flux" of vorticity.
Thus vorticity is the aerial density of circulation. As a line
integral, circulation is fully analogous to msgnetomotive force; as
an aret integral, to magnetic flux (the electromagnetic analogy to
fluid mechanics makes no distinction between H and B). Circulation is
a scalar property of the circuit, or of the arem inclosed by this
circuit; but insofar as the circuit, or its area, has some direction
associaled with it, circulation does have the corresponding aspects
of a vector. 1In application to the straight vortex, in particular, a
circult is automatically asscciated with each point in space; hence
the circulation there may mslso be viewed as a vector property of the
element of fluid. The dimensions of circulation avre thoge of moment
of veloecity, or angular momentum of the unit .nass of fluid. Strength
of & vortex is det'ined as (circulation)/2mr, merely for convenience of
saviur the factor of 2m. The Blot-Savart formula for the straight
vortex then takes the gimple form V = S/r (correspounding to H = 2i/r
for the straisht wire - here is our factor 2 arain), so that strength
S corresponds to 2i, twlce the current; circulation, of course,
corresponds to lmi, and hence vorticity corresponds to (current
density ) /bm,

Shear. When we "strip off" from the motion of the fluid its
rotation hi/?) and dilatation (which is neglected in hydrodyuamics,
as opposed to gas dynamics), what remains might be spoken of as
"shear". Strictly, this is the rate of shear strain deformation, a
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concept well known from the theory of strength of materials and easily
visualizable, but unfortunately far from simple mathemsticelly. In
principle, the shear strain causes, through viscosity, shear stresses
in the fluid; and these stresses combine with the "inertial" forces
(due to variation of pressure) to cause changes in velocity in such
ways as to reduce the shear strain, and to cause a redistribution of
both vorticity and shear. It is a peculiar feature of fluid mechanics,
however, that the state of shear in the fluid is practically never
exhibited. In the elementary theory (the hydrodynamics of an inviscid
Tiuid, wiich 18 our principul concern) the exhibilt of the state of
shear 18 not necessary simply because this shear ig supposed to be
without effect: shemr stresses are neglected. In the full theory
(Navier-Stokes treatment), which in effect does cousider the shear
strain end stress, it is more convenient to arrange the mathematics so
that one deals with vectors; and the need for exhibiting the state of
shear strain - which is & concept more complicated tnan & vector -
Just does not arise. One simply determines the changes in the field
vectors V andg . In the primitive configuration of a straight vortex,
however, the state of shear in the fluid can be described very simply,
by & single scalar function, This functicn is easy to visuslize, and
is quite helpful in achievirnz an understanding of Jjust what has been
omltted in tr.2 simplified theory, and what will be the problems of the
full theory.

A little digression might be useful here, to show what sort of
animal is the shear strain, if it is not a vectcr. The spatisl change
in the instantaneous velocity V (= u,v,w) at a point x,y,z is given by

du = (au/ax)dx + (au/ay) dy 4+ oo
dv = (Bv/ax)dx 4 cves

dw = eo e

80 that the specification of the flow requires no less than nine
numbers, the coefficlents of dx, dy, dz. The 3 v 3 matrix of these
numbers, denotable by the dyadiec VY:(meaning thae. the above three
equations are writable a8 the components of the vector equation

av = Vv z.d_x;) is then broken into the antisymmetric and symmetric parts,

0
(3v/2x - du/3y)/2
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denotable by (VV - VV)/2 and (VV + VV)/2. The first is a set of

three numbers rgbogﬁizable at once as the vector of angular velocity,
g/2. The second is & set of six numbers representing the deformation.
It can be simplified, but not much. With one scalar, the dilatation,
stripped off, the shear strain is represented by the "deviator", a

set of five numbers. The deviator can be "diagcnalized", by a proper
choice of the principeal axes x,y,z - such that the off-diagonal elements
vanish, and in the motion of our element of fluid the tree axes remain
instantaneously perpendicular to each othcr. The rotation of the
coordinate system uses up three scalars, and the diagonalized deviator -
a set of three numbers adding to zero - is really a set of two numbers.
In each configuration considered, the state of shear strain can be
easily worked out much as in the theory of strength of materials; but
the adaptation of this picture to vectorial treatment remains clumsy.

So the advanced treatment simply does not use this tensor picture,

and uses thzs shortcuts provided by the vectorial Navier-Stokes

equation in the components of vectors V anqxc.

Straignht single vortex. It is only with these preliminaries that
we are now ready to consider that idealized constituent of a vortex
ring, the single straight vortex. Etyvmologically, this is a rotating
cylinder; in practice, however, by "vortex flow" one usually means the
irrotational flow around such a vortex. It 1s easy to see that the
fluid might flow in concentric circles around a straight line, and
still have zero vorticity if the velocity varies with the radius as
V = 8/r, where S is a constant; Fig. 12 shows this case. Fig. 13
shows that the shearing (Couette) flow in parallel lines is not
irrotational, while the flow in circles subject to that condition, is.
In reality the circulation on an inner circle might be slightly less
than on the outer; we then say that the armulus contains vorticity,
and the idealized irrotational fiow can be imagined as a resuit of our
"sweeping the vorticity" inward. The process cannot be carried to
the limit r = O, so one generally postulates a core rotating as a
rigid body, viz., without shear. Fig. 1l further illustrates these
two "extreme” regimes of flow., Curiously, the irrotational flow
cannot be extended to r . o, either: for this represents the
absurdity of infinite angular momentum (and . .nite, though only
logarithmically infinite, energy). It is thu: ccessary to terminate
the flow at some radius; but the transition region constitutes a
vortex sheet (or a "tubular vortex annulus” - not to be confused with
"vortex tube”, such as the core), and hence a return vortex, entirely
analogous to a coaxial cable. The assembly of the core and its return
vorte: .s certainly not exactly a "single" vortex. The mathematical
difficulty with the eingle core at r ., » is peculiar to that idealized
configuration; in all cther configurations, such as the vortex pair or
vortex ring, the velocity at great distances vanishes more rapidly
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- irrotational flow ‘ o

cor's (“vortex flown)

(*vartext |proper)

Uraturn® vortex
"~ | (of opposite vorticity)

The total flux of vorticity
must be zero; hence the flux,
or the circulation, of the
return vortex must perecisely
vorticity cancel the circulation of cars,

velocity

< The undisturbed fluid
(zero circuvlation)

P

~,

Velocity must be inversely proportional

to the d ‘sf.jz;hce r from the axis, if the

ral of velocity around a closed”
——circuit ho zero.

, El\\. ~y &= Illustrating the nature
' - of the flow in the
/‘ : different regimes of
/ the vortex. (see Fig. 13)

Tigure Y7, Tre gnmwventional idaslized structure of a ~tralght vortex
(The regton of Lrrotational flow im imagined enlarged, perhaps by the
process of "sweeping the vorticity"” out of that region; the core ig
imegined small, and of uniform vorticity. The return vortex, necessary
if an infinite anguler momentum is to be avoided, is usually imagined
at a very large radius, and often is "omitted" in the discussion).
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the principal/ axes are not rotating

T .. 1ines in fluid which comprised the

" non-rotating axes now start to rotate

because they are no longer the
principal axes.

7

Fige 13 Illustrating what may appear a paradax: the flow
in circles about some center can be irrotational, while
the shearing flow in straight parallel lines has rotation:
in either case an elementary square distorts into a rhomboids
but the question is whether its diagonals are turning or note.

Figure 13. TIllustrating what may appear a paradox: the flow in circles
about some center can be irrotational, while the shearing flow in
straight parallel lines has rotation. In either case an elementary
square distorts into a rhomboid; but the question is whether its
diagonals are turning or not.
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| . \ VELOCITY DISTRIBUTIONS
1. \I , - FOR ZERO YORTICITY
\ - ( /for positive vorticity
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\ e

) VELOCITY DISTRIBUTIONS .
/ / g FOR ZERO SHEAR
. (or, for wniform
Ve vortlcity - the
N/ : , rigid-body rotation)
'o‘/ f & for positive shear (as
/e ip irrotational flow,

7. with vorticity spread-
ing outwards)

for negative shear

™~ . (vorticity spresd
~. ing inward)
' - ~ Do s
CORE
RADIUS

Figure 1k, Tllustrating the two extreme regimes of flow (zero vorticity
and zero shear), and the possible departure of the velocity distribution
from these extremes.
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than inversely with r, and both energy and angular momentum are finite,

A number of questions which arise in the theory of vortex rings
may be answered in a preliminary and primitive manner by inspezting
the abstraction of the straight vortex.

For example, the pressure in a vortex in an incompressible fluid
can easily be shown to vary as r~2, Thus the pressure drop is
concentrated in a very narrow region neexr the come. Cavitation mmy
occur, vut it would not affect the outer Iicow, fir the actual presence
of & fluid in the region containing vorticity is not nceded. 1In
principle, even "coreless" flow mey exist, frr it Joes nol watter
whether the vorticity is spreed uniformly through the cavity, or
concentrated in a vortex sheet at che surfmee of tie cavity. Thus
tne incompressibility of the fluid is not a very bad assumption.

As to the shear in this flow, if the fluid rotsted «s & rigid
ody, with ¢ = V/r = 8/r°, the increment of veloeity would haye been
av = + (S8/r°)dr; but this increwment is Ld(s/r)/arldr = - (8/r<)ar.
Thus the shear strain rate, or the angular veloueity with which a
square on Fig. is distorting itself into a parallelogrem, is 28/r2
in magnitude. Agein, practicelly all the shear is concentrated in s
narrow region outside the core. Were viscosity suddgnly introduced
intec this flow, there would arise a shear stress 2uS/r , and the
dissipation of energy per unit cube of fluid would be huse/rh, indeed
concentrated in a very narrow region outside the core. tside some
suc. nasrow 12zion the inviscldity of the fluid doe~ not appcar & bed
assumption, either.

Tt is of interest to inspect briefly the decay of the straight
vortex; and in particular, to inspect what can be inferred about this
decay from the classical theory of the vortex in inviscid fluid. 1In
brief, it turns out that the standard idealized structiure of the
vortex (& rigii core, an anuular regior of irrotational Tlow, and a
return vortex sheet) is for this purpose not & good approximatina,
and not even a good initial conditionm.

To begin with, the decay of the straight vortex cannot be repra-
sented by 2 mere increase of the radius § of its core, with the
preservation of the structure of the vortex and of its strength S
within some return vortex sheet of radius R. The angular momentum
per unit mass in the irrotational fiow is (8/r)r = §; while the
average angular momentum per unit mass of the core is

5
(1/m5°) I r(% - §) 2 ar = /2
0
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Thus, were we tc agsume S unchanged, with an increase of § we y-uld
have an absurdity, & loss of the total angular momentum; were we to
compenzate for this loss by increasing S, we would have to explain
how such au increase can come about; while the consideration of the
shrar in the irrotational flow shows us that the energy, and hence S,
is decreusing throughout this flow. Our consideration of shear is
useful only insofar ag it shows that the decay sterts simply by
rounding off the corners in the curves of V(r) and o(r).

The exact treatment [1] requires the solution of the equation
30/9%t = wW2q, where V is the kinemetic viscosity, V3o is simply
R®g/dr®, o = ¥ Br - V/r, and shear is dV/dr + Vr. One can indeed
expect that some sensible function V(r) may emerge from the solution
of this equation even though the function V(r) postulated as the
initial condition be rather artificial. It turns out, however, that
postulating the standaid idealized structure of the vortex as the
initisl condition brings cut a quite strenge feature of this equation,
Ideally, at ¢ = 0, 0 can change neither in the core (where o is
conatuut) nor in the outer flow (where o is zero); but at the core
boundary we have the preposterous necsssity of taking & second
derivative of a discontinuous function. Even if we Ao round off the
corners of the functions o(r) end V(r), and so obtaiu & numerical
solution of this "heat flow" equation, this "nonrelativistic" equation
gives 8 very peculiar formal result (the infinitesimal changes in o
travel with infinite velocity) that ie not consistent with the
intended physical cignificance of this equation. The viscosity =t
orce etarts diminishing the fluld's velocity, and hence the circuletion,
too, everywhere in the irrotational region; hence vorticity must be
paseing through the perimeter of each concentric circle - and yet 1%
mugt come from the core. 7Thus it the vortiecity is to be visualized as
something that cannot te generated within the fluid, but must travel
from some boundary (according to Heimholtz's dictums, we must
recognize that 1t "travels" at ar infinite velocity. It is simpler
to visualize the vorticity "disappearing” in one place and being
similtaneously "generated" some other place. A gzimilar physicel
qualification on the numerical solution of this equation is provided
by the requirement that & return vortex exists: an infinite angular
momentum may be permitted mathematically, but is repugnant physically.

-V o e -3

Neverthieless, an exact and consistant soclution of this eguation

eque
i1s known; it is given in [%, 9], and is tllustroted in Fig. 15. This
solution starts by poetulating a more sensible structure of the vortex,
whereby the core and the return vortex are nicely blended: the core
is rigid only at the very exis, and the irrotational flow exists only
in a thin annulus. The region of 0 = O, which may be viewed as the
boundary of & "core” spreads with the velocity 2v/r (unote that the
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Figure 15. Theoretical structure of a coaxisl single vortex. As the
vortex spreads, the profiles of velocity and vorticity retain certain
proportions; the equations (see reference 4) are

v = (Ar/2vt?) exp(- rZ/bvt)

1]

£ = (A/vt2)(1 - r2/hvt) exp(- r2/hvt)

where A 1s an arbitrary constant

At the point where vorticity changes sign, the quentity s + 2v/r
vanishes, but its laplacian is not zero, and vorticity there does grow.
See reference 4 for the survey of literature on the (coaxial) single
vortex.
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proportionate rate of growth of r is 2v/r?, i.e., that the thicker
coree are the more "permenent”, while the thin cores dissipate
particularly rapidly). There is no longer any "straining” of the
Helmholtz's dictum, since the disappearance and the appearance of
vorticity oeccurs in contiguous infinitesimal regions: vorticity is
indeed "traveling"., One should expect that any real vortex, even if
its instantanecus structure differs from this solution, will be
decayling in such a way that its structure will be approaching this
solution, As 1t happens, this is the only known rigerous solution of
vortex decay. As regards its possible application to the decay of
vortex palrs and vortex rings, this solution seems handicapped by the
presence of the return vortex, made necessery only by the indeterminacies
of the c¢lassical vortex as r—~ » while hoth the vortex pair and the
vortex ring in effect provide their own return vortices, and do not,
strictly, call for a "coexial" sheath of negative vorticity. Still,
such a sheath - not necessarily strong enough to cencel out the
circulation due to the core - may be quite real, For instance, 1t
may provide a natural concept uiseing in the classical theory: a
weak end slow true ring, with a velocity distribution somewhat as
sketched in Fig. 16. This could be viewed a5 & superposition of two
rings of opposite sense, and msy be useful in broaching the theory of
the travel of a single slightly-curved vortex, and the changes in the
manner of the dissipation of the ring, as evidenced by the behaviour
of water drop (Fig. 19).

Vortex pair. Well enough illustrsted in an airplane vapor treil,
the voriex palr provides an exc=l:2nt intrcduction to the vortex ring.
Idealized iu the same wey as the Helmholtz's flow field, viz., to the
fieid of two line vortices, it has & remarkably neat theory. If the
gtrength of each vortex is S and their separation 2e, and the
dimensional factor S/a omitted through the choice of units, the
veloeity of the vortex is 1/2, simply because each vortex is in the
field of the other one, located at the distance 2. The veloclties
in the field of flow in the stationary coordinates (Fig. 17,
corresponding to Fig. 1) can easily be shown to be

2

u = 2(x° - y2 + l)/[(xa - yE +1)2 + (QXV)EJ

v

Yxy/{same denominator)

The equation of the steamlines is dx/dy = (x2 - y2 +1)/2xy, with the
solution x2 + (y - B)2 = B2 - 1. The streamllnes are circles with
respect to which the two vortices are mutually inverse points; from
thisz a number of simple geometrical constructions of these circles
are possitle,
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Figure 16. TPlots of longitudinal velccity u in the central plane
(x = 0). Several unrelated velocity distributions are shown. Solid
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vortex) and Fig. 18 (vortex pair).
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possible velocity distribution in an actual "weak true ring", in which the
main core is sheathed in a partial return vortex analogous to that of

Fig. 15.
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Figure 17. ©Streamlines of a vortex pair in a stationary ccordinate
syctem at the instant when the vortex pair passes through the plane x = O.

Note., The stresmlines are circles with respect to which the two
vortices are mutually inverse points (Lamb). I.e., if the ordinate
of the center of the cirele is B, and its radius is R, then (B - 1)
(B + 1) = R, Prom this relation & number of simple gecmetrical
constructione of these circles is possible., For instance:

(1) To araw a circle passing through a point P on the line
y = 1t draw VoP, and the normal to 1t, PC; C 1is the

center, and PC the radius.

(2) To draw & circle passing through any point P: find the
center C at the distance VoC = (vpP)2/2y,.
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Transferring to the coordinate system moving with velocity
U = 1/2 we get the pathline pattern of Fig. 18. For our present
purposes the interesting features of this pattern are first, that
there is only one such pattern (while with vortex rings there are many
such pattern: |; and second, that even quite thick cores are very
nearly circles centered on the vortex. These pathlines have been
investigated particularly by Bradley [17 ). As regards "very thick"
coreg there apply & number of considerations quite anelogous, and
perhaps properly preliminary, to our matching of Helmholtz's and
Hill's theories for vortex rings. On each pathline the vorticity is
constant; so o = oY) where ¥ is the two-dimensional stream function,
the imaginary part of t'- complex potercial. It is very natural to
assuwe, with Hill, th.  ,orticity is constant throughout the core.
The core then must be exactly & circle; but the outer irrotational
flow is no longer exactly the flow caused by the two line vortices.
Thus fcr thick cores we must either change this irrotational flow,
or rnot accept the asgumption of the uniform vorticity (this is another
case vhere the analogy between the vortex ring and straight vortices
fails to work).

In reality, & "full" vortex peir is improbeble, for the ambient
fluld 1s being induced into the pair, mostly in the rear, in much the
same way as with a vortex ring in [15, 12]. A reasonably thorough
theory of vortex pair in a real fluid will have to start with a
continuous and rounded-off surface of o{x,y), much as with the theory
of single vortex; it will be free of the necessity to provide a
return vortex enveloping each core separately; and it will most
probably constitute an essential preliminary to a reasonably thorough
theory of the vortex ring.

Ampere’s law in fluid mechanies., The classical theory of
vortices may be based practically wholly on Ampere's law [17 ], and
many qualitative considerations based on this law survive in the wore
advanced fluid mechanics. Our resort to thig law has been criticized
as contradicting the modern trend of basing fluid mechanics on Navier-
Gtokes equetions, and indeed must be "defended". In electiromsgnetics
this law defines a force acting at a distance; in fluid mechanics,
by a seeming legerdemain, it defines the velocity of a particle,
while we would normally wish to have the velocity determined from an
acceleration. The student mey well ask: 1is this law being proposed
in any sence as a competing aiternative to Newton's law? or, how does
a fluid particle "know" that there is a vortex somewhere at & distance,
and in perticular, how does it "know" enough to adjust its veloeity
as that vortex moves? The formal answer, of course, is that Ampere's
law is merely an elegant solution of the properly-idealized Navier-
Stokes equations, standing in much the same relation to these equations




an

|

PR

RS

Ry

o2

2.09

Figure 18. Pathlines in & vortex pair; i.e., streamiines in the

coordinate system moving with the pair. The separatrix between the two
families of curves defines the fiuid moving with the pair. This separatrix
nas the shape of an ovel with semi-axes of 2.09 and ¥3 = 1.73 (lamb);

[1, 17]. Note that the trajectories near the vortex are very nearly con-
centric circles; this seems to be & good Justification of the rigid-core

hypothesis.
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as the "law of conservation of momentum”" or "the law of conservation
of the center of gravity" stand to Newton's law. Unfortunately, the
rigorous nroof of this fact (by Soumerfeld) seems awkwaerd both
heuristically and historically: it uses very advanced concepts (the
vortex &s & succession of dipoles) to prove something which is both
simpler and older. Subjectively, we find the following "explanation"
rather satisfying and helpful.

When & vortex ring is produced by a short plunge of a piston, the
outer irrotational flow, extending to great distances, is established
Yy purely "inertial" forces, not involving vorticity or viscosity;
this 1s roughly & half of the flow from an lsotropic source, and can
be viewed, approximately, as & superposition of the fiow from an
isotropic source with that of a dipole, or of a vortex ring; the
former dies out rapidly with the square of the distance, the latter
survives essentially by itself. Meanwhile the plunge necessarily
vroduces also some vorticity: all of it concentrated in a thin
vortex-sheet ribbon at the circumference of the piston. This ribbon
is at once rolled up into a substantially-round "core", and this core
is carried by the irrotational flow; thus the core mey be viewed as
a consequence, or an expression, of the irrotational flow - rather
than ite "cause". The individual particle in the outer flow "does not
know" mbout the existence of the core, and changes its velocity accord-
ing %o the instantaneous pressure gradient at its location. Ampere's
law merely esserts thet the velocity so changed remains in & certain
relation to the motion of the ccre carried by the rest of the flow.
Certainly, to determire the motion of the particle by the Navier-Stokes
equations would be to shut our eyes to the existence of a powerful
and elegant answer.

Some texts scem to "prefer” the Biot-Savart law, apparently
because of its apparent simplicity; this is merely the application of
Ampere's law to a straight wire or vortex. Curiously, the classicsal
experiment (repulsion and attraction of coaxial coils) already implied
the grasp of the more sophisticated, differentiasl, relation.

It cen hardly be doubted that Anpere's law was viewed by the
pioneers as simply a sort of "polarized” inverse-square law. Just as
the latter is based on the purely geometrical fact that the surface of
the sphere Is propertional to the square of the radius, one should
expect that there exists a purely geometric basis for Ampere's law.

It mey perhaps be sketched ag follows.

Consider twc closed and linked curves in space, of lengths L ard 2,
and let r be the vector from the element aL to the element df; L might
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be a vortex of surength 5, sud ¢ a streamline. Inathe differential
form of Ampere's law, 3V = ($/2)d4 « =in(aL, d2)/r® the factors dt
sin(...) ary obious enocugh: the question is merely whether the

factor S/2r" .an be dzvived. If we now "relax" this law by posiulaiing
mexrely

y:[sﬂ:-);xag
L

whereby ¢ 1s derined by

=J‘z
£
we must have the identity

2ns=J"l-.'|‘Sf(r)£xd£]-az
4 L

whence f£(r) must be of the form l/r3 from dimeusional considerations;
in thig respect fluld mechanics hag & simpler task than electromagnetics,

for no new concepls (1, H or B) are involved. Now, it is a purely
georetrical fact that the integrsl

j]’ r Xd4aL . dz

is 4m when the curves are linked right-handedly, and zero for non-linked
carves. Hence f£(r) = i/2r3, viz.,

V= ‘J‘(S/a)erL

r

and Ampere's law appears (at least in fluid dynemics) as & consequence
of purely geometrical and dimensional considerstions. Just &s Gauss's
theorem amounts to a definition of dlvergence, Stokes' theorem amounts
to a definition of vorticity (either the source, or the curve of L,
are given some finite thickness). The curious question, whether there
is some contradiction here Yo the concept that physiecel laws are
basically empirical, is outside our scope,

In the sectton entitled "Hill's Spherical Vortex" of this text we
mentioned the " ortex analog of Faraday's cage"; the fact that
vorticlty on the outer pathlines of Hill's vortex does not "affect”
the inner pathlines. A nart of the proof is quite gimle. The

- vle =i

vorticity at a point on an outer pathline constitutes an elemnentary
core which fails tc link the circuit formed by the inner pathline;

- LD 2 . -
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so no distribution of vorticity outside that inner pathline can
change the circuletion on thet circuit, But this is not the same as
to assert that the inner patnline is "unaffected"; e.g., with an
arbitrary crenge <f vorticity outside, this circuit may cease to be
e pathline. The “oint is that the effect of all elementary cores
formed by the out:r pathline cencel out at each point inside that
outer pathline. "his is more readily seen if we visualize the outer
pathline as a toroidal vortex sheet constituting a boundary belween
an irrotationsl flow outside, and the stationary fluid inside; a
removal of this sheet leaves the interior fluid stationary.
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ERRATA

1. On Page 32 the following text should be insertéd after "and B

",

rotate as g rigid ...": ’ .

"body in the x,y planes, there is still shear in the supposedly-
irrotational region adjoining the core; and the outer filaments of the.
core have shear because of the continuous alteration of their Jength. Were
we to assume that the situation in an actual vortex is more nearly similaer
to a case where the rate of the total energy dissipation associated.with
the presence of shear is minimized, we would require. a diminution of this
continuous alteration of the length of this outer filament of the core;
and to this purpose, for a given range of the fore-and-aft.travel of such
a fllament, we would require that the range of the rédial tra—el be
dimintshed. That is, the cross-section of ttr. core would indezd be not
quite circular, but elongated in the x-direction; from this point of view
Hill's spherical vortex is not an entirely bad representation of reality.
No detailed study of this question is known, but we have an impression
that the inner pathlines of the spherical vortex are elongated more than is
necessary for this purpose. Strictly, on the assumption of the invisecidity,
such considerations do not apply at all, and it is desirable that the inuer
pathlines be circles. '

The circularity of the immer pathlines can be achieved simply
by resorting to a different proportion Q of the ellipse, with a relatively
mild proviso that the size of the core be "small"., Once this is done,
there is no longer the need, suggested wy Hill [28], to construct e special
irrotational flow: the standard Helmholtz's flow will fit."

2. On Page 38 the section entitled "O'Brien's Oblate Vortices”,
should be read before the section entitled "Velocity of Helmholtz's Vortex
Ring" on Page 3.
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