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EDITOR'S PREFACE 

One of the more frequently quoted papers in fluid dynamics is the 
article by Karl Pohlhausen, "Zur näherungsweisen Integration der 
Differentialgleichungen der laminaren Grenzschicht," which appeared 
on pages 252-268 of Volume I of the Zeitschrift für angewandte 
Mathematik und Mechanik. Consequently, it seems appropriate to 
make an English translation of the original German paper widely 
available. 

While the approximate integration technique which the article 
outlines has been superseded in large measure by substantial im- 
provements, the kernel of all useful methods is given in the original 
paper; in fact, while preparing a catalogue of integral equations, I 
was astounded to record the number of variations on Pohlhausen's 
method that have been proposed. Moreover, many other important 
results of permanent value to fluid dynamics are presented, e.g., a 
mathematical derivation of Kärmün's momentum equation from the 
boundary layer equation and the mathematical description in finite 
closed form of the steady two dimensional laminar flow in a con- 
verging channel according to boundary layer theory. 

So much for the rawon d'etre, the translation is the work of 
Roland C. Anderson and represents a scholarly effort that was sub- 
mitted to the Graduate School of the University of irida in lieu 
of an examination on a reading knowledge of German U is one re- 
quirement for a doctorate in aerospace engineering. Richard L. 
Fearn has checked the entire paper in minute detail and has made 
numerous minor corrections. I hope that he caught all of the errors; 
if not, please let me know. The drawings are the expert works of 
Karl P. Rhodes and Roland C. Anderson. 

Finally, an appropriate acknowledgment for the gracious financial 
and psychological support of the Office of Naval Research under Con- 
tract Nonr-580(14) is a debt that I now discharge with sincere g ati- 
tude and great pleasure. 

Knox Millsaps 
Gainesville, Florida 
15 August 65 
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THE  APPROXIMATE  INTEGRATION  OF  THE 

DIFFERENTIAL EQUATION  FOR THE 

LAMINAR BOUNDARY LAYER 

by 
Karl Pohlhausen 

The extraordinary mathematical difficulties which occur in the 
integration of the differential equations for fluid motion, especially 
with the added complications due to viscosity, and which are due to 
the essential nonlinear character of the equations has caused a dicho- 
tomy between "Hydrodynamics" and "Hydraulics" in the develop- 
ment of the theory of fluid flow.1 On one hand, researchers neglected 
viscous effects in order to obtain simple equations and achieved rigor 
with substantial discrepancies between the calculated and observed 
flows. On the other hand, a technology which was necessitated by a 
consideration of the actual behavior of a fluid developed into hydrau- 
lics which was a separate science of fluid motion. In hydraulics, the 
exact equations were replaced by empirical assumptions and intuitive 
considerations whose results agree essentially with reality. 

In recent times, researchers have tried to bring hydrodynamics 
and hydraulics into agreement by including viscosity in the mathe- 
matical theory and by looking deeper into hydraulics. The first 
general beginnings which included frictional considerations were 
made by Stokes.2 He was able to calculate the resistance of a sphere 
moving in a fluid with very larg. viscosity. The assumption behind 
this solution was that the motioi. will essentially be determined by 
viscous effects, thus either the viscosity is very large or the product 
of the body dimension and the velocity is small. A systematic 
simplification lor the flow of a fluid of small viscosity, given first by 

•See l'h. Forchheimer, Hydraulik, Leipzig. 1914. p. 70. 
»G. Stoke», On the effect of the internal friction of fluid» on the motion of 

pemliilum», Pior. Camh. Phil. Soc. 9. 1851   ^Vrifn. Papers, i. p. I). 
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Prandtl,3 led to the theory of the "boundary layer" which was ex- 
amined in detail and applied to selected examples by his students 
Blasius,4 Boltze5 and Hiemenz." 

An approximate method of integration for the differential equation 
of the boundary layer will be developed in the following, and its 
usefulness will be shown by examples. 

LDerivation of the Differential Equation for the Boundary Layer. 
Prandtl considered the motion of a fluid about a fixed body sub- 

mersed in a stream or, cquivalently, about a body moving at a con- 
stant velocity in a still fluid. He arrived at the differential equation 
for the boundary layer by assuming the coefficient of viscosity to be 
very small. At a large distance from the body the friction will have 
no influence; consequently, the motion far from the body will be 
potential flow. Only in a very thin layer near the body, "the boundary 
layer," will there be any deviation from potential flow, and this 
deviation is caused by the fluid clinging to the wall. If one denotes 
the thickness of the boundary layer by 6, the order of magnitude of 
each term in the exact differential equations may be estimated. As 
Blasius has rigorously shown, the neglect of terms of small order 
of magnitude led to the Prandtl boundary layer equations. 

We intend to obtain the same differential equation here in an- 
other way, i.e., by asymptotic expansion.7 

We start with the Navier-Stokes equations which describe the 
flow of a fluid with friction, and limit ourselves to steady flow in a 
plane.   First of all, we shall carry out the calculation for the flow 

»L. Prandtl, Verband, des III. Intern. Math. Kongres, 1904 (Heidelberg), Leip- 
zig 1905, p. 484. An English translation is available as NACA Technical Memoran- 
dum. No. 452, 1928. 

«H. Blasius, Dissertation Göttingen. 1907. Zeitschr. für Math. u. Phys., 56, 1908. 
p. 1. An English translation is available as NACA Technical Memorandum, No. 
1256, 1950. 

BE. Boltze, Dissertation Göttingen, 1908. 
«K. Hiemenz, Dissertation Göttingen, 1911. Dinglers Polyt. Journal, 326, 1911. 

p. 321. 
'The derivation is universal in agreement with that in the preceding work by 

von Kdrmdn which is available in English as NACA Technical Memorandum, No. 
1092, 1946; on these grounds repetition is perhaps not inappropriate. 



p 3x 

I dp 
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along a wall at y = 0. The equations are well known to be 

3u             3u                1     3p 
u 1- v = h vAu 

3x 3y 

3v 3v 
u l-v = \-vAv (1) 

3x 3y 

3u 

3x 3y 

Moreover, if the fluid must be absorbed on the wall of the body, 
it must be true also that u = 0 and v = 0 at y = 0. 

The continuity equation may be integrated by the introduction of 
the stream function in such a way that 

u = and v =  
3y 3x 

and we obtain then from the first two equations in (!) 

ty    3 (A*)         3*    3(A^) 
 = vAAiJ» (2) 

3y       d\ 3x       3y 

We introduce dimensionless values by dividing all lengths by a 
characteristic length of the geometry, a, and the velocities by a char- 
acteristic velocity, ü (e.g., the undisturbed velocity of the fluid at 
infinity), and we write 

^ = aü f (x',y') 

where x' = x/a   and y' = y/a 

From this, we change (2) into the form 

aü   \ 2    p af   3 (A^')        3^   3 (Af)" 

(^) 

aQ 
■ pAAifr' 

[_ 3y'      3x' 3x'      3y'  J a« 

or with R = aO/v (Reynolds number) 

3f  3(Af) 3f   3(Af) 1 
 = AAi^ (3) 

3y'      3x' 3x'       3y' R 

With the restriction of large Reynolds numbers we require the solu- 

3 



tion to be in the form 

f = f(x',y') + R',F(x'.z) 

z = y'R" 

where ß and a are, for the present, undetermined exponents, f (x', y') 
must represent the potential solution which, of course, is a rigorous 
solution of (2); thus, 

Af(x'.y') = 0 

We now consider 

a»F        3»?        a^F 32F 
AF = 1 = h R2<r  

OX'* dy'i dx'2 zt* 

Under the assumption that R is very large and a is positive, 
S'F/ax'2 can be neglected. Likewise in 

g^F                    3*F                 34F 
AAF = 1- 2Kia 1- R4"  

3x'4 3x'23z2 3z4 

only the last of the three terms on the right are retained.   If these 
expressions are inserted into (3), we get 

3f       33F 3f       3;'F      z 
Rfl + 2«' R./3 + 2«' |_ 

3y'    3z23x' 3x'       3z3     y' 
(4) 

r 3F      3:,F 3F     33F "1 34F 
R2fl + 3 — H» + *a-\ 

3z    3x'3z2 3x'     3z:,      I 3z4 

With increasing R, the right and left sides of this equation must go 
uniformly to infinity; thus, the restrictions on ß and a are 

ß + 2a=2ß + ia=ß +4,r - 1 

From this, it is determined that 

„=%     and    ß = —Vt 

If we expand f (x',y') in a Taylor series in y', 

f(x',y') = fo + fI(x')y' + ... 

where f(l is a constant, then the wall of the body must be a streamline. 



and the differential equation (4) becomes 

3F   a3? ■ 3«F 

az4 

/ 3F \  3« (F + f.z)       /  af, 3F   \ 

\ '        3z /        3x'3z2 \  3x' 3x' / 

3z     Bx'az2 3x'    3z3. 

d¥   \ 3' (F + f.z)       3^ (F + f.z) 

3z3 3z4 

as one can easily prove by differentiation.  Letting (F -f- f,z)   equal 
G, we obtain 

3G        3SG 3G    3'*G        34G 
(5) 

3z        3x'3z2 3x'     3z3 dz* 

Thus, in terms of the function G, the solution now reads 

f = f (x'.y') + (G - flz)R-v2 

where the boundary conditions for G are 

1) for z=:0:G = 0 

2) for z = 0 : 3G/3z = 0 

3) for z = x : 3G/3z = f, 

We have, in fact, obtained a second approximation for the flow 
of a fluid under the assumption of large Reynolds numbers, since in 
the vicinity of the wall i/»' = GR-'/2, then on the wall f(x', y') be- 
haves like ^y' or f,/ R-,/2, and the no slip condition is satisfied at 
y = 0. At infinity, G behaves like ^z; therefore, G — f,z = 0 leaving 
only )/»' = f(x',y'), i.e., the potential solution. If we integrate (5) 
with respect to z, then 

3G     32G 3G    S'G        3'G 
 = __ + ^(x') 

3z     3x'3z 3x'     3z2 3z••, 

We substitute again for x' and z the values x and y respectively and 
write 

3G 3G 

3y 3x 



Hence, we obtain 

du 3u 32u 
u |-v = *(") + »'  

dx 3y ay2 

and 

3u 3v 
= 0 

3x 3y 

The function <^(x) is determined from  the initial conditions, 
u = 0 and v = 0 for y = 0; therefore, 

/   32u \ 
„         ) =-^(x) 

\  ay2 /y = o 

or, when p represents the pressure distribution along the wall, then 
we have from the equation of motion in the x direction 

(Z*ii \                    1      3p 
  ) = = -«Mx) 

ay2 /y = o        p    ax 

If this value is substituted for </)(x), we obtain the differential 
equation of the boundary layer which was given by Prandtl in 1904. 

3u 3u 1       3p 32u 
+ v = + V  (6) 

3x 3y p      3x 3y2 

This equation is distinguished from the first equation in (I) by 
the omission of the term v 32u/3xi!. One can, of course, ir mediately 
understand the underlying assumption that the ratio of u to x must 
be vanishingly small compared to division by y; in addition it will 
be found that, in (1), the pressure gradient 3p/3x is now a function 
of x alone. It can be proved that this equation is not changed when 
a coordinate system is introduced at a point on a smooth curved 
wall such that the coordinate distances are measured normal to the 
wall and along the wall; of course, it is assumed that the curvature 
is not too large." We shall always use this coordinate system in the 
future, letting the origin coincide with the stagnation point. 

The thickness of the boundary layer, S,  follows from the con- 
sideration that it is proportional to a specified value of i|» or that / is 

»See Hiemeiu, Dissertation, p. 3. 



of the order of magnitude of unity; hence, 

In addition we note that the Navier-Stokes equations are elliptic 
while the Prandtl boundary layer equation is parabolic. From the 
physical point of view, the Prandtl equation is obtained by neglecting 
the small effects within the boundary layer due to a change in volume 
and due to the frictional retardation in the x direction. It is clear 
that such a profound change in the differential equation alters the 
calculated streamlines from the actually observed ones, and it is an 
additional problem to determine to what extent the flows which have 
been calculated by boundary layer theory will agree with real flows. 

The important phenomenon of separation of the flow from a sur- 
face which often happens when fluid flows around a body can be 
explained with the help of boundary layer theory. When the thick- 
ness of the boundary layer is small compared to the size of the body, 
the pressure gradient across a cross-section of the boundary layer is 
shown to be nearly constant. The velocity distribution in the bound- 
ary layer decreases from its value in the potential flow to zero at the 
wall. If there is a pressure rise along the body, then a fluid element 
within the boundary layer near the wall will come to rest sooner than 
one located in the potential flow. The conditions occurring in the 
neighborhood of the separation point will be qualitatively described 
by Figure 1. At the separation point itself, one has the following 
condition 

3u      a2«/» 
_ = 0      at   y = 0 

3y 3y2 

From this, the position of the separation point tan be calculated. 
The boundary layer separates from the wall at this point and moves 
at a definite small angle into the main stream above. 

2.    Derivation of the Kdrmdn Integral Condition. 

For the plane, steady state problem the differential equation of 
the boundary layer is 

du 3u a2u 1       dp 

9x 3y ^y2 p     3x 

In addition, the continuity condition is 

du          Sv 
 + = 0 

3x Sy 



We define a function q (x,y) such that 

u = U - q (x.y) 

(see Fig. 2) where U =: f, is the velocity outside the boundary layer 
which is given by the potential flow. This potential flow is derived 
from the combination of the Eulerian equation and the experiment- 
ally determined pressure gradient.   It is 

1     dp dU 
U = UÜ' 

p     dx dx 

Upon introduction of this function, Equation (6) becomes 

dU 
(U - q) ' 

(dU 3q   \ 3q d'q 

dx 3x   / 3y 3y2 

dU 

dx 

or 

-q 
dU 

dx 
U 

3q 
+ q 

aq aq 
— — V 

3x 3x 3y 

We integrate with respect to y and obtain 

d 

ay2 

oo « so oo 

du f ^   r        ^  r q2       r   ^ 
 I  qdy - U    I   qdy -| I     dy — I   v dy = — v 

dx J dx   J dx   ^       2 •/ 3y 

3q  -|x 

3y  J() 

The upper limit may be written as oo provided the function q 
goes asymptotically to U. We can assume that, at some distance from 
the wall, the thickness of the boundary layer, q does not vary ap- 
preciably from zero. It is enough then for the integral to extend 
from zero to 8. 

After using the continuity equation and after integrating by pans, 
we can write 

X 00 
J3q                      x.        r>      3v 

V dy = [vq]      -    I   q dy 
3v                       0        J        3v 3y 0        J        3y 

0 

oo       du      /» d        /■•    q- 
= [vq]      +  qdy-——         dy 

0        dx    J dx     «^      2 



However, [vq]     vanishes at both the upper and lower limits, and we 
0 

have left 

d 

dx 

tiu   s* ü   r r 
- 2   {   qdy — U    I    qdy H I   q2dy =: - v 

dx    J dx    J dx    «^ 

d 

dx 

X 

21 
3y 

x 

0 
0 0 0 

The boundary conditions which the function q (x,y) must satisfy 
are 

1. u = 0   i.e.,  q= U   at   y = 0 
2. u = U i.e.,  q = 0   at   y = x 
3. also, the boundary layer equation must be applicable at the 

surface of the body. Since both u and v are zero at y = 0, it follows 
that 

(—)      =i \    3y3   /y = o I 

32(U-q) 

3y2 
IJ. 

y = 0 

dU 

dx 

(7) 

Every solution of the boundary layer equation must obviously 
fulfill the integral condition (7). If we now make a simple approxi- 
mation for the dependence of q on y, e.g., a power series, the coeffi- 
cients will be only functions of x. An approximation to the solution 

obtained   if   one   determines   all   but   one   of   the   coefficients is 
according to the boundary conditions. The integral condition then 
gives an ordinary differential equation for the determination of 
the remaining coefficient and thereby fixes the dependence of the 
velocity profiles on x. 

Although the original equation for the boundary layer is a partial 
differential equation, we now only have to solve an ordinary dif- 
ferential equation because of the integral condition. It is not difficult 
to refine the approximation further by satisfying the integral con- 
dition separately for several subregions (e.g., from 0 to 6/2 and from 
8/2 to 8), and therefore, instead of determining one remaining co- 
efficient, by determining two. Also, there is the possibility of obtaining 
further integral conditions in the following way: one could multiply 
both sides of Eq. (7) by y, y2, ya, y". one after the other, 
and could integrate from zero  to  infinity, and  then   perhaps   the 



function could be determined in analogy with the Stiehjes method 
(i.e., by its moments).* 

However, the following calculations show that the fulfillment ol 
the simple integral condition preserves the physical meaning of 
boundary layer theory and determines the velocity distribution with 
sufficient accuracy for practical purposes. The particular example of 
the flow around a cylinder shows that our method is a far better 
method of calculation than a previous method due to Hiemenz 
(Taylor expansion in x and the solution of a series of ordinary 
differential equations for the determination of the coefficients of the 
series) since after the solution of a single differential equation one 
obtains values which are comparable in accuracy to those obtained by 
the solution of four or five differential equations when the other 
method is used. 

It is shown in the earlier work, by von Kdrmjin" that the integral 
condition may be derived on the basis of physical considerations. 

3. TheFloxu Along a Flat Plate. 

First, we will use our approximate method for the integration 
of the differential equation of the boundary layer for the case of a 
flat plate when the plate is parallel to the streamlines of the uniform 
stream. The velocity, U, outside the boundary layer is thus a con- 
stant, and the differential equations (6) read 

du 3u 32u du 3v 
-f- v = v    and 1 =: 0 

9x 3y 3y'J 3x 3y 

The integral condition (7) simplifies to 

8 8 
d     r ^     f P  S(i ~1^ 

- U  qdy +  q*dy =-P\         | 
dx     J dx     *s I       ^Y    —[0 

'Editor's Note: I'ohlhausen's suggestion has been partially exploited by L. G. 
Loitsianskli, S'ACA Technical Memorandum. No. 1293, 1951, who used the zero 
(the Kiirniiin monicimim equation), the first, and the second order moments integral 
equations.   The complete Stieitjcs method remains to lie done. 

"This volume, page 233 to 2.'2.   An  Knglish translation is available as SACA 
Technical Memorandum. No. 1()92, 1946. 
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The boundary conditions are u = 0 at y = 0 and u = U = const, 
at y = oo for the differential equation and q = U at y = 0 and 
q =: 0 at y = «for the integral condition. In addition 

(-)       = \   ay*   / y ^ o 
As Blasius showed in his dissertation, the example of the flat 

plate permits the reduction of the partial differential equation with 
the help of a similarity transformation to an ordinary differential 
equation of the third order. Blasius integrated the continuity 
equation by use of the stream function, i|», where 

u —      and     v =  
dy 3x 

and introduced two new variables ^ and { in such a way that 

Thence, 

1 
u = %U{'    and     v =r — 

2   \   px 

where the primes indicate differentiation with respect to f.   If these 
values are substituted into the boundary layer equations, we obtain 

C" + «" = o 
The numerical integration of this equation has been worked out 

by C. Töpfer by use of the Kutta method.'" 

For the shear stress on the plate, Blasius obtained 

3u 
T, = ^ = 0.332 

Sy 

We now proceed to give also a solution for the Hal plate using 
the approximate method based on the integral condition.   We ex- 

(47 

KiDescribed by C. Runge, Xeitsrhroft für Math, und Phys., 1912, p. S97. The 
development of the function £ and its derivative is also given by K. Pohlhausen, 
Z.AM.M.. I. 1921, p. 119, Fig. I. 
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pand q in a power series in y. 

u = U - q = a (x)y -f b (x)y!! + c (x)y■, ^  

1. The series is terminated after the first term, thus 

q = U - a (x)y 

For the upper limit of integration we insert 8. We also replace the 
boundary layer profile by a curve. The boundary condition is 
u = U for y = S; thence, U = a8 

We have to make the following calculations: 

6 ö 
Jp          y2  "18      U8 n 

qdv = U     y i = , I    q-ily = U2 

28  _[()       2 J 
0 0 

ya f   -|8 U-8 

8 382 J() 3 

8 
d        r U8'       d       ^ U28' Sq U 

and      =  
tl        •» Uö        u       s> 
     I    qdy = .     1    q2dy = 
dx     J 2        dx     »^ tlx     •/ 2        dx     ^ 3 3y 

0 0 

Therefore, the integral condition may be written* 

U28'      U28' U 6j/ 
 1 = —v   or  88' = 

8 II 

Consequently, 

-^) 
For the shear stress wc then obtain 

,. = 0.289 (_j 

2. Next, we obtain a better value by approximating the velocity 
distribution with a parabola and by requiring that 9q 'dy equals zero 
at y = 8. Ol course, we must relax the condition at the wall that 
a-'u 'By2 = 0. Thus q=U — u = U — ay — by2; therefore, a and b 

r   91    18 
•Kclitor'» Note:   The value of         i must he taken to be —178 because 

of the (liscontimiiiy in 3c|/3y at y = 8- 

12 
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are equal to 2U/8 and  — U/82 respectively.   We again form  the 
necessary integrals 

JU8 •> 
qdy =   and   I   q2tly = 

U^S 

() 
and it follows from these that 

8 
il 

dx 

JU8'         tl       /» 
qdy =    ,      I   q:idy = 

3           dx     J 

11^8' 

5 

and 

aq 

o 

2U 

8 L 3y  Jo 
With the helj) of the integral condition one obtains 

1 I    "t 
UW 

3 5 

and for the shear stress 

2vV I 30|/x X'-- 
    and 8 = (       ) 

8 \     U     / 

= 0-365(—) 

The first approximation yiekls a value about 13 per cent too small 
while the second approximation gives a value about (j.5 per cent too 
large. 

3. To satisfy both conditions (no discontinuity in the velocity dis- 
tribution and the boundary condition for a'^q/ay-' at the wall), at least 
three terms must be retained in u. We let 

u = ay -f by'-' -|- cy'1 

The functions a, b and c are determined from the boundary 
conditions: 

I.    u = U    for    y = 8 gives U = a8 + b8:! -f 18' 

3u 
2. 

3y 
= 0   for   y = 8 gives 0 = a -f 2b8 -f 3c8- 

/  32u   \ I'll' 
(   ) = = 0 and, si 
\  ay   /y = " v 

nee L" - 0. b = 0. 
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We obtain then the equations for the unknown functions, a and 
c, in the form: 

U = a8 + c8s   and  0 = 3 + ic82 

From these it follows that 

SU U 
a = 

28 283 

The integrals become 

and  q = U 1 - 
28 

J3U8      /• 
qdy = —J   q^ = 

33U2S 

140 

and 

3y 0 

3U 

28 

The resulting differential equation for 6 is 

3 33 
U8' 

140 

3v 

28 

Therefore, 

/  280i>x \^ /   vx   \% 8=(^r)   =464( —) 
The friction factor for this approximation is 0.323, i.e., a value 

which is about 3 per cent too small. 
4. Since the function q goes to zero like exp (—xy2) according to the 
exact boundary layer theory, one can expect that a still better approxi- 
mation could be given if a smooth connection to u = U is made at 
y = 8. As a fourth and last approximation we take four unknown 
functions, a, b, c and d, so that 

u = ay -(- by2 + cy'1 -f dy4 

and impose the following additional conditions: 

32u             UU' 
I. for y = 0    :     = = 0 

2. for y = . 

3y2 

u = U 

14 
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3. for y = 8    :    3u/3y = 0 

and 4. for y = 8    :   32u/3y2 = 0 

From these we see that the equations for the determination of the 
functions are 

a + 2b8 + 3cS2 4- 4d8:, = 0 

a8 4- bS2 + eg' -f d84 = U 

b = 0 
and 

2b + 6c8 + 12d82 = 0 

The solution is 

a = 2U/8. b = 0, c = - 2U/8:, and d = U/84 

so that 

q= U — u = U 
y y3       y4 

1 -2 h2  
8 e»      84 

and 

8 ° 3 r 23 
I   qdy = U8.   I   q2dy =  
J   n 10 J 126 

U28   and 
Sq   -16 

—_     I   :=2U/8 
3y        10 

The integral condition yields 

8' = 
630i; 

37U8 

and from this 

(SHj/x   X'i /    vx    V* 

^r)=5"5( —) 
In this case the friction factor is 0.343. This value is about 3 

per cent too large so that this approximation has about the same 
accuracy as the preceding one. The additional calculations required 
by the fourth approximation have been retained since the smooth 
connection of the velocity distribution to the external flow at y = 8 
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lends confidence and since the velocity distribution will retain its 
physically sensible form, i.e., values larger than U will be avoided. 

The values of the friction factors which have been given by the 
various approximations are given in Figure 3. In order to obtain a 
picture of the development of the boundary layer profiles, the cor- 
responding profiles are determined for U = I, x = 1 and j/ = 1. 
(Compare Fig. 4.) 

Approxi mation 
Exact 

y I II III IV Solution 

0 0 0 0 0 0 
i 0.289 0.332 0.318 0.334 0.329 
2 0.578 0.597 0.606 0.619 0.629 
3 0.867 0.796 0.834 0.828 0.846 
4 1.000 0.927 0.972 0.948 0.955 
5 1.000 0.991 0.990 0.995 0.990 

Finally, let the "displacement thickness" be S*, i.e., the quantity 
indicating the outward displacement of the streamlines of the po- 
tential flow. It is defined by 

—  1 q^'y 
u    ^ 

0 

For the various approximations, one obtains 

Approximation 

I II III IV Exact 
Solution 

i^r 1.73 1.83 1.74 1.75 1.72 

4.   The Flow Around a Body with a Given Pressure Distribution. 

The original idea of the Prandtl boundary layer theory was 
that Eq. (6), together with the continuity equation—in combination 
with the theory of potential How of an ideal fluid—sufficed to de- 
termine the velocity distribution in the boundary layer. Thus the 
third dependent variable, p, which appears in both equations, must 
be eliminated in such a way that one fixes the value of the pressure 
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gradient, dp/dx, by the potential solution along the boundary line; 
moreover, the value LJ, in the boundary condition, must also be found 
from the potential solution. It was in this way that our example was 
treated in Section 3 with dp/dx = 0 and U = const. However, the 
previously mentioned investigations of Blasius, Boltze, and Hiemenz 
ha"e shown that no satisfactory agreement with observations can be 
found. Hence, following a suggestion by Prandtl, Hiemenz has de- 
veloped another method: he experimentally determined the pressure 
distribution along the boundary and introduced this and the calcu- 
lated distribution of U into the differential equation and the bound- 
ary conditions. We will treat the case of a pressure distribution given 
by experiment. In this general case, we must take into account that 
separation occurred as it is described in Figure 1. Thus it is useless 
to represent the function u, which must describe the velocity in the 
boundary layer, by a polynomial of the first or second order in y 
since the first algebraic function that can show an inflection point is 
one of the third order. To obtain a better approximation, we will 
also include the term y4 and will write 

u = ay -f by2 -j- cy" + dy4 

where u = U — q as before. The thickness of the boundary layer is 
again 8.   The boundary conditions are 

1. for y = S   :    3u/3y = 0 

2. for y = 8   :    u = U 

a2u UU' 
3. for y = 0   : 

Sy2 

and 4. for y = 8    :    a^u/ay2 = 0 

where the fourth condition is chosen arbitrarily as we did in the 
case of the flat plate. 

The four unknown functions, a, b, c, and d, are now determined 
with the aid of these conditions. From condition 3., it follows im- 
mediately that the function b can be determined only by the given 
pressure distribution and is 

UU' 

2i/ 
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The remaining conditions  furnish  equations  for a, c, and  d, 
and they are 

a +2b8 + 3c82 + 4d83 = 0 

a8 + b81! -f c83 + d84 = U 

and 

2b + 6c8 + 12d82 = 0 

From these, the pertinent values are found to be 

U UU' UX 
a^  (12+ X) b= =  

68 2v 282 

-U (4 - X) U 
c =            and      d =  (6 — X) 

28' 664 

where X is the dimensionless number U'82/»'. 

As a help in the formulation of the integral condition, we now 
calculate 

r U8 
)    qdy =  (36-X) 
J 120 

JU28    /           II             X3   \ 
q^y = — Me A I  

252     \            6               36   / 
0 

and form 

8 
u      r U8'  r U'8-   "[3 8' 
    I   (|<I> = !     12 -f U'8 [(U')2 + UU"] 
«Ix    ^40 v 10 120J; 

aiu' 

(1       r              U 8'   r              11    U'S-         5 
         q»dy =        23 +  
dx    •/                126    i_             4      v          72 

o 

(U')-84  -]         23 
-|-          UU'8 

v2       J         63 

11    118'                                    UU'8' 
 [2 (U')J + UU"] -f  -r(U')2-(-uu"] 

151?    v 4536v2 
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If we put these expressions into the integral condition (7) and 
if we simplify the resulting expression, we obtain the following 
differential equation: 

d8 

dx 

-2,-f 
116 

315 
U'S- 

8^ 

756()i/ 
. [79 (U')- + 8UU"] - 

U'8,; 

4536I/2 
.[(U7 + UU"] 

dz 

dx 

37 V'6- 

315       315J/ 

5    (U')-84 

9072      p- 

or, when we again introduce \ and replace 8V»' by /. 

r r UU" 
0.8  i -9072 4- 1670.4\ - ! 47.4 + 4.8 

(U')«. 
XJ 

UU" 

U (-213.12+ 5.76X+\-) 

The solution of this nonlinear ordinary differential equation ol 
the first order gives us the variation of the thickness of the boundary 
layer as a function of the curvature of the body. 

We first note that the boundary layer has a definite finite thick- 
ness at the stagnation point of the body; thus, the differential equation 
has a singular point at x = 0 and 8 = 8„ where 8„ is a real positive 
root of the cubic equation 

-9072 + 1670.4X - 
UU""] 

47.4 _|_4.8    I \- 1 -4- 
UU" 

X' = o 

To determine the thickness of the boundary layer, we have to select 
the integral curve which passes through the singular point. The 
tangent of the boundary layer profile must be perpendicular to the 
wall at the point of separation; hence, it follows that 

U 
a-  (X+12)=0 or        X^-I2 

68 

We will now employ the universally valid differential equation, 
which we previously derived, to the example of the flow around a 
circular cylinder which is placed in a uniform stream. The pressure 
distribution for this example was experimentally determined by 
Hieinen/. By measuring the pressure distribution, his experiment, 
which was performed in water with a cylinder of 97.5 mm in diameter 
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and a flow velocity in the undisturbed fluid of 19 cm/sec, gave 

U = 7.151x — 0.04497x' _ O.OOOSSOOx5 

where the ire length, x, was nuvsured in cm. We form U' and U" 
(see Fig. 5) and assume the density of the water to be I and the 
viscosity to be 0.01. 

First we calculate the thickness of the boundary layer at the 
stagnation point as the root of the cubic equation; this calculation 
f^ives 

U'8,r 
X,1 = = 7.052     or     8,, = 0.09931 cm. 

The solution of the differential equation can be obtained either 
by graphical means or by the following method: substitute a series 
expansion for the solution, which is horizontal at the singular point, 
x = 0 and 8'-' v = h^/v, and then extrapolate this curve using some 
method of calculation. We elect to solve the differential equation 
graphically by use of the Method of the Isoclines. Accordingly, let 

(1/ P (x,z) 
= X = 

dx Q(x.z) 

and calculate the values of ^ «s a function of x for the values 
/ = S2 v = 0, I, 2, 3, 4, and 5. These values are obviously infinite 
along th».' abscissae for which the denominator vanishes. This is the 
case for X, = 12 and \., — _l7.7fi. Using the curves, / — const., we 
now construct the direction field for the differential equation. We 
draw in the coordinate system x, 8- >, the curves ^ = const., and 
in this way we obtain Figure (». A more detailed discussion of the 
differential equation reveals that the singular point, x = 0 and 
8- v = 8,,-»', is a saddle point." Thus only two isoclines—the one 
with a horizontal tangent is sought—pass through this point. If we 
take an arbitrary point in the plane ; id attempt to construct from 
this point the integral curves by use of the isoclines, then the curves 
return to either plus or minus infinity because of the above-mentioned 
singular point. In this way, we obtain a rigorous criterion for the 
desired integral curve \y.' sing through the singular point. The arc 
length to the separation point we find as the abscissa of the inter- 

"See,   CR.,   Horn,   ('•ncölinlirhr   Oillerrtiliiilnleirlmunrn   lifliehiurr   Ordnung, 
Leip/ig, 190S, p. 3S.1. 
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section of the integral curve and the curve X — —12. This gives 

\u = 6.94 cm. 

Hiemen/ in his dissertation has made an attempt to solve the 
differential equation of the boundary layer for the case of the cylinder 
in an entirely different way. With the aid of the stream function, ty. 
one can write 

3^      a2»/» dif/     d-ij/ dp d if/ 
+ /*■ 

dx 3y:' Sy     3x3y 3x     Sy-' 

He expanded the pressure gradient dp dx into a power series in x, 
and let the stream function be 

^ = I^X + f.X» + |//:,X' 

thus describing the solution in the form of a Taylor series about the 
origin. The partial differential equation can then be reduced to an 
infinite series of ordinary differential equations. From this system, 
he solved the first three without testing the convergence and main- 
tained that i/» is determined sufficiently close and that iji-, i/f,,, etc., do 
not exert a substantial influence. He obtained a value of 6.977 for 
the separation point which is approximately the value derived above 
and which agrees very well with experiment. 

As a result of graphical manipulation the approximate method 
has a great advantage in giving better insight into the development 
of the boundary layer. We recognize immediately from Figure 8, 
which is explained below, that it is impossible to describe correctlv 
the development of the integral curve from the stagnation |K)lnt to 
separation point with three terms of a Taylor series. Also, the geo- 
metrical location of the separation point—the curve X — —12—re- 
sults in an isocline with a very large slope so that considerable change 
in the structure of the integral curve brings a relatively small dis- 
placement in the position of the separation point. Hiemen/ thought 
that this loss of sensitivity in the position of the separation jjoini was 
a test of boundary layer theory. 

However, the difference between our approximate solution and the 
one of Hiemem was very considerable when one calculated the pro- 
file of the boundary layer for some value of x. The solution of Hie- 
menz altered the thickness of the boundary layer only very little; it 
amounted to about 1 mm. 

The boundary layer of the approximation agreed at the stagna- 
tion point with the one of Hiemenz.   On the other hand, at  the 
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separation point 82/p =  384,  the thickness S =   196  mm.  thus 
doubled in size. 

In Figure 7, the displacement, 8*, is given, both according to 
Hiemenz and according to the above solution.  It is defined as 

0 0 

If we substitute the >alue U — ay —by- — cy11 — dy4 tor q then 
we obtain, after the evaluation of the integral with the help of the 
dimentionless parameter \ = V8'J/v, 

t 
V  U'   /        \   10 120 / 

x-tni 

The following table gives the calculated values as a function of the 
arc length of the cylinder. 

0 i 2 3 4 5 5.5      6 6.5      6.75    6.94 
F^T! 086   0.990   1.02     1.08     Tfl     1.44     1.62     1.92    2.48    2.94 ^STsT 
8 mm  0.993   0.995   1.01     1.04     1.10     1.20     1.27    1.39     1.57     1.71     1.96 
8»mmi 0.239   0.241   0.246  0.258   0.279   0.320  0.354  0.414   0.520  0.614   0.784 

We suspect that our solution offers a better approximation to the 
actual development of the boundary layer. In order to show the 
difference dearly, the development of the velocity in the boundary 
layer was calculated in Figure 8 for y = 0.374 mm (in the case of 
Hitmen/, H = 1). In addition, the individual terms of Hiemenz' 
series development have been shown. This shows that Hiemenz" so- 
lution probably converges to our approximate solution, that the 
number of calculated terms i//,, is quite insufficient and that the least 
one should do is calculate «|!rT and ifi.,. It appears therefore that in 
this case a series expansion about the stagnation point is unsuccess- 
ful since the variation in the velocity profiles first became noticeable 
at large values of x where the Taylor series converges slowly. 

5.   The Flow Between Non-Parallel Walls  (Diguser). 

An additional example of the integration of the boundary layer 
equation is the How in a diffuser. 

We treat the simplified case of two straight and nonparallel walls 
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BC and DE (Fig. 9). We extend the straight segments to the inter- 
section at 0, and let the distance OB be unity. OC is the x coordi- 
nate in our system. At the point 0, we assume now a source whose 
strength is 27rA. It is then obvious that the radial velocity distribu- 
tion is 

U = A/x 

This value is now put into the universally valid differential equation 
(8). We obtain the value 2 for UU"/(U')-; thus the differential 
equation becomes 

dz 0.8 [—9072 + 1670.4X-57\- -SX'] 

dx (A/x)[-2I3.12 + 5.76\ + X^] 

where 

d/ x 
X = /U' = - Az/x-     and     = (2X + X'x) 

dx A 

If these values are inserted into the differential equation, we get 

x      dX —0.2V  — 17.04X- + 455.04X — 3628.8 

2     dx -213.12 + 5.76X+ X- 

and by separation of variables 

2      dx _213.I2 + 5.76X + X;-' 

18144 - 2275.2X + 85.2X- -f X3 
dX 

Separating the rational function on the right hand side into 
partial fractions and integrating, we note that two of the terms arc 
zero and that X is given by 

2                                107.85 + X X- — 22.65X + 168.2 
 Inx = 0.7581 In f- 0.1210 In 

107.85 168.2 

f 2X - 22.65 ] 
-0.0664  \ arc tan 1- arc tan 1.790 I 

[ 12.65 J 

If we take the condition for separation to be X = —12, then 

23 



we have 

2 
lnx0 = 0.7581 In 0.8887 + 0.1210 In 3.471 

5 

— 0.0664 [arc tan 1.790 - arc tan 3.688] 

or x0 = 1.214 for the separation point. 

We have thus obtained the remarkable result that even lor linear 
tlittusers with an arbitrarily small opening angle, the boundary layer 
theory always gives a separation point; the latter corresponding to a 
cross-section widening of 1.214:1, i.e., about 21-22 per cent. However, 
this result is not physically realistic since the actual pressure distri- 
bution deviates from the one based on the present analysis in the 
neighborhood of the separation point: in particular, the primary 
flow is mostly turbulent. 

One must give an entirely difterent treatment lor the convergent 
channel. We plare a sink at the point 0 whose strength will be de- 
noted again a? v. For this case, the radial velocity distribution is, 
r = — A/x, and the differential equation is now 

x      dX X' +   12.98X- - 400.6X + 1649 

4.4    dx   "~ 213.12-5.76X-X- 

The integration proceeds again by the method of separation of 
variables 

dx 213.12-5.76X-X- 
4.4 = dX 

x X11 + I2.98X- — 400.6X + 1649 

and yields 

.4 lux = 0.2473 In (X - 10.34) - 0.9115 In (X - 5.530) - 0.33631n (X + 28.85) + C 

As anticipated, this How gives no separation point. 

The rigorous integration of the Navier-Stokes equations has been 
accomplished by others for the previous example of the sink with 
infinitely long walls, thus a comparison should be made between 
their solution and the approximate solution.* 

•Kilitor'» SttU-. Die siiggc-slccl (oniparison was made by K. MilUips anil K, 
I'ohlhaiisin.   Jour. Aero. Sri.. Vol. 2(1. p. 191. IftVi. 
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We pul the stream function in the form 

i|« =: i|/(t)     where     t =. y x 

and obtain 

3i|/ 1/1' Si// yt// 

ay x 3x x- 

3x x:i x-       3y x- 3y- x3 

The pressure gradient, dp/dx, is calculated as 

I       dp A- 
 - mr =  

p      dx X''1 

If wc substitute these values into the boundary layer equation, we 
get an ordinary differential of the third order 

- WY = -A» + injj'" 

Letting i/>' equal {, 

-C = -A-' + ^C" 

or 

-% J1 = -A-f 4- H i/ ({')- + B 

The integration constant B is determined by the condition thai 
J — —\ for J' = 0: it then follows that 

2                    v                        £:' 'iA1 

B = A:< and  ({')s = f- A^ + 
3 2 3 3 

/    3v    V-' 
( ^T )     s'" (i + A) (2A ~ 0 

\   x    / \    2    >/        (£+A)(2A-C),/! 

We now make the substitution (j = 2(2A — {)' - 
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or 

dq 
(2A - C),/1! 

and then obtain 

2A-{ 

The  integration constant a is determined  from the condition, 
{ = 0 for y = 0, 

2 — Stanh^a = 0, tanh 

so that 

- (4-r or    a = 1.146 

{ = 2A — 3A tanh2 1.146 + (4)'^: 
The velocity profiles for the exact solution, for A = \, v = I. 

x = 1, and for the approximate solution are shown in Figure 10. 
The root which is used for the approximate solution is 10.34. 
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Figure 8.— >)  within the Boundary Layer on a Circular Cylinder at  u  Fixed 
Distanre from the Cylindrical Surface. 
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