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An Ambiguity Function Independent of Assumptions
About Bandwidth and Carrier Frequency
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Sound Diviston

Abstract: With the use of 2 mean-square difference criterio 1 to distinguish echoes from
wwo targets at different ranges moving with different velodities, an ambiguny funcion
is denived. The concept of a modulated carrier is avoided, and the actual Doppler effect
of time compression or expansion is used, rather than the mere usi-al approximar 1 of
constant frequency shift. Thus this function can be apphed to the very-low- .« ucy
broadband signals sometimes employed 1n sonar systems. It reduces to the Wou 2t ard
ambiguity funcuon in the care of two targets of nearly equal velodty, and, in general, in
a narrow-band approximation. Some properties of this ambiguity function are discussed.

INTRODUCTION

The ambiguity function has been used by Woodward (1) and others (2-7) 1o study range
and velocity resolution of radar and sonar targets. In most of this work, the Doppler effect
has been approximated by a frequency shift, which is valid for narrow-band signals. Cahlander
(8) has used statistical detection theory to study the wideband siynals used by bats for echo-
location; Kelly and Wishner (9) have extended the theory to include the effects of high velocity
and accelerating targets. Their ambiguity function reduces io that of Woodward for narrow-
band signals, if terms of the order of exp(2iwot) are neglected.

By means of a simplified model for the echo of a signal from a moving target, a mean-square
criterion is used to derive an ambiguity function. This function can be used to study the reso-
lution of echoes from two such targets. It is equivalent to the “signal function” of Cahlander
(8), although the derivation and application are quiie different, and to the ambiguity function
of Kellv and Wishner (9). Here, however, neither bandwidth nor carrier frequency enter into
the derivation. In the case of sonar signals, the velocity of the target v need ot be very smaill
relative 1o the velocity of propagation of the signal c; all that is required is t..at v < c. By suit-
able identification of parameters, the new ambiguity function can be identified with Woodward’s
function in the case of two targets of nearly equal velocities, and in the narrow-band approxima-
tion to the detection of echoes from a single target.

THE DOPPLER EFFECT MODEL

Let s(t) be a real-valued function, square integrable on (=2, =), representing a signal
transmitted with a propagation velocity ¢, assumed constant. Let r(t) be the radial distance
and v be the velocity (assumed radial and constant) of a reflecting object. The signal portion
of the received (reflected) waveform is then

x(t) =as[t—T(1)], (H

where a is a constant (possibly complex to account for phase change on reflection) and 7(¢)
is the time required for the signal 1o reach the object and return. Thus, a signal received at
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time ¢ was transmitted at time ¢t — T(¢), and was incident on the target at time ¢ — T'(¢) /2, when
the targei position was ro + vz — v7(¢)/2. Hence,

eT(e)/2=ro+ ve — oT(t)}2

or
2(ro + vt
Ty =2, @
and, from this,
x(t) =as(at— T}, 3
where
_€c—v
a= ctv )
is the “Doppler stretch factor” and
2
To=7 -\‘r-ov )

is the delay of the signal at t = 0.

THE AMBIGUITY FURNCTION
If there is another target with radial velocity v’ at a radial distance r'(¢) = rg + ¢'t, th=
signal reflected from it will be
x'(t)=a's(a’t—T,) (6)

where the consiants are defined as before. We wish to distinguish the waveforms given by Egs.
(3) and (6). Hence, following Woodward (1), we would like their mean-squared difference

]’ Fx(t) — 2 (1) ]2 de o

to be as large as possible for all values of the parameters, except, of course. in a small region
near x{t) = x’(t), when the targets are in fact indistinguishable.
Expanding Eq. (7) we get

J“ [x(t)—x'(z)]’dt=rx‘(t)dz+rx"(t) de—2 rx(t)x'(t) dt

-=x -

o[ sar-To di+an [ sta't-Ti) di

o’ -=

—Zaa'f s(at—To) s{a’'t—T.) dt

[N 2
.—_.‘i'*_f"f_—-:laa'rs(at—To)S(a't‘Té)d" (8)

aa

where we assume the signal to be normalized so that

f s} (t)dt=1.
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Since the first term on the right of Eq. (8) dues not depend on the signal waveform, and
since a and @' may be complex, we see that we can maximize Eq. (7) by choosing a sysnal which
minimizes the modulus of the second term an the right in Eq. (8).

Equivalently, we can define the correlation function

6(r. ) éf s(t) s(yt + 1) dt, 9)
where either
-y=ga—landr=%To—T6 (10)
or
y=Sand 7 == T = To, (11

and require that |6(7,y)| be as small as possible except in the vicinity of

6(0, 1) =f s3(¢) de = 1. {12)

-x
Equation (12) represents, of course, the correlation of signals reflected from targets at the

same range and with the same velocity.
If we defire the ambiguity function as

wir. y) & |6(r, y)i2, (13)
then the “distinguishability” criterion requires that ¢ (7, y) be as small 25 possible except near

¥ (0, 1) = 1. The functions é{7, 7) and, hence, Y (7, y) are independent of any assumgtions about
bandwidth and carrier frequency.

THE RELATIONSHIP TO THE WOODWARD AMBIGUITY FUNCTION

Let (1) be the Hilbert transform of s(t). The “pre-envelope” of s(t) is defined by Dugundii
(10) to be

2(t) =s(1) +i 8(1). (14)

Then s(t) = Re{z(t}}, and Eq. (9) becomes

0(r.y) = J{* Re{z(t)} Re{z(yt + 7)} dt

-

(1,4) jz [z(2) +z*%(t)] [z(yt + 7) + z*(yt + 7) } &t

{1/2) Re{fx z(t) 2%yt +7) + 2(2) z(yt + 1) dl}

-x

(1/2) Re{6:(z.v) + 6:(7, ¥)}, (15)

irae (on

v,
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where the asterisk denotes the complex conjugate

0.(7, v) =f z(t) z*(yt + 1) dt, (16)

r

and

0.(7, y) =f z(t) z{yt + 1} dt. (17

If, following Kelly and Wishner (9), we were to express s(t) as » modulated carier,
s(t) = Re{z(t)} = Re{[z(t)e™ """} e'“'}, (18)

then 6:(7,v). Eq. (17), would be related to the terms of order exp(x2iw,t) and could be ne-
glected in a narrow-band approximation, as is done Ly them. We do not need to do this, however,
for in fact 8:(7, y) vanishes identically. If

Z(w)= fz z(t)e ' dt

is the Fourier transform of z(i}, then we can write

8:(7,y) =Z§r—2- f[f Z{w) Z(v)eitr + voit gint gt 4y dw

1 [~ _
_EJ:,Z(Q) Z(—yw)e'* dw =0, (19)

since
Z{w) =0, 0w <0
and
Z(—yw)=0,w >0, fory>0.

(See, for example, Refs. 10 and 11.)
We can write s(¢) as in Eq. (18), where wy is now an arbitrary parameter which may be, but
does not have to be, associated with a “carrier.” If we iet £ (1) =z(¢) exp[—iwat], Eq. (16) becomes

Oi(r.y) = J. f(t) € fr(yt+ 7)™ TV dy
= e‘lu.rf f(l) f*(')’t -+ 1.) e—nét dt
~ e-i.or X(T' ¢)’ (20)
where
¢ = (y—~ 1w, @1
and
x(7. & =f f(2) f*(t+7) e dt (22)

- ro————
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1s the combined time and frequency correlation function of Woodward (1). The approximation
in Eq. (20) kelds in the case of two targets of nearly equal velocity. It requires, of course, that
S(t) be slowly varving as compared t6 exp(—idt) = exp[—i(y = Dwet], but it must be remem-
bered that we is arbitrary.

if we consider the echo from one target Gie, leta’ = a' =1, Tg = 0), and if we identify wo
with a single transmitted frequency, then ¢ is the actual Doppler shift of this single trequency.
It 1s a constant, but no assumptions have been made about the constancy of Doppler shift
across a band of frequencies.

From Egs. (13), (13), (19), and (20), we have

O(7, y) = (1/4)|Re{0: (1, ¥) } |2 < (1/14)]6, (7, y}|2 = (1/4) ¥(7. &), (23)
where & is given by Eq. (21), and
U(7, &) = |x(7, ¢)? (24)

is the Woodward ambiguity function.

SOME PROPERTIES OF THiIS AMBIGUITY FUNCTION

By analogy with *he properties of the Weodward ambiguity function, as discussed by Siebert
(12) and others, somz of the properties of the new function can be s immarized.
If

S{w) = fx s(t)e ™ dt

-x

is the Fourier transform of s(¢), we can write for Eq. (9)

0(r, vy) =I:? Iff S(v) S(w) el'* *+ vt giwr do, dv dt
—fo S(w) S(— iwr g
= on B (w) S(—yw) € w

___]_ ) * t-t
=5 j-zS(w) S$*(yw) e dw, (25)

since s(t) is real.
By consideration of

f [s(¢) —As(yt+7)J2dt =0 (26)

for all A, and, in particular, Eq. (26) = 0 for A= \/; sgn 8(7, v), it follows that

1
(7, y) <-—, forallr,
Yy 75 Y 27)
and
0(v,y) <1, forall 7, fory=1. (28)

eI e
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Integration of 8*(7, y) over all values of its parameters must be limited to at most 0 < y < x,
as pointed out by Cahlander (8, who shows, as do Kelly and Wishner (9), that the usual volume
constraint on the ambiguity function must be replaced by

I f 9 (r, v) drd‘lzf %!S(w)l’dw- (29)
1] -x °

Here |S(®)|? must vanish sufficiently rapidly as w — 0 so that the integral in Eq. (29) exists
(9). Equation (29) is not independent of signal waveform as is the equivalent integration of the
Woodward ambiguity function. In a narrow-band approximation, however, the integral reduces
to 7/ wy, a constant (8.9).

In place of the twofold symmetry axis of the Woodward function, we have fory # 0

71 Y

0(—-’-’. ;) = J’;s(t) S(.‘y" - %) dt=y fj s(e) s(yt+7) dt

= y0(7, v), (30)

which shows the relationship between the alternative definitions of the parameters 7 and v,
given in Egs. (10) and (11).
In the case y = 1, Eq. (9) becomes

8(r, 1) =fz s(t) s(t+7) dt = R(7),

=

an autocorrelation function of s(¢); and Eq. (16) becomes an autocerrelation function of the
“pre-envelope” z(¢).

The Woodward ambiguity function is related to the vutput of a filter matched to a signal
s{t), in response to a signal s(¢ — 7) exp(—idt), i, an echo with a constant time delay and a
constant frequency shift (13). Similarly, the last term on the right of Eq. (8), and hence Eq. (9},
is, apart from a constant multiplier, the output of a filter matched to s(at — T,) when the input is
s{a’'t —T;) (9), evaluated at the time the output peak signal power occurs. If weleta’=a’=1and
T, =0, then 6(7, y) = 6(—To, a) is the output of a filler matched to the tragsmitted signal, when
the input is an echo from a moving target. Each frequency, o, in the transmitted signal has been
shified by an amount proportional to itself, i.e., is received as wa = aw, where a is given by Eq. (4).

ACKNOWLEDGMENT

The author would like to thank W. J. Finney and Dr. H. A. Hauptman of the Naval Research
Laboratory for helpful discussions, and Dr. J. L.. Brown, Jr. of Ordnance Research Laboratory,
Pennsylvania State University, for a grounding in the mathematics of signal theory.

REFERENCES

1. Woodward, P.M., “Probability and Information Theory, with Applications to Radar,” 2nd edition, London: Pergamon,
1964

2. Espas, B., “A Radar System Based on Sratistical Estimation and Resolution Chnsiderations,” Stanford Electronics
Laboratorics, Stanford University, Technical Report 361-1, Aug. 1, 1955

3. Sicbert, W.M., “A Radar Detection Philosophy,” IRE Trans. on Inform. Theory IT-2:204-221 (Sept. 1956)

. Stewart, }.L.. and Westerfield, E.C., “A Theory of Active Sonar Detection,” Proc. IRE 47:872-881 (May 1959)

5. Westerfield, E.C., Prager, R.H., and Stewart, ]J.L., “Processing Gains Against Reverberation (Clutter) Using Matched
Filicss,"” IRE Trans. on Inform. Theory TT-6:342-348 (junc 1983)

-




NRL REPORT 6471 7

6 Urbowitz, H., Hauer, C.A., and Koval, J.F., "Generalized Resolution in Radar Systems,” Proc [IRE 50:2093 1105

(1962)
7. Remley, W.R., “Doppicr Dispersion Effects in Mawched Frlter Detecuon and Resolution,™ Proc. IEEE 54:3 3-39
(Jan. 1966)

8 Cabhlander, D.A., “Echolocation with Wide-Band Waveforms Bat Sonar Signals,” Lincoln Lab., MIT, Tec nical
Report 271, May 164

9. Kelly, EJ., and Wishner, R.P., “Matched-Filier Theory for High-Veloaty, Acceleraung Targets,” IEEE Trans
on Mibitary Electron Mil-9:56-69 ( Jan. 1965)

10 Dugundp, }.. "Envelopes and Pre-Enveiopes of Real Waveforms,” IRE Trans. on Inform. Theory 1T-4:53-',7 (Mar.
1958)

11 Stut, C.A., “A Note on Imanant Relations for Ambiguity and Distance Funcuons,” IRE Trans on Infcrm Theory
IT-5:164-167 (Dec. 1959)

12. Siebert, W.M.. "Studies of Woodward's Uncertainty Funcuon,” Quart. Progress Rept., MIT, Cawbridge, Mass.,
pp. 90-%4 (Apr. 1958)

13, Tunn, G.L., “An Introductuon to Matched Filters,” IRE Trans on Inform. Theory IT-6:311-329 (June 196))




)

Secunty Classaification

DOCUMENT CONTROL DATA.R& D

Scvuriiv classihication ol rrtle, body ol abstract and tndsxing annolatien must be entered when the overall report is classified)

1 OWIGINATING ACTiVITY (Corporate author) 28. REFORY SECURITY CLASSIFICATION

Unclassified

Naval Reseasch Laboratory
Washington, D.C. 20390

2b GROuUP

3 REPORTY "I1TLE

AN AMBIGUITY FUNCTION INDEPENDENT OF ASSUMPTIONS ABOUT
BANDWIDTH AND CARRIER FREQUENCY

4 DESCMPYIVE NOTES (Type of report and incluz,ve dates)

3 AUTHORIS, (First name, middie initial, last name)

g‘ This is an interim report; work is continuing on this problem.

D. A. Swick

¢ REPORTY CATE 78. TOTAL NO OF PAGES b NO OF REFS
December 15, 1966 10 13
ta. CONTRACT OR GRANT NO S8, ORIGINATCR'R REPORY NUMBE R{S)

NRIL Problemn S01-06

b, PROJEC T NC

RF 101-03-44-4054

NRL Report 6171

c. 9b. OTHER REPOR ¥ NOtS! (Any other numbers that may be assigned
this repor*)

10 DAISTRIBUTION STATEMENT

Distribution of this document is unlimited.

11 SIPPLEMENTARY NOTES 1 SPONSORING MILITARY ACTIV:TY
Department of the Navy
(Oflice of Naval Research)

Washington, D.C. 20360

»

13 ARSTRACT

With the use of a mean-square difference criterion to distinguish echoes from two targets at different
ranges moving with different velocities, a. ambiguity function is derived. The concept of a modulated
carrier is avoided, and the actual Doppler effect of time compression or expansion is used, rather thun
the more usual approximation of constant frequency shift. Thus this function can be applied to the very-
low-frequency hroadband signals sometimes employed in sonar systems. It reduces to the Woodward
ambiguity funcion in the case of two targets of nearly equal velocity, and. in general, in a narrow-band
approximation. Some properties of this ambiguity function are discussed.

4 s b s o g e e

DD "3M.1473 tpace 1)

S/N 2101.807.6801% . Security Classification




PRSEITRE PRV S

Security Ciassification

KEY WONKDS

LINK a

LiINC 8

LINK C

ROLE wTY

roLe w7

ROLE wT

Radar targets

Sonar targets

Echo distinguishing

Ambiguity function (Woodward)
Doppler effect

Range

Waves

Pre-envelope

Mathematical analysis

DD t'noclv.eni 473 { BACK)

{(PAGE 2)

10

Security Clsssification

cee s . eovmven b IR




