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.Thts second volume is dedicated to the theory of radar
measurements and questions of target resoluticn.

There is developed a general theory of radar measure-
ments, containing an analysis of tracking and nontracking
measuring systems both in linear approximation, and also
taking into account their nonlinearity, and also synthesis
of optimum systems of measurement of separate time-variable
parameters of motion of targets and sets of them.

On the basis of this theory there is conducted analysis I
and synthesis of range finding systems, systems of measure-
ment of velocity and goniometrical systems. There are inves-
tigated cases of reception of both coherent, and also inco-
herent signals.

In examining questions of target resolution there are
investigated possibilities of resolution of signals reflected
from them, and there are found receivers optimum from this
point of view, and also optimum systems of resolution in
regimes of detection aid measurement of coordinates.

In the course of development of theory there are re- A

vealed laws governing radar measurements and resolution of I
targets.

The b6pk is intended for scientists and engineers. study-
ing questiohs of radar, and also for post graduates ar.d
students of corresponding specialities. Many questisns of the
developed general theory are also of interest to persons
studying theoretical problems in all regions based on the

V theory of statistical solutions, in particular, in the area
of automatic control.
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CHAPTER VI

GENERAL LAWS GOVERNING RADAR MEASUREMENTS

§ 6.1. Introduction

In the preceding chapters we considered questions of radar detection of targets. I
With this chapter we start a presentation of questions of radar measurements to

which the subsequent chapters (7-12), too, are devoted. Before studying concrete q

schemes for construction of radars in a regime of measurement of coordinates of

targets, dividing them by the form of measured coordinates (parameters of motion)

of targets, we shall turn in this chapter to certain general laws, peculiar to

radar measurements. The fact is that it is possible in fairly general form to

theoretically give a basis for methods of analysis and synthesis of the most diverse

radar meters. With certain, not too limiting, assumptions it is also possible to

obtain basic performance characteristics of any meters and general functional

circuits of their optimum construction. Being interested in general laws governing

radar measurements, we shall consider two large groups of questions, namely: !

analysis of meters whose circuit is known, and synthesis of meters ensuring the

best possible performance characteristics for measurement.

In order to grasp the domain of applicability of subsequent results, it is

necessary first of all to deal with the question of the interrelation between tne

-Aregime of detection studied above and the regime of measurement. Ultimately, any

radar is intended for measurement of various parameters of motion of targets. There-

fore, measurement is a basic operation of radar and should start from the very

beginning of work of the system. .

K •However, under conditions when the very fact of the presence of a signal
ii!



reflected from target still has not been fixed, consistent carrying out of this

principle in theory leads to difficulties both methodological and mathematical.

Therefore, everywhere in radars there is Implicitly assumed the presence of the

devices of detection and lock-in, which were analyzed in Chapters 3-5. These

devices in one way or another produce the initial determination of parameters with

precision, allowing us to pass to precision measurement (tracking). From what

follows it will follow that in the case of application of tracking meters for this it

transition we need lock-in for all coordinates with accuracy of the width of dis-

crimination curves of the meters, comprising the radar set.

It is important to indicate that in reality establishment of the fact of the

presente of the target for finite time of lock-in is possible only with a finite

probability, differing from unity. Everywhere below we shall consider that if

lock-in occurred, a signal from the target indeed exists, and all qualities of the

meters will be calculated on this assumption.

We shall also discuss the statistical character of the studied problem. Coordi-

nates of objects, measured by radars, are included ("coded") in parameters of the

signal reflected from the target or radiated by the target. Thus, the range of a

target is usually coded in the time delay of modulation; velocity in the Doppler

frequency shift; angular coordinates in modulation introduced by the receiving

antenna. In Chapter i we indicated that a reflected radar signal has a random

character. Various interferences of radar al;o have a fluctuating nature. These

circumstances already compbl us to describe the process of measurement of coordinates

in statistical categories. However, in the proolem of measurement it is impossible

to do without one more aspect of the problem - change of coordinates in timne.

Actually, in practical conditions interesting us the located object is always

moving, and the necessity of measurement appears, essentially, when we do not

exactly know parameters of this mction. Here, it is possible to suggest two methods

a of description of the varying parameters:

i) variation of parameters are considered statistically, given the distribution

of probabilities of their values at different moments of time or more limited

statistical evidence;

2) unknown functions describing motion are considerea determined, and Lth

available information is presented in the form of a series of mathematical

conditions (limitations), imposed, for instance, on the derivatives of the
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functions with respect to time.

Both approaches have their advantages and disadvantages. A disadvantage of

the nonstatistical approach is the necessity to Judge the quality of measurement

by certain of the worst cases, which, possibly, will never be observed in practice.

A basic deficiency of the statistical approach is the so-called "a priori difficulty"

in determining statistical properties of parameters. The fact is that their

variation is determined sometimes by a great number of factors, including

psychological (for instance, behavior of the operator or Pilot). Determination of

statistical properties, implying mass trials, is difficult even in idealized con-

ditions, and is sometimes simply impossible in the absence in the past of similar

systems or conditions of their use. However, it is possible to give a series of

no less convincing arguments in favor of the statistical approach:

i) there exist a whole series of applications where statistics can be con-

sidered fully given. An example can be the case of a Doppler meter of groundspeed

of an aircraft, where stationary variations of speed during a large number of

flights can be statistically studied in sufficient detail;

2) satisfactory results in the sense of accuracy of measurement are given by

meters, built only with qualitatively correct allowance for statistical properties

of the parameter, inasmuch as namely the qualitative aspect determines the meter's

functional scheme. Quantitatively circuit elements can be regulated in the process

of tuning and testing.

For meters it is poisible to consider the statistical approach more con-

sistent.

Subsequently we will use both methods of describing variation of parameters,

leaning in most cases toward the statistical. Practically, during designing of

each new system of concrete assignment there always exists a considerable amount

of information and physical considerations, albeit not rigorous, which are permis-

sibly interpreted as statistical properties of the measured quantity.

Thus, the problem of radar measurement of coordinates has a statistical char-

acter both due to the random character of the mixture of the input signal and inter-

ferences, and also due to changes of mreasured quantities, unpredictable in general.

In the course of the following presentation it is frequently necessary, however,

to isolate an ensemble of parameters from the ensemble of the mixture of the signal

and interferences. The latter, in turn, are sometimes conv-niently divided into
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subensembles.

During consideration of general questions of analysis and synthesis of radar

meters in this chapter there is adopted the following order of presentation.

First of all in § 6.2 there is conducted analysis of the most wide-spread

tracking meters; there are introduced into consideration necessary characteristics
of their elements; there is developed a method of investigation of the accuracy of

measurements; and there are given results of analysis of accuracy.

In § 6.3 there are investigated these sane meters under the action cf intense

interferences, leading to breakoff of tracking. In practice there are also applied

nontracking meters; questions of their analysis are the contents of § 6.4.

Remaining sections of the chapter are devoted to questions of synthesis of

meters. In § 6.5 there are discussed possible criteria and methods of synthesis.

There are presented propositions of the general theory of statistical solutions and

its separate branches necessary for problems of measurements. Further, in § 6.6,

having for subsequent considerations very great importance, there are expounded

methods, and there are presented general results of statistical synthesis of optimum

meters, based on close approximation of the introduced probability characteristics.

The next two sections are devoted to synthesis of separate parts of an optimum

meter - discriminators (§ 6.7) and smoothing circuits (§ 6.8), with different

statistical properties of input signals and measured quantities. The physical

nature nf measured parameters, here, ! , not made concrete; these questions are

saved for subsequent chapters.

In § 6.9 there is given a certain expansion of the method of synthesis in the

direction of parameters with Markov variation. In the same place there is given

a series of results of synthesis for a limited knowledge of the statistics. The

conclusion (§ 6.iO) gives a brief survey of methods and results and contains the

formulation of a series of new problems.

5 6.2. General Analysis of Tracking Meters

At present there exists a large number of various forms of radar measuring

devices. High accuracy of measurement is usually attained by automatic-tracking

* meters, built on the principle of a servo system. Meters of this type will be

studied in the present section.

)
--4-
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6.2.1. Basic Features of Circuit Construction and Components

of Errors of Measurement

In the general form tracking meters can be represented by the schematic of

Fig. 6.1. On it there are marked two basic elements - element for separation of

the signal of mismatch between

i:)at current and measured values of a

parameter, usually called a dis-

criminator, and amplifying-

smoothing circuits together with
Fig. 6.i. General schematic of a tracking
meter: 1) discriminator; 2) smoothing circuits drive units. Sometimes in the
and drive unit.

circuit there is also provided

insertion through an adder of a certain additional voltage X B (t), Intended for

compensation of clearly known components of the measured quantity. This can be
carried out by timers, transducers of coordinates of the actual meter, by output

data of roug' means of preliminary measurement, and so forth. Numerous examples of

range finderL goniometers and speedometers, which can be reduced to the scheme of

Fig. 6.1, are available in the literature, and also will be considered below in .4

Chapters 7-il. Here we shall only indicate that the division of the whole circuit

into two basic elements, to the second of which there belongs all the basic inertia,

in the vast majority of cases can be carried out, at least in principle.

From the given description of the circuit of a meter it may be concluded that

such types of automatic systems have very wide use in different areas of technology.

Diverse control systems for industrial and military purposes, piwer systems, and

so forth, include closed control circuits, separate elements of which are cour-

nected by communication circuits. During transmission of information in comuni-

cation circuits there is produced Its encoding and decoding in conditions of nois(,:..

If to investigation of such systems we bring the apparatus of the classical theory

of automatic control, the devices for transmission of information usually are ccn-

sidered crudely simplifiod in the form of inertialess (sometimes linear) elements

with additively imposed noises. For radar, however, as for many other contemporary

areas, consideration of devices for processing data carried by a high-frequency

signal (in this case, of diseriminators) turns out to be absolutely obligatory. j
Here, this is no less important than to analyze smoothing and drive circuits. In

this is the peculiarity of the subseqeunt analysis.

Tracked parameters in radar meters are angular coordinates, distance and speed,

S. .... . .- • • ,• : • •7



concretely coded in time and in frequency shifts and other parameters of signal

modulation. Input and output signals of a discriminator most frequently have an

electrical nature, i.e., are certain voltages. Therefore, it is reasonable to

introduce a binary system of designations, which will also be convenient in the

theory of optimization of systems. Let us assume that y(t; x(t)) and z(t; E(tf) -

* input and output voltages of the discriminator; X(t) and X(t) are the input and

output values of the tracked parameter, and s(t) = X(t) - Z(t) - current mismatch

(error). By y(t; 1(t)) we understand the whole mixture of useful signal and inter-

ferences at the meter input; an analogous mixture, obtained after processing in

the discriminator, is implied by z(t; s(t)).

In general to the discriminator input there proceed several input mixtures

Yi(t; X(t)).(i i, 2, ... ), which, naturally, changes neither the further methods

of analysis nor its results.

It is important to indicate that between yi(t; X(t)) (i = 1, 2, ... ) and

z(t; e(t)), on the' one hand, and their parameters 1(t) and e(t), on the other, there

does not exist a one-to-one correspondence. Thus z(t; •(t)) is proportional to E(t)

only on the average (over the ensemble of input signals), and in a narrow range of

values of E statistical properties of fluctuations in z(t; E(t)) to a great degree

depend on the intensity and form of the input interference included in mixtures

* yi(t; X(t)). The output value, i.e., result of measurement can be characterized by

functionX(t).

The rest of this paragraph will be devoted to a basic characteristic of the

described meters - accuracy of measurement. In this connection one should separate

different components of measurement error.

In the first place fluctuating error is important. It apears due to internaL

noises of the system (noises of transmitters, receivers, antennas), external in-

terferences of varied origin, most frequently additively Joined with the useful

input signal (but not with the measured quantity), and also due to fluctuations

of the reflected radar signal. Furthermore, the measured variable can be coded in

the signal in sum with a certain spurious component. We have in mind, for instance,

the phenomenon of random shifts of the center of reflection of an extended radar

target in angular coordinates and dlstaxc•, distuvtlun of the bvam and dtspcrscd

propagation of radio waves in the atmosphere, etc. Inasmuch as the goal is measure-

ment of a certain undistorted value of a coordinate, these factors introduce

S~-6-



additional error, which can have both a fluctuating, and also a constant component.

The second component of meter error is dynamic error due to changes of the

measured magnitude itself, both random end those which are regular, but not com-

pensated inside the meter.

IWe also distinguish systematic error. This is the usually somewhat uncompen-

saled constant component of error, explained by the selected method of processing

the signal.

In high-performance meters it is necessary to consider increase of fluctuating

and sysiematic errors due to so-called instrument (equipment) errors, appearingI

due to oscillations of feed voltages, mechanical vibrations, fluctuations of tempera- 1

tue, gaps, dry friction, errors of quantization in digital variants of smoothing

circuits, and so forth.

Henceforth, for simplicity we assume that there are no errors due to spurious

components of the measured variable nor instrument errors where the forms of errors

IMust Lc accounted for separately.

During the study of fluctuating and dynamic errors it turns out that an

essential role in their calculation is played by the relationship between the rate

of change of the measured parameter on the one hand, and on the other, the rate of

change of random variablcs Jn the mixture of the signal with interferences (we call

them for brevity fluctuations), which in principle there is no need to measure.

In the most general case there certainly must exist rapid fluctuations due to .4

internal noise of the receiver. Furthermore, there may exist random variables, the A

rate of change of which is commensurate with that for the measured parameter. In-

asmuch as the approach during analysis and the method of calculation of error of

measurement somewhat differ for various combinations of these variables, below we

distinguish three separate cases:

a) case of rapid fluctuations alone;

b) case of a set of rapic and very slow fluctua.tions;

c) general case.

6.2.2, Characteristics of a Discriminatcr in the Case

of Rapid Fluctuations

Here, it is uisefuil to introduce a single statistical ensemble o2 fluctuations,

in general determined by fluctuations of varied physical nature (see Chapter i).

Width of the spectrum of fluctuation in z(t; e(t)) is assumred larger than the
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effective transmission band. of the whole closed system of the meter, and all pro-

cesses in the discriminator are considerably faster than in the meter as a whole.*

Therefore, function z(t,. e) can be considered to consist of two parts - a mean

value and certain noise. For a continuous input signal the mean value is equal 1.0

a(S. 1)=Z Y, 8). (6.2.1)

and noise has correlation function

R (%; o, 4) [t.,-z (Z 01)] [Z Q1 +.,. ,)- Z Vt+.).(,./l

Due to inertia of subsequent circuits this noise can be considered white. Its

spectral density one should consider equal to the spectral density of output

fluctuacions of the discriminator at low frequencies, introducing here the character-

istic

S(vi )--s-; S t);d (6.2.3)

Averaging in (6.2.1) and (6.2.2), designated by the vinculum, is produced over

the complete ensemble of fluctuations at the input, and magnitude e here is consid-

ered fixed, which corresponds physically to slowness of its change. Possible de-

pendence of a(e, t), S(s, t) on time is explained by the fact that statistical

properties of input fluctuations may depend on time, but slowly and by known law.

For a pulse periodic s'gnal it is pc'sible to characterize z(t, e) by the same

Iunctionsa(E, t), S(a, t), if we include in (6.2.i) and (6.2.2) additional averaging

in time (for period Gf modulation Tr):
r

Sz (, a(6.2.,)

0 ., dr. dR ;eI)
1--T -- s,

If we now compose from characteristics a(e, t), S(E, t) a certain statistical

equivalent of function z(t, e), this equivalent, obviously, will have form

9.(t, )4 (i. )+ at (t), (6.2.6)

where •(t - white noise of unit spectral density.

Actually, z . (t, e) has identical properties at low frequencies wibh z(t, c),

*If smoothing circuits change in time, then the idea of an effective band is

not applicable, but it nevertheless is possible to speak about a certain effective
constant reaction time.
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and this suffices for further analysis.

We introduce now for a(s, t) the name discrimination characteristic and for

S(s, t), fluctuation characteristic of the discriminator. They are found by means

of analysis of passage of the signal and different interferences through the

discriminator for fixed mismatch e. This is a separate problem, sometimes very

buL'y (see Chapters 7-11). Let us indicate that in nonstatistical consideration

the discrimination characteristic is simply the dependence of output voltage of I
the discriminator on mismatch at a nominal level of input signal, and the fluctuation|

characteristic is not introduced in general. j
If the signal has a pulse character, and fluctuating disturbances formed at the

discriminator output in different periods are not correlated, it is sometimes more

convenient to present the output of the discriminator in the k-th period in a form

which is a discrete analog of (6.2.6):

zk (a) = ak (a) + ch(s) (6.2-7)

where k - a discrete random process with uncorrelated values and unit variance;
ak(F) - mean value of z p;

(e) - variance of the fluctuating component in the k-th period (dependence

of functions ak(s) and ak(s) on k, as also of functions a(s, t), S(s, t)

on time t, again is considered slow and regular).

Let us stress, however, that writing (6.2.7) on the assumption of smallness of

the period of repetition Tr as compared to the time of change of the measured

quantity not only does not lead to greater rigor of consideration as compared to

(6.2.6), but is also valid in the more frequent case of absence of correlation

between disturbances in separate periods. As it is easy to check, formal transition

from (6.2.7) to (6.2.6) should be carried out by replacement of current subscript

by current time t, of process with uncorrelated values Ck by white noise t(t) of

unit spectral density and of magnitude 02(e) by S(a, t) - o(s)T.

Thus, the notation (6.2.6) in the considered conditions is sufficiently general,

and it remains to consider in more detailed form the form of characteristic6 of the

discriminator, assuming, for simplicity, that they do not depend on time.
With satisfaction of conditions of symmetry of the ciriuit and of character-

istics of the mixture y(t; ?(t)) the discrimination onaracteristic Is an odd, and

the fluctuation characteristic is an even function of e. The discrimination

characteristic (Fig. 6.2) for small c has a linear section. We usually seek
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increases of the extent and

slope of this section; however,

this does not lead in all cases

to lowering of errors of measure-

ment. For large e the discrimi-

nation characteristic has dips

corresponding to emergence of

the parameter beyond the limits

Fig. 6.2. Typical family of discrimination of tergo nwihtedscurves: i) case of small interferences; 2) region icase of large interferences.
! criminator Is selective.

Analysis of concrete circuits shows that intense interferences lead to decrease of

the scale of the discrimination curve along the axis of ordinates ard to amplifi- I
cation of dips. This is explained by the normalizing action of certain, generally

speaking, nonlinear elements (system of automatic gain control (AGC), clippers, peak

detectors, and so forth, see Chapter 2).|I
The fluctuation characteristiz (Fig. 6.3) to a still greater extent depends on

the form and level of input interferences. Output fluctuations of a discriminator

consist of' severel components.

They appear as a result of

interaction among spectral corn-

ponents of interference, beats I
of interference with the signal,

- and, in the case of the presence

of signal fluctuations, results

of interaction of signal com-

Fig. 6.3. Typical family of fluctuation ponents.* Intensity of the
characteristics: 1) case of small interferences;
2) case of large interferences. last two components depends on

e, increasing where the control

signal, i.e., the modulus of the discrimination characteristic is great. .Intensity

of beats of interference components among thenselves also depends on e, but only

I
*Strict.ly speaking, division of output fluctuations into the three shown

components can be performed only when using in the discriminator circuit, as elements
of nonlinear processing, square-law peak detectors and ideal multipliers. Quali-
tatively the picture also remains, however, true in other cases, at least for
large signals.
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due to the normalizing action of the discriminator, overwhelming noises for strong

signals and small e. We have in mind, for instance, decrease of gain of the re-

ceiver, and consequently al~o of the output level of noises due to action of an

AGC system with sufficiently accurate tuning on a powerful signal. As a result the

fluctaation characteristic frequently has the form of a double-humped curve with

a aip near e - 0, has rises near extremes of the discrimination characteristic and

has a certain constant level for very great mismatch e (Fig. 6.3). Here, S(s) as

e - ±m is determined only by internal noises of the receiver and interferences.

With g'owth of interferences not carrying information about tho measured variable,

function S(a) gradually is smoothed, until it becomes independent of e and of the

signal-to-interference ratio at the discriminator input.

The described dependences in subsequent chapters will be illustrated by a

series of examples. They take place under the above-indicated conditions of

symmetry. In other cases the form of the characteristics of the discriminator may

vary somewhat. In particular, shift of both characteristics along the axis e with-

out change of the shape of the curves is possible, so that the new center of

symmetry will be point A v 0. Then we speak of systematic error, introduced by the

discriminator. In general, shift is accompanied by distortion of the shape of

the curves, so that they no longer have the shown simple form. This occurs, for

instance, with the presence along with the useful signal of an interfering signal

close in structure.

Presentation of discriminator output in form (6.2.6) should be used under

conditions when mismatch c can take large values, i~e,, during the study of

questions of lock-in and breaKoff (§ 6.3'. At a sufficiently low level of inter-

ferences random process e(t) with high probability takes small values, and approxl-

mation of characteristics of the discriminator by very simple functions near point

e 0 is sufficient:

4 4, .+ K 6
S so+S.6 + S,.41 )

where H

4,14(o), K.= 0 ~()(~ , 1,4 L),
Ratio A aIK• is the systematic error of the discriminator. When conditions

of symmetry are satisfied, quantities a 0 and S turn into zero and (6.2.8) takes the



form

,a('=KAS, ~s () -- s.+- '. (6.2.9)

Coefficient K is called the amplification or gain factor of the discrimiinýtor.

Quantity S0 .characterizes the fluctuating component, not depending on mismatch E,

and S 2 - the component, proportional to e. For explanation we indicate that

(6.2.9) corresponds to the following presentation of discriminator output voltbge:

z,@;eI---=KltI•K~ll4"|()".(6.,2.1•

In this case random process .S(e);(t) is replaced by two uncorrelated processes

K rj(tý and K et(t) with the same total intensity. Here TI(t) - white noise with

dimensionality of the measured parameter and with spectral density proportional

to S

Ss ""SSK=Zsd/, '(6.2.11)

henceforth called the equivalent spectral density, and E(t) - a parametric input

in the form of white noise with spectral density, proportional to S2:
2I

s, =_sD = sdx2 (6.2.12)

henceforth called parametric.

Thus, under the formulated ocnditions of symmetry output of the discriminator

can be characterized by only three quantitSet: K S and S T" er dependence

on the character of the input signal (signals) y(t; X) and the method of construction

of the discriminator in concrete examples will be clarified in subsequent chapters.

Here, we indicate that the gain factor K. drops with growth of interfences which

are not contained in the coded form of the tracked parameter, simultaneously with
the above-indicated decrease of the scale of curve a(e). Quantity S also depends

on the level of interferences: for weak interferences it is close to zero, and

with growth of Interferences it grows without limit. Quantity Snap characterizes

the coefficient of parameteric pulsations of control voltage, caused usually by

amplitude fadings of the signal. In goniometric and range finding system Snap is

considerably lowered when there are present amplitude-demodulators (AGC, I
clippers, otc). The dependence of Snap on the level of input interferences is

determined by the concrete nature of X(t) and the circuit of the discriminator.

It is easy to prove that the introduced magnitudes San and 0nap arc two

coefficients of the expansion with respect to e2 of function %,4E) = S(E)/K , which

is sometimes convenient to use instead of S(e), called the equivalent fluctuation )
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characteristic. This term indicates that S 5,E) characterizes noises, recalculated

in equivalent values of the tracked variable.

Relationship (6.2.10) is conveniently interpreted by the circuit of Fig. 6.4,

which can be used during simulation of a complicated system, where a given

discriminator is applied. Note that 5nap
! i " characterizes that component of fluctua-

!e
tions, which in the given equivalent

Ii ; ¶1circuit parametrically governs amplification

of the radio channel.
Fig. 6.4. Equivalent circuit of a
discriminator: K - inertialess Thus, even in the case of linear
amplifier with gain factor K..a f w g f rsmoothing circuits with constant parameters

the radar tracking meter turns out to possess variable gain in the loop, i.e., one

variable pa-ameter. In this connection the fluctuating component, proportional

to mismr-;-ching, we call parametric. One should not, of course, confuse this com-

ponenL with random changes of the tracked parameter X(t).

It is necessary, however, to stipulate that in a number of combinations of

parameters of the circuit and the input signal-to-noise ratio it turns out that

S% < 0, i.e., the level of noises upon the appearance of mismatch even decreases

somewhat. Examples of this especially nonlinear effect will be given in subsequent

chapters. When S 2 < 0 presentation (6.2.10) is already impermissible, and the

linear model of Fig. 6.4 loses meaning. The problem can be studied only by a

mathematical apparatus, adapted to nonlinear problems.

6.2.3. Accuracy of Measurement in the Absence
of Parametric Fluctuations

On the basis of the introduced discriminator characteristics we shall calculate

the error of measurement. Let us assume that parametric fluctuations are negligib>.

We shall study that important and sufficiently general case, when smoothing circuits

are linear, but not necessarily with constant parameters, so that their input and

output are connected by relationship

S= h ~~( s ), (,di + 4 V),(.
|U

where h(t, T) - pulse response of smoothing circuits;

X B (t) - quantity introduced into the meter (Fig. 6.1), not neceszarily
accurately coinciding with the a priori mean value of parameter X(t),
which is considered a random process.

Substituting in (6.2.13) according to (6.2.10) quantity

i -13-
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and considering that X - s- , we have equation

(6.2.14)4 10+ ((t) +')X-•10•t,

We introduce the pulse response g(t, T) of the closed system, considering X(t)

the nutput quantity. Function g(t, T) is determined by integral equation

Y) +Ki h 0, s) (s, z) ds" Kah(t, " (6 .2.5)

Additionally we introduce pulse response v(t, T), considering mismatch E(t) the

output quantity. Function v(t, T) satisfies equation

"WQ, 1)+Kaj•A- U.)(s. # sV=B(t-%). (6.2.16)

By direct substitution of expression (6.2.13) in (6.2.:14), using (6.2.15) and

(6.2.16), it is simple to prove that the solution of equation (6.2.14) has the form

V t )1(S) J6(s)] dse aQ() + ag. i)+sang.a(t), (.6.2.17)

where function ITt is added and subtracted.

According to (6.2.17) current error is determined by the Joint action of

interference nr(t), passed through the filter with pulse response g(t, s), of

random changes of parameter X(s) - X(s', and of uncorrected regular changes of

parameter Xrs7 - X 1 (s), passed through the filter with pulse rcsponse v(t, s).

The first component "

S(I) � lS (t, 8),q (S) da

is naturally called fluctuation error; to terms e8 MH 1 (t), • 2 (t) we give the

designation of dynamic errors. Let us note, however, that in the statistical

approach to measured quantities introduction of the last term is somewhat conditional,

inasmuch as eAMH 1 (t) has a random character to the same extent as s#a(t).

Considering that the measured parameter is a random process, and that fluctuL- -
tions are rapid, by (6.-.17) it is possible to easily calculate the mean square

-±4-
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overall measuring error:

so W` sos OY )d

v (4, J) a (vY, s)R, ($a, s.) dsds, +

+ Q s)As a 2~ (t) + 22~)+ (6.2.18)

Here we use the property of 5-correlation of interference, and there is introduced

correlation function Rx(ti, t 2 ) of the random part of the measured parameter and we

denote A(t) -X - B (t).

According to (6.2.18) for an arbitrary pulse response of smoothing circuits

the variance of fluctuation error a•(t) is proportional to the equivalent spectral

density (6.2.ii).

Further simplifications of expressions for separate components of expression

(6.2.18) are possible upon concretization of the form of smoothing circuits and

of the character of change of X(t).

a) Assume stationariness of the random part of parameter Rx(ti, t 2 ) A

- RX(ti - t 2 ), full correction of its regular part (A(t) 0 O) and constancy of param-

eters of smoothing circuits. Fourier transforms from functions g(t, T) = g(t - ¶)

and v(t, T) - v(t - T) with respect to (6.2.15) and (6.2.16) in this case are easily

expressed in terms of the amplification factor of the discriminator and the frequency

response of the smoothing circuits

IB

"2 2 , (w d
in the form -

0 (. w I " gs (i)d)

Finally instead of (6.2.18) we can cbta4.n i~ad;a of (..9

Af.o= 2x (6.2.21)
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It would be more systematic to determine the effective band by normalized

relationship

However, inasmuch as due to the large gain in the loop, usually being G(0) 1,

there is no difference between (6.2.21) and (6.2.22). I
As follows from (6.2.20), variances of fluctuation and dynamic errors in the

considered case do not depend on time, where the first is expressed by the simple

and widely known formula

2 = 2SoRAs*. (6. 2. 233)

b) Let us consider an example, when smoothing circuits are constant, and the

random part of the parameter is expressed by a polynomial in time t with random

factors

~~0 b= 1 ih >0). (6 .21. 24)

Fluctuation error is expressed as before by formula (6.2.23), and the 4

mean square dynamic error according to (6.2.18) has the form:

a~(f)-k (9ML,,) l(). (6.2.25)

where

I•*1Pd- () " e p , (6.2.26

and V(p) is given by formula (6.2.19).

With increase of the time of measurement, (6.2.26) passes to

k11lir 4,1 (1) = ,lim V (6).•

It follows from this that a regime with a strictly finite magnitude of variance

of stationary dynamic error exists only in the presence in the numerator of V(p) of

a factor p to a power, not smaller than the power of polynomial (6.2.24), depicting

behavior of the parameter. The numerator of V(p), according to (6.2.19), is

determined in turn by the denominator of the transfer function H(p) of the smoothing

circuits. The latter, in the presence of factor pn, are called astatic functions

of the n-th order. Astaticism is attained by circuits, close in properties to
S~)
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ideal integrators. Th~us, a smoothing circuit in the form of a single integrator

ensures astaticism of the first order:

H@)= P,=- P
P. P+--,Kx' (6.2.28)

4nd with a double integrator with correction we have astaticism of the second

order:

!.i*P '.'- +KICA-I,+P)" (6.2.29)

In general form the mean square dynamic error in steady-state regime finally has

the form

"I- JA"! ,+' (6.2.30)I.

Let us consider in more detail a series of simple examples.

I. The smoothing circuit has the form of an ideal integrator (6.2.28). The

effective transmission band of a closed-loop meter here is equal to

f,• = K,/4. (6.2.31)

For the case of a stationary parameter with spectral density Sx(w) - 22T/[i +

2 2+ (03T) 1, where a variance, we have mean square dynamic error

1ITK." I • (6.2.32)i o• =!-+ II1TKKs "

For a parameter in the form of polynomial (6.2.24) establishment of error
2

is observed only at m = a &nd 1. When m - 0 error a 0, and when m = i

2 mot (6.2.33)

Error in position (i.e., due to the constant term of the random variable) is

equal to zero, and error in acceleration or with respect to a higher derivative (in

the case of the presence in the law of change of parameter of corresponding terms)

grows without limit.

2. The smoothing circuit has the form of an RC-circuit:

H ()=K91 (I + p%).

The effective band and dynamic error for a stationary parameter with the above-

mentioned spectral density have the form:

%4

3*S( O (6.2.34)
-K r +,1 (I + -. )"
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If we turn to the case of a parameter in the form of a polynomial, then it is

easy to prove that establishment of error occurs only for constant paramieter, and

its variAnce is equal to Mo/(i + KoK4) 2 . However, in the case of a large gain

factor and large time constant of the smoothing circuit, for M., 0 we have In a

sufficiently extended interval of time

I T
i.e., the closed-loop system has approximately the sam.. properties as in the case

of an ideal integrator with gain factor K0 /T.

All that has been presented shows that in the absence of parametric fluctuations I
analysis of accuracy of meters is sufficiently simple and leads to results, widely

kncwn from classical automatic control theory.

6.2.4. Accuracy of Measurement in the Presence

of Parametric Fluctuations

In the presence cf parametric fluctuations it is possible to replace expres-

sion (6.2.14) by equation

W + h(Y, s) [I +±t($)h(s)ds) d-

A(I) -- 2 (1)--Kj4 ht.)ii(s)ds. (6.2.36)

Again introducing pulse responses g(t, r) and v(t, r) according to (6.2.15)

and (6.2,16), we can obtain

s))vi (8) (s V)(t, )))[S) -6 ,(al ds-

"8)I1a)e(s)ds. (6.2.37)

Formula (6.2.37) still is not the solution of equation (6.2.36), inasmuch as

quantity s(t) enters into both parts of (6.2.37). Results convenient for use c-Lri be

derived from (6.2.37), using smallness of variance of ý(t), usually observed in

practice. The measure of this smallness will be shown below. According to the

m.ethod of siccessive approximations we shall seek a solution of (6.2.37) in the form

of the series

411) =-to,(t +8. (1)+,,to+.W

where e0 (t) has the zero, e1 (t) the first, E2 (t) the second, etc., order of small-
neSS,

• -i8-o
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Then, for the zero approximation cO(t) we again have solution (6.2.i7). The

first correction is equal to

0 e , )(s) (s) g (s ) -qi,. (sc) ds. (6.-.t

9. S Q ) E(S) [@All, (S) + M.i~ (S)l dS- (6.2 .38)

Analogously the second correction will be expressed in the form'

.(Q)=-- ds A d % • dig(t, s)lt(S)g (s, E (0) (6,'C)!(,)+
1. 1. V.

' a (6.2.-39)+I$dsl di.g(1, s)."(S) g (s, )t(, ) ([)A.

The mean square of e(t) during series expansion is equal to

• 1.. 0--,:(1) + 2 t ,, #10, (1) + [2t, (f) #s () + e t~ +..

where averaging is conducted both for the ensemble of signals, and also for the

ensemble of parameters. Averaging with the help of (6.2.i7), (6.2.38) and (6.2.39),

we obtainin order:

M (= s.. "'9(t, s) ds +

S(1),+ (At), + %,, (t).(6.2.40)

2. eo(t)%(t) - 0 due to noncorrelation and zero mean values of functions .(t),

n(t) and X(t) - M.

3.

so (s = snap(t g Y(t- 9) g (0, ) [NAM.. () i.M, (%) +

+ $mM, (V) SAM, (01)] d1dt, + SnapSatca J' g (1, -,)g (',C, X) X
X g (t, %,) g (•,•)d',d%.

(6.2.4i)

The value in (6.2.41) of pulse response of th' closed-loop system with coinciding

arguments g(t, t) one should consider equal to zero, inasmuch as even in approxi-

mation of pulse response of smoothing circuits by functions brea•ing at these
points (inertial link of the Ist order, link of the 2nd order with correction, and

!.I _19_



so forth) it is impossible not to allow for the fact that the discriminator has

inertia (delay), not smaller than the interval of correlation of that fluctuating

voltage at its output, which we consider white noise. Consequently, there do not

exist fluctuating components instantly returning through the feedback circuit, arld

emphasizing fluctuations in the discriminator.

Considering this circumstance, we have 777F - 0.

4+.
92(OR* I f to Of 11) r(.)'(.. dc, d%, +

+ so (' ', (6. 21. 1 2)

Considering (6.2.40) and (6.2.42) with an accuracy of terms• of the second

order of smallness we have total error of measurement:

M sM , +'( n 9Y,%) +.,( o'(,e)]dt+
+ (1 -. +Sp.S, f g' (t, -) (0:.. (') + d% (6.2.43)d

where j2 x0(t) - variance of output error for a meter when we disregard parametric
0

fluctuations, expressed by formula (6.2.40).

Simpler relationships can be obtained in, the case of a stationary parameter

and constant smoothing circuits for A • 0: A

*. -- .,(i + _. ). (6.2.44)

Here, there is introduced anap 2S aAfe - variance of parametric fluctuations,
np nap

smoothed in the loop.

After analogous calculations to terms of the fourth order of smallness we

have
fau .•---g,. 0 + up , im '•(6.2•.4•5) Q:

According to (6.2.45) total output error due to parametric fluctuations is increas'.,

by a factor of I + anap + anap, i.e., the additional component of error is greater,

the greater the error of measurement in the absence of parametric fluctuations.

This circumstance corresponds to description of the circuIt of Fig. 6.4, where ,

parametric fluctuations characterize changes of' gain of the discriminator, having

no influence only when s = 0.

Quantity a2  in the stationary case can be expressed in terms of variancenap
a and width of the spectrum Afj of function ý(t), assumed above to be white noise,

in the form
4(

-20-
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From (6.2.46) it follows that parametric fluctuations can be ignored when the

effective band of a tracking meter is considerably narrower than the width of the

spectrum of these fluctuations, and their variance is much less than unity. Only

in this case, instead of (6.2.43) and (6.2.45), it is possible to use simpler formulas

(6.2.18) and (6.2.20), and properties of the discriminator are determined only by

quantities K A and S....'

We shall indicate here that the obtained formulas, containing coefficient Sr,,p

are not applicable if S < 0, and also upon reaching a2 of large values, when

approximation, based on use of only the first terms of the series expansion and

leading to formulas (6.2.44), (6.2.45), does not give a correct answer. In these

cases the tracking meter should be considered a nonlinear system. Such a consid-

eration will be given in § 6.3.

6.2.5. Case of a Set of Rapid and Very Slow Fluctuations

Besides rapid fluctuations in the input signal there may exist disturbances,

varying considerably more slowly than the measured parameter. We consider, for

ixstance, very slow fad:.ngs of the signal, in which its amplitude and phase for

very considerable time intervals can be considered constant, or stable interfering

reflection. In these cases it is useful to write the input signal in the form

y(t, X(t), v(t)), where X(t) - tracked variable, and v(t) - random, slowly varying

parameter (or parameters) of the signal, which, in principle, there is no necessity

to measure. We naturally introduce here the same characteristics of a discriminator

as for the case of rapid fluctuations, but we consider them to additionally depend

on vkt). The equivalent of output voltage -f the discriminator is presented in the

form

z.e =a(s, v) + VS(.) (), (6.2.47,

where 9(e, v), S(e, v), as before, are the discrimination and fluctuation character-

istics.

Relative white noise C(t) here is formed only by rapid fluctuations, as dis-

tinguisied from (6.2.6). For a low level of noises instead of (6.2.47) it is

sufficient to use relationship

• . Mt =Kx Mv) I! +f V••• (1). (6.2.48)

The basic performance characteristic of tracking- mean square error-

is found just as in Paragraph 6.2.3. In particular, in the absence of rapid
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A
parametric fluctuations in the stationary case we have R formula, analogous to

(6.2.20'):

where 2. j I++K-(v)H IN (1*) (6.2.49)
whe re

i~OR M So. Mv.v/ KA(v);
.• V)_ICKa(w)H(ie) 1' -

2MI ~'~~I+KA W~ Hf Q(0Lw) .
A

According to (6.2.49), on v there depend both dynamic error (through the gain

factor in the loop), and also fluctuation error (through equivalent spectral density

S 9xv) and effective band width Af ad(v)).

In formula (6.2.49) we average the ensembles of rapid fluctuations and of

parameter X(t). It is possible to use this formula when we are interested in the

process of measurement at time intervals, in which random parameter v(t) does not

noticeably change. In another case it is useful to average a with respect to v:

%,V 2Sgv)j*v) (6,2 50 )

As a simple example we shall consider the case when slow fluctuations are

expressed only in stationary amplitude modulation of the amplification factor of the

discriminator, and S does not change in time. In other words, there occur slow

parametric fluctuations.

Introducing amplification factor P averaged with respect to v,

where ý(t) - slowly varying stationary random function, we have fluctuation error

oz~ ~ ~ ~~W 0=.. +0• 1 I H (144) Q (..)

A• R I + ,, (I + H) (Ios)

a , -n 10 (is)-- G (is) t +0' (1.) 1' Idon

Here there are introduced the averaged equivalent spectral density 9,,"

=So/' P the frequency response of the closed loop

J+•8 AH ) )

-22-
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and effective bandwidth ee jI (im) Isdo.

In relationship (6.2.51) we perform expansion with reBpect to a, al there is

given the desination ap - I for variance of the parametric input, and by

k we denote the numerical coefficient

I" U (to) 1'1If Q*,)l' - 261 (ia)j dco

S=---" -( Cc(6.2.52)

As we proved, the presence of very slow fluctuations does not lead to noticeable

change of our approach to analysis of meters; it is only necessary to cons der that

S. differs for rapid and slow fadings of the signal.

6.2.6. General Case

The most general case one should consider that in which, besides rapid inter-

ferences in the signal, there exist random variables with a rate of change, com-

parible with Paragraph 6.2.5, so that

, ~~z. (t) = a (s. V 4t)-- V9' (a. V (01 I). (6.2.53)

However, v(t) varies in characteristics of relationship (6.2.53) too fast, so

that it is possible not to take this into account during determination of pulse

response of the closed loop and of measurement error. Instead of (6.2.14), in this

case we have equation

S... .(t, ,t)16 (sc) dv,,

where K, 0 - the amplification factor and tne spectral density averaged for v:

s(t) - S(v(t))/g 0 - normalized random functions, characterizing change of ampliflct-

tion factor and spectral density in accordance with change of v(t); and ý(t), as

before, is white noise of unit spectral density.

If we look for fluctuation error in the form

,-23-



assuming for simplicity that &(t) - 0, for pulse response of a closed loop, g(t, 'I),

randomly depending on the input signal through v(t), we can obtain equation

S(6.2,54)

similar to (6.2.15), where h(t, T) -- pulse response of the smoothing circuits..

If we solve this equation for g(t, T), fluctuation error will be expressed

superficially by the known formula

and for a steady-state regime for stationary s(t) and ý(t), after averaging with

respect to v, we have

(6.2.56)

However, in common form (6.2.54) can not be solved, and it is necessary to

limit oneself to consideration of the case of a small coefficient of modulation of

th- gain fa.•tor of the discriminator (i 2 (t) << i) and constant smoothing

circuits. Seeking our solution in the form

S#(t.RV ,)=Ae. ( -g) Vs (%)+g, (t -t. )V's W+-

where go has the zero, g, the first, and g the second order of smallness, for the

zero approximation we obtain equation

M*(t + h (Y )g (x) dx- Kjo A (t),

whence e

Further, for the first approximation we have equation

goI %) +kA Y - X) (X, g) dx=~

which gives as a resul~t
which- ,g- o (Y -- 0C -+ t)u (x + dX .

Analogously for the second approximation we ol'taiin

-24- •
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Finally, the solution of (6.2.54) has the form

-. ) e0, -C)=

X ) ,(6.2-58)

From this, by (6.2.56), limiting ourselves to terms of the second order of

smalir:'ss and considering that T = 0, for variance of the mean fluctuation error

we have

a#J

g,,(.--e g 'o,,)g ( ). (y)+M(,y)dd

+ 2 x) a (x V go (y)M (X, )lds, (.-9
ýdx jd go (sdgdy+ I

where vie considered that T7 = i, and

M(x, y)=s() (t+x) +Y(). (6.2.60)

As can be seen from (6.2.59), only the first, the basic component of variance

of mean fluctuation error can be rewritten in familiar form 2)Af , where in the

definition of A there enters average amplification factor. Other components have

more complicated form and are expressed through the pulse resoonse of the zero

approximation go(t) and the estimator M(x, y) of random functions s(t) and e(t).

In the particular case when the modulation of spectral densiry and of the gain iact'r..

of the discriminator due to slow interferences do not depend on one another addit!imnal

comp-ierits in a# are expressed through spectral density ý1, (cu) of parametric

influence P.(t), inasmuch as then N(x, y) J •(x)T(y). This leads to relationship

+* +~ Co.
A÷o + S S

-40 -W

X I G Q -) I ' I I ( -, -- ,) I' + 2 G ( w . ,) ( w . - l ) ,d , dd6 .2.. }

In the two extreme cases of very rapid and very slow parametric fluctuations

from (6.2.61) we have
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gut (wj

where k- numerical coefficient, given in (6.2.52). Formula (6.2.62) is alread>

known from Paragraph 6.2.4, which is obvious upon comparison of iG with (6.2.44). A

In its derivation we again used the fact that g(o) = 0. Formula (6.2.63) coincies

with formula (6.2.51), derived earlier in Paragraph 6.2.5.

This investigation shows in what sense one should understand in every case th.

equivalent spectral density, how characteristics of the discriminator are introductt;i,

and how by them we calculate errors of measurement. The given relationship!s iiC

valid for tracking meters of any parameter of modulation of a radar signal and can

serve, thereby, as a basis for analysis of accuracy of tracking radar meters.

§ 6.3. questions of Breakoff of Tracking

We analyzed tracking meters for the influence on them of small noises and

interferences, when errors of measurement are small, and the linear approximation

introduced in the preceding section is valid for characterization of the discrimi-

nator. However, for large noises and interferences, error of measurement becomes

comparable with the width of the linear section of the discrimination characteristic

or even exceeds it. This, first, leads to insufficiency of linear approximation

during calculation of accuracy both due 1-' nonlinearity of the discrimination,
so also due to the complicated form of the fluctuation characteristics. Secondly,

here probability of breakoff of tracking sharply increases, where mismatch exceeds

the width of the discrim'na tion curve, and the useful signal, in general, ceases to

act on the discriminator.
Invwstigation of nonlinear phenomena in tracking meters, occurring with inttnse;

interferences, is the subject of the present paoragraph. It turns out that a

suitable mathematical device for analysis in this case are diffusion and related

differcntial equations, obtained during the study of Markovian rand(mri: processes.

Therefore, to facilitate understanding of the conducted analysis we give in

Paragraph 6.3.1 certain information from the theory of Markovian processes and

differential equations, describing their statistical properties.

6.3.i. Markovian Random Processes and Related Differential Equations

The device of Markovian processes has a wide range of applications and recently

has been, widely used in theoretical radio engineering [20], being the best means

-26-

" • -•- -=-:" :• •':- - -¾• - . " '-:-' -"....:••- -=- .a.- -T __, " 7
T-W I7• -•:•.. . r.....-F-- T-, h:,..-..-=, r-nJW-2 - =•2 4 -•_'



of investigation of properties of nonl !," rn.ients of radio channels, fluctuations

in vacuum-tube oscillators, and so forth. -"- call Markovian a random process y(t),

for which conditional probability density P(ynlYni, ,.., yi) satisfies relationship

*@ I .-.. ,V,)- P@y. lg.-,) (y, = =(t,)), (6.3.1)

i.... depends functionally only on the value of the process at one preceding moment

of Lime. Conditional probability density P(ynlyni) =- W(ynlyn_1 ) we call prob-

ability density of transition from state Yni at time t to state y at time tn.

It iE of basic value in the theory of Markovian processes, since by it we express n-

dimensional probability densities: 4

O5CI

where P,(x) - one-dimensional distribution.

In the general theory it is proved (201 that for sufficiently broad conditions

function W(yly 0 ) obeys two partial differential equations (Fokker-Planck-Kolmogorov

equitions). If differentiation is performed with respect to finite values of y, t,

the equation is called direct and is recorded in the form
.4

• --- -- }+.,., {Bw}, 4}w ), (6.3.3)

if however, W is differentiated with respect to initial values of y0, to, the

equation is called reverse and has the form

•---(y*, t \@--~ykL, dir

A ( , is) --y-- -2 (6.3.4)

Functions A(y, t) and B(y, t) we call coefficients of drift and diffusion,

. respectively.

The method of finding these coefficLents follows from another theoretical

proposition of [20]. Let us assume that function y(t) obeys ordinary differential.

equation

where f(y, t), g(y, t) - functions of a broad class;

ý(t) - fluctuating influence with a wide spectrum, which it is
possible to approximate by white noise with unit spectral
density [the correlation function is equal to

KJ,• -27-



Then y(t) is a Markovian process, the probability density of transition of

which obeys equations (6.3.3) and (6.3.4) with coefficients

A t) f-(y, t), B(y, t) -- '( , 1). (6.3.6)

Deeper mathematical consideration shows the presence in the coefficient of drif"t of

an additional component g(y, t) 1Y 20]. However, proceeding from the

physical meaning of the processes occurring in meters, which we will be intereWted

in below, this component should not be considered. The explatoauLon of this was

the circumstance, already noted in § 6.2, that the discriniiriatcr has inertia or

delay, not smaller than the interval of correlation of that fluct.uating volta.;-c au

its output, which is approximated by white noise. As a result there does not occur

I an instantaneous return in the feedback circuit of fluctuating disturbances, which

could correlate with fluctuations in the discriminator and thereby change the

coefficient of drift.

It remains to explain how to pass to a differential equation of uype (6.3.5)

from the equation obtained during the analysis of certain meters, of form

--Cy , (6.3.7)

where the time of correlation of the random component in ý(y, t) is small as

compared to the effective time constant of the system. As shown [20], for this one

should take as f(y, t) and g(y, t) functJ )ns

(6.3-8)

Equation (6.3.5) corresponds to transmission of white noise through an ire-rl.ia '

link of the first order, nonlinear and with variable gain. Subsequently we will

prove that namely (6.3.5) and related equations can be used for investigation of

nonli. ear phenomena in tracking meters of very simple form.

If the dynamic system, under the influence of fluctuations, has a more compli-

cated form, it is not possible to describe it by the Markovian process of the ist

order, which was considered above. Here it is convpnifrt tc use the idea of a

Markovian process of the n-th order. Let us introduce vector random process

tyi(t), ... , Yn(t)) = y(t), components of which are scalar random processes yi(t).

Let us assume that y(t) obeys system of equations
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where •(y, t) -- vector function.

Then, if times of correlation of random components in C(y, t) are small as

compared to the time scale of the system as a whole, the probability density of

transition W(y, tlyo, to) of process y(t) from value y. at time t0 to y at time t

obeys equation

In ,(6 . 3 .9 )

where

At,(y, t)--"T,(y, t);
Bdj (y, ")

As components yi(t) we can with equal success take different interconnected

random processes, a random process and its derivatives to the (n-i)-th order

inclusively, or the value of one and the same random process y(t) at different
moments of time

where T., .. Tn - constants.

If we determine yi(t) by the last me hod, the probability density of transitix i

: ~ ~~~17 (y, 1 .* ,)-=•/:
..... -,. , + v , Vo.. , f+ %

can be found by solution of equation (6.3.9). This means that the conditional

probability density of values of the process at a certain n moments of time (and,

consequently, of any one value of y(t) at one moment t) depends functionally on

values of the process in n preceding moments of time. Such process is called anl

n-th order Markovian. Nonlinear phenomena in tracking meters, described by n-th J

* order equations, lead to the necessity of investigating these processes and,

correspondingly, to solution of equations of form (6.3.9). Considering, however,

that such equations for n > i usually cannot be solved, let us turn to a mcre
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detailed study of one-dimensional equations.

Solution of (6.3.3) reveals the evolution in time of the probability density

of transition, which for an initial condition in the form of a 6-function simply

repeats one-dimensional probability density.

In certain conditions [20] (primarily for independence of A(y) and B(y) t'ro•i-

time) there is finally established stationary distribution, which it is possible to

express through coefficients A(y) and %(y), equating NW/ýt in (6.3.3) to zero:

where C - normalizing constant, and integral is taken as indefinite.

No less frequent, however, are cases when a stationary distribution

does riot exist or we are interested in the actual process of becoming stationary.

Then, it is necessary to solve the complete equation (6.3.3), which is generally

a very complicated mathematical problem. Here, it is usually necessary to be

given so-called boundary conditions. .

If, after the first time y(t) exceeds a certain magnitude y, further realizatior

o1f y(t) does not, interest us, by analogy with the process of diffusion, .,e talk

about the presence at point y, of an "absorbing screen.' With the help of c:alAhe-

matical condItion

W (Y,, t)-- 0( -3 11

realizations of y(t), even once touching the screen before mom".nt t, are auto.nati-

cally ejected from consideration after this moment of time.

If, after arriving at point yl, any realization of y(t) immediately tur:-.s

back, we talk of the presenct of a "reflecting scrs. ..a." The mathematical co,.dition

of reflection is equality

SSolving equation (t.3.3) under these conditions, we can find how W(y, t)

changes in time. Howevw- we are not always interested in the complete structure of

probability density. Sometimes it is convEinlent to limit ourselves to cruder charac-

teristics, as which we can consider in the first place variance of fluctuation error,

during calculation of which, in distinction from the case of § 6.2, we must allow

forx nonlinear factors. In principle it is not difficult, for instance, to determine

the variance of stationary distribution (6.3.10), if it exists.
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We may be interested also in probability characteristics of another type,

4 for instance average time of stay of a realization of y(t) in % given region on the

condition of a certain concrete initial value yo - .y(t.). For average time of

stay of T(yo) as a function of the initial condition from equation (6.3.4) we can

obtain aifferential equation

A + i- (6.3.a3)

for which on boundaries of the region we have conditions

T.rj,=o, Tr 3)O.(6,3.±'+)

The physical meaning of these conditions is that a realization located next

to the "absorbing" screen due to the purely random character of disturbing factors

will immediately intersect it, and this is equivalent to a zero average time of

stay.

6.3.2. Formulation of the Problem About BTeakoff of Tracking

Above we already indicated that interference of high intensity makes linear 4
approximation for the discrimination characteristic invalid. Mismatch frequently

goes into the nonlinear region and can attain such magnitudes, at which the useful

signal no longer affects the discriminator. Here, there occurs breakoff of track-

ing. The shown nonlinearity of the discriminator characteristic is not some

imperfection, inherent in certain concrete circuits. Further, we shall show that

characteristics of optimum discriminators have similar form. This circumstance

increases the importance of investigations of nonlinear regimes of meters and, in

particular, questions of breakoff of tracking.

With a nonlinear characteristic of the discriminator the process representing A

the result of measurement in a number nf conditions has variance growing In time.

The fact is that the probability of departure from the linear section is always

different from zero, so that during prolonged measurement shcrt duration failure

certainly sets in. Here, the meter practically becomes an open storage unit ,)f

noises, and mismatch e(t) experiences random changes, in no way connected with the

parameter of the useful signal, The circumstance that in a certain time interval

realization of s(t) can be similar to realization of the process in a linear system

does not change the essence of the matter, since we are interested in the whole set

of realizations, including those, in which nonlinear properties of the system have
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alrrady appeared. Since with passage of time the probability of failure increases,

it is clear that variance of process e(t) increases. It is however, not the only

possible crude characteristic. It is possible to apply other forms of prcbatilicy

characteristics, where their reasonable selectlt:mr depends on the type ano e;nthtod

of use of the meter.

Before considering such characteristics in reference to the phenomenon of

brealoff of tracking, we will make the following remarks. From what has been

presented it follows that with observance of certain conditions nonlinear pnenomeria
in meters, including the phenomenon of breakoff of tracking, can be studied by

solution of diffusion equations (and equations connected *,irth them). As a reso..r t

there are found various estimators of failure. Use of oiffusion equations is based

in this case on the practical inertialess nature .of the discriminator as compared

* to the smoothing circuits, since only upon observance of this condition and during

application of smoothing circuits of the first order for m1smatch is there obtained

an equation of fk-rm (6.0.5), where ý(t) is white noise.

In the case of a. low level of notsps or interferences the formulated condition

is not satisfied sufficiently well in all eases. However, with growth of inter-

ference, not depending on the measured parameter (internal noises, interferences,

etc.), the scale of the discrimination characteristics a(c.) greatly decreases, and

the transmission factor of the discriminator K = drops. Here, the inertia

of the closed loop grows. Such a depei Jence on examples will be explained in sub-

sequent chapters. From the point of view of' questions of failure most interesting,

namely, is a high level of interfcrencez. Thus, conditions of applicability of

diffusion equations are obviously satisfied where, in view of nonlinearity of the

problem, it is most expedient to use this mathematical device.

Let us turn to estimators, which are best found from solution of diffusion

equations for problems of failure. Let us assume, first of all that the meter is

1hc only means of signal selection and tracking, there are no automatic: means to

shift to search upon disruption of tracking, and the final effect of work of the

radar depends on the presence of tracking at every given moment of time. Then, if

there are no limitations on output values of' the measured variable, naturally as

* the characteristic of failure we take the probability density of mismatch, which,

as a function of' time, should be found from the solution of the diffusion equation

without boundary conditions.
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More frequently, however, in smoothing and control circuits there exist

limiters of various types. Here, the ýhenomenon of breakoff of tracking leads to

the following. In the process of tracking at a certain moment of time under the

influence of some large fluctuating overshoot mismatch becomes larger than the

widui of the discrimination curve and tracking is disrupted. Then, for a certain

random interval of time mismatch randomly varies under the influence of interference

alone. Here, however, it remains finite due to the limitation, and therefore,

under the influence of fluctuating overshoots of reverse sign it sooner or later

decreases to a magnitude in which tracking again is renewed. This process is

repeated again, and upon the expiration of a certain time establishments of ýt can

be considered stationary. Therefore, if moments of measurement of the tracked

variable are sufficiently removed from the beginning utf tracking (observation time

is great), and if we are interested in accuracy of measurement with breakoff of

tracking, then as the characteristic we should take variance of measurement as t

_P-'m. It can be found proceeding from stationary distribution (6.3.i0) with ideali-

zation of the phenomenon of limitation in the form of a "reflecting screen"

[boundary conditions are taken in form (6.3.12)]. As shown below, with growth of

intensity of interference this stationary variance grows, a6nd there *occurs a

threshold effect, corresponding to sharp increase of errors due to short duration

failures when interference exceeds a certain critical level.

If the time of observation of the output quantity of the meter is small, the

described approach to investigation of breakoff phenomena is unacceptable.

Here characteristics of the first failure after beginning of tracking take on special

interest, especially if we consider that short duration failure of a meter of one

parameter of a signal usually also leads to vanishing of the signal in meters of

its other parameters. In order to characterize the first short duration failure,
we take the following definition. By short duration failure at time t we under-

stand exceeding by the magnitude of mismatch e(t) = X(t) - X(t) between the true

and measured values of the parameter of certain fixed levels (-I, +A) under ne

condition that at the initial moment mismatch was sufficiently small [within

limits (-A, +6)] and up to moment t was always in this interval. With smoothing

circuits of the first order this leads to a boundary value problem for W(t, e)

in the form (6.3.3), where on the boundaries we are given conditions of absorbing

screens.
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Screens are considered located on boundaries of the discriminat-or range,

iniediately behind "slopes" of the discrimination characteristic (Fig. 6.-)). Thesc

boundaries are determined by

the bandwidth of filLers ii. t,.

*frequency disc riminators, du.l-toj,.p

of gate pulses it time disc vimiina-

tore, the withn of the radiut ion

pat'tern In angu,ýLar dIscrim,ýinato-rs,
etc, It is nece.ssary to note I
that in selection of coc.rdinare-

of screens there exists a certain

arbitrariness. No matter how we
Fig. 6.5. Discrimination characteristic and
its approximations: 1) true rýelatlonship; 2) choose these coordinates, reali-
sinusc'idal approximation; 3) linear approxi- zations of mismatch are probable

which after intersecting the

screen almost immediately intersect it in the opposite direction, and there will

be essentially no failure. It is clear that such phenomena are not considered

during application of the above definition of failure. Therefore, the described

approach to analysis of failure phenomena leads only to approximate solutions,

allowing us, however, to find certain laws governing performance.

By direct solution of diffusion equation (6.3.3) with boundary conditions

(6.3.il) we can find the probability density of mismatch by which it is easy to

calculate the probability of absence of failure up to moment t. It is more expedient,
however, to use a simplified characteristic of fail~ure -- average time to failure

Tc6. This parameter is the solution of equation (6.3.13), ensuing from the

diffusion equation. Average time "o failure decreases with growth of intensiuy o0

interference. Just as for variance of stationary distribution, here there exists

a thre•shold effect, expressed in the fact that with decrease of intensity of inter-

ference and related variance of error of' a linearized system for certain values of

these magnitudes there starts a sharp growca of average time to failure. This gives

us the possibility of finding the cutoff value of intensities of interferences, at

which there nrni.s short duration failure (in the above-indicated sense).

Direct solutions of diffusion equations for the problems interesting us in

conditions of' a high level of interferences are given in [2i, 22, 23, 241.
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Considering, however, the expediency of application for analysis of failure of

criteria of stationary variance and average time to failure, we shall give a solution

of two other problems, noted above. Here, we shall consider general laws; appli-

cations of the obtained solutions will be given in subsequent chapters devoted to

investigation of meters of concrete parameters of radar signals.

6.3.3. Stationary Distribution w"..th Limitations

Let us consider a tracking meter cf the type in Fig. 6.1. Output voltage of the

discriminator in the case of the presence of rapid fluctuations alone, according

to § 6.2, can be recorded in the form

2 (t, a) = a (i) +JY (t), (6.3.-5)

where a(.), S(E) - discrimination and fluctuation characteristics, respectively;

e(t) - white noise of unit spectral density.

Analysis of phenomena interesting us can ultimately be reduced to the case of 4

smoothing circuits in the form of a single integrator, where A
d )- A) (6.3.16 ) ,

Considering that X - F - s, from relationships (6.3.15) and (6.3.16) we find the
differential equation, describing the meter as a whole:

-= x a -K / (6.3.17)

where = dX/dt - rate of change of the measured variable.

We assume that • const and introduce equivalent discrimirnation a.(s) and

fluctuation S.(s) caiaracteristics according to equalities

Then (6.3.17) is rewritten in the form

-- =K,(K, [8v -a,, (a)] K.AKV Saju(s)I (), (6. 3.1?)

where V= X/KK- magnitude of dynamic error: in a linearized system (see § 6.2).
V A

*, According co results of Paragiaph 6.3.1 the correspo'-ding diffusion equation

will be recorded in the form

----- -- IKK, (#V -- ". (6)) WI +

..+ • .1 [Si,, (a) WI. (6.3.20)
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Consequently, the coefficient of dv'ift in tracking meters is determined by the

discrimination, and the coefficient c ' '-,usion, UY the fluctuation character-

isties.
The stationary solution, if it exists, is determined by relationship ((i.3.1,

In the presence of limitations at point. 11, 2 it Thould be normalized in :ri.s

range, so that

(Y < < I.),

as exp aslo 1a o o 2

C " [-K 2 CaO_(--vd. d.6[ (-)exp U(KA J S,., 3 (,n) ]

Being limited to the case of a constant fluctuation characteristic (S,,(E)
= •, which is a good approximation during large noises, instead of (6.3.21),
we have

____-- d'},W.,.i (8)=C. exp 2 51 •a,,.(,() I]d

___ -- ljasxv(s)-#Vd do1CSAexp-(6.3.22)

f} •' '-!exp 1.--L [a.m. (4)--IV] de} d,,C2-

where

% 2SSoxl&"9 So,,. A

- variance of fluctuating error of' measuremen;, in a linearized system.

Further concretization of' the Gululion requires assigniment of an approximation

for aM(e). Let us assume that

where as bef,..rc. A - half-width of the selected range.

Then*

*These rt.sults were obtained by I. P. Ze.Prilkcv.
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11 XP ut+ cotw) Is1h
Sn --I+ el, J(u)

we0 -,,I , (6.3.23)

where n4= ; - , . dimensionless quantity, proportional

to the square of the ratio of the width of the selected range to mean square errsor

in a linearized system.

For variance, a of error, considering the phenomenon of breakoff and restora-

tion, we obtain from (6.3.23) the general expression

s A' (i ,T

en n,(+euf.(u) (-1)+

In particular, for very large noises, when u < i and the probability of break-

off is great,

, n'- -, + e I. (u)[) _ I
i n- I +eCl. (U) (6.3.25)

According to (6.3.25) when u << 1, 0 2 ' i.e., variance corresponds to
V 3 i

uniform distribution of e in segment (-4, 1).

In the reverse case, when u > I (probability of breakoff is small),

I._• • .' I) I'" " "
T (n61).'g. - o

+ V''(n--54)9e-',-

When u >> i, from (6.3.26) it follows that

i.e., breakoff practically does not occur, end the linear approximation in analysis

is fully sufficient. Ratio a /A, at which there occurs increase of the probabil-

ity of breakoff, can be easily dctcrmined by the graph of F1.g, 6.6, where there is

plotted ratio a/1 as a function of a /, b. The phenomenon of breakoff occurs

approximately at on /A - 0.08 to 0.12, Here aH/6 starts to increase sharply

and is rapidly stabilized around lc-/el, determined by the limitation. Inasmuch as
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ratio a a,/A, at which the probability

of breaI~off sharply increases, depends

4Wlittle on n, it is possible tc. stste*at

breakoff ia a threshold phenomeri'i,~ iL

ing when o a /A exceeds a certain, cuui~ff

9I value, when fluctuation error cornpris3ez

about 0.1 the nafwchof t 1  ~IW-

range.

Siicc wlli 3uch a stationary disjtri-

* cutoff, there is implied a very lar-c

observation time, estimation of this

cutoff value by the above method will be

somewhat understated, which we shall

prove in the following paragraph. A

/ factor, actin~g irn the oppositc direction,

/ is thc presence of dynamic error, which

/we ignored in the concsidered example. A

Increased probability of breakoff here is

41 (-explained by reduction of the distance

¶ t) the edge of the discrimination character-

istic~, where restoring action of the

difscriminator ceases,

0.3.4. Average~ Time to
*1 Breakoif

Le t us consider now the ricnstait~i"_ xyi~
Fig. 6.6. Deperidence of variance of
sta~tionary distribut ion on variance phenomenon of breakoff, defined ake

in lf~ur aproxmatonemergence of the magnitude oA misrna.ch

beyond the limits of a ccertain segment (-A, A), where A - half'-width o1f the rang~e

of selection (see Fig. 6.5). According fo ."aragr'aphs 6.3.I. and 6.3.3 average time

to breakoff is determined by equation

(KmK 4;) drs 1 =O
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solving which, again on the assumption of zero dynamic error and constant fluctuation
I-

characteristic, for a 0 we have

To 0=. s (E)d-cldz.
T, .4U' d~xf*a. (6.3.27)

To obtain a solution for an arbitrary magnitude a is difficult here. There-

fore, we primarily investigate the range of intense noises, when it is possible to

expand the exponential function under the integral sign in powers of the exponent,

being limited to a small number of terms. Again given a sinusoidal approximation

of the discrimination characteristic, we have asymptotic series

(6.3.28)

convenient, however, only for comparatively large values of a n /A.

Graphic presentation of Af Tc6 as a function of a /n in logarithmic

and linear scales is given in Fig. 6.7. The linear scale helps us to understand

the threshold effect of failure, in this case expressed in the fact that average

time to failure sharply decreases (from a quantity of the order of ±000 to a

quantity of order of units), when a 0 /A > 0.1, The logarithmic scale permits us

to definitize the concrete value of T * However, for small a IL fornula I*
(6.3.28) gives a somewhat lowered valua of T 0 6 " More exact calculation, conducted I ,

by B. L. Karelov, showed that the threshold value of u X /A is approximately 0.2.

In other words, threshold values, determined in terms of average tirae to breakoff

and in terms of stationary variance, differ (approximately by a factor of 2).

This is understandable, since with stationary variance there is implied a very

large observation time, during which breakoff certainly occurs. Average time to

breakoff is determined by realizations of mismatch, for which breakoff occurs for

the first tine,

Due to the approximate nature of analysis such a difference between results of

two calculations should be considered immaterial, and, therefore, it is possible

to use either of them during practical analysis. If smoothing circuits have a

more complicated form, then, J.n general, critical ratio a • /A chnges, but the

obtained results can serve for, approximate calculations even in these cases.
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Fig. 6.7. Deperndence of average time to
failure on variance in linear approximation.

From analysis of tracking meters of concrete forms on the assumption of their

linearity we can find a for differenL forms of interferences. The value of the

critical magnitude of ratio a a /A gives, thereby, a possibility of findinL; 1.,i

intensity of interferences, leading to failure of these meters.
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§ 6.4. General Analysis of Nontracking Meters

Besides the meters considered above, built on the principle of a servo system,

in practice they also use nontracking measuring circuits. An example is a range j
finder with frequency modulation, in which the received signal is mixed directly

with the radiated signal, and the measure of range is the number of zeroes of the

resulting voltage [i]. Then there are Doppler speed meters built on the same prin-

ciple of counting zeroes [2], angular data meters using two (or several) motionless

radiation patterns of antennas for direct reading of the angle, multifilter systems

and systems of gated amplifiers for measurement of range and speed, and so forth.J

For all such circuits it is possible to establish certain general properties of the

method of measurement and to derive rules for determining accuracy.

6.4.1. Basic Features of Circuit Construction
and Components of Measurement Errors

In general the considered meters, as also tracking meters, are divided into two

parts (Fig. 6.8) - an inertialess unit for producing a signal, on the average pro-

portional to the measured quantity (conditionally we call it the estimator unit),

and open smoothing circuits. In practice it is rarely possible to immediately obtain

voltage which is on the average pro-

--------- 1portional to the measured parameter
X(t). Thus, determination of angle

by signals from two antennas with

Fig. 6.8. General schematic of a nontrack- fixed patterns gives a nonlinear,
ing meter: I - the main part of the esti- and in a large interval even a mono-
mator unit; 2 - inertialess converter; 3 -
smoothing circuits. tonic, dependence of the meaen value of

output voltage of the coordinate; the average of zeroes in an FM range finder with

time lags, comparable to the period of frequency modulation, is not proportional

the range, etc. Therefore, processing of signals in the discriminator can often be

divided into two stages.

In the first stage (unit I in Fig. 6.8) there will be formed a low-fre"-ency

voltage with a mean value, wnich is related to X by a monotonic (riot necessarily

linear) dependence in necessary limits of valves of the parameter:

where a(X, t) - mean value, for which -- X >

~T I ~a. ~ -- 41-



S(t) - fluctuating disturbance,

The second stage (unit 2 in Fig. 6.8) may consist of a certain inertialess non-

linear operation,

which has as its purpose obtaining of a magnitude, on the average as close as possible

to X. Smoothing circuits 3 in nontracking meters are usually linear and play, in

principle, the same role as in tracking meters, but are constructed by an cpm-

circuit so that their inertia directly determines the interval of smoothing.

In nontracking meters there are observed in general the seaie 2omporerite of" e.1rr:ors

of measurement as in tracking meters: fluctuating, dynamic, systematic.

In view of the absence of a closed loop systematic errors in the considered cir-

cuits, appearing both due to insufficiently correct selection of nonlinear operaor

B ( 3 in (6.4.2), and also due to incorrect selection of gain in any element of the

meter, are ncA compensated during work of the meter. Appearance of such errors are

an essential pra.ctical deficiency of the considered circuits. The dependence of

these errors on selection of operator B ( It will be studied below.

For nontracking meters it would have been possible to investigate the same set

of questions appearing during investigation of ac.curacy as in tracking circutts.

We will discuss below only the case when all fluctuating disturbances at the input

are rapid as compared to the time of sotning the meter.

6.4.2. Erro.rs cP Measurement D'iring Rapid Fluctuations

In the shown conditions for z 1 (t, X) notation, analogous to (6.2.6), is valid,
za,(t, )a(,t)-+ S (1, C (1), (.4

where a(x,, t) - mean value; (

"•,(. t) - spectral density at low frequencies;

- white noise of unit spectral den3ity.

Functions a(X, t) and S(X, t) are obtained by averaging the whole ensemble of

input fluctua..ions for a fixed value of X. '•he oovious time-dependence of these

functions is determined by regular changes of propertiec of the ensemble of fluctua-

tions. Subsequently we shall consider a(X, t) and S(X, t) not time-dependent. Then

we can write relationship (6.4.2), taking into account (6.4.3), in the form



where B-( ) -nonlinear inertialess operator, the inverse of B ( );

k - proportionality factor.

Such coefficients are frequently encountered in the theory and practice of meters,

inasmuch as measured quantities have the physical nature of distance, speed, angles,

and the carriers of these quantities in circuits are voltages. After expansion of

function B ) in (6.4.4) at point B-: (kX)i with preservation of only two members of

the expansion, we have

(2, X) B {B-' (kz) + (B -(kA)} (a () - -' (kU)) --
+ fB I(B (k24) S-g;)C (t) =

a .,(1_) - B-1(A (6.4.5)
+ -( k k) + d -1( k %). ' -,(U ) ,

where we use the formula for the derivative of an inverse function. If we translate

z2(t, X) into equivalent values of the measured variable, we obtain

=,(t,• ~ :.(k) - B-, (kk) V•q

"" k 0()- ) (6.4.5,)

The first term in (6.4.5') is the true value of the measured variable, the second

is systematic error of a nontracking discriminator, and the third is fluctuating dis-

turbance with intensity which depends on the current value of X. We note that zero

systematic error can be obtained only for a(X) = B- (kX), i.e., when operator B'

with an accuracy of a constant factor will convert a(X) into the true value of the

parameter. Then, instead of (6.4.3') we have

I ) y).(6.14.6)

However, such a relationship is difficult to achieve, irasmuch as the function a(X)

in general is nonlinear and depends on the signal-to-noise ratio, and compensation

of one nonlinearity by another is technically difficult to perform. Furthermore,

as already indicated, error in the gain factor is in no way compensated in the circuit

(if we do not take e•pcial measures, for instance, introduction of a periodically
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fed control signal). Characteristics of the estimator unit are considered by us.

In view of linearity and openness of smoothing circuits further calculation

of separate components of errors can be conducted independently. If, for instance,

we are to determine fluctuation error in the circuit where there exists rela:Icnship

(6.4.6), then for smoothing circuits with constant pa.rameters, the frequency response

of which* is equal to G(ic) 'pulse response g(t)], it is easy to obtpin

2'(0)So,,. (A,..

where Af -- effective band, which is detennined by relationship

and

- equivalent spectral density of noises, depending on

From (6.4.8) it follows that S3(B(X) sharply increases in flat sections of the

"discrimination characteristic" a(X), where da-0. This phenomenon is explained

by the fact that a small fluctuAating disturbance is received here as a considerable

deviation of the measured variable.

If the method of processing in the estimator unit in the first stage is already

selected and dependence a(%) has been found, then no circuit manipulations can sub-

sequently increase accuracy in flat sections of a(X), nor can we obtain uniqueness

of measurement for those values of a(x) where monotonic dependence of this functjotn

on X is disturbed. Inasmuch as in tracking circuits accuracy usually does not depen-

on the absolute value of the measured variable, this circumstance can be considered one

*• more deficiency of nontracking circuits.

In spite of the superficial simplicity of relationship (6.4.7), we indicate that

S2 (%) is conditional variance, calculated, strictly speaking, under the condition

that the true value of the parameter is constant and equal to X. In the case of a

variable X, comparable in rate of change to the inertia of smoothing circuits,

*We have in mind a circuit whose input is a fictitious point, where U B(t) =

z2 (t, X)/k.
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relationship (6.4.7) should be reexamined.

Other components of measurement of error - dynamic and systematic (the first 1
) • may also be caused by incorrect input of the mean value 3Tt) ), which in distinction

from errors considered in § 6.2 were omitted here, are calculated analogously to

how this was done earlier in § 5.2. J
S§ 6.5. Selection of the Method of Synthesis of Radar Meters, Theory

o? Solutions in Problems of Measurement

-Before passing directly to synthesis of radar meters, it is necessary in brief
A

to discuss different possible approaches to this problem. Below we discuss a series

of nonstatistical and statistical methods for the purpose of finding such method of

synthesis which would not simply correspond in meaning to the problem, but would be A7

the most theoretically consistent. The desire to be freed to the greatest extent

from preconceived ideas of construction of meters and to obtain their complete circuit i ýi

analytically is natural. Such a preconceived idea, for instance, is the principle

of feedback. If it indeed permits us to obtain highest performance in a number of
conditions, then this should follow from theory, and not be postulated a priori.

6..5.i. Different NonstatIstical and Statistical Criteria for Synthesis

One of the most elementary nonstatistlcal criteria is simplicity of the circuit

solution of one or another radio device, its cost, power consumption, and so forth.

A related statistical criterion is reliability, determined by the probability of mal-

function of the meter in a certain assigned time. It is natural that such crit-•ria

always have to be considered in the creation of meters; however, by themselves, at

the present stage of development of theory they cannot come near the problem of

initial selection of the circuit of a device. Moreover, the tendency of contemporary

technical development consists in constant increase of complexity of devices for

execution of ever more complicated problems, sometimes sacrificing realiability,

costs, power consumption, and so forth, Thus, these very simple criteria evidentl-

are not satisfactory, in any case in the first stage of synthesis.

It is absolutely clear that the criterion of synthesis should be intimately

connected with the basic quality of the meter - accuracy of measurement. Al. first

glance the matter is factlitated by the fact that there exists a large ad,-acent

branch of science - -the theory of uuiitiol. Here thcrc has been obtained a mass of

results using different, mostly nonstatistical criteria (stabilitk, invariance

with respect to different disturbances, minimization of time of flow of the transient,

and so forth) and various methodo of mathematical solution (claosical calculus oat
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variations, method of the Pontryagin principle of a maximum, linear, nonlinsar and

dynamic programming, the theory of games, and so forth; see, for instanr.2, [3,1)4,

65]).

Insufficiency of the mentioned criteria and methods in reference to 1yr-_he-s:.-

of radar meters becomes evident, if we recall (see § 6.1) the circumstances tlwt

work of radar devices always occurs in the presence of random interferences, and

selection of the class of possible laws of change of the measured varlable a nur-

statistical variables statistically. Moreover, in general, it is impossi-bie 1t,

prove that a meter, possessing very high qualities with respect, for instance, to41-_r

stauility invariance and speed of flow of transients, simultaneously in: g,.d ,urit;

measurement of the randomly varying parameter of mixture of' the signal with noi.se.

Deficiencies of the above mentioned approaches, consisting in their nonstAtis-

tical nature, force us to turn to statistical criteria and methods.

First we shall discuss a mixed criterion widely used in the literature - the

criterion of a minimum of fluctuating and zero dynamic error for a limited set-up

time. According to this criterion we seek a minimum mean square random (fluctuating)

* error and zero (in steady-state regime) error from a definite change of measured

variable. In application to meters here we consider the circuit of discriminator

given, and we consider the object of synthesis the smoothing circuit. A deficiency

of the criterion is the inconsistency in its approach to the measured variables, of

which we already spoke above. Its re..talt is ;hat the meter, optimum according to

this criterion, sometimes does not ensure minimum total mean square error.

A strictly statistical criterion can come from information theory. Thus, in

[4, 5] it is shown that systems, ensuring minimum mean risk, s:imultaneously ensure

a minimum of uncertainty of the reproduced signal. In [6] for servo systems of'

certain assigned structure there are introduced information theory concepts, in "I''.iAI

accuracy is compared with a number of possible states of the system, and higi.. speed

opera.tion is compared with the speed of tra'ismission of informatior ýInd carrying ca-

pacity. However, final relationsnips between accuracy of measureruent and informational

properties of complex input signals and methods of their processing, which would be

useful for the problem of' measurement, have yet to be fixed, so that to apply infor-

* mation theory criteria is difficult.

Very cosmuonly used in radio practice and thr practice of servo systems are
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considerations about the signal-to-interference ratio at different points of elec-

tronic devices, The larger this ratio, the better, it is considered, the device

works. This opinion, in general, is incoriect, and in meters this criterion is also

difficult to use because it is unclear at what po.tnt of the circuit one should measure

thcc 6 ignal-to-noise ratio. If, for instance, we consider the discriminator output,

-hen, as is shown in § 6.a, it can be completely characterized by the equivalent

spectral density of noises. Although the latter depends monotonically on the signal-

to interference ratio at the circuit input, introduced specially for the given forms

of signal and interference, it carnot be expressed in terms of this ratio alone.

In a systematic statisticai'. approach to random inputs and measured quantities

most natural is the criterion of a minimum of some averaged monotonic function of

total error of measurement. Averaging is conducted for the ensemble of noises and

parameters. Such an approach in one or another form long ago was applied for flnd-

ing a certain part of the circuit of a meter.

In the first place here one should note that the extreme case, when the whole Y

circuit of the meter (discriminator, smoothing circuits and the method of LhiiJ1

closing) are considered given, with the exception of a small number of circuit param.-

eters (gain factors, time constants, and so forth), which can be selected in the

process of development to increase accuracy. This very simple method, however, gives

a small degree of confidence that we have obtained a system, close to optimum, in-

asmuch as during selection of the general idea of the construction it is necessary

to lean only on preceding experience of construction and invitation. It is possible

only to construct guesses whether a small change of the circuit will yield signifi-

canlty better results.

Further it is possible to indicate an approach, in which the general constr%'i' on

of the meter is considered the same as that described in Paragraph 6.2.1, the dis i.-

inator circuit is considered given, and only smoothing circuits are optimized. A6di-

tionally (sometimes implicitly) it is assumed that the discriminator has linear prop-

erties relative to the tracked quantity. During synthesis of smoothing cir: *4its bV

the criterion of minimum totsl error there can be applied varinus statistical criteria.

The greatest achievement of she statistical trend from works published until i-ecently

is the theory of filtrati [7], put forth in the works of Kolisogorov and Wiener.

In this theory it was assumed that from statistical evidence we know only correlation

function of the tracked quantity and interferences, and smoothing circuits were sought
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in the class of linear filters. These methods are very customary for specialist6

in the theory of automatic control; however, they, in general, pass over the p•,lei

of construction of a radio discriminator. Meanwhile, it is possible to assume that,

with respect to total error, optimization of the discriminator is no less iin';crtttrut

than optimization of smoothing filters.

Everything suggests that the best device of statistical synthesis is.i that w•hioh

minimizes total error of measurement with the least number of initial assomo.lers

about the structure of the synthesized device, desirably, witlr•iit s;ingllng. out,

priori the discriminator and smoothing circuits. As the object of optimum analyci -I

here one should consider the existing mixture oif the signs]., depending on :.he -

quantity, with interferences, We know a priori statistical evidence on the mix.ture

and measured quantity, and from considerations connected with the use of results of

measurement we select the performance criterion. With such a combination of con-

ditiLons we should be interested in the branch of mathematics which studies the

method of obtaining statistical inferences from an available sampling (realization)

cf a random process and a priori Information, Such a branch is the theory of'

"ýtatistlcal solutions - a branch of mathematical statistics. One should now turn

S to the theory of solutions.

t 6.5.2. Application of the Theory of Solutions to Problems of Measurements

In Chapter 3 we gave a summary of t• , general propositions of the theory of

solutions. Here we will repeat certain propos.itions, having a direct relationship

to problems of measurement, Let us remember that the object of optimum processing

(finding a solution) is the mixture3 of signals with noises y(t, X) at the input,

statistical evidence about which is given by the likelihood function

P (yIjMJ

where y- the whole set of observed values of the mixture.

- the set of measured variables

"When there is observed one mixture y(t) at moment.s t., t 2 ,..., tn, by y one

should understand the column vector

If here, for instance, y(t) obeys normal distribution, the likelihood function

is recorded in the form of relationship (1.3.?), which is generalized for the case

of many input mixtures:
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P(y I (2:%) det RF-'exp -- (y-a)÷W (y-a) -

S(2%) 2 [det 11 (*' Ri l11-12 X-

(6.5.1)

Here there is introduced matrix notation; sign + signifies transposition;

is a block column vector of sampled values with n elements in the form of simple

columns f(I)yi .... (m)yi] = y., composed of values of all. m mixtures at the i-th

moment of time; a - analogous column vector of mean values; R = IIRjIj1 - complex

correlation matrix with matrix-elements Rij= 11Rij, consisting of values of the

funccion of cross-correlation of the a and • mixtures at moments tI and ti,

resp~ctively; W = R- matrix, the reciprocal of R.

In addition to all this matrices a, R and W may depend on parameters X of input

mixtures. I
For continuous realizations of y(t), as noted above, it is convenient to pass

to runctionals of probability density P(y(t)lj). Sometimes it is more convenient

to pass to a functional limit already at the end of analysis, during interpretation

of the obtained operations.

On the basis of the observed realization a radar set selects solution X(y) from

the possible set of sol.utions. In problems of measurement the space of solutions

("estimates") in structure is like the space of possible values of measured variables,
which will become evident Eomewhat latter. Inasmuch as X(y) does not depend

functionally on X [although statistically it does depend on X through y(t, X)], th,

statistical nature of the observed mixture (mixtures) leads to the possibility of

random errors.

For estimating the significance ("value") of allowed errors of solution there

is introduced loss function I1X, X), depending on parameters of the signal included

in the mixture and on the taken estimates. The more the accepted solution correspond.

to the truth, the less the value of I(X, X). PerformancEo of a device is determined

by the average (for all iealizatiuns of y) value of the loss function
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called the function ci' conditional risk, inasmuch as this function is deterjiniz: I

on the condition of an assigned value of X. As follows from §6.1, measured

parameters of a signal also can reasonably be considered random variables, and w.a

carn assign them a prior distributtion PO(X). Then there is also introduced the

function of mean risk

R(Pe. =Srp( L)P.(L)

=551i P ()P1yI4P. (L) dydA,(.

which is the averaging of conditional risk for a priori cirotribution o"' par'm,'e--.

The optimum operation of estimation we find from the con•dition of a. minimum [a.n J

or conditional risk for an arbitrarily selected loss funuticn. Raulo interprercttt..

of oacerations of optimum estimation reveaLs3 the structure.i of ani optimum radar ffltcA.i,,1'.

If a priori distribution F0 (k) is given, and the optimum meter in tound by

minimization of mean risk min R(Po, X), the estimate is called a Bayes e.stimate,

In .:,:rt,c'•se. it is necessary to seek tLh so-called minimax estimate, It minimizes

(by all rules of estimation) the maximum value of conditional risk for all possible

valuc f the parameter. Cases when t.,e ace ossigned no limitations on the value

of the parameter are very rare, and usually one ;Ohould s-.ck 'lhe minimax estimate

with certain limitations, statistical and nonstatistical.

Basically we shall use the Bayes methods of synthesis; however in § J.5 c•ataan

attention will also be paid to minimax m.. :.bods.

Prouerties of the theory of statisfical solutions are such that In it it is

possible to Introduce certain a priori assumptions about the structure of' the

synthesized d.e-vice, starting synthesis Irom a certain point of the circuit, However,

it is possible also not to introduce anty assumptions, considering as the input

va.1ae tn. output signal of the antenna unit or even the electromagnetic field il.

its i.rnert~re [52]. Obviously, the last cases are the most interesting and to t,.

I.arg'[,rPst extent characterize the merit of the theory of solutions. Chronol]ogically,

,@ow':... , earlier there were offered suclh solutions of the problem )i' measurement,

where a series of elements of the circuit of a meter were assumed assigned, and the

theory of solutions was applied for partial synthe!.,is,

Thus, in the i950's there was developed a method of synthesis of optimum meters

on the basis of a branch of the theory of statistical solutions - the theory o1'

estimation [10, i1]. It was assumed that the measured parameter of motion of the

target, coded in the input signal, is constant foti' certain time of obsurvation.
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Proceeding from complete statistical evidence on the mixture of the signal with

interferences there was found an optimum circuit for determining the unknown A

parameter for this time. Such a method is completely applicable, for instance, j I

for direction finders which determine angular position for a small interval of time.

If, however, we turn to the general case of measurement of variable coordinates,

the theory of estimation, assuming invariability of parameters in time, strictly

.,p.-aking, cannot be applied. This does riot exclude, however, certain compromise

solutions of the problem, consisting in assigning a general idea of the construction

of the meter in that form which is known in practice, considering smoothing circuits

linear. Here, it is postulated that the discriminator should-give an estimate of

current mi;match between the true and measured values of' the tracked parameter for

time intervals during which these mismatches almost do not change. In such an

approach it was possible to use the ideas and methods of the theory of estimation

for synthesis of discriminators in meters of the class intererting us.

With respect to partial synthesis of smoothing circuits on the assumption of

linearity of the discriminator with respect to the measured quantity there is applied

the theory of optimum filtration, but with a new conceptual basis. It seems that

with an additive mixture of the measured quantity and interference, with Gaussian

distributions of each of them, Wiener filters are absolutely optimum, i.e., there

does not exist a class of operators executing this task more successfully, Unfor-

tunately, ths formulated conditions are so limiting that in practice in pure form

they are almost never encountered. Therefore, it is clear that the theory of

filtration should somehow be adapted to nonlinear problems.

Consequently, all prese.nted methods of partial synthesis, even that conducted

on the basis of the theory of solutions, left doubt about the correctness of

selection of the general idea of construction of meters, We desire complete

synthesis, emanating only from statistical. evidence about signals and parameters.

On the assumptions of Markovian and Gaussian parameter5 this problem was solved in

[16, 18, 25, 60]. To these results we shall pass somewhat later.

Here we shall make a number of remarks, simvltaneously showing the promu.;irig

nature of the devices of the theory of solutions and its limftaLions, which, 'IureJ.y,

will be surmounted with further development of the theory.

An essential limitation of the theory of solutions Is tne necasslty fur thc,

presence of a sizeable quantity of statistical evidence about the sigral and the

parameter. This circumstance led certain authors to the pessimistic conclusion that

ki
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automatic devices for indication of interferences of the second group for the

purpose of sharp variation of parameters of the system of processing of signals on

an instruction from the automatic device.

A modified variant should also be synthesized, based as far as possible on

statistiaql evidence about the given form of interferences. In this direction

t; e-• have not been obtained many results, if we are considering complicated forms

interferences,,.

Variation of parameters of a receiver in the course of work, in principle, is.,

alresdy self-tuning of the meter circuit in accordance with the character of the

received signal. At present, problems of analysis and synthesis of autcmatic sys-tems

with self-tuning (true, of somewhat different type) are the subject of the widest

attention [3]. However, in our applications, inasmuch as we are interested in the,

pr blem of measurement with full. assignment of statistical evidence, optimum circuit;-.

are obtained without a priori reliance on ideas of self-tuning. A
.1

•omtimes "ircuits of optimum meters: contain ,;elf-tunnng elemaents, and in J
other cases they are absent; however, the method of synthes.is: always guarantees ,

absolute optimality of a circuit if we keep initial data constant. If in the dis:-tri-

bution of probabilities of a mixture we :;tart to consider unknown some additional A

oaraneter, and as3sign it it: own uistribution of probabilities, the principle o'

synthesis and quality of work of' the circuit will not be changed whether we treat .

meavurement of the additional parameter ts self-tuning or not. Thus, a priori -•

introduction of ideas of self-tuning w,.l. most likely be uselful when we have I

incompl.te knowledge of' when there is a change of' statistical properties of' ftr.

mixture of the signal, interferences and the parameter. 4

There is also possible .,t game-theory -pproach to meters. At present th, ti:or-.

of solutions sometimes is included in the theory of statistical games, con;ie(!rvi:.

Sa. pa.rticular case when the "game" is conducted against an "onlntelligenIt aiti, -

sist," whose behavior in a statistical sense is known belorehnti, If, however, ,;J

eemy is intelligent and tries to chanie. the form of interffererce to bring ,n ari:i:nir

error of measurement, and there is the possibility of changing T!haracteri. ,::: ol'

the meter for constant preservation of' its optimality, there is obs;erved a no,!-

degenerate game-theory situation, whl.ch is very intere.sting for practical eppl.|sijr. ,

1iniort.tunately, only ih, first step:: have been mAde in this directionl.

Everything said spepraks to the feet thnt the devices 01' tha,ý theory ol' ::olutiors

are completely timely annt at present are a powerful mean,, of solution of thF. proll].n
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of synthesis of radar meters.

6-5. -. Theory oa Statistical Estimates

We shall now discuss in greater detail the theory of statistical estlm-atos o:

parameters of distributions [8]. This is what we call the branch of ua.Uhltnaati::a3

statistics in which the probability density of a sampling (functiorci) mI- -1 'L...

of distribution of realizations) depends on one or several constant, but unKnown

parameters. These parameters must be estimated from sampled values of toe input

variable.

The most well-developed and convenient methods of finuing e:tAmate.s erc t1,1.e

method of maximum a posteriori probability and the maximuor likelihood r.othod. Ttr,

first method consists in differentiation with resect to parameter K. (we shall niio.w

consider it unique) of the product of the a priori distribution of parameter PO(?

uand likelihood function P(ylX) . With an accuracy of a factor, not depenldir:j on \,

tniý; product is the a posteriori, i.e., the Knowledge-from-experience probability

. 1 L, of. the parameter, which follows from the known formula of Bayes

flh1Dtu11) 1- A

P,()y) - pO(1)P(yjZ), (6,5.4)P Y P(1):- 5P.()(y1 dkX A 0

whenr' k is a factor, not depending on X.

The result of differentiation is equated to zero, ri-d we ,eek the root of tht-

obtained equation which explicitly depends on y:

- 1 P. (•)' (Y I M) -- 01(: ,

wnirre is taken atss tlhe very best estlriat,.

According to the maximum likelihood methud we differentiate the probability

'ortc tion, which gives the so-cal.led like:lihood equation

P- P(y 0.) , . ..

,.; ruoe i: calLed tue maximum likelihood estimate. Although the theory of'

,-sotiriatiun was developed before the general theory of solutions, with the '.nyo.rarnc,

""* ' Ir) j latter it W-aS; possible to into .pro.t thi. thl.ory of estimation 1r,. no, 'K l

truop *. ltious, lie r',, we consider that the space oF :,olutions is a semc r-it of' a

-t~raict line, on which there are plotted possibl "'estimates" of naranet, r I'

As the Loss I uzctions we usually corir:ider:

the simpl, l-.,s function

A= C- (c co5st),4
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the quadratic loss function

(6.5.8)

,' - ~ a loss function with saturation

I I,;{ - 1--exp --a (I AY )')••

ur tunction

If we select simple loss function (6.5.7), mean risk (6.5.3) is equal to

R (P., i)= C- P(yI) P. (i) dy (6.5.9)

For its minimization, equivalent to maximization of the integral in the right

part of (6.5.9), it is necessary that for any fixed y there be found a solution X,

corresponding to a maximum of the integrand. In other words, the optimum estimate

corresponds to a maximum of the a posteriori probability, i.e., is a root of

equation (6.5.5). Hence, it is clear in what sense the estimate of maximum a

posteriori probability is optimum. It is easy to prove that such an estimate

additionally maximizes the probability of a correct solution. We also note that

with a wide a priori distribution, the estimate of maximum a posteriori probability 41

passes to the estimate of maximum likelihood.

We now take quadratic loss function (6.5.8). Here, mean risk (6.5.3) will
take the form

R(PS, )- (1-)' P(y A) P. (A) dAdy. (6.5.10)

It has a physical meaning of error of measurement of X, averaged over y and ,,. In

order to minimize R(P0, k), it is necessary and sufficient for any y to minimizcý, by

selection of X the integral over N in (6.5.10). Differentiating this integral with

respect to X and equating the result to zero, we have an equation for finding t.l'(u

estimate
S.(1,- P) (y 12) P. (2) dl. 0 . (6. 5. •i)

Formal solution of (6.5.11) is the conditional mathematical expectatioi! A

for the given y, i.e., the mean value of the a posteriori distribution:
S- AP (y P .' (A ) d'A

(Y) ,(-- /yI)p.Q.)A-- 5 ' 1) dA. (6.5.12)

In distinction from the operator of estimation of maximum a posteriori prob-

ability the structure of the operator of the optimum estimate for a quadratic loss
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I"uiction dependt; on the form of the whole function of the a posteriori pro0ablLetty.

If one assigns a loss function of' any form differing from the considered one

in general there will be obtained other operators, And although the critorio, of -

minimum mean square error, ernsuing from application of a quadratic Loss function, -

is ti , most customary, the variety of optimum ,-olutions causes cer-ai. .i:ss.ti--

faction. We would like to obtain a solution wnict sauiL- be optimum for a- sui•' iit",.

broad class of cases. It turns out that for certain limiting assumptions thi: t,,e-'wy

oi: 1Haiyes estimates permits such a solution.

To explain this circumstance we first indicate that estimates for :limnt Li a,.-

qut.dratic loss functions coincide where the a posteriori disitribution of probaui].l,i -a

is a function which is symmetric with respect to a, certain pcint. This is cla ",t"

froom the expressions obtained. In the th-u'ry of' estimation stricLt mathematieaL

proof of this fact is connected with the Droperty of efficiency of estimates, by W:ich

we mean reaching the lower bound of variance of an estimate relative to the true

value.. "It appears [8] that in a certain ,,lass of cases estimates of maximum 9

[posteriori proba-blity are efficient. Especially frequently there is noted

asymptotic efficiency, i.e., efficiency for a time of observation, considerably

greater than the Interval of correlation of the a;!ovwe.es random variables of the

mixture y(t). Proof of efficiency thereby simultaneou;zly establishes the fact that

two classes of estimates are identical.

We shall prove that with symmetry of' a posteriori distribution any symme,•tric

loss function leadds to the same optimist Wsais. to. Let u.. assume that the a

po.utoriori probability has the form

w 'ere P(x) is a f unction, slymmetric with respect to zero, and the loss fUiCntion- is;

30.1 ;; j.y:55trio, so that

In,.. ,.:h as at tihe point of the optimum ef.,timate the d( rivativt' of t,,i risk with

respect to the estimate is equal. to zero, at this point this equation should be

sa•tisfied:

Wve express;z P( .) in the left part of this rt-i ationship through F(A - A1)) erts set
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X = X0 . Then, changing the sign of the argument of integration, it is easy to prove

that J = -J, from which it follows that J 0 0. This proves our statement.*

| • The value of 1O, determining the point of symmetry of a posteriori probability,

and equal to any estimate using a symmetric loss function, is, obviously, already

the familiar conditional mathematical expectation (6.5.12). Thereby, conditional

mEt:jeiatical expectation in a wide range coincides with the maximum value of a

puSterlori probability and can serve as a universal optimum estimate. Thus, the

method of a maximum a posteriori probability, and for a wide a priori distribution,

the method of maximum probability, too, under conditions very little limited give a

single Bayes estimate of the measured parameter.

Further it is useful to note one mathematical law, proved in the theory of

estimation. The fact is that with a large time of observation and with a com-

paratively low level of input interferences the logarithm of the likelihood function

(as a function of the parameter) is close in form to a parabolic curve, located

near the true value of the parameter:

I1n P(yjI ) =-"nP (y j ,)+ a- •-nP (y I,) (-%- )+

-- nP(y A-)01- (6.5.13)

where X - true value of the parameter of the mixture y(t).

From sampling to sampling the vertex of this parabola shifts along both axes,b

and also changes in width. Natural.ly this parabola can be expanded at any point,

close to points of the true and maximum-probable value, limited in all to three teýrms

of the expansion. In any case we arrive at a curve, coinciding with (6.5.13).-

If we now pass from the logarithm to the actual likelihood function, the glivein

dependences will be expressed in the fact that the likelihood function will be

approximated by a Gaussian curve, located somewhere near- the point of the true vj j1. -

X •, , pulsating and shifting from sampling to sampling. Here, as It is easy to

show [8], the width of the curve, characterized by the coefficient of sharpness oji
32

the parabola (6.5.13) - in P(ylx), on the average remains equal to the mean

square scattering of the position of its maximum value from the true XM ,and

*In such a proof it is necessary to use the assumption of an infinite domain of

determination of the furicLion of thLe a priori distribution and the loss function,
although in practical applications this condition is usually not satisfied. However,
in the same applications interesting only are cases when the width of the a
posteriori probability distribution is considerably less than that of' the a priori.
Here, finiteness of boundaries of the domain of determination of the a priori
distribution Is not important.
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both riean values are cnetdwith variance of efficient estimate U. acuun

to thie formula

Such laws occur for P(yjý)` near the tru~e v.1at-c of the parameter. 1D~i~' t .

!wnin peak of the probability function there are al--, tnsr2-sitic pe~ny,,* occurring

bo th due to nonideal properties of the signal, anid also due to noise disturb!jmlCc:;.

Ili t nc theory of estimation, where trie parameter is strictly nm, J ih, j .:

to show that the relative magni tude of parasitic peaks3 with irncr, lt tn -Ili

o~b;-.rvationi (the size of the sampling) gradually decreases, We ohall dis(casc th-

inf'luence of' parajsitic peaks in somewhat ;4i-ater dutni]. lin ,.

at :is useful to explain properties ol ,joiot er timatc-s of severaLprmtr.

The likelihood functioni is dletermined inl thtis case in tfie space o~f aLl meiaLsurted

quaritities (Xj, X. E~xpansion ( 5.i13) is replaced by

.2.,,. 1 a

The matrix, composed from mean values, of second dcerivatives,

(yi.ti-uneterizes ';sharpinuss' of the multi-Aimemtrisona.1 pe-ak arid sometimes, is e-alled

~lci:informaiAon matrix. Itz val.ue i.:- tr;,A re.cipcocal matrix 2: A~~ noni ;its

or me-an second momen~ts, of minimum. errors3 ofllmeaseci mveemit of' the para~meter attaine-d

Ii 'aeOf the existe-nce, of joinitly eff Icient estimates. If' coding ol' 2eparat"'

ponlmerrt I'rs inl the signlal y(t) are independent, then Z - diagonal matrix with V

'.2 ~qal to variances of minimum attainable errors of measurement of - iar'a:..

L)ar-rn,1' ters;. Itt this case the meanitig uf -a minimum does not require futirth'r

Ci: .ati o ns .VI, however, forms of codling, end cons~equently also r)lI error of

measurement, are interrelated, it is; necessary to introduce into ~onisideration a

multi -dimens iona.L ellipsoid, second cemt~rMj momtents of' which are determilled by the

matrix of second noment, of errors of measurement. Then the introduce.d ellipsoid

-V scattering for any method of estimation of parame~ters will wholly contain ill it-

::ell' the e Elipsoid with second moments, del. -ned by matrix X, which exp I c:;Ut th

mc aninf7 of the mrin~i mum of' matrix rirkt(,rre .(-d codinig of' separatepaan rs



Radar applications of the theory of estimation consist, primarily, of the

following. In the course of reflection of the sounding radar signal from a target

t parameters of the probability density of the mixture of the reflec- ed signal and

interferences at the receiver input turn out to depend on the coordinates and

velocity or the target. Measuring (estimating) the modulation delay of the signal,
.it ... :;'ge frequency or direction of arrival, it would be possible, thereby, to .i

"ermine necessary target position data. If during a certain int-rval of time

these coordinates can be considered constant, there appears the classical problem Ri

of the theory of estimation: for a given realization of the mixture of signal arn
interfr:'ences, observed in a given interval of time, determine with minimum error't"

unknown parameters of the signal in this mixture.

on First results in the synthesis of optimum radar meters were obtained, namely,

on the basis of the theory of estimation [10, 11]. Intervals of observation were

selected in such a way that during them target position data indeed remained

cocI2I-:.It. Under conditions when most widely used were pulse radars, the struct.tn'.

of the pulse signal, i.e., the division of it into periods of pulse trains (or1

pulue6• packs), gave the possibility of conveniently dividing the whole interval ofl

ob-.ic'-vation into time intervals, satisfying the shown requirement of theory. Not A

bein- interested in questions of unification of data of separate periods, they }

investigated potential properties of measurement in each of them. 44

It is possible to indicate the following methods of synthesis of deviceso fcr t

proce.ssing signals, obtained in the literature on the basis of the theory of

estimat.on. In [10, Ii] and in a considerable number of later works they explicitly

or implicitly assume that there is the possibility of consecutive or parallel.

finding of values of the likelihood function in the whole a priori domain of tin

mensr••-rid parameter, as a result of which there can be found a point of maximum vt:

whi:,i is the estimate. It requires no explanation that, in general, obtairtiiri. ou

the whole "scan" of the likelihood function is technically complicated, with thim

excep•tion of a narameter in the form of time delay of modulation.

in [12, 1.] there is offered another, simpler method of finding the ,.t_. - ,A

likelihood estimate, based on the assumption that we know the value- of parameter'

A,,, removed from the true value of the parameter of' the input mixture a distance lero

than the width of the basic peak of the likelihood function. We sialt expLain tne

idea of' this method. We take the expansion of the logarithm of a likelihood functiorn

of type (b.5.13) at point X1 and, differentiating it with respect to X, equa-.teý it
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tv t) t-L't. Plan, t rat's l'rmilg, the likelihood equation

~In P (y 11) +-~ In P(y I 1)(;L 1)= 0

we give, an explicit expression for the entimate of maximum likelihood )

Thius, to find Xwe need to schematically realize the first -and r~ecotid dI'.,

of' the logarithmn of' the function at point X1 , su~( t(- fbe cij)o..c to tue Ž'jFV.

If' one were to try to extend methc.ýds of synthesis based on the theory W1

estimA~tion to thc case of' a variable parameter, then this can be done only by en

oL' eas ing known rigor. Thus, we assume that the circuit of' the meter is alreridy

tgivp-11 in the form of a tracking system of the type which was studied in § 6.2. 'vlithl

res~pprit to the discriminator we postulate that it should constantly issue with

maxiMUM accu~racy an estimate of' minmatch between the true value of a parameter nsmri d

that value XP , which as E. resufuL of measurement proceeds to the disc rimilnnto r

f'rom the smoothing circuits. As follows from (6.1_;.141), the optimum estimate 01,

ditference X - X P E i S

SIn P (y I)Lp

1.nder conditions when in a subinterval there is realized sufficierit DCeýUMU-

1.ýt~ion, this approximate relationship isý satisfied:

In ( -Z312 n PY 1)

J..(_., tA1e second derivative may be replaced by a quantity which does not depeld.

V rid the ontimum estimate of mismnatcni is simply proportional to the f irst

!--Iv,?;~ of tiiW Logarithm of the likelihood function, taken at poiniL A, = '\

u4<,SUCII methods of synthesis of tracking meters are incunisis tent innnrrnur.h

'i.s the TIOw a.SGUmt IJAo introduced are beyonid the frames of the theory of est.Lmatiun.

At. thie s-ame *time, we kivow that measuring zystejas are always synthesiz~ed from

oriiiLinsof comprromi~se between fluctuating and dynamic errors, where the appcnarantec

Si' thr- :latter 1.- ,xpl ained namely by charigeability of' the parameter in time!. It

wviLi Vilks.ir*ab Ic to rind the ol-t.1mum mneasouring system immnediatel~y as a who Lu,

-......... 0 -....



proceeding from the requirement of a minimum of resultant (smoothed) errors. Such

a possibility, in principle, is given by filtration theory.

Before presenting principles of filtration theory we shall discuss one more

application of the theory of estimation to the problem of optimization of radar or

other meters. We have in mind determination of parameters of orbits of objects,

In ballistic curves [14]. It is known that the path of motion of the center

gravity of an arbitrary body in space with determined external forces is

determined by six constants parameters iL, for which, in particular, we can consider

coordina-ttes of the object and the components of velocity at a certain moment of

time. a' to outputs of discriminators of meters we add values of coordinates of

their tuning with coefficients, equal to the gain factors of discriminators, then,

according to results of § 6.2, disregarding parametric fluctuations, we have

(t)-- Mt + (t), (

i.e. . .ditive mixtures of measured coordinates X(t) (angles, distances) with noiE ,.-

If one were tu consider that coordinates X(t) depend in turn on constint parameters

then for a-Ly time of observation we arrive at a problem of the classical theory

of :•'timation. After determining parameters of the orbit it is possible to calculate

arbitrary functions of these parameters, for instance, the measured coordinates i
themselves. It is implicitly assumed that the best estimates of parameters of thi

orbit lead to the best measurements of coordinates of the body. This is indeed

,so if errors of separate measurements are small.

6.5,4. Theory of Optimum Linear Filtration

Filtration is continuous reproduction ("measurement," "finding of an estimat. ",

oi a certain variable which is a parameter of an observed random process.

The theory of optimum filtration already has a known history and has been Civ

i'c•z•.oation by the fundamental works of Kolmogorov and Wiener on filtrationl [7].

hiitiaily this thl.,ory was not connected at all with the theory of solutions aik v,-..;

bused on the following postulates:

i) part, meter ý(t) and interference n(t) are additively mixed stationo.r

random processes having different correlation functions. Realization of mixtun-(

y(t. = X(t) + n(t) is assigned on an interval, starting from an infinitely remove[

mome-nt up to the current noment;

2) the sought optimum system should carry out a lincar operation on th( mixtur;

, 5) the system should be physically realizable, i.e., its pulse response h(t)
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nho 1ddturn into zero for negative,.t;

4) the criterion of optimality is minimum mean square er'ror of reproduction

of the parameter or of any linear functional of the parameter - a derivative, an

integral, a certain expected value of the parammeter, and so forth.

Upon fulfillment of these requirem=ents ane cat. be certain that pulse rv.rr,',,:

b(t). of an optimum Wiener filter for direct reproducticn of the actual paramnt:..-

sati-fZies the following integral equation (the Witner'-Hoof equation):

SRV ( Isi (c) dc=R)L() -. )

where R (t) = [X(t) + n(t)JLK(t + T) + n(t + -)] -- autocorrelation function Ofmixture y(t):

Ry(t) = [X(t) + n(t)jx(t + ) - cross-correlation d•n-.Ution .,
the mixture and thc paramcter.

If we immediately try to apply to (6.5.17) the Fourier transform, we easlly

find the frequency response of an ootimam filter, but it will belong to thxe clazt

of' filters unrealizable in real time. By the latter we mean filters whor.e pulr@

response is equa~ to zero for negative time arguw.nts. Tf we are talking about

Filtration with direct'delivery of the result, this circumstance is equivalent tv th'.

appearance of a 'response before application of a distz.rbAnce and contradicts the

cnnsality principle. To find physically realizable ftlter3 mathemnticianr have hod

to apply much more refined methods of the theory of functions of a complex var1%bi,:.

As a result, the solution of equation (6.5.17) has the form [7]

V s .) J +

-_______ r e-Vd% •(8) W d.,
2 (is)(-) C in)

whe r,:

H('M = )e"dI; S, h())- ) .

V (is) I (-im)=S,,()- ( 5 R,(t)ei-'d:, (6.5 C. 1

is -- special expansion (factoring) of complex variable a) into factors with zerovs

and pol.es, correspondingly, in the upper and lower half-planez. Such an expansion

is aiwi-ys feasible, for instance, when S (xN) is a rational-fraction function of' i2

yy%
with real coefficients. (In practice, approximation of zpectral den:;itie:- by :;urh
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functions is always possible). The operation [ ]+ in (6.5.18) signifies taking that.

component of the expression in the brackets, which has poles in the upper half-plane -

of complex variable w. Analytically, 'this operation can also be expressed in the

form of two integrals.

•o• Withfher'development of-filtration theory, it was possible to-weaken

postulates i and i. Thus, they considered certain forms of a nonstationary param-

.,ter, a finite interval of realization and other criteria of optimality.

In particular, it was found that the pulse response of a Wiener filter in more

general cases is determined by integral equation

-s, ds=RIX(I. 4) (6.5.20)

where Ry(t, r), RKX(t, v) have their former meaning, but due to nonstationariness

of the input mixture they depond on two variables.

It is important to emphasize that the class of operators in which we sought

the best remained in all cases given.

In spite of the indicated limitations, filtration theory has great methodological

value, and in a whole series of practical cases gives an explicit analytical expres-

sion for pulse responses of different filters [7]. For spectral densities in the

form of rational-fraction functions of a these filters belong to systems with

constant parameters and are executed in the form of a set of RC- and LRC-circuits

and linear Inertialess amplifiers.

After application of the theory of solutions it was shown that for an additive

mixture of Gaussian measured quantities and interferences with Gaussian distributions

Wiener filters are absolutely optimum, i.e., there does not exist a class of

operators executing this task more successfully [5].

We note two other important results. From [61] it follows that for an additive

mixture of processes with non-Gaussian distributions optimum filter-extrapolators

give only a small improvement as compared to the Wiener ones, correctly calculated

for the correlation function of the non-Gaussian components. Further, in [62] it

is shown that for an additive mixture of Gaussian interference with a signal, for

which we know only the correlation function, the Wiener filter is optimum in the

minimax sense, i.e., ensures the least mean square error for the worst forms of

signals with an assigned correlation function. Thereby, Wiener filters for addit4 ve

mixtures possess optimum properties of a very general nature. Filters, close in

their properties to Wiener ones, will also appear in the problem of nonlinear



filtration of especially nonadditive mixtures, for which in § 6.8 we contine their

consideration.

Certrin authors also proceed along the same path of finding an opvrator from

a given class in solving problems of nonlinear filtration [15]. However, inasmuch

as each has the right to select arbitrary classes of nonlinear operators, this path
leaves us unsatisfied: it is always possible to hypothesize the presence of a

still better solution.

6.5.5. Filtration of a Markovian Parameter by thý' Method
of a Posteriori Probability

Above we proved that in equations for optimum operators there enters the a

posteriori probability of a parameter (parameters) for a given realization of the

signal (signals). In other words, forming of the a posteriori probability is a

sufficient primary operation of an optimum system, after which it only remains to

take the solution, best from the point of view of some criterion. A receiver,

forming the a posteriori probability for a constant parameter, is known in the

literature as a Woodword-Davis receiver. The Bayes formula may, however, also be

recorded for a parameter varying in time. Considering that the observation is

conducted at discrete moments tj, t 2 , ... , tn, it has formula

where X x X(ti) (i = 1, ... ,n);

Pn' n -- multi-dimens-onal a priori and a posteriori dlstribu-
tions;

P(Yl .. ," .... , Xn) - multi-dimensional probability function;

Cn - normalizing quantity, not deDending on Xi.

Investigation of the operator of a posteriori probability (6.5.21) without

concretization of the character of change of the parameter in time is difficult.

broad class of random processes, embracing the mass of cases interesting for

application, is the class of Markovian processes (see § 6.3). The problem of

:ormir.g the a posteriori probability for Markovian varying parameter:, arbitrarily

coded in the input signal y(t), was studied by R. L. Stratonovich in [16-18].

Although the method of R. L. Stratonovich essentially does not belong to the theory

of solutions, it is Important for the theory of measurements. We will present it,

without holding to the ground work of the account in [16].

We assume that moments of observation of the input mixture y(t) are separate

so that all random variables, on which we perform averaging when finding the
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likelihood function, at various moments are not connected, so that P(Y', ..."

yn , ... , n) is broken up into the product

.1 U 1
Pf,, ..... Y VIA,, ... , 9f)=r P ,IIJ). (6.5.22)

Using (6.7.2) and (6.5.22), we record. (6,5.21) fo two adjacent moments of

- '"ation:
"Pit,('1, ... At) CnP& (v,) P h I I') W (a, I Ii ,) P (Y, f11,

. ,(,...., . , -
AS+A

=C.,+p , P ,IJ n, [ W (.If ,_)p )
1=2

whence
P%+, ('IV .... I '"+I) -•

([5.5.25,

11+1 n+" i Cn

Let us now turn to finnl a posteriori probabilities, characterizing the a

p.oc2iori distribution of the parameter in the last stesp ;;,ith ob.servations in t.he

Tr'eýeoing ones. This i•. carried out by integration of ?P'k over all arguments xi, exept

tiv, Irt.t one Nk, Then from (we3 hr

P,+, (.,+)_ = +, P,+" v,+1  ) (Y+I

The physical interpretation of relationship (6.5.24), subsequently important,

is sufficiently clear from Fig. 6.9. For forming the a posteriori d.stribution in

one step it is necessary to transform

ILI • the a posteriori distribution of the.

preceding mome.nt by a transition fuc i-,T.,

which permits ug to cons.der the. exp(e.-

"1g. KC,'j. 'Filter of p posteriori pirot- character of change of the paramt.ter ii

*.ad;!.ty, i - unit for formation of the
].ik.Lihood function; 2 - anit for dey th step, and to multiply the re.lt of
*..nd :vroc'essing of a posteriori prob- the transforma'ion bj the val~ic J thu

likelihood function of thLe next Treasor(-

n.pnet, cnarvacterizintg the newly .. rriving information about the parameter,

FuiZ'i Ia ((.5 24 •;wa . oerivý.d above uo tIRe •;sri•tior of discrete Qbsev I-

Itwe'/e:r, it has a wider domain o0' appliQibil.ity. 11' .tw use-ful component in y(t)

tvh-.s a , m ,ie structure , wh, r(; all random ,, mpu,,t (r,ois1 s , .mte'e'[' c e.. f'lu u ],, .
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of reflecting surface) are independent from pulse to pulse, then after passage

to the limit of continuous observation for the likelihood function this relationship

is valid:

..•- (f.5.25)

analogous to (6.5.22). In (6.5.25) as elements there enter likelihood functions

for all i-th cycles of observation, depending on the value of parameter A, which

remains constant within the limits of the i-th pulse. In other words, if we ar•i

not Interested in evolution of the a posteriori distribution in intervals bctween

pulses, relationship (6.5.24) remains applicable, where quantizatiCn of the parameter

is dictated by the character of the Input signal y(tý, and observation of the

realization of the latter is considered continuous.

If, however, the signal has arbitrary ntructure, and we are interested in the

form of the a posteriori distribution continuously, it is necessary to seek so,.e

new methods of mathematical description of the a posteriori probability, eliminating&

the discrete nature of relationship (6.5.24).

With passage to the limit of continuity the analog of relationship (6.5.22)

is function

where (tO, t) - interval of observation;

1(y(s), X(s), v) - certain functional of y(s) and X(s) for sC(to, r) (some-

times this ij simplj function y(:), X(T), which w shall
prove below with examples).

Then relationship (6.5.24) kill pass to

P(A 1I+42=

70C.t A)P,~uS~q)ji2)f;(r £) Ia +Al, Qdp.

He re jca

- likelihood function in Interval (t, t + 4), in which we consider the parameter to

vary so little that it is practically possible to identify k(t) with its value at

the end of the interval.

We -hall oe interested in parameters ih the form of diffusion urocesses with

density of the probability of tran•ition satisfying the Fokker-Planck equation
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(see §6.3): .WQ,*. )=-Aa)I

+1- ' [B (2) W1 =Q (W (, tIl, to)), (6.5.28)

where Q( 3-linear differential operator.
;.e consider that W(X, tjxo) to) satisfies the condition of continuity

IimW (x, IjXo, to) =(x- x,),

from (6.5.28) it follows that for small ta

S ~ [ P(,)~j(A. t+h )-

or_

tP j W (1) , t + AI t& ) dpvsp (. )+Q (PP (L)01 . (6.5.29)

We row tuýr, out attention to the fact that for small A there is satisfied

where trie quantity containud J-~ %ckets is a finite quantity as A 0O and. from

considerations of statistical 4 alence can be identified with the integranj.~

We als;o cons-ider that 0(1;, A) fur mall valuer? of A% 1.s close t~o i, 7o that; itI

12 po.;s~ible to considerA

where v is still to be determined. Expanding P(K, t + A) in a series with respect,

to A, substituting in (6.5.27) relationships (C..8-C55)and being limited

everywhere to first powers of A, we, have equation

If' wL integrate both parts of' (6.5.32) over X and consider dec reý-s e of Pas XI -f I
from which we fin-ally have the differential equation for a posteriori probabili1ty,

P~ P(, 1)=.Q(P (2, 1))- [+ (1, 1- )] P(1, f). .y.)

Thus, with coritixiuou.- observation the irvo1.ution of a posteriori probability iv-.

given by a diff ýrential -quation of' the Fokker-Planck type, the right side (:f which
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CQ., charac teriZing; tire tranic;tion 1 unction, an C.(114 11i.

wht'i, idred c ti.- iractic re-alizaLtion. The. first term leads to "spreadin;2'" 0!'

P( due to rroarand rand~oml chainges of the n aramet-r; t.l!c scn

l<.sto "na~rrowing" of peakV otl ch ~,tlue to neety a~rrivcd informatic.-. The

In'n ol iniformationi is thu > roportiona .1diY .''' ewentra.r._i

of the, Logýartirith of the likelihood function a.rid tin 9c of, the s'anaIuntci

av'IodjEffd over thc , pa ster~iort distribution, which is formed by do~te arr~ivinn1

in§. e ý,airlay sa~id that to solvi. UIL eaton o di:ý'fio ty :

(,v, in the abene fi randomly varying.a c" f ficier;ts In the'- ria.ht pqrtl..T to'

,7 *'5 o thcne acrid term confLatirs!; rird(7ii U molitoe~nt., of tih.0v t v ic'

'ur formringý the a posteriori probabi1.lity, it is. solfic~ient: to findl 1-rli;2

u,.0V'i~lnt. methd of its simrulationr. Such -t problemn is solved.. forirttii 1

* le ie 's SlO b ,V( id siuednof c.. neýroj c olutions and thir rir 1.ig

p.: . .dt~- tial eljusýtionls for l. 4 ~~uchrcorsisc itb;

ti-. c coniisid E.r the ca)s e of' a, a5a tri a . pos t cri o ri inac curvac y, when P( t .i

woi'ovi c ompar~ed to the -a priori dittibtu!n, ro .t d peatQl on trw 71sc

v-i In a, ot' the osrameter. In 1'iew of III,7 fimpon-ition of' a rc tnoiberci' of 'doa

tn;It is; reasýona~ble to) aissure that I.(,t) w%.ith suf'ficienrt -j';cur-,CY i.s 'v21c.'

Iv ;isscc a<V)i'e*(t

u Re:k OF, the(- opAjrQ1 tiu±(2 jpit i .(

- 0 .. ~.! -H.faic('tta fý ort.dcrrthi dii~ribuio.. , ' ' e

1 1!p,,nditq, (,ý i !nO . i

d211 :.I)s~) 10 2' 1,zk i1, Alti1 Fur n !-1 -6]1l'''r i i ,.



In the derivation of (6.5.35) we allowed for a small a posteriori scattering,

in which coefficients A(X) and B(X) vary little, so that, e.g., a 2B"(X) << B(X),

.2A"X) << A(X).

If %0 (t) is considered the optimum estimate, joint solution of' equations

(6.5.35) is a problem of optimum filtration for a small a posteriori inaccuracy.

TIh . elan, naturally, can be produced by a certain dynamic system, simulating

j :,-.o equations. However, detailed study of these equations ii (iii]. where they

wery. first obtained, was not given. The analysis of measurement ox varying ffeqe,,ncy

given it. [i7, 18] does not exhaust the proJblem, inasmuch as Iz,(lationship-s (6.5..)

in f"tct :.:.'e not used there. Therefore, we delay schematic interpretation of thecs:

results to § 6.9 and give it after presenting basic results of the theory of

optimum meters of Gaussian parameters. In the same place we will study recurrenice

relatiunships for curves of an a posteriori distribution, which for a pulse inco-

het,-tet signal or a discrete observation can be derixed rilceetty from (6.5.2"K.

b.5.u.Lmtations, of' Theory. General Theor-y (%i' Bayesl Filt~ration

.c shall give results 1'towing from consideration and comparison of different

brar.chos of statistica.t theory in reference to th- urob)enm of mieter synthesis. ThW

basic deficiency of the theory of estimation is the requirement of constancy o!' tih V
measured variable during the time of observation. The theory of linear filt'aton. . P

requires additivity of the measured variable and interferences, which, in pratctlc.,

is usually not satisfied. The method of l'orming tire a posteriori probability of'

Mairkoviazn processes, generally speaking, lacis these deficiencies, but it was

dcvlopvd independently of the theory of sclutions., so that faot its us.e ini des;ii-,',

5 meter one nee•ds certain con'rctizatios, oj" the result. of this theory. At thn

.el time the theory of so1lutions In princip].e permit'; forrrui-"i.ting a genel- l.I .:..

tluic problem, i.e., the' problem of finding ian optimum re:solving filt(,r, under

,"oil..ions irt no way limiting, in engineerlng practice. k g,.eral th•ory ui'f tit'

,iot, is best constructed on the bosis of the Bi.y-s a-.pproach.

Again we counsri.der random process y(t) a mixture OF usefuL -oIporLe-r)ts at; i

i'i'•rioi kinds of' int.r!erervt ,'i. ,1fiwendlng ni, the m acsmr. d fun.'LLor. Ao '0 1 j-.

',,sr'jih 6.5.5, parameter N(t) is a± random function of' times. het y(t' anId '(t.)

taR,..i.t' moments t1  < t 2  ., . . t, from interval (to, t) vt lu,. s vi' .. n, yn

k n X, respectively. Problem of' Baye fill.ration consoi!_t.s of C.-fl:t'u.!ti,,.

[POO-NOTE CON T FROM PRECEDING ?AGE]

justifying this approximation fnr a Gau:;::lan paramet(er wtill b.: g..ven in § •. .
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of a vector function from samples X(y) which is e:*-timate X, in some measure i•tatis-

tically close to the true realization of the uaraineler ,(t.).

The vector analog of the simple loss function is

As it is easy to prove analogously to Paragraph 6.5.4, the optimuii estimate nt:±ec

corresponds to a vector, turning into maximuum a posteriori di!t .ributiol (6,5. A'.

The system of equations of maximum a posteriori proba±bility wiLt ho rb:r.i.j

In that same case, when the estimate can use o01l.y the pr eceding d;•,ta, the

solution is sought in the form

A, (y,, yf) (i=1, 2, ... ).

The a posteriori probability density takes the fo*rm

P J P P(2i , ..., yj)---

-- )

= 4) P @ , -.., Y j 2j .. ) P, (I. .... 2iz ) d l. d lj_,,

and system of equations (6.b.36) is r -,a..i by

In P (2j) =0.(¼6

The anal]od of the scal-ar qnadratic los,- function leadiuig to niininaure ln:i, sriu:,Lh

0r'i;r of nmeasurement for any intur'ze 1 Of' eeasuremfent i- in the, vect 2, ra'or. time

qAa-,dratic formula

i(L, JL)= 1= --(L B( Y,---- Bij(I,--14)( -j .), ,...i

where B - certain symmetric non-bingulfir matrix.

Here, mean risk is equal to

R..A) (X I - i) +(i -( .) P(y I ),) P.O() dAdy

ai.d is a U.inc r .. ... i... ÷-t-,i r of tvo rv', n'n ~t,. of , rs ol si l reAVM] 'j"t, a!. zi•lowed a:it "tlI

momenrts of observatiorn. Thereby, WC mirliiý'.(, 1.1, tw C..ipsoid of nt ri; '

joint estimates, which J, the most genral rU.,i._ris..ri. on it.

-7(0--
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In the particular case when matrix B is diagonal, mean risk is simply the

weighted sum of variances of errors at separate moments of time. Variation of
mean risk on the estimate vector X gives a system of equations, analogous to (6.5.11),

outside of dependence on the concrete form of matrix B:

(•--)P(y L) P.(.%) d•=o. (6.5.39)

Again the formal solution of (6.5.39) is the conditional natnematical expecta-

tion of vector

LP(y I )P. (Ld).
(Y)-- •P(yII)P.l, ().) d(6.s5.4o)

In expanded form one should understand expressions (6.5.39) and (6.5.40) as

Xt (Y M. .I A-tp~, ... .) .t (XI, .... .A ) x AN

P (of ... (As Xa) ... , 9 A.

(i1 , 1 , ., (6.5.4-1)

and use n relationships Jointly.

Wfhen the operator of estimation uses only preceding data, there is taken tne

set of last relationships from (6.5.41):

. .. -- J)P(Y1. .... ,Jl 2..., 1,) X
XI PS(" 2)I"dj0XP,. .j (vP ..... J ..... ..... .....A

Here the estimate for ;k is found once, when t = t.; more precise definition of t i4;

estimate after finding the new segment of realization of y(t) is not produced.

Therefore the solution of (6.5.41) does not coincide with the solution of ( .42),

with the exception of the last moment of obsat'vation, taor" which cori',sponuaing

equationis from (6.5.41) and (6.5.42) coin. de.

F. the multiatmensiona. I-..- •,ii ln,: i bjs1l ter•t.. v'h"• ".,c c,,•der...

in detauil in the theory of estimation (Paragraph 6.5,3) remain basically in 'orce.

ln particular, there remains in for-;t that proposition that with a posteriori
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distribution of form

where F(x) - arbitrary function, symmetric relative to zero, and for a sbnmetri'.:

loss function (i(X - = I(X - X)) the;e exists a certain unique solution of' tile

problem of Bayes filtration, coinciding witn tne operator of eonditi,-,:%1 mat,: .. a

expectation (6.5.40). Proof of this repeats that for the soalar casEý.

Besides the property that the operator of mathematical expectation ((.5,140)

minimizes on the average a large class of loss funen:t-!on, 1t also a.wayso redyt e; T.

zero the value of errors of measurement, averaged in the ensemble b , the mea-.ured

parameter X(t) and signal y(t). This property is exprsDs;ci cy equality

Mi., =z(AX,(IL.3
where brackets denote averaging. TRelationship (6-.5.43) i: easy to obtain by

multaplying both parts of (6.5,y0) by the joint probability density P(yei)Pl(X) of

y ampd X ard integrating over ( and b. the joinperty of unbiasedness is e)speci)lly

useful in view of the presence of interfering signals structurally simil.ar to trie

useful one. Complete absence of bias error in an optimum measuring system in these

conditions is far from obvious.

All the given results emphasize the universal character of conditionaL

mathematical expectation. The condition of symmetry of the a posteriori probability, 4

formulated above, is satisfied in practic. by a niarruw tevel. of signal-s, and the

re.quirement of symmetry of the loss iwut,:tion i: not a substantial limitation at aI.

In these conditions the theory of optimum filtration is freed from subjcctlve

elem(nts corinecled with arbitrariness• in seilection of the loee function.

Considering the very attractive properties of thu operator of conditioial

mathematA,-al exnectation, one would think it remains only to decipher the,

iainn .he tiLal ope 'o' Lor in (6.5,40) and t r.',i:lto it into radio erngineerint' 1.i,: "I:--c .

However, rigorous integration can be performed only in the add.tive case, wljho

-1 n(1) +MtI),

where X(t), :;(t) - random processes with noxrmal diltributlon. Here, we ar,1ivT at

the known Wiener filter. In other cases to rigornu.sly and sufficiently simply

decode thu orerationt of conditional mathematical expectatiorn is impI siibir-. Iiasmu 1

as it appears certain that the method of CC;struct1o'i of optimus me.ters :hoLLIK be

based on the above-presented theory, the problem of technic4al creatioi, of ,n optimumr

circuit han still greater importance than disrovry',f &tneral ocerate,,s.
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§ 6.6. Methods of Synthesis of Optimum Meters with Gaussian
Statistics of the Parameter. Potential

Accuracy of Measurement

6.6.1. Properties of the Likelihood Function
and Its Approximation

-he time being we shall assume that the measured parameter X is constant.

i. in the case of Gaussian noises, as was shown in [4, 12], the likelihood

function of one parameter monotonically depends on the sumn of the autocorrelatior,

function of the useful component of the mixture y(t) and a certain random function,

where bxth functions have as their argument the measured parameter. For illustration

we shall. consider the likelihood function of time delay of a regular signal u(t),

received against a background of white noise with spectral density N0 . The likelihood

function here has the form

6
P~y1)---Cex -Lfj•, (6.6.1)

where y(t) - the observed realization;

- - time delay;

C - constant, not depending on y and T.

After substitution in (6.6.1) of the form of realization

V)( = U Yt -to.) +,i (t).

where io - true (unknown) value of delay, it is possible to separate members,

explicitly depending on T:

TSP# Mt 1,C)=C'exp 9( -- ) (t-,. di +

. 0

The first component under the sign of the exponential function is the autocorrelatiu,'

function with respect to parameter L, deperi.tng on difference - - T0: the second is

the noise disturbance, realizations of whic!, are "signal-lik&e and stationary ,ith

respect to 1 [ 4 ]. Analogous dependences occur, too, in more complicated cases [i2].

With Gaussian input noises the autocorrelation function turns out to be in the
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exponent of the eeponential function. Tne exponent-ial furnction phasi.

of the peak of thc! autocorrelation fn.t i0!. a.nd makes the slopes tteerlv, 'h.:

to an approximately Oaussian curve of the likelihood function in conslt:]o.: oV'

smooth top of thI- autocorrelation fur2t.i_,:i, luw' Jeve• of, Its sid-. , :* y.

spoke in Chapter 1, and low level of inter reric': (.lo. 6.i0).

With increase of time of observation tie mreamn value of tie exponert of' the

exponential function increases. As a result Peak P(ylX) nat'ros, and sr'-tt.rA. 01

f ao T i1ha!, Ity char fr

/ iz-s a result avt ra(, td i'Qi

illll observat~iorm3, 4I II
random disturbancoc. to a

J certain externt comi.

Fig. 6.10. Likelihood funetton of a constant one another.

parameter and its approximation: X - o, it we turn now to 1W

optimum estimate; X -- maximum lik1lihood "al!.; case of' a p.'am.t.. or ,
', -- ttrue value of parameter; 1) trLi e.• ~~~~~~in time by a-i '.; :..,

dependence; 2) Gaussian approximation,
general we can only .y *i

little about the :o!:

likelihood func tire.

In geniera.l, this; function will be mul.L-dime:.ional, and with tr'ansitioml to

,:re1.m1Uous observation it will be 3 fu,,ct•oi, and should be r,:)m.Zi(lered in the.

sl~a-e of values of a parameter, occurring at separate moments of o1 vatlun. '

pro. t,.'-ei measuremert s; f'orm-ging for a con-:,lant parame.ter a narrowed ieak, vi.

varying parameter give results depending both on the concretely o.c;mmci. . "

tli,, fluctuating, i.turbanc., and aln;o on the law of' change of .he, , te,.

.omietimes I itis possible, t.deed, tyy selection of .ew paramem.* wi~ic1: io a

function (function41) of the old patPamnoter (for imotarcp, speed, amflI'litle of 1th.

Fourier-barmonic, etc), to arrive at. the casse of ; constant paramnme.er, However,

3u2n ua,-,tzs are tmec. thcxccption armd ce-nnnO1 -~p as a e~arl-s for a io

Meanwhile, on certain asoumptiors:- , made te .lOVI, the- form '.)" the' lik 11 ý ho I

function found for, a constarit measurfed parameter prml!:; ui. to 'f-i- I , a

doter r,'ne the form of this function for a varying pfi "r- er ,•(.) arn A, !h.i~i:.!-.



to find a satisfactory form of its approximate presentation.

In practice usually most interesting are the cases of sufficiently high-quality

work of meters, when noises are not too great (but, ultimately, are also not too

small, otherwise the problem of optimization loses its importance). Under this

corrV. '..r errors of measurement will be small and the a posteriori distribution will

.-e ,arrow as compared to the a priori.

Frequently, the rate of change of the measured parameter is very slow as

compared to the rate of change of all other random variables in the observed mixture,

which yiire not subject to measurement and for which we realize averaging when finding

the explicit form of likelihood function (henceforth we will call them immaterial

parameters).

We choose time intervals considerably larger than the interval of statistical

coupling of the slowest of the iwmmaterial parameters of the input signal y(t), but

considerably smaller than the interval of change of X(t). Upon fulfillment of the

shovn-, conditions the logarithm of the likelihood function, as a. function of the value

of the parameter frozen on these segments, near the main peak can be approximated by

its own quadratic expansion for any point, knowingly close to the value of the

measured variable. In distinction from the case of a corstant parameter the peakll

of the likelihood function at every subinterval has a finite width, randomly

depending on y(t) and the coded function X(t). The form of the likelihood function

in the subintervals is illustrated in Fig. 6.11. The multi-dimensional likelihood

function in the whole interval of observation here is approximated by the product

of likelihood functions obtained in separate subintervals due to the statistical

independence of fluctuations of the immaterial parameters. Considering everything

we have said and still holding to cases of discrete samplings, we can write the

basic multi-dimensional approximation of P(yIl]) in the form

P(yVJz)=:exp.1inP(Y I .)+

Oil

+ in f)(y w(i lei) (.X -- 40 (6.6.2)
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where >,,(t) art artbitrar'y forte tiori, consridered at rtionittits of obser-vatiortii 2

t. ano~ assun-ed close to thctrue value at' Lhtz varyliI' 1;arameter.

AA'

pa r'arine.te r' iri h 0 , I 'c p TT: i*' ua rof~re er

Aii apainrOrof' Lyn)C loK' )ia r-dt theory 4fet ~l1t

1'or',ula OF.% ,)'u iŽim ocaj'r frr~.tn0 an estlrflL'te ari~d tp0oI' Oj'

C-~i ltIY t'nfaximuni ie hn _.tra Hr, teei
III e ..,it ; tr , -

asymlpltotic. eorive u, of'e 0 thaý quýA'rqtlto exparii.t orjI x t t e

IExte~nr ic~r af* such art expurrsolor to Itht c-as o '.t variaL.Ie !Jaramet e: trCV
.Jiou. ri be, fi' ml, itordo Wd. yravr 1i u drset I I'i* ot ' 3~c

;O LIot ion) of th i.: p roblein miue-, ra at cxI. h n oe,'naIl -) '.~C pr I, the

applied prezentai.i1or, of the 1ke1ho'I r .1i:* .a te i(t the a' '.rrrii'';,I

the ubtairied opti-iu tort ircuits, t 1i a 1 5  r we fThail ;Ji-iw thba t a trr

me ters oynthe siz(. t: Lythe showne; pr or. (21 1,5': i 'If lijk,( fufCd lon j On pa

Poine ides With t hpt maximout paý); ri 1e (pir. 'aa,, whiAh 1'roves t n ie vti'it

of' this exparai':ri.



Subsequently we will need two concrete expansions of type (6.6.2). The first

is conducted at the point of the optimum estimate of parameter . X (the meaning

of optimality will be explained below). Designating

. L(,) _ ML (Q.)

... introducing matrix notation with column-vectors z =[z, ... , z ¼ = (K, ... ,n

Xn) andx= X (\ ... X, nI and square matrix A = IA A II, we have instead of (6.6.2)

P(Y114==P(YtL6)eXpz(t 5 -4(- A .)} (6.)

The s':2ond expansion is conducted at the point K0 = X of the maximum value of

P(yX) and has the form

P(YL)PYIM XP((L-i)*v-i }. (6. 6.4)-I
The polnt of the current position of maximum likelihood X(t) in general does not

coljcide with the point of' the optimum estimate k(t). Actually, according to § 6.5

the latter is the exact maximum of the a posteriori probability, calculated on the

basis of the whole interval of observation, so that )(t) and X(t) are correl.aterd ýis

the result of Instantaneous measurement and as the smoothed output quantity.

The term with the first derivative in (6,6.4) is rejected as equal to zero,

and matrix A is determined through derivatives at point X:

Relationships (6.6.3) and (6.6.4) will be used below during the synthenis o'

basic circuits of optimum meters, For clarity in Fig, 6.iO we give a one-dimensio:_

illu:tration of these expansions.

Let us assume that we nevertheless wanted to more closely account for the

structure of the likelihood "unction. It is expressed with side peaks, ulttlerminted

as side peaks of the autocorrelation function of the signal (see Chapter I), and

RIq•n Ilrely noise overshoots, which by force of properties of the likelihood

function are 'signal-similar" in structure. Inasmuch as the exporientirti, 1unctIou,

always stresses maxima and suppre:sses minima of' the function which is it.s argfurument,

for these peaks it is possible to offer a Gausslan ,pprnximatton. ffIde peaks of' the
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autocorrelatior, i'unction of a ~signal are igidjo,ýly oiried in position I-ithl- bc~je L~;

pe.ik, and for ihem It is posziblF to offer two local approx~ nations, ,aIO..f

(b.6.35) and (6,6.4):

Hee: ni)displacement ofthe ic1uft 4 i-.oa
Wer ba(i) know peak;

X - as bef'ore, the eLst~mal-i i" c_ X.:

Of, fP(YI)) ;;ioliutly thie same aL; zC?':ctL~olq~ ~l& , A, X r:(

If, however, we turn, to anuly/zicl n;cuorl cf;- soak:; the for ticec. , .LV'0-.

'sy J~prxif~c~i.;.(CG.fis :;uiUth,o 'p r'iof cI tirctilcno i'(YI X,

A, W3.1 IIv. d i , or'e, It h uErF.EY. f~p'.;r) I d, (C() i;~lrrppiicabl~e, sr:ti c

-01E c iseiAUk: iG 110i holc I~iWt I 4 '.rc- Va luoo jfL

of thrioieni'd 'I.:

lliuc. .0., it, i.:-'rcs~' to 1gI.ve- the.*of rote (Ano I he-, lfl-Ij- i-.. '.oeisa

A.A triuut ion of p rol.)ttO . it to; 0 t the rfou't iparamnel v

Be~low righl. up to ý 6.9 woe will. holie, ,il'II in duscif.ar Iet nI~~ which,

)PfId::ma thecratl-ull rounvrcnience , J:.; exfidtO]nse by a nuicibe r of othf: L a o

Firot, In it -'Urifider-ablerur'c of, Iport.acI.1 crpp~l[,ication io rarrdcrr, hsiracl1.r,-

of' changic A' ). (L) if- dvilermined ofi ;v 1,::/ h r&.ý.r ()f cro ii:: c va ue:o to nI
.undivi1on-i, Thke hiti t .er du not depend onl thle wil. I()J, man.) a[d whell i~hic E I . a
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number of disturbing factors they can be considered normally distributed, whichI

leadts to a normal (or close to it) distribution of X(t).

Second, change in time of the actual parameter X(t) frequently occurs under the[

action of a large number of independent random disturbances, which also leads to a

ro' x i~stribution of probabilities. Finally, the statistics of the parameter may

incompletely known, and may be given only by a correlation fuinction. As we shall

prove in § 6.9, with such limited knowledge the assumption of normal distribution..~
ensures the best results as compared to any possible distributions with a given

copi'elý,..ton function.

Thus, let us assume that the a priori distribution has the following form:

(2)" [-4Q -q'I L)x + . (6.6.8)

where R R(ti, ti) II-correlation matrix of random component X(t);

V R its inverse matrix [in interval (t0, tn

... X - ol~umn-vector of mean value.

Let us turn to relationship (6.r.112) for a physically realizable operator o

fil1t rat ion.

The first method cf finding an optimum mcl.er Is direct integration. Substitufinrig

(6.6.3) and (6.6.8) in (6.5.142) and designating

(6. .9

under the sign of the integral performing transformation of variatblt: (X F-~) arid I
rejecting factors not depending on E, we have equation I

After gi'ouping terms, using symmetry of matrix V, we obtain from tMic

~I expJb +s v+(A )e A.=0

where therp 1!4 dpsignated

b = bi b z-79(.611



Introducing matz'ic C = iCi L A + V-, the iuzvý rse at matrix A +i V ..

kt.0 . Lid , Linstead ci (6.6. iu) ,according to [81 we. have equation

Differentiation in (6.6.12) and substitutiont -Ne value of, bfrm(.

then gives

XC~h V ± ). Vkiz] 0.

Exam, W is, adding and subtracting from a~l .n2 of' ': A 'arLwiwt-m

(A -t V)C =I, vdve-re I - unit matr-!.%, c' 'tIV~ectX Wr 1<

Another Tretho11d of finding of an optimum-i~ meter is, based on d' rect study ri: fC IAý
on co 'tI~e a posteriori protart~ia ). This mnethod it, th-ii-m.'c

even mare convenieýnt,, althoutgh in general It isF .iot al-ways applicable. Aft-er

multinlication of the a. priori dtibLi'(..)by approximation of' the, lilk& ir', :Ii

Function (6.6.35) we bring the logariti-n ati the rrý&c function to formi

C CXXol :4)

where scalar C., Vector Xand matrix C< ,o not depend on the current argulient k2!1

X.. Iiel~ermillriip effclet for 61ff>, ,iiio s: of Iit. is easy tro prolve I ha)

; Ll':C.(- matrixnte 'invreo.-.tecm from the very lorm of" expression (6.6.1.4) it f'oljowo- 17'.! A.I

ltnm:; the sense of' that. point of Symmetry (in multi- Aimens ion al space) of thiii,

rioci :*C.V UP..wnwhich we men ttioited in §6, 1. . aturally , i!;~tl i

c~lt'r'r to ft lt c± t~imiun Xn I i. : = X.. Then £ ruii LcIal: 107: oh LU('.C.I,'o.I

S;ide red at the ITUC-L 01citofo reb;(rvac.lot,n f H~rre E;tgmi n -l~' 'Kli'OLL'i .

determinling the op,' imum meter.A

P~o atonsti. .6.>jr'e-Lat'.l-6 cite VbIA.- L.- ;l ! ., he atrue

ous7e ovat tori with est-imates >z k 17.0 i i thie prcccedina. momenits 5 'ii in C2nt'f 2L

nonilinear, equatlor: [tor quantitir.-s ... ,..This t~ori cinearity- is, aueti:;, ito
'1' Ti)



fact that values of estimate X enter the equation not only directly but also through
A A

the coefficient of expansion of the likelihood function 2 z(X), A = A (k). If we

are drawn away from this dependence, the optimum operator is linear with respect to

vector z + A(X - X). The matrix of linear transformation C, according to (6.6.i5),

""* 1...s equation

C[1+ AR-=R (6.6.17)

or in expanded form

C,,•- • CudAd5RIA---•R, (6.6,18)

where, according to the principle of using only the preceding date., it is assumea

that C = 0 when - > n.

Relationship (6.6.13) during discrete observation gives the algorithm for

construction of a dynamic system, simulating the process of continuous solutior -

i () .(6.5.42) with use of former

results of estimatio)n and

newly arriving data. All the

prehlstory of sampling y is
I II I i•• ' /,L l L l, 11 depicted by estimates of the-,

~ Ci., 4•., * 4 4-z "parameter made in earlier

Fig. 6.12. Elementary intervals of observation: moments: for formation ot'i
1) envelope of realization of y(t). new estimates there is no

need to turn again to former values of the sampling . Such a property of operators

of processing are very convenient technically.

Certain simplification of expressions (6.6.13) and (6.6.18) can be produced

if we .:onsider that for slow changes of X(t) matrix A is diagonal, i.e., corisit;"-

of elements A = Kibik. Actually, intervals of statistical coupling of all

immaterial parameters of the input mixture y(t) are much smaller than the time :'

approximate constancy of the correlation interval of parameter A(t). As tbi: i.

illustrat-d in Fig 6.12, every moment of observation ti corresponds to iti own.

frozen value of t1- parameter X(t,). First differentiation of the logarithm of the

lihelihood funct. , with respect to x actually is produced only oi tht subilnzerv•.l

near ti. Secor. .fferentiation with respect to ti, which will form mat.rix A, i-,ives

a result which differs from zero only when indices i J, If we allow for this

n ,~ji -. -. i ,~ •"" • ..... ...
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Z=XCAIZ+ A(ZA¾)I +7*. Ko in

/, I

In 6enieaI, as follows fromn anat'1 sic.i bL~am.' jar to that ri "'t -ý i

L uonii nature of nmatix A sinitue u'I1-1 (' t

e-1 ;,inents of this matrix With a certain upproV natio nw heo 1ý e iL. i po

mean'ýx va?' me (K1 - lK) loweverý, belown I tom *

oftrcyc measu rement, so that :-ti1ti~n-a M ii impiC 1 1'] 155ti011 L1 "1-

Dy direct substitution we prove si 11hal ( i_. ±) can bei' it t

nI

where triangula r matrix § (G when n . it.) i~s detGermined by equat-ion

We shall establish the sjense- of quni*'z, For this; we repres-entl

:r,ýqn~iuiiude by a Tayl~or expansion in the ol niy0' pt1 2 coins 111151' wi tn .•

. 'r ieci ro ui-meer0f the ii: IA ,'; L- I. , i.- obvious: that

aa
OL (1) AL(. 2 4

zrt i A3 1 ( 1i (¾xk X- +C';

'ii''imatrix A ; Hi it nu Vet or K differ f'orom A .2 K im.j :,y

the. fat. t ';iaI. v:,. i ocr ul hir e lemon 1Z,. itj i " :.t!WQi' 'fi:'er ie K~

riot at. Iint Xn , Koit, at a point c elnm'i. joy a! vl.1: ithe Itrue vaLlue 01,i' Ilit parall't I at'

in~asmu.ch a.- A aolý X. ýýitt's tssuted] c lose, ) I'oJe.'l? c.1(io o.t' A .. and K ~., on t.he' on(.

band, and )v' A ;irt, X on the other hand, oar-~t1.-mitlý I.-, id. Qtuii o lit

I ruzla o(-. 3)do mt depenri ut va .Lire c of i.h u- -s i at' rnd , in -e, ace ordin fi ,

definition,
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a L In PN(Y I ) (6.6.24)

it is easy to prove that ýk have zero (with respect to the ensemble of input signal

y) me:o -'dues. In other words, discrete random process 1k(R = i, ... , n), taking

oven for exact coincidence of the estimate with the true value X is a

..Zrýly fluctuating disturbance.

The second component of zR; presented in the form of (6.6.23), turns out to be

proportional to current mismatch between the true and estimated values of the

parameter. Proportionality factor K is a random variable with a certain positivt

mean value. Thus, according to (6.6.23) zk is the measure of mismatch between the

true and estimated values of the parameter. For small X R - Xk this measure on

average is linear. In general substantial too are terms with higher powers of
A

S >. k -W so that zk can be presented by a Taylor expansion in powers of'

z k Xk with random coefficients depending only on the realization of the inxpt

signal. The described properties of zk qualitatively coincide with properties of'

output signals of devices known in practice for detection of the error signal - dis-

criminators (see § 6.2).

Let us turn now to clarification of the sense of quantity KR, which is the

current value of the second derivative of the logarithm of the likelihood function.

If' parameter X is to be fixed, the mean value of this derivative, taken at the point

of true value X 4 , will completely characterize accuracy of measurement of the

parameter. As already indicated, due to the proximity of X 1 and X values of thc

second derivative at two these points practically coincide. Then it may be con.eluded

that the value of Kk characterizes the current accuracy of the reiative measux'emC-Ilt

of the parameter in the k-th moment of observation.

From the theory of estimation, and also the method of least squares we know

that• for unequal errors of separate measurements results of these measurements ýcloui.-

be used for calculation of the final result with weighting factors, inversel.y

proportional to dispersions nf separate independent measurements, considered known].

Our analysis showed that allowance for unequal accuracy should also be made in the

uL:oidere'. case of an optimum meter, whcrc the measure of unequal accuracy, inversnly

proportional to dispersion, here is the current value of Ki, formed in the actuli

circuit of the meter.

'I
iii



h.-It wonuldIc c' iI I e to 1:rass to interpretat tn ŽIf'

the, torm. atf block OltYam. caneaie is lu -Ž0' aol imuts, it lil-l I r . tIl.*-

oU >L convenilent~ly t~o do w enlet htliý ' :1] ' 
t 

;:z 'Oii' tt¶l

ii. c-n.s.surv' to explain, e. g. , how it is onseii, j cru to tnt

:aqigof' the input mixture, usually a hj.gh-trequen_-y s el e tia i.[ eul.

ttin-' next, pint to oastcs when disc reteneiss Indeed i.s ijsi 'ie rom rl, u

ec s b 1 co'sir]ertio s; but. inearrwhi 1e 1,Pw t _C 'n c I . :- -

,Ietpractical application in radar.

With the help of passage to the I intit t . n ,0-

ix; - t - t0 ) we obt ain cont ironu k n_.i a 3 1-ci :,[r I : (1 PI,-k . U )` ~ -4

171 k

* of he tendenicy to0 a limtrai of matrix elmet 01 oou G is -,he same, axs 1)0'o c'-:

mi fxtrix R, for which' R K(t t, t) P(t,). Thearefore, wvith parsaý,g' to the

Stlly 11: ho introduce functions

e y, .'=ctih=Ck

Then i'rorn formulals (6.i)anct (6.6 2jt. .IJ.L..snat. [or' the exisý-tetac &i list 1.1m

22- necessary that zk seeký zero, wheir.-1 l,5A ninaixe iic 1 1 ±.A-

as i This requirem n wilbkaife f z and APi can, be presented ii: bt- !'c.--,

5 (s) ds, 2

Aj,== 5Wdst 5A dcA(s, 4)

4~ ~ i' an d .. v3 aol (i*-) certain r andom 1miSct ions o1 tlime.

Ti Form 1' these functionis wits. be clarified ini examples sobsequerr-.ly;. .

t;.a;eitl toemphasize. that relal lotis)ii ý (66. i determine in a who>,I ±L:LrS 01i

1I.icLt~Ll/ eqs cvalerxt, but genlera] 1,y -lot, eqL4nl !uls-olo:;., wit1~.. h o

Iritegiat ton an blcit ical result. zl. TLxo.:, the con tlii uous analor7 o.I z in- dfelo coin ll~

'ambigonus l;1y: ally statistically equivalenti ite will do.

loi the sae iLosin whichmti A i iuorl ~ . K.,01

nba's~ ...1.onsde.

Mw, ----



where K(t) - limit of quantity Kk/A as 0- O, and a 5-function will be formed at the

limit from 51k/A. Then expressions (6.6.19)-(6.6.22) reduce to form:

(6.6.29)

1(t) (I.%.4z (-c) d-c+A1 (t), (6.6.30)

ct, C)-+-e K(t. s)K (s, t)ds-R(t,) (6.6.32)

Relationship (6.6.29) can be presented by the block-diagram of Fig. 6.13.

InpAt signal y(t) is fed to nonlinear elements i and 2. They form, correspondingly,

quai t ities z(t) and K(t). Quantity K(t) directly determines the gain of inertia.&es.•

amplifier K and, furthermore, as control is fed to filter C. Quantity z(t) is added

to output voltage of ampli±'lrr K and is fed to inertial filter C, whose Pulse response

c(t, x) depends on the magnitude of K(t).

After addition to the a priori mean value of i-t) there will be formed an

estimate of the parameter, x(t). It is used to check characteristics of elements

1, 2. One more loop of intercoupling closes output of filter 0 through amplifier K.

The described interpretation circuit is a complicated self-tuning system,

containing tunable nonlinear elements 1, 2 and linear filters C and K, pulse

responses of which change with change of

( input signal y(t), i.e., are determinc-i h./

random factors.

Let us give names to ronlinear elect

r K 1i and 2. Making for z(t) an expansioii ai,

A analogous to (6.6.23), we obtain
A ft

Fig. b.i5. Two-loop variant of the
circuit of an optimum tracking meter:
1) discriminator, 2) accuracy unit; (6,. 35)
C - linear jilter with putit ll pui
c(:, r); K - inertialess amplifier
with rain factor K. where the first component ý,(t) - white

noise, intensity of which does not depend

on the mismatch X . (t) - X(t) between the
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zero of the discrimination characteristic, having a limited zone of linearity, is

tuned approximately to the true value of X(t), coded in the input mixture. Thereby,

the system realizes tracking of the realization o•' process 1(t). The structure of

linear filter G is determined by equations (6.6.31), (6.6.32), according to which

it nes variable randomly changing parameters. By the correlation function its

, ýrties depend on the a priori statistics of change of x.(t), aiid through K(t) on

the statistics and realization of input mixture y(t). Forming of K(li) again is

carried out by accuracy unit 2, in turn controlled by output data of the system.

Me-ý.ers close in structure already are used in practice. The circumstance that.

the optimum solution in any conditions is in principle close to the one practically

utilized is very remarkable. Theoretical solution permits us to optimally select

the characteristics of separate elements of the meter, in particular to find optimum 4

operations of the discriminator. The need for an accuracy unit and special control

of smootl.ir, circuits is a new finding, ensuing from theory.

Let us indicate that the circuits of Figs. 6.13 aknd 6.14 are absolutely

equivalent. Inasmuch as in the first of them there exist two basic coupling loops,

cl.-_sing to the discriminator and the accuracy unit and separately to the adaer,

standing after the discriminator, and in the second there is a basic loop, we

conventionally call the circuit of Fig. 6.13 two-loop, and the circuit of Fig. 6.14

- single-loop variants of an optimum meter.

Further concretization of the solution of the problem of optimum measurement

for different statistical properties of input mixture consists of finding operations

of formation of quantities z(t) and K(t), and instrumental realization of these

operations. Furthermore, it is necessary to establish the algorithm of smoothirn; in

the linear filters for different forms of correlation function of the parameter a5,-t'

diff'er'ent forms of K(t). I
For convenience of subsequently finding operations of the discriminator and

its characteristics we shall discuss in somewhat greater aetail quantities z(t) and 4
K(t). It is obvious that in general likelihood function P(ylk) can be expr, .Ted

through the product of' conditional probabilities in the form I
P(Y )= [flP1(flIyh.. ,., A- ... , 1h,

- P .. v,; 4'..., •A)j, (6.6.34)
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I--whic!;. w(- easily calculate the average gain factor ~)

.%L! turn now 'o characteristics of the resultant accuracy of measurement. First

we sina1l study the case of discrele observation. It is obvious that any statistical

o;nfl o: 'fkrences X~ X is determined by relationship

06~a a)M3. A P(I).)Al P (y) dy, 6.43

'.ihr ý tl I S P(J~jy) Is again heajoeiridistribution of ~

i I stitutlre, in (..3)tkio a posteriori dis-tribution

P Qh) -- (2:F' 2 -Idet (V +A Ar"X>

X xp ( - it+V-A

lf. ci'n med b,ý multi eli ation of P(I.)b F(A) alnd iintroduction of P,

.,211izn. iqetor', we arrlvte at intE ,ral:- wli-h r.ulti-jimenfslonal Gv.ussian funel~ions,

bhIn parts or with the hielp oif a mult.i-dimensional '-iiaracteristic fun-tion.

In pay'tlculLar, as ii, iz easy to prove,

ThIF; thow:-, the unbiased natuire of thie estim,ýa-e, *.hi, ~ a niot unexpeceted

-ýrr'riyiij.2anoe (.see § 6.'o)). The corriolatiori fiunction of eýrror of Iheasuremenl. ic (.q iýtI

loj [ ,s(2s)"`1 (det IV + A)

'xp * (V + A) el d I $(Y)dy

F-2

C.()P()dy= .h( (n >k). (..1

(6.6.41)

I to



Phi;, xit I. tx resecthrou~gh the. value(. ~-.t .a er~e UV1 at-T th-

Yormulas Var uie cace of car.1ln.nuou2 c'rs-.exvation are obIAtined L., nol,c'..':; 2.

tclne tioints rn (0. 1' .41.) -((.642)

5.65 The Opti niUln ±'Ca:'kA ,- 14f' it . ..

J~ t~s it'vtt~hwe shatll eolisideŽ' s'rl Ioe .ui 1r. 'I. ,

ea I,] Of,. Let us crmAnia size (a.; 1, a:-;. 'r"eae ltICrn' (itl

.-' y'vat1L.-) i oi ' :dx1X Lure y ( x).
i.1 ts !a veh . ii.Ltdy measuricn1F(iit of par'ame'tei'o- of ar, inicahetrtý!l. r

a..LID backl~r-aund 1"aFr

1. '' rva el:'' . rth ,J the Ipulse' repetlt 1..'. 'it:( * k iC0 . S(3Ctn hv tb1tl~

bhrat.ion and t'orm at' injtjapuiseý moduleý lion, Wihere in theý case cl' the preso(rwe ýIt

"I'Iuct~uatians at' I.he signal thc- Values D2'flti~ '
M

r noonsc of pultý- l -t ii.7.A

armod will be cconsidereu independent . 'XIWi ai&tI 2o"i'li.:l'it1Itii fi'

"m~ -nthod. c oulplei; indleperndertC e is Not tequl red. It ir, timpor tantar I i
77170'he 1 ato o hepls b :.12z2:red lamEIer does not vax. 'g. ':'It '

:J1jiaraeter at' this t2%Cc orns.z in the fact that. ever-nI af f

t eotnop tori jzatij of' y( ) the p lkl.1ho **u3l I

1 It0 1 '0C 0111tI a form. disc rete- r~eisýjtiye to tepar'am~eter, s~ftWrt' i11111

exp 4(T , j,1s)d

Wit i.r , .' ;v .; )c - .' ij;tiO ) (in Cl I'o.1 a uv. "A. 01~ t Iaill1.) C; ,' . , :, I uYU

re;;;iectss arialolfw(uc fcti'nction L(.L, k).v))f~rom ((,.G.t44) al.1 pjr'aictical' l. "

dit'1'erirng [rormSa" only within l.Imit's of' eniso( do rat ion.

'r!b 1 flrt I I) -!t I-)' funjjctijon (6.6.1414) ,ari beexpa~ndedli powc'rnr V
!ull. I u['1;oUZ l.y to ion.'.xiwp' by. C.1 fe iiIiG r alL aiu~iari a. u niol

(lis-t-. 'bu ~oLn (..,) we f'orma~lly arir-ve cit. tile trartf' 0,1- tutur, of' all opt.iflilitl VL Or'

'-90-



(6.6.19) as during discrete observation, but by z. and Kk one should understand

(acLually within limits of the pulse) the quant,.:ies:

, .0(6.6.45)

SK~ • _. ! /,( . ;,. (.s)) d-t' k6.6.46)

An optimum meter produces two types of operations -intraperiod (in discrDitiiiatfir

and accuracy unit) and interperiod (in the discrete smoothing filter). Tran-itio,,

during smcothing to continuous quantities Is formally afid technically permissibie ]

oniy when during interval T r the parameter changes insignificantly. In thfe jene-,ral

cUa7e Lt-e smoothiing filter remains discrete and its pulse response C nk (or nL;1 , .) : !

det •rinined by mu.trix equatioi~s (6.6.20) or (..) In di,-;t~i]ctlon f rom the ]•

iroczothing., filter operations of the discriminator and accuracy unit within each ,.Le

are ",.l.wayc continuous. If we allow for. the shown peculiavi, IreF, then inc'e',,,.,.... ,

r aL

else the case of continuous observation of a pulse signal, it. formally simriiar tI -,

the case of discrete observation,

We shall discuss one case, when transition to discrete smoothing filters L-,

already permissible from conrAlderations. of' purely -technical conveni ence. .u,ýe, 4 L/I

more a,•.d more they realize smoothing c!ircuits with the help of' digital comput-erc, iJ

pozý,ibilities of which are extraorclinarily broad. Especialfly evident are advaijitav,.-.

of' digital computer technolog~y duriitg designing of c-!..op1.Acated .radar cnmp1Pxe.-., where.

the problem of measurement is combined with the problem 1f furth/.Sr profler:;1njs rit,

transmission of information. If,. in these rconditions, Outside of depen*dence cor,

ztruo'ture of' the c:arrier-signal of' the parameter, we are to quantiz,., in titme Qhe:

data Proceeding from disc riminat~ors where we selert an intervatl of quantiý,,.qior,

smaller than the time of noticeable measurement [sic ? c:hange.] Of the Ierm:e' h

:-moo~thinp, circuits can be sy.nthesized with the help Of ,,atVI e(Juationi (,',.)

(6.6.21) and are realized on that digital, computer whif:h call exý-(-,ut•.F the set Of

npE-Y-ationis of smoothing, with flip required ip~eed.

In th~e particular care when t.he if-,n., i•; u].,ed, and of' thr, type conrit,ver•dI

above, and when in a period the mtayeured quantitieos •inctirt.ly do not chasrijIi, .to

decrease the number of perations of t ,moothing it or perainacc .,r to divide -anoothli,5

ar ilwy~cotiuus I W alo orth sow pcliL'1~es te ~-91-,!~A~



into two stages, In ,the first there occurs grouping of data in intervals comparable

to the time of change of the parameter, and in the second there occurs discrete

smoothing by a filter syntheatzed according to the indicated matrix equations. K
In practice we may encounter other interesting cases of close intertwvIning of

questions of continuous (analog) andLdi screte '(digital) processing of signaiý-, the

description of which is beyond the framework of the-present section.

6.6.4. Possibility of One Simplification of the Meter Circuit

We shall give certain considerations, allowing us to produce an important

simplification of circuits of the found optimum meters. Let us zonsider the case

oL continuous observation. With rapid changes of all immaterial parameters y(t) as

compared to X(t) function K(t) is a rapidly changing function as compared to the

correlation function of the parameter. Presenting the integral in (6.6.31) in the

form

Se (1,s)K (s) R(s. c) ds=

I• .K(s)dsc(1tJR,(i, .),

where duration of intervals = t 1 - t is much less than the time of correlaia on

of R(t, T), and assuming ergodicity of the random part of function K(t), thanks to

which

tj+j X (s) ds 9I(04 A,

we ob3tain

e ,) K (S) R (s, c) ds c (t, s) 1((s) R (s, c) ds.

Here" ýt7 is the mean value of K(t) in the ensemble of input signals y(t). Here,

to smallness of error of measuremcnt X(t) - X(t) = E(t) the value of K•t can

be calculated, not at point X = X, but at a point equal to the true value of the

measured parameter, so that

S_ _ a' t,• 0 " S)) ( 6.6. 117)
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Thus, function K(t), expressed through the limit of the matrix of second

derivatLives of the liKelihood functional with respect to values of the measured

parameter, in certain cases can be replaced by the a priori known mean value of this

function. Equations (6.6..i) and (6.6.32), determining characteristics of optimum

fi' , ,+• nere do not change their form, but instead of random function K(t) in them

,.i:,• now appears the known function of time K-tT. The actual linear filters of

blcý.-k diagrams in Figs. 6.i3 and 6.i4 become here filters with nor~random character-

istixs. The presence of an accuracy unit and circuits for controlling the stwootning

filtti.. becomes unnecessary, and elements of coupling, shown in Figs. 6.13 and 6.14

by the dotted line, disappear. In particular, the circuit of Fig. 6.i4 takes the

well-known form of a single-loop servo system. It is natural that, inasmuch as

K7t) does not depend on the current value of y(t) in that same approximation in

which it is possible to disregard fluctuations of K(t) during synthesis, variance

and the c2orrelation function of measurement error will be e.,pressed in the form

(6.6.46)S+ o. .. (9) == C Y , 0 =g Yt, 0,

From material of Paragr',oh 6.6.2 it is clear that the meaning. of the replacement

of' K(t) and K(t)- consists in rejection of allowance for unequal accuracy of separate

measurements or, which is the same, of allowance for parametric fluctuations. Tiý

i't;t•p,•xaih 6.8.6 we shall give an example showing that this refusal leads to certain

increase of error of measurement, but,: as it was shown in § 6.2 for practical

circuits, this increase frequently is small and in a number of caseo Jan be ignored.

We note, only, that the introduced simplification deprives the optimum circuit. (i

that. flexibility of a system with self-tuning which is manifested upon change of

the input signal level. When the average level of the signal changes as compared

no design level the previously optimum circuits always become nonoptima]. Ho-'ver.

in circuits with adjustment of smoothing circuits there occurs change of th' rqjair,

ta-tor in the feedback circuit (with respect to the accuracy unit) of th ,,umu

nature which should occur during change of the design characteris;tic of the input
I

quu;;'tity. At the sarme time in the absence of adjustment theire remain no means for

i'e:servation of optimality in the described conditionc, and impairment of the quality

of' measurement may be consiaerable.
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In physical'meaning, as -follows from .(6.6.33) and, (6.6.,47), K!-7t is the

(averaged) `,gain factor of the discriminator. On the other hand, considering the

discrete case, analogou'sly to, [8] one can prove that.

la'1 yI) _aP(_ ____ . (6.6.,o)

An analog of relationship (6.6.50) in the continuous case will be

1"•'M(Y-- ) Y (6. 6.51)

where E(t) -- fluctuating component in the discriminator output., taking place also

with zero mismatch.

According to (6.6.561) Kt is also the spectral density of the fluctuating

component ý(t) at the discriminator output. If we translate this component into the

equivalent value of the measured quantity by division by Rt) similarly to how this

Wa-: (1i• •n § 6.2, the spectral density of the equivalent noise component i(t)

=,(t)/1.t) will be quantity i/97t,:

in V to. (6(.6.52)

Thus, i/K7t7 is the variable spectral density of equivalent noise at the

discriminator input. This interpretation of KT) is exceedingly important, since

multiplication of output voltage of an optimum discriminator by an arbitrary con,;tant.

immaterial from the point of view of producible operations, changes the gain fartor

and spectral density of output noise, but leaves constant the equivalent spectral

Coný'itý i/K-t . in the frames of these assumptions function K(t) (or Tkk) is the

uimlnue characteristic of performance of an optimum discriminator. Resultant errors

o w :aourement always depend on this function monotonically: the larger 77t}
k1) the less the error.

IC statistical characteristics of immaterial parameters y(t) do not depend on

* . T K) is a constant [K--) = K]. Then from (6.6.3l)-(6.6.32) we have the

L'oilowing equations, determining pulse responses of filters c(t, T) and g(t, r):

e c!) + -• ]C (t, 5) R (s, %) ds (• ) ( 6.6. 5 3)
I.I

C, -t- + YK SC (, s) g (s, -t) ,d-- g (t, ( .).
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Equation (6.6.53), considered the equation for function Kc(t, T), coincides

with the equation of an optimum Wiener filter, detecting a signal with correlation

function R(t, T) from its additive mixture with white noise with spectral density

I/K. This is understandable, inasmuch as for all ideal assumptions work of an

A "optimum meter in linear conditions

is equivalent to work of a linear

servo system, presented in any of

Fig. 6.15. Two-loop variant of an equivalent the variants of Figs. 6.15 and
linr.-e system. KC - linear filter with pulse
respon.;e Kc(t, T). 6.16, to which as input disturbance

there proceeds the sum of a "signal"

X(t) - 7t-3 and "noise" ri(t). Due

to this all solutions of equation

Fig. 6.i6, Single-loop variant of an (6.6.53), determining the structure
equivalent linear system. KG - linear
filter with pulse response Kg(t, 'r). of smoothing circuits, simult.a-

neously are solutions of the corresponding problems of optimum filtration.

6.6.5. Optimum Nontracking Meter

The considered type of optimum meters is not the only possible one in the

framework of our assumptions. Another circuit of a meter, also realizing potential

possibilities of measurement, can be obtained for Gaussian statistics of the

parameter on the basis of approximation of the likelihood function by relationship

(6.6.4). Cross multiplying (6.6.4) and (6.6.8) and producing transformations of the

logarithm of a posteriori probability, analogous to those shown in Paragraph 6.6.2,

we arrive during discrete observation at the relationship

C6&Ai(Lj-1j)+A., (6.6.55)

where C = [A + V] - a matrix, determined in the current interval of observation,

and matrix A is determined according to (6.6.5) and with a high degree of accur'tcy

coincides with matrices A and A,..

In view of the diagonalness of matrix A. relationship (6.6.55) take.:, ie form

C.A .... (6.6.56)
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If *etexamine the -casetofe.continuou6, observation, (6.6,56) ,passes into integral

relationnhhip:,s)

40. "Q K (e) 77, (6.6.57)

Relationships (6.6.56) and (6.6.57), giving a final solution to problem:-,)f

meter synthesis, are basic, and their operations are..illust'.'ratec-,by--the "ýF±oui {t

F g. 6.17., Element 1, to which there proceeds realization 'yt), is .a nonlinear

unit, constantly separating the value of the point of maximum likelihood ",.(t) and

funciion K(t), determined through the second derivative of the logarithm of the

likelihood function, taken at this

Of) point. Then in the circuit there>.ý

follows a subtractor and linear filter

CK with pulse response c(t, s)K(s), to

Fig. 6.17. Nontracking-variant of an which as the object o-' filtration there

optimum mes : .) estimator unit; CK -
linear filter with pulse response proceeds the difference of the maximum-

c(t, T)K(r). likelihood and mean value ).(t) - 77t,

and as an adjustment, function K(t), characterizing the current level of accuracy of

measurement. An adder for reverse input of the mean value completes the circuit of

the optimum' meter.

In distinction frcvitthe circuit described in Paragraph 6.6.2, the new circuit of

an optimum meter is not closed. The circuit similarity of the two variants consists

in the following two factors. First, in both circtits in the first stage there are

used lo.-irnertia, nonlinear operations of processing input radio signals. In the

tracking variant they are carried out by a discriminator and an accuracy unit; in

the nontracking variant these units vre. replacedby a unit -.which it is possible tc

.ondirt,.,Anally call an estimator unit.

Li both circuits there exist linear smoothing filters; in the tracking variant

t~y -'lose the tracking loop, and here they are constructed on the basis of an open

. The internal unity of variants.becomes still clearer if we consider that

the pulse response of the open-loop smoothing filter is the same as for a linear

.-;y.tem equivalent to the closed loop of the tracking variant of a meter, if the

latter wor'ks with small errors of reproduction of the parameter. This is especially

,:.Asy to prove 4hen we disregard the variab'le random part of K(t) (analogousiy tc

,.trqz...h -.6.3) and hlv,. for a cbnsttnat mean výI.uc of K(t)

-9-' K.
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Then the pulse response of the main part of the low-frequency filter of the

circuit in Fig. 6.17 is determined by equation

-C +t € c (t, s) R (s, c) ds--e =

... ing with equation (6.6.53).

By a method, analogous to that given in Paragraph 6.6.2, i+ is easy to show

that the characteristic3 of accuracy of the ncew variant of meter -x.r- ex-rcssed by

f or:;,,Aasf

the likelhood . (t=cqKT, t)g-Rt;,t

This nontrivial result shows that, in spite of differences in approximation of'

the likelihood function, in general determining different errors of measurements,

both the considered approximations ].I.t~d to identical errors. They give measaring

systems which, for a low level of noises, are equally close to a truly optimum

system, which in principle coul.d be obtained by means of direct integration of

rplationship (6.5.42) without. use of any approximations.

However, it must not be concluded that both variants of the circuit of an

optimum filter are equally easily realized technically. A very important advantage

of the tracking circuit is low criticality to change of a priori information fie6

into the circuit and relative simplicity of the discriminator as compared to the

ectimator unit. The discriminator will form the derivative of the ]ogarithm of the

likelihood function only at the point of the current result of measurement X(t).

This operation can be conducted continuously in real time. The estimator unit

for issuing the point of maximum likelihood should investigate the whole ranrge -,'

vajues of X. This can be carried out by a set of detection channels (without a

terrinal storage unit), constructed for assigned statistical properties y(t), fPi

a. possible values of the measured parameter X. The circuit should be com-pletýrj

by a device for separation of the channel with the greatest output voltage, Ii'

principle such devices, due to their multichannel nature, for technica] wu. (-urat iuu.

can not always be realized.

An advantage of the new variant of the meter is basically lessening of requirE-

nents I'or width of the a priori distribution of measurement error in the initial

moment of time. Previously this width had to be less than the section of linearity

of the di3criminator; now it must be somewhat wider than the peak of the likelihood
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function ... This circumstance is important in the stage of target lock-on. Analo-

., the.formula ..Of',accuracy,,,previously. valid, only during linear work of the

discriminator, obtains rA wider domaini of applicability. The secti!un of linearity

in the nontracking variant asý ItWer6,is :expanded-,'i 4hich i., an advantige att-ained

at the price of complication of the circuit of radifo processing of signals.

In the case of a multichannel lock-on 3ystem, built': ro'm'"g're*.t r-mber of

filters, gated amplifiers, etc., the estimator unit can be realized on 'he bas....

of this lock-on system. If channels are placed sufficiently closely, and the

probability of appearance in the given region of large noise pecaks or extraneous

targets is small, such application of' alohk-on syst:em doeb not ri:quire addition!.-

commentaries.

6.6.6. Potential Accuracy of Measurement

Above we obtained an expression for variance of resultant error of measurement

of a parameter changing in time., However, in its derivation from the very

beginn.ng we used a specific approximation of the likelihood function. Meanwhile,

it is no less interesting to determine the potential minimum variance of measurement,

as far as possible not using any approximations. If we could find coincidence of

the true limit of accuracy with the previously derived expression, this would be a

proof of the immaterial departure from the true optimum when using Gaussian app'ox-

Imations of the likelihood function.

Let us assume that the a priori Gistribution of probabilities for X(t) is known

and can be described by density PO(k). We consider that there exist derivatives

v(yjX)POX). We shall prove that foi- any estimate X(y) = ix 1 (y), .. ,o•k X(Y •Y X (0

oi" vector X = XXI .... XnLdescribing a realization of the variable parameter, we
n

havee the inequality

where ",Ik= ( - Xi)(Xk ) Xk) - elements of a matrix of second moments of errors oC
X= HZik j of thc' order (n x n)

C = II Cik II - sy•mtretric matrix of order (n x n), the inverse of

matrix C = C() with elements.
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C, , In [P (yl).) P. ( n1 JP In[P(y) 1)) . M)! X
XP (y I •)P() dyd, (6.6.59)

;i(i =1, .... n) -- arbitrary quantities, where the equality in (6.6.58) is

-eved when for all i 1, ... , n there are satisfied these v.Tlationships:

,.5- a [n P (y X) PO(,)d}O. (6.,. 60)

For proof we shall conside" iLurnctloris

~~~~P f,- ,, •= •(Y P,•k P. (),
y,= •In [P (Yl )1P. )]V(yIP.,Q) (6.6.6-1)

and form functions

+i +i (Y, X) =b+ S'ClAi. (6.6.62)
h-I

Wt., introduce arbitrary quantities ui(i i ... , n) and compose the sum

,ui'~(7' )..) (y, X)). The integral of the square of function T(y, X), ouviously,

i=i

i• larger than or equal to zero. Therefore

IW (Y, L)dydi.== u1i

= • w,. j',dydX

Ai, k [lf, 1 jClp

i.h l

a U

Z UgA. [Ii[.+2l,6. 6,., +
_,d=I I1=

Ld.A1I 1=1 (6 IS

5Ijhhyd,==5(l -j ,)(av- Ay)P(ylI.)o.o.)dd=Z,, (6.6./,)
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'x 0 1np( ))p k P (y 1k Pq (A.) diyd=C 4-T

it

L~et ucý coldics~r the int(egrals in- the ri.-iit ~. ofiq22.c

tifkdydk=~tx-. "~~T)~~RP

L II

I L~i ,J. ) educez.- to fornp

i. k=I

whsr thiere 1'ollows inequality (c.. .C) K Jrt9of '.he i'r:.d

t ~ eqlia l~ity In (0.6.6,3) and, consequii~e.t.1.. in (L...1isattLalfied whein 4i'y yX,

v, ie., vor;;a t isi'actiorl oi (..u

;i-.~y~l- (1i' u -i121 orel! ~ uli. i C. TIhank.-. u~i ' 11-

1)"c; t he ma,-;uit'llde ci' C),C

Al'?].v"-i': /l-Labie parameletcr > :) l'o wh* ch Ain iriequ:-.I Lt L',- ( .

A't pra1unE.-te 1 we s f-iscal ' cal L L i ,e t iiii Iri ci

D01, Lii L" mlaitf'r.x, A, .econd uiumrtUýIýi -; ' 'c- i,: :'1(1Luremenit. iii the cai,,

e ~ ~ ~ n Ft1-lI( * ý.L!h.9• 'ii aracterizedi ;eita'lpsrcy0 rflCOSr'l&n..

121Ž1 .iiu i.w(,r liMit Of i3(YItf'b.( j ci fIi. iA 0111 tsi-a'~u-ie JLS~I

'iifjjý i jL. 't . .he Case of' kntown a prlicri ;;Iii !..;I ':2;. iI(9fm (h-h tecrv(- )i'

Of' 'Mill IjII!f1it/t(1Ol' lcularr I ')1. tI., at
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of estimate X(y), it is possible to judge the nearness of this rule, and of the

device carrying out measurement coirespondlng to it, to the optimum one ensuring

potentially possible accuracy of measurement. As the index of efficiency,

quantitatively characterizing this nearness it is convenient to select the ratio of

e of errors of measurement in any moment of time interesting us tk for

-['ficient and efficient estimates, i.e.,

l_,.ression (6.6.59) for matrix 0 can be transformed to a form more convenient

Cor calculations. Introducing again the logarithm of the likelihood function ,

LL=In P (y I L))
and considering that

P (y IL)d) dy Y I ,) dyOA, dylad jP(Y1X---=-- (6.6.'2)

we ;b.ain

C,•")= "[ Jdy 4 (1py] X)+

+6 i P, (L) d In P,(L ) (6.6.75) I
Thus, matrix C- Is presented in the form of the sum of two matrices: matrix

--a i &, (6.6.74)

depending only on a priori distribution of X, and matrix

A m,, A(L ) P. (•).d)- A6..75, -

where matrix i Aik(X) A(k) is determined by expression

Matrix AX depends, in general, both on the method of encoding (t) in y(t) and

properties of input signal (t), and also on the a priori distribution. As we shall.

subsequently prove with examples, in a whole series of practically interesting cases

matrix A(O) does not depend on X. Then K = A and the a priori distribution of

probabilities affects potential accuracy of measurement only by means of matrix A.
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Matrix.A, as is clear from the definition, is that matrix which we used iii

solving the problem of synthesis of an optimum system of measurement. ,atrixA

for' Gaussian a priori statistics is equal to matrix V = U Vi I1. Therefore. i n hi-•

' case '-:• . c• ... ..... C-'== A-f-V

:and C+ CAR-R,

consequently, for Gaussian a priori statistics the rmatrix c: fV-'t'eier t te -1' -

coincides with the same matrix C which appeared in the process o" solution QC the

problem of synthesis and which, as we showed earlier. characterizes accura', off 0114

synthesized meter in linearized conditions.

It follows from this that the synthesized meter is actuallsr optimum as long au:

condition.- o.0 its linearization are satisfied, inasmuch as it ensures poterr..lflVy

possible aecu-acy.

u...7. Allowance for Side Peaks of the Likelihood Function

Gaussian approximation of a likelihood function of type (6.6.3) or (6.6.4)

remains true only near the true value of >(t), if noises are sufficiently low. In

the general case during synthesis it is necessary to consiaer o'de peaks of thp

likelihood function, explained both by imperfect fors of the autocorrelaticr .

oa' the useful component y(t), and by puLrtly noise disturbances. Let us shoir to

what sort of circuit changes complicat'Ot., of the approxinatikn of the likelIhoIc.I

C"'inctLon, aimed at more closely ref].ec~ing its structure, leads.

In the first place we shall study the case when side *eaks of the likelihood

fun(,tion are explained by a specific imperfectness of the useful component of the

sl[•na. .. e., corresponding peaks of its autocorrelation function. The position .f

thhe.'e peaks is rigidly related to the position of the basic peak, so that the

following complete approximation of the likelihood function, based on relatic%.lps

. ) and (6.6.6) is convenient:

N%

2~ A(1))+ hu A(4) (L - L -A(01} (ý.6,77-)

Here A(i) - s.eparation of the basic and i-th side peaks;

z(1), A(i) - matrices, expressed 'as per Paragraph 6.6.1 through the first and s.:'•crd
derivatives of ln P(ylL) with respect to X at puints . = X - L(i)' "
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among the considered peaks 2N + i there are included those which exceed
the noisc background in level.

Multiplying (6.6.77) by Gaussian a priori dist'ibution (6.6.8) and integrating

ty a method analogous to that presented in Paragraph 6.6.2, taking into account the

C i-o re of all matrices 1 A( = II K(i)RbkJ b I, we have the following

ion for the operator of an optimum meter:

a m (6.678)

Wh-I

X
Ql)- (l'•) + VI- '; AP • l•-- V

A. P~ . .. det (Ai-7 + R) 1-12
det A Jj

x*AIP {-A+ + , xA7)% i }
1- 2-i*)Ai)s

P i£+A,(0) S . (6.6.79)

Normal. transition in (6.6.79) to continuous observation taking into account

diagonalness of A( 1 ) gives

S(1 ---- ) - ) '' ) - , -

r(-- ) I'• dg +rFt'.(6.6.80)

AP') (t) - (t) A(&) (Q;
A__

Ail) 9) - P +H Al( )) + ep ({1-j Ky () e K 2), (c) dt-

-4 Kla(t) [W ) il) + K(t, (e)1 -- g)-A (l)' d, + (6.6.8a)

+ (,•() V1, 4 5(I) (t) + K(,) (0 () w-Aw-,-o()) (z[(,AC)+

.-Kul)(t) (.)--A)--•Jdtd: + 1- • g•C)(1, •. 1) dtJ

ct,., t ; i.) - solution or equation (6.6.31), in which ins•tead of K(:3) we take p.K(s),
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receiver i, nonlinear units 4, and cross-multipliers 8.

At the output of adder Z there will form the estimated value of the parameter

(after subtracting the mean value 7-7). This quantity is fed to internal feedback

circuits througn adders for input of shift 10. After addition to 77t7 there will be

for:,: A'Inally, the measured value X(t), controlled by selection of all units of

niary processing, which we consider detection receivers, dl-:;rimtrators and

accuracy units. When X(t) is fed to the i-th point thene devicef: produce shilt of

X. by , similar to that noted above.

L+'. us discuss the physical meaning of' factors AP), expressed in the dizcr(.-,t

case by formula (6.6.79). The first factor P(yIX + A(,)), formed in circuit term.

by the detection receiver, reflects the magnitude of some peak which characterizus:

the signal.

The second quantity PCU i can be reduced to form

P., [det (A-) + R)-"/exp (--,,o) (+ R)+

wherp veftor quantity qc A ( 4 X + L of the dimensionallity o(i

thi: ifeasured parameter coristitutes (after subtracting u) the true value of thc

-imea-ured coordinates with correlation mat~rix R, mixded with noise whose corre1ua-.1 -,
matrix Is equal to A~) One can prove this by expanding z(i) analogously to

(6/.f.23) near the true value of the peak of' the side overshoot.

Thus, P on Mi) formed by nonlinear unit ", shown the "likelihood" cl' 1,;ir gj'e.'i

output of the i-th adder of intercommunication an a random variable with correl',t on

matrix A(,) + R.

Analogously we can reduce factor P in (±) to the form

P(,j .- 'det'A•; r-"'ep I - 1I) A(j tqo() 1.
Sm () =Ail

where. i j = A(,)z(,) with dimens;ionality of the measured coordinate cosil..

equ j.valrct noi-.e at the input of the i-th discr.min,1,or (with smuil minml..hr's)

Consequently, P r (i) formed in 4, shows the likelihoori of the YiVCii 1i1}jut

or tn• t-th discriminator a! a, arantior variatble with correlation, matrix A, I. A awhole [' i)/

whole I1; () constitutes as it were the likelihood ratio for !part' m

of the parameter rrom Its ariditivt miAIure With ri,.The lcs a giver• ... , .in

Lujppi•insed by noi-;e., the bigger facltor; 1'(Y X + 1,i ) arid 1' CI,(1)/P It: (1),

Inasmuch an in the process o1' work there constantly occijurs iu'cumulation at th(! oitlut

of detection receivers and nonlinear units, the true peak cbtal nc weight A(n'), riva-

--o ------



T1
and more exceeding the weight of all other peaks, until this weight remains the only

one differing from zero.

Thus, allowance for side peaks of the considered type in steady-state reGirme

does not lead to circuit deviations from the met=er considered earlier. Making '. he

circuit more complex has, on the other hand, the advantage that it makes o:,vtional

initial lock-on with accuracy equal to the width of the basic peak of the likf-iiocod

function; tracking is established even if initial error leads to a hit on a side

peak, allowed for in synthesis.

Now l.,t us turn to the case when the peak of the autocorrelation function ic

the only one, and side peaks of the likelihood function are conne'2tead o,!: w. h th.,

noise background. Here approximatiLn of the likelihood function oazed on

relationships (6.6.4) and (6.6.7) is convenient:

P(h.yI)-- EP(y~l)exp{--..--l(41)A(i)Q.--(4)) • (6.6.82)
SIL1

Ir, is ,eue;zary to stipulate that the nui:iber of peaks of the likelihood t'unctio,

can be arbitrarily large with a large domain of definition of X, so that IL i.,

reasonable to approximate by (6.6.63) those peaks which exceed in magnitude a certalri

threshold level. As we can see, such approximation, being simple in form. is not ;o

in essence. Cross multiplying (6.6.82) with a priori Gaussian distribution ,.

and integrating; for the operator of an uptimum meter for the last moment of thc

time of observation we obtain the followzng expression

I += ( 6 6 .,. ýl

where
C(l)= I[A()-I-'V"; Ai)=jII I,)h,',h,,; 11: ,- =A0)fA,

II

A(,')- P (y 1 ).qa)) Idet (A-' +Rt)1'11X

Wit,1 transition to continuous observations (6.6.83) reduces to the form

-W)) =" (')1")€,(.,)P•,(11,(,-3 d(',), +0RB). (6. 6.8,)1

A block diagram interpreting relationship (6.6.85) is presented in Fig. 6.19.

Tt conzistn of separate parallel circuits, very similar to the nontracking meter of'-%

(Fir'. 6.17). The estimator unit issues a set of points of maximum value of the
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likelihood function and corresponaing points of current values of "sharpness" of

peaks of P(yl>). After subtracting the mean value from quantities X(j)(t) they are

processed by linear filters with pulse responses c(i)(t, T)K(i)(t), and then results

are summeo with normalized weighting factors X(1)(t). After reverse input of the

.. ue there will be formed estimate X(t).

Partial circuits of Fig. 6.19 have filters, absolutely similar to those

c(,n.Ldered in Paragraph 6.6.5., and therefore do not require explanation. We need j
onj.,! indicate the physical meaning of factors ?(.i)(t). In distinction from the Fast

:esides the measure of the height of peak P(y'X( 1 )) these factors have in

their composition quantities

P#,(.) - (det (Aj 4+ R)F-'X

)(ez {--).(t~.1) (A(~ +(6.6.86)

L)owing the "likelihood" that the position of the i-th peak is a random function wit.

correlatlon matrix A- + B, i.e., cosJist., oF' a variable parameter with correlation

matrix R and a fluctuating disturbance with correlation matrix A-i). PractiL:ally

OL;I,/ one of the peaks is true. The others, first, turn out to be of small height,

whi'h is necessarily revealed in the process of accumulation, and second, they

contain in their position a shiFt

from the true value of k, which

being accumulated in iieirti.il

S4 nonlinear unit 4, according to

(6.6.86), leads to further

decrease of the '~*m.of this

peak during formation of the

"estimate. As a result the olj Ait

again passes into the known

FJ-L'. 6.i19, Optimum meter with allowance for circuit of Fig. 6,17, worhjing on
noir;e peaks: 1) estimator unit; 2) linear
filter with pulse responses c()i(t, 't)K(i) ); one peak.

3) unit. for producing norinailzing factoi,3; 4) The onriducted investig,,at,i••r
general, adder.

shows that for a sufficiently

iur-,e ubzeri.t, ton time tho mctcr circuit, s3ynthpFiiPd on the basis of a "single-peak"

approximation, ini sotructure, and conoequnrtly also in performance, will differ little

from ysotems built with finer allowance for the real structure of the likelihood p°].u-

agraphts. This indicates the sufficient universality of results of the preceding

points. 107



6.6.8. Case of a Partially Assigned Discriminator

'Everýywhere a~ove we assumed that the input realization does not depend on

Z* 4 *t ,,ý " ,h d i g;ýthe x~ea lizati an -

and the method of estimation do not have points of contact. In practice thi, i.s not

- always so. As an example we shall consider a radar goniometer system with a

tracking antenna. From the antenna output there proceeds a signal, a certain

parameter of modulation of which depends on the mismatch between the direction to t.he

sounded target and tne axis of the radiation pattern of the antenna. From physicas

considerations it is clear that tor a maximum level of the reflected signal the

axis of the anterina should to the best possible degree coincide with the target

direction, but inasmuch as we have at our disposal no more exact Judgement about the

position of the target than.the estimate of this position, the axis of the antenna

rho.ild coincide with the current estimated position of the target.

P rco it is clear that the input (f or the receiver) realization from which ':hE.

estimate is produced directly depends on the estimate. We are primarily intere.-ted

in cases when the dependence on the estimate is expressed through the difference

between it and the true value of the parameter. It is reasonable to assign these

2ases to the class of systems with a partially assigned discriminator. Actually,

the antenna system, during synthesis considered here to be assigned, to a corsiderable

extent predetermines optimum construction of the n;ubsequent circuits.

The indicated "feedback" between t.he realization and the estimat'e deprives us

of the possibility of applying without rvservctiový the apparatus developed in the

preceding points. Let us start from the fact that conditional risk

R(P., 4)&I(A )P(yj)L--i)Po(;LWd).d C6.6.87)

tux'ns omt to depend on X both through the loss function and the likelihood

function, so that, strictly speaking, its variation should be produced in full t`.o

)ce:h these functions. This leads to very tiresome calculations and a very compli-

ca', meter circuit.

Considering the case of discrete observation, we simplify the problemr, assuming

that the estimate should be produced for moment tn from the sampling produced at

moments of time t 1, t 2 , ... , tn-i. Then relationship (6.6.87) for a quadratic loss

function will be rewritten in the form
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(66.8 IXP (Y,, .. yn.l,--J,. 1. 1 .- &)X
X P, (I, ..... A .) dl,..., A ndy,,... dy,_, (6.6.88)

i•he solution is produced as if with a delay of one step of quantization.

Ac?' ally such delay necessarily appears due to the irremediable inertia of feedback.

This assumption leads to great simplification of the problem of estimation. Vairiation

must, produced only for estimate Xn, contained in the loss function. Assuminc?-

again that conditions of approximation P(yj - X) are satisfied by the Gaussian

function

'~R-~ 'y!OePiz(- ) .(4) A 41 (6.6 .8,)'

where

6''
k]P~ySy0(,6w

we obtain a solution in two equivalent lorms, very siwilar to (6.6.19) and (6.u.21):

N- A (6.6.91)

b--I
N- 6. 6. 2)

Functions Cnk, Gnk and KR introduced here do not require explanations.

Re.1-jationships (6.6.91) and (6.6.92) differ from (6.6.19) and (6.6.21) only in their 1Y

upper limit (n - I instead of n). I; is obvious that for large n and a sufficiei••

smoll step of quantization the difference between the two cases is small and at ...

limit disappears completely, so that for the case of continuous observation

S.SC, ) =1z -C Kt (c) A (,c) d, + A (t).,6.•

S- - (.6.14)
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Relationships (6.6.93) and (6.6.¶)).,completely coincide with (6.6.29) and

(6.6.31). However, it is worth recall.ink!gthat operators for processing a signal

in the di scriminator and -ccuracy unit are obtained by differentiation not at the

estimated point,, but at zero, whick& .s explained ,by assignment of oart of the

discriminator, usually carried out in the form of elements of the antenna system.

The 'shown specific character of solutions-of (6.6.93) 'and '(6. :6.94) is also
S... --re ece onh the' •orm o-hTokd'agrams Of'of optiu ee• rin Fig'- '6'..2 h~! •

is a circuit interpreting relationship'(6.6.95). In the figure there are.separated

element i, forming the realization depending upon the estimate, optimized parts of

discriminator 2 and accuracy unit 3, a circuit for input of -the mean value, and

smoothing filter G. Specially marked is the signal fed to the input y BX(t; X) which

usually differs from y(t; X - X) both in structure, and also in physical nature.

Usually this is an electromagnetic wave, proceeding to the antenna aperture. Its

parameters depend on true parameters of the target X.

Fig. 6.20. Optimum mieter for a pa rtially
assigned discrimi,•ator: 1) assigned part;
2) optimized part c.f the disciiminator;
3) optimized part of. the accuracy unit;
G - linear filter with pulse response
g(t, T).

The result of the present paragraph is the fact that all subsequent results in

s•,•ther of optimum discriminators (§ 6.7) completely pertain also to the case of

partially assigned discriminator, if we consider the specific character of rejt.tion-

ships (6.6.90).

i.6.'). Optimum Meter of a Linear Functional of a Parametpr
with Gaussian• Statistics

In a whole series of cases of radar practice there arises the necessity of

measurement not only of a parameter coded in the received mixture of signal with

noise y(t) but or a certain linear or nonlinear function or functional of the coded

quantity. An example is measurement of the speed of an object by readings of a

ranile finder in an incoherent radar or, measurement of Cartesian coordinates of the

oh.!.,vby a signal in which there are coded the radio (usually spherical) coordinates

of ' .. ; object.
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In this section we consider methods of optimum construction of meters of

linear functionals v(t) of parameters X(t) with Gaussian distribution, directly

coded in y(t). The relationship between v(t) and X(t) is established by linear

integral relationship
T

v (t)-= FP(, s) I(s) ds (6.6.95)

.nu is wholly determined by the form of function F(t, s). In the part.I'ýular case

when F(t, s) is a k-th order derivative of 5-function

v~t i th kthF.O, #l8(c(t'-) (h--o,t, 2,;,..),T,-

v(t) is the k-th derivative of )(t). If P(t, s) = (t - s)k-i (k 2 , )T

t, v(t) is the k-multiple integral of X(t), For other examples we can consider a

functional which is a certain smoothed or expected value of X(t), etc. If certain

functions X(t) and v(t) depend or). constant random parameters ai(i = i ... , i),

differing little from mean values a, so that

a ,  +± r'i,
it iZ possible to expand X(t) and v(t) in powers of Li' limiting ourselves to terms

of the first order of smallness with respect to •i' Then we obtain relationshilpf

;t(O. t;a,,..., a,){ ,
a. + IL v(t; a,,., a-J,

,. ion)+' Kiwi , at, I

by which it is also possible to approximately establish a linear relationship

between v(t) and X(t), allowing us to consider v(t) a linear functional of >(t),

The method of synthesis of optimum meters of' linear functionals is cios-ly

connected with the method of synthesis of meters of quantity ,(t) directly. AL;

also 'In paragraph 6.6.2, it is convenieNt to quantize iEn time all the conO'der-,1

quantities. An analog to (6.6.95) in this case is rrAationship

We shall vary the mean risk for i1m with quadratic lorr; function

R (PO, ;)__I--S...i, _I ;.)p•,.N, -- !* ~ P ,,...... a

X Pe ,... sA,) d . ., dAtdol .•dVy.
where we assume that signal y(t) if, acceoslble to obrerval,ion ai. moments; ti, T,,

in no way connected with moment tn which in the argument o' fonctional VmI h ,; 1,

- iii -



result we:,have.;,equation

, .. -.. .0 V O P 6 ,*: , ( 6 .. 6 .9 7 .),

where subseripts in the likelihood function anid the a priori distribution signify

moments of reading. The formal solution of (6.L,97) is

me N, (6.6.98)

FJ.',:I P,ý,. .)( )-%r. .h=H, d

,1rwhere there is introduced the conditionalmathematical expectation Tk(,, n) of the

parameter at the'k-th moment-of time, composed on the basis of observation of

mixture y(t) at momentc t1 , ... , tn-

In § 6.5 we indicated that the conditional mathematical expectation in principle

is the optimum estimate of the parameter. However, all methods of expanding the

operator of conditional matnematical expectation above pertained to a case when the

estimate wi's nroduced for the k-th moment of time for a sampling, obtained up to the

k-th moment. In relationship (6.6.98) c>nditional mathematical expectation is taken

for the sampling, ending with the n-th moment, which 6an exceed the k-th. As a

result we cannot directly use the method of ot'ta•nlng an optimum estimate developed

it, Paragraph 6.6.2. In other-words, with' the requirement of-physical realizability

of the operator o" formation of an estimn'-e of the actual parameter X(t) the linear

functional of the estimate, taken acccrding to (6.6.98), will not .be the optimum

estimate of the linear functional. In the practical sphere, for instance, it

t'ollows from this that simple differentiation of readings of the range finder in

general will not give the value of speed of the object measured with the least error.

Moreover, it is possible to indicate cases when this differentiation leads to great

error of meazlur-,ment, limited only by the passband of the discriminator.

Frr finding a physically realizable solution of equation (6.6.97) we again

aszo&Lr,- fulrillment of conditions in which the likelihood function can be approx-

by Gaussian curve (6.6.3), and we assume Gaussian ztatistico of parameter

•(t). The expansion of the logarithm of the likelihood function we.conduct at the

poinL of the current physically realizable estimate, which can always be required

beforehand. Substituting (6.6.3) and (6.6.8) in (6.6.97) and integrating according

to the method of Paragraph 6.6.2, takingiinto account the diagonal nature of the

matrix of zecond derivatives, we have

-1±2-

- - !'¾W .



4 i

* N

A90A121 + K (i _71] +'E Fik.(6.6.99)

* 0r [ V + ] inverse matrix; Q - matrix of order (N2  'i , etermined 1j,

relationship A
0, 1, k <a,(.60)

IdA 0, 1, k<1.

Finally, matrix B is determined in expanided form by relationship

=N,

B~a~ 'h~1(6.6.101)i
01 k< 1

Fromn (6.6,101), taking into accoýunt.- vtlue- of C xand V ~'we can obtain

Eq uu J1 on

B.a+~ Bm4kIugh V ,t~ (6.6.102)

c'onnecting discrete linear operator B 9 with the correlatiorn funiction of )arhmei~f.-r

R n k aid the operator of linear functional. IT i

Another p~resentationi of' ýo.I-tion o.' (6.6.(--,-) har, the forrm

a

n't G 1m In trnlatdedtoermined trel hR kI,' qationsh

tie r L'I ig the mne tf i of 1. Ii e act~ual1 pa rrtmir~tf r A ( ;).

T r'tiri lt.lIon t~o cotii inuoufýa n vt or .V



_ _... .'=. ... . . . . . -. ..

.) (6.6.M5)

where the relationship between z(t), K(t) and F(t, s) and zk, Kk and Fik in the

light of what was slated above does not require explanation; ti M26 + Itn; t I""' +

+ t.; and b(t 1 , tj) = Bij - a function, connected with R(t, T) by an integral

equation, analogous to (6.6.102):

S(is, )+ b(1, S)R(S. ds (t=..,)R(S. ds

WP shall interpret relationship (6.6.106) in the form of the block diagram of

an optimum meter of the functional of the parameter. According to Fig. 6.21 this

circuit, first, contains the complete circuit of an optimum meter of X(t), repeating

the circuit of Fig. 6.13. From the adder, donnecting the discriminator output to

the internal loop of feedback in smoothing circuits, we make a tap to a linear

filter with pulse response b(t, s). We pass the function depicting the a priori

.nean value of the parameter through filter F(t, s). Inasmuch as T(E7 i known

beforehand, physically unrealizable el ments here do not appear. Addition of the

two formed output voltages gives the optimum estimate of the functional v(t).

Fig. 6.21. Optimum meter of a linear
functional on basis of the two-loop Fig. 6.22. Optimum meter of a linear
variant of the meter of a parameter: functional on the basis of a single-
1) discriminator; 2) accuracy unit; loop variant of the meter of a
C - linear filter with pulse response parameter: 1) discriminator; 2)
c(t, i); K - amplifier with gain accuracy unit; G, H - linear filters
factor K(t); B - linear filter with with pulse responses g(t, -r), h(t, T);
pulse response b(t, T); F - operator F - operator of the linear functional.
of the linear functional.
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Inasmuch as b(t, s) / f F(t, s)c(s, t)ds, the assumption that linear

T2

functional f F(t, s)X(s)ds from the estimate of the parameter is not the op4-imum

, of the linear functional •2F(t, s)X(s)ds of this parameter was confirmed,
T i-

Another modification of the optimum circuit ic obtained by means of transiltLon

to continuous observation in relationship (6.6.103):

V 1 t(t,. s) z. ()4 j is (s) ds.+ 6617

It is conveniently combined with the single-loop variant of a meter of' X(t)

(Fig. 6.14). The complicated variant of a joint meter of X(t) and v(t) is presented

in Fig. 6.22. Output of the discriminator is processed by a linear filter I ,,;-Ith

pulse response h(t, s) satistying a relationship, analogous to (6.6.104):

h (t1, b(i, s) --- b (t1, S) K (•~ts)K (slg(,) ds,(..08

where g(t, T) is determined by the correlation function of the parameter according

to equations (6.6.31) and (6.6.32).

For characterizing accuracy of measurement of the linear functional we can

obtain the following formulas:

t b (ts) F(tj, ) ds

The given results show that for optimum measurement of an arbitrary linear

functional v(t) of parameter X(t) it is sufficient to introduce in the optimum meter

of' the actual parameter two additional linear filters, to one of which thei- ir a

tap from the smoothing circuits, ana to the other, a tap. from the feed ::tc' lit

feeding the mean value of --tT. Characteristics of filters are determined by the

form of the functional, by the correlation function of parameter R(t, -) and by the

accuracy characteristic of the discriminator K(t).

In connection with this for every form of functional and correlation properties

of X(t) determination of the form of filters constitutes a separate problem, the

S-1±5-



concrete solution of which will be the subject of the corresponding paragraph in

§ 6.8. With respect to nonlinear processing of the input signal in discriml'natars

and accuracy units for construction of optimum meters of functionals sufficient will

be those results which in concrete cases are obtained later for different st-. . ical

properties of mixture y(t) and codings in it of X(t).

6.6.10. Relationship of the Method of Synthesis
with Other Branches of the Theory of Solutions

In conclusion we deem it useful to discuss briefly Intercor::ections of the

developed method of synthesis with other branches of the theory of statistical

solutions. In the first place one should stress the link with ýhce theory of

statistical estimates, observed in two spheres: with respect to producible operations

and with respect to accuracy characteristics. It is important to indicate that the

discriminator of tracking meters constantly issues an efficient estimate of zurr,-nt
A

mismatch e X X - X between the true and measured values of the parameter. It is

especially convenient to use this for a discrete signal. Disregarding parametric

fluctuations, according to Paragraph 6.6.3, we have

i.e., zk with some proportionality factor
ki

tPh(YIL)
is equel to mismatch plus some fluctuatinr addition. Variance of addition 13 equal tc

I/K1, i.e., to variance of the efficie:•t esti-ate of the constant parameter for the

period of quantization. This proves the formi.ated proposition.

During continuous observation for proof o: the same fact it is neces.-try to

separate a certain segment A. Then it turns out that variance of the eztimate of

mismatcl. for that time is equal to 1/(K-T)A), i.e., again to the variance of th,'

eff'icient estimate of a constant parameter.

However, for larger intervals of observation error of measurement of -. varying

quanrLty is not equal to 1/(KT)A), and only monotonically decreases with growth of

K-t). This is understandable, too, inasmuch as besides fluctuating ones it is

necessary to track dynaiic disturbances.

One more interrelationship with the theory of estimation will be revealed in

§ 6.8, when we conside2 measurement of a qitantity, the law of change of which in

turn depends on several constant coefficients [14].
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We turn now to the relationship with the theory of linear filtration. It,

ouviousLy, follows from equaticns (6.6.31) and (6.6.53). They coincide with

equations of'Wiener filtration for separation of a signal from an additive mixture

of it with white noise. Here, if K(t) is not subject to averaging, or if averaging

(, .. J.iminate the dependence of K(t) on time in the equivalent Wiener problem

.ouild consider interference in the form of white noise with variable intensity,

and Lif •(t) = K does not depend on time, then white noise is stationary. The

obtained result was a consequence of the assumption of Gaussian statistics of \(t),

oul 1-_" as note that the condition of normalness of noise at the output of the

di.ý -riminator turns out to be unnecessary.

The shown reduction to the Wiener case is valid for a Gaussian parameter. In

,ge.neral, an in § 6.9 the example of a Markovian parameter will convincingly show,

opor-.tions of smoothing are nonlinear. Furthermore, one should remember that

reltotiv to the input realization the meter remains an especially nonlinear device..

Comparison of' the developed method of synthesis of a meter of a Markovian

r-,.m te"r with the method ofI R. L. Stratoriovich later (§ 6.9) will show their great

-1 ilr' arity. A peculiarity of the method developed above, besides the assumption of

Gaucc;ian distribution of x(t), is the clear division into primary and secondary

ouratlons of processing, the introduction of concepts of an optimum discriminator,

accunracy unit and smoothing circuits. This gives the possibility of studying

separately questions of construction of these devices depending upon properties.,

correspondingly, of the signal and the parameter coded in it.

We shall discuss now the problem of forming the a posteriori probability in the

whole rdonain o0 definition of x(t). As we proved ai Chapter 3, this operation iJs

•ecesar'y in detection regime, when a priori information is scant. We assume the

jir'sZt,'2e of a unit of optimum receivers, covering the whole region with small

quartization. At the same time discriminators and accuracy units are devices,

n.arrowl:/ rejective with respect to X, and technically their use is preferable with

]nw r, posteriori inaccuracy.

The name ",nit 01 optimum receivers (e.stlinaltor unit) is nece.ssary in no0clo:1Eu.

j ul.ll of' meters, even when there is carried out transition to forming of few

ch.ratetristics of the a posteriori probability. This shows the technical advantage,

of ' o•,l circuits, it, which the actual ýstima~e controls the region selectel by the

recuIv,.r. Howeier, In conditions of' large a priori variances or high-level nois•e,
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wher'e ther'e will be i requent ureakot'fs of tracking•, libe of" muitichannel un•its5 of,

receivers is inevitable.
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§ 6.7. Synthesis of Discriminators For Different Statistical
Properties of Signa s

Results obtained in § 6.6 shows tQut as a basic element of an optimum met -r

we include discriminators, which form magnitude z(t) (or zk), which is the mea.;ui'.

of mi,,v . between the true and measured values of the parameter. In the same

introduced the basic characteristic of a discriminator R(t) (or k),

i.-retely, both functions are determined by the statistics of the. mixture of the

signal with noise at the input y(t) and the method of encoding in it the paramet.ci'

? (t). !owever, it is possible to reveal certain other general rules, allowing one

to quickly find operations of a discriminator and its characteristic in the most

interesting cases. In the present section we shall consider different forms of

operations of a discriminator and explain characteristics of their accuracy. At -te

base of our classification, in distinction from subsequent chapters, we here 1ile 8(:

the form of statistics of y(t), more exactly Its useful component, depending on

parameter X(t). Separately we consider cases of regular signa).;, signals with

random phases, Gaussian signDl3, and so forth. Here, we always consider continuousi

observation, when the likelihood functional, operation: -,f the dle:.ctlailrnstor ar. it,,

ctiaracteristics are expressed, correspondingly, by formulas (6.6.35)-(6.6.37) and

(6.6. 44)-(6.6.46).

6.7.1. Regular Signals in Gaussian Noise2

For simplicity we first consider the case of one signal v(t, X(t)), takenr,

against a background of white noise with spectral density No. The logarithm of the

likelihood functional in an elementary segment of observation (t - A/P. t + A/2)

here has the form

)2- (6.",',.

where C - constant, depending neither on realization y(t) nor the measured parameter

i(t).

By comparison of (6.7,1) and (6.6.35) we prove that I

• i ,, • ( 'C •()) = - •(,) -V (1, (%))1',( , , )i

whence from (6.6.36) we have
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F rinul (C't . t 3) i.az illuetratea in Fig. 6.23. L' ~ orrnation .)f ( t) 1"

rrece.!;fAry tu ,.ubfract tram realization y(t) a furrctl.-r,r cesr-ribirig a r-i';enr *ir

wiclA the measured valu'ý oi' the pararnei:(r ý(t) and to multiply thti rerb) t. ovth

or'iiv'i';tive of' th~i :: fuzition with re.3fpec. ý,ii Ll.-. p r-arnet.er, alL-o ta3ki, -j- 1-1'r

cenk I iriated value '( t)., For mismatch of X( t) anti 1( t) ,,lite.f$ractionart0'.r ~f i ' ' V

S)of the mixture will be incoiq.Le'e and the ~erw-'

correlating with O vt, )At)1 W-11 1/,;F: ElaI;,

v~,.) a'fgi sere, OT,"ration *~'the J cinntrh Vc'ý v~v I.,

in,:, ri I' ,,r er- ] 'a r re tin v. 'y- *

whit, eW-l : Agria in-l~l. (but nat~ 'II hIC Ul C rs t to (lilfererroo '

Icon (.C' it, ii ;: f:-w-,y to proveIh~1 the hi<'e-

I .til of aecur'ti-!y of d~scrlminato,-r 1', 77 : -fl iul iqu tu

11. v~t fo tr a l'iY. ed i .: a p r' tt'le1 ir , 1rin aoocordrr Ing (. )it

p'~~. lN j onl'ider fume ctionl (6.7. 3) -r,1-i.l- ': of t'(IA' 4 ' 1 AT

o ii:, -r-,e I oc,1.'t the dirzc rimrniato r c'uitpul

A

i!( ve, i.n ri:ý -qtiortehip (6,7, 4) the 'i- 1.:;, ri," rieahl to, ckiry out pa<aeto the

11 m; i1.;j 1. I.: f'Ielet that T embra- !, whole number fof' pt vials Tr

A(, -,)v liult/ 1,(6. 7. 4) arnd (6.7.6) Be uuracy of a di F(,rimininj tar i de 1 rmii -':

I hl- 10 OU All- theaan valueP of the nqusrivf ui' thra derivative of' the regu: ,j tgrm 1

I -: .;I ~'t, toQ hiIe p/1rrumnete r to thev ;, pe" .rr 'I d eni s .y of w) hi f. rir)j I -e. 'ihi,-. reFul I.

JA' -ve rtf'.w g(;eroaralize (6-7.i.) for sevci-!ol. Input :Agnals Y(t .yt ... Y(rr)t,

ccinri->tin. Irigo regulmr sig.nal.a fi y i) ( 'X ) 'nnd gprurar 'nlv e-or'relatc'd
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we can obtain function

-(i)V (Y, IM~ I± [y ()-V , 21)]. Wly (1) -vY(, M9J

Sthere are introduced column vectors y(t), V(t, X) and matrix W =J j N

the Inverse of' N. From this we have

Modification of (6,7.7) for periodic v(t, X) is obvious. According to F~ig. i-.214,

illustratirng relationship (6.7.7), from each input mixture there is subtracted the

corresponding regular signal for X - R, and then results are multiplied by linear

Combinations of derivatives with respect to the parameter of all regular signals

arid sirxe added. For uncorrelated noises matrices N F&nd W are diagonal, and the

(1) discriminator, according to 0,.7.7),

consists of' m independent 01anneL3,

similar to Fig. 6.23, which are

. Lsummed with weight-s, inversely

proportional to intensities ol' noises.

The accuracy characteristic of'

a discriminator for thp considered

W ~cafse is characterized by the formula

Fig. 0.24. Discriminator for a set of K=Im!C.v+Y(t 1) W 0v (1, 1) di
regular signals in white noise.

Mn Oa (tX) ID 1,) d

and als~o is expressed through mean values of the derivative of separate signals wjith

r'espect to the parameter.

:iosvj we turn to the more jomplics ted case of correlated Gaussian noi sec. Conci(-

friiig the input mixture unique, we have

L (YA) == C - - l , A[ 0

-v(t., X)1 dtdi8,



whel"? W ~.(t 1 , a function, the inverse in interval A to the correlatior-.

function of noit~e RP t 1  t 2 ), i.e., satisfying equationj

S .R4(, s) Wz(S. Q5)ds =Q t

* It is implied that , exceeds the interval of correlo- ti c. of interf o encces

* Several transitions from (6.7.9) to the operation of a discriminator are

poAle. Questions of physical realizability of the obtxilned r!irstilts, ýre COP I

11 u,-uing. the :-ymrnmetry of the exoiression unaer thiei r Is I g i, .

Cvs virgument- 1' t 2 we produce integration not over a square I ,F5t ,

<t + A,!?, but over a triangle t - A/2 t + A/2, ti <. I x/,

double, the result:

Then difrierexntiatiori with respect to Iand re~jection of the outer integral

g Ive... thie operation of the disc iriaLnusr:

t.) [Y V.) )Vd;

-rmuch as the? interval of observation i% excoeeds the interval of correlation of

-I-ii''erentces,, we directed the lower limrit to -1). Operat ions, producible according

I are illustrated in Fig. 6. 25. From the realization at the inpu~t, 3,;

above, there is subtracted the expect~ed

.. of 'the signal, and thie difference is pa;:.r

- W X thirough a linear filter with pulse-. v'Ž;ponse

5(t) W (t., -)(t< t) and is, multip ylied by the

derivative. of the, execte(. furm of' the signal

W X ~ With' respect to X. Additionally this; derivative

1,, ppss-sPr thrntigh th.h -,ame filter and is

F;g. K 2. Di.:-;crminator for a
;'gular ignral in correlated noise multiplied by difference y(t;) - v(t; (.)

(>.variant). V! -- linear filters Both results of' processing are added, forming
with pulse responises W(t, -r)

(t >T).thie signal at the discriminator output. Wi th



I

such method there are made no approximations during the transition to z(t).

Another formally simpler method of transition from (6.7.9) to operation of the

discriminator is differentiation directly of (6.7.9) with respect to X, which, taking

into account symmetry of the arguments, gives

-) , t -- " (t,, X)] d1,dr,, (6.7411)

and rejection of one of the integrals. Depending on what argument we choose for

rejecting the integral in (6.7.11), it is possible to obtain different, but statis- 1
tically equivalent expressions for operation of the discriminator:

•(t)_.•, t)) y(,)-u(,,~t))W•(t,)d,(6.7.12) ;<
O•"t

Sit) Lyy(1- ,(;• (-c)l v (i1f1 W,Y, (t,) d-, ,67.-2

PMtM Y;l (tl t s (6.7.13)

where litaits of integration are expanded to ±c• for reasons already explained.

Operations (6.7.12) and (6.7.13) are carried out by the circuits of Figures

6.26 and 6.27, respectively, which repeat two channels of the circuit of Fig. 6.253 ,

with the exception of differences in properties

of linear filters, appearing due to infinite

(limits of integration. In all cases filtration

with weighting function W n (t1, t 2 ) has rejector
Fig. 6.26. Discriminator for
a regular signal in correlated properties with respect to interference, carrying
noise (2nd variant): W - linear
filter with pulse response out suppression of the most intense part of tne
W(t, T).

spectrum of interference.

We shall explain this circumstance in greater detail, considering a periodic

signal with period Tr, larger than the interval of correlation of interference. If

we 2onsider interference stationary R n (t' t 2 ) = R n (ti - t 2 ), then W n (LI, t 2 )

one should seek also in the form W n (t -t from which, pushing the limit:, of

integration in (6.7.9) to ±co, we have the Fourier transform from the inverse

function W • (t1 - t 2 ) in the form

- 2
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olce C (us - :~ ot it. enslity of int~erierence.

The. noe-al I 'on fur tre dicc ri fit na tor 111 the. ca:'. W, a TA rtriodiz :i' Asi

givers directly by rela loc~cp (6 .:L ),Where linlts ta mbr'ace th 1C.JE, pr' lt0 o1 0 1'eL

Fcun tis pss iifsc Fourier t5'Tceisn. ds~(.,14), we ic,':

asserT: Y1(joA) V V(u, >)-Fourier transf orms of f uncr1- I.:st y(

Peri- i of th~e siflrcai1. According to (6.7.1 ), int .1e1 i ' ic

hecrirntes'Ierence- is morer intense, the tr-ýsiisi iiiz I. fact ~y fr ci 1R 4'jt

CtcSJccle i~n the cýircuit decreases. Tl oil -.- Ixl Lttec r~ ~

Tlices '-hemati:c of the disc: cnitrmator for this ca-se 1-..hown tin

I t -erne in.- t.oý c lari fy the qu' i on o f'ý pisyci 1; rn.rL cal :. 1 a li t / t

'.i),(G.17.1iJ) and (6,7 5 which i1:; ec unie r- uOu~bt by thi. infirti ap tjpe c

liisc, rI ntgr Lio ic6.. r2 ac u (<7. 1;

or, whict1 is tif same, thle presence i~n (..1)

11, ro t VcI/ (s) , 1:1c 1A Vo .ire r c, igi1 iai 01 sift I
AA

si 1tua t.i ons t ~ ;eccdb the fa ct t-isct ~' . rc

IFt 7 L 4-.!. y Lrtaos' for of' co)5'0 1 5 tonlO cit' tFh Ire2I u;Ua11: -on;: ices-
ac'citc.iar simc. £ 1n correlated

.1r I ci) WV - aihiy 1.c!.. I liar. the Lntr' vnl of' ritcrii hasigc:M

cli.'iI' I L 'so of ~tcul- 4c orl < . in t~c.sr'c ii50

i t o:.rcrbe to c'pcrthe Fourier rri r i insojI

1/s , (cc)by 1csci~ liocs obtained from it. eq :;tft , "'( I sos'c'-:wl. irl. 1.i ! re !.illc

IC i-' ry' 1cc ' eclil t.cri of Int (,nrose! arid at brIlst cuttcliig off ti tcce m9c I I

toss"'.A. sc 1 n:'go ~lve t icico. Then we will. obtalan a . citýa at, thti- cciicc rlirlriii c0ci

Lc 1 Li :3 ny 't wirt to the, i .opli musrci. 1'. L; e-asy t~o 1.rova this by -igicol"'.t

SQIu 5'"0 ~ii J , ;c f, ral densi 1. y of th e output sIgrcai, Thi -. qusinti t.I j rii EaI'' I 1

Sfl TT;i1, in t f ro r l d I l f(r n i! i: -qj 1

Tr'

sceit, tch1eC25 ~ o~r periodicý, cigiial 1 an'' shout d z'ct'itttie ,-ipt gof ci lp ittc1 I,

aid qc'ijtrs 'I Ic, t-iP;c n i i of' roc-.is1,itjiorc '1J'
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..t1) IvWlt,3l) considered, resut;s of the present

paragraph wil]..help us to comprehend

certain laws governing construction

Fig. 6,0. iscriminator for a pulse of optimum circuits in cases more

reg. f~ilte with corequtedncyronse:
reg'.f inal in correlated noise: complicated and more interesting for

.(w.); 2) integrator over the period, practice. j
6.f,2. Gaussian Coherent Signals in Gaussian Noises

First we shall consider that simple caie when the carrier of the parameter I.:

a singlu signal, received against a background of normal white noise n(t):

S() =E (t) u. (1, 1) cos [.,1 +- + (f, A) +t-P (I)] + A (1) -==
-,Re (E (1) e'llM a (t. 1,) el"•} +F a (t) G. 7.V") >•

Here , - carrier frequency; E(t), c(t) - r'endom amplitude and pharae mcdu2latiro;:',

dL.-:tr.ibited correspondingly by hayleigh and uniform law, :o that E(t) co (P(t),

E(t) ',;in 'i,(t) are stationary normal independent rendom pro'.esli;eu wi.llL ,orrilatior

function r(t 1 - t 2 ), Then, 1j (t, X), a•(t., X) are regular irnodblatloni:, doe(pOdi) .iJ, U11

the menclired magnl.tlde of )X(t); in (6,7..) there is introduced the complex. mrnrO.Inntic

ffj to r
U (0, 1) & (t. Al ) e' 0") ,.7 •

reflecting immediately both functions u.(t; %.) and p(t, >.). The oorrelation

fun.!tlon of mixture y(t) according to Chapter I (Vol. i) has the form

Re {M (t1, 1) r (1- ,)'a" (Y., A) e''o'-'s) + N.e (4 -- ,), (K.. ,)

r - (ell e"E (t) e'106).

A.:cording to formula (6,,) , for gfonr, t, rue tion of' th3e ].rio.ihood funot oritl.

for ai norm'il procesr it is, necessary to linti fuir'tiorn W(t ., t,,), the invrre '' ,f,,A

correlation fun-tion, i.e., r.alraf'ying equation

I-A.ll

Vifi' r int-gr't tion ir; ,]ond Ci,• Intcl / r the ,.;],.tventr, i. 11, , 'ial (t - A/', t I 1/2), 'al I I

w! Il: 'A. in f . '6,, 6 ;1) 2;.imi ,•ily. to how t1hl: w•ir doll,' It• (Ihr ,r I' I(Vol, . I), w,

finvd W(t 1 , t,,) in tho ffe rm



whence for auxiliary function w(t 1 , t 2 ) we find ejiation
1 2)

(s,-.11. tj ds + ,,I(t,. t,) -- t -€) •••.:-

As the first example of solution of equation (6.T.22) we :,hall e--rnsidc" a

signal without amplitude modulation, when u,(t) m u. - const. Then, inasmuch as the

Interval of Integration exceeds the interval of correlation ot fu,•'uatlons ot tht

signal, determined by function r(t), It is pos;ible to consider limits of integration

in (6.7.22) infinite and to seek the solution of w(i, tY) In the fcrm w(t, - t,).

The method of Fourier transformations in these ecnditions gives
44D A M -

w *76d M0 r + "(..3

Here as the condition of normalization we Rssure 4 1. so that the correlation

l'unction of signal fluctuations r(t) must be normaliz'ed in the form

,,ihere P.- mein nignal power.

Further, Sc(w,) - Fourier transform rrom ,t); and F,(c) - Sa (k)/S (0) - n.orimalized

".:p•ctrum of fluctuations, related to the width. of this speotrim Ar. by relationsohip

d6. 1,(6. 1. PC;
.-4

Fh"iv.1y, quantity h PC/2NOAfc , Introduced in (6.7.23), is the signal-'-

noise ratio encountered earlier (ChapterlV) in the theory of optimuf reception ff'

a coherent fluctuating signal.

! ',r intere.-,ting example of .olution of equation (6.7.22), ess.entially re-

S ducibLe tc' tht' i'irst one. is the case of. rapid anplitude modulation. If we limit

mursplves to modes of modulption with contant period Tr, this is equivalent to

the condition ot Ih= nterval of correlation of the signal greatly exceeding period

T.. In owher wo:'di, the set of neighboring pulse trains fluotuate harmoniously.

* Then It 1.: Possible to divide the integril in (6.7.22) into the sum of integrals

over :•;ePvrte periods, removing factors r(t, - iTr), w(iTr, t 2 ), constant in perioa Tr:
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14-h/a

d's,

X-(f/(,.',) I da. (6.7.26)

o ::ng integration over ,ieparate periods we consider condition of' normalization -
(8, ds (, )Id 1 (..-7

which is a generalization of the former normalizatirm in the case of the presence o( ..

modulation, Passing then in (6.7,26) to an integral in the initial limits, a81 the

6olution of equation (6.7,22) we again have relationship (6.7.23).

Lot us now turn to exprre-:ýion (1.4.S) for thf- derivative of the logarithm j."f

•[I11'].. ke. tocd tfict ion P(y(lt) )) of a nr l~ro.es:; y(t), taken with respet. I.,,

arbitrary parameter X(t). ý.!ing (6.7,12) and (6,7.23) and considering h independent.

Inp ) . i. )x

X up, (is 1) Cos [as (,i-, ) + -,,A)

*1(to AM US it, , 1 ) -(t ,, 1 ) 'r - M (tW, . (1, .t-,o) +
(IAldi di

In ordelr to carry out tranrd.tior to thp operation of the discriminator, accordinr;

to v'lt0.onrihip (6.6.36), it i, necessAry to present (6.7.28) in the form of' 1

.;Drii lo IntegriAl over the interval of obhtvration, For this it is sufficient to

iv;iurre thai there existl, i•uch a function h(t), for which

S(,-- ,)h•('-- to,) d ,W (11 -- 1.)2N, (.7. ts/ ) .7

1', in f'rrquency pre :entation, thit, this relatiorn-hip in sretir f ed:

(I s)j �• r W -- 1 S (in) a )

wIhere 1l( w) -- Fouriier trarv;f.'orm from h(f,) .

8'h; LI itut,ioo ~ ,t, - '• P l, onthip ((1.7. 2'j) in (6.7.,28) irivoe,, tho possibility of
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passIng to the operation of the discriminator:

*XAQ-t,),di., [ Y I; It (1,f; Cos (We +. V-I; a.Q))-

+jig I M.

..... 0. + f' (.; a (1 h Y -Q )dt

+ X 5 (t,.. (•,(sIn..,+,, ; t))! ht-,_) t) 1x+

- ,(;(t)) CoI.s4; •101 c WO-, + Y]()- + ..

The operation represented by relationshin (6.7.31) is illustrated in Fig'. 6.29.

Input signal y(t) proceeds to two quadrature mixers, in one of which it is multiplied

oy sinusoidal oscillation of the expected frequency w0, modulated in phase by the

law of phase (frequency) modulation- witi a value of the parameter equal to the

tneaiured, and in the second mixer it is multiplied by cosinusoidal oscillation of

the expected frequency with the same modu]-ttlon. Then'there occurs multiplication

of output signals of mixers by funct~.oni; reflecting the expected form of amplitude

mnodulation, the derivative of amplitude modulation, and the derivative of phaze

modulation with respect to parameter ). (see Fig. 6.29), all at the same measured

valu- ot' X(t). There is conducted filtration of the obtained signals in low-frequency

1Un'7rr 11'ter.; with pulse response h(t), satisfying relationship (6.7.29) or (6.7.';.

"Then the obtained signals are mutually multiplied in multipliers, after which all

output rignal• proceed to an adder, completing the circuit of the discriminator.

A!,hough the given circuit is complicated, it is possible to easily explain the

wor. :X all its elements. Input mixers and multipliers are elements of so-called

correlotion processing, by which we usually mean multiplication by a signal of

exJe,.fed tnrrrm with ,;ubo.equent accumulation of s•ome type. The presence of sine-cosine

-:hs.nril is !-xplor,(ed by fluctuations 9f phase of the signal, making it impossible

. prci,!+t Itz "•)ncrett- varue.." In any clse the signal correlates (completely or

p,,rtiil~y) with hetero:dyne signals, in quadroture shift relative to each other-,
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which also permits forming the

4- output signal of the device.

In the corresponding circuit

of an optimum receiver it would

841! be sufficient further to have

"only elements of multiplication

by the function of amplitude

modulation, in the case of a

T ,,pulse signal technically executed

3 - .in the form of gated stages.

a ". In the circuit of the discrimina-

fromtn local osoillator tor it is additionally necessary
fro modulattor wthrep•c

Fig. c-.29. Optimum discriminator for a to use derivatives with respect

fluctuating co'herent signal (low-frequency to the parameter of amplitude
"v ,,arirint): 1) quadrature mixers; 2) variable-
ge•in miplii'iers; -) linear low-frequency
filtero; 4) multipliers; 5) adder; 6) T/2 ard phase (frequency) modulations,
phao:e -hifter. taken for the measured value of

parameter X(t). The useful

,,Ignc-l appears at the output of amplifiers with a law of amplification in the form

ot' derivatives only when there is mismatch between the measured and true values of

).. Here, the signal at the output of these amplifiers in sign and magnitude

corresponds to difference X - X, if this difference is smell.

Then in the circuit there follow linear filters, whose pulse response is

determined by the spectrum of fluctuations of signal and the signal-to-noise ratio.

They carry out accumulation in time intervals which for a low level of the signal

are .qual to the correlation interval and upon increase of the signal decrease

.Multiplication of signals carrying information about mismatch e -X

,y .:irnals carrying only information about the amplitude of the signal is produceri

in :.rier to emphasize overshoots of the signal and to maximally filter off noiseo.

Final addition hellps to compensate phase fluctuations and unites effects cýauc-ed by

,fi;_.tI0; of >(t) f'rom X(t) in chjnneli s!_ensitive to amplitude and phase modulation,

resalco t. ive ly.

PhysicaL realizability uf operations (6.7.31), r-' nhvious in view of the

iiril. u,.per limit, of' integration, is explained just as in Paragraph 6,7.i. The

fact is that on an optimum filter there is imposed only condition (6.7.30) with
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respect. to the square of the modulus of its frequency response; the phase response

can be selected arbitrarily' if, of course, there does not appear here de y'L

comparable with the interval of change of X:,t). Therefore, ther ftrt,.metnod" of

finding h(t) isJ actoring function jH(iX)jl2 7 hSO()/(1) + hSo(a)), i.e..; i t.

exponsion into factors having zero Ies and poles in ~he -"pper. and lower ha-Ž-plan-23.

respectively, of complex variable w. Then one of the factors will give the sougl"

physically realizable frequency response. When there Is'a rational-fracticn ;,pe'r8i

den ity of fluctuations of signal SO(w) such a possibility, as 4hown 1r, : . a',

exists.

A second method is direct determination of the Fourier original of functl-n

'hS 0 (w)/(1 + hS0 (,7)), which will give a physically unrealizable pulse response, and

introdiction then according to the method In Paragraph 6.7.1 of time delsy an int.-rval

comparable with the duration of this response. Obviously, it is also possible to

rugge:L ot.her methods. All of them are iquivelent in results and give filters or

an approximately identical transmission band.

The given "low-frequency" interpretstion of operations or the discr'minator

is not the only possitle one. Another possible variant Is transfer of operations

eof filtration to a certain intermediate frequency, allowing us to dezr'en:.- the

number of channels in processing (cee Chapter IV, Vol. 1):

z (1)==onst IY(to) us(,: ; (o))cm I(,% +a..) t, +.

X (W .1 (t,- M()) +l 0 4 + f (1, ; .(1 +
+ M(,.()) f ,.; 1 (0), AnH00+ ftp) Is+

+ (is; )(- - ej M ,p+(t--+ t.d. :

Process.ing of y(t) according to (6.7.32) should be conducted by the circuit

-- .3. At the input of the circuit there are installed two m>-°rs to which

there ,rce fed heterodyne vroltages with quadrature phase 2hiAft 5.•,i the expected phase

modulntion. In vtew of noncoirncidence of the middle frequency of heterodyne signals

with the carrier frequency co simultaneously with "convolution" of phase (frequency)

modulat ion the mixers shift the ,;pectrum of the signal to intermediate frequency

Then signals are fed to variable-gain amplifiers. Laws of change of

"A-M30-R
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amplification in them are U,.(t, X) 8k7 , ua.(t, \) 8 , respectively, i.e.,

are determined by the form of regular modulation of the signal. The mixers together

with controlled amplifiers carry out correlation processing. In the circuit of

FLg. h. ,ere occurs unification of outputs of amplifiers in two channels.

"ong in both channels is conducted by identical band pass filters, tuned to

*.,¢:rmediate frequency w.oŽ and being high-frequency equivalents of low-frequency

optimum filters. Naturally, frequency shift of heterodyne voltage, as also of the

C ace :*' ' ie of the intermediate frequency to which this shift is equal, is arbitrary

nod iri io way follows from theory. During transition to (6.7.32) we pursued the

goal of practical convenience of fulfillment of operations, where there was implied

the circumstance that after mixing in subsequent filtration there does not participate I

"a "mirror" signal..

A:- a result of bandpass filtration in the channel connected with the amplifiers,

whfo:;f.> lw of' amplification i.: determined by the derivative of the modulating functions, A

there will form voltage pronorttonal in amplitude to current mismatch E and

corresponding in phase to the sign

of this difference. On the output q

of the other filter voltage deyernds,

little on E and will form as it H

were a reference signal, multiplica-

tion of the differential signal wi'

which, carried out in the phase

detector, completes the operation

from $o,,61 O,,ill ator 'rom modulator of the discriminator. As a result

Fig. •].30. Optimum discriminator for a there is formed low-frequency
-u tig coherent signal (high-frequency

,iria1t): i) quadrature mixers; 2) variable- voltage z(t), on the average
Ij'n amplifiers; 3) linear bandpass filters; 1.
4) multipliers; 5) adder; 6) ir/2 phase proportional to X - X for small
•if'ter.

values of this quantity.

Let u. turn to characterization of accuracy of the discriminator. In ' i w of

triv i'tt.Lonarinec.s of fluctuations of the signal the accuracy is characterized

b.y is con:;tant . - K. In the most general case of a normal random process y(t)

by (i ':erentiation of thf! logarithm of the likelihood function and averaging it I:s

pos:siie to show that X i. expressed directly 'hrough the correlation function



a~4. ~O~l~.. J~M '~.4.

of the signal R(ti, t2  n t inverse W(tt)inheor

A. d" 1Tk

where limits for constant X can 'be directed to ±m by virtue of the factorc z~hc-,:rn

earlier.

Substituting in (6.7.33) functions R(t., t 2 ) and W(t 1 , t 2 ) from (6.7.1c) and

(6.7.21), we obtain

+ ,++12

4- 4 0a' 2 ) 2 ( 1 )'W
8 + (,1,. I).:lt d)-, x

r r(t a-12) t( -- t,) dtdt,. (6.7.34)

Relationship (6.7.34) is valid in the very general case. If, however, on

function 4i(t, X) there are imposed certain limitations, then this convenient

formula, having more modest limits of applicability, is valid:

* (I(a)Jdk(f, S.). (6 7 35)

where
I, (u)= b, --by ;"*1

b, - - -T 0" , - ,

b2= ,Jim . ,. (,, _) U .d, j
S d. ( 6.7.37)

..:eturally, during periodic modulation passages to the limit in (6.7.3).) and
(6.7.36) are replaced by averaging over one period oI' modulation.

Let us discuss formula (6.7.35). It contains two factors, the first of which
Swholly determined by the form of reular modulation, and the other

determined only by the form of spectral d•nsity of fluctuations of signal S0 (cn) and
the signal-to-noise ratio h. In other words, p a is determined by the form of coding

(6--36 gr relacd b avragng veronepei odo mdla-n



II

X in the signal, and JT,- is determined by power properties of the latter. Therefore,

uetail.ed discussion of J can be postponed to subsequent chapters. For J it is
i2

useful to indicate limiting values. For very large values of h we have

2%- (6.7.38)

.r ,',,.,ery small h

J, 2h-L Sa (t) dw= 2h'kAfe (h < 1), (67.39)

wher-. K -- 2onstant, value of which is between one (for fast-dropping spectrum SO(M))

and 1/2 (for a slow-dropping spectrum).

Thus, J2 monotonically depends on signal-to-noise ratio h and is proportional

to the ,,idth of the spectrum of fluctuations of the signal. Afr.

The coryitlon of invariability of the correlation function within limits of the

,-•.;oi nnodulation, assumned above, is not always observed in practice. Separate

p~eri:.ucan !e weakly correl,,ed. The z1 ce 'e n• applicability of the developed

metho•d cgr be considerably expanded if we assume that modulation has a pulse

c'h..ter with a sufficiently high off-duty factor, so that instead of u(t) we take

-kr,) = y. - kr,)"P-(. (•.7.4o)

wherr u(t) - complex law of modulation in a separate k-th period.

Correlation of signal fluctuations, divided by the period of repetition, we

, on:'ider arbitrary, but within the limits of duration of each pulse train (or pack)

we .-hall consider the correlation function and Its inverse function constant, so that,

for in.stance,

M (t -)J'r (f) dt = r (s) SIu (t) I-di.
0

A, bef'ore, there remains in force 1,he condition that in the interval of

correlation of the signal the measured parameter does not vary. The correlation

;'ur.'"t '" the mixture of the !,ignal with noise has the form

• (1,, )= 0Re .u (1,,- kT.) r (, 1,) a (1- erT)) "'}+

, 0I - - t4). (6.7.41)

"'.• -t h(tl, 12), tae aver e ' the aoirelat.1,s:r, lini .tinn in interval A,

, i]./ rmny perlo,-] ci rep-~ti tion auid intervals of' correlation of the signal,

we i:d In ,the form
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W (t1,4)==-Re(Eu (I,- kTT a'i (is (- IT,.) e0"--

+-L-• a (v,. t ). (6.7.42)
No

Thi.- gives an equation for w(t 1 , t 2 ):

Su' (s - T,)
, -r(s--is)ds+w0(t.,4)-

"Jaw- (C.7.43)
-r (0, - is).

Considering the condition of a large off-duty factor, it is possible to produce

integration over s, after which it is useful to quantize equation (6.7.43), i.e.,

co look for its solution w(iT r, JT) = w-,, at discrete points coinciding with

moments of action of pulses, since only at these points will it affect the form of the

final solution of, (6.7.42). This gives a. discrete analog of equation (6.7.22):

(Vj" j I+ w-i- == ri- , (6.7.44)

where it is assumed that the energy of pulses cioei. not depend on time, ard condition

(6,7.27) is satisfied. Directing the limits of summation in (6.7.44) to in"'Inity

and -.eeking a solution in the form w = w , it is easy to solve (6.7.44) by the

method of difrcrete Fourier transformati n:

S D,_ (o SoUP)
wmLi)=----ye2 =+ r, I+hDSOD (0) (6.7. 45)

lie) e,

s- ignal-to-noise ratio, analogous to h and changing into h as Tr- 0, irnasmuch as,

rare,

4oo
Sr ()d-._, s(Qo) dh

2...- - (..7.4.7)

fl- dimensionlesS frequency, connected with u.sual f requency and the period of'

repetition by relationship
S-),;
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then,

-, (0) (6.7.48)

s:,I-"ete Fourier transforms of tne correlation function and the inverse function,

an d

_s__a_) sea (a)
TOD (0) r

normalized discrete speitrum.

Let us expand wi analogously to w(t) in (6.7.29):

-- h 0S() :--IHI (1•) (6.7.49)N . I + DJ! A

where hi - a certain function of a discrete argument with Fourier transform HD(12).=

Then, considering for simplicity the case when the signal-to-noise ratio hD

doe:; not depend on parameter ), we have a discrete analog of relationship (6.7,3i):

IT..

( , -5. y((t,) .( u. - iT. ;i,)cos j.f,-i -+

XcO [tst,+ (t -tIT,; (.I, ) (1

IT, 1j si 1w1. f,;2,j] d.T

IF ,-44 (~ ~r).)dI • h ,•.(.• , u (t.-tr.; l,)>(

<COS [® + 4• (t,-- ITr; i•)--", (4f.Tr,; ).•) - if (--

- It,; l.) sin I-' la,--- + (tj - IT,; 1.)l sn, +

ITF,
I (I-U)T,It

-IT,; j)sfl w,1t,1 + (f2,-- IT,; 11)]+ Ma (is -- ITr; IA)X

X- (it-- IT,; ii)cosl.t,+4+(to - IT,; ij)Jl dt,. (6.7.50)

, i g of the -:Igna]. ac, ording to . ,0) cb'.'Iou.,ly breaks clown into an

Intimerlod and an interperiod part. The intraperiod processing completely repeats

the !'! r:? oriulation part of proce::ling in Fig. C.. 2-. Then, instead of low-I requency



I

'ilters there should follow integrators witji dr-p, accumulating signals ir.: i..,

period, Results of' accumulation in discrete form ate smoothed by d*;:,c .--. 2)

filters, roalizing accumulation in the interv;al oi' f].ucttoations of ihe "k-7 r.1

Technically, a circuit starting with the:.-1 1 i-,!- --.,n be imaginei i,* .. o :- . I
specialized digital computer. Further prc:esing, c n-Icsing in nul ilr

the results of filtration and addition with each other, accurately rpe}et.: I,

operation of Fig. 6.29.

As before, let us assume transfer of ,pe7r:tion:: (u'7. y), t . , I

frequency. This leads to a relationship, anal-ogoc•;•, (!v...32): -1

S(jTr,) const 00 U()a Vv1,), Cos ,. + 0.1p),. +

A A

X [n,,,U., •Dm1j) + CO nw.) 1, + Y(t., IM1+

+Ua4 , sin 1(m. ±n )t+1( 3 ))JX 4

X h(tj- t) Cos ,,(tj --. I4, Cd . •

where the envelope of pulse response h(4.',, ; ,i::c't.e flrenl:, t = i .' l. C I
S c'cdition (6."48), and in the remainin- -women*.s -nside the period is ai rb '.' .

ij

1The block diagram describing relationship -. ,.7.•.,1) simply raoept- thr' e',o'.

FI.. 1 .30.

W'ie shall -how that, although operations (r-.7.K0) and (.7.5.1) a]r; -:

into intra- and interperiod operations, intriter-eriod procrrsing of the :1hn.n

canvol. be tr:jansferred to the outpul of hiIe til.;c .nrlmn ituo, inasnmuh as ,h. r ,i, cr

(slL ip I ip`13 t.ion) atR the out is an cp.vati;C which especial Ly ulon li: '

_ t 1;), I

For characterization of accuracy ci' ne:i;mrement K in the same con.i.

+,: (6.7. h) we have expression

K= Jl, (u) 12D (4, SOD), ''

where 1'aclor J has the former value (ti.7.i), rind J2 D(hD, SO) is equal i

N2 hs20 (1) (2) .

-- l
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As fac:tor i2 from (V.7.37), J2 D monotonically depends on signal-to-noise ratio

hD. Tn the extreme case, when the correlation coupling between packages is very

great, the range of values of Q, where function SOD(Sl) markedly differs from zero,

is considerably less than interval (-r, +Ti). Therefore, considering relationship

(6.7.46), end also the fact that n WoTr and SOD(wTr) - SO(w) and directing to

Sinfi -. flimits of integration in (6.7.53), we note that this relationship

(6.7.37). The other extreme case of total. absence of correlation will be

.,c;,idered in detail in the next paragraph.

AbGoe we considered the case of one input mixture of signal wich nolse y(t).

Let i. Ž ,-.y to generalize the preceding results to the case of many input mixtures

( t. (l t = i, 2, ... , m), each of which can contain a whole series of components

in general with different forms of modulation and correlation properties. An

example of such a set of mixtures are outputs of a multiunit antenna system, in each

of :t120 ti••re are included signals reflected from many targets and radiated by

Here, Corrli-er frequencIrs for all components of the mixture may differ. There

is:- mt+rod"d a.. certain middle frequency tL0' and phase modulations (7)Kk(t; 7)

contatn terms of form (wOk - 0)t. linearly increasing in time, reflecting differences

orf i requencies of separate components >i.

Let u.:; assume the Z-th mixture has the form

M( (t) = X V,3 .a (1; I. (t))f'E, (0) cos [OJ +'i (t; a1 (A)) +
h=1

+ (M)ph (t)]-t- Mn (t) (Y == 1, 2, N -,m) 67 .54)

We introduce a complex nearly-diagonal matrix of coefficients of modulation

UM), the r-th diagonal element of which is column ((),u 1 (t), ... , ("u)p (t)), where

(il(t) = u(t)e J(t Additionally we introduce complex column q(t), the

Z-th ::ubcolumn element of which is a column of complex elements

reI'ir.:vtirag ndom modulations. Then the whole set of mixtures (6.,8.62) can be

$ V.-,nt,?e in m •trix form

(1)-R{I (I led¶f),n (6.7-55)1
Y M Re {u 4* (t) 1 (- ) ei -
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where y(t), n(t) - 3imple column vectors of, order (m~ x~ 1), eomaposed oil vaiups o

function (')y(t) and (1)n(t) (1 1, ... , m). The correlation matrix Uf thle Vi!

set of mixtures (6.7,55) is obtained iii ttue form

where 
I_y____

-complex tn'atrix f'urctior. of order (Y, PiX pi C .'~Lg~1 ~m

Oj~r~t- t l('J~r t. t I j iFý t h

correlation of stationery ranidomi prnze;' i .()_( ,)-

i)Eq (t CO ()q (P (tý) Matrix N Jn (67. . inirn~inx of' spe-itral .,;

o!' wi~d. tc mo c;,not necessarily dic'gurlm, li.- 'aft e mioise,; it,1ncI mn'

interrelated, .Ih lkclihoo d fiurmctiorl, 1. ~;-whi,. t o mixture y(1V) '

armtlog.o.u;- to~ tha t it, the one-dimor~ir.iron,,

f-d12

5 7 Y(11 .a).aW 0, Is)dY(s~jw1,1) didl 4)
'-AAl

whe ere W~t, ( ) matr)ixU( th J Oeflri. ,; Cii- Ih' F ii'I1 ( 'J I,'

on~ c e~omiie y hefomofrg>''rnr~~o i i 4 mmpf('nin 'II mi ju

not only of~~~~~~~~ arnlite s)t ItF~ (a, Idsn -=( 16J'r' )1 --m.Is).l0]', ,miuz I.



_,quationz; (6.'(.60) and (6.7.21) shows the!ir very comnplete analogy, fromi which

thevi-e tir.ue the stime cases of siolutions at, in the one-dimel Aiornal variant.

Corvddering, in parti~cular, Ioaw of' modulation of all ripeprate comporients of' the

* mix~ture~ t- " ~racpidly varying, it in ponntzible to average B0 0:f) In time under the

* i integroal, introducing coit~taflt matrix

Do-lit" 1 jU(s) N'1U*()ds, (6 7. (A

-pij~r1 tire Fourier, trenti, ormn of' W(LI t~,t -W( L t2,) wilL lbo expreuioed in tht

whr. , () -Four'ier trarrrfni'm rjl' frinA1.vl funi~rrtion r( t.),

:11 tile r ,! Iurn1,tAOn the'1, powri', Q1,~ '~r iio: l n Lgii n cv, nQt dejJatrl ur. ), v

X coea 1. (1 %' i) d%. (,*'

(1 ji'~ ll r2L1 e uf1 14~ 'jf1 1 ' l y l I n1, it 1 ' 1 9YA Jj I Ig 1 1 vu Iii r )I'Ii I thJ II

I 
, itII I 1

1 ~ ~ ~ ~ ~ .0 ,4 1, -11



Eý 'ir.;oo of, 01)1 Imum Irt n' bI1n lit, :I ~V0 rITi 3 k.' "Ig~~t-1 wI I IIW 1 bt, g'1.~i

111I, .';ct4'li) 1, rA1Fmtj e tf.! , and In vl ýw of Oil-' (AI(3 k-v1 j~f(..a 1 c c (.

us rcrip t. in of' the ci.rcuitV of' thr di. r i rvil ¶0:r to.v

1"n, (t) in t~he Moutt g.hriortj ar uhit III -. ~ i3,J Wth

mFA ri Y'. R(t t,~) tind itit invevjue W( I~,t ,. tllev'. J r...rnuiai anciri,t,] L 1,jJ

*TI

Km l (f, (1W ) w (1, -Is) 0~ R4(11 -4) +,

Kis h (4) Re (it s-u) B. (I') r (I, toI) bar4 (it - is)

us() U' (1) N' IU + (1)"

ox . . 1

Ipu ([ 1 JS,(s ,,(u f.~ ') fl+

+i t~S('n B din

4 7

11 H, (1) di fill, 1'i

sipu 1 .r~ ''Sh. Sm*(it S)a (.0J)NBON.4~, (,* +

+ dw.j



In this simple case it is convenient to introduce column vector P= 010...I

, as a result ot' which it is po.•sible to express the matrix of spectral.

Iens1it1.es- of signals in the form
So ()= pp'.!

""ricvr •0 B1 ' B2 here are diagonal. consists of elements I/No, inasmuch

.. :":'c.r. o' (6.7.70) it iz necessary to consider that rer all f:zc's of regular "

moai., tir•i this normali, tion ir executed
+r12

aivi itrigonal elements of -B ontUrH•irn ele(menLs

. "-7T)2 5
s-llrn+ S j~i I•')"( dl t

-T12 (9 6 1)2 Oqy

" A

+TIT

s llm-I, V" '•. (t, 1) OTO. X1, d) t.•!

Imndinng In tnese condition;, matrix So .S.X- Wei-'Sr (a) in the form fApP,
we hn,Jc

A s o ,,
AT.- I +kzS.(i,)'

h, -- Z , Poi2N.hc. (6.7.72j)

::v!l.Ly, Uy forliY1L (6.7.6(), taking into account relationships, (6.7.71), we

KI= .,(U).J,(hL, S.). (6.- 73)

1, (U) -b b

-141-



+7/2 ae

-?I2 A=I

in

andj factor 2 2

repeats J 2 from relationship (6.7. ý7) with rer lrfceruent of the signel-to-nni: ral*J c.

h by quantity liv, given by formula (6.7.72).

A._>vrd~lng to (.6-7.73) and (6.Y.7L) mlform of' quantity Y' remnir. !h

same as In the c21,3r.- of' one intput mixture,! I factor J1 (U), determined oy

of' X(t) in regular modulations o" the irixl-I -**, Inero is; pertermed averagi~nf.

an-alogou:w coefficients foi- separate mixti 1i- in'to account signalpoe

and in factor J2 there appears a new 9igi: !- ~i--r Itc ra.tic, wt.l hI,.t i': t

correlation of useful signals in separate n mie. ic0 proportional to ti:- ),:t

tolfil power of' these signals to the spe . 3ftnsity of n;.oise in onie chanrjEJ

ind*L-,atezf- that. potential accuracy doesF !1:iiC- number of'Tan~l

identical noi ses levels into which tota' S 1.La Oer is di vided, If we-- volni Id h

latter ~onlstan~t. With the seine uer. we can noc,:ideýr more complicated cxu ec.e'

Itn ".er':;e mna 1rix W ( t1  l'2 I ý_L 11 rl rly 01 1 So foCr I.,L : e 3 i Ie Il L.

Y. i. Iad p11 ls_!e s we w!Ill oen: rir i n Pa r.ogýrei i ,7. t

P e;; ocrnta tio o f I' nput mix ture:ý i n tf~:rm ei ( y. C r, 4 ) h: a whr2

~ap)1)li a t ion. In particular, a8 separate ý:.ornpjonent:; t-here can be cn c '' ir]ae

litnoda Vi ted lnte rferenc es, which oni we. t-t.-n led 1.0i Paragraph .(.1 . ;.1O It-

(:orrel t~ed int~erferences; have a cop .11 i'cerm itmo . n 'h111.1 i: ps:1

t~o present iii the form of (6.1.54) ( fo' in; !it.'e pao:-:Ive i uterferences ) , lh-n

finding matrix fUTIctions W( t1 , t,,) , the ir: r- of' correlation i1unctione-, isý

icomplicated. Here methods developed in : jti1fourlli 4 ecss m:-u." help.

All results given in this paragraphb 41.1 be illus;tcated by riumerouri (jXarrq 1(-.

in subsequent chapters.
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6.7.3. Independently Fluctuating Sendings. General
Case of an Incoherent Signal

We nh:. low discuss in detail the case of independently fluctuating sendings

i.e signal. It is the limiting case both for coherent, and for incoherent

In ation, if the interval of fluctuations of the signal turn's to be less than

the reriod of repetition.

rasing in (6.7.45) to the limit SO(Q) I and introducing the new signal-to-

noiý:- 
14 

•i

q= lir hD--P0 Tr/2N.,
S$(9)-,i

we ha ., the following expression for the likelihood coefficient of a series of n

senri.[l igs:

A y ( q N.Y0, -Ho ex

AQ. (y, 1) Y() u (te-- k{,; )e d

- correlation integral, components of which we already met above.

Thu.;, (6.7.76) is broken up into the product of n independent likelihooct

Scoe iicients for each of the periods. Therefore, according to § 6 for analysis of

elementary operations of primary processing it is sufficient to study the likelihood

cr-)elf'Icl.•t of a single sending

lia.:•much as in a wide class of cases intraperiod processing includes forming

-' if•', lw mcrilonent2 oF quantity f(y, ).), it ia useful to definitize the method of thi

n rmi- tna to explain the physical meaning of f(y, X) and If(y, X) IK

According to Fig. 6.31 for formation of' two components of' f(y, ,\) input signal.

y(t) -;foul:i be fed to two mixers with quadrature shift of high-frequency ne;.rI'-dyne

voltfiees. r'ed to them. Phase (frequency) modulation of the heterodyne signal should!

cr.. .. * :;.-! ~ the expected, and tho miidle frequency .Aiould he exAsctly equal to the

r' ecquir.,-y cc the re 'eived signa.L, Adcitionally there i.; prroi.,ced mult.iplication of

sigr.i, by !he expected form 0i' amplitude modulation, i. ., gating by a matched gate

pulse, Then there is produced integration of' the rersult: of I rL-zeosing w.itiin the•
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limits of a period (actually

only within limits of duration

of the sending), As already

"mentioned in Paragraph 7.

such processing is Taliie!

correlation, inasmuch as in

uirsult the circuit there will bt

fcrmed the coef-i'.m, " /o

Fig. 6.31. Optimum receiver of an incoherent correlation bet-deer 'h-_
signal (correlation processing): 1) r/2 phase
shifter; 2) quadrature mixers; 3) gated
amplifiers; 4) integrators; 5) quadrature re-eiv.d realization ar,, th•
devices, expected form of the signal.

2
Shift to If(Y, %)I is carried out by squaring and addition of the two formed

components of the correlation integral.

For the purpose of simplifying operat tons of' forng If'(y ,)IL we shall :onsider

an expression for the output voltage of a c,-rtein banipass filter with pulse re.'ponre

h(t) cos w0 t, to whose input there is fed s!gnal y(t). Then we have

i(sV-1) 06# d,= (g,) h (I -,)×td

X 'as#e~ + I5V (is) k (I s ~in e.*'dsd~ wU a

a a %id a + Iy (qi)k (t+ - e a - ,i)X

where

tg X(1) k o wou

Comparison of the expression for jr(y, X)I with the signal amplitude envelope,

determined by relationship (6.7.78), shows that in the case of absence of regular

phase (frequency) modulation (v'(t, X) = 0) quantity ?f(y, X)l is provortlonal

envelope of output voltage of a bandpass filter with pulse response

() Cos so. a .. (t.o .0 .os.7o)

('"ch a filter in the literature usually hiv the name cptim.ur, matched or conju gcte

filter. The last two terms seem more suik-able to us, inasmuch as we arrive at

linear filters in a number of other optimizing problems (Wiener filters, see

Paragraph 6.5.5, filters for accumulation of fluctuntionr of signal, see jaragraph

6.7.2).

The square of the signal envelope at the output of a matched filter is taken
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at moment t., on the average corresponding to the -x.mum value of the pulse

envwlpoc. .0, . 4n...c2 -.n pulse response, is arbitrary and canbe selected

in an interval of the order of pulse duration ua(t) for conformity to the principle

of physical realizability. Considering (6.7.79), we can rewrite If(y, X)I2 in the

form
*- AT, j•

(1 V %h1)? Co l (t d)duIX

Xw(t-kTr-Qdt, (6.7.80)

where v(t) - function in the form of a single peak near point t - 0 with duration

considerably less than duration of pulse ua(t), but embracing a large or an integral

number of periods of high-frequency filling of the signal. By this function, similar

in properties to a Dirac 5-function, there is "snatched-off" the tip of the filtered

and detected sending.

The block diagram of an optimum receiver, issuing quantity f(Y, X)12 according

to relationship (6.7.80), is shown in Fig. 6.32 and consists of a matched filter, a

square-law detector and a gated amplifier. Processing of the signal, expressed in

"n-0 VM6m, ' rform (6.7.80), usually carries in
of .:.e ptdoo

the literature the name of filtra-

ithhlu241d tion.

If the signal has phase

Fig. 6.32. Optimum receiver of an incoherent (frequency) modulation, then next
signal (filtration processing): i) matched
(shortening) filter; 2) square-law detector; in the filtration method of
3) gated amplifier.

processing will be insertion of
a so-called shortening filter with a pulse response which is the inversion in time
of the expected form of the phase-modulated signal with arbitrary initial phase

of its high-frequency filling cp. This leads to---smewhacmp-lies,-modificationr

of relationship (6.7.79):

M)•t-W +Wt(=U=.,to--')Cos W+t(t*--t+?h (6.7..81) +!

where 9(tj - phase modulation.

To technically realize such a filter with complex forms of modulation is

sometimes difficult [66]. Then, more preferable will be mixed correlation-filtration

processing, which during formation of If(y, %)I consists of initial multiplication

of y(t) by heterodyne signal cos [(w 0 + w.r)t + *(tj X)], leading to "convolution"

of phase (frequency) modulation anb transfer of the spectrum of the signal to a

-145-



certain intetm'ediatb frequency w analogously to how this was: done in 1-aratgraph

6.7.2.. 'Then there 'is produced-filtration of' the signal by a bandp,? :ii ':e

to freqvXenc~y whose pulse. response- envelope depicts only thp. amplitude

modulation' of the sending according to reJ,,)tio-nship (6.7.79), dete(ýtiori ,rincirg

A' circuit for such procossing is presente:d in Fig. . 7 Le:t j;ý ýtriph~afiz(,-

correlation, filtratidn%,and mixed prbces sings,:conrdu.ted optimally, -Are

equivalent in results during detec~ion and measitrement of' r, ;i-rnt,0-r,,- o-

sending.

If q does not depend on X, the signal at the output of' the d! secriminator Is

directly the derivative of jf(y. 'X1, taken for the meapurpdl -,abe of' l Porm~nc,

of this deriVative, as also of~f(y, xcan be produced by correl~atiodn, filtration

ýor mixed'met;hods.

In Fig. 6.3 there is presented a purely correlation method, which eccording

to (6.7.77). can be expressed by ths? fol].owl~ng formula:

2 (kFv)=--.Mnt{ y (t,) u.(t, kT,; iA)cas[uwt,+

* h . (t,-)X,

A di

AA

(ts) -k sin; J.) inj+ (

-, 2T,) Cosd 1%(4),U+ (I -kT,; 1 h) jf dt.4

The circuit of Fig. 6.3~4 is very close to the circuit of Fig. 6.29. The Cir-st

part of the circuit (procensing in quadrature mrixers and multiplication by f'unctions

* C~uu .9 aomleel repst th rcutofF.629 rhr afits
copetl repat thandto ig .9 irhe sfle

there follow Integrators over the period of' the pulses, actually integrating incide
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c4(i,4a.)40#t. the pulse. All the rest

Of gate pulses of the circuit - multipliers

Tothesol and adders - completely
olrouitcorresponds to Fig. 6.29.

In other words, from
Pi. ' .. Optimum receiver of' an incoherent signal

i processing): 1) mixer; 2) bandpass filter; proce~slng in a discrimi-
'; tquare-law detector; 4) rýated amplifier.

mater of' weakly correlated

coherent pulses (see Paragraph 6.7.2) processing (F.7.82) differs only in the absence

of a cL.,rete interperiod accuxnulatioýn before terminal multiplication. Thereby,

processing (6.7.82) is limiting uapo-n complete disappearance of correlation between

periods.

Unfortunately, we cannot offer a sufficiently convenient circuit representation

of piireJy filtration process-ing, if we are talking about absolutely exact fulfillment

of tihŽ 0; oiration of takin~g thaý derivative of If'(y, X)K'. This is explained by the

3 ~fact thax. ie.rarneters o; a

matched filter depend on X, so

that it is necessary to Inter-

pret in circuit terms a filter,

T ~the "deriviative" oP' a r~tipted

one.

Wi-thout concretization of

coding of the parameter this

can hardly lie done. If, however,

we arc talking about approximate

Fr~~ioc1 ~s±1t~urrealization of' the operation

From modulator in the form of two channels,

Fig. t'. 34. Optimum discriminator 1'or an incoherent detuned with respect to the
sigrnil (correlation 1)r o c e n j) i1) quadriture
mixers; 2) v1ariable-gain amplifiers; 3) integrators; parameter (see Paragraph 6.7.',),
4) multipliers; 5) adder; 6) <T21 phase s3hil'ter.

then ma: the discriminator there

chould 1-e tfiken two circuits of typo Fig. V. 32 or (A. 33, detunied ±A)./2 from the,

rnea:;'ir--:; vqlue of the parametcr. In this; case the filtration presentation of

operrftions 01 Tne 16ciu,, pi ut/i JOU5,

During cal-ulation ot' the accuracy of' a diiscrimilnntor it It.; jio.s3iule to use

forimila ('T2),when. Ji(u) is gi-veri by (P7 6,ano as J,D we take the limit. of
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(6.7.53) as SoD(w) -0 1:
Jie €,$* - T, (I + q)"

Finally, we rewrite (6.7.52) in the form

7.

I (+f U,(A) t .2 ),, ))'( d-

TI.

-T, -u( ) di , (I + q)'
0

where Tr equals the period of repetition of sending:'.

For independently fluctuating send••rý there It possible a Ceneral1;.aIicn

preceding formulas to the case of correlated interference (with an intermal of

correlation, smaller than the repetition period). It turns out that ir the period

of repetition the functional of probability density as before is expressed by formula

(6.7.77), but If(y, k)I2 and q change their value:

9K=q I '•.,r.. IU(i%)l. hS.s.(C) d'n
_rI I I)+ h. S.. (-.)

hT,,

hT',

-- r Y (it).,.+,(t .-Q it; (I,,- k,<,1) =

-kT 1; a) sin [%J, .(t, kT-; 2)1 dt.dt

=1 W ((D).U. (- w) dco I'.

,tere it is assumed that interference consists of white noise of svectral .

N and nuturally correlated interference, the maximum of whose spectra I den. i

exceedsR the density of white noise by a factor of' h and the normali;7-, -pectrum

i', equlil to S (w) (SO () = 1). Further, W(t - t-) -- n functl'n, the inverse

of the correlation function of interferences of both type:;; q - signa!-to-noi:;e

ratio in the absence of a correlated compcnen.t of interference; Y(in), •(i:), I(•,) -

Fourier transforms of functions of y(t)(in the given period), W(t. - t 2 ) nnc, ti,'t) =
(t)ei ,;) respectively. Naturally, as hu - 'K, according to (-;.(4) -

""a()a 5(t re ionship (6y7.8-) pH1sse, qnto

q, and inasmuch as W(t t into

(6.7. 8o).
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A new processing element, appearing for correlated interference, is a rejector

) circuit with pulse response W(t. - t 2 ), similar to that considered in Paragraph 6.7.1.
2)-1

Its minimum gain, equal to [No(i + h• )] as compared to No during white noise,

corresponds to the frequency of the carrier of interference, and the rejection band

grows with growth of hn.

The formula for calculation of the accuracy characteristic here has the form

T, ( b +To-) (Re b,)', (6.7.86)

where

! I -•u A

h1, 2-, j i + h~s.. (.--A)

+,- sU(LT.;I Wa0,(i-- ) dim; (6.7.87)
bI=.h! ~ ~ 2- U i yh. . Xw )

' IUlhUiV;)I)l' di,

• • •-•, I+ hoses (as--A)
--.

k q- factor of reduction of q , in comparison with q;qq

A = n -0 - separation by frequency of carriers of interference and the signal.

If we turn now to the general case of an incoherent signal agairst a background

of white noise, it differs from the coherent appearance of uncontrollable (random)

phase shifts 0i in every period. The likelihood coefficient for this case can be

found by introduction of these shifts in the expression for the likelihood coefficient

of a coherent signal and by averaging all ei. In Chapter 5 (Vol. 1) it is shown

that this averaging, besides the case of uncorrelated sendings, can be taken both

for very large and very small noises. In all these cases the operation of detection

is clo:ýe to simple square accumulation of results of optimum intraperiod processing.

Thus, from the point of view of operations of processing the whole analysis of

construction of detection receivers and discriminators is also transferred to the

case of an (correlated) incoherent signal, where it is more exact, the larger or

smaller the q. This gives certain grounds to use the formulas derived with

independent interperiods fluctuations as an approximation for the case of measurement

of parameters of an arbitrary incoherent signal.

In completion we consider the case ot many input signals (iMyct) (i = 1,

m), each of which may contain a A.hole series of useful components generally with

different forms of modulation. We assume, however, that in all of themn fluctuations
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of 1 the signal are independent from period to period, being "harmonious" within P

period, and that interferences in all mixtures have the form of whi-e r.Msie.

Construction of the functional of pro1~•!nýlv density thir ?lmost compl.y wi,"

repeat the analogous case of Paragraph 6.7.?. in oil the i•..rt. t.:. ,

applications we will repeat the sequence of these ,&.,,• !•w. Thr. :olunn

set of mixtures analogously to (6.7.55) in the k-th period nas the form.

M= ROIe (U+ (t e6'0--. + n,

where U(t) - complex nearly-diagonal matri'. f ,-'rtI't.'r --) reur ... u..i* ,r
the k-th period;

e - complex column vector of r!ý,zn. zýdalPticns (in d t',Jn 1r-n
Paragraph 6.7.2 it does not depend on rime);

n(t) - column vector of whlie noises.

We have the correlation matrix of mixtures and Its reciprocal matr!x i•n the "•rr

RI I,, 1) = Re {U (4) rIP (tJ e'"'-"' }+ m (t,-tI, 4). ,

W(11, 4) - -e W'U (I,) wU (t)N' e"•"','I+

where r - correlation matrix of order -,- •, • . i '- r'
iYa An;

all components of all mixture.:;

w - a structurally similar matrix, w. ',-h "- th.:*, t. .- xpre2-' ,: ' *

W=[I +

(B=yLSU' (S)N-' Uhs)ds).

ann1orcus to (6.7.62). From this we -air ý.,b'!in thr, operptionr of tftri detect':.or,

rc.7e!,,e!e end dl;r,,:rminator.

Finnlly, qunntity K by formula (6.7.' ) can enoil.; be red -ep,. " , n

Pnalognus to (6.7.69):

K_ L-spur j[I + i--B.]'BrB -+ , re, - (.". .- )

where 7

-1-*(s)N-,.U.(s)ds,
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are matrices, reflecting regular modulation of components of mixtures (iy(t).

In that particular case when the mixtures contain only one signal component,

where these components are completely correlated, and white noises are independent,

K again is expressed by formula (6.7.83), where J2is replaced by

2q1

oir I~s

and qz ratio of total signal energy In all ..annels to the intensity

of white noise in one of the channels.

discriminators intended for signals of different nature there Is great similarity.

These interrelationýýhips will be ;3own in more detail in. sub.sequent chapters WiLh

examrl.-.- of concrete coorciin~tes.

Sifr3 i t'! i W~hite Nol se.s

Till now in examples of statistical propertie.- of mixture!, of' signals with

noises, we almost always assumed Gaussian dis~tribution of interirerence, which is

u.-urtilIý not a limitation. Threrefore i, i-- basically interest log to :l;t±; ch'r,

processing of signals for non-Gaussian otatistics of' the useful component of

mixlu res. From the example of one forin of ;ignal:;, t~aket, agatnst. a background of'

white noises, we will show th;At deviaqtion in the dis;tribution nf' probabilities, evren

very ,oniAderable, does not lead to noticeable cirniit changes ci optmu disc tiu;S

We Thiall di;;cuss induper.;knt.ly f'luctuating seniding.;, of' a ;igrnall similar' to

tho.se which we studied in Paragrapii 6'.7. 3. If the ph~ase in en-h sýending Is

.21' ~uedevernly , theni averagingL withI ics :pect to phase ;r,;i ampl1itude E of' the

like iLio.)d iunotiona]. ý_t the ;Ig;'1ogoLot): 'a bfcck1gepl~r~r o)f irnjr,! white rnoise in,

)rje pe.r lod leads to expre:;:slon

I i, I..; u:.e iu]I to sýhow the- m!, Y. i rmU us 11i.hl.e rI I IM 1' 0' g 1 n frl 11 4.1( in gener.ra I.

convecg-eri ' or any x, wn-ji' hav th~e logarith-m 01t ls1Ik inol'nsto it, 455l l~'o-ri
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.PO, I.%)= A.+ A,1! (y,;-) I` + A, 11 (y,)-)16 +. (6. 7.

where As .L5 ~ 1M 2(~f,.I 4Mg A., 64A,4 M'

M,,-= E P,(E) e dE,

A0 - constant.

According to (6.7.96) the logarithm of the likclihcod ..... . .. "

nondiminishing entire function of the square of the si~ral amplitude ernvelcne et 'h,-

output of a matched filter. If the level of' the inuut silrial 1-, :,all. in 1,11.

(6.7.96) it is sufficient to limit oneself to the first two terms, acd the ont!:n:.,

receiver, and consequently also the discriminator, coincide with then- for 'he Ca.'Lf

of a Gaussian signal. This circumstance is in force also in wider conditionr: 9nd

is. intuitively intelligible in light of thr fa't that for a weak signal the

mixture of it with noise is approximately norrial for any properties of' thet >,-.

Unfortunately, similar general conclusions for high levels of the zi;raIl o',,.not le

made.

Let us turn to the operation of the discriminator. According . ,

Z (k~r)=[A, +2AI!(y, ",1j÷] jI(y, ;)i=

Thus, the operation of the discriminator for an nrbitrary :zignrn con.i.ts r,

reproduction of operations of a "Gaussian" :izcriminator, 'orminr accordirig Uo

Paragraph 6.7.3 quantity [If(y, n)dj, •-i --< a "Ceb.2iar" detector. fov'r.mia

quantity f(y, 7)jM According to Fig. -) the ouput signal of a ",sussnin"

,disc'riainator is multiplied by a 1;ositivr' function Q f [f(y, )) coner, t., .

depending on statistical properties of the signal. Ac a result ther"e will ýr

tormefr the circuit of a discriminator t'or thi z-lgna]. inasmuch as:,' u :!' ctti.:-

of acc-:racy in the general case cannot so ln-e tirate, inv conrside" certain examnles.

a) Case of a nonfluctuating signal, ,..'1en

P, (E) =(E

Then according to (6.7.95),

InP(y )C +±I n (,P. ,,(y. ;)I)
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4-• :

and the operation of the discriminator will take

(9 form

2 (A r.) R. (6.7l99

Function

Fig. 6.35. Optimum discrim-
inatepr for a non-Oaussian" No
signal: 1) "Gaussian" I_ _ _l F4
discrimInator; 2) optimum 91
recelý-., forming If(y, ý)12; l 2l/ I

3) nonlinear inertialess a2N.Ifl 1III"'
converter; Ii) multiplier.

in this case is monotonically diminishing. For low-

level signals, as already proved In general, it seeks a constant. For high-level

signals, as it is easy to see from (6.7.99),

Operation of an optimum receiver in these conlitions reduces to linear detection

of the signal on the output of a matched filter.

Ir, however, we turn to analysis of optimum operations of the discriminator.

then it is easy to prove that, instead of terminal ideal multipliers (phase detectors)
contained in the "Gaussian* discriminator, here we have to take multipliers with

clipping of an introduced signal which does not carry information about mismatch.

Most phase detectors utilized in practice possess Just such a property (see Chapter

2, Vol. 1). The physical explanation of the need for certain clipping of peaks

of the input mixture as compared to the case of a Gaussian discriminator is the

cirz-umstance that the signal does not fluctuate, and considerable peaks can be

for-.tJ only due to noises, suppressing the useful signal at separate moments.

The characteristic of accuracy Of measufm-e-e-c----astly-obtalned only for- -..-

a high signal level, when

TV

IC "•;.Il- 2-j'+ M(, dA ) ( dl, (6.7.100)

2where q = EoTr/4No - signal-to-noise ratio.

According to (6.7.100) K monotonically depends on the signal-to-noise ratio

and o•n n.qusres of the derivatives of modulating functions with respect to the

measured quantity averaged over the period. We already met similar dependences

above (Paragraphs 6.7.2 and 6.7.ý).
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b) The 'case of-non-Gaussian distribution, havini:, proctical importarn:e and.

presented -in the fdrm of the composition of several Fa[.leigh distributions for'

:&mp.-itude .,E: . ...

Here p. weight of separate distribution ~Pf.The- ilkollIhood funrctioni].,
I

according to (6.7.90), is equal to.

'Put l,-"21-,, ,...1, ,(Y.A)i:•t° ( !L!)2)',
e--i-•....'NOT, (I+ qi, qj=- .-N•,), ,..:,•.)

'I.

and operation of the discriminator is expressed by formula

•',. *P5,1, J q,1If(y.? .,) I2

"I +... X NOT., (I + y q.)

'61 NY T, +)12

where we assumed independence of qi from X. The coefficient in (6.7.103) with

j8fX >012with change of f(y, ý) changes little, where members of series with small

qi play the prevailing role if for all distributions pi in (6.7.10') t4,:' I> 7'', same

order. In other words, the discriminator should be designed basically for a r-ignnl

belonging to the distribution with the -mciiest q,.

6.7.5. Approximate Methods of Construction of Optimum
Discriminators. Method o" Comrarison of' Performance

o0 Circuits

By solution of the correspond~ng -quations we found mathematical opeprtions

on the signal which optimum discriminators should execute. We also gave farnctic,!-

rircu•its correspondinr to these operations. However, these circuits c8nrnOt '.

be practically realized exactly. Therefore, we give certain consideration:- nbur.

apprcximate technical realization of optimum discriminators.

r',e question reduces to approximate presentation of the i'ir:-t. -Irlvati\ve of tho

logarithm of the likelihood function. The first natural method is replacerm.nt of'

the derivative by a finite difference. If exact operation of the d•iscriminalor i.1

gIven by formuln (o.6.36), the approximate operntlcn will take f'orm
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and for a discrete signal of the type studied in Paragraph 6.6.3 it will take form

ý, ;k (YT

_ Jr'h; -;tdt]. (6.7.105)

In essence the shown method reduces to forming a discriminator from two detection

channelf: (without terminal integration or summation), detuned ±AX/2 from the measured

value oi the parameter. Quantity A, as.; it. were, is "forked." Sometimes it is

technically inconvenient to have two channels immediately. Therefore, trtn second

method of approximate realization of a discriminator is based on alternate detuning

("swinging") one detection channel near X. Naturally, this swinging should be

faster than noticeable change of X(t),

Concrete values of the fr'equency and amplitude of swinging are selected from a

6erit..: of t,..oretical and Lc ?':.nial cor:sisierationu and, not ,ast of all, fromiI

consideration of maximize proximity to the potential limit of accuracy. Mathematically,

s:winging can be presented in the form
j~r,12

X Y) M , ;i( + 1 (0)) A,,(7
1+32 H

where i'(L) - a function with period T5 and amplitude, usually not exceeding the exten'

of the linear section of the discrimination characteristic of an optimum circuit.

As the most used forms of f(t) we indicate a square or harmonic function.

All the shown approximations of the discriminator circuit, and also circuits,

in vihi.li as compared to the optimum changes are experienced only by quantitative

characteristics of separate elements, usually preserve the general idea of constru : ",

of ',hc discriminator and thereCore can be called quasi-optimum. The concept of'

quasi-optimality is imprecisely defined. Therefore, it is always necessary to have

a quantitative comparison of these circuits, and also cf any others which have appearr-.

or will. appear in practice fr. this function, with optimum circuits. Comparison of'

results of § 6.2 and § 6.6 shows that. the basic characteristic of discriminators Lotf:

optimum, and nonoptimal, is equivalent spectral densityý (ur s,ariariue of" erioF u.'. a

• *fp, ides Rb. we shall sub.equently be Lnterestcd in coe>Icient3$'•

char;ncter!zing parametric fluctuations, sometimes very ;s)tiqnable. Then it is
necessIary to compare S with ,nap 0 corresponding t f u.e optimum circuit.
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unit measurement), designated correspondingly by S and SB ORT = i/F-T. The

coefficient of decrease of quality cf the discriminatnr as compared to the op tmlir:'

is introduced by relationship .

SaultN OUT

In any case n i I. If comparison,of any constructed and practically convenient

circuits with the optimum gives a small deviation -K from I, th.•n it is ,,ie. C

express confidence that discovery of any new circzu:1rt will not imp, rcve pert'c:r.:;irzce

indices of the radar and is therefore inexpedient.
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§ 6.8. Synthesis of Smoothing Circuits and ResultantAccuracy of Measurements

In § 6.6 it was shown that optimum meters contain smoothing circuits. In the

present paragraph without concretization of the physical nature of the measured

quanta t* we obtain and analyze optimum smoothing circuits for different statistical

ir",',rties of X(t). Pulse responses of these circuits, and also resultant error I
of measurements are determined by equations (6.6.31) and (6.6.52) or (6.6.53) and

(6.6.54). Solutions of these equations depend on the correlation function of the

parameter R(t, T) and function K(t), which depends on statistical properties of

the input signal y(t) and the method of encoding in it parameter X(t). We already

indicated that for Gaussian statistics of X (t) synthesis of smoothing circuits

is analogous to synthesis of Wiener filters. Although there are solutions of the

last problem in literature, the specific fora of equivalent "interference" and

presentation of the meter in the form of a closed tracking system permit us to

ohb :1,! a sz'ries of new conclusions interesting for applications.

Below we shall consider parameters in the form of stationary random processes,

processes with stationary increments, quasd-regular processes (linear combinations

of known functions with random factors), and also mixed cases. We separately consi,.ore

synthesis of smoothing filters for meters of linear functionals of parameters.

6.8.1. Parameter - Stationary Random Process

In a number of applications it. is possible to consider the measured quantity

a random stationary process. An example is steady fluctuations of speed in an

aircraft Doppler meter, groundspeed meter, and so forth.

if the measured parameter ij stationary, during an arbitrary time of' observwif i.

equotiom (6.6.53) takes form

ClQ, %)+1( 0~. S) R(S -- )ds • R t-- ,) ( 6-. 1.•)

i.e., turns out to be an integral equation with a nucleus, depending on the differe,,--.

of' the arguments. Methods o" iutiýrr of -ich equationq hwive been studied ti pri•,-

ciple repeatedly [19]. An exact solution can be obtained 1.f spectral density oi' if,• •

parameter has the form

S~~~~~ ~~~~ (-) YO . -•.,=I•.-•1) V','(' " •

- - '47
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where %-(ics), Pn(io) -polynomials from iw of degree m and n > m.

Such presentation of S(w) is very general and e..brace3 practi-1iy n-1 -e-11

cases of stationary processes. Substituting in _..). function R(t - r), expreoed

through S(w),; and-applying -to both parts of thlsI eq.uation differential oper-k :.r

Pn(d/dT) P -d/dT), taking into account (6.8.2) it iL possible to show tsat eaticq

(6.8.1) iI equivalent to differential equation

S,- W) Q. , d "

Additionally c(t, T) should satisfy boundary conditions Pt the endr of the in'erj,,l

of observation (0, t), which are obtained t[f wt apply to both parts of (V.8.1) cper-

ators (d /drk)Pn(d/d-r) and (d /dr)Pn( -d/dT) (k- o, 1, ... , n - 1) and ube certa-r.

theaoreer, of the theory of functions of a ccomplex vtrE'ble:

Jd4•-P. 4•),€. ,)+K YJ A,?•,(1,.,)=o
. hen •-0 =0

ds p (--t)A,1d •X

x c(, •1)-=-0 I-my •

Here A,& Ys)) -- multinomial part ,f tLt fraction
/me

I Q= 00) P (Ou)PM' (is).

"T ime t in (6.8.3) and (6.8.41 is co, :Idered n :'Ixed pnrnmeter.

Thu.-., .rciution of equation (6.8.1) i! eqizslalent to findlnr Green's turi-'"

of tho corresponding linear differential equation witt: constant coefflci-ntr

boundary conditions (6.8.4). Solution of this pro'lem is sometimes ct,.r.w t me,

but does not present fundamental difficulties.

Certain simplification is attained when r = , S(w) = IPn(iw)i. Boundary

conditions here are simplified, since A(.)

We shall consider as an example n parnmeter in the form of a stationnry random

process, which it is formally possible to consider foyned by passage of white noise

throu.kI an inertil link with time constant T:
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24_ (6.8.5)

Note that in this case r d
P(jI )+V,:4dt

chen relationships (6.8.3) and (6.8.4) will take form

0+Vkr•1)('. ')+r-We('. ,1=24 T&(1-)
(6.8.6)

System (6.8.6) has the following solution:

CW (I_%_2.T-

W( ,•Tt+ ty •T--s,
S(6.8.7)

whr p = 2uA2 TK.wherep 2

A circuit with pulse response (6.8.7) can be realized by a controlled vhrlable-

gain amplifier, an integrator and one more controlled amplifier, coupled in series

(Fig. 6.36).

Fig. 6.36. Smoothing circuits for a station-
ary parameter with small observation time.
1, 3 - variable-gain amplifiers; 2 - inte-
grator.

Very interesting is the case of a large time of observation, when t/T >> 1.

Then in view of attenuation of pulse response one should consider small differences

between moments of application of input disturbances and reading (t - T)/T - i, when

simultaneously t/T >> i, T/T >> i. It is easy to prove that in these conditions

c(. ) c(t- =exp+ (6.8.8)



Thereby, in the limiting case pulse response c(t, T) depends only on the dif-

ference of'arguments and coincides with the response.of a, certain link of the frzt.

order with effective time constant

•T~ ~ LI-v' . (- •

Seeking from (6.8.8) solution of equation (6.6.54) in the form g(t. -),

have function

W28 Y - T4 r( &:.i.•o)

with Fourier transform

2(a)=______+, _,+.- (K6..:l)

Yruz, the single-loop variant of ,ctinc-r circuit should be a circuit wiT,ý,

e.aohly that time ,!onntent which corresr, on•,) to the irertial link formirn th;;

parame;.er of 41 tt- noise. MultIiyl• " , tie trzi.;. "Or C, -! u;

mum discrimiriatcr K, we note that the •- -or In the loop -n optimrur

meter xoarle. as

p f p!_when p <
V,---- + IB V•-vea Iw p.. 12)

Finally, variance of resultant error of :,easurement of the parmel.er, accordir,

to (6.8.7), Is equal to

=-(1 + rl•p-)'e r•-l p--••-e1
Orr + -I)$ e.

252

Quantity p in relationships (6.8.7)-(6..813) actually is the equivalent

signal-to-noise ratio in the meter, inatmuch nz it _-2 equal to the ratio of the max-
2

imum volue of spectral density of the parameter 2) T to the equivalent .;pectral

density of the discriminator I/A. The monotone -haracter of the dependence of
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tmaximum error in (6.8.13) bn p does not require explanation. More interesting is

the dependence of the overall gain factor in the loop on p. Physically the inter-

connection between IEC and p is explained by optimum selection of the transmission

band of the system

All# ~j1!fd. Y (6.8. 14)

For high levels of noise it is useful to narrow the bandwidth to a matched

width (Afe)corz - i/AT for maximum suppression of noises, sacrificing tracking

,of abrupt changes of the parameter. For low-level noises it is more useful to use

a transmission band expanded by a factor of *I + T'p. within limits of which the

level of spectral density of the parameter exceeds the level of the noises.

Especially important for applications is the case of a large time of obser-

vation, when the process of measurement "becomes steady" and its characteristics cease

to depend on the initial conditions of measurement. To find limiting values of c(t - )

and 6(t--) for the case of a large time of observ-ation in general is considerably

more convenient by the method of factoring, given in § 6.5. For the given case

there is performed factoring of function

I + KS 1) =, (,,r ,,(6.8.15)

and the final result is recorded in the form

VW rV W (6.8. i6)

Here, the smoothing filter of the equivalent single-loop system has frequency

response

o (i) =C (,)I(I --KC(i)), (6.8.17)

which is found from equation (6.6.54) by the method cf Fourier transforms.

Stationary error of measurement at the limit is constant and is expressed by

a simple formula, based on the theory of Fourier integrals:

%..- =IimisC1i.). (6.8.18)

Especially convenient is the method of factoring for a rational-fractional

spectral density of the parameter of form (6.8.2). Turning as an example again

to t.,e very simple case described by relationships (6.8.5) we have, concretely,
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Then from (6.8.i6) we have

• .N:l!"i+. + i)

and, finally, the frequency response of the fZiltr iz equdl tu

p 3J J,-+'( V r+-#, 0 -mTr- + 1)" h-r

which coincides with the Fourier tr-n.cforr of (6.8.8). Increase of the orders 0:

polynomials Pn(iw) and Qk(iw) in (62.P' -onpication of the factoring

procedure, consisting of finding roots of !i.Lr.- !ons cf n high order. In

principle this is the same equation as for in arbitrary time of ol•Z, "

the llmiting cace nevertheless sharply .-. -:lifles further calculations freeilr u

from the need to allcw for boundary cc-ri "onr.

6.8.2. Parameter - Randcr 2'rocesz. with J.atlonar* Increasemerits

In engineering practice In a numubr ol cases i% Imposs'bie even to :,p<:,'x-

Irsitely consider the measured quantity ý,,-:tlonary: however, it is possible to con-

sider stitioniry a certain derivative of the parameter. Thus, if acceleration

the ob4,,ct changeF chotically and steadily, the coordinate of it Is a r~n"

with a stationary second derivative. Such a type of random process we i , in

the class of processes with k-th station3ry inrnments(k = 0, 1, ... ) [:J].

Mathematically a process with stationery increment[c of the k-t4 order is defined

as process x(t), statistical characteristlic of whose k-th difference

m~d.

are not time-dependent. Formally, it iz possible equate such a process to a process
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with a stationary k-th derivative. To this class there belong stationary processes

(ard processes obtained from them by application of integro-differential operators

with constant coefficients. Correlation function R(t, T) of a process with station-

ary increments is easily expressed through the correlation function of the station-

ary -.-t., derivative of p(t - T) in the form

Jj ".• dt.(t - t.)bS (.--t.)h-'p (t.--) when k>1,

I'. lwenkO. 
(6.8.19)

This relationship with a stationary process permits us to introduce the concept

of spectral density S(w) of the process with stationary increments, determining it

according to the formula

S(pe " s e)d.. (6.8.20)

To find function c(t, T) from equation (6.6.53) with arbitrary observation time

In prLiciple It would have Leen possible tc; use the method of re,.Iuction to a dl:""er-

ential equation with a special right member, absolutely analogous to that presented

in Paragraph 6.8.1. if the spectral density of the process is a rational-fraction

function of iW, i.e., can be presented in the form (6.8.2). We select a somewhat

different way of presentation. By two important and very graphic examples we ex-

plain the method of reduction of equation (6.6.53) to differential equations of

anrther type; with the help of the latter we effectively solve these particular

problems; and then we expound a general method for obtaining limIting operators,

i.e., smoothing filters for a large time of observation.

Let us start with the very simple example of a parameter in the form of a Wl:!i'-r

prc'ctxz, i.e., the integral of white noise. The correlation function of this prcc•

is etJ:,•l to

R P. ,))(. 0668.2

where B1  const is the spectral density of the initial white noise.

S;ubstituting (6.8.21) ir. equation (6.6.53) for t L T, %re have
I I

e~t~)+K, S:. ~ad+~B, ~ (1,a) a =~i,(6.8.22)So.) I B,

and successive differentiation.with respect to -r gives
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#,,iq)+KB, , J(,.s)ds=B 1  8. V.

""KB( ). (5.,. <)

The solution of equation (6.8.241), satisfy-'rg conditionz (6.8.2?) an4 (6.8.?..

simultaneously has the form

From this, according to (6.8.2'-) ana- (%. . we tfave

The last expression shows th3t for stz..l times cf observation v.•rlmnce of

error of measurp"Aent is equal to varianice L:" ia•e a priori distribution of R(t, t0 =

B T, and with growth of t passes to t zt ttic~n~iry value %/777 r.)onotonlcIkLy

depending on intensity B1 of white noise, from A:._un the parameter is formed, "nd

the equivalent spectral density of an cptim.ur, d1zcrir.In:tor / T•- p-i'osi ox"

becoming steady is faster, the larger the pro'uct BIK.

Function c(t, T) for large t, i alir c';z llmltlng value

corresponding to a RC-circult with time cc.-tojnt (P•K) , which follows from the

foT,, of the frequency response

[ulse response of an open loop g(t, ;) 11 determined by -quat!, . K.).), and

for cT, t), given by formula (6.6.25), it Is ejull tcL

(tth - (8.)

i.e., in general, does not depend on t. According to (6.8.28) smooti'ing consists

of amplification of the output signal of the izeriminator by an amplifier with

gain factor, varying according to the law (&6..28), and subsequently by integration.
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In view of the a priori known continuity of parameter X(t) and zero initial error of
-1/2

measurement the output signal of the discriminator z(t) for T < (BI K) is trans-

mitted with a small, but increasing amplification. The build-up is explained by
-1/2

gradun J increase of variance of x(t). When T >> (BjK) smoothing passes into

cc-:.- *',,nt amplification and to integration.

It is interesting to note that a smoothing circuit with one integrator is very

often used in practice. Theoretical consideration shows that without taking into

account the transient regime such a smoothing filter is optimum for parameter X(t)

in the fiorm of the first Integral of white noise. The magnitude of the overall gain

factor in open loop K 7- here depends on the intensity of parameter B.,

and also on the statistics of the input mixture of the signa] with noise (through K).

This result, according to Paragraph 6.8.1, is natural.

Let us consider now a process in the form of the second integral of white noise,

the correlation function of which is equal to: (G. 8. q)

Successively differentiating with respect to T equation (6.6.53), in which

there is placed the value of R(t, i) from (6.8.29), we have differential equation

with four integro-differential subsidiary conditions:

II

+ j4C (t.S i 31-1 4 %9 (

I .. aii) 0 ds-a,=--a ,

- -6-0

le c(t. S) 2 ds =a2  2d

Ot + a4 lec (. s) (s- %) di- a' (I-)

~~J4) a4 j'c'(I. s) ds=-a,

-165-



where e,•'• ,, ---Kc(1,,).

Finally,, we have a solution in the form

- ,(E,,)=: , c-u -- --,. ~ '4 dtI, + i+pV-S,,

46Y 6a0+2.feesisdo A -(6.8.31)

Variance of error of measurement is equal to

gwx bvirso+ (6.8.32)

In particular, for large and small time of measurement

OL' M slwm1(a 8l (6.8.33)

As follows from (6.8.3), for a small time observation variance of error

of measurement, as also in the preceding example, •ncreases as the a priori variance

of parameter R(t, r) from (6.8.29). The fict is that In the first moments inertial

smoothing elements have not yet accumulated a signal, which testifies to the rppearing

error of measurement. For a largb time nf observation variance of error seeks, as

before, a stationary value, monotonicully depmiding on spectral density B2 of white

noise, from which the parameters was formed, and on the equivalent spectral density

of the discriminator I/A.
It is interesting to note that for large time of observation c*(t, 1) - Kc(t', •'

passes to

RC(l, ,) .- co," (6.8.34)

i.e., describes a circuit with constant parameters and frequency response

K 06_ +4 _ 
(6.8.35)

In both the examples given, in spite of the nonstationariness of the parameter,

operators of smoothing, analogously to Paragraph 6.8.1, belong to circuits with con-

stant parameters.
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The physical expalnation of this is that during measurement of a process with

stationqry increments there is established dynamic equilibrium between the effect of

the growth of uncertainty of the value of the parameter due to its random changes and

the effect of more precise definition of its value due to the arrival of new data.

Thý%.. mutually opposite effects follow from relationships (6.5.35) and will be touched

again in § 6.9.

It is interesting that transmission of the mixture of a process with a station-

ary first or second derivative with white noise through a circuit with a rational-

fractioin frequency response of type (6.8.27) or (6.8.35), in which the order of tho

'polynomial of the numerator is less than the order of the polynomial of the denom-

inator by orn, ensures mInimum necessary difference of orders of these polynomialz

for zmoothing white noise and simultaneously gives at the output a random process

with a stationary derivative, i.e., a process, similar in properties to the meaý'ired

quantity. ThiL is especially graphic for a system of the first order, at whoep

2 1outpit tt.ere will be formed a random procese with spectral der-Ity i/X , equ-.

in accuracy to the spectral density of the tracked quantity.

It iL natural to assume that for any processes with stationary derivatives ther"

existe limiting operators of smoothing, belonging to circuits with a constant p-trc-

meters. Therefore, we generalize the algorithm of finding limiting operators, t,,'cd

on factoring, to parameters in the form of random processes with statlonnry in-rn.en"

Let us substitute in equation (6.6.53) correlation function R(t, T), expressed n'z-

cording to (6.8.19), and direct In this expression to0 -w, seeking a solution in

the form c(t, -) - c(t - r). Then, applying to both parts of the equation Fourier

trnnsformation and using relationship (6.8.20), one can prove that the solution

equ-!tIon (6.-.53) in this case is expressed by the same formula (6.8.16) Ps for

stntionary processes. The-pulse response of the - -thIng-fit1-P-8 - single-l:o

circuit g(t,r) - g(t - T) is determined through the Fourier trannformation with : &

help of r-elationship (6.8.17), and maximum error of measurement is given by f,,rmuln

It is necessary only to stipulate that factoring of (6.8.15) in. this caze i-½

baýed on presentation of the factor of form 0 2k in the denominator of spectral
k kI -lycndee*poen

density S(;) in the form (im) (-iW) , where I/in is formally connidered a pole in

the upper half-plane, and i/(-iw) is conpidered a pole in the lower half-plane of

complex variable w.

For the purpose of illustration of the method of factoring we again consider
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a parameter in the form of' the first and second integrals of white noiý-e. Ii~r~

first case spectral der~sity of the parameter according (6.3.!9' sl lri I u- JIefL~

a!s S(o3) =B 1/ Here,

and in accordance with (6.8.16)-(6.8.:18) we have

I.e., results, already analyzed by us above [see(.¶26(..2 .

For the second example we have S(w) -/B and fhtctoring

X fee -- ]1 2

where again a2 - (B2K)1/# . From this wc f'.nally have a result, coincitirip si1tt,

(6M~5.A -rost Interesting eircumst-r" Is -e'.tl~d ,!tier' by fnr'lil" ~.1.it'

ml(~~.3)wv find the filter of' s-.-.' hIrZ In a shtgi**-loop ayte. It Lur,.s-

G0(is) + Jf1A0 to2Z~

L.e.. t~ie filter is an ideal double Irntegrat~or witth n correcting RC-cir-'uiir

rQIy' constant T,, CJ(/KB2) 1/4 (Fig. 6.37). A filter with frequency of

*vPO 1...7)~ . probably, the most wldt'stread In rr-1ct1': th.'w' r *I-en11~

of i.ts optimality revealed here are by n,- mears Wvr~..~ e recall that un-,--

conditions require presence In the param-ft-.- .f Vh- first time derivativle %nd

chnotically varying stationary second derivitive, whlcri It ts possible to apprc~xria.t-

by white noise.

Annlogously we can obtain a solution of- eq.-aticnrs (6.6.53) and (6 .6Y! l.;c

for a parameter in the forta of the in~tegral of any n-th order of .-hite nolse.
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In particular, for the third order we have

S(1-)-----Y ( s' + 2x (1s ) + ar.

+ 2Ows) +2'41S

*L M% N)M (6.8.38)

Calculation of an ever higher order of smoothness of parameter X(t), as follows

from (`.8.36)-(6.8.38), leads to even greater complication of smoothing circuits.

In general they contain n integrators and circuits of correction of the (n - I)-th

order, parameters of which depend on an - (KBn) /2n. The gain factor of an open

S C €C loop taking into account the gain factor

of the discriminator in all cases is propor-

tIonal to VIn' which qualitatively co4n-

cides with the case of a stationary param-
Fig. 6.37. Block diagram of smoothing eter and Is dictated by the same factorn.
"circuits for a parameter with station-
fry increments. I - high-Cain ampli- All synthesized filters provid- sta-

bility to the closed system. In particular.

in a system of the second order, according to (6.8.36), there are provided condition.:

of etability close to the threshold between aperiodic and oscillatory regimes. Thi3

general circumstance is characteristic for all optimum filters knowingly giving o

limited response to disturbances. It is convenient in that the question of stabilLty

during synthesis again arises only when there arises the necessity of departing in

the meter from characteristics which are in the statisticil sense optimum.

Let us give, finally, an expression for variance of stationary error of meas',.-

ment 3f the parameter in the form of the n-th integral of white noise of intenn!.-

B n

I, f '. -,. 2n
- w __T . '0

It is easy to prove that in particular cases (n = 1, 2, 3) from (6.8.39) there

ensue the corresponding formulas, given above. As follows from formula (6.8.39),

the potential mean square error with growth of smoothing of the parameter all the

less depends on the intensity of the parameter (Bn is taken to the i/4n power), and
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aBN as total error is close in value to its fluctuating component. However, to

guarantee this result we should correctly'select the band of transmission of th:

closed system by selection of the corresponding-gain factor.

6.8.3. 'Parameter - Linear Coibi:oation of Known

Functions with Randoin Facwrs

In a broad class of practical applications, for instance during measuremenr, ;,f

c6ordinates of bodies flying by the laws of ballistics, the charactEr of chnre of'

X(t) is known with an accuracy of certain parameters al, a2, *, aM, ;' .....

time-dependent, the values of which by virtue of initial conditions of observation

une should consider random. It is possible to presvnrt t1hTz aepenrience in the

It (--Fit; ,. (6.s.4c)

We consider that

(6.8.41)

where aK - menn value;

- small normally distributed devI-ition from the mean value.

Then function (6.8.40) can be apprcx:r.at9-V tresented In the form

a-

where

dab

-tre known functions.

According to (6.8.42) parameter x(t) then is o normtl rndom process. Its mean

valie is equal to F(t; a., ... , a.), and tne correlation function is determined by

thE'Q " ,us relationship

itl~ Vs pd(.)I"t)=1+(. 1(i
IA-IU

.,C'Er •4 ItMikll -JI --1ll- matrix of mixed m.-oments of quantities1 qunite ...(, , mn);

f(t)..., Wf(t)) -column vector with ei'zmnts t)" = C/3C F(t;

a ... ,a);

sign "+" signifies transposition.

In general, a parameter of form (6.8.42) is degenerate random process, com-

pletely determined by an m-dimensional distribution of probabilitiez, so that a re-

ciprocal matrix R-1 for any n > m f-- number of moments of observation) does not

exiht for it.
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This formal difficulty, allowing one to doubt the applicability in the given case

of results obtained in § 6.6, can easily be by passed if we add to X(t) an arbitrarily

small nondegenerate random process XI(t) - ex(t). Then the correlation function of

process X(t) + ex(t> allows inversion; the distribution is nondegenerate for any

n > m, and in equation (6.6.53) there will be contained correlation function R(t,

+ e 2 Rx(ti, t 2 ). Directing e to zero, we obtain an equation in which there enters

correlation function (6.8.43).

We start to find smoothing circuits with the very simple case of m =:

I t(0)= 1-()+ (0 (6.8.44)

where %--7 and f(t) - known functions;
S- normally distributed quantity, for which C - M, --

so that R(t, T) - •0

Equation (6.6.53) takes form
I

,(.,+ Kai e(t~s) j(s) I,--) d, s1,.(.••
b

i.e., is an integral equation with a degenerate kernel. Seeking its solution in

the form c(t, T) - V(t)f(T), it is simple to obtain finally

t+~jui (6.8.4(7)

2
from which error of measurement c 8 x(t) is equal to

,'T' (6.8.47)

a.i-; when the value of the parameter does not grow faster than the pcwer of t, it

alway:. seeks zero as t c. For instance, when

we have

9-X

The tendency of error of measurcment to zero is a specific peculiarity of

the considered case and is caused by the fact that the l1w of change of X(t) is

known with an accuracy of a constant factor v. The problem of filtration actually
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confdista ofme-asurement.(siatcn of this constant factor. From the thear;' t C
estimtionpwe-know ,(§6.6) that -measurement of a constant parameter can be ne-ri :-.:..

wilth erroroi`tendi.to zero with increase of the number of tieasurements, where

during mea&urement of the coefficient of an m-th -•rder parabola raj.>.J •ith

noise ,with spectral density i/K the variance of errýr in the absenr~ce of any

priori data about this coefficient is exactly (2m + 1)/(Kt).

Fig. 6.38. Smoothing circuits for a quasI-reg,-
ulAr parametei (single-loop variant c,: n me'ar):
1, 3 - variable-gain amplifiers; 2 - integrator.

Seeking a solution of equation (6.(..' in th. form g(t, v) m f(t .•'

c(t, r), determined according to (6.8.46), we have

I + lIN.,*.,

According to (6.8.49) the smoothinr ýIlter of a single-loop zystem : o '.'v.:.

vnrihahl. parameters for any time of ctc:,.Ri,.- ,mthing (FI. C. -) coN.-!:Lt.

cf muiltiplicatiort of the output signal ,f the di::crIminttor by functior, t
SKoo 1 (8) da , subsequent integrnL1.,,: uiid multiplication by furctlon C( ).

to
The routput signal of the integrator is the -urrent estimete of pnrnmeter I ,,nd i.'

us~.i ,s n factor for the law of change ::' parameter f(t), generated in the c~r-i!.

At • i' [utroduction of kTM there will form estimate c(t).

Ctiaracteristic for a filter with characteristic (6.8.49) is gradunl ,:. AL

8.-,'! ;.mlnator output or, in other word., "freezing" of the estimated •',pnt.

.,"r -ing faster, the less the equivalent spectral aeir."ty _/K. .- i expluned

by the fact that the law of change of X(t) is known a priori so that the fir-ite

interval of the realization permits us with good sccuracy to predict behavior of

parameter X(t) in all subsequent moments of time. Upon the expiration of this

interval error of measurement already becomes Zrall, and cnly specially noticeable

peaks .of output voltage of the discriminator correct estimate i.
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With equal success smoothing can be conducted by a double-loop system of the

type of Fig.6.'iY, where pulse response-of the filter .c(t, T) is given'by relation-

ship (6.8.46). As Fig. 6.39-illustrates, in this case output voltage of the adder

of the loop of internal coupling which is approximately an additive mixture of the

measured quantity'and white noise, is multiplied by function f(t), and then is

!ntegrated.

Fig. 6.39. Smoothing circuits for a quasi-regular
parameter (double-loop variant of a meter): 1, 3 -
variable-gain amplifiers; 2 - integrator; 4 - con-
stant amplifier.

Thereby there will be formed correlation between the input (for the system of

smoothing) realization and the expected form of "signal." Further processing reduces

to multiplication of the formed quantity by function ' ' which

simultaneously normalizes the output voltage of the integrator, compensating for

the effect of constant accumulation, and forms the measured quantity. Both methods

of smoothing are absolutely equivalent.

Now let us turn to the general case of process (6.8.42) for an arbitrary m.

Substituting (6.8.43) in (6.6.53), we again have an equation with a degenerate

kernel, solution of which is best sought in the form

(.n)=+ (1) f (.9). (6.8.50)

As a result we have

e P,•= +( [M-' +! AKU (ON•' (0,) . 8. C5 I

where the square (m x m)-order matrix U(t) is determined by expression

U(J)-iI U,(M) 1III [j(s)F h(s)dsI (6.8-52)

Expression (6.8.51) is a natural generalization of relationship (6.8.47). Analo-

6ously we have generalizations for pulse response of the filter and variance of
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ýe~rror:

Accordir% -.to T-(6. 8.:ý3) -smdoothing circuits-in the S Ing!e,-;166p 6orar ons is t c f

ma parallel channels. In the k-th channel there is produced multiplication of' 7(t) ýry

functions which depend on all fi(t) (i = 1, 2,*. in) acid oni K, 111ik; then rL:l t

multiplication -are iriteg'rated, asý a result- of which 'there -are t6'rnied estimates of'

.m unknomrn coeffficients. Theri, ;from the estimates 'hers '~ forrned the valqe ol thý:

paramneter according to fdrmula'(6.&3.-4L?). - -

The shown method of smoothing has the following pec Iuliari'ties:

1. In it both the R. priori accuracy of measurement of the unknown fsctcor

and also itccuracy properties of an optimum discriminator, processing newly arriv~ng

dataI, ai'e ý.(counted for.

2. Any curvature of the functions which depict change of parameter X(t) in

time is accounted for. For the purpose of' minimizing errors during smoothing of

especially nonlinear functions we use known laws of change 6f Par-ameter f k (t) with-

out any increase of the number of series-coupled integrating networvs.

3. With increase of the time of observation the operators of smoothing ond

also the potential error of measurement al"! the less depend on a priori CLonditions,

seeking magnitudes

,gt- f4-1 (OJ) U f (,(6.8. 55)

C~f~ V. .0 -w +(t(t)t f() (6.S.56)

M f (6. 8.y;

Formulp. (6.8.57) is met in literature devoted to measuremerts of coordir,,, of'

b-alliistic targets [141. Here, the measured quantity is usually considered the

con.--tant parameters of the trajectory, but not the actual coordinati:<, and they

apply the theory of the maximum likelihood estimate, considering a priori information

about; the parameters generally absent. Let us explain this in greater detail.

We assume that radio processing in the discriminator is considered assigned.,

and it is assutmed that the object of optimization Is ..aixture x(t) of the law of motion

X(t, p.), depending on constant parameters p, and noise disturbances n(t) -wiýý11

Guassian distribution. As results of §6.6 show, assuming linear work of the
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discriminator and ignoring parametric fluctuations, by addition of the discriminator

( ) output (divided by its gain factor) to the measured value of the parameter it is

indeed possible to obtain voltage having the properties of an additive mixture of

equivalent "signal" and "noise." In conditions of § 6.6 noise is white, so that

it±. cistribution by virtue of inertia of subsequent circuits can be considered

:cssian. Then the likelihood functional of L is recorded in the form

P(XQ I P) C'eXP.TjX4 (1
~~~~i ,'-"." I

If the a priori distribution of Lt has large variance, and for X(t; i±) expansion

(6.8.43) is approximately valid, then for determination of ýi we have a system of

linear equations of maximum likelihood

t%,) Ij() t d (t) dc.

Solution of the system in matrix representation has the form
a

=U-1 ) ft ).x (,) d,. (6.8.59)

by which it is possible, according to (6.8.43), to express the value of X(t, u):
Aa

10, P)f()P (1) U -' (1) 1(co] KX (,c) d. (6.8.60)

Comparing (6.8.56) with (6.8.60), we note that for a large time of observation

the operator of smoothing studied earlier coincides with the operator obtained by

the maximum likelihood method. If we have the a priori distribution of ýL, the est2-

mates should be formed by the method of maximum a posteriori probability. Analogously

to how we obtained a solution for (6.8.60), we can obtain a solution coinciding with

(6.8.51) for any time of observation. This circumstance established one more intt:1-

connection between the theory of optimum filtration and the theory of- the maximum

likelihood estimate.

The given results on measurement of coordinates of objects with a balliptic

law of motion do not give, however, an exhaustive solution of the problem. The fact

is that when accounting for different disturbing factors the differential equations

describing variation of the parameters in time become nonlinear, and an exact law

of motion in the form of elementary functions cannot be obtained from them. In

these conditions finding of functions XT- and fi(t) is hampered, and simultaneously

with the problem of smoothing onje should somehow solve the problem of current
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integration of equations of motion. Simple rules of carrying out the operntL'n,

especially in complicated cases, are absent here, and the important problemn0

synthesis of a convenient algorithm of smtoothing, eiýGuring minimum error,. ond oz-.3!v

realized technically, remairs open. Furthermore, complication of such alccý'>.-

occurs due to the need for accounting for additional components of errors

S6.2). Regardless, however, of the complexity in construction of the~ ak-c-r-li-

of smoothing, sometimes hindering direct use of the above mentfoned 'u.,

latter nevertheless can also be used in'complicatecd c,"se- if v.s areta.

cml~culatior of errors of measurement. In this ca lculation less accurac~y 01' Cal-

culation than during synthesis of smoothing circuit 1s, pf rnissiblo, Zo tl~nt

equation of motion can be integrated approximnately, after which we cond'lct e~:r.;

of type (6.8.43) and find errors of measurement by formula (6.8.57).

The considered case of a quasi-regular parameter easily permits us to 2tudylý

.;.,thn case of self-tuning of smoothing 'ircuits for correction of unequ: La>ý ' :

of measuremeint:z, or which is the samne, th.,: lrffliuence of parametric flucttiatiun. Le:

us analyze the most simple csse of one unknow..n parameter. We note that eq~uttion

(6.8.45) in variable K(t) is replaced acdig ("ý.6.31) by

As an equation with degenerate kern,-!, it is easily solved:

from which, using equation (6.6.32), -we obtain

Error of measurement should be calculated according to (6.6.43) b', -iveraging

((,..P,62) over random variables, determined by input sIgnal y(t') !-he random factor.

We note that randomness of c(t, -r) is connected only with function ý,(t), which is

a random of modulation factor K(t):

K~t=KI +~tlK=RjVj.
Acc-ording to § 6.6 ý(t) has the properties of white ntoise:

(it) t 3) (t,(6.8.64)

C~onsidering fluctuations of the gain ?~actor of the discriminator small, it is

posz:-ible to expand (6.8.62) in powers of ý(t) and after averaging to obtnin
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[ i: 1614 [4(s ") ds

t+.KP~s~a 1(6.8.65)
wh1ch. for a large time of observation gives

u~a14()ds1
C )• ] (6.8.66)

Consequently, parametric fluctuations increase error of measurement. However,

this increase is much more considerable if we do not allow for these fluctuations

during synthesis of the circuit, when they, in fact exist. (Let us remember that

in the past these fluctuations were not accounted for either during synthesis or

during calculation of accuracy.) Then calculation of accuracy of measurement cor-

ducted by tho method of S 6.2 gives

or for a large time of observation

* r + rc~da(6.8.6)

Inasmuch as for a constant or little-varying dimensionless function f(t) inte-

grals

are quantities of the same order, comparison of the second component in brackets in

relationships (6.8.66) and (r.8.68) shows that in the case of allowance i'ar p:-ramet-

ric fluctuations during synthesis this addition decreases approximately according to

the law V/(t - to), and in the case of disregard it pasnes to a constant limit,

approximately equal to o2W. Remembering~that % and I/K are equal to the spectral

den.ities of the nondimensional rqodulatirn coefficient 3f the gain factor ond equiv-

alert input noise of an optimum cisriminator, respectively, end producing
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'multiplication and divirion of a 2 XK by a certain transmission band Af, we prv'2i

I.e., increase of' error of mea surement, is determtined by theratio o,, j priori.-!

ance ýi to the variance of equivalent noise, multip•'ld. by the variince r)-,' mdu

lation coefficient of the gain factor of the discriminator. in the cace of* -ia-

.iirnal-t~o-noise ratios the magnitude' of: (6.8.69) will be r~t' oeno 4~.~bie

from thic simple example we proV~d that disregard of' pararnetr'-c fluctuatioru- 6-urirp

synthesis, i.e., rejection of an accuracy unit and self-tuning of smoothing circuits,

lend-- to growth of errors of measurement, in general, very urviec-LrabLe. Thli:

fle.. the continuing interest in parametric fluctuations in the present rind subveoicment

cheprters-.

6.8.4. Mixed Cases

the most; general case the ineasuied quantity contains comrponenitsý ofdi:~rt

origrin, posseoss-ing, therefore various correlation properties. Let, us study nc:u~

ment of a parameter in the form of the smim of a nondegenerate (purely random)i pros;esý-,

for concreteness, of a stationary (see Paragraph 6.8.1-) and a: quasi-regular rrondc'm

pr~oceo-, in the form of a linear combination of known function.s witn :i1 f~tr

(.;ee Paragraph 6.8.3). In principle the results obtained can be general-i.ed c

monur complicated cases.

WritinEg ther correlation function the stationary and quasi-refu h- Fr tee

in hle form r(t,1 - t.) and R(t1 , t2) =f+(t,)Mf(t 2), respectively, we hs-ve for oul.,e.

re;s:,,unse o.f the smoothing filter of a double-loop variant of a meter the integre]1.

-ion

c(t, ¶g)K c-(t, s) [1+ (s) Mf (%) +r(s -- c)Jds=

-t+ (t) Mt (t) + r (t 8.0

-;,t us n.sr.ume that the Golution of (6.8.70) can be presented in t1he formi

CV, %)=c.Q, ¶C)+CX1 S, . (6.8.71)

where c,(t, T) repents the solution of the corresponding equation for a stationary

PrIOCVZs (ilec Pat'zgyrnph 6.8.1):
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Methods of solution of this equation were studied in detail above.

Q)Then for c (t, r),we 'have equation

-+ (1) MI (s) es (t., s) If(S)dsMf(¶.(..5

Let u5 assume that variance of the purely'random component of the parameter

is les:s than the variance of. the quasi-regular component so that in equation (6.8.75)

it is possible to seek out solution by the method of successive approximations:

Consequently, for the first approximation we have equatio'ý

cs Y. 4+ K e, t.s) 1+ (s Mf (4C ds = It (t) -X~t)JM 'AU (6.8.7 ,)

where

TV , ,,S)fI(s) ds (6.8.76)

is a column vector which is the result of processing of column vector f(s) by a liner-jr

filter-operator, designed for a purely random parameter.

For the following approximations we have equations of the same kind:

cjA~t.%4+ K. c,,k(1, S)I*fý(S)Mf(t)ds =-Aj ica(A-,)(t, s)r~s-4tds (k=1I, 2,...).
4 (6.8.77)

Seeking the solution of equation (6.8.75), analogously to Paragraph 6.8.7., in

the form & (t)f(T), we have

where U(t), ip(t) are expressed by relationships (6.8.52) and (6.8.76), respectively,.

For further approximation it is necessary to introduce into consideration uci y

4'T,), equal to

Then equ~ation (6.8.77) for k =I will take form

e~, 4+ e,(,s)fI (s)PAI (c)ds-lt, .
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Seeking its solution in the form

c,,lt, Y )=+ M -t(9)-( ,

as a result we haveo..,..= •~i,+,>t+s++-(,>d[iJ-,+, (,)1-',(>-c) V .i)-

= If()-y(t)lla' + ru 1( -)1-'x

X{~ 5 (sj r (s, - sj (sj dsid~s X

Let us explain the physical meaning of the obtaine-d oui. i. .i

to do in the next approximation:

e,- + t q ( '(t.- + e,(, (t-. ++

According to relationships (6.8.72) and (6.8.75) the smoothing i"Llter c.ii

Ln Lhis" c:.,;t t!' I.-:o basic channels (Fig. 6.4o). The first exactly repetts th!-

smoothlng fIlter for a stationcry parameter. The second repeats the imoothin fl-ter

for torparameter in ithnt P-1 apZroxira tiC

(, concerns format . ci,)'.( .•.

dom ftctors. However, during forrrir;g c_

lin._--r combination of functionr with l.izr-i

C" ~~v-lTus of 'ceffilcents known functionsfit

!";r. t,.40. ;,moothing circuits for dt-crease by quantities equal to the output. re-
Ictmeter ln the form of a mix-

".uroŽ of a pureLy random and a soonses of the first channel upon feeding
i -.,.i-regUlu1,i p nrameter: CO --

• . 'cr tracking the purely to its input. This is explained by the

channel fact, that the linear ccmbinntion of krnuvii r'
•' • • : :•:,• Lh, quasi-regular

tions to some extent passes through t . .

rý i ng thu purely random procee7., causing necessity for correction. F< L Cion-

, .'-..ee f(t) and 9(t) may differ. If the channel for tricking stition,!ry

o r is wide-band, it to a considerable extent also trract's ,rr linear combila-

itioiý of functions, so that estimated values of factors will be used only for coin-

pens!iion of dynarnic errors of the first charunel. In the case of narrow- bandwidth

.,f the first chmnnrel its influence on the tracking channel for the quasi-reiuIur

pnrir.n,:er i.n ý*Iight, so that each of the smoothing channels is designed for itz own

component.
1 8
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Successive approximations to pulse response cik(t, r) (k = J, 2, ... ) give a more

precise definition, ever better compensating the influence of the two tracking

channels on one another. Usually these additions play a small role. This is con-

veniently estimated in the case of a rapidly varying stationary component, when

this approximation is permissible:

Formulas (6.8.75) and (6.8.81) in these conditions give

c,.(1. ,)= If (O--(t1) [M-, + K(U (A1- f(s), (6.8.82)
c,.dIt ')=-If(O-i(O÷ [M-'+K'uQ]-' x

X 1 1--77 ,. +MM I f ! ) (6.8.83)

As it is easy to prove by comparing (6.8.82) and (6.8.83) the order of c, 1 (t, T)

with respect to c 1 o(t, T) is characterized by matrix

For a constant or slowing varying parameter analogously to Paragraph 6.8.3 it

is possible to consider matrix ~.iUY)in.DFLF jI(s)Ij(s)dsII little time-depen-

dent. Then for A&,(I--.-*oowe have 2M" | J)) X(&hQ--.)-'-.O, i.e., the

influence of c1i is practically disregarded.

In particular, for one unknown factor with variance a02

ell V, .0 ___K,/at,,

., I) +, K d P (s) d.

9/ -00

Inasmuch as here co(t, ¶) = Co(t -- T) is also a rapidly varying function

and then the channel for tracking the regular part of the parameter has response
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dI~ffering .from the case~of ab-sence of a stationary part only by f ac to r 1-(sKd%

Its meaning becomes completely clear if we consider that the-integral is the value

of' the transmission factor of the filter for a stationary parameter at zero frequency.

Error of measurement according to (6.8.82) and (6.8.83) is expressed in the

general formula

o.1 3Q)=c.(0, f+ (t) K c. (1,s) f(s) ds] x

(6.8.84)

valid in that approximation when for p~ilse response we uise relationship (6.8.81).

In particular, for rapidly varying r(t i - t2)

the~~~~~ caaetr iY, it, was mesre eprtey

Inasmuch ~ aj(-~)1+4O)'!L} 4 .[M1+,Kthen , In Ithi cas vaiac o(eroris)qI

wo her &uM of tsds lt variances duringeasurement sprtl of the twosicomponents r of'th

th.parameter,. t twsmaue eaaey

"(B5. Anoothing Circuits for Linear Functionals of Parameters

Iri § 6.6 it was .;h,)wn that during measurement of linear functionals of

P#e rnimry proces,-sing of the input mixture of' signal and noise, carried oiul by



discriminator, remains the same as during measurement of the actual parameter. Only

there are added two special filters to the smoothing circuits. One of them will form

the assigned functional from the a priori mean value of the parameters, and the second

is used for processing data from the discriminator output. The latter filter is

the only interesting element. Its concrete form depends on what variant of meter

ol' the basic parameter we are calculating single or double-loop. Pulse responses I
in these two cases are determined by relationships (6.6.106) and (6.6.108), res-

pectively. Basically below we consider the case of a double-loop system. Naturally i

we consider a correlation function of the same type as in Paragraphs 6.8.1 - 6.8.-.

a) If the parameter is a stationary process, and the linear functional also

possesses stationary properties, i.e., can be presented in the form

where t -- the last moment of observation, equation (6.6.106) for a sufficiently

large time of observation will take form (b(t, T) = b(t - t)):

bY(0+ K b it- ,) R (,;) d, F •(I-- t) R (t) dc (I > 0.
, -- (6.8.85)

As also in the case of measurement of the actual parameter, equation (6.8.85) is

an integral equation of the Wiener-Hopf type, solution of which is found by the

factoring method. Considering again

I + KS(w) - "(i)Y (- ito),

we have the Fourier transform of function b(t) in the form

e-wdt fulo,(6.8.86

where

Formula (6.8.86) for finding the limiting operator is completely preserved if

the parameter is a process with stationary increments. Here, during factoring of'

S(w) one should remember the generalizations of Paragraph 6.8.2. Accuracy of measure-

ment of the parameter in both cases is expre.;oed according to (6.6.109) by a formula a

analogous to (6.8.i8):
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As3 an example we shall consider measurement o0 the first deriv:ativw of tUe

second hitltegral of white noise, where

Fron formula (688)we have

£ (•)== 1 )12 Qg. ) a, + 2 = Ko.,
22

V elY graphic in thiz ca ce i s the verm of' the filite icr torlnitir -)t !.i-ra

il ' single-loop system:

H(is) = B (iu) [I + KG (i-)J=

The smoothing filter here has the same form as in the case of measurement of

!t kiei.er •rocess by a single-loop system.

b) If the parameter is a linear combination of functions with random Luaa r3s,

the problem is simply solved without any assumptions about the form of the functional

(it can be of any form).

fror~ mo-iul nioi

Fig. 6.41. Smoothing circuits for a linear
functional of aquc:-i-regularparameter ( in
the single-loop variant): 1, 5, 4 variable-
gain amplifiers; 2 - integrator.

SrintioJl (•.(•. io§) takes in this case the form

b (P,, S) + K b (1,, s) f + (s) dsMf ,

.r

= 1,, s) f + (s) dsMf (c).

Seeking it, solution in the form b(t. = g(t 1 , t.)f(), we 'jinm hl.ve ',V,

b (tl, uld 11(ti, j )

b(t,, s) tf (s) ds M- - KU (t)['l(t), , .,)

h (tit, ) Vt (s) ds(M' + KU (')j"I (c), ([ +)KU 1



where U(t) is expressed by formula (6.8.52).

According to (6.8.88) and (6.8.89) the circuit for formation of estimates of '1

proportionality factors remains the same as for measurement of the actual parameter, I

but then the formed set of estimates is multiplied, not by original functions fi(t),

but by functions fi(t), processed by linear operator F(t, s), characterizing the

linear functional. These operations are illustrated for one coefficient p. in the -

single-loop variant in Fig. 6.41.

Error of measurement accordin- to formula (6.6.109) is equal to

( ts) F(I, s)V()Is .I'+KU(14()

(6.8.90)

In the particular case of a linearly varying parameter

AM)=V, i.=V_
.)nd an advance (delay) operator.~nd(r~~xr .2(t,)= v , (t,= I)

we have
f) ____ &1 3 (t1 a2-""' 1 + , '1(0 -'R T( = -s I •Co.,

Thus, error by a factor of approximately t,/t exceeds error of me(.asurement of' th,

current value of the parameter.
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§ 6.9. Synthesis of Meters with a Markovian Parameter and with
Limited Knowledge of the Statistics of the Parameters

In § 6.6-6.8 we considered questions of synthesis of radar meters for a Gaussian

distribution of the measured quantity X(t). This case is very interesting, but is

not all-,e.mbracing. Therefore results obtained with other assumptions about thc sta-

tistics of x.(t), and also with limited knowledge of the statistics attract our atton-

tion. In the class of completely assigned a priori distributions besides the Gaussian

cas•_. in the literature there is considered the case of synthesis for Markovian parane-

t'; us, which we touched on In § 6.5. For the case of limited a priori knowledge

invwstigations are extremely scanty (see, for instance, [62]). Below we give certaini

results on the synthesis of meters with a Markovian parameter and with limited

knowledge of statistics of the parameter, generalizing and supplementing the known

wor s. Results of solution with limlted statistics are far from jpmplete arid can

only serve as a basis for further investigations. .

6.9.1. Optimum Meter of a Marko'sian Parameter

Passing to synthesis of a meter of a Markovian parameter, it would have been

possible to compose its a priori distribution for all moments of observation and,

multiplying by the Gaussian approximation of likelihood function (6.6.3), find the

conditional mathematical expectation. More convenient, however, will be methods,

based on the results of Paragraph 6.5.6.

We shall start with the case of di~crete obserration (or of an incoherent pul.;e

3igual), when it is permissible to use relationship (6.5.24). Assuming low a posteri-

orl inaccuracy we approximate the a posteriori probability density of the value o01

2.(t) at tim&e t, of the Gaussian curve

I- ((')

wn cc.¶ - a posteriori varianco at the n-th moment;

-- point of' maximum a posteriori probability, according to results of'n Paragraphs 6.5.3 and 6.5.6 coinciding with the current optimum estimate.

We also take the Gaussian approximation for likelihood function

P(9hAia)=PW1IZA exP{ X(

where, analogously to (6.6.4), we expand the maximum likelihood o1' k at the current
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moment, and

OL (6.9.3)

- variance of error of the k-th measurement.

Finally, we shall consider the parameter a Markovian process of diffusion type,

for which in small time intervals L the transition function is expressed by a

Gaussian curve -I

2IjQ --. A (6.9.4)

where a(Xk), 2x(xk) are determined through the coefficients of drift A(X) and diffu-

sion B(X) in the form 17

and have the physical meaning of systematic bias and variance of random change of

the parameter in the interval A between two successive measurements. In view of the

low a posteriori inaccuracy, functions A(X) and B(X) vary little within the bounds

of the width of the a posteriori peak, so that it is possible to consider B(X) ]B(X)

and

A () A () + A'(!)(- (6.9.5)

The essential difference from the case of a Gaussian parameter is the fact that

the Gaussian approximation for the transition function W(XJii) is valid only for

small intervals between the moments of precise definition of values of X(t) and that

variance and the mean value of W(XIi±) even in the Gaussian approximation depend on

the concrete value of the measured quantity. Substituting in these conditions (6.9.1),

(6.9.2) and (6.9.4) in (6. 5 . 2 4), integrating and equating coefficients for different

powers of X in logarithms of the right and left members, we obtain

n+i

%uz~~n+I+ aU fA":..(+1 •(%1.••,.I {•) "+ , (6.9.6)

(6-9.7)%.znI _, ,~ +,_L_'9,,,I,,+l Q'i,,)•,•, .-- (.~) n•+'"( .9

As (6.9.6) shows, the-(n + i)-th estimate will be formed by the weighted addi-

tion of the n-th estimate, anticipated one step with the help of component a(Xn),

and the result of the newly performed measurement X n+1 ' Weights are determined for

the first component by the a priori variance at the n-th moment, increased by the
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variance of the expected mea.3uroment of the parameter, and for the second componeni.

- by varia.nce of the (n + 1)-th measurement. According to (9.6.7) the sUm of these

weights determines variance of the a posteriori distribution in the (n + i)-th step.

We intentionally did not m&ke a distinction between variance, calculated according to

(r..11.6) and (6.9.7) and true a posteriori variance, since with an optimum procedure

of measurement they coincide with high accuracy. Here, it is possible to consider
o(XP) s-(X), ý(X) = Q(), where X, .- true value of the parameter.

It remains only to explain the appearance in front of the expression for variance

of measurement ou the preceding step aBUx of factor Q 0) where

Q(11,) 1) * IZ ~
W VI. + (6.9.)

is a partial derivative of the value of the parameter extrapolated to the (n + I)-th

moment with respect to the value of the parameter at the n-th moment. This factor

is needed because systematic change of parameter A(X)A depends on X, and depcendinrg

upon it;, value inside the peak of the a posteriori probability parameter it will

obtain various mean increments in the interval of extrapolation. Change of variance

of the expected value is proportional to variance in the preceding step. Variance

increases if to the large coordinate there corres;,onds (algebraically) high speed,

since this leads to ever-increasing dispersion, and conversely. Furmally, we calcu-

late increment A) to increment 6Xn+i with the help of partial derivative (t.9.8).

Now, analogously to (6.6.3), we expand the likelihood function at a point of

estimation anticipated one step Xn + a(,n) [before carrying out the (n + i)-th

measurement no more successful approximation to the value of the parameter Xn+i

exists]:

I +A .+,-•P .,,, , Aa(•,)

2,.2 l

Hiere.

zM+1 L a (ij(6.). 10)

is the output signal of an optimum discriminator, and

.[ $. +4..,,,)) ]-1

is again variance of the n-th measurement, practically coinciding with ((.'.3).

Substituting (6.9.1), (6.9.4), (6.9.5) and (6.9.6) in (6.5.24) and performing
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4'

calculations, we have

iM+1==In +a(6.9.12)

where H (n+a) is given by relationship (6,9.7). The algorithm of formation of

the (n + i)-th estimate in this case is still simpler: to the expected value we

add the output signal of the discriminator with a weight equal to the current a

posteriori variance. The more exactly smoothed the data, the less we use the new

information Zn+i, on the average proportional to current mismatch.

In both considered cases circuits of estimate formation are simple and possess

the convenient quality that in the next step, besides the result of the new unit

measurement, it is necessary to know only two magnitudes stored in the memory from

the preceding measurement: the former result and its variance. In every step of

the operation measurements are conducted by uniform recursion formulas. This is a

result of the assumption that the measured parameter is a Markovian process of the

first order.

Let us consider how the above mentioned relationships change with transition

to continuous observation. Remembering the definition of the output signal z(t) of

an optimum "continuous discriminator" (6.6.26), taking into account (6.9.4) we can

rewrite (6.9.12) in the form

A 2
ray +' A) - AQ)1/A =A (1(1)) +,3. ~ I-A z (t) A.i

from which, passing to the limit A- 0, we have

A(1(t)) + oL11 (t)4). (6.9.13)

Considering relationship (6.9.4) and the fact that an = K(tn)A, it is possible,

analogously, to transform (6.9.7):

- - Q(t)) - a' .' (1) A'(! (t)) 2,, (t). (6.9.14)

The first components in (6.9.13) and (6.9.14) are the a priori known components

of the rate of change of the parameter and variance of its random component, respec-

tively. Second components reflect the influence on the estimate and its variance

of newly arriving data. Let us note that in (6.9.14) the first component is always

positive, and the second is always negative. Conditions with constant (or close to

constant) variance occur with approximate equality of these two components, since

the third component normally has little influence. Then the newly arriving data
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approximately compensate the decrease in accuracy due to change of the parameter.

The set of relationships (6.9.13) and (6.9.14) is simulated by the block diagram

of Fig. 6.42. The input realization of y(t) is fed to discriminator I and accuracy

unit 2, the functions of which were already

explained. Smoothing is produced by ratner corn-

plex circuits, in which it is possible to separate

two basic groups of elements (divided by the dotted

line).

. The first group smooths estimate x(t) arld

consists of multiplier 3, adder 4, a nonlinear

converter 5 with vracteristic A(X) and inte-

Fig. G.42. Closed-loop optimum grator 6, directly carrying out accumulation.

meter for a Markovian parameter; The second group smooths the measure of a posteriori
I - discriminator; 2 - accuracy
unit; ", 7, 9- multipliers; variance 2 and consists of multipliers 7,
4, i2 -- adders; 5, iO, 11 - non- oBUX(t)
linear coriverterr;; 6, 13 - in- 9, square-law generaor 8, nonlinear converters
tegrators; 8 - square-law
generator. 10, 11 with characteristics A (k) and B(X), adder

12 and integrator 13. The second group plays the auxiliary role of controlling the

gain factor in 3 during smoothing of the estimate. The measured value )(t) is fed

to I and 2 to maintain selection. As we see, in distinction from a Gaussian parameter,

the smoothing networks are nonlinear, but the general idea of smoothing in a closed

loop L3 preserved here.

Transition to the continuous case in relationship (6.9.6) will lead to equation

( 2 A(t). (6.9.15)

Uperations, determined by (6.9.13) and (6.9.15), can be performed by the block

diagram of Fig. 6.43. The nonlinear estimator unit I issues the maximum likellih'od

estimate X(t). Further circuits again are divided into two groups. The first,

intended for smoothing the estimate, consists of subtractor 2, two multipliers 3, 4,

adder 57, nonlinear converter 6 and integrator 7. Unit 3 controls gain in theu- ;moothinjg

oop taking into account current unequal-accuracy of measurements, taking with g.reater

weight the segments of the realization with a high signal level, Unit 4, as in the

scheme of Fig. 6.42, decreases gain with increase of resultant accuracy. In every-

thing ulse this group of elements, as also the second group, smoothing the a posteriori

variance, repeats part of the scheme of Fig. 6.42. It is important only to note
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that closing of the meter by the estimator unit is not produced. This'again permits

us to call such a variant of a meter

open-loop.

Comparing (6.9.15) and (6.9.14) with

0 (6.5.35) and considering that according

Sto definitions L (XO, t) = z(t), 1"(xO,$

t) = -K(t), we with interest prove the

coincidence of these equations. Although

we did not use diffusion equations, the

Fig. 6.43. Open-loop optimum meter for a equations for characteristics of the a

Markovian parameter: posterior distribution during continuous
2 - subtractor; 3, 4, 8, 10 - multipli-
ers; 5, 13 - adders; 6, ii, 12 - non- observation were the same as in the works
linear converters; 7, 14 - integrators;
9 -- square-law generator, of R. L. Stratonovich [16, 17], by virtue

of using the same approximations.

It would have been possible to continue our investigation here and consider a

parameter In the form of a Markovian process of the k-th order. However, this leads

to a problem so similar to measurement of several Markovian parameters that it is

better to postpone its investigation until Chapter XII.

6.9.2. Synthesis of a Meter with Statistics Unknown.Minimax Solution.

The theory of statistical solutions usually has, something to do with two extreme

cases - complete a priori knowledge and complete a priori ignorance. The first of

these cases was considered in detail above. In the last case synthesis of optimumi

resolvers is carried out on the basis of the minimax principle.

In reference to the problem of synthesis of an OptimUm !Aeter we will consider

as the case of complete a priori ignorance such a case, when with respect to function

X(t) we know only that it remains practically constant for certain intervals of 1
time A. We have here no information about the law of change of the measured parameter

from one discrete value X to another X,+,.

The minimax solution is constructed in the following way. For every possible

AA
estimate X(y) we determine conditional risk as a function of X, its maximum for all

X, and then select sucn an estimaLe X = XM, for which this maximum would be minimum.

The minimax estimate is determined by relationship

A (6.9.16)r (A., 2L)==min max r Q., 1%).



The character cf its optimality consists in the fact that it minimizes the ma.ximum

value; of conditional mathematical expectation of the loss function.

At present direct methods of construction of minimax solutions have not been

developed, Dnd finding them is based on Walde's [?] theorem [63]. The minimnax solu-

tion is the Bayes solution relative to a certain a priori distribution, which gives

a maximum magn.tude of. Bayes risk, i.e., satisfies relationship
R(.k P)-MalxR JAG(P,), Poj, (..

A * 

(-.-(PS)
whe re X6(Po), ý* ) re the Bayes estimates with respect to a priori distributions

PC(X) and Pc(k), and gives conditional risk with a quantity not aepending on X for

all values of X which have, according to distribution Po(k), non-zero a priori proba-

bility. The actual distribution with density Po(%) is called the least preferable,

and 0(y) X•(y) is the minimax estimate, satisfying (6.9.17). This theorem,

especially its second part, has fundamental importance, although its effective use

for producing minimax solutions is rather difficult.

Let us consider one important case. Let us assume that the less function is

simple (6.5.5). Let us consider the Bayes estimate for a "uniform" a priori distri-

bution. Mean risk in this case will be defined as

AA

R o. Pj =z-C- SP(y I .)dCy, c9.
from which it follows that the optimum cýstirate ) (y) is that value of X which turns

li1OqieuL1 fu;.týl.rn P(ylX) into a maxim'um. Thus, we arrive at the maximum likelihiood

estimate for ve:tcor parameter X, which with observance of conditions of analyticity

is... rnecd from the system of likelihood equations

"dA• P(yl).)=O' (i 1.. )
JA7

It', then, the conditional risk r(X,X) for the maximum likelihood estimate turns

out not to depend on X, this estimate on the basis of the Walde theorem is the mini-

max estimate. It is not difficult to prove that the sufficient condition of this

is the po.3sibility of presenting the likelihood function in the form

P(YI) -- F 10F- . (y), (6.9..9)

where XO= XO(y)

F(x) - an even positive function of the vector argument;

11(y)- a function integrable with respect to y, which by virtue of P(yi>)) 0
and F(k - xO) 0 is nonnegative.
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Then the maximum likelihood estimate is equal to XM(y) = ).O(y). Furthermore,

vector O() is the minimax estimate for any symmetric loss function, which is proved

analogously to Paragraph 6.5.3.

Thus, the minimax solution of the problem of filtration under certain conditions

consists of formation of a set of maximum likelihood estimates for values of X at

intervals of constancy of measured parameters A. Condition (6.9.19) leads actually

to the existence of efficient estimates for parameters X1 at intervals of time
fI

I[(tO + (i - i)A, tO + iA)] of duration A. Practically, of course, it is sufficient

to obtain approximate efficiency and, correspondingly, the possibility of presenting

the likelihood function in the form of (6.9.19) with a satisfactory degree of approxi-

matiion,

Let us consider one useful example. Let us assume that at the resolver input

there is an additive mixture of the useful parameter X(t) and interference n(t):

and the loss function is quadratic. Such a mixture can be considered the output

signal of the discriminator of the meter with which we sum the measured value of the

parameter. Conditions of the validity of such a presentation were explained above.

Then the optimum estimate of vector X for any a priori distribution has the form

S.%P(y).)P,).)dX. fJP(y,- )P.Q(.)d)l
SP(y j X)P.Q.)d-- SP(, - )) P. QL)d), (6.9.20)

where P(yjX) P(y )) -- density of distribution of vector n.

Let us assume that a priori distribution PO()) is "uniform" in the whole infin-

ite region of existence of X. Then, replacing the variable of integration in (6.9.20)

y - X =n, we obtain

JnP (n) dnY P(.) d Y-- - (6.9.21)

i.e., estimate X, witb accuracy of a constant component not depending on y, coincides

with signal y. Conditional risk for estimate (6.9.21) with uniform distribution is

equal to
S(, ) •(• x÷ I.- X) P(y - k) dy

( - + (1l -- n) P(n) dn = spur r,

(where r - correlation matrix of interference) and turns out not to depend on X.

Consequently, the solution of (6.9.2i) is the minimax solution of the problem of

filtration of signal X(t) from an additive mixture with interference n(t).
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The obtained solution has a clear physical meaning. Actually, in tht absence

of any a priori information about X(t), realization of the input signal as estimate

X(t) will be the best that can be offered. Error of measurement here, as it should

be, is simply equal to variance of interference n(t). Using the a priori assumed

constancy of ?(t) in intervals of length A, it is poss'ible to decrease error of

measurement somewhat. Nevertheless, the conclusion that in the absence of any infor-

mation about trajectory properties of the target effective smoothing cannot be

realized remains valid, and error of unit measurements are wholly recalcUlated into

resultant errors.

6,9.3. Description of a Parameter with Limited

Knowledge of Its Statistics

Assignment of a multi-dimensional distribution of probabilities of X(t) requires

sufficiently detailed statistical evidence about the law of change of target posi-

tion data. Frequently in practice such information is inaccessiblý; however certain

statistical characteristics of 1(t) nevertheless exist. Such a case is intermediate

between the above-considered cases of complete a priori knowledge and complete a

priori ignorance. With incomplete statistical description there appears a very

great variety of cases, which in general reduce to the fact that we assign certain

limitations on characteristics of X(t). The latter permit us to determine a certain

:;et A of permissible functions 1(t) and o-ubsequently in problems of analysis and

.rynthesiot to limit ourselves to consideration of only such X(t) as belong to this:.

sot (I (t)C A). These limitations can be given in statistical form, and also, in

norlrt.:•J ',t rm.

W,. ii•st consider the first case.

The simplest; characteristic of X(t) is mathematical expectation ? (t). In mn.:t

probi.:c it is naturally assumed assigned. A more detailed description will be

,ittiod if' ws assign the variance at any moment of time and the moments of highest

o•rdt,' tight up 1-. assignment of a one-dimensional law of distribution of probabllitie!'.

:"urthe ' precise del'inition of the behavior of 1(t) occurs with assignment, for

ins;taoce, of variances of derivatives of X(t) up to a certain order at any moment

of time, All thLuse characteristics are more or less available in practice.

V,.zy important both from the practical point of view, and also from the point

if view of theory, is the case when there is assigned the correlation function A'

A(t). As we cshall subsequently prove, under certain conditions of its assignment

it is L±ready sufficient for synthesis of an optimum meter. A still more detail]'d
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description of X(t) is attained with assignment of moment functions of higher order.

Limitations of this type in general permit us to assign a set A of permissible

realizations of X(t) as the set described by the a priori distribution of probabili-

ties P 0 (X), obeying conditions

JPQ4(XdL=1, S(XMPe.(1)d).j' (6.9.22)

and otherwise being arbitrary. In (6.9.22) integrals are taken over the whole range

of values of X: f(%). - certain multicomponent function of X; pL - the assigned value

of the same structure. In the particular case when we are assigned variance of

X(t) at any moment of time ti, we take fi(X) = x4, Li , C. and 7 for simplicity

is considered equal to zero. With assignment of the correlation matrix we assume it

IR (i, =1, ... ,nt ,(6.9.23)

with assignment of moments of the third order f ijk = Xi j)%V Rijk = XiXjXk$ etc. 4
Other examples of partial statistical description are cases when multi-dimen-

sional laws of distribution of probabilities are assigned with an accuracy to certain

unknown parameters, or there are assigned distributions of probabilities of lowest

orders -- first, second, etc. Of special importance is the a priori ,.ssumption of

a Markovian character of change of coordinates without indication of the form of

the initial distribution and transition probabilities. Actually, movement of radar

targets is described by second order differential equations, so that the assumption

of a Markovian process of the second order corresponds to ignorance of the concrete

form of the equation determining the form of transition probabilities, and charac-

terizes that minimum a priori information which we always have.

Sometimes statistical evidence about the character of change of X(t) is completely j
lacking. So that the problem of measurement has meaning, it is necessary to impose

on x(t) some limitations, determining the set A of permissible realizations of X(t).

The simplest limitation of this type is assignment of a certain interval of time A,

during which X(t) remains practically constant, so that jX(i + A) - X(i)[ << x(t)

(see Paragraph 6.9.2). Analogous intervals can be assigned with respect to deriva-

tive Q., etc. More detailed limitation is obtained if we know that X(t) and

certain of its dcrivatives are limited by certain limits of variation, i.e.,

a I)C <%A(t) (k =O, 1, 2,...), (6.9.24)

where fk(t), pk(t) - assigned functions.
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Juch a method of assignment is frequently used in practice. Fllum it, in pars'i-

cul.c, we" can obtain necessary intervals of constancy A for X (t) and a certain

quantity of derivatives.

In a number of problems there is possible still more detailed assignment oi'

1(t). F.or instence, during measurement of coordinates of a ballistic target it is

possible to assign >(t) with the help of known functions depending on certain unknown,

paraameters, which in distinction from § 6.8 have an unknown probability distribution.

Equivalent to this case is assignment of X(t) with the help of diffetrential equa-

tioxu depending on a series of unknown parameters (for instance, unknown initial

conditions). The difference is only in the fact that frequently solution of these

equations and explicit expressions for X(t) cannot be obtained.

6.L.4. Syntnesis of a Meter with Limited Knowledge of the Statistics

Along with the Bayes solution, giving as it were an absolute optimum, of ext,'a-

or'dinary interes-t from tlhe practical point of view is solution of tihe problem o f

synthesis of a meter, optimum in conditions of limited a priori knowledge. Problems

o0' thiis type in the theory of statistical solutions have generally not been fo-mul.ated.

A crtain exception is the Wiener theory of filtration and its nonlinear generali-

cation in the works of Zadeh [15], in which the optimum operator of filtration t.:

found when there are assigned only correlation functions of ;(t) and n(t) ; howevi-r

this oper-ator is considered beforehand to belong to an assigned class - linear- in

Wvvne,. tueo.y - and a definite type of nonlinear ones in [15]. This last limitation

natur ally causes criticism, since it remains vague how close the synthesi•ed circuits

ar. to indeed optimum operators which one should obtain from the general theory oi'

solurtions without preliminary assignment of their structure. Certain 'esults i'a-

ttre to solution of prCoblem of synthesis with limited a priori knowledge are con-

tabined in [62]. Hlour,, along with them, we will try to develop a guuneral fovrnmxia-

tion and consider, Other particular cases.

Thus, let us assume that about X(t) we have certain a priori statistical *.videncc',

1-r insLance of the type considered in Paragraph 6.9.4, which pe:mits u. t, s:i, n

tilu set of' prrinissible realizations of X(t). This set is described by air a priori.

pirobabiLlty distribution with density PO(A), beloirgirr t, a givern class ,of dizst'i-

butioris:, which we designate by PO. A particular case is the: total ab:ience o: Ut-

tistical e-videince, when P0 is the set of all normalized, positive, i.tegrlb ,: hi nir

* •rlfmiri~t range, values ) of the function.

1-96-



• .- • .---. e. n.. .p .._ . .......- .* .i * -,* t..• ,• .•:'- .

The rule for finding estimates X(y) in this case can be ontained by proper

generalization of the rule based on the least preferred distribution. Here, we

naturally consider that the least preferred distribution also obeys the limitations,

and we seek it among distributions of class PO. The general rule for selection of

the optimum solution can be formulated as follows:

RQ. 6*,, P;= max MinRa~o(XaP., P.), (6.9.25)

where PO(X) - distribution, belonging to the assigned class Po(PC Fo);

PO(X) - least preferred distribution of this class;

X6 Bayes estimate with respect to P*(). =

During construction of the solution of equation (6.9.25) we first for any density
AA

Po E: p0 find the Bayes estimate )= X(Po), which minimizes mean risk and is a
*)

functional of P0 . Then by selection of function P0 = P we maximize mean risk, cal-

00culated for this estimate. This function P0 is the density of the least preferred

distribution from class PO. Substituting it in the expression for estimate X(PO),

we obtain the optimum solution ?(Po) = -M.

The direct method of finding the least preferred distribution and the correspond-

ing solution, as we can see, is extraordinarily difficult since it requires skill

to solve the Bayes problem for a sufficiently broad class of partially assigned a

priori distributions and to calculate for every solution the mean risk. However, in

a number of cases it is possible to formulate the rule for finding the least pre-

ferred distribution by generalizing the rule, which follows from the the Walde theorem

(Paragraph 6.9.2) for the case of complete a priori ignorance.

Let us assume that some statistical characteristics of X(t), allowing us to

determine the class of assigned a priori distributions PO(X), are assigned by condi-

tions (6.9.22). Let us renumber components of function f(X) and of the given quantity

s• so that

*..., ... ). F={P2  ... PA.. .}, fl2

are functions which depend on all or certain values of Xi(i = I, ... , n), and index

j runs through as many values as conditions assigned.

Let us assume that X(y, PO) is the Bayes estimate with respect to distribution

POC PO, which is the solution of equation (6.9.25). We use the Lagrange method for
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finding the least preferred distribution of P*(A). Here, function PO(A) is deterinixied

from the condition of the maximum of functional

I = R (X(y, P.), P.)- f P. (1.) d).--x,,, j (X)P, (k) d).=-
)

- I is ( -Wo P (yI)dy -.- Y-,xfj ())]P.()dl, (6.9.26)

where n, A. - indefinite factors, found from conditions

|P. (1.)d A= 1. h• P. (ý)d A ( =1,_,.).(... 2,)

Calculating variation of functional I = I(Po) with respect to function P., we obtain

8p. I = I (5W -- k)P(y I X) dy -- .-- (a.) 81. ().) a. --
A

where b X - variation of the vector component of the estimate with respect to

distribution P0I
01

The second component in (6.9.28) turns into zero by virtue of equality

aw.
"- - ~-, the evident independence of Xi and, consequently, of bp ox from X and equa-

i 1

tiuns (6.5.12'). Therefore, from the requirement of equality to zero c.f variation Z),,i

f'or an arbitrary bPo there follows the equation for conditional risk

r 0~.")=SjW (I.jP (YIX) dy x±xf(a.), (6.9.29))

which permits us to formulate the following rule for finding P 0m.

:do that thL a priori distribution with density P O(?() is the least preferred In

the class of di6Uributions P 0 , satisfying assigned conditions (6.9.22), the b-yco

solution built with this distribution should give conditional risk r(X, X), the

functional dependence of which on X is determined by expression (6.9.29).

P'his rule gfneralizes the requirement of independence of conditional risk from

X, va•id for total absence of a priori information. The concrete form of P 0)

besides the assigned a priori information depends on the method of coding X(t) and

y(t) and otatistics of y(t), i.e., on the form of' likelihood function P(ylR).

An important particular case is asbigi-iment of tht corrclation matrix R ,f v~.t,or

X. ilere f(k) t 9i3 and the equation for r(O, X) has the form

4j~,, Ito o.--X) P (y I X) y = x.+ ,,
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where factors x and x are determined from conditions

$P% (k.)dA =1.1 SljZP #(k)dA ==Pjj, (6-9.351)

and ).(y) - the Bayes estimate with respect to distribution P*(X).

Thus, estimate X(y), corresponding to assignment of only the correlation matrix

of the measured parameters, is optimum when it is the Bayes estimate with respect A
j

to the a priori distribution of probabilities for which the correlation matrix is

equal to the assigned one, and conditional risk for this estimate is the sum of a

constant and the quadratic form of X of form

(6.9,32)

We shall show that under certain conditions the least preferred distribution

for the given case is a Gaussian distribution. Let us assume that the loss function

is quadratic (6.5.8), and likelihood function P(ylX) is presented in the form of

(6.9.19), where function F(X - >0) is approximated by, a Gaussian curve

F 1(- - exp - - + A( -- 7),) (6.9.33)

Swhere A = 11A11 - matrix of order (n x n), similar in structure to matrix R.
Le

Let us note that function FIX - NO) in (6.9.19) with the corresponding normali-

zation is the density of the probability distribution for vector X0 - %o0(y) which

is the maximum likelihood estimate for X. Let us consider the Gau2zian a priori

distribution of )(t) with correlation matrix R and find the estimate of conditional

mathematical expectation corresponding to the quadratic loss function. Then

5) :pf (L2I*A..( .4)), .)d(6.9.3g:)

i ~where matrix C = Ie. Il is determined from equation

SCjR-- A-1 =R,6

i k.e*, estimate ).(y) is expressed linearly in terms of vector 10 (y), Substituting
I (6. 9 .3J4) in the expression for conditional risk, we obtain

=j(- ch,)+ B O.-- C).*)F (•. - •.) ,d;• =-x (6.9.46)
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-- •+ (I-C)+3(I-C)I.SP(x)dx+-X+C.+BCxF(x)dxk =(67

_ + . (6cow .l,

As we see, conditional risk has the required form (6.9.50), i.e., the Gaussian

distribution indeed is the least preferred, and the optimum estimate itself nras the

form of (6.9.34).

Representation (6.9.19) is strictly satisfied for an additive mixture y(t)

X(t) + n(t); in this case X0 = y and C = Cy. This result permits us to comprehend

the character of optimality of solutions of the linear theory of filtration. It

turns out that if measured parameter X(t) is additively mixed with Gaussian inter-

ference, and we are given the correlation function of X(t), there is no better

(from the point of view of a quadratic loss function) operator of filtration than

the linear operator, determined by the Wiener theory of filtration, ýnd only more

detailed statistical evidence can lead to change of the structure of the optimum

ope rator.

Representation (6.9.i9) is approximately realized in a rather large ntun-Uer ol'

cases, of which we already spoke in Paragraph 6.5.1, and which occur in problems of

radar measurement. This circumstance emphasizes the importance of ( aussian a priori

distribution, which turns out to be interesting not only for itself: but as the

least preferred distribution from the class of distributions with an assigned correla-

tioon function. In this connection we paid the greatest attention above to Gaussian

* a priori distribution.

One more interesting example of a problem with partially assigned statistical

characteristics is the case when we are assigned the value of only the matrix of

second momernts of the derivative of X(t) at any moment of time. To this case we can

approximately reduce the case wnen there are assigned a priori limits of variationi

of" the derivative ýat any moment of time. In the given example

f -(1)= 4, N =P{(1, -- Y IMil
ania equation (6.9.21) for conditional risk has the form

rQJ, ,)4=K.-X(A- Z 1 ,) x. (6.'.37)
i=2

If there is also assigned the second moment for the value of '(t) at the initial

Murment of' time a, = X' to the right side of (6.9.37) one should add component X{X1 .

One ciii prove that under certain conditions, similar to those considured abut.., .Lrh I

least preferred distribution for the given case is the distribution for a iarmiar

4
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Gaussian process with transition probability

(x., 2M, (6.9.38)

and with uniform distribution for X when a is not assigned, or with a Gaussian

2 2distribution for Xi with variance a for an assigned a2.

Analogous results are obtained also when along with statistical characteristics

of first derivatives there are assigned statistical characteristics of the second

derivatives, so that the following moments are determined:

-- 1, (1.2-),)( • - 2 .. •I-& .)

Al t,= (- - -211

•( - -==(2l. -+Z")'" (6.9.(y) Jf+.
In this case the least preferred distribution turns out to correspond to a

Markovian Gaussian process of the second order with Gaussian transition probability,

depending only on the quadratic form of variables Xi1, X i, \i-2' completely deter- I
mined by assigned M M412), M(21) 1"(22)

Therefore, the optimum operator of estimation obtained for such a distribution

is simultaneously optimum in the case of assignment of only the matrix of second

moments for the first and second derivatives of measured parameters X(t). These A

statements show that the examples of measurement of Markovian and simultaneously

Gaussian parameters given in Paragraph 6.8.2 have more universal meaning than sup-

posed earlier.

§ 6.10. Conclusion

Basic results of the theory of radar meters developed in Chapter VI reduce to

the following.

1. In the analysis of tracking meters it is convenient to divide their circuits

into discriminators and smoothing circuits. Discriminators are completely described

by two functions of mismatch - discrimination and fluctuating characteristics. The

minimum parameters of these functions necessary for analysis of accuracy of meters

are equivalent spectral densiLy 33RB, the gain factor of the discrimi.nator Krand in

a niunber of cases spectral density of parametric fluctuations Ift we Mnow

these characteristics and statistical properties of the measured quantity, error of
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ince.'tsoroivcnft :,usuaLlY canl be: calcu).ated easily. Formulas for' calcaiLatinclears ;r'

cases at' rapid and silow fluctuat~ions of the signal are givet n §i6.l

2. Blreakot'LS (.I' tracking can be characterized by two chnaracteris;tics aV(V!t-eftg

tiiac to biao''and magnitude of variance of errors, of' measurement in stays~t

opcrating conditions, which in the presence, of breakoft's of tracking Increases

siha-,rp ly. Ini any case it, turns out that breakoff is a threshold phenomenon, thce

p robability of waiich increases with the ratio of mean square error (in a ItnQea:rlsed -

yl.a)Lu th,, width- of the discriminator curve, exceeding a certain number 1i21

epnsonly ('11 the( type of' smoothing circuits.* This gives us Vlie oc,;s.ib1ility of -

t'iii-iiiig critic~al. intensitiesý of' noises and interf'erences, which beaa tobrk>

3. IIn te f!narlysisS of nontracking meters it is convenient to divide 'riem, itut

;s~s~trunits; anld smoothing circuits. In §6.3 wie obtained form~ulas3 to'ulcola.-

tinA. o accunracy of measurement of nontracking Circuits on tile silrapllic tat assuscplt10ic:

of rapid fluctuations and a sýlowly changing measured quantity.

4. ThPie mast adequate, means. of snhisOf cantinmin ma' tor a;1'reec' O

.:lkouidJ consider the theory of' nonlinear filtration. By applicationi of this, theory

woe solved the p~roblem of synthesis of' an optimum meter of' a slowily c~n~n crcee

W it G.aussiian ape roximation of thle likelihood funiction.

;'OL' 'c p~i'rimiete r with (Iaas aian dis t K.but Ion vie found three va-riants: '-!' cor cc: Urue -

'±n''op!
1iinuirr 1in tort ..ingl, -loop andl doublE--loop Circuits of a Uiakn ro1' 'ri

,,LC, riutr If!k l Ig met ,r . Alothem arc 1dnlt Ucal in pert'ovinance in inialcditio.

~L ,*~c hbut Lice tr-acking variants are(. usually soecnein rr'n1V

4c~rUnI.Cr irkin'g meters as basic elemricets contain nonlinlear' u1111.s (a'jic ud
ii''~j uwi aJ,1d an curacy unit) anld smoo10thing circuits; which for Gaussian statsi c A

ticcc~~rcrct r '. arlinear.* An opt iiurnu discriminator, *just as ailqsi etxeP s

to racic, i;su~athe measure. 01f mismatch between current and miccauroc v'Luso

tic' 1aecramotoýr t, id the accurac.y unlit. issoues the measure Of' cur'r'ccrct accuracy ofI.

V,( Ma'a e mesrrcit.;, which, alto r smoothing, form the final rs ;, 1U1 ol'm r.'.ucct

Theito i Lye ofdiscrimlinator and accuracy unlit Is deteteminet by (Aasitcs0' tire

'11. ~ !up .: gl. rc 171 ' mthod 0±' encoding thle measuredl pat'wnr-tor .in i t,*'i' cI i

w I ~c'ut oli co I it of ' thle form 01' this palairietot'(- wie could on Ly I td j r-,r-tahl

,,,12n Ia uulces p cuulici' to diicrtcrmlinato's , aid wie d iscusseci pot.; i,] (d. c' '

line I yntos s c' ot iuindis~criminato~rs, just as. anvalys1- is , ]i cl'I[,:. ' o IQ[1
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related circuits, will be conducted in subsequent chapters, in which we concretize

the measured parameter (distance, speed, angles).

The form of smoothing circuits is determined by statistics of the measured

parameter and a certain generalized characteristic of accuracy of the discriminator.

Theref'ore, synthesis of smoothing circuits, and also analysis of accuracy of the

optimum meter as a whole could be conducted in ChapterVI in sufficiently general

form.

5.i5. It should be noted that an optimum discriminator constructed with applica-

tion of the developed theory coincides in certain assumptions with the discriminator

found by the theory of estimation. Thus, we defined the meaning of optimality of

devices synthesized by the theory of estimation.

6. Characteristics of optimum smoothing filters with a Gaussian law of distri-

bution of measured parameters obey essentially the same equations as follow from

filtration theory, which indicates the meaning of optimality determined by this

wide-spread theory.

7. The developed method of synthesis is very universal. Thus, it remains in

force for parameters with -Iknown statistics, if we are only given the correlation

function of the parameter. With small changes it can be transfered to the case of

a Markovian parameter. Here, the discriminator and accuracy unit remain constant,

arid only the smoothing circuits are subjected to certain complication.

Although the above findings concerning general rules of radar measurements;

pertain to a very broad class of radar systems, they nevertheless require further

development. Besides problems of simultaneous measurement of several parameters and

resolution of signals, to which we devote Chapters XII and XIII, it is possible to out-

line the following directions for further investigations.

During the analysis of meters above we considered fluctuating errors (due to

noises, interferences and fluctuations of the signal) and dynamic errors. Meanwhile,

in preci.sion radar systems of importance, too, may be errors of different origi;,

for instance instrument errors. It would be desirable subsequently to expand the

cla.;s ol. errors considered during analysis and synthesis.

1it we are concerned with rionlincar phenomena in rs (phenomena of breakoff),

results given in § 6.3 indicate a promising mathematical technique of investigation

and give practical results for cases of systems with small astaticism. Solution of'

the problem of" breakoff for more complicated forms of smoothing circuits, including
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thos~e ithVariable parameters, runs into greater matherratierti diificul Lies, lnireiusýirr

asrrctrocA: solution of m1ulti-dimensional diffusion equat~ionls haveý nc;Lt Ccci

developed. Thisý then poses a task fo~r mathtematicians, important inl its pl6'~ei

Ic 'L lily pe vm*I sLible are formulations of p robleirts, d~iffe ring f romn these eons ide-red

Ini §_ 6.3, inasmuch as actual definition of the concept of' breakoff, obviouslyr,

dIt irerids on the purpose of the meter.

11 is al;;e impor-tanit to consider that meters can be equilpuýd w,.ith failure ilrii_

nofor instanice, in the form of' threshold circuits arie, "insiuring" devices sith

rnateiiguard"' channels, detunled relative to the measured vral~ue ui the par-amete;r.

QueýstLions of anarlysis of joint work of nmeters and such circuits rorwUtrn nraotie:- 1:%I

i-urther' development of the t~heory of Bayes synthesis, in the dir-ection Of IVAt-

-Au:.;ian Parameters, and also synthesis on the basis of the mrinima~x method w;ith unitel I

staistcsand tire. game-theory method is diesirable* As; initial prpst is ' itI.-

po.toib ie to consider in this case the material of' 1& 6.9.

Ouring, eoneretization of the form of' diserirrina~or;:, it, Isp1,;'Ju.I

to cons3ider iron-Gaussian signals and interferencez of a fairly broadi class, aird a~lsoo

then.a;ý of slow fluctuations of the signial . Although the method of couplip- ng rueh

dJi.Grermi~nators- in optimum meters is known, their circuit construction rrt pt.Srijt

!;e, ulpleotlly cTuar. Analogous quest lo.cEs of concrete real~iation oi' at-renit '-
I.

t r~i_! on fov iioxi-dauosian parameters :Ixre important als-o for smoothingcirul

ni'Uthougb tire direction, " synthesis of, smoothing circ2ui~ts, for quasi-reguilcrF

pateee sar utlined, it, is; neces-,sary to generalize themt orC'! th.e r'rw.k cI;[ rrrsrelt

oc:.'o variation of. parameters are unkniown and we are assigned only oieK iir-I

eiiud euatinswhen propeýrties 01' errors are complicated, arid from smeuothhi g.

itesthere is reqruired maxcimumi accuracy in combination with technical t~ rrie

'<sisof analysis and synthesis of radar meters, unboubtedly, may be usef:Iul

Zo in those regionsc of technology where, there are used inforr:aIItioui-bearlJngsIgnis

ini op tics, infrated( engineering, ultrasonic engineering, cmruretos sier

anld weo: o 1 in those places where the idealiz.,atiuLor made, above aren,, .r uhl

siui tadbh! theý method of' analysis and synthecsis developed for radar sysýtrrr eri rir
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I. 3.
5

CHAPTER VII

RANGE FINDING WITH A COHERENT SIGNAL

§ 7.1. Introduction

One of the most important problems of contemporary radar systems of various

assignment is measurement of the distance to a target. The need to measure range

appears both in survey radars and all the more so in acquisition and guidance radars,

and also in navigation systems. Range finding can be based on different physical

principles; in particular, methods based on integration of velocity and the tri-

angulational method have been used; however, in extent of application and importance

of greatest significance is the direct radar method, based on encoding distance to

target in delay of the received signal and measurement of this delay [1, 26, 27].

We shall consider questions connected with range finding by this last method,

The first two methods are completely based on measurement of velocity and angles,

and all their consideration reduces only to application of results of the corre-

spondingchapters of this book. Furthermore, of all systems finding range by delay

of a reflected signal we shall be interested basically in the most widely used

automatic tracking meters, carrying out range tracking of a selected target, and

only to a smaller extent in other types of range finders.

Statistical analysis and synthesis of systems of range finding are the subject

of a comparatively small number of published works. Most works known to the authors

pertain actually only to analysis of the influence of random signals, noises, and

L;Lrtair I "nterfercnccs, for the most widespread (until recently) pulse incoherent

automatic range finder with various limiting assumptions [28-130]. To a considerably

lesser extent they have touched on questions of analysis of range finders using

other forms of signals [i, 31], and also questions of synthesis of an optimum system
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of range finding. Certain particular solutions pertaining to the last question

were obtained in [12,321.

Almost simultaneously with works on analysis of the fluctuating accuracy of -

range-only radars of a very specific type under the influence of noises and inter-

fecrnces there were undertaken attempts at investigation of the potential accuracy

of range finding by radar. Apparently, the first work on this question is [43, where

for very limiting assumptions there is found the variance of the efficient estimate

uf delay of a reflected signal for the case of a motionless target. The 6ane prob-

lem with less limiting assumptions relative to the received signal was solve-d

in [5]. Further advance on the given question was attained with application of

the general results presented in Chapter VI. These results, in particular, gi,ve the

possibility of obtaining a sufficiently correct solution of the proble-m.n of synthesis

of arn optimum system of range finding for a very broad and practically important

class of cases, when the rate of change of the measured distance is riall as com-

p±.r•ei to the rate of fluctuations of the received signal.

As already shown in Chapter VI, the optimum meter is realized here in the form

of a cl-sed-loop tracking system, including a nonlinear discriminator and smoothing

YO:rT 1tr-'ob,X) circuits, controlling tuning of the

discriminator (Fig. 7.1). Solution of' the

problem of synthesis permits us to establish

the algorithm for finding operations of
"i.g. 7.1. Block diagram of a track-

ing range finder: I - discrimlna- tie discriminator and characteristics of
tor; _1 - smoothing and control cir-
cu its, smoothing circuits for an arbitrary forrm

of modulation of the received signal and

a broad class of cases of statistics of the change of distance, and also to conduc..t

d.tailed investigation of potential accuracy of range finding without the limiting".

j ;i•ssumption of inmmiobility of the target.

iDevelopment of the theory of statistical solutions permits us to pr':seiit

*.stl.tistical questions related to range finding by the deductive method. In

azcordance with this we shall first consider questions of the synthesis of .ptilnum

range finders and of' the potential accuracy of range finding for an arbitrary cas.,

ind tbu.n also in general investigate basic methods of approximate realization uf

optinum operations, and, finally, analyze more specifically concrete circuits of

ramn(g I'inders for the most wide-spread and characteristic forms of ci(nl molula Leon.

Inasmuch as all results have great mathematical completeness for th.l case of a

cuhelrcI signal, we shall start namely with it, and in the next chapter mc shIall
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consider the case of an incoherent fluctuating signal.

In this and subsequent chapters both from the point of view of analysis, and

also from the point of view of synthesis, we shall be interested basically in

discriminators of range finding systems. This is explained by the fact that

synthesis of smoothing circuits is conducted identically for any measured parameter

of the signal. The structure of smoothing circuits is determined here only by the

statistics of change of the parameter and does not depend on its physical nature.

Such a problem of synthesis is considered in detail in Chapter VI, and here we can

now use the available results. If we have determined basic characteristics of the

discriminator (discrimination and fluctuation), further analysis of the measuring

system, and in particular, determination of errors of measurement also no longer

depend on the physical nature of the measured parameter of the signal, in which some

target position datum is coded. This gives us the possibility of calculating errors

of measuring of coordinates by a single method using previously found characteristics

of the discrirminator.

For instance, in the case of linearized consideration of the tracking system

with smoothing circuits with constant parameters the calculation of the variance of

error of measurement reduces to multiplication of the equivalent spectral density

of the discriminator by the effective passband of the closed-loop tracking system.

In other cases these methods are more complicated, but in general they have already

been presented in Chapter VI, and for final calculations of accuracy of range finding

systems we can use the available results. In contrast to this, questions pertaining

to the construction of discriminators and their analysis have a specific character,

characteristic to range finding systems, and require, of course, detailed considera-

tion.

As shown in Chapter VI, the most complete characteristics of a discriminator

are the discrimination and fluctuation characteristics. Such characteristics in

the case when the measured distance changes slowly as compared to all random com-

ponents of the signal completely determine, together with characteristics of

smoothing circuits, the accuracy of range finding.

The discrimination characteristic is the dependence of the mathematical

expectation of output voltage of the discriminator on the magnitude of mismatch

between the true and measured value of delay; the fluctuation characteristic is

the dependence of the spectral density of the output vcltage of the discriminator

at zero frequency on the same mismatch. In general these characteristics are

arbitrary nonlinear functions, possessing definite symmetry, and in accordance with
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this, the range finder is a nonlinear system with feedback. Only with small mis-

match, when with high probability errors of measurement are sufficiently small, can

this system be linearized (see Chapter VI).

For analysis of the linearized system it is sufficient to have simpler

characteristics of the discriminator - null shift AO, slope K of the discrimination

characteristic and equivalent spectral density S , i.e., the ratio of spectral

density of the output voltage of the discriminator at zero frequency with zero

mismatch to the square of the gain factor. Calculation of parametric fluctuations

in the measuring system requires additional calculation of their spectral density,

which is determined by the corresponding formulas of Chapter VI.

Subsequently in most cases we shall limit ourselves to linearized consideration

of a range finder without taking into account parametric fluctuations, in accordance

with which analysis of the discriminator and comparison of various discriminators

lead to determination of magnitudes 40, K , S•3 and their comparison for various

discriminators. Such factors, as the signal-to-noise ratio, width of' the spectrum

of fluctuations of the received signal, the law of modulation and the method of

processing the signal. affect accuracy of range finding only through these three

quantities.

In this chapter we first shall consider operation of a discriminator for a

fluctuating arbitrarily modulated coherent signal in noises and investigate its

characterlstics, determining potential a.curacy of range finding. Then we shall

generally investigate basic methods of approximate realization of these operations

and, more specifically, final circuits of discriminators for certain of the most

important forms of modulation. Then, for various smoothing circuits, corresponding

to the various forms of statistics of change of the measured range, we shall analyze

the range finder as a whole. And, finally, at the end of the chapter we shall

consider questions connected with the influence of organized interferences on

coherent range finders.

§ 7.2. Optimum Discriminator

7.2.1. Operations of an Optimum Discriminator

In accordance with the definition given in Chapter I, the received coherent

signal is a nonstationary normal random process with a correlation function which,

according to (1.4.3), is equal to

RY %t,,; ')=PeReUV. ( C, -)U"(t,- ')X
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complex notation of the law of modulation, in general
describing the amplitude (ua(t))and phase ((t modula-

tion of the sounding signal;

T= 2d/c - delay of the reflected signal;

P -- mean signal power;
PC

p(t)- correlation coefficient of fluctuations of the signal
reflected from the target;

No - spectral density of noise, and function u(t) is normalized
so that

1*:U01 t ==1. (7.2.2)

With periodic modulation in (7.2.2) it is possible to be limited to averaging over

one period.

All statistical properties of the received signal y(t) are characterized by

the functional of the density of the distribution of probabilities of process y(t),

which on the basis of (4.3. 7 ) in the case interesting is presented in the following

form;

r r_

P (jf I )=CeXP {, I I Q J1 (7-2-3)
-• . 5u'(d) + -i;1 IQ (I,.in)I'dt'1,..,

where C does not depend on y(t), and [Q(t, T)12 is defined as

I QY'-1 2 hiI'= S(t scu M~. s)ie1 OdsJ'S. (7.2.4)1

The pulse response of the filter h(t) is given by its own Fourier transform Ho(iw),

the square of the modulus of which is equal to

II.(L.)Im  ,(I)
H(I +hS.(e) (7.2.5)

where h = P /2Af N N0 - signal-to-noise ratio, repeatedly used in the preceding
chapters;

SO (w) - normalized spectral density of fluctuations of the signal
(So(O) = 1);

Af 0 - effective width of the spectrum of signal fluctuations.

Function h(t) describes the pulse response of an optimum filter of a coherent

receiver and appears in all problems of optimum detection and measurement in noises.

Its properties were already discussed in sufficient detail in Chapter IV.

Assignment of functional. P(y[T) permits us to find operations which should be
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performed on the received signal y(t) by an optimum discriminator. As shown in

ChapterVI, these operations consist of formation of the derivative with respect to

"7 of the integrand in the exponent of P(ylr), i.e., the output signal of' an optimum

discriminator z(t) is defined as

I alQ~t V)1 1

h (I.- s. u (s--t)y(s)e'%'ds
2t

Derivative is taken for a value of -t, equal to the measured value of

delay obtainrd at the output of the range finder.

The latter is inserted in the discriminator by feedbacK and controls its

tuning. Quantity 7(t), describing the output voltage of the optimum discriminator,

turns out here to be a function of the mismatch T - T between the true value of
delay of the signal T and its estimated (measured) value T.

Differentiating in (7.2.6), we obtain the following final expression, deter-

mining the operation of an optimunn discriminatcr:

p tto2t Re Is( S--( S

× , (, -- (s." (,- ,t) e•' " " (sj) (.92) ds,ils,. 7.2.7)

These operations can be realized by the block diagram of Fig. 7.2. The

received signal y(t), possibly, after preamplification in amplifiers, broad-band a.;

•compare~d to the Awidth of the spec-

I now *""tum of' modulation, proceeds to

two mixers. As reference signa].E

of the mixers we use the expected

ON signal and its derivative with

respect to delay, Generators of

reference signals (modulated

Fig. 7.2. Block diagram of an optimum dis- local oscillators, strobing-pulse
criminator: i - preamplifier; 2 - controlled
coherent local oscillator; 3 - mixer; 4 - generators, and so forth) are
narrow-band filter; 5 - phase detector (mul-
tiplier), controlled by the output value of

measured delay. Converted signals from the output of the mixers enter optimum

filt•vs with pulse response h(t) Cos Wn ,(t), and then a phase detector, whose
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output is the discriminator output. Processing of the signal in the first channel

of the discriminator, obviously, coincides with predetection processing of a

rapidly fluctuating coherent signal during detection (see Chapter IV), and processing

in the second channel corresponds to calculation of correlation between the received

signal and the derivative with respect to delay of the expected signal. By direct

analysis of the block diagram of Fig. 7.2 it is simple to prove that, if only the

magnitude of the intermediate frequency satisfies the usual requirement of elimina-

tion of image frequencies, output voltage of the phase detector indeed is described

by formula (7.2.7), and., consequentl-y, this circuit exactly executes optimum opera-

tions.

7.2.2. Discriminator Characteristics

Let us find now basic characteristics of an optimum discriminator, necessary

for consideration of the measuring system as a whole. Averaging (7.2.7), replacing

s - T 0 by s, introducing designation £ = TO - T and using the slowness of change of

function h(t) in comparison with u(t), we obtain

VA) =--2 Re _Ih 1(--s h (t --s) X
z (t-,

X u 's + A) u°, (s. + A) e1%(s'-Sj iRe Peu (9)) X
X U* (s.) e"(sa)p (s, - s,) + NO& (s, - s.)] ds~dst

r r

Re~ Si u* (s) u(s t1dslimn j U(S) X
0T 0

Xu-(s+ A)ds-• 5 h (1 - s) h (1 - s,) p (s,-s) dstds,+

0-+-lir T u(s00hsd 1• I'(t- s1)ds1  -

I e M Re{C.,(O)+ hC(A)C*.(A)S.(u))}dm, (7.2.8)I- + + /s, (go)

where C(A) - autocorrelation function of the law of modulation, determined by

relationship
T

C (A) =-ira -4-. F u (s + A) ,, (s) ds. (7.2.9)

0

where in accordance with the adopted normalization (7.2.2) c('() i. Function C()

from (7.2.9) is equal , obviously, to function C(A, 0), determined by formula

,(i.2.1).
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For convenience we shall subsequently use the shorter notation. With a

periodic modulation function, C(A) is periodic. However, in examining range finders

mismatches A exceeding the period of repetition of the sigrnal are not of pratiQ:al

interest. In accordance with this, subsequently, in examining all concrete ex-

amples it is sufficient to consider only one period of function C(,&), corresponding

to mismatches close to zero.

Function C(A) is the single characteristic of modulation of the sounding

radar signal. Through it we find a description of the dependence of accuracy of

range finding on the mode and parameters of modulation of the signal both in

optimal, and also (we will prove this later) in nonoptimal systems. Furthermore,

function C(A) is the characteristic of the potential resolution capability with re-

spect to distance for a given signal [4]. Let us note certain important proporties

of function C(A). Separating in (7.2.9) the real and imaginary part

r

+ im -L UK (s) u., (s + A) sin [÷ (s + A) - (s)] ds,
0

it is simple to prove that Re C(L) -is an even function of L,, and Im C(L) is an odd

function. Therefore, C'(0) is a purely imaginary quantity,* and the final expression

for the discrimination characteristic z(,A) on the basis of (7.2.8) takes the fovm

Z (t, A) = - Re C (A) c- ('S0)-df
I I +se (0) (7.2.Li0)

lF1urthermore, thanks to the fact that C'(0) is purely imaginary, z(t, 0) = 0.

i.e., there is nu null shift of the discrimination characteristic in an optimum

circuit.

Important parameters of function C(A) are values of its first and second

derivatives at zero. Determining them by (7.2.9), we obtain

r

O)=+ TI---im +-' I~U2 (t f (t) di
.0

----- w I ' Liln VE dol

*Here and henceforth C'(x)- derivative of function C(x). A
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C"1 (D)- b - Jim,-- 5 [Ba)J' + U.2 (0 i/(')i'} di =

40
-- w 7-e mtilr(r. T d, (7.2.12)

whe re rJ

U7 (i1 .(7.2.13)

is the spectrum of a finite segment of complex signal u(t) = Ua(t)eif(t).

With periodic modulation, which occurs in most practical cases, it is sufficient

to produce averaging in (7.2,11) and (7.2.12) in one period of modulation Tr. Here

UT(it) is the spectrum of one period of modulation. With stationary ergodic random

modulation functionlimU - coincides with the spectral density of modulation.
P tT-o T

Positive values of a and b in (7.2.11) and (7.2.12) have the meaning of the

mean frequency and the meaxn square of the frequency of the spectrum of modulation

[4], and quantity -a, which, as we shall see presently, determines the accuracy

of range finding, constitutes the mean square width of the spectrum of modulation,

characterizing the rate of change of the modulating function. Quantity a differs

from zero only with an asymmetric spectrum of modulation. In most real cases, for

instance with only amplitude or only phase modulation, with simultaneous modulation

in amplitude and phase by symmetric modulating functions, and in certain other
cases, a = 0, Here, accuracy of range finding is determined only by the parameter

of the law of modulation -- quantity b.

For analysis of a linearized measuring system without taking into account

par,)Aiac..ric fluctuations (see Chapter VI)the sufficient characteristic of the

discriminator is the equivalent spectral density with zero mismatch, determined by

relationship (6.2.&):

-Z (- , 0)- Z o i,,=o . "

in Chapter Vi we show that for an optimum discriminator the magnitude of the equiva-

lent. spectral density S
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SouT ••l A° (7.-2.14

where K -- slope of the discrimination characteristic of an optimum discriminator.

Substituting in (7.2.14) z(t, A) from (7.2.10) and using (7.2.11) and

(7.2.12), we obtain

so,-I I+hS.(,) -' 2&(6 -a') ' (7.2.15)

where F(h) is a dimensionless function of the signal-to-noise ratio h, depending

only on the form of spectral density of fluctuations of the received signal

r
(h = P0/2Af C NO).

Thus, the dependence of SOT and potential errors of range finding on the

parameters of the law of modulation and the signal-to-noise ratio has a fairly

simple character. Quantity SOfT I and, consequently, variance of fluctuating error

of measurement with linear smoothing ciruits. are proportional t.o are

inversely proportional to the mean square width of the spectrum of the modulating

signal. This signifies, in particular, that from the point of view of' accuracy

of range finding all other characteristics of the modulating signal besides

spectrum width do not play a role, and, applying various modulating signals withA

identical spectrum width, we, in priniple, should obtain identi.cal accuracy of"

range finding. Therefore, being interested only in accuracy of range finding, it

is impossible to give preference to one or the other form of soundinL. signal,

of course, with identical spectrum width, and final selection of the method of

mudulation of the sounding signal requires us to turn to other considerations,

s0uh as uniqueness, resolution capability, possibility of simple measurement of

Doppler frequency, technical realizability, and so forth.

The dependence of SonT on the signal-to-noise ratio is described by function

F(n), which has the following general properties. It is obvious that for large

values of' h

P (A)= _ _ _ _ _ _ _1£

*hS;(*)do Aoo hi3 +AlS.(.) (aM) (7.2--.i.)
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since, thanks to normalization of S0 (W)

SS. (a) do = o

and for small h

G O (7.2.17)'40 5 'So(-)d,.

where a - numerical coefficient of order (a = 0.5-1.0).

The exact form of function F(h) depends on the form -if spectrum SO(w); however,

this dependence is not very essential, especially with such magnitudes of h, which

can be considered working magnitudes

lot in measuring systems, i.e.,

h > 5-10. For the two extreme

.0-[ '- ~ -J....--....cases (of the spcctrai density

to - SU(m) -- + dropping

most slowly to ±_+, corresponding

*" •_ to exponential correlation function,

and a rectangular spectrum of

'" " &D 3.9 39 fluctuations with the same effective

width Lf ) in Fig. 7.3 there are
Fig. 7.3. Dependence of function F(h) on c 1

the signal-to-noise ratio. - square given dependences which have the
spectrum of fluctuations; --- exponential
correlation function of fluctuations, form:

for the first case

F ~ ~ (+Ih (7.2.1b)

for second case

+I h (7.2.19)

These curves simultaneously show the dependence of fluctuating error of rang(

finding by a system with an optimum discriminator on the signal-to-noise ratio.

We shall also discuss the influence of the width of the spectrwu of fluctua-

tions of the signal on accuracy of measurement. It is obvicus that for a suffl-

ciently large h, when F(h) i/h, ratio F h NO not depend on Af
-2 - does

• m• • . .... :- ....:....... .... ";--;--:----• '' ... :--":--=•;:'::.'-'.: -- :--=-=:•,• •..-:• • •_..... .... .



However, for not very large h expansimj. of the spectrum of fluctuations worsens

accuracy of measurement, since components of equivalent spectral density, caused

by beats of noises, and having an order of I/h , increase with growth of Af0

Let us now find the fluctuation characteristic of an optimum discriminator,

Here, we recalculate fluctuations of output voltage of the discriminator into

fluctuations of 'the measured parameter (delay) by dividing the output spectral

density by the square of the slope. Then, in accordance with (6.2.83)

S... (A) PV &);- V+i,. A)-

Substituting (7.2.7) in this expression and averaging analogously to (7.2.8), we

obtain

Sm (0) Re {IIC (A)I'C'(AYl'+ CN (,&) C. (Am)I X

X S ('+S.(,J +[bIC(&)l' 4 !,(A"

+ 21aC* (A) C, +Aj~ A~)a

+3b- - IIhtS.2() d (7.2.20)

From this expression it follows that when A 0 quantity S CrT(A) no longer

tends to zero as h -oD, i.e., evern wit~h zero noises the output voltage of the

lb~f S, 1 (~)discriminator contains random

components, caused by fluctua-

Li - -- - -tions of the reflected signal

and depending on mismatch. For

illustration in Fig, 7.4 t-here

is constructed a family of'

SI_ fluctuation characteristics,

corresponding to a rectangular

ofv t.u o~r 3 If 4 spectrum of' fluctuations of the

Fig. 7.4. Fluctuation characteristic of P'n ignal and the a~utocorrelatior2
optyimum dijcrlminator. function of' the law (-f modulation



C(A) - exp j-bsh 2 } for various values of h. From the figure it is clear that

irregularities of the fluctuation characteristic start to appear when h - 1. A

stationary level of equivalent spectral density is attained already when 4A =

1.5-3, i.e., with mismatch exceeding the width of the basic lobe of autocorrelation

function by a factor of one and a half to three.

Besides S, of greatest practical interest for analysis of a range finder is

the spectral density of equivalent parametric fluctuations Snap which determines

parametric error of measurement (see Chapter IV) and is equal to the coefficient of
&2

A in the expansion of S.B(A) in powers of A. Then, as follows from (7.2.20), this

quantity is equal to

00h4S.1(j) doaJ 11 + hSO (0)1
s nap 1 2 - 2AS2(4)do (7.2.21)

and depends only on beats of signals in the two discriminator channels. The presence

of noises does not increase parametric fluctuations in an optimum discriminator.

The influence of parametric fluctuations on accuracy of the range finder as a whole

and on the relationship between usual and parametric fluctuating errors we shall

consider subsequently.

In conclusion let us discuss one more interpretation of' quantity So wT. In

Chapter VI it is shown that if one were to assume constancy of the measured parameter

throughout an interval of observation of duration T and construct some estimate of

the parameter from values of the accepted realization of the signal, variance of

this estimate, characterizing accuracy of measurement of the parameter, cannot be

less than a certain quantity, called variance of the efficient estimate. Here,

for instance, estimation of the parameter by the maximum likelihood method ([181,

Chapt,-" VI) ensures variance, practically equal to variance of the efficient estimate.

In Chapter VI it is shown that variance of the efficient estimate is connected with

quantity SonT in the following way:

42 Soul (7.2.22)

Consequently, maximum accuracy of measurement of delay of the signal received

from the target (assuming its constancy during the time during which we produce

this measurement) for the case when we make no assumptions with Yespect to statistical
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characteristics of measured delay, but produce a simple estimate from the f~uctional

of likelihood, is determined by

So,, F (h)
- -- f.'(b-,,) •(7.2.23)

This formula is valid when Af T >> 1. In the opposite case, when the time of

observation is small as compared to the time of correlation of the signal(6f C T <<

<< i), which may be of interest for survey radars in which range finding is produced

during every cycle of survey for a small time, we must return to the general

formula for variance of the efficient estimate (6.7.33), from ahich it follows that

's 11 I R*, r ~ 6R QI, (7.2,24)
I. 0

where R(t 1 , t2; T) - function of correlation of the signal with noise (7.2.1);

W(ti, t 2 ; -r) - its reciprocal in interval (0, T) (Chapters I, IV). j
Tn accordance with (4. 3 . 9 ) for 6f c T << I

W #1t, is; 80 -Q"
, tN2(1+P.T/2N.)

)X Re U (t, - ) u* (1, -- ) eI•'-(fs).

Performing the calculation in (7.2.24), we obtain

i2 2.(b-' (7.2.25)

where the signal-to-noise ratio ý. - PT/2NO is equal to the ratio of energy of the

received signal during the time of observation T to the physical (one-way) spectral

density of noise 2NO. Let us note that formula (7.2.25) formally coincides with

the expression for a 01from (7.2.23), if we consider the spectrum of fluctuatior±z

of the signal rectangular, with width 6f

§ 7.3. Discriminator with Two Channels Detuned

witH Respect to Range

S7.3.1. Block Diagram of the Discriminator

Exact technical fulfillment of an optimum discriminator circuit is hardly

possibly. In practice, modulation of the reference signal utilized in the discrim-

inator will somewhat differ from modulation of the sounding signal, the frequency

response of the filter will differ from the optimum, etc. In this and subsequent

paragraphs we shall consider the influence of different deviations from optimum
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processing of the signal. on accuracy of range finding.

One approximate method of realizing an optimum discriminator is directly

)Indicated by formula (7.2.6) and consists of replacement of the derivative in the

expression for z(t) by a finite difference. Since

output voltage of the optimum discriminator with an accuracy of an immaterial

constant coefficient is approximately determined by the following quantity:

"h~ S(t -s) u(s -,c 8) (s) e'"'dsr

it Is obvious that the degree of approximation in general is better, the less the

magnitude of detuning 5; quantitative characteristics of the degree of approximation

of operation (7.3.1) to (7.2.6) can be obtained in the course of analysis.

Operations (7-3.i) are realized by two channels, each of which is built just

as an optimum receiver of a rapidly fluctuating signal in conditions of detection

(Chapter IV). Reference signals

2 utilized in the channels have a

difference in delays of 26. The

5 corresponding block diagram is

00C show~n in Fig. 7.5. The received

signal y(t) is fed to two mixers,

in which it is multiplied by the

Fig. Y.5. Block diagram of a discriminator expected signal, shifted in
with two staggered channels: I - preampli-
fier; 2 - controlled modulated coherent frequency the magnitude of inter-
local oscillator; 3 -mixer; 4 - narrow-band
filter; 5 - square-law detector; 6 - sub- mdaefeuny adi
tractor,.y"- '

,(4)= ReuS~;e om~a( ReuiI.+)1%uVt delay byquantities To -I

and - A 5, respectively

(A = - T). in practice heterodyning of the signal and its multiplication by a

modulating signal, for instance, a delayed strobe in pulse modulation, can be

carried out separately, but for analysis this is not important. Output signals of

mixers are filtered in narrow-band filters, tuned to the intermediate frequency,

and, after detection by square-law detectors, they are subtracted. The physical.
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essence of all these operations, besides subtraction, obviously, is the same as

during detection (Chapter IV), and needs no further discussion.

In practice, reference signals in such a circuit may aiffer somewhat from

sounding signals (for instance, noncoincidence of the form of the strobe and the

pulse), and also due to any kind of nonidentity may differ among themselves.

Therefore, in general, in one of the channels there is used reference signal u1 (t)

#u(t), and in other, u2 (t) • u(t). Furthermore, the frequency response of the

narrow-band filters may also differ from optimum (7.2.5). Taking into account

these circumstances output voltage of the discriminator of Fig. 7.5, in general,

4.s described by the following expression:

-QA h,(- s) u , (s -- + + (s) e''dsr. (7.3.-)

where to pulse responses hi(t) and h 2 (t) there correspond frequency responses

H1(iw) and H2 (ics), and the true value of delay in the formula for the correlation

function of y(t) (7.i.i) is designated T0"

7.3.2. Identical Modulation of the Reference and Sounding Signals

Of all idealizations of real discriminators, probably, the most fundamental

is the difference of the frequency responses of narrow-band filters from optimum,

although quantitively this distinction is not necessarily the most important. The

fact is that in an optimum system the frequency response of the filter depends on

the magnitude of the signal-to-noise ratio and should, in principle, be corrected

in the course of operation as the latter changes.

It is of considerable interest to consider a discriminator with filters not

depending on the signal-to-noise ratio h, and to investigate its behavior during

change of this ratio. In particular, it is interesting to consider that case

when for a certain h we achieve coincidence of the frequency responses of optimum

and real filters, but for all others they differ.

In order to investigate the influence of the difference of frequency responses

of filters from optimum we shall first consider a somewhat idealized case, when

ui(t) -. u 2 (t) = u(t), h 1 (t) = h2(t) $ h(t), Presenting in (7.3.2) the squares of _3

moduli in the form of the product of complex conjugate integrals and averaging the

the product y(sl)Y(s 2 ), we obtain the following expression for the discrimination

characteristic:
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(- - h.( -- •) 5 -- s,) [U (, -- to, + -- )

X a* (u, - --4- A-- .)--a (s-- . + A + 8) )
Xu* (So - .Ic + A 4-I--•)l e"•a"-)"N.8 (s. - s,) +

+ Re P, u (s, - -to) u* (s, - TO) p ($, - s,) af"-"al dsds, -r

(IT
Ji- u (s + A - 8) u*(s) ds 1

X~~im- 5 Sk, S1 )hQS)P(SS)ds dS _

-- t-t. [IC(A-a)I'- Ic(A +a)i'I•, 5 1 (i-n)r'Sol-)d-. (733.)

from which it follows that null shift Ao 0 , and steepness of th~e discrimination

characteristic jin

T!

•F. S ~I H, (AD)I' So (a,) do,,(3.)

--@

This equality is satisfied thanks to properties of the real and imaginary parts of

C(a), which guarantees that C(-,) - C (A) and Ct(-A)

Likewise, we can obtain an expression for the correlation function, and

through it an expression for the spectral density of the output voltage. We shall

do this in some detail:

R, (t,, t,) = r (t,, ) z (t, A) - z (t A) z (t,, A)=

--•(8, -to, + t.+ a) * (s, -CS• + •,+ 8)] XX, (8. - g # s -+ )U ($4,-8) u.+ M+- --

"- 1, - n + A + 8) U, (S, - ; + A + 8)A X
MXY (s,) Y (s.) Y (s.) Y (s,) - Y (,) y (s,) y (s,) y (s,)] ds,dsds,ds4 . (7.3. ,5)

Further calculations can be made with the help of the known expression for the

fourth mixed moment of a multi-dimenslonal normal distri.buLiuji

V1,) Y (31) Y (s,) y (s,) = Y (sS) Y (s,) (ST) Y (s,) +

+ Y (s,) Y (s,) Y (s,) Y (S,) + Y (s,) Y (s,) Y (s,) Y (S,) -

=R (s,, s,) R(,, s,)+R (S,, S,) R (S,, S4 )+

+R(R ,,) JR(S,, s,). (7.).6)
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During calculation of statistical characteristics of quantity z(t, A) one

should consider the following circumstance, appearing due to use of complex nota-

tion, and essentially simplifying the calculations. Output voltage of the

discriminator z(t, A) in optimum and nonoptimal circuits is in the form of the sum A

of a product of form e(t)q*(t), where ,(t) and q(t) are complex high-frequency

normal random processes, whose total spectrum width is small as compared to the

magnitude of the carrier frequency, identical for both processes.

A known property of such processes is equality to zero of the mathematical

expectation of products ,(ti)ý(t 2 ) and E(ti)1(t 2 ) for any t1 and t.,. Then f rom

(7.3.6) it follows that

Yd(t) 0. (t,) N (4) ,¢ (t.) E • (.) '* (t.) ( (t.) + ()
+• (t,),1* Yt,) E(j, (Q ,) Ti

This circumstance gives us the possibility during substitution of (7.3.6) in

(7.3.5) to reject product R(s 1 , S )R(s integration of which with factor
3 2' s)4)3 nerto fwhc dhfco

exp (iw0(si- - 2 - s4)) all the same gives zero thanks to rapid oscillation

of the integrand. Sutstituting the remaining terms in the integral, replacing

s- by s, and rejecting the remaining high-frequency terms, we obtain

0I

X h, (t, - s,) A, (4, - 84) [ (s, + t - 8) U/ (s, + - B) -

- . (s1 + A + 8) ,s (S, + A + z)1 Iu(s3+A-&) U*(S 4+A-4)
- it(s, + A + B) (S4 ±~+ A ) X

.x× [.- P. S (s,) U (s,) ' (s,) U (s4) (S' - s3) p (s, - sA ) +
28s (,- sj s(s,- • -PGV.*(I(S)

X P (s. - $J a (s' - 1(, ) + I P 0NU a ()S) p (s$ s.)X

X (s -- J •) dds, ds,d ,.

Averaging in this expression modulating functions u(t) over the time under the

sign of the integral, integrating the expression for Rz(ti, t 2 ) over t -ti

and dividing the obtained expression for spectral density at zero by the square of

steepness, for the fluctuation characteristic of the discriminator we have
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some (A) H, (im)JI C(A &)I'--

- I8C (A-- 8)11 hsG (a) + 11 c (A + 8)1' + I C (A - &)1' -

- bL-*(28) C*(A 8- ) C (A + 8)] hS.(-)+I1 -IC(28)l'1 } do:

Me [Re C, (8) C- (a) I~ H&i (1o)1' S. (o) dw.(77

It is not difficult to prove that with small detunings 6 and optimum frequency

response this expression completely coincides with (7.2.20). From (7.3.7) for

equivalent spectral density OB = %,(0) for zero mismatch we can obtain the

following expression:

. (7.3.8)

h', ReC'(a)CO(a) I,(i&)l'S,(c) do

1"'

Investigating the dependence of this expression on 6, it is simple to prove

(this is easily done, considering small 5, when C() - I + ia5- -b5 2 ), that S5E

monotonically decreases with decrease of 5, passing to the limit as 6 - 0, which

for IHi(ic)1 2 
= IHo(iW)l 2 from (7.2.5) is equal to SonT from (7.2.15). This

fact leads to the requirement of realization of small detuning between channels of

the discriminator. However, with decrease of 5 proportionally to (b - a 2 )6

steepness of the discrimination characteristic decreases. This means that to

preserve the required high speed operation of the closed measuring system it is

necessary proportionally to decrease of 5 to increase gain in the open circuit of

the range finder. This circumstance forces us to take in real systems, built on tho

considered scheme, such 6 for which steepness K is not very small or is even

maximum. Fortunately, as we shall subsequently prove in concrete examples, the value

of ýan with increase of 5 up to values of 5, turning into a maximum the steepness

K., differs little from the value of $8E with zero detuning 5. This gives us the

possibility, without specifying the form of modulation, to investigate the depend-

ence of S. on characteristics of filters.

For 5, close to zero, using the expansion for C(b), from formula (7.3.8)

we obtain:
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S - 2A'b-. ')_ )j + hS.(

[-S

Let us calculate the magnitude of S,,, for certain of the most commonly used

forms of spectral density of fluctuations and frequency response of a filter. If

spectral density S,(w) is uniform in band Af , and the filter has a rectangular

frequency respons', with band Afq,, then

_ +A

'"=1 ++h (7..o10)
Sb--ij>.h'' &h >A°.

If the correlation functior of. the signal is approximated by an exponential func-

tion, i.e.,

so ((M.11
1+ ((.))

and narrow-band filtration is carried out by an LRC-filter with the response of a

low-frequency equivalent

(7.3.12)

where zfc - uffective width of the spectrum of fluctuations;

Aft - effective pass band of the filter, then

S o n s = (_ _ _ _ _ _ _A (7 .3 . 1 3 )
(b - a•ik'A'

If spectral density SO(w) has the form (7.3.11), and filtration is carried

out by a filter with a rectangular frequency response, then

4LIAlso a, tfe
h ' 2 +hcg u* (7.3.12)&.
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This expression practically coincides for all values of Afý /Af o with Ii

(7.3.10). -

Let us further consider the case of a spectrum of fluctuations, approaching

±0 somewhat more rapidly than (7.3.ii), when

(7.3.15)

and that of the corresponding filter

., 2 2 (7.3.16)[~ ( 4 )f J

In this case

Sm 5 (1 X)4+ h 15+ 2OX + 29X1 + 6'X8'(73]7
= 16 (b ') fX (I(7.3.17)

Aft
where x =-

Comparing these expressions with formulas for the case of an optimum filter

(7.2.15) for a uniform spectrum of fluctuations in band Af and a rectangular

frequency response, we obtain

X <'

" h+x (7.3.18)IT-r, x>I

For spectrum (7.3.11) and filter (7.13.12) this ratio is equal to

$, (I +.vl) + h (I +2x) (..9

S..,, 2x rF+h (I + --

Dependences (7.3.18) and (7.3.19) are shown in Fig. 7.6. Analysis of them

shows that, as one should have expected, ratio _G/SonT for a certain x =

- attains a minimum, equal to one, For a rectangular spectrum this minimum

is reached at x = 1, and for the spectrum of (7.3.11) it is when x = V-i + h. Ex-

pansion of the passband of the filter, which is most interesting from the technical

point of view, leads to especially unpleasant consequences for a small stgnal-to-

noise ratio. When h << I ratio S So1T has the order of x, i.e., fluctuation

error grows proportionally to the passband of the filter. For larger values of h

expansion of the band plays a considerably smaller role. Ratio S8,/S here has
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the order I + (0.5 to i)fj. and with growth of 1, IL approaches one. At working

signal-to-noise ratios (11 3~ to 10) and 'ýxpansion of the band. to x 10 increase

of %Mdoes riot exceed 50% for the spectrum of (7.3.11) and "3% for a rectangular

spec trumn.

tO -
_ _

an__ ._ _ 1. ....

30 toI
IA

0000 00f 0 /hf

Fig. 7.6. Influence of the pasc~btnd of the fil-
ter on accuracy of range finding; -- rectangu-
lar spectrum of fluctuations and rectangular
frequency response of' the filter; -- exponential.
correlation function of fluctuations and exponen-
tial pulse response of the filtez.

Let us give another expression fur the spectral density of' parametric fluc-

tuations. Expanding 26,,(A) from (.7)in the vicinity of A -0, we obtain

41a]* +x

This expression ~ ~ a H show that in ditit on frmanotmu irut i h

given~ ~ ~ ~ ~ ~~~~2 cas p(I*)ri flcua.n (nce)s wihu iitwt eres f



however, since as h 0 normal fluctuations grow as i/h 2 , they play a considerably

large role. With high signal-to-noise ratios h, when the influence of parametric

fluctuations is substantial, the term with i/h in Snap is small and. does not play

a role. Furthermore, the coefficient of this term, depending qnU'b, for not very

large values of b is small. As 5 - 0 it has the order of 68, increasing with

increase of 5 up to values, ensuring maximum steepness of the order of ore. Let

us note that the tendency of S nap for small 6 to reach a finite limit, not depend-

ing on h, is one more basis for selection in real circuits of sufficiently small

detunings.

It is interesting to note that the main component of parametric fluctuations,

not depending on the signal-to-noise ratio in the two-channel circuit, depends

neither on the magnitude of detuning nor the form of modulation in general. This

component is equal to

lira .,p ---- -•- , ----•,(7.3.21) !
IiH~~ (j, 1.SOw

[2%IHs (i) l'S,(o) doj

where coefficient a has the order of one, insignificantly changing with change

of spectral density of the signal and of frequency responL of the filter. In

particular, for rectangular S0 (w) and 1H1(iw)12 (Aft • At 0  ) coefficient a =,

and for SO(m) and IHi(im)1 2 from (7.3.ii) and (7.3.12)

I+x . A$if

7.3.3. Influence of the Finite Magnitude of Detuning

Without specifying yet the form of modulation, we can make certain important

conclusions about the influence of the finite magnitude of detuning 5 on character-

istics of the discriminator. Turning to formula (7.3.8) for S with arbitrary

detuning, it is easy to see that it reduces to formula (7.3.9) for equivalent spec-

tral density with zero detuning if we introduce certain equivalent magnitudes of'

the sic.mal-to-noise ratio b and mean square spectrum width (b - a 2 )s• and takes

the form
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Sen.- • a.. X

SH.{,,) rIt+ k...(&)I do•

X -",, , ,(7.3.22)-,

I',I

where h and (b - 2 )MB depend on detuning and are equal to

2-11$•I () I'-t iteC* (2) C()MI
1IC1M3-4i' V (7.3.23)

( Rie C (9) CO (a)r Il - I C (25) I'](b -" '"-1 () I'-- RC* (21) C' (S)i' (7.3.5)

Thereby, the nature of the dependence of accuracy of measurement on character-

istics of narrow-band filters, on the ratio of bands of fluctuations and of the

filter; studied at zero detiining, completely is preserved with arbitrary detuning,

and quantitative calculations for the last case reduce to substitution in the

formulas (7.3.9), (7.3.io), (7.3.13), (7.3.14) and (7.3.17) obtained above of quan-

titles h.. and (b - a 2 ) 3B. Similarly we can also use graphs giving the dependence

of Sa/S OnT arid S on the ratio of bands Af& /Afo and the signal-to-noise

ratio h.

Selection of a finite magnitude of detuning leads to a certain change of the

frequency response of The filter, ensuring minimum equivalent spectral density. If

S fron, formula (7.3.9) for the case of zero detuning this characteristic is equal

to the optimum (7.2.5), which it is possible to show by direct variation of expres-

sion (7.3.9), with finite detuning the minimum of SZ1 obviously, is at

H lol.y (L )j" = + . (a)

In particular, for a spectrum uf form (7.3.11) this leads to change of' the

optimum band to

Atcor a Alo V/ he.

The nature of the dependence of ha and (b - a 2 )a, on the magnitude of detuning we

shall study in examining concrete forms of modulation. However, it is possible to

indicate that, in general, the magnitude of ratio h,/h < 1, and ratio
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(o - a 2  /(b - a2 ) may be larger or less than one, where (b - a 2 6B/(b - a2 ) < i

only for such signals for which C(5) does not have zeroes for finite 5 and function

C(5) decreases to infinity no faster than its derivative C'(6). In most real cases

(b-a 2 ) Ah
(b - a ), (b - a > i, but so that the product inversely proportional

to which spectral density increases due to finite detuning for laige h, and all
2 h2

(b -a )B
the more so product --- , characterizing this increase for small h, isb'2

b-a h

always smaller than one.

As we shall subsequently prove, in working conditions, i.e., for 5, smaller

or of the order of 6am•' both h.-/h, and also (b - a 2B/(b - a 2 ) in many cases

differ so insignificantly from one that it is unnecessary to talk of any influence

of detuning.

7.3.4. Noncoincidence of Modulations of Reference and Sounding Signals

Let us consider now the difference in the forms of modulating voltages of the

sounding and reference signals. It is obvious that, assuming u 1 (t) X u 2 (t), we

cover also the most simple case of imbalance of gain in two channels, for which

u1 (t) and u 2 (t) coincide in form, but differ in amplitude. Returning to formula

(7.3.2) for output voltage of the discriminator in general, considering again

hi(t) = h 2 (t) (the most important nonidentity of filters - the difference in gain

factors - we already allowed for, considering ui(t) #- u 2 (t)) and producing necessary

operations of averaging and integration just as in the preceding paragraph, it is

possible similarly to (7.3.3) to obtain the following expression f-,r the discrimina-

tion characteristic:

Z (t, A)i NOi&I ICa (0)- C, (0)] +
+ II C. (A - 8) I C,, (A + ) 0'1 X

X•Pe 1 (7.3.26)' S I H,. (is) Is S. (a) do.,

where

4O- 0) - +) d (T.3.27)

and uo(t) u(t), i.e., subscript 0 pertains to the sounding signal. From (7.3.26)

we can obtain the following formulas for steepness and systematic error:
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KjL , (e)"sS (a)ldo ,

X Re ',. (--) C¶. (- 8)--c1*(8) C*s,(8), (7.3 .28)
Cp-C-(O)I2A C,.(-- I

A != q , - o) Ilse I C.

SRe (--&I1 C ' 1 -- -- C ,,, 1 C026 (M . (7.3. 29)

Likewise, we can find the expression for equivalent spectral density (we shall

limit ourselves to the formula for zero mismatch):

--Ict (28) is- Cs ( 28)1i' + 2h~s (a) (C., (0)11 C,, (-- 8)Is +-+ Cu () Cs. (8) Is- Re C,, (- 28) C*,, ( ) C' (-- 8) I
- Re C. (28) C*.* (8) C*,, (9)) + h's• (.)S ( I C1. (- 8)Is -

-I. 1 (8) : { Re[C,4(8) C-.(-8)-C

X I H. (i)lI'sS. ( )d o (7.3.30)

These results cover a broad class of ;ases and permit us for all concrete I
examples to investigate the dependence ct' systematic and fluctuating errors on

the form of the reference signal.. L,-" •s consider certain particular cases. We

separate first of all condLtions in which there is no systematic error. As follows

from (7.3.29), AO 0 for all h, if

_i) C,1(O))-C,,1(O); 2) 1C,.(--)l'=-IC,,(1)I'- (7.5.3i

The first condition requires equality of powers of reference signals and

includes the condition of equality of gain factors in the channels. The second

condition requires symmetry of reference signals, expressed in equal correlation

of "lagging" and "leading" reference :signals with the expected signal. IBoth

conditions are normal specifications, fulfillment of which should be sought during

practical developments.

If (7.3.3i) is satisfied, in the formula for S the component not depending

on the signal-to-noise ratio turns into zero, and 3 EB 0 as h- oo, as also for

coinciding modulation. )
The formula for SMis considerably simplified if we assume thaL laws of
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modulation of reference signals are identical. If the second of conditions (7.3.31)

is simultaneously satisfied (the first is always satisfied when u 1 (t) u2 (t)),

from (7.3.30) there follows:

s. 3 *=={..S I H, (s) C11,, (o)I'- C, (28)1' +

+ Whse (a) (C, (0) C,, (- 8) 1-

- Re C,1 (--28) C,.(-- 8) C1 (8) )] do}:

:2h' (Re [Co. (-•8) C*,. (-_) - C-. (a) C',. ()1 X

_Li Hl (io) I S. (a)do}) (7.3.32)

If detuning of reference signals with respect to delay is so small that it is

possible to be limited to first terms in the expansion of functions Ci,(5), i.e.,

12

from (7.3.30) we can obtain a formula generalizing (7.3.9) for the case of noncoin-

cident modulatilon:

-•"5 I Hi (1#) I1 11  (0) I' C ,,-a•,)+

soma=- - 2h' (Re bi. - daD)' I C..(O) I'X

+ AS. (ca) C,, (0) I Ci. (0) I',(b, - 2a41al, - a~ll doSi' '(7,3.33)

Analysis of formulas (7.3.30), (7.3.32) and (7.3.33) shows that the presence

of any nonidentities and noncoincidences leads to increase of the equivalent spectral

density. In general there appears a component of %, caused only by fluctuations

of the signal and not vanishing with infinite increase of the signal-to-noise ratio.

If this component is absent, the presence of nonidentities changes the distri-

bution between components of -%, caused by b. -ts of the signal with noise and of

noise with noise. In the simplest case, when V-• << I and b1 i Rei b1 0  , ali

a,, = a, the presence of nonidentities reduces to equivaLerit dpcrease of' the

signal-to-noise ratio to
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and (7.3.33) passes into (7.3.9) with replacement of h by hi.

In the more general case we are able, just as in Paragraph 7.3.3, to reduce

formulas (7.3.32) and (7.3.33) to a very simple formula for the case of coinciding

modulations and zero detuning (7.3-9) by introducing the equivalent signal-to-noise
ratio h3]K.and the mean square spectrutm width (b - a ý,,. Then for arbitrary modula- :•

tion of reference signals ui(t) =u2(t) f! u(t) and arbitrary detuning we again have

formula (7.3.22), whereCo. 
21)C*.. (-8) Ca.()]

hm = -h C, 2- 1 ) (7.3.M)
I

(b--a)l -!

Re IC',, (-8) c., 1- 8) - C',, (•) C*,, (1)j' t!-C,. (- 28) 111
-- 4 11-Clol--O I- Re C, I - 28) C*,. (--a) C1o (4)11(.33

I
Reference signal ui(t) for simplicity of recording in these formulas was

normalized so that •

T `J

c ,0. lir 2 u, (t I t (7.3.37)

Thus, the already considerably more complex case of noncoincident modulations

and finite detuning reduces to the very simple case of zero detuning with coinciding

modulation. This gives us the possibility of using for calculation of final quanti-

tative results the same few formulas and graphs of Paragraph 7.3.2, which together

with calculation of quantities (b - a 2 )• and h. permit us actually to answer

all questions related to analysis of accuracy of a discriminator with detuned

channels in linear approximation.

§ 7.4. Discriminator with Switching of Reference Signals

7.4.1. Block Diagram of the Discriminator

Solution of the problem of identification of channels in a two-channtl circuit

is connected with great technical difficulties. Therefore, preserving the principle

of approximate replacement of the derivative of functional IQ(t, '•)I2 by a finite

difference, it is possible to tryinstead of simultaneous formation in the meter

of quantities IQ(t, ¶ + 5)12, 1Q(t, T - 6)12 and their difference, to form the shown
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quantities consecutively, periodically changing tuning of the discriminator relative

to the measured value of T. This is

attained by application of the one channel

* , of Fig. 7.5, to the mixer of which there

is alternately fed "leading" and "lagging"

Fig. 7.7. Block diagram of a discrim- reference signals, and the sign of output-

inator with switching of reference
j signals: i - preamplifier; 2 - con- voltage of the detector correspondingly

trolled coherent local oscillator; 3 -
mixer; 4 - narrow-band filter; 5- is changed by a phase switcher (Fig. 7.7).

square-law detector; 6 - phase commu-
tator During analysis of the discriminator

aQt=I•e u. mt--1--&IIe( t of Fig. 7.7 we naturally assume that

reference signals are identical, although they may differ from the sounding signals,

and that the time constant of -the narrow-band filter is small as compared to the

period of switching Tne Nonfulfillment of last condition would lead to averaging

of the error signal in the filter and to sharp decrease of the gain factor of the

discriminator. With these assumptions output voltage of the discriminator will be

z (t, A).: hf-st~-',L -•!(~id f-

, s) u, (s --t -- [-- y (s) eý*ds 2 (7.4.1)

where f(t) is a sequence of meanders with period T.,

Voltage z(t, A) constitutes a nonstationary random process with periodic non-

stationariness. In smoothing circuits of the servo system of a range finder, due to

their inertia, there occurs averaging of this nonstationariness. In connection with

this the magnitude of fluctuating error is determined by the spectral density corre-

sponding to the tiroe-averaged correlation function of voltage z(t, A). Then, in

accordance with (6.2.4)-(6.2.5), the discrimination characteristic, the gain factoG

and the fluctuation characteristic are determined by the following expressions:

zI A ) )dt -2- t,
zt, A)=. 7 .! t , A-- Z P,,

°~--m Go f ro(7 .4.2)

.So,. (A)- d1 F- Szf ( j ,- _ (. ..

z (I +%-',!A)zl(, A)ldt,i
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where z(t, L) corresponds to the case of a two-channel discriminator where ui(t) =

= u 2 (t) and h 1 (t) h 2 (t) (7.3.15).

7.4..2,. Characteristics of the Discriminator

Formulas (7.L.2) permit us to directly use for a discriminator with switching

of channels the results obtained earlier for a two-channel discriminator. In

parcicular, the discrimination characteristic and the gain factor differ, other

things being equal, by only a factor of 1/2. Systematic error is absent when there

is syimetry of the reference signal, where

In other cases A0 is determined by formula (7.3.18) with C1o(5) C20(5).

Thus, as in preceding paragraphs, with the given assumptions with respect

to the frequency of switching we can obtain an expression for the equivalent spec-

tral density.

-S I H, Q*lFUC,, (0)ll'+ Wl.)Cis(--&) l11dw+

lite " R r,. (- ;* c,, (- 8) - C',. () C*,. (8)F ×(

(7.14.-3)

where ).
I 2 B 1•2/8+I\

B(w) - a quantity, proportional to the spectral density of fluctuations at the

detector output,

B (a) 2,. Hs-,( -- )lSo.(,-s)! H,(is)isS,(s) s. (7.4.5)
-S

SAn essential peculiarity of the considered discriminator is the presence in

S 9B of a component not depending on the signal-to-noise ratio but proportional to

S A(). This means that in a range finder with such a discriminator flucttua-

ting error does not approach zero with unlimited decrease of noises. Physically

this is explained by incomplete correlation of those components of output voltage

of the discriminator in various half-periods of frequency switching which are
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I
caused by the presence of fluctuations of the reflected signal, and the related

impossibility of their compensation, as occurs in a two-channel system carrying out

instantaneous comparison with "lagging" and "leading" reference signals. Such

components of occur in all measuring systems where the discrimination character-

istic is created by consecutive measurement of correlation between the received

and expected signals for various values of the measured parameter. A characteristic 1

example, as we shall subsequently see, is angle measurement by scanning. The presence

of such components is a serious deficiency of such systems.

With slow switching, when Af0 Tn >> 1]

_ B(o) __ 1

A(-7:t, H,-0  4:--c 1 I 1(h)) SS(0 )}do. (7.4.6)

The case of switchings, rapid as compared to signal fluctuations, when

A(.) • 0, can be presented only if the band of the filter exceeds by many
Afc T n

tim,.s the width of the spectrum of fluctuations AfO. Here, the period of switching

may be small as compared to the time

constant of the filter, but large

_.____.as compared to the time of correla-

tion of fluctuations. For exponen-

tial correlation and an LRC-filter

with band Aft calculation of

U.S 1,9 fJ U.• 2,5 •
function A(, T-) can be conducted

Fig. 7.8. Dependence of the relative mag-

nitude of the residual equivalent spectral for an arbitrary switching frequency

density on the product Afo Tn •
F Tn =- In the case interesting

n

Aftu.1s x ý• >> 1:

A th Af Jl(:. 0 _1

With increase of F function A(- - decreases rather sloviLy. Its grapl- •.,s

constructed in Fig. 7.8.

With slow switchings and fulfillment of the condition of' tho Pbsence of'

systematic error the formula for S. is simplified and takes the form
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'II
0,

sons-= (7. It 8)

i{ e 8'.1--) C.,,ase el . I H, (1o) 11 S. (0)

where we again normalized ul(t) so that Cii(O) = 1. With coinciding modulations

function Ci0(5) is replaced by C(5). Noncoincidence of modulations of the reference

and sounding signals again can be described by introduction of the equivalent signal-

to-noise ratio, depending on D:

=_ L I C., (B) I'
C" (8) 2(7.4.9)

Then, if we introduce for the case of coinciding modulation the special

designation

- I tq, Q.)Itl + hIC (a) 1' S@ (d)U do

(7.4.1o)
Re. C' (a) C" (a) 1- H, Qo. ,) Is so (o) dc,

the equivelent spectral density with noncoincident modulations is

S, 8)M 3 ( ) (h,.o.), (7.4.11)

where

CI C. (- 0) 1" IRe C, (a) C (8)12
Tt -• ) 'I toc . (-' 4) C*,.(0 Ol (7 .4.12 )

is the equivalent change of the square of the slope of the discrimination charmc:-

teristic.

In formuJlas (7.4.8), (7.4,¶), (7.4.ii) and (7.4.12) and henceforth we assume

that the condition of the absence of systemati2 error is satisfied.

We also give an expression for the fluctuation characteristic and spectral

density of parametric fluctuations for the case
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f,(--- U. ) , U • M Cs() C c8):

"2 IH, H ) I(11 + h I C (A + 8)[' So (W)]'+
SSo.. (A) 0

,h. JRe C' (a) C* (8) X

-- I + h I C (A- 8) I' s. (*)1') do (7.4.1.3)
X ]'i) '*(a o

X--Ias)s.d IHlilS()d 7..)

sp C" (2 [) C ' ( 3) +C (a)l C]

I H IQe () Ca2 (a) die

x_ +

+Re IC" (8) C* (8) +C'(8) C;*'(8)1 - I 1('o)4.Q)c

2 [. I H. I(t) 1' So (o) doll

Formulas (7.4.8) and (7.4.14) show that both nonparametric and parametric

fluctuations essentially depend on the form of signal modulation and the magnitude

of detuning 5. For any finite values of h and any C10(b) quantity SWI, changes

monotonically depending upon 5, turning for a certain b into & minimum. The magnitude

of this optimum value of detuning essentially depends on the form of the signal and

the magnitude of the signal-to-noise ratio ii. For small values of h the minimum

of SM is attained at value of 6, which turns the slope of the discrimination

characteristic into a maximum; for larger h the optimum value of 5 increases. We

shall investigate the character of the dependence of SO., on b in more detail when

we examine concrete forms of modulation; however, in general it is possible to

indicate that in circuits with switching there are all grounds on which to select

detuning equal to that value of it which maximizes the gain factor, or somewhat
larger.

In distinction from (7.3.14), In +h1r csp bhr.h components of Snap depend on

the form of modulation and detuning 5. This uependence is such that, for small 6,

Sra may be negative, i.e., the fluctuation characteristic may have its maximum

in the vicinity of A = 0.
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Such a character of the dependence S,,A) means that in the considered case,

if o 0, there is no sense in talking about parametric fluctuations. In

examining linearized conditions we should consider fluctuations not to depend on J
mismatch. If, however, we try to allow for the dependence of S o,(&) an mismatch,

then, even being limited to small A, we have to solve a nonlinear problem, consi-

dering also the dependence of the discrimination characteristic on L. For large

6 the dependence of SB(A) on A has a normal character, and analysis of the rangei

finder as a whole can be conducted by the usual means. As follows from (7.4.10),

for 5, turning the gain factor K, into a maximum, the component of Snap of the order

I/h disappears, just i the addition to the basic term, and Siralp turns out to

coincide with (7.3.14) i.e., S nap For a certain smaller value of 6

depending on h, the magnitude of S turns into zero. The considered character of i

change of 9,,, and Snap from 5 is rather unique and essentially distinguishes a

circuit with switching from the optimum and two-channel circuits.

7.4.3. Optimum Filter for a Discriminator with Switching II
The depcndence of S on the fcrm of frequency response of the filter has an

interesting character. Let us consider this dependence for the case of low fre-

quency switching. Composing the variation of S.. from (7.4.8) with respect to

IH.(io)1 2 and equating it to zero, we obtain the following equation, determining

the optimum frequency response:

If (1.) -i' 4-+ hlC,.(•) I' s.(-)I S 1 if, (ix) I' s.(x) dx --
-{mIIA

&.() H, (W 14 11 + h, I C,. (8) 12 S, (x)l' dx -O, (7.4.1 5)

which, obviously, is satisfied when

IC. (8) I' s, (e.) (;'.q4.16)lHs (is) I'- H. o.. (im)I' - . 1 a c,, (a) S' (s.()''
PI + hC. ~I CIO (0,so)MI

This result shows that an optimum filter for a discriminator with switching, ensur-

ing a minimum equivalent spectral density, may substantially differ in its charac-

teristics from the usual optimum filter (7.2.5). With fulfillment of (7.4.16)

J14-, 2,. (.0) d o-4_' +Re Ce).(I)I's,(-)j' ('() C.i 7 )
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For any real spectrum of fluctuations [So(w) is different from a rectangular

function] SDei-1 0 as h- co. The order of decrease of 4. depends on the form of the

spectral density and is always slower than i/h.

The difference between optimum filter (7.4,16) and a usual one from the

theoretical point of view is explained by the fact that in this case during

synthesis of the optimum discriminator we impose an additional technical condition.

This condition is that at every moment of time we can form the likelihood functional

(actually functional Q(t, T)] for only one value of T. In principle in an optimum

system values of this functional should be formed for all T; however, as we proved

in the example of a discriminator with staggered channels, with observance of

certain conditions it is practically sufficient to form this functional simultaneously

only for two differing values of parameter T. The additional technical limitation,

naturally, leads to change of the form of the optimum system and, as any limitation,

leads to loss in characteristics of the synthesized system. This loss may be slight, )
but it always exists in principle, being the cost of the attained technical simpli-

fication.

Let us investigate in more detail the frequency response of an optimum filter.

For small hICi 0 (0)i2 this characteristic coincides with the form of the spectrum of

fluctuations and with the usual optimum A

f4- frequency response for small h. With

growth of hIC (5)I 2 the difference

lF between (7.k.16) and (7.2.5) become-.s

essential. For frequency response curve

(7.4.16) there is a dip at w = 0, the

depth of which decreases as 1/h1C0(5)
2 -1

and two maxima, the separation of which

-~ ~ . increases with increase of hjCjO(5)'

In the particular case of an exponen-

Fig. 7.9. Frequency response curve of an tial correlation of fluctuations
optimum filter.

Ih i C,. a) 4' +

C2  L

Tho graph of this function is constructed in

Fig. 7.9. Frequency r.sponse (7.4.18), taking
Fig. 7.'L. Fundamental circuit oi
an optimum filter, into account transfer to intermediate frequoncy
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o•,, can be formed by the circuit of Fig. 7.10 whenI I
R, (,Ci CO Re-=2A,V, . tF

In a system with optimum ,filter (7.4.18) SEB( is expressed by the formula

4 'aI~tC1418) C, to)Mr (7A.4.19)

This expression, as also (7.3.8), for a certain 5 turns into a minimum, but in

distinction from the general case it approaches zero as h -c as i//h. Thus, even

with an optimum i i-ter the circuit with switching for a large signal-to-noise ratio

has a. loss as compared to a two-channel circuit, growing as Fh. Detailed comparison

of circuits with detuning and with switching requires specification of the form of

function C10(5), and therefore, we postpone it to subsequent paragraphs. Here we

can only note that in general both for an optimum filter (7.4.16) and for an

arbitrary one loss in accuracy during use of a. circuit with switching with respect

-to an optimum and a two-channel one is greater, the greater h. For smnall h it may

be more or less immaterial, but for large h, when fluctuating error of the range

finder is caused basically by the randomness of the signal, it attains conside rable

magnitudes. For a normal filter loss grows proportionally to h; for an optimum

filter it is somewhat slower, for inslan:e, for filter (7.2.18), as AF. This

peculiarity is an unpleasant property of a circuit with switching.

Let us estimate now what gain application of an optimum filter gives in a

.ircuit with switching. Let us consider for this again the spectral density of a

signal of form ((.3.11) and frequency response of form (7.3.12). Substituting th.,,.'

in the formula Lor (7.4.8), we obtain

(I+ x)'+h C,. (8)1' (1 2x))+ h' I C,. (8)14 (Xx+ I-4)
S,, -- 2 Al .4h-x ([e C',()C ()''( 7.4.20 )

where x, as before, is Aft /Afo.
Then ratio -y of equivalent spectral densities during use of LRC-filter (7.3.12)

and optilum filter (7.4.18) is

(I + x)+h I C,, (8)1'(1+ 2x) + h' I 1. 4 (9) + 1+)

4xI1+hIC, ) (7.4.21)
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Dependence y(x) for various hICio(b)I 2 is shown in Fig. 7.1i. For small

hIC1 o(6)I 2 this dependence has a clearly expressed minimum at x - i, where the

magnitude of the minimum is close to one, which is naturally explained by practical

coincidence when hCo1 0 (5)1 2 << I of characteristics of an optimum and an LRC-filtcr

when x -i. With increase of hCo10 (5)1 2 the minimum is shifted in the direction

of large x, and curve y(x) in the vicinity of the minimum is all the more shallow,

so that there appears a zone within which change of the band of the LRC-filter

practically does not affect S.. The loss as compared to an optimum circuit in

this zone comprises approximately a factor of jCI 0 (5)l.A/2. Width of the zone grows

rapidly with increase of

0hIC 1()I2. If for hIc±0,(6)I 2

20o 'd•'4f iO error of measurement almost

does not change with triple

change of band, then for

hjc(I)l'-v hi C1 0 (6)12 = iO0 error remains

-h( practically constant with change

- '- of the band by a factor of 200.

The gain during use of an

X-wfaf/6f optimum filter is explained by

Fig. 7.11. Influence of nonoptimality of the the fact that in a circuit with

filter on equivalent spectral density, switching useful components of

the spectrum are transferred to the frequency of switching, and therefore, suppression

of signal fluctuations concentrated near zero frequency and playing, at low noises,

the basic role in formation of fluctiuating error, which is attained by use of a

frequency response curve with a dip near zero, turns out To be useful. The magnitude

and width of the dip by formula (7.4.16) is automatically selected in such a way

as to ensure minimum equivalent spectral density.

S7.5. Discriminator with Differentiation of the Reference Signal

7.5.1. Block Diagram of the Discriminator

In § 7.2 we already uaw that an optimum discriminator can be built by the

circuit of Fig. 7.2 and consist of two channels, to one of which there proceeds tie

reference signal, and to the other, its derivative with respect to T. The advantage

of the circuit with differentiation of the reference signal as compared to a circuit

with staggered channels is that operations performed by it can be made identical to

optimum operations without decrease of the slope of the discrimination charactexistic.
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One of the basic difficulties connected with realization of such a circuit

consists in forming reference voltage for the channel. in which the received signal

should be mixed with the derivative of the sounding signal. However, in certain

cases this difficulty is surmountable. For instance, with frequency modulation

reference signals of the local oscillator are equal, respectively, to

Re (-- u ) e' = cos 0(.- + (-P) t + Y (I -
-,Re U gt - ) el( ÷ ~ ...P

A- A (t -- ) sin [(-.+.,j) t + (t- •).

It is possible to form these signals with the help of the circuit of Fig. '[.I-.

The signal of the master oscillator, delayed T, enters the frequency-modulated local

oscillator at whose output there; is obtains.',

the first reference signal, The second

reference signal is obtained from the

L*t -Tow first as a result of a shift of r/2 and

amplitude modulation by the law nw(t - T).

Yig. 7.12. Block diagram of forming In the case of sinusoidal frequency module-
of reference signals with frcqucncy
modulation: i - controlled master tion (LZ.c(t) = wr cos f2t) the second re-
oscillator; 2 - frequency-modulated
local oscillator; 3 - 7/2 phase ferenc: signal is obtained by simple
shifter; 4 - amplitude modulator.

shift of the first in frequency by ±Q and '

by phase shift.

During technical realization of the block diagram of Fig. 7.2 there arc pusslbi?

all sort. of deviations from optimum operations, the influence of which we snall

now estimate. Denoting, as in § 7.3, by u, (t) and u,(t) the laws of modulatio ,.'f

the reference signals in the first and second channels and considering the f'iltenr

]dent'eal, we obtain the following expression for discriminator output, generalizing

SQ,A)=Re h, (t -S') h, S-- U, (S -- .. A) X
( U* 8 (Sa -i*- •-- a)y (s.) g (sl) e~hh(S-ISdsids.( .

7.5.2. Characteristics of the Discriminator

Averaging expression (7.5.i) as usual, we obtain the following formula for the

discrimination characteristic:

Ii2



z~t, )-!JIH,1(i)r`ReJC~s(o) *1

+ hS, (a)C,,(--A)C,. (- A)I do, (7'.5.2)

where CiK(A) are determined by formula (7.3.16), from which it follows that

- S H. (is)I'S, (w) do X

X Re IC',. (0) C,*. (0) + C*,° (0) C',o (01,

H, (i.) I'de

A,--- -- ReCA(O)C*,f).jReCA(O) -o -

5 Ifa(1.)I'S.(.lduJ:

;Re [C,, (0) &s. (0) + C*,. (0) C'., (0)1. (..:•),

Vrom the last expression it follows that systematic error is absent for any h, if

Re C. 1 (0)' Re C. (0) C*,, (0) =0. (7.5. )

These conditions, obviously, lead to the requirement that when there is a symmetric

sounding signal one reference signal be symmetric, and the other, antisymmetrlc.

Determining the correlation function of voltage z(t, A) and subjecting it to

the required transformations, it is possible to obtain an expression for equivalent

spectral density

yu) ItIJ(i)4C,,(0) C22(0)±+ReC~2 ()

-m~ =]1()
+jS (.) (C,, (0) 1 C, (0)r1, + c.. (0) Cc,, (0)12 +

+ 2 Re C,, (0) C,. (0) C*., (0)) + hS2  Co)(ItCo (0) Co.(() 12 +
Re1(o C22()C',(0+ Re c•,(0) Co (0)) dw}: 2h2 { R: IC (0) c.., (0)

--C',, (0) C', (0)] .~ H,, (is)S,(() (.7.5.5)

From this expression it again follows that the presence of non idealnesses leads

to the appcarancc of a component of S lKB. n '1)puenndina on h. As also in the circuit

of I'ig. 7.5, this component disappears together with disappearance of systematic

error, i.e., with fulfill-Lent of conditions (7.5.4). In general, formula (7.5.5)

with an accuracy of coefficients coincides with the correspondine, formula (7.3.19)
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for a discriminator with staggered channels. If, in particular, differentiation

of the reference signal is sufficiently accurate, which in certain cases is fully

practicable, i.e., u 2 (t) = u',(t), and the main reference signal ui(t) differs

from the sounding signal u(t) due to the difference of modulation characteristics

of the local oscillator and the transmitter, with fulfillment of (7.4.4) the spec-

tral density of S. is determined by a formula which coincides with (7.3.33) for

a discriminator with staggered channels with small detuning. Obviously, expressIoi_

(7.3.9), saut.sfied for ui(t) = u(t), also remains valid.

All these circumstances indicate that the dependence of equivalent spectrn-l

density for the considered discriminator on the signal-to-noise ratio h j-nd the

band of the filter actually has already been investigated earlier in § 7.3, andi il

remains for us only to repeat the conclusions presented there.

It is essential that in the considered circuit nonidentity of gain factors In

channels does not lead to the appearance of stationary error, and that density

of phE.se responses plays the basic role. Tf uv (t) and u 2 (t) coincide with u(I) anc

u'(t) with an accuracy of constant phase shift, for instance:

a. ( == U (t) eI" us --= ' (t), '

whore -- phase delay in one channel relative to the other, then, as it Is easy to

prove, -

C1, (0) C*,. ) C, (0) = iaeb?,
SI, H, (1,t), j- [I + hS. (,)] dw•;

a siny U ( )

h -L • I H, (Ia) 'S. (&)) d•o

The conuition of the absence of systematic error consists, thus, of' the equalitY -

uu zexu of quantity a, i.e., the requirement of symmetry of the power spectrum C1'I

modulirtion. Phase shift leads also to increase of equivalent spectral density.
A

When a = 0 quantity S., increases as compared to (7.3.9) by a facztor of i/cos" Cp.

In conclusion let us give the expression for the fluctuation characteristic

of a discriminator with differentiation of the reference ý;ignal. Limiting Lusolve;'

to the case u.(t) u(t), u2 (t) u'(t), we obtain, comrpletely analogously to

('r.2.20)4

,-244-



'A~ Re ~ ( I if, (jo) 14 hI;S02 (a) (I C ()I C A '--

+t C1 (4) Cs,'a (A)) ý+ is(.) (a) C (A)I
+ I C (A)r- iaC(A) C '(&)) +

"+b -a-I dhl:2h' (b-a')'- j H, (i-)iS,)(-)-d. (7.5.7)

This expression, obviously, differs from (7.2.20) only by replacement of

hSo(w)I[i + hS0 (co)] by an arbitrary frequency response 1H1(im)I2. Calculating the

second. derivative of ) from (7.5.7) when A = 0, it is simple to prove that

spectral density of parametric fluctuations of Snap is determined by the very simple

formula (7.3.21), occurring for a circuit with staggered channels as h-.

With this we complete our general consideration of time discriminators. In

the following paragraphs we shall turn to concrete forms of modulation of the sound-

in6 signal. Inasmuch as the dependence of characteristics of discriminators on the

signal-to-noise ratio and characteristics of filters was considered in general form,

subsequently we shall be interested basically in the dependence of L6and KA on

detuning of channeis with respect to delay and on nonidentity of the reference and

sounding signp, ls. Characteristics of filters we consider optimum. Corrections

for noncoincidence of bands and frequency responses of filters with the optimum I
can be introduced by the above results. Furthermore, we subsequently consider that

spectral density of the fluctuating signal is determined by formula (7.3.il).

§ 7.6. Pulse Radiation

Pulse radiation, thanks to a series of well-known technical advantages, is

widely used in contemporary radar. With pulse radiation we can use, obviously, all

the schemes for construction of -. discriminator considered earlier. Furthermore, i

this case there is one more possibility - multiplication of the received signal by

the expected can be replaced by transmission of it through. a filter physically

realizable due to finite pulse duration, with frequency response conjugate with the

spectrum of the signal, and with subsequent gating by a very short delta-shaped

pulse. Equivalence of these methods of processing was proven in [4] and at present

is well-known. An advantage of replacement of multiplication by filtration with

rubscqucnt gatinf is that one fllf.or een b, used both in the channel of detection

and in tracking channels for measurement of coordinates of one or several targets,

In more detail questions of realizing an optimum coherent recýiver on the basis of

the principle of filtration were discussel previously in Chapter IV in examining
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the problem of detection.

The circuit of a coherent time discriminator with two detuned channels, using

filtration, has the form shown in Fig. 7.13. After the mixer, the signal enters ri

filter with frequency

response .xfU*(lw, - i(n 1r:) 4

+ U(-iw - i•r)J and is gated

by two gate pulses, detuned

±6 from the mneasured vkla:-

of delay. After gating, -ie

signals are filtered by I
Fig. 7. 13. Block diagram of an optimum discrimina-
tor with a matched intermediate-frequency amplifier narrow-band filters, '.t.
(UPCh): i - pacar.plifier; 2 - coherent local oscil-
lator; 3 - mixer; 4 - controlled generator of gate and subtracted. Analogously.,
pulses; 5 - filter (UPCh) with a frequency response
matched with the spectrum of modulation; 6 - gated we can convert a circuil wit1
amplifier; 7 - narrow-band filter; 8 - square-law
detector; 9- subtractor, differentiation of the refer-

ence signal. Gate pulses:

in this case coincide, and the filter corresponding to the channel with the dcriv, -

tive has frequency response

I .{ ( . -- Op) (im - W , P) -i (C --I + 0 ( -im i .,P)} .

wit
Liewsewerealize a circuit wmith L~~nPUswicng In tec, opu seignals without

i additional itrapulse modulation it is sofIeient that the band of the fit:,•r coinriuc

Swith tir band of' the signal.

irom equivalence of circuits with filtration and -;ith muluiplication by the.c

expected signal (such a realization of an optimum circuit for processing it often

calle-1 a corre:lation receiver), it follows that analysis Of their accuracy can 4i.

perfurmnt by the same formulas. ln this paragraph we investigate accuracy of urlnc

finding during pulse radiation without additional modulation for different fonr•; 0

* the pulse• and gate pulse (or, which is the same, for different signal spec.via and

frequency response of the filter in circuits using the principle of uptimum filtra-

tion). In the sbsence of intrapulse modulation and with arbitrary forms of pulseos

and gate pulses all functions Cik( 5 ) are real, and general formulas of the ,j:receding(

paragraphs are somewhat simplified.

Most practic_,able for pulse modulation are circuits with detunied channels and

with switching; therefore, we shall basically consider discriminators; of tk.s :;•,ri':'ms,

but at the end of the paragraph we shall briefly discus.s th- application (f a

discrlirinator with differentiation of the reference signal.
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7.6.1. Square Pulse

Let us consider first modulation of the signal by square, periodica ly repeated

pulses of duration iE. It is obvious that the autocorrelation function for such a

signal is

C(8)---I!.-- (7.6.1)

A characteristic feature of such a signal is infinite root mean square spectrum

width -17, which formally leads to infinite accuracy of TAng•e finding for any signal-

to-noise ratio. Actually this does not take place, since the pulse edge always has

finite duration Tt. Thanks to this the vertex of function ,(5) does not have a

break and the magnitude of b is finite. In examining an o0.timum circuit and its

characteristics allowance for these circumstances is necessary; however, during the
analysis of a circuit with detuned channels and a circuit with switching we with full

right can use function C(5) in form (7.6.1), calculated without taking into account

the edge, if we always consider that detuning 6 exceeds the edge duration, and equal-

ity of 5 to zero is understood in the sense that b << T,, but 5 > 'r. If we consider

the hypothetical case of a square pulse of strictly zero edge duration, then, in

general, the approach utilized by us becomes inapplicable. In this case the logarithm

of the likelihood functional does not have a finite second derivative, and operations,

calculated on the basis of replacement of this functional by first terms of a

Taylor expansion, do not have meaning. Such a nonanalytical case requires special

consideration, which leads anew to finite accuracy of measurement. Such a considera-

tion, however, does not have any essential practical interest.

Substituting (7.6.1) in the corresponding general formulas for K and S,, for

the gain factor and equivalent spectral aensity we obtnin the following expressions:

"K.(=-L ) (7.6.2)

where D =2P i + h/[i + rl + h] - designation, which we introduce to shorten nota-

tion;

for a two-channel circuit

'3 S Ou (7.6.3)

for a circuit with switching

-----------



Let us remember that characteristics of filters are considered optImunrm. In order to

pass in expressions pertaining to the two-channel circuit to the case of an LRC-

filter with an arbitrary band 4f - xAf 0  here and subsequently one should I
replace in the formulas 11 T h by x.

The dependence of K on 5 is very simple; the gain factor decreases prportion- -A
ally to 6. Dependences (7.6.3) and (7.6.4) are constructed in Figures 7.i4 and 7.i1.,

respectively. For 6 close to T', spectral density in both cases increases without

limit; as b - 0 for a two- hannel circuit it approaches zero (actually a value, det-

mined by the duration of ,ae edge); and for a circuit with switching it. appryaches
h - h 2 or the last circuit S,,(6) has a minimum, the existence of

which one should use when selecting paranel:.ers of the ciscriminator. This questio;n

already was discussed in § 7 . 4 . For the considered case the minimum is reached i,!nen2.=,.(,

LI _--- ____

h O.

0 ,o 05 .5 jl0,2 0.5 0.7~5 fo

SFig. 7.ii4. Dependence of equivalent Fig. 7.i5. Dependenc:e of equiva-

spectral density on detuning for a lent spectral density on detuninlg
two-channel discriminator, for a discriminator with switchinghof refernce signals.

SWhen h K 2 quantity '50 < 0. This means that when h < 2 one should select

detuning close to zero. When h > 2 the nagnitude of optisium detun~in# is greater,

the larger h. All this confirms the conclusions of Fsrag raph 7,4•.i? aloot the cheac (-

ter of the dependence of optimui vaol the signal-to-noise ratio, 75 normal oennui-

ticus (when h < 0i to m0) detufh<ing should comprise (0.sl-c to .,,) " I.. -

Sclose to zero Whth
the argr h Al thi cofirs te cocluiun ofFnrarap aLulu th, ct.YIa'



i.'2s,,_-- (7.6.6)

Now let the duration of gate pulses Tc differ from pulse duration. We shall

consider for definitiveness T > 'M (the opposite case if not of interest for prac-

tice). Designating = z, and I= ip in accordance with (7.2.16) we obtain
TT

S. e, (8), (7.6.7)

Substituting these expressions in formulas (7.3.17) and (7.3,2i) for the two-channel

circuit, we prove that the gain factor decreases as compared to (7.6.2) by a

factor of i, and

(I + h- ,,-- + 2 Y -T1Fh)(I - z)'
son& 1Z U'hf ) .- .z. (7.6.8)

The dependence of ratio SeRB(4, z)/Sq(i, z) on ýt for various relative detunings

z is constructed in Fig. 7.16. This ratio varies little with change of h in a

sufficiently wide range, especially if

(# detuning is small. From the graph it is
10

possible to establish the expansion of the

*. ,A43 agate pulse eaid under what conditions it can

S be considered permissible. With sufficiently

good approximation the loss in magnitude of

J -spectral density Sa can be considered equal

to 4 in all operating conditions.

Results for the circuit with switching

are still simpler. Since coefficient M(e)

_ _from (7.4.12) for C,((5) from (7.6.7) is

/4 equal to one for all b, and h1 ew from
Fig. 7.16. Influence of duration of
the r.ate pulse on -%,,for a square (7.4.9) is h/4, elierything reduces to
pulse, equivalent decrease of the signal-to-noise

iatio by a factor of . I Here, the magnitude of optimum detuning decreases to
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and equivalent spec cral density for any [i, as before, is characterized by formol...

(7.G.4) and thi. graph .f (7.15) with repla:cement oi' hi ")IB= h/P. for h.

7.6.2. Gaussian Pulse

Very often the shape of the pulse es~entially diffiers from rec•,uJar.

a =onvwnient approximation, corresponding well to rcal~tt in many cases, IL.s a

,3ussian curve cf form

mee

wlr:rc t, -- duration of the equivalent square pulse of the same ampl td.= U .

introduced generally by the following relationship:

ju"'(O)(ul, t di l -• (') d i.

Quantity -Vo is connected with the duration of a pulse at level C.% by tU-

obvious relationship

6%.

We shall consider that gate pulses (reference signais)ui(t) also htv(.

`,m.quý,13.a.•n form- ana• duration TO - wI,,,ie.

all a 12

* ,s

C ( 8)= C- 1/- •+e, H (e._..e )

whrr(, ~~C(8 =-; be'rz -5•

h-.ean square spectrum width fc•' 3 ,laucuian julse, obviously, is equal to

Tho slope of the disc rimination characte-risti for a tw•-(anr,:l .:ir%:,A5t

ac::urdirq.l tu (7.5.26) is determine,,. by the follow~ing x.,sln
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21&.

K.--D e. +• (7.6.15)

Its maximum is attained, obviously, when

Z~aRM V /- (7.6,.16)

which increases with growth of ý±. Substituting (7.6.13) in (7.3.35) and (7.3.36),

we obtain expressions, determining NEB and b,, for a circuit with detuned channels

bass 4P - '2 (7.6.17)

I+e 4.0

b.. +'' T W 0" +o 1"

X1,0

The dependence of ratios K (6)/K 88cj, hm(6)/h, b ,KB(5)ib and S(G)iSonT (for

small and large h) on detuning is shown in Fig. 7.17 for the case of coinciding

signal and gate pulses (4 = 1).

S.7 This figure graphically shows iow

I .// weakly the finite quantity of

detuning affects accuracy of range@/

.. ' finding in this case. Actually,

vL- for z = Zmc b.s/b 1.09, Y/h

-= = 0.88, bh/Ah. 1 .04,

bh2 / 2) V i 2•• .•b, i.e., in the most

unfavorable case the equivalent

JI-,,Ff- spectral density is increased by

Fig. 7.17. Influence of detuning on charac- not more than 20%, and at working
teristics of a two-channel discriminator with
Gaussian rounding of the sounding pulse: signal-to-nolse ratios this

- :; (S)IKA u c- --------- At. 3 (Z)/h; .... - -, 3, ()lb:
---... Sas()o aT hAWt; -X-X--3S,,(9)/SRT increase does not exceed 5%.

For ýw, differing from one (we

are interested in practically realizable values of k > 1), the nature of the depend-

ence of b,,/b and ha.h on detuning does not change, and we are equally justified for

values of z - 2j... in using the formulas for zero detuning, Ratios ba, /b and h,/h

are given here by limiting forms of expressions (7.6.17) and (7.6.18), allowing us

easily to analyze the influence of mismatch of durations of the pulse and gate pulse

on accuracy of range finding. In particular, for small h ratio

S,..(•) (1±11')' (7.6.19)
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for sufficiently large h 2huh/(I + 4") the spectral density increases in

eccurdancoc wit-h

SomeI() 0 +' P.)

Dependenices (7.6.19) and (7.6.20) are shown i Fig. 7.18. F-rm.tlain .

(U.6.20) and Fig. 7.18 show that in this case expansion of the gate pul. le•d .

considerably more unpl.easan( :t -c-

5mfr/~d)quences than in the cn..sr 01 o' !, sclia

MO and gTatee pulse. Vor suff',]"•i tly

*/ largc; U spectral density jr, ,

A O hv. p.4 /1.6 for small h and ac ./- -' Ln.r'-

h, whereas fo:r a squar'- pulý::r t, ii ...

San approximat, ly linear dape i., <ncc, i

'010.• ,• " 4. The physically strong'r dapenn.:-u

S3XB(ýi,.)/SS5 B(i ) for a. iau;3sa i pul,<

and gate pulse is cxpla'noai-y a,.

$ fast tha. along jLtb iau. o: p.v,

of noise proceeding to t nlp.t 0'
, . . Influence of duration of

ti• tpulise on f B with a daussian the narrow-band filter, un w ii ,,ua.;

,ny' iop- - t c-channel dis- with expansion of the gate puzlo,.-. ir'
irmin:itor; --- discriminator with

sw.ltc,-hing of reference signals. simultaneout.'ly occurs a sh,,irp doer, -is.

OL the gain factor , leading imme'!.aticy to increase of equivalent sp(Ictrl2 ,'1 ..

All 1.,].i impo.,ses moro stringent requirements on duration of gate pulsc-s in tie .s

of' Ll , i..-1

AnVjlogous dependences are simply obtained for a circuit wit' .wilsh.'rig, Ind

thio !,owasl.,tion leads to analogous conclusions. Being limited lo the- ea.e,(-

t, :;p,,trui of (7.3.11) and of optimum filter (7.4.1-B) for a circuilt with : i

wa,, obtain the following expression for equivalent spectral density:

S[ +'•IRZ'exp(J ) +

Th t- d-pvp-nd,?n of S /S0 on z for various values of' la and ýi is shown 1n

Fig. (.1). It turns out that the optimum value of a, minimi7ing1,ý,S Ž.pi,,'f, Iiv-"y

weaKly t1,ponds on hi and approximately coincides with tlde va.Lue al t0t1 ,11 ' cU].ii

ensur!,-a the maximum gain factor (7.6.16). Noncoin,,'denc:e uf duratl,.,ns (,t' 'th( jois
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and gate pulses leads in a circuit with switching approximately to the same con-

sequences as in a two-channel circuit.

In general, if only detuning z
T14

*"... hWO0 -" is selected close to the optimum for any

--. h hO' ..o •, spectral density increases as:

for small h

'.Saos (A 0 .... (+ PT
.. ,, 3  ). (7.6.22)

10 for large h

. 1 .(7.6.23)

0 P.25 . These dependences are shown in Fig. 7.i8 by

Fig. 7.19. Influence of parameters the dotted line.
of a discriminator with switching
of the reference signal on S.14

I- 1; = --; p = 3. 7.6.3. Discriminator with Differentiation
of the Reference Signal

Technical realization of such a dis-

criminator during pulsv, radiation will

cause, obviously, serious difficulties. If narrow-band filtration of the signal is

carried out at intermediate frequency, multiplication by the differentiated reference

signal ut(t), always having positive and negative values (Fig. 7.20a), can be carricd

out by means of multiplication

of the signal from the output

of the mixer by function Iu'(t),

(Fig. 7.20b) and change of the

phase of the amplified signci!

a) ;at the time of passage of

FPýg. u7.20 Derivative of the modulating signal function uI(t) through zero.

Possibly simpler from the

technical point of view will be

the circuit of a discriminator with sine and cosine channels and filtration of the

received signal at low frequency, analogous to the correspond ing circuits of detectors

(Chapter IV). This circuit is shown in Fig. 7.21, and in the operations executed by

it, ic completely equivalent to the circuit of Fig. 7.2. Formation of correlation

integrals (multiplication by reference signals and filtration) is carried out in it

* at low frequency. The necessity of using two channels with quadrature mixers was

* discussed in Chapter IV. In each of these channels a discrimination characteristic
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can be created, of course, both with the help of' two delay-detuned channels and

with the help of switching of

2) reference signals. The ad-

vantage of' this kind of cir-

cult for the case of coherenf-

6 7 radiation as compared to the

circuit of Fig. 7.2 .od

6•,= approximations to it can L-.,

possibility of measurement

of the distance simult.inerusii

Fi,,;. 7.21. Block diagram of an optimum discrimina- of several targets using on.!. I
tor with quadrature channels: I - preamplifier;
2- coherent local oscillator; 3 - phase detector: one filter in each channel.
4 - v5/2 phase shifter; 5 - controlled generator of S
ref-lrence signals; 6 - multiplier; 7 - narrow-band Such a filter, e-•rrving out
low-frequency filter; 8 - circuit of addition, accumulation of' the(- signal

immediately for all distances may be realized by a charge-storage tube.

Since operations of the circuits of Figures 7.2 and 7.21 completely coin,' id-.,

for thu latter there are preserved all results obtained earlier. This prr!-Jns

aluso to all possible methods of approximate realization of the circuit of Fig. 7.21

analogous to those considered earlier for the case of filtration in on, channl at

intermediate frequency. Let us consider for illustration of a circuit with di±'ffr-

entiation the case when the signal pulse has cosine form

w •I - duration of the equivalent square pulse, connected with tho, duration of

a p.i.o- ,f zeroes x0 by relationship

I TVC

Wt assume that the reference signal of the first channul ul(t) coincide.s in

form with the signal pulse ui(t) = u(t), and the reference signal of the sfecondI

channel constitutes two adjoining identical square pulses of duration r /T:, on( of

whicli has positive, and the other, negativu polarity. In the variant of con1strutior,

of a discriminator with filtration at intermectiar,. frequency such a signlal ib

(;enerated in the form of a square pulse of duration rr,, in the mi'ldlL2 of which there

is carried out change of phase of the filtered signal, or of heterodyne voltaýe,

by ,. If the reference pulses of the seco-nd channel have, not rectangular torm,
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"but are two adjoining quarters of a sine wave, then, obviously, we have complete

matching of the form of mcý.uletiuns of the reference and sounding signals.

In the considered case functions Cik(5) have the form

'" ) CO) 21a•)c.()
C'- '.sin 2-1-C. C..

(7.6.26)
8 C (9) C. • c )

E/-uu-• ' • sin,.a t.~ 2c.

The mean square spectrum width b for a cosinusoidal pulse
*3

and quantities necessary for substituticai in the formula for spectral density are

c,(o=1 c(o)=c o= o c.,o4 si cgo Mg

As follows from (7.5.3), there is no systematic error in this case, and

equivalent spectral density according to (7.5.5) is

so= - (7.6.27)
1 oW

Expression (7.6.27) differs from S for the case of coinciding modulations

only by factor

b ()(7.6.28)

"64-t. s,•

characterizing the decrease of the slope of the discrimination characteristic and

the related increase of equivalent spectral density. The dependence of %M/S OT

Tc
on S- = ý. is shown in Fig. 7.22. With sufficiently good selection of duration of

the gate pulse [Tc = (2 to 5)T.i the loss caused by noncoincidence of modulations is
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.1;actically immaterial, ,and vith selection of 'the proper tfrequency .response of the

filter the considered circuit almost does not differ from the optimum.

§ 7.7. Continuous Radiation

- - In the case of a coherent signal of

- -: special interest is application of contin-

uous radiation. This is caused by the

a -- -fact that in a number of cases it mey be

the most profitable in terms of power,

since it permits us for a fixed peak power

$ - of the transmitter to ensure maximu

average power and, consequentay, the

I greatest accu.racy of range finding. An-

J6 other advantage of continuous radiation

tme is simplicity of realization of frequency
Fig. 7.22. Influence of mismatch of
the reference signal with the sound- selection, which is the most effective
ing signal on S means of combatting passive interferences

[34]. During continuous radiation we can -use the most diverse forms of modu•lation:

amplitude, frequency, phase-code manipulation, random amplitude, phase ur frequency

modulation [1, 12, 27, 35-37]. Below we shall consider some of the possible forms

of modulation.

7.7.1. Frequency Modulatien

Let us consider first a nignal with periodic frequency modulation according to

the law L-(t) (sinusoidal and triangular). We shall consider the amplitude of

fun ztion &u(t) equal to cm, so that deviation (maximum change) of frequency is

equal to 2n '. The corresponding laws of modulation are shown in Fig. 7.23. A

discriminator with frequency

modulation can be constructed

on any of the previously con-

sidered LircuiLs. It is possible

_ T_________-------_ that the most suitable from the

technical point of view will

Fig. 7.23. Change of frequency during frequency be the circuit with differen-
modulation: a) triangular modulation; b) sinus-
oidal modulation. tiation of the reference signal.
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We consider first the case when modulation of reference signals is not

distorted. Autocorrelation functions C(5) for FM signals are determined for values

of 6 which are small as compared to the period of modulation by the following

relationships:

for sinusoidal modulation

C(8)= ('me); (7.7(.)

for triangular modulatior
dol 0l .8

(a)- (7.7.2)

where Jo(x) -- Bessel function.

Equivalent spectral density for a circuit with differentiation is determined

by formula (7.3.9), where in both cases a = 0, and b =--for sinusoidal modulation
2

and b - 7 for triangular modulation. Thus, frequency modulation by triangular law

in principle by a factor of v'F gives greater fluctuation error than sinusoidal

modulation with the same deviation of frequency. Remaining dependences, essential

for a circuit with differentiation (dependences of S. on the signal-to-noise ratio,

bands and frequency response of filters) were already studied earlier and need no

further discussion.

We shall investigate now how qualities of a discriminator change depending upon

detuning 6 when we use a two-channel circuit and a circuit with switching. The slope

of the discrimination characteristic in both cases is proportional to Jo(COM6)Ji(wm6)
Ssin %

for sinusoidal FM and to 2 --•M - ctg MnS, for triangu•ar FM. For a circuit

with two detuned channels quantities h. and th., characterizing change of proper-

ties of the discriminator with finite detuning, in accordance with (7.3.23) and

(7.3.24), are expressed in the following way:

with sinusoidal modulation

20.

AMA (7.73)

-- , (7.7.4)

with triangular modulation
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/ f614dOM1

(7.7.6)

The magnitude of equivalent spectral density is determined here by formula

(7.3.22) with substitution in it of (7.7.3)-(7.7.6). In particular, for small h

for sinusoidal FM

SI(4 At 0(20-4)I (7-77)

for triangular FM

SOMM= (7-7-8)

With aufficiently large h., the corresponding formulas have the form

4 mp-)e

Some (7.7.10)

The dependence of ratios b-,14)/b, hu,,([))/n, K.()Ka~ n S "(~/CrIT

according to (7.7.7) and (7.T.9) on detuning 5 with sinusoidal FM is shown in

Fig. 7.224. Analogous dependences for triangular FM are shown In Fig. 7.25. From these

graphs it is clear that the magnitude of detuning plays practically an identical

role In both cases. Selection of detuning, just as in the previously considem'd

case of modulation by Gaussian pulses, is best produced from condition of a trax-

irnur sain factor i.e., 6 for sinusoidal FM and & 12 for triangular FM.
0 m m

The equivalent spectral density Increases here to a still smaller degree than in

Paragraph 7.6.2.

For large h. in both cases Sd6)/S~,.r is practically equal to one, but for

small h spectral dersity S.,with such detuning is in1creased in all by 4-6%. To
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find the character of relationship Sa45)/SoIxT for intermediate values of h in

Fig. 7.26 we show this ratio during sinusoidal FM for various h. The frequency

response of filter Hi(im) is assumed to coincide:with the optimum (7.2.5) for'

spectrum (7.3.ii). It is obvious that here SP.(O) = SOnT.

'1i0

--.i : -, ,,-- - il I:... n -Il -'E -l~ -io --- liiil; ... Il

V'" - -l a . -Thus, the examles "Onsierdhe

once as conir ihDf that- -t

U #A5 U1 4Ma

Fig.7.2 4. Influence of detuning on the Fig.7.25. Influence of detuning on the
characteristic of a two-channel discrimi- characteristic of a two-channel discrimi-
nator with sinusoidal FM: nator with triangular FM:

-..-. 0)189$vS..at hux-; -X-.X-S...0M3.., 4W. .. 'vs.., at 4.1; -kX-8X lls.ISS,
at a4w. at ioeo

Thus, the examples considered here

once again confirm the fact that with

*-------------------------------any reasonable selection of detuning

a two-channel circuit practically does

- not differ from the optimum when there

VA/ are coinciding laws of modulation of

- the reference and sounding signals.

To find the character of SM45)

in a circuit with switching we shall

L limit ourselves to the case of spectrum

9B £15 ISVS 19 45 t .7S (7.3.11) and the corresponding optimu

Fig. 7.26. Influence of detuning on filter (7.4.i8). Then, in accordance
Sfor a two-channel discriminator with (7.19), with sinusoidal modulation

with sinusoidal FM.

II+ 42 (0.8N'wssx( ( )(7.7.11)

Ratio SMM5()/SOnT for the given circuit is shcwn for various values of h in

Fig. 7.27. This dependence is more substantial than with modulation by Gaussian

pulses and an analogous discriminator circuit. The minimum, occurring for a certain
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is rather deep.. The optimum, value of 5_ equal to. 60 as follows from the

graph, increases with increase of the

signal-to-noise ratio h. For small

- -[ h this value coincides with 6, for which'K- the gain factor will be maximum; for

| larger-h it increases, approaching a

• : - value, corresponding to the first root

, of function J 0 (x).

Presence of a minimum for S-,6)

A s.hould be allowed for during practical

Ox 48 4n , & 97S construction of a system. incorrect

-' "1 selection of detuning, as follows from
Fig. 7.27. Influence of detuning on"S. Fig. 7.27, leads to impermissibly great
for a discriminator with switching of
reference signals during sinusoidal FM. losss of accuracy. Inasmuch as norm-

ally the same system should be used for

different values of signal power (at different distances), one should select 6 equal

to 000 corresponding to such a value of h at which the most stringent requirements

are made on accuracy of the system; this usually takes place at maximum ranges to

the target, when the value of h has the order of 5-10. The optimum value of 6,

here is about 1.5/%m, and fluctuation error is 1.5-2 times larger than the minimum.

The dependence or S%(O)/So0 T on h has a normal character. For small h the loss

is comparatively small; with growth of h quantity %aV)/S0on increases, whic!' In

caused by a different order of decrease of 8 for large h in an optimum :ircult

and in a circuit with switching.

Results for triangular FM turn out to be ccopletely analogous; optimum values cf

5, at which S.6) will be minimal, and the actual curves for S(5)/SC1 . practic~li-

coinctie with the curves for sinusoidal FM.

In real circuits with FM the reference and sounding hignals are obtained by

means of frequency modulation of separate generators. With such a construction

due to noncoincidence of modulation characteristics of the transmitter and loc~al

oscillator the laws of modulation may not coincidc. A very simple case of nol.-

coincidence is difference in frequency deviations. The influence of this phenomenon

on accuracy can be calculated by the formulas of the preceding paragraphs. We shall

limit ourselves to circuits with two channels and with differentiation of the

reference signal. In § 7.6 with the example of pulse radiation we already proved

that tne influence of nonidentity in the two-channel circuit practically does not
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ýde'pend on detuning for not very large values of 6. Then, considering sufficiently

small detuninjs 6, with the help of formulas (7.3.33) and (7.5.5) we can simply

(,. prove that all results for both circuits are Identical.

If the difference of frequency deviations of the sounding and reference signals

Is equal to &D, it sinusoidal FM

C33()=I !C(O)=II.t~), a=a1 =O,(7.7.12)

&o &bwT
where ý = mr~rtoo

-ato o the difference of deviations to the frequency of

repetition of modulation.

With triangular FM

cjsto)=j' CMwjCaI¶(I -j"dz, 'a51=016=O.

Substituting (7.7.12) and (7.7.13) in (T.3.33), we can obtain the dependence

of equivalent spectral density on tt. This relationship is shown In Fig. 7.28 on the

assumption that the frequency response of

Athe filters isoptimum, As follows from
him the graphs, when g > I there occurs rapid

* ~increase of spectral density. When ii.

S2.4# for sinusoidal FM and ai - 2 for

triangular, the reference and sounding

signals become orthogonal and Sa. turn~s

£ into infinity. Deviations Am >(I to

1.5 C~r' apparently, already are imper-

missible. Honcoincidence of deviations

Fig. 7.28. Influence of the differ- i oehtmieeietf-rtinua
ence or frequency deviations of the modulation andi, as in the general case of
sounding and reference signals on

in a two-channel discrimin~ator:annncice.celaztgrtr

- sinusoidal FM, -- triangular FM.
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7.7.2. Phase-Code Manipulation (FKM)

Characteristics of different forms of FKM are considered in Chapter I. In the

dam-place it is shown that with any reasonable selection of the code, ensuring a

sufficiently low level of side lobes, the autocorrelation function of a phase-code-

mainipulated signal within the main lobe with a properly selected code is described

by the following approximate expression:

which becomes more exact, the larger the numbers of code intervals n in the period

of repetition of the signal. Here -.- duration of the code interval. For certain

codes (e.g., for binary code with values of phase 0 and r - arccos n-1) this

expression is exact.

Function (7.7.14) for values of 5 from -"X to r," which are only of interes'.

for the work of an automatic range finder, coincides with the autocorrelation f'unc-

tion for square pulse modulation. Since all dependences of characteristIcs of the

discriminator on the form and parameters of modulation are completely determined by

function C(b), it is obvious that it remains for us only to repeat everything cali

in Paragraph 7.6.1 with respect to range finding with modulation by square pulses

with duration T. - T¶ and with coincidence of forms of the sounding and reference

signals. With FKM there can be uted o•ither a two-chalnmel discriminator, or a

discriminator with switching, and in both cases all results of Paragraph 7.6.1 ar-

simply repeated.

We consider that duration v. Ofswvtcning of phase of an FKM signal from one

value to the otner is finite. This is necessary when the magnitude of detunir.- Ic

less than the durption of switching. The coefficients of the expansion of function

C(6) in a series o. powers of 5 are equal to

*0. b=Wor dt (ordt,

where I - number of changes of phase, and the integral in the final formula is

taken over the edge of a code pulse.

if phase changes by linear law, [1'(t)] and taking into account I
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a' in. I(7.7.15)

It i1 interesting to note that the maximum value of b is reached when the phase

changes at the end of every interval, i.e., I = n. quantity b here is increased

by a factor of 2; however, simultaneously, in function C(6) there appear large

side lobes. Thus, increase of fluctuation error is the price we pay for the high

resolution capability provided by F4M.

7.7.3." Noise Phase Modulation

Let us consider a signal whose phase changes proportionally to the instantaneous

value of a normal stationary random process

If process 9(t) is ergodic, time-averaging, produced during calculation of

function c(b), is equivalent to ensemble-averaging and

¢ (O=e• USE-4-1--'1 e-f-'" I',-P. "A (7.7.16)

where a; and p,(5) - variance and correlation coefficient of modulating process t(t).

The mean square spectrum width of modulation in accordance with (7.2.11) and

(7.2.12) is equal to

i.e., is c,22 times greater than the mean square spectrum width of the modulating

process k(t). In particular, if the spectral density of E(t) ti uniform in

frequency band ('.M" WM),

t (T7.7.8)

A characteristic feature of the considered form of modulation is the aperiodicity

of function C(5) and the related absence of ambiguity, and also the fact that C(5)
2 2
- m

does not decrease to zero as 5-- c, but has a finite limit C(M) = e . The mag-

nitude of this limit, determining the possibility of resoluticn of targets, suffi-

ciently removed in distance, depends on the magnitude of product aam" For instance,
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-,. 86 (a. m)2
for C(8) from (7.7.18) the first spurious maximum has magnitude e . This

Smeans~that for, fixedmagnitude ofb it %is~more.expedient to use narrow-band

moduaatring vcitage larger ac than ýbr~oadý-iand modulating'with m of-m

voltage with smaller aam.

Irnthe considered case the slope of the discrimination characteristic changes

proportionally to

and all formulas necessary for calculations (h.. ha•, $,(B)/S,,(O)) are obtained,

for instance, by replacement in the formulas

for sinusoidal FM of JO(cm5) by (7.7.18),

/ - -and of %wJi(wm) by

a. - -am (r Ctg 0.)(40,.j x

or by the general formulas of § 7.3-7.5.
Fig. 7.29. Dependence of t"e
gain factor on detuning with Dependences of K^ .. and of Sa 3 5)/*B(0)
noise phase modulation. on detuming for various values of h for tLc

two-channel circuit ani the circuit with switching are shown in Figures 7.29-7.31,

respectively. Quantity aom in the graphs is taken equal to five. In accordance

with general affirmations of Paragraph 7.3.3 the influence of detuning for a

two-channel circuit in this case is more substantial than in those considered

earlier. When 5 - -- the equivalent spectral density is increased by a

factor of 1.3 when h . 100 and a factor of 2 when h = 0.1. In the circuit with

switching the dependence of S,,P)/S. an detuning has a rather complicated charac-

ter; minimum values of this ratio are rather large, and increase of it for 5, differ-

ing from 60o occurs comparatively rapidly. The optimum value %0 essentially depends

on the signal-to-noise ratio and for large h greatly differs fromE 5.
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1O 42 0.4 4 as t

Fig. 7.30. Influence of detun- Fig. 7.31. Influence of detun-
ing on S. in a two-channel ing on S. in a discriminator

discriminator with noise phase with switching of reference sig-
modulation. nals with noise phase modulation.

7.7.4. Noise Signal

We next consider range finding with purely noise radiation. Such a signal

can be formed by transmission of broad-band noise through a bandpass filter with

subsequent amplification, transfer to the frequency of radiation and amplification

at this frequency. Modulating voltage u(t) here is a normal stationary random

process, and the autocorrelation function C(6) coincides with the correlation func-

tion of' this process, so that

C (8)- .- S (w) e' d . (1' , d-,, (7.7.19)
--. , S.

-000

where S (w) - spectral density of process u(t)

Xrit

-- 0

H (iw) -- frequency response of the low-frequency equivalent of the shaping
filter;

Afa -- its passband.

In spite of the fact that technical methods of delaying such a signal. just as

the signal with phase noise modulation considered in Paragraph 7.7.3, at present

are far from clear, it is of definite interest both from the point of view of sim-

plicity of generation, and also from the point of view of absonce of' ambiguity.
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In tile oPtlixaum system and in a circuit with differentiation accuracy or ratigo-

finidingL is determined by the mean square spectrum width

aud, the influence of finite detuning in the two-channel circuit and in the irui

vrith switching is determined by the form of function 0(b). i~f Lhe spectrl JeesL.

of' mod~ulation Sw)is described by a Gaussian curve or has rect~angulsr fans.t

I110l C(b ),Lteform o (7.6.13)or(7.'J.2), and l results of Par,'utapl,

lon tion )u , ethe in t ofpls mdlto n byGusall use n aprruon-

:;~.itinby triangular law, remain in force. We next consider the case, whý.ri

3haping filter is a sequency of two decoupled LRC-filters, i.e., £~q c

resopnse H~ (1w) has the form of (7-3.16). Substituting (7.3.16) in (,."'.19),

vie obtain

C (8)' V + 4&a.t181)e 41*I .

Dc-pcndeneco.;of Kj115)/KAIMý bam(b)/b, L,0 ,(b)/h and S~(5)/sH3(O) en dcturiirt,

czilculatod for a two-channel circuit by fotmulas of § 7.3, pertainlnw ti, t-he e

-. I ~o, coinciding. modulations of autocorrelation determined by formula. (7.7. 2U.), ac

c ur;ct ruc te d in Fig. 7.32. The influence of detuning in this case is zoniewhe.t wuor:

subsetantial than for other form,_, (j!

C(b). When b =bMC

-- 1 increases already 'by 1.7 tilesi f'or

large h and by 2.,1 1'1 timo io smll1;

This differt-nceý i, c~xplained *L':: t!

-~fact that due to the kolo'ý,Lo _,1

-decrease of 0(b) ratio I~ f. r 4o

all. 6. cn

1.75 0P.~ 5 Cy UCS
4h&wif tinuous radiation has the dfcvc

Fit,. V. . ln.uenec. ot del' uning on
.. haoeenctocof' a two-channel discrimi- h-A for a fiXfed I)La~k pow.-r of' Il

nalwo ith ,- ri0clc signal:
_KA (a)/KA :AC -e . _--hassf~A; ~ . SOUnldint. signal it p,-)v1'i( - ol~t v.

n k.~I. thing!; L.! lg qu~a.l, 1tvi- r,'s'' ran
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power and, consequently, lower accuracy of measurement than frequency or phase

modulation. However, in certain cases its application, possibly, is sensible,

and we shall briefly discuss it, limiting ourselves to the very simple case of

sinusoidal modulation by one frequency. The modulating signal u(t) here has

the form

+~)_ M Cm o s . f (7 -7 . 21 )

l+

and its autcc:,rrelation function and mean square spectrum width are -'

!A

+21Cos 0.8
- ,(7.7.22)

Y
•+ --

b== -- 46;n--O. (7.7.23)

The io.ab reasonable scheme of construction of a discriminator in this case is,

in all probability, a circuit with differentiation of the reference signal. Mul-

tiplication by reference signals reduces to heterodyning the received signal with

the signal amplitude-modulated by law (7.7.21) in the first channel and with signal

sin [(w 0 + %np + Wm)t - wDL] - sin [(i 0 + w,,,- c%)t + w E] in the second channel.

The required coincidence of laws of modulation in this case can be ensured without

great difficulties. The magnitude of the equivalent spectral density is determined

here by expression (7.3.9).

The form of formulas (7.7.22) and (7.7.23) already indicates the essential

deViciences of such a signal. It is characterized by low resolution capability and J
grtat ambiguity. The period of ambiguity and accuracy of range finding are determined j
by brie same magnitude - the frequency of modullation ,bm, where i/ 1 , having the mew.-

ip. i' a certain equivalent pulse duration, for small m is even larger than thp

period of ambiguity. Accuracy of range finding with sinusoidal AM essentially

depends on the modulation percentage. For small m fluctuation error is proportional

to i/ra, and with increase of m to infinity it approaches a finite limit, determined

only by the frequency of modulation. Physically the signal with m > i signifies

radiation at three frequencies n0, i0 - cm and wn0 + w , where with increase of m the

relative intensity of the center frequency decreases, while that of the sldebands

increases. The case m ic signifies radiatlin at two frequenclis, 2wm apart and
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having identlical• ntensity.. As ma--co autocorrelation function C(6) cos wm6 and

b, %.

A' '7.8.: PulSe Radiation with Additional Modulation

The effort to ensure high power potential in pulse radars leads to the requlr -

ment of decreasing the off-duty factor. At the same time in certain cases the only

method of eliminating ambiguity remainlng is selection of a sufficiently low fre-

quency of repetition. These two requirements, in turn, lead to the necessity of

increase of pulse duration to such limits that in a number of cases it is impossible

to ensure the needed accuracy of range finding. With selection of a high frequency

'of repetition with ambiguity with respect to range pulse duration can be so great

that the requirements on accuracy of measurement and resolution capability with resc....

Sto range are/not satisfied. Therefore, it is of interest to consider intrapluse

modulation. Use of pulse signals with additional modulation permits us to immedlately

obtain high power potential, great accuracy of range finding, and good resolving

power 138-39].

As additional modulation we can use all those forms of modulation which

were considered for continuous radiation. We shall limit ourselves to only two

examples - linear frequency modulation and phase-code manipulation within limits

of a pulse. Signals with such forms of modulation possess, apparently, the greatest

advantages. As discriminators here we can use all the circuits considered earlier,

both discriminators of correlation type of all thr-Že forms, and also discriminators

with optimum filtration and pulse shortening (§ 7.5).

7.8.1. Linear Frequency Modulation

In the given case additional modulation consists of linear change of frequency

within the limits of a pulse. Without loss of generality one may assiune that thfls

change occurs symmetrically with respect to

'., • the center of the pulse with speed a = d-•

(Fig. 7.33). Then signal u(t) has the form

t i(t)•-- e ; (7.8.1)

Fig. 7.33. Pulse signal with where ua(t) is a function, describing the pulse

linear frequency modulation, shape, where, as before,
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'rA- duration of an equivalent square pulse of the same energy.

Subsequently wo .-Psume that ua(t) is a function symmetric with respect to zero.

Furthernore, we consider that the width of the spectrum of the modulated pulse is

much greater than the width of the spectrum of the unmodulated pulse, i.e., aT. >> I.

This condition means that in practice ua(t - -) = U Then the autocorrelation
a aT'4 a(t).

function of the signal is

T!r,/2 i a ta

Tip 1, (1) MA (I + P') C I at P

S 5. u, f)( cosaPt dt, (7.8.3)

or, int-:.ducing frequency deviation for pulse duration 2wm = ari and considering

firn!;eness of pulse ua(t), we have

C(,() u2er7 _ . e d. (7. 3.'4 )

Let us consider several examples for modulation by pulses of different shapL.

If, for instance, Ua (t) is a square pulse,

C sn si -2 sin 41,,18 (7.".

2

which coincides for identical deviations with (7.72) for triangular F14 during con-

tinuous radiation.

During modulation by Gaussian pulses (7.6.9)

a2m w

C- -e , b -

whjich coincides with the case of absence of intrapulse modulation, If pulse duration

has equivalent magnitude

"i __f (7.8.Y)

In this ,,; e it is also posnih]. to easily obtain an ,oxaot rapresion for f'(6) wilth-

out the oibove-1ndicqted assumption About the relat.lonship cf :.pectrum width of

modulated and unmoduls.ted pulses. Expressions for :1(t), ! ,• • ho.rn hWv,, th> frbjrm
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61Ma

Thus, from the given example it is clear that corrections to result6 ' c

and (7.6.7) have the order 2 =If we require that duratio, l h ii

pulse -CMSbe less than the duration of the basic pulse by at least a fact~or ol'3 ~

the correction for allowance for finite duration of the basic pulse will i-.ave

ordcer (i-5\i0 2) and can be considered Iinuabe-riel1.

From comparison of (7.8.5) anid (7.8.6)) it follows that the Shasp,- ot' th1;-ie

envelope comparatively weekly affects accuracy of range finding. Withl Pi~i

o)f --ha-rge of frequency a and effective pulsie- duration 'Cor with esinAVr.:ei

* ~deviation for a pulse duration 21-0 n ELt 1,coefficient b is approximately lJn~~A

both for the (Gaussian and for the square pulse. However, the shape- 0C Lthe pulise

Pnvelope essentially affects behavior of fojnetic-n P!(t) with large n, i.,the4

resolving p(.,cwr with respect to distance. Wi th a square envel-op'Ž w- -1 n cosnptrcl -

* ~~tively large side lobes of C(b), and with a Gauszsian envelope C(5) io~~~~i'

decreases. For pulses of sufficiently great duration to recreate aGo.>n

envc Lope lvhiich ensures high resolving power may ediffiil Thre.i3,iti

uis(ful to (-200rsi-ier a more realistic -n~Lope. sh~ape, which a-k the samne time woul~l

*ensure good resolving power. If', for instance, the envelope has th Iiajje eLiL a

::o.J-r~~wv, (7.(:

sisi 2a. 1
C (9)(2w. Tmn

This functiorn decere-ases in the vicinity of zero somewhat faster t41--Ln -, arid

more slowly than qaussioan (7.8.7). Its first zero coincides wi'l the first /?I~ru

of sin :iomC/o. nb when U = wF/cum, and further zeroes occur with tw1~e the frequen;y.

Already the first spurious maximuxr of this function compris'-:s in a0Csoiute vaLue

only 2.7%, otr NOf) in distinction from the case of a square envelopr-, wherý- !.i:;

mazin'Wim is ? '. 1u1, modulation by nosinuso:leAal pulses ensures pracrtically thp e

same riesolving power as with a Gaussian envelope.
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It should be noted that relationship (7.8.4) permits us to find the shape of

the pulse envelope necessary for producing a signal with any assigned autocorrela-

tion function C(8). Therefore, we have the possibility of assigning any shape of

shortened pulse and here must only correctly select the shape of the envelope of the

fundamental pulse. Producing in (7.8.4) reverse Fourier transformation, we obtain

the following expression, establishing the relationship between the assigned func-

i.on C(b) and the required form of the pulse envelope ua(t)

(- 'a C (8) e-' dA. (7.8.9)

It is necessary, of course, to assign C(6) in such a manner that it indeed is an

autocorrelation function and possesses the required properties for this (the

Fourier transform of C(5) should be positive everywhere). Furthermore, for an

asoi•;Le. power and effective pulse duration ua(t), i.e., with fulfillment of (7.8.2),

funetion 2(5) should obey normalizing condition

.C (8)dO= 22K' a-: (

which for an assigned rate of change of frequency a fixes the effective durl ion of

C(b), and for an assigned duration of C(5) assigns the required magnitude of a.

For instance, If we require that C(5) be a triargular function of form (7.6.1),

condition ('7.8,10) gives

¢ 18) =-I .& i~ < ,(7 .8 .ii)

and tihe ,hape of the ',11se envelope has the form

"Ila Q---•--- (7.8.12)

in

*.,,., r. described by a curve of fo'rm (sin x)/x. Then a signal with such an envelope
IT

and lirvar change of frequency Will equivalent to a square pulse ,V' duration

iu-•cl !.onr C(b), corresponding to (7.9.5), (7.8.(%'), (7.3.8) and (7.1.12), are

ifowLi in Fig. 7.34. Questions of range finding for a signal with linear changf, of'

frequency and a laussian envelope, and for a square signal and of' a shape of' fuorm
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(7.b.12) we considered earlier. A signal with a cosinusoidal envelo:pe hat,. a]

follows from Fig. 7.54, ,n auto-

-- - - - - - -correlation funct.lon ..•ko) SU

close in form to the 0auss; a-n '.

without essential difl'.t':-".

U - - - - -it we have all the result,; ci'

S., Paragraph 7.5.2,

7.8.2. Pulse iRadinttcr 3 I

SX Phase-code manipuirt ion '

Figr. 7.34. Autocorrelation functions for a signal can also he us,'. -. r.
pulse signal with linear frequency modu.a- pulse radiation. Ncr., uri '.o:v

aqu&ra 1I-S6 (_) Cos we make the same re:o,"rem.nt oi

_!19 high resolving powet, -!c:rinj-

continuous radiation. Difforre:
t y- •, ' only is selection of thc.o.r, :,iu ;

this ii caused by tht t'act thlat

to .4treme code intervals in a shifted signal, occur'irng b-yunid tiet limi,.tz fit

initial pulse, there correspond in the initial signal empty places, and not i-ht

start of the next or the end of the preceding period, as in th : contir...,. . . .

With a sufficiently large number of code intervals in a pulse th,-. autocorr7 -

t ion i function practically coincides with- t.he aitocorrelation function of a cornt]nuuol

sii;*l (2.•e Chatrter I), and all r.so.ts in tht study of accuracy compl'tc.l.y coincidct

with results of Paragraph 7,6.1.

§ 7.9, Multifrequency Radiation Without M4odulatirn

As.:e know [1., range finding, in principle, is possible in th}e presence 1 _

t ,C.spectrum of the sounding signal of only two frequency components. Hor( , );,. :I.
is m.-asured by the,6.ifference of phase advances of these frequency components. A

it-fic-cncy of mu,.-h a method is low accuracy. It can be improved by hcc.(asing thw

number of radiated sine waves and rational selection of frequencies. In the procss

of measurement one should use here difference of phases of all sine waves, where the

* minimum difference is used for rough but also unambiguous range finding, an, other

differences larpge r' iii magnltude, ar- for more exact mcasurcmcnt. -in. ordi.r to e.nsu•c, r

tuning of frequency away from passive interference the f'requencie.s shoulu I.i: selected

sufficiently far from each other, and for simple range finding one L shliul" use a

diff'er:ince of phases of the second order (the difference of differenc c: f phases).
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In the general case of m radiated oscillations of different frequencies with

arbitrary amplitudes aj and phases 7j sounding signal u(t) can be presented in the

form
M

u(*)== Aj e"', (7, -9-)
1=I

.-ihere AJ = a ei*J

C. - difference between the J-th radiated frequency and an arbitrarily selected
U

carrier frequency cO0 and •IAl'--=.
1=! -

It is obvious that all results obtained earlier are applicable to a signal of

such form, and for range finding using a multifrequency signal we can use all the

above considered discriminator circuits. The mean square spectrum width of the

sign9l, determining accuracy of range finding, is equal to

b--o=- 4AI'-l V (7.9.2)

and function C(5) is recorded in the form

C (8)= JIAj I'e'-t•% (7.9.3)

Resolving power, ensured with use of a set of a small number of sine waves, is

very low, As an example we shall consider the case of three sinusoids of identical

amplitude, Here,

h (aurio+ (ma, a m0.

+- Cos WS, .) + -Cos (0, -,)•}

• The dependence of,,,c8I on product (co " WI)5 for various values of a

is shown in Fig. 7.35. As can be seen from the figure, the considered relationship

has spuriou,• maxima, attaining a magnitude of 0.6-0.8.

Thus, '.i advantage connected with the possibility of tuning frequency away

from pa-,,-j - interference with simultaneous simple measurement of large distances

(as compared to the case when tuning is achieved by increase of the frequency of

repetition), is accompanied fur a given signal by considerable impairment of resolving

-273-



powier. With increase of the number of frequencies utilized and proper selQction

of them the resolving poeer can be increased,

- - - - and here in its properties the signal, apparunt Ly.

inevitably nears normally considered forms if

- modulation.
-A,

7.9.1. Case of Arbitrarily Correlatedi
Frequency Components of theII | | lReflected Signal

e -. Till recently, in examining dliffer.r +..

98 -of modulation of the sounding signal v;.- impli-cl i.ýj

•-- assumed that the width of the spec..rum ol mik

S ZVr 47W off V W tion is limited from above by the coýici :

Fig. 7.35. Autocorrelation complete correlatedness of the mrost distant
function of a three-frequency
signal: frequency components of the spectrun. [hy -

-- a 0.8; --- a = i.2.
cally, this means that the interval .-f ve,:*ift

with respect to distance exceeds the distance to the irradiated target. Here, ;,l3

frequency components of' the reflected signal fluctuate harmoniously, and we havr.

its usual presentation in the form of a -."-.rmal -n-onstationary ranic'.-L 4...;. . .

correlation function (7.2.1).

For signals presented in the form of (7.9.1) it is possible to Qbt.j,

ot' results pertaining to the case of nonbarinoniousl.y fluctuating f:req,.,y - . 'J.:-

ents. It should be noted that presentation (7.9.1) is posslble for a very broad

class of signals. In particullr, these carl be periodic signals or signals uf any

form, considered in a finite time teinterval and represented in this interval y.

Fourier sis.Therefore, results obtained for a signal of for'm (7.9.-), arr- ve.ry

g.e, PC e al.

Nonharmonious fluctuations of separate spectral components of the ref-c,.(i;;i

signal are caused by target extent and start to appear when the wavelen1ti,

diffe.-nce frequency for the considered components becomes comparable i..1th dimensions

of the target. If the considered frequencies are sufficiently close, so that it is

possible to disregard the difference of spectral properties of fluctuation at these

frequencies, then, as it is easy to show, the correlation function of the signal

reflected from an extended target, considered as a set of "brilliant" points, is

recorded in the form

R(t, I,; ')= P9 P (t1 - t,) Re Aj Ah Pik (7.().,-,)

-274-



where p(t) -correlation function of fluctuations, which was used in all the pre-
ceding cases;

- delay, determined by distance to a certain median point of target;

PC -- mean power of the reflected signal;

k- coefficient of mutual correlation of oscillations with frequencies wjand O'k

00.
Pr1 j (x)el dx, (7.9.6)

a(x) -. normalized density of distribution of reflectors making up the target with

respect to distance (pj, = I).

Functional JQ(t, t)j
2 , determining the character of optimum operations and

accuracy of range finding, is obtained for the given case by a certain generalization

of results from the case of harmoniously fluctuating frequency components and has the

following form (see (4.2.9) and (4.2.11)):

m I

Q(, t)I' =- AjA'I y (S) y (s)s e1  -"- aa-)X

X hjk (t - s,) fsk (t -S) ds$ds,, (7.9.7)

where hjk(t) and h'Jk(t) -- pulse responses of filters, frequency responses of which

satisfy relationship

Hu• 00) j*A (06) •Vj, (04, ((7.9.8)

and functions Vjk(co) are determined from the following equation

Vu (a) [4,i + hS* (e)j A, PI'I = hSq (w) pn', (7.9.9)

during derivation we use the practically always realized assumption that the

difference of any two frequencies if great as compared to the width of the spectrum

of fluctuations.

The discriminator of a range finder, carrying out exact or approximate forma-

tion of the derivative of Q(t, _r)12 with respect to t, can be realized by any of

the previously considered methods. In particular, with exact fulfillment of optimum

operations the output of the discriminator is defined as
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joIh-I -- • -•

'T(t, A)=- Re I (ej -w.) AjA% S j 5 t-S

X/f'i (t-s,) eI#s-I)l'a(8-1) y (s&) y (s,) dsds, (7.

and can be _ealized by a complicated set of filters and phase detectors, where oivir -

teristic of the filters for all pairs of frequencies are different. The eyuIve.L:iht

spectral density in the optimum case, determining potential accuracy cf vanr. i:wii

is found from (7.2.14) and is determined by expressionI

Re V

WiLth harmonious fluctuations (Pjk = 1 for all j, k) (7.9.10)-(7.91.s1) Pso p tciii,

corresponding formulas of § 7.2 with coefficient b - a , determined by formula

(7.9.2). With independently fluctuating signals (pk = 0 when j , k) K,1,,,. U o

S = , i.e., range finding becomes impossible. Since squares of differences of

frequencies in (7.9.11) enter into a sum with faLctors, proportionpl 'c .c,'I'icient•
of mutual correlation P*Jk' those components for which P*k 0 drop oot, -4 : t It
presence of corresponding pairs of frequencies in no way affects accurecy of me8rcore-

ment of distanck to a target.

The simplest results are obtaineci for a low sigrnal-to-noi6e ratio h. In this

case, as follows from (7.9.9),

Vit.()~ hpjks, (4D(.9. 12)

and frequency rpsponses of all filters turn out to be identical with an acc'v

factor '~jk One possib.!..

diagram of such a dis rimlnator

is shown in Fig. 7.56 for the case

when o(x) is an even function and

are real numbers. The rectiveo

signal enters m mixers, where. it
Fig. 7.36. Block diagram of a discriminator is mixed with rad!ted oseillations,

with multifrequency radiation: 1 - mixer;
2 - narrow-band filter; 3 - phase detector;
4 - amplifier with gain factor Pjk; 5 - adder, delayed and shIfted in frequency.

Re A, e +(- o P +)( -6 ) After filtratl()n oscillation' 5r
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fed to m( - phase detectors, outputs of which after multiplication by Pjk are

summed and form the output voltage of the discriminator.

Formula (7.9.11) for h << I will be transformed to

o-- 2 .(s) du.. (j---sj'j ps I'l AjAt '. (7.9.13)

Coefficient of correlation PJk' as follows from (7.9.6), depends on difference

fcj -kk, decreasing with increase of this difference. If PJk decreases faster than

i/kjua - wki , there exists an optimum value of difference ico. - wkj, at which pro-

duct (oj - wk) 2 Pjk is maximum. We can find the optimum form of spectrum, ensuring

the greatest accuracy of range finding. It is obvious that the best result will be

obtained if all differences of frequencies have optimum value, but in this case

there can be only two frequencies. rower should be distributed equally between !

these frequencies, as one may see from (7.9.13). F
The obtained result cannot, of course, serve as a basis for selection of the

shape of the sounding signal, since here accuracy of measurement presents the latter f.
with requirements of uniqueness and resolving power with respect to distance. How-

ever, this result permits us to conclude that the width of the spectrum of modulation 14

of the signal should be taken close to 2rc/Z, where I is the linear dimensions of

the target, and c is the speed of light.

§ 7.10. Analysis of Accuracy of Radar Range Finders

The above analysis of discriminators of various types and general results of

Chapter VI permit us to Investlgete accuracy of range finders as a whole. As it
was shown in Chapter VI, with linearized consideration and disregard of paramketric

fluctuations, total error of a tracking meter can be broken down into three compo-

nent.w -. fluctuation, dynamic and systematic. Calculation of the dependence of

spectral density of noise at the discriminator output on mismatch leads to additional,
error, owing its origin to parametric fluctuations. Corresponding expressions for

errors of measurement, which we shall use subsequently, are given in § 2, Chapter VI.

In this section, from a series of examples of smoothing circuits and discriminators

we shall calculate errors of range finding giving quantitative examples.

7.10.1. Influence of a System of Automatic Gain Control (AGC)
on Discriminator Characteristics

* The presence of an AGC system in general does not lead to essential change of

our analysis of a discriminator. As it was shown in Chapter II, with good
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approximation an AGC system can be described as a linear inerLial amplifie.r o.' the:

received signal envelope with parameters which depend on signal level. basically•,

its action reduces to normalization of the output signal of the preamplifier. cuveit.-

by an A,,O loop. Such an amplifier always is present in circuilts uf di uchr~ stLv.,1'

of distance arid usually precedes the narrow-band filter. Its band width AQ , i.

a rule, substantially exceeds bandwidth of fluctuations of the signal (Afyý .

= (5-20)Af 0 ) and at the same time is small as compared to spectrum wioth o m,.

t ion.

In two-channel discriminator circuits amplifiers are used in beth t i ,ij ,

but the AGC system is common and works from the output of une of t'ie uaolifi

Another factor which must be accounted for in circuits with automatic. f Aýi 11 ' ..

is dcmodulation of amplitude fluctuations of the signal, leading in ou. .1 uiv.-:

consideration to a steep slope of low frequencies in the signal amplitu c. v 1

This factor leads to decrease of parametric fluctuations at the disc:rirmiitor.i out..

ensi t"eerases err'ors of measurement for simall noises6. Furthermore, th. (tiC t

in general, produces modulation of the signal by noises, which pass tZro:ei -

back circuit. This phenoumeuon ign•.1tIficantly increases the d.ffic -.

However, with a demodulation band which is not too bfoad (AC is not too high-.peed ¾

they can be ignored.

Although all these factors, in pracLice, do not influence discrimin-tu. cr.-

teristics, during the analysis of dynamic oroperties of a closed-lL.op reauortr

system they must te accounted for ina.smuch as, due to the pre-sence c, f amf /tt systr'm,

its parameters (gain factor of the open loop arid its fluctuations caused by

parametric noises, the band of the closed system, ctc) become functions of tilt-

iglt-to-noise r.'-atlo and vary together with chlanges of it. In view of the grcat
compl,•xity in completely accounting for the influence of AGC (modulation of th

Ssig]nal by noise, cross modulation, nonlinear effects of high order, etc) and A:-,..

to the fact that In normal circumstances these phenomena arc weakly manifeasteld, we

shall limit ourselves to a very simple description uf the AUGC system and shall

henceforth consider only changes of discriminator gain factor die to tht, normalizing

action of AGC and decrease of the level of parametric fluctuations.

In accordance with the results of Chapteril fIor sufficiently greuat inertia o0I

tie filter in the feedback network the AGC system reduces the mean value- of voltage

at the output of the amplifier covered by the AGC moop to a constant level. As a

result the gain factor of the receiver, and consequently, the discriminator gan

factor, Vary with change of the mean input signal le_.vel. The law 01 change o.,I t),

-278-

--- 7



gain factor is determined from conditions of normalization of the output voltage,

which for receivers with a linear and a square-law detector, respectively, have the

following form:

K,, E = coast, }
El cort, ( (7.io.

where K, - gain factor of the amplifier covered by the AGC loop;

E(t) - amplitude of input signal.

Since

-__)___ 1•,( .oT~ij=12(2N.4 1,+ Pe),I

E2 (t~2(N.&f+P0 , J(7.10.2)

from either of these relationships it follows that

K,- (7.10.3)

where K1 0 - gain factor in the absence of noise.

In the considered circuits with square-law detectors or phase detectors,

22
realizing multiplication of signals, the discriminator gain factor is proportional

to K2  Therefore,

ICA K + KAs (7.10.4)

where y = lfY /Afe - ratio of amplifier bandwidth to signal bandwidth;

K AO - nominal value of discriminator gain factor, corresponding to

the case of no noise.

The influence of all other discriminator parameters on gain factor, studied ii

the preceding paragraphs, is unchanged; relationship (7.10.4) should be understood

in the sense that the gain factor of the open system depends on the signal-to-noise

ration h according to the law (7.10.4), decreasing with strong ncises and approachinrg

a limit with increase of the signal. Expressions (7.10.3) and (7.10.4) are valid,

of course, only for sufficiently large values of h, since for small signal levels

it does not reach the delay level of AGC, the AGC system is opened and produýcs fu

normalization. Thus, for h smaller than a certain vali-e hO, corresponding to the

delay level, K1 = const and does not depend on the signal-to-noise ration. -
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Decrease of parametric fluctuations, caused by the demodulating effect al XAt.

can be calculated with the help of resultsof ChapterII. As is clear from analysis

ot dlsurimators, parametric fluctuations are caused by random variations of th.

envelope of the useful signal, the spectral density of which in the low-frcquen,,.

range at the output of an amplifier with AGC are determined by expression (Ž. .,5).

Considering that the spectral density of parametric fluctuations is proporltiuatal

to the spectral density of the signal amplitude envelope in the low-frequency langC

from expression (2.7.23) we obtain the relationship between spectral d,.itle: I

parametric fluctuations with (S(1)) and without (S A,") AGC

tosnanapa,, "-"i Snap, (V. ' "

2
where n -- coefficient depending on parameters of AGC and the signat-to-nuie r; 1c,

According to (2.7.23) this coefficient is presented in the form

A2

where h 0 - the signal-to-noise ratio which corresponds to the delay ]dvel E(" ) ho I
U•. - tO E( (b- slope of the controLl.-d el'racteristic, k. - 1-. ". .r

1 peedback network of AGC). j

The value of n0 in practice is normally great as compared w~ith unity, and thus

even for signals close to the delay level parametric fluctuations caused 'ly Cia-.ut',-

of signal amplitude substantially decrease.

7.10.2. Smoothing Circ.iTs with Constant Parameters

Until recently, in smoothing circuits of radar range finders they almost

exclusively used linear filters with constant parameters of a fairly low level. T,"

most widely applied types of such filters are the single integrator and the doubl,:

integru.tor with correction. Furthermore, when, for a number of reasons, it I,:

impossible to obtain ideal integration, they use smoothing filters in the form a-,, a

single RC-circuit and two spries-coupled RC-circuits with correction.

According to (6.2.20) fluctuation error of measurement in smoothing circuits

with constant parameters is determined by the simple relationshil

-i (7.iu.7)

where .oys- deteriiind by the previous analysis of discriminators;

Afaý - effective band width of the closed-loop servo system, determined by
expression (6.2.19).

For smoothing circuits in the form of two RC-circuits with correction the
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transfer function of the closed circuit is

K(I + pT,) (7.10.8)

where K - gain factor of the smoothing filter';

T r2 - time constants of the RC-circuits;

T7 - time constant of the correcting circuit.

rThe effective band width in this case is

KAH (is+ T@

_-_-__-_'- XAKT. (7.i0.9)
---"[ T+ T,±iu1 4T, T---

L' JKAK(

4This approximate equalily is valid for normal relationships of parameters of

thi ,-t-rvo ,ystem, ifncCe thL gain facto, of the open system K K usually is very7 gre-at. 0uantitius in expression (7.10.8) have the following order:

KAK,•103+ I0s, rT,T2i0+ 100 ,,

where one of the time constants is larger than the other by a factor of 3-10, and

T 3 10-2 tu i0-1 sec. Selection of the time constant of the correcting circuit

is somet.mes csý-ried out in such a manner that for assigned K(, TiTh it ensures a

minimum e1ffective bandwidth

He re,

This selection is produced at the nominal gairn fa,.tor of the open circuit, i.e.,

when Kg = KAO, Then tl.(. oepc~idence of effective b1.cndv;Idth on the signal-to-noise

ratio approximately ha.o the form

2 -81

Alo=-4&963(71.0



The dependence of Af /Aff 0 on h with y 3, T, .4T, and for various value ,

of' product Af oT2 is shown in Fig, 7.37. With noises which are not too weak and

6•J sufficiently large 6f sqolf ? this

dependence Is riot very c::;sential.

-- __________ Formula (7.10.9) also purmits

us to find effective bandwidth for

other types of smoothing filter1.,

____ enumerated above. in p•,tlcul&, ,i

a double integrator with curre.P:tiý.o,
12
, i.e., when

__o _ ) (p) I 0 + ,,r

Fig. 7.37. Dependence of effective band-
width of the servo system on the signal- the expression for 6f, is obtai",,J
to-noise ratio h.

by driving T1 and T to infinity in

such a manner that K/T1 T2  K. , where Ki. - gan factor (measured) of the 1.,

integrators. Considering also that T3 = T , we obtain
3i

I !+,K.K.rl (7. -. h)14T,

Minimum Af± is attained when

re ---- "K-AX. (7.1o.. 11 )

and is equal to r'K 11i,4/2. The dependence of effective bandwidth on the signal-to-
noise ratio with selection of T in accordance with (7,10.15) for K K has the

form:

J

For illustration in Fig. 7.38 there is shown the depend'Žnce of li..:tuanl, lo

error o[' measurement of delay, referred to pulse duration, on the rignal-to-noise

ratio h for a range finder with modulation of the signal by square puls>,s and a

discriminator with two detuned channels for H(p) from (7.10.11), 0 0.5, 'L. and

for different values of y and Mf 3q) /Af us Sin' effective bandwidth A d-pcOponr~ds

on h, the path of curves inFig. 7.38 differs from dependence S,4h). harn,d:, of

filters of the discriminator in accordance with (7.6.3) are assumed to be matched

with dLgnal spectrum width.
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By means of further simp~lifications

from formula (7.10.9) we obtain the

expression for effective bandwidth of a

system with smoothing circuits in the

f form of one RC-filter

"IN and a single integrator

H (P)~- (7.i0.i6)

NCorresponding expressionrs have formi

Fig.- 7.'-'P. Dependence of fluctua- (7.10-17) -
tiff eý,rror of measurement on the
slg~nal-t-)-noise ratio:

(7-10-19)

TIhl;in dpondence Ls more sharply expressed.

As anotiitr example, in Fig.! 7.39 we show the dependence of 2t' 0b a

or i hfur an optirmum discriminator with signal spectrum (7.3.11). various y and

smoothing circuits of form (7.10.15)

or (7.1-0.16).

We &hall now consider other

components of' error of' measurement.

In tracking mreters there exists

double interprLutation of' dynamic error

of tracking. In the statistical

approach to mieasured quantities by

dynamic er-ror', iin ýocordane!(- with

Chapter '.U, we understand the mean

Fr'1 .Dependience of fluctua2tion s14 uA&I- L,'L theý ;.,anponent of crror
crerro ni rn~asurement on the signal-to-
noise rq tLk cau:sed by r,,aid]o:Il changles of meaisured

parameter. 1ie magnitude is determnin' :d

by tru (6.2,114). Along vilth this in such a consideration '.her,: io introduced
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the concept of systematic errror, which is caused by inacc.uracies of input of the

mean value of the measured parameter, known a priori. Let us remember that in an

optimum measuring system such inserti•n ii. obligatory, and the tracking loop is

designed to process a priori unknown random changes of the parameter. The rational(,

for such input is obvious, too, for a normal tracking systems. The magnitude of'

systematic error is determined by formula (6.2.14).

In the absence of statistical evidence about the measured quantity determination

of dynamic error in accordance with Chapter \TI is impossible. In this case dynamic

error is determined by the widely known method as the error of processing a certain I
model disturbance - an input varying linearly, by square-law, etc. Formal mathema-

tical determination of such error, obviously, coincides with the expression forx

systematic error (6.2.14) with replacement of AX(t) by the corresponding disturbance.

Therefore, calculation of systematic error for various AX(t) gives simultaneously

the magnitude of dynamic error corresponding to the nonstatistical approach to the

measured parameter.

Let us consider several examples of calculation of dynamic error in a system

* with smoothing circuits of form (7,10.8), (.10.1i), (7.10.15), and (7.10.16). If

the random part of the measured distance changes in time as a stationary random

process with spectral density S(w), the stationary value of dynamic error, on the.

basis of (6.2.17), is

.* o=_ = S)da( "

Stationary random changes of distance correspond to cases when the target carries o

out random maneuvers or experiences certain irregular disturbances, possessing a I
stationary character. Examples of such disturbances may be random oscillations of'

engine thrust, change of drag due to irregularity of the atmosphere, nuises in

drive assemblies of control systems of the target, and so fortbh In the presence

of sufficient damping such disturbances lead to stationary change of distance. If, I
in particular, spectral density S(w) has the form

S +(7-10.-21)I

where a -- variance of the random component of the measured distance;

T - correlation time, and the smoothing filter is a single integrator;
dynamic error is equal to *
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2P.' 1+KAK.T I+4A]e.T- (7.10.22)

This error will decre.se with increase of product K'Km T, i.e., with broadening.I

of the effective bandwidth of the system. With decrease of gain factor due to low-

ering of the signal-to-noise ratio dynamic error increases, approaching a limiting

value, equal to the a priori variance of the measured quantity 00.

Likewise, with smoothing filter (7.10.11) and selection of T R in accordance A

with (7.10.i3)

go' + (K,K') 2 + WWIT+
GAMU -l+,KtK.T + K 2 K.Tr 0 1 + 4At2*r+ 16hf 4 ~ (.1.25

In this case the magnitude of dynamic error also is determined by product 1'
Af oT. The dependence of OAz/0O on this product is shown in Fig. 7.40. The

dependence of dynamic error on the I
- "signal-to-noise ratio can be estimated

by formulas (7.10.14) and (7.10.23).

Of essential interest is the case

- - - -when the measured distance changes

as a linear combination of known

functions with random coefficients

of the form

dQ)-- (q+i, (7io)+1 ) 2

Fig. 7.40. Dependence of dynamic error on
effective bandwidth. where 4 = 0 Jiýik= Mik; d(t) - mean

value of distance.

Change of distance according to (7,10.24) is realized when the law of motion

of the target is known with an accuracy of certain constant parameters, i.e.,

d (1) = F (t; ., .=•t-,+•,.. .+•)

where ai(i =i , ... , m) - unknown parameters with certain mean values ai and

random deviations from them L."

In the overwhelming majority of practically interesting cases these deviations

are sufficiently small to permit presenting d(t) in the form of (7.10.24), where
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d(t) =F(t; ai, ... P c~), and fi(t) 3 = Parameters at call have

various meaning. With change of d(t) according to (7.10.24)

-'-"3 ((' .:1o .) 5)
S. v~l d-- v ,f(-

m .. M j o + ( O( 7.(t ) , 27• ' 5 ) :

"-I]

where v(t, T) -pulse response, corresponding to the transfer function of error,

which is determined by equation (6.2.13).

With smoothing circuits with constant parameters the Fourier transform

from v(t - T) is determined by the expression
!

V -"i + KaH )" (7.10.26)

Expression (7.10.25) when Mik = I simultan;tously determines the square of dynamic

error, corresponding to the nonstatistical approach, which takes place with influence

on the servo system of a disturbance assigned by relationship (7.10.24) when 4i

(i = 1, 2, ... ), and also the square of systematic error, corresponding to the

same difference between the real and introduced mean values of the measured distance.

With smoothing circuits with constants parameters and to - 0, function aj(t),

obviously, is determined by relationship

* ( =) --'-- 5 V (p) F' (p) e" dp, (7.10.27)

where Fj(p) is the Laplace transform of function fj(t).

From formulas (7.10.26) and (7.10.27) it follows that with a smoothing filter

in the form of a single integrator (7.10.i6) function ej(t) asymptotically for

sufficiently large valves of t can be approximately presented in tho form

where f (t) - derivative of fj(t).

This expression shows that stationary error in thi,,s va exieti only if all

fj(t) are functions with a bounded derivative. In particular, if f 1 (t) a0 + ait,

fj(t) = 0, j > 1, relationship (7.10.28) as t -. m is exact and
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SA= him a. (t)--- (7.10.29)

Dynamic error, determined by formula (7.10.29), is used most frequently in

practice for evaluating the servo system.

Likewise, in a system with two integrators with correction function sJ(t)

approximately is presented in the form

,,(0 t (7.iO0.30)
i 2

and, in particular, when f =(t) a0 + a t + .! t we obtain exact expression
0 1 2 2

athasN= jc ' dya Kic (7e i0 .31

and there is no error from a linear disturbance in steady-state operating conditions.

If the measured distance has components, growing faster than t in the first case,

2
and faster than t2 In the second, as t -• O dynuamic error increases without limit.

With smoothing circuits in the form of a single RC-filter and two filters with
correction, a stationary value of error exists only with a constant disturbance at

the input. In both cases it is equal to

as
RA33+KAK I( .10. 2)

Relationships (7.i0.28)-(7.10.32) show that in general the magnitude of dynamic

error is inversely proportional to the gain factor of the open circuit wf the servo

... system and increases with decrease

of gain factor of the discriminator

due to decrease of the signal-to-

noise ratio. In Fig. 7.41 there is

0000ý shown the dependence of Kg/KXO on

h, characterizing change of dynamic

error with change of the signal-to-

noise ratio. The magnitude of

'V .error in the range of working values

Fig. 7.41. Dependence of' the gain factor of h, d~p~nd1ng upon selection of
of the discriminator on the signal-to-noise the magnitude of y, may vary by a
ratio.

factor of 1.2 to i0. With wider

bands of the amplifier with AGC the influence of normalizing properties of the AGC
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I

system, naturally, are more noticeable..

Increase of the gain factor of the open loop has a different effect on magnitudes

of fluctuation and dynamic error. Therefore, when designing smoothing circuits of'

a range finder there is required a definite compromise selection of their parameters.

Let us consider for example the case of a double integrator with correction. Since

the time constant of the correcting circuit does not affect the magnitude of dynamnic

error, it should be selected in accordance with (7.10.13), i.e., from the condition

of minimum effective bandwidth. Then total error of measurement with a distance

varying in time by square law will have the form

•* a*- +, =w , S.,+M-
qGY,),(7.ilo. 33

2
If mean square acceleration a, is unknown, it can be replaced by a certain

* quantity given by tactical conditions. From (7.10.33) it follows that the optimum

magnitude of gain is

__ ~ \/5

• S-"/ (7.10..54)

* Total error here comprises

2 w ,(Y. .3 )

where fluctuation error is approximately 4 times greater than dynamic. Inasmuch as

9S0 depends on h, the gain in the open circuit, according to (7.10.34), should vary

with change of the signal-to-noise ratio. In particular, for optimum or nearly-

optimum discriminators and a square spectrum of fluctuations of the signal, when
I+h

stwB is proportional to -h' the required law of change has the form

(K~a)ek 5 K" 
(7.10.36)

By proper selection of the amplifier band and parameters of the AGC system it

is possible to achieve automatic approximation of this dependence in a sufficiently

Wide range of values of h.

In Fig. 7.42 is the dependence of the optimum gain factor on h and curves of

change of gain factor for various y. All these curves are Joined for point h 1 10.

From this figure it is clear that with selection y = 20 the required dependence of

the gain factor of an open circuit with satisfactory accuracy is reproduced by an
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AGO system in the range from h -, to

"* h ~-200.

For illustration of formulas

(7.10.34)-(7.10.35) in Table 7.1 we give

errors of range finding with a continuous

signal frequency modulated by sinusoidal

$ Q so WO law with deviation 2 wOm = 2r.iO6 rad/sec

Fig. 7.42. Dependence of the optimum for a range finder with a two-channel
gain factor of an open system on the
signal-to-noise ratio: required discriminator matched with spectrum
dependence; real dependence for
various y. (7.3.11) by a filter. Spectrum width

Af 0  is taken equal to 20 cps. Values

of errors correspond to various signal-to-noise ratios and different mean square

accelerations deveioped by the target. In that same table there are given values of

optimum gain factor of an open circuit.

Table 7.1
M.,qn square K K K K 1K
acceleration - I,
of the target I___ c__ se_ _2 " sec '

2  
" sec 

2

./see2 h_3 hA=!0 A&=30 h 100

0,1 4,6 0,05 2.5 0.1 1.4 0,16 0,9 0,25
1,'0 7,3 0,31 4 0,57 2,2 1,05 1,31 1,75
3.0 9,2 0,74 5 1,37 2,8 2,44 1,7 4

10 11,5 2,0 6.3 3.6 3.5 6,5 2,1 10.8
30 14,5 4,72 8 8.55 4,5 15,2 2,7 25,4

The presence of parametric fluctuations in the servo system leads to increase

of errors of measurement. With constant smoothing circuits this increase is ex-

pressed by simple relationship (6.2.39), proceeding from which by (7.10.5) and

previously obtained formulas for spectral density of parametric fluctuations

(7.3.20), (7.3.21) and (7.4.14) we can be easily estimate the influence of these

fluctuations. In the most interesting case of fairly large signal-to-noise ratios

and for circuits of discriminators with detuned channels or differentiation of the

reference signal, increase of error due to parametric fluctuations is determined

by the following simple expression:

where 02 -_ vriance of error;

Af .9f4 - bandwidth of the system, calculated without taking into account
parametric fluctuations;
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a = 0.5-1.0 - numerical coefficient (see Paragraph 7.3.2);

n- coefficient of suppression of fluctuations by the AGC system.

In cases of practical interest ratio Af ./Af 0 has an order of 10 to 1;

therefore, already at n - 5-i0 error is increased by no more than 1O%, and inmost

cases this increase is, in general, immaterial. I

7.10,3. Optimum Smoothing Circuits for a Randomly Varying Paramter .

In ChapterVI it is shown that when the measured parameter is a nondegenerate

random process, stationary or with stationary increments, the smoothing filteT is

a filter with constant parameters, depending on statistical properties of the A

measured coordinate, the signal-to-noise ratio and parameters of modul-tion of the I

received signal. Let us consider one example of such a process. Let us assume 1.•i

the radar range finder is designed for measurement of distance to a target moving

with random uncorrelated acceleretions with spectral density B2 (quantity B2 is

numerically equal to the mean square of the speed developed by the target in I sec

and has dimension [m /see3]). Here, the distance to the target is a

in the form of the double integral of white noise of spectral density B., and the

optimum smoothing filter according to results of Chapter 'J is a double integrator

with correction, the transfer function of which i- given by formula (7.10.11).

Moreover, in the optimum circuit

K VBS/oU (h), [* (7.10.38)

T,= VY4S,, (h)/B, J

and total error of measurement is given by formula

OT (h))" (7.10.59)

From (7.10.38) it follows that quantities KH and T should change with chan.'.

of h. We shall consider that these quantities are fixed, and change of thu trans-

mission factor of the open circuit occurs only due to normalizing properties of

AGC. Furthermore, we shall assume that the real spectral density of' the target

differs from that used during synthesis and is equal to'

The gain factor of the integrator and the time constant of the correcting

circuit we select corresponding Lu sume h = ho. Thvn, tutal Eanplification in thc

open loop is equal to

&Kuq VRa/Souyv o) (7.10.40))
-+
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where y = yfy /Af 0  and the effective bandwidth, according to (7.iO.i2), is

"s" 14-2 I (7.10.41)

Then, variance of fluctuation error

4 S...,(h)V 1 +2 - (?.10.42)
S 2 V4S.. (.e) (+h

4
and variance of dynamic error is obtained from (7.10.20) when S(w) B2 0/•'

4 o,*fS (ho) \314 1+1i
2AuU, B, I (7.10.43)

We select h 0 = 5, when for an exponential function of correlation of fluctua-

tions B2/s 0 nT(ho) = 23.7B2 bAf c /c 2 , which for instance, when B 2 = 10 2 m2/sec 3 , rms

modulation spectrum width F = 2u.10 sec-, and width of the spectrum of fluctuati.ns

Af -30 cps, gives the following value of parameters of tne servo system:

K,=--5,6-• TH-- 0,6 ,m,, Af.,V(he)--l1,25 zq,

and error of measurement for h = h0 is about 3.5 m. The dependence of the ratio of

total error + to quantity u from (7.10.39) for values of h 0 , B2 , b, andt o t l r r r + A 11H t oT () P 2

Af selected above, on h is shown for various values of B2 0 and two values of

y(y = 20 and y = 100) in Fig. 7.43. In order to obtain an idea of the absolute

values of error of' measurement, in Table 7.2 there are given values of aOnT for

various h with the same values of parameters B 2 , b, and Af 0 .

Table 7.2

A, 0.3 1 3 1 0 I 30 10

Figure 7.43 shows that in general the investigated radI" range finder with a

criterion for selection of its discriminator close to optimum sufficiently well

approximates properties of an optimum system. With coincidence of assumed B2 and
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real 1320 increase of error occurs practically only for the smallest values of h,

which actually are not the working values. In the working range increase of error

is several per cent.

If the real value of D - As less

S- __________ _________ ________ .. han the assumed, In the cosi,, cc.

S "circuit fur certain values of h,

-*depending on selection of quantity

y, error As less than in an optilmum

N•%% circuit, calculated for spectral

density of accelerations B2. This

circumstance is not surprising,

54. since measurement of' di-stance of a

, ys.fDM1/e.3 target maneuvering less, naturally,

should be produced with less error.
49••. 3.0 to 30 fog30 1h If, on the other hand, value of

Fig. 7.43. Dependence of o/oO'T on h. the spectral density of accelerations

-y = 20; --- y = iO0.
during synthesis is lowered, error

of measurement for all values of h is greater than Oo; however, in the working

range of values of the signal-to-noise ratio this increase dues not exceed a factor of

2-3. Selection of y, as comparison of curves in Pig. 7 .4 3 shows, is not very -i

critical. Best results in general are o1 tained for smaller y (in this case it is

reasonable to select y approximately C .thin the range from 10 to 30); howvevr, if

there is a danger that during synthesis• the value of the spectral density of m-eelt.ra-

tions is understated and the rango finder is designed, basically, for work at a

comparatively high signal-to-noise ratio, it is somewhat bettcr to increase y,

expandiag the bandwidth of the preamplifier.

7.10.4. Smoothing Circuits with Variable Parameters

In Chapter VI it is shown that in many cases requirements of optimality of i,

meter lead to the necessity of applization of smoothing circuits with varial,le

parameters. Most characteristic is the case when the measured quantity is pro.sented

in form (7.10.24). The pulse response of optimum smoothing circuits in this case

is given by formula (6.8.55), and error of measurement is presented in the form of

(6.8.54). The smoothing filter here is a set of variable-gain amplifiers, intugratoro

and generators of known functions of time with controlled gain.

A characteristic peculiarity of a meter designed for a law of change of the
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parameter of type (7.10.24) is the asymptotic tendency of error of measurement to

zero, which is a consequence of the quasi -regularity of change of the measured

quantity. Smoothing circuits of the meter are constructed here in such a way that

the range finder, with the help of suppression of output signals of the discriminator,

with the passage of time more and more shifts to work from memory, and change of

the output quantity become smoother and smoother, ever more exact than change of the

measured distance.

The pulse response of an optimum smoothing filter designed for measurement of

distance which changes according to the law (7.10.24), according to (6.8.53), is

determined in the following way:
aii

e~t,,)-- • AhO~t(O~h•),(7.io.44)

where Aik(t) = Aik(t; h) - matrix elements;

A (1; h) I M-, + U (4; h)]-'A - ± h(7.10.45)

tJQ;'~h h) o. 4AI~I&S j (71 6)

According to (7.10.44)-(7.iO.46) parameters of the optimum smoothing filter

are funutions of the signal-to-noise ratio and should be corrected with change of

it. Let us assume first that such correction is produced, and we also assume that

the discriminator is sufficiently close to optimum, and change of its gain factor

is by the law required in an optimum meter, K,(h) = 1/SnT (h). Then, according to r
equation (6.8.53) pulse response of the closed-loop servo system is I.

1am, (h) (7.10.47)

and pulse response of error, according to (6.2.13), is

V,(t, C)= (t -- - , (7.1j.48)

If real changes of distance correspond to law (7.10.24), used during the

synthesis of smoothing circuits, then, as it was shown in Chapter VI, total error

of measurement is expressed by the simple dependence

a'l)-O(t, 1). (7.10.49)

Corresponding examples of calculation of errors of measurement of a general

character were already considered in ChapterVI . Here. we give one more concrete
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example. Let us assume that the target moves evcnl5 toward Lhe radar, su that the

distance to It is equal to

dQ)=d.+Ad-(V+AV)1, (7.i.%o)

where d -- distance at the time of tracking lock-.n, known with an eCraeoýr 0i'

error of lock-on Ad of the order of the magnitude the resolution capability with

respect to distance.

Target velocity V is also known with certain error AV, where errors Ad and AV
are normal and uncorrelated. Designating Ad2  20 and AV2  c•, we obtein, according

to (6.8.63), for the pulse response of the smoothing circuit the expression

~~~ S(t, ="° ---- (h) IF SOR +o(h) T)

1 02°• h '0 + ",2f + ks,• 7 " .1 0. )1

_ which when T t also determines variance of. total error of measurement. In 1,o1,1ula

- • (7.10.51) and subsequently we have in mind equivalent spectral density, recoriputeýd

' 2

to values of distance with cuof f! -terit ,2 /.A, where c -- velocity of light. This

S variance changes in time both due to the obvious, olpnec f' C(t, t) on t, and

I i also due to change of the sign~al-to-noise ratio in time, whic:h UCC~UrS accorTding to

I i the law

Cun,ýiderrig the pectrum of signal " .... s a

(7.2.15) for S0!,.,(h), we obtain the following expression, cha_-ao•teri zing c~anlg., (X[

error of measurement In time:

,2 1tL +h (J) 3cf-- 2
l0 Il t) •ltb• •0 16h4 (t) A120202tb . (7.1 .5

To he dependence of o(t)/0 on Afl o t for various xc = v el t /V lT T hi'

where T n time to target impacth , and various y = ýA = (t is on , n

in Fig. 7.t4. The curves are constructd for the signal-to-noise ratio at maximum
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range h 0 = 3 and for product -- = 0.5.
C

got~

Fig. 7.44. Dependence of o(t)a 0 on Af t:

•o~~ ~ -y 10 03; --- y = Oi;... 10.

Curves of Fig. 7.44 show that error of measurement sufficiently rapidly decreases

in time. ikre, there first occurs decrease of error, then a certain increase of it,

and then decrease to zero. Maximum error is attained faster, the larger y -

=oJ/to0 Afc i.e., the great'-r the variance of velocity V, and is expressed more

strongly, the larger the magnitude of x., i.e., the smoother the change of the signal-

to-noise ratio. For small values of xO and y there is no maxir.um, and in general

its magnitude is greater, the larger y. Here, for small y the magnitude of this

maximum is less than one, and for large y it may exceed one; however, even at y 1O0

it doe,, n P exceed two.

E., •ion (7.i0.53) characterizes total error of measurement only when the

mean value of measured distance is inserted in the circuit of the servo system. If

such insertion is not specially anticipated and there is introduced only value do,

which occurs automatically upon lock-on, there appears additional error. Let us

find the systematic error, appearing due to the difference between the real and

inserted values of distance. Function g(t, T) in this case, as it is simple to

prove, is

8:6 +0), " , .=
1 1 (7.10.54~)

Considerin, that difference AX(t) in this case is equal to Vt, •xh the help of
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(6.2.14) and (7.10.48) we obtain the following expression C'oŽ systematic error:

ou0,+ -•Vt-

It+- 'to 1 2. (7.10.55)
+ SORT S42 ) + S.2

This expression shows that systematic error for small t grows as Vt, and then

rapidly decreases. Asymptotically, it changes as

6vs 0 ., +

and its maximum is attained for times t of the order of i/Af 0 , i.e., practically 1

during the time equal to the inertia

of the discriminator. The dependence

of systematic error, related to mag-

go-ft,_ nitude d0 , on time, with the same i

rel -conditions as for Fig. 7.44, is

".hown in Fig. 7.45. This analysis

3hova, that in this case the influ-

001ý ence of systematic error is of little

substance.

In practice sometimes it is

f to IgII not possible to correctly determine
frt statistics of the magnitude to be

Fig. 7.45. Dependence of sycteribatic error determined and it is necessary to
of range finding in a system with variable
parameters, related to magnitude d,, on make more or less arbitrary assump-

Af"C t:

-1 tions. Here, it may be that smcotiL-

ing circuits are calculated fo-r one

law of change of the parameter, but in reality another takes place. Furthermore,

it may be that the real law of change of parameter is so complicated that from con-

siderations of technical convenience it is necessary consciously to replace it by a

simpler one. The general case of measurement of a :.oc.tationary paramet-,, vardIng

according to the law
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where ak 0; aick = Aik, by a system whose smoothing circuits are designed for law

of change (7.10.24) is considered in Chapter VI. We shall limit ourselves to a

simple example, when smoothing circuits are designed for law of' change of distance

2 2(7.10.50) with variances Y and oi, and their pulse response has form (7.10.51),

while, in fact, distance changes according to law

d (1) ,d + Ad,--(V + AV,)t + UaP', (7.10.57)

where Ad1 , AVi, Aa - independent normal random variables with variances Ad2

V2 o 2  2 a2_ . Aa a21
Fluctuation error remains the same as in the case of coincidence of the assumed i

and real laws, and is determined by expression (6.2.14)

•* See- 9 (f, %)d-, (7.10.58) I
and its magnitude for sufficiently large t practically coincides with the magnitude t

of total error o of (7.10.49) and (7.10.53), calculated earlier.

Let us find dynamic error of range finding. According to (6.2.14)

2 .2 2 2

1=0 0

1 2 02 ,
,2Ps

From this expression it follows that. different errors in the hypothesized statistics

differently affect dynamic 11o.Iacrcyo nweg af c torrsondn (7riances

doesnotlea tochange of the character of the dependence of dynamic error on time.

2'i .e* acceleration of the target is absent, components of

position 6 s ono

and~ 
~ 0I02I \

Th xpesinfor error in speed (component with cofii nt ), obviously,

•. eoneld• wit theexpression for .systematic error (Y.i0.55) studlied above with

i rpacmetofV yel.We already proved that its ifenronttlerror of

)'~@ 
ji 2 27 

;
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measurement is immaterial.

Error in position (component with coefficient o2 also decreases 'airly rapidly

in time. Asymptotic error in position is determined by 2001 So 2/ct. Jin0

In the conditions considered above, and for t - -- , its values are given in

Table 7.3. Influence of this error is also immaterial.

Table 7.3

ErrIn positionl 0 ,055001 0.0NO.,, .9. 0.09.,,

More essential is error caused by incorrect selection of the degree of the..

2* polynomial describing chzu~ge of distance. If 021 differs from zero, dynamic e•rror

increases without limit in time. Its asymptotic value is given by expression

ex 1 (7.0.60)

This means that understating of the degree of the approximating polynomial is per-

missible only when error of approximation in '.iLe whole interval of observation is

included in limits assigned by tactical requirements.

The opposite error, connected with over'statement of the degree of the approxi-

mating polynomial, does not present any danger. From formula (7.10.59) it follows

that dynamic error consists of the suin c. the squares of components, corresponding

to various degrees of the po].i.cmie.l, and Jif any of the coefficients is in reality I
equal to zero, dynamic error will only be less than that on which we counted.

Certainly, here-, dynamic and fluctuation errors will increase as compared to their

values with correct selection of the dergree of the polynomial, but this incroase

is not very substantial, since both errors decrease without limit with passage• of

time.
-I

Let us consider one more example of smoothing circuits with variable parameters,

when forced change of their parameters with change of the signal-to-noise ratio is

absent, and there occurs only change of the gain factor of the open loop due to the

AGC system. We shall limit ourselves to the simple case when the measured distance

changes according to the law

,I 4(t=pft),=0.(7. 10. 61)

Considering that the smoothing filter is designed for a certain signal-to-noise
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ratio h., we obtain

Si G~, '•)-" 31 ) f ').7.i0.62)

I + s t3I () ds
S;., (A.e)

Then, from equation (6.-.e12),

I o,0h---- ft (s) ds]

IC h onT(e (7.10.63) I
+ go• s(S o°

°n )

Selecting at point h =h the optimum value of the gain factor KX(ho) = ?1

= 1/SonT(ho), we obtain the final expression

I''" + s s(s) ds W,()_ I

9¢ 'r)=aKM f(1)/( f (S)1 (7.10.64) .

where K(h) K4(h)/KX(ho); '/SonT(ho).

Here, fluctuation and dynanic errors are determined by relationships

1 + as t2(s)ds] I()-! A

SIX S, 1h) K' (h) -'I' I) (t-)_ _

(7.io.65)

2 2
40=a * faMMo.6°4.-- aO fd(t) (7.i0.66)

I+, (Sl) , .]

Asymptotic change of fluctuation error when a2 f2(s)ds >> I coincides with
0 ,-

the case of optimum selection of parameters of smoothing circuits, and dynamic

error decreases faster when K(h) > I and slower when K(h) < 1.

The dependence of variance of total error of measurement , 2 ++ 2JBUX 4), 0 z+ Oi

2 2
related to the a priori variance of' the measured distance o f (t), on the quantity

09

-299-1



z a2 f f(sd when h 0  10j and y Af Y/Af -- 30 is, ;hown in Dig. 'i'.46.

Quantity z can be considered)

0^00_ dimens.ionless time. The physi-

cal meaning of it is thct iit

is the ratio of variance of

meascured distance, averaged for

time t, I(Y j 2 (s)ds to variance

8A of the efficient estimatre of

a constant parameter during

tho time t for a signal-to-

a noise ratio ho, equal to

Fig. 7 .J4 6. The influence of nonoptimality af' S 1 h,jh)/t. For instance,
smoothing of circuits of a range finder on ()=t
accuracy of measurement, Wien f~t 2 qnruantity

z = O t /q2 +iS~(ho), and when f(t) sin (wo t + CP),z

During construction of the graphs aof Fig. 7.46 we assumed that the discriminatorM

of the range finder 'ia sufficiently I .. optrnmum, so that 0 (h) 3
0p~) As

can be seen from the figure, curves corre:spondinE to various valules of h .10 not

differ much from each other, and on the whole error of measurement suff I: entlyI

rapidly decreases with increase of z.

Inth pacic §7.1-4. Nont- A1n :k~adS-r hange Fiiider.,

In he racicecfradar measuruments they ý;oinetimes use nontracking range

finders. They are applied usually when there is not required high accuracy of

meas;urement or when there is required xnea-Arerent simultaneously of coordinates of

a largu number of targetsa and application in the radar station of a large nb'rc

advanced, but complex tracking meters~ is connected with excessively great technrical

complications. Such situations are encountered in early warning and target

acquisition radars (i, 26, 27].

In nontracking meters the estimate of the distance to the target is produced

from thp realization of the received signal in a comparatively small time interval.

(tFurther data, obtained as a result of the, esti-j

mate, aither are used directly, or arc addition-

Fig. 7,4~7. Functional diagram ally smoothed to decrease fluctuation errors of
of a nontracking range finder:
I - unit, producing rough esti- measurement. A functional diagram of the con-
mate of distance 6%t); 2-
smoothing circuits. s-truction ofa nuontroauking rang.,ý find(.r is shown
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in Fig. 7.47. Estimation of the distance to the target can be made by various

devices or by the operator, reading data on the distance to the target from the

screen of the radar set.

If calculation of the estimate is produced by a method, sufficiently close to

optimum, for instance, the method of maximum likelihood, its variance is determined

by formulas (7.2.22) for the case Afc T >> i, and (7.2.25) for the case Are T << 1,
2

where T is the time during which the estimate is formed. Quantities C# from

(7.2.22) and (7.2.25) characterize accuracy of measurement then the estimate of

distance is used directly. If there is applied additional smoothing of data obtained

by the estimator unit, variance of the estimate characterizes intensity of components

of interferences at the input of smoothing circuits. Here, if the time for formation
of the estimate'T and the time of correlation of the received signal are sufficiently i

small as compared to inertia of the smoothing circuits, these components can be

considered white noise with spectral density

With rapid fluctuations of the signal it is obvious that SBX coincides with

son V Therefore, tracking and nontracking meters with identical structure of

smoothing circuits (in the case of a tracking meter we have in mind the pulse

response of the closed-loop servo system) will give identical accuracy of measurement.

Actually, all real estimator units give estimates which are less than efficient.

Furthermore, real estimates are not unbiased. All these circumstances can lead to

considerable worsening of accuracy of measurement by nontracking systems. Neverthe-

less, for a number of applications of radar results obtained here may be satisfactory.

Let us consider more concretely several examples of nontracking meters.

7.1.1. Range Finder with Frequency Modulation

In radio altimeters and certain other cases there is applied a range finder con-

structed according to the block diagram of Fig. 7.48 [27, 31]. A transmitter

radiates the frequency modulated signal. The received signal is mixed with the

stuml uf the transmitter, is passed through a low-frequency filter, and is fed to

a frequency measuring unit. If the frequency is modulated according to the law

&n(t), frequency of the signel at the mixer output varies according to the law
S., ~(t) = Am (t) - As (I )

I. small T freruoency •l(t) 'r 66Wt ; therefore, knowing the law of change of

frequency and measuring the frequency of the signal at the mixer output, it is
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possible to mehsure dalay of the reflected -si.,nal, For any periodic frequency

modulation the magnitude of "wLI. changes in time. For Instance, with t~riangular

and sawtooth modulation function wi.(T) varies in a rs~ewith Fig. 7.49. FromA

the figure it Is clear that, depending upon the magnitude of T, the whole!ý shape ofj

curve w1 (t) chaniges; for instance, for sawtooth mouulation not, only the level of'

flat sections, but also their location changes. ijouaily in nontracking radio range

finders with frequency modulation the influence of delay T on the shape of thej

curve is not taken, into account, and mcasurement of distancre Is bascrd on measurement

of frequency in the flat section (Fig. 74)

Fig. 7.48. Block diagramn of
a nontracking range finder
with frequency modulation:
1 - transmitter; 2 - mdxer;
3 - low-frequency filter; 4 - PIF. 7.49. Czhange of f requency in time; a)j
frequency measuring unit. sorci~sigma?; h) received signal; c) si.grlql A

at miPxer OULtýotL; I - section utilized for meca-
With triangular modulation, sx~t

for instance, bandwidth of the filter is sr'lected such that frequencies, correspond-

ing to the interval of time from kT to iP,+ T, in, general, do not pass through4
r

the filter. Zýuch construction of a rnoter Ls permLsslble, obviously, only when the

required range of change _.f lielay is crnsir.erabiy less, than the period of' repetition

of the signal, Otherwise, there will take place excessively large power losses,

which. are proportional to 'r/T r. S-ubsuqumntly, vie shall consider, in accordance with

the way this is done in practice, that x148C/T r << I, and we shall ignore losses.

* connected with this,

With fulfillment of condition Tmex/Tr << 1 the considered range finder with

triangular and sawtooth modulation, from the point of' view of analysliý of accuracy,

* is equivalent to a frequency meter. Fluctuation error of measurement 'Is determined

here by the following expressions for variancet

for sawtooth FM

0, Ow r(7.11.2)

for triangular FM
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gl I- , (7.i-i.3)

where a _ variance of error of measurement of frequency;

2w-- frequency deviation.

During calculation of 2 one should consider that coherence of the signal from

period to period is disturbed. We explain this by the example of sawtooth modula-

tion. Since the filter does not pass frequencies corresponding to negative values

of C1 (t) (Fig. 7.49), the signal at the filter output in every period has a new

value of phase, depending on the duration of the negative section, equal to -. If this

advance of phase from period to period is not compensated, signals in various periodb

will be incoherent. Compensation of phase advance can be carried out only using

the measured value of delay, which, obviously, signifies anew return to a tracking

meter. In the absence of compensation coherence of the signal is disturbed, which

leads to lowering of accuracy of measurement. Analogous phenomena take place also

for any other law of frequency modulation. This means that for any method of mea-

surement of frequency accuracy of the considered range finder will be worse than

the accuracy of a tracking range finder.

It is possible to show that with an optimum method of measurement of frequency

and low signal-to-noise ratios accuracy of the considered range finder is approxi-

mately identical to the precision of an incoherent tracking range finder using a

signal with the same parameters.

Actually, as is shown in Chapter IX, variance of the efficient estimate of

frequency, formed over one period Tr for not too large a signal-to-noise ratio, is

approximately equal to

0 + 0'(7.1i.4)T q2

where q .- the ratio of energy of the signal for the period to the spectral density

of noise (q = PoTr/2No).

Then, for instance, for sawtooth FM, according to the formula (7.11.2)

2_ 3 t+q

With triangular FM measurement should be produced by half-poriods T/2, and we

2 2
again obtaln the same expression for u . Quent ty a from (7.1.) characterizes

accuracy of measurement during single measurement. If measurements are produced

L11 
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over many periods, then quantity c2 determines the spectral lensity of ifluctuationT

error

W2 2q'

2 iSince w$3 is equal to parameter b -C"(0) -for te considered forms of mudulalion,

S.,S coincides with the expression for equivalent density of an incoherent r.'Fngr:

finder using a pulse signal with the same mean power and with linear change cc

frequency with deviation within limits of the pulse 2 » i/-r, (see Chapter VIll).

In reality, due to the specific dependence oc accuracy of measurement of fre-

2quency on the signal-to-noise ratio (for large q formula (7.1i.4) is invalid; J

here approaches a finite quantity], actual accuracy of a nontracking meter will br

still worse. Furthermore, in practice in such range find~ers there is not produce-d

measurement of frequency by a method even faintly oixillar to optimum, but there

is carried out counting of zeroes of output voltaee of the filter. Since the paEs-

band of this filter, designed for the rangu of measured distances, considerably

exceeds the frequency of repetition, and counting of' zeroes is produced by non-

linear transformations, then due Lr. w02'seflng c"tY.c clgnal-to-nicio retio, cnnect'

with expansion of the passband, accuracy ut' m.of u;s.oot sharply decro!ases. finul-

taneously with increase of fluctuation error, the method of counltingo zera.ms lis-Is

to the appearance of systematic errors• of measurement.

7.11.). Use of a Bane. i node-v witil a Fast Tracking

Loon .'-r t.iici n 'in IEs timate

in the beginning of this section we cab that if te estimate 'A' distance in a

nontracKing range finder is close t, the efficient one, its accuarucy is close to the

accuracy of a trackcing range finder with Identical structure of its smoothing

circuit.; Optimum estimator units can be synthesized just as discriminators. o ', -

ever, a satisfactory sUolution of the problem of optimum formation of' an estimati

is application of' a high-speed tracking range finder with very simple structure of'

its smoothing circuits. The output of this range, finder should b,. smoothed In

inertial circuits, matched in their ch,.racteristics witr, the law of change of the

measured distance. As a whole such a' rango: finrder is "nontraekinr" In the sense,

that for control of tuning of the discriminator in it there is used, not the final

output value of distance, but a certain intermediate value, which may repeat the

true value of distance with considerably greater errors.

Requirements on the high-speed range finder ensue from requirements on-1 the.
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optimum estimate. This estimate should be unbiased and efficient. From the require-

ment of unbiasedness there follow requirements of the absence of systematic and

dynamic errors of tracking. These requirements will be carried out sufficiently

satisfactorily if inertia of the high-speed range finder is small with respect to

the rate of change of the measured distance.

The requirement of efficiency leads to the requirement of' optimality of the

discriminator of the high-speed range finder from the point of view of minimum

equivalent spectral density. Then the output of the high-speed range finder in

the absence of noises will repeat the law of change of the measured distance, and

fluctuation error will be practically equal to the variance of the efficient estimate,

built from the realization of the signal during the time T = i/2Af s•, where Af t-

bandwidth of the high-speed range finder. These variances for cases when the speed

of action of the closed-loop system is low or high as compared to the time of

correlation of fluctuations (Af 8 /tfc << i and Af ý/xf 0c >> 1), are determined

by formulas (7..2.22) and (7.2.25), respectively. They characterize accuracy of

measurement when the resultant estimate of distance is used directly.

If, however, subsequent smoothing is used, these variances characterize the

intensity of interferences at the input of the smoothing circuits. Moreover, due

to the low inertia of the closed-loop meter forming the estimate these components

may be considered white noise with spectral density

Sa A (7.11.6)

which, for rapid fluctuations coincides with quantity SorM or S• in the case (if

a nunoptimal discriminator, and when Af 3ý/tf 3 >> gives

(b-a')AP2(1 4N,*f, i
Further analysis of the meter does not differ, in principle, from that performed

above. Dynamic and fluctuation errors of the meter as a whole are determined by

the very same formulas, in which by g(t, -) we mean the pulse response of the

open-loop smoothing filter. Pulse response v(t, -), as before, is determined by

formula (7.10.42). During calculation of fluctuation errors one should use the

magnitudes of spectral density from ((.11.6) and (7.11.7). With optimum selection

of the smoothing filter and a comparatively low level of noises errors of range

finding, obviously, in this case coincide with errors of a tracking meter. With a

high level of noises due to the high speed of operation of the preliminary meter,
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forming the estimate, in the considered systew breako'fs of tracking become morc.

probable, the influence of par:ametric fluct.uation•s increasues, and as a whole errors

of measurement increase. Furthermore, due to the high speed of operation application

of a single-channel discriminator with switching of reference signals is ha•mpored,

the influence of all sorts of intermittent interfcerenees is increased, etc., which,

due to inevitable nonlinearities and parametric connections, may lead to swinging of

the system, its excitation and loss of the target in the unit forming the estimate.

All this, in general, leads to undesirability of application of such meters when we a

require from thu radar range finder the very highest accrcay of measurement. I

§ 7.i2. Range Finde-r aith Discret,- Measurement

In a number of cases requirements on the width of the spectrum of modulation

are dictated, not by permissible errors of range finding, but by the resolution capa-

bility. Modulation in certain cases is so bread-banded that potential accuracy of

rainge finding, calculated from the. conccpt of a point target, cannot be realized.

The resolutlon range here is comparable to or oven less than dimensions of the

target, and accuracy of ranige finding is dL'termincd already practically by dimencions ii
of the target. In these conditions i6c La sooeti"s senseless to apply complex

range finders with special discriminators, and it lls p.sibl to limit ourselves to i

simpler systems.

Usually radars are equipped with dlee.:,tion channels designed for a certain

ranrge of distances, where often deteeý <.; is croduced simultancously over the

woole range of distances, for Wri.i: 1 tlvr; is a set of parall-l ei_.annels of identical

type, each of which is designed for a eertein distance. Mýethods of construction of'

such chaý;nnels are considered in Chapters 1.7 an- i.

W0 W optimum processing the outpTut voltage of suct a channel coincides with tL

logarithm of the likelihood ratio of the received signal for the given distan:e. '"

is obvious that the unit of target detection channels, in one way or another p.c sent H
in a radar, can be used for range finding and also for simultaneous me os'irciment of Iii
the distance to many targets. This unit can be used for various; tasks, including

creation of discrimination characteristics of normal range finde-rs. Here we cunsider

a case where taking of data on the distance to a target from the unit of detection

charnicls is rcalizcd dicr ,••etey Iith accuracy of the number of th- ehannel . Possi-

bilities of increase of the accuracy of determination of the distance already were.

considered in Chapters IlI and TV.

One very simple functional circuit of such a rangu findrer, dusigned for
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measurement of the distance to one target, is shown in Fig. 7.50. The received

signal passes through the unit of range

detection channels, at the Qitput of

which is a unit which selects at definite
Fig. 7.50. Functional circuit of a

range finder with discrete measure- intervals of time of duration To the
ment: I - unit of detection chan-
nels; 2 - unit for selection of max- channel whose output voltage is maximum.
imum voltage at the output of the
unit i; 3 -d converter of channel Then, there follows a unit for transforma-number Into distance; 4 -- smoothing
circuits. tion of the number of the channel into a

discrete distance, and there occurs smoothing of the obtained data by linear smooth-

ing circuits. If there arises the task of tracking several targets, the selection

unit should determine the number of channels in which voltage attains a maximum,

the maximum of the remaining channels, etc. It is also possible to select all

channels in which output voltage exceeds a certain threshold, determined by the

level of noises, and to carry out smoothing of all data by separate smoothing

filters. The circuit of Fig. 7.50 can be modified and turned into a servo system.

Tracking here will be carried out not by zero of the discrimination characteristic,

but by the channel number. It is possible to carry out such tracking, for instance,

in the following way.

After preliminary determination of the channel with the target, from its ,uUtput

voltage the output voltages of the two adjacent channels are subtracted. If one

of these differences is less than a threshold selected in a certain definite form,

as the measure of distance there is selected the channel for which this difference

is less than the threshold, and its voltage is compared with voltages of the two

adjacent channels. Discrete data are smoothed by the usual method, and they control

switching of the channels, subsequently selecting the number of the channel with

the target. For low signal-to-noise ratios, when errors of measurement can be

great and exceed the magnitude of one discrete value of distance, one should

anticipate comparison of voltage in the selected channel not only with adjacent, but

with more distant channels.

Let us consider in more detail with very simple assumptions a nontracking meter

of discrete type with a fundamental circuit of the type of Fig. 7.50. We shall

considnr that adjacent channels of the detection unit do not overlap, so that

signals at their output are orthogonal and statistically independent. Furthermore,

we assume that selection of number is carried out in such a time To, at which

voltages in any of the channels at the end of adjacent intervals of duration T are

statistically independent. We note that formation of the logarithm of the likelihood
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ratio may occur, not for all time To, but during a (:-;rtailn purt, of it.

On these assumptions the input signal of the smooth'iný', filiter is a sequence of

random variables dk discretely varying with period To, which can tahe one of the

discrete values d(l) d(2), ... , d(m), corresponding to the lst, 2nd .. . r-tb

.0 corr inoLIs 2 d,'., .t

channel. Quantities d(l), d(2), .... d() in c,-' period T0 have the probability

distribution p), depending on the real position of the target in the k-th period

of To. Probability pi() is the conditional probability that i.n the k-th period ofio

T maximum voltage will be in the i-th channel on the condition that the target in

this period is in the J-th channel.

The mean value and variance of the input signal of the smoothing filter are

determined by the following relationships:

S) T d ', (7. 12. )

Both quantities are calculated under thei .,,!i~er that the target is at distanec(
d(j).

If smoothing circuits are a discrete filter, fluctuation error of mvasur._ment

will be determined by expression

"L,,- 9.0k 4 (7-. 12. 3)

where gnk - response of the filter at the time iiT0 to a disturbnnce applied at

time kTC.

Correspondingly, dynamic error In !!ýe rionstatistical approach is equal to

"*N it d I i=l

where don - true distance at time nTO.

With the statistical approach, when we know the probability distribution of

real distance at any moments of time, we must find the mean square dynamic error

EWA1H n'

If inertia of the smoothing filter is great as compared to the interval of

quantization TO, it may be continuous, and then fluctuation error, obviously, is

given by the following formula:
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oT* .g'(, )@'(1),,0 (7.12.5)

where o2 (t) - value of variance from (7.12.2) at time t kTO.

The expression for dynemiic error varies analogously.

Probabilities p(k) with the accepted assumptions about the independence of out-
'*n

put voltages of various channels, as it is simple to prove, are determined by the.

following expressions:

-- M W (X)[ S •,(z)dz]'tdx,
M X

P W- I W..(z)dz (7.12.6)

and, as follows from these expressions, depend on k only through the value of J,

corresponding to true distance at moment kTO. Functions w 0 1,(x) and w • (x) are,

probability densities for output voltage of the detection channel underitie

condition that on it there act a signal mixed with noise and noise alone, respectively

(see Chapters IV and V). If, at the output of each of the detection channels, as

in practice, there is also a certain threshold unit allowing us to eliminate from

consideration those channels, voltage in which in the given period does not attain

its trigger level C, expressions (7.12.6) are somewhat changed - the lower limit of

integration over x is changed in them from -m to c. Transforming the second of

expressions (7.12.6) by integration in parcs, it is easy to prove the validity of

the following relationship:

1k '
- •(7.12.7)

which gives us the possibility to limit ourselves to determination only of probability

P(k)

With fluctuations which are slow as compared to the period of duty of a detec-

tion channel iii one period distributions wc0 (x) and w • (x) are equal, respective-

ly, (see Chapter IV), to

W0 51 (x= j-f-j'-
I• !

SW. (X) =e-", (7.1i2.8)
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,where is the ratio of energy accumulated in one period T0 of the signal to the

spectral density of noise.

Then, from formula (7.12.6), we have

Si.1

kI (I+M, -

'The approximate expression is valid when 4 >> 1, which is usually realized in prac- i'

tie Aaoguly(roailt )pj can be calculated with certain approximations -

also for fluctuations which are rapid as compared to the period of dtity of the

detection channel. Probabilities of erroneous"selection of the maximum on the

basis of (7.12.7) are equal to

12 1. 0

Due to the equality of all probabilities p » ) whic i ua real in.pr.c-

and (7.12.2) can be simplified and reduced to the form

i - -I pi,,

where Ad - interval of distances covered by one detection channel;

Nd- distance, expressed in intervrols n , corresponding t he middle of the

range covered by the unit, of ,tcbn channtls.

From formuaas (7.12.11) and (7.12,12) it follows that when m >> I

ok"- ,"jl Ai ) -- P 6 (7.12. 1 3)

A characteristic feature of' the considered range finder is the dependenc~e (.)

((k)

Dueor tof theeqsu aliety of all prntueoailties rea whetne [see formulas (7.12.2.)

and (7.12.2)] caThimpecliaried and rnedu ed t to th formanetn nal otakn

metrsbu in thera ofgistancse s ov ierted byoesdeecionl cisainetly Fututo

ero rece distane expresse i n the target s £,crrsodigt the middle of theraeocuidb

follows from (7.12.1.3), this increaRse occurs by square law. With probability p,,)

close to one variance of errors on the edges of the range is doubled as compared to

the minimum m ulas (7ri2 fmexpression (7.a2nd3) it follows that w varlanc on
the edge of the range, with accuracy to coefficient I - pe coincides with varianc
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of a uniform a priori distribution of width Ado mAd.

If, in particular, probability pr)- is determined by formula (7.12.ifl), the

magnitude of variance is

(1) -[(dl()-d '+-Ad , (7.12.1+)

where dO - distance, corresponding to the middle of the range (d NAd);

d(t) -- true distance at time t. A

Then, for great inertia of the smoothing filter and constancy of the measured

distance d(t) = d, and considering that p. = PCTI2NO, we obtain in steady-state

operating conditions the following expression for variance of fluctuation error:

2N
.••- (1 - ') di -- Ti'2Af.* =

(d d.)+ Ad (7.12.15)

This expression shows that a range finder of the considered type has essentially

worse accuracy than a tracking range finder. The magnitudc of f".uctuatin error w.ith

such a method of range finding increases by ratio Ado/Ad and is no longer determined

by the magnitude of the resolution capability, but by the magnitude of the a priori

interval.

§ 7.13. Range Finding in a System with a Variable Repetition Frequency

As it was shown in Chapter IV, to increase noise immunity with respect to passive

interferences it .'.s useful to increase the frequency of repetition. Here, the ad-

vantages of unmodulated radiation (speed resolution) can be combined with selection

of the target with respect to distance. However, when using sufficiently high

frequencies of repetition there may arise ambiguity with respect to distance and a

number of difficult circumstances connected with the necessity of suppressing powerful

signals from closely located local objects and the necessity of work of the receiver

and transmitter on one antenna. In the last case, when the transmitter is operating

its signal proceeds to the input of the receiver, and even if the tuning frequency

of the receiver, due to Doppler shift, is different from the transmitter frequency,

due to transmitter noises, occupying a wide frequency range, at the input of the

receiver during this time there will be powerful interference, essentially exceeding

signal level [40]. This circumstance leads to the neces-ity of cutoff of the receiver

during radiation, which in turn causes the appearance of "blind" zones with respect to
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distance. The number of these zones with a high frequency of repetition may be

great, and the total extent depends on the off-duty factor. In particular, with

an off-duty factor equal to two, half the range is covered by "blind" zones. -

With movement of the target the signal from it alternately passes through "blind"

zones. Therefore, for a significant part of the time it is inaccessible for observ.:-

tion, and the radar works with interruption equal to the time of passage through the

"blind" zone. In such interruptions there are power losses and essential impairment-

of accuracy of measuring of distance and other coordinates. In Order to eliminate I
these losses, it is useful to produce an abrupt or smooth change of the frequencyMothslossiti useful is rodcontinuouso smot change of the frequency o eeiin hc emt

of repetition, reducing to a minimum the times when the target is in a "blind" zone.
Most useful is continuous change of the frequency of repetition, which permits us 0

in principle to shift the interval between "blind" zones right behind the target

and reduce the time of signal cutoff to zero. Here, by change of frequency we

realize target tracking.

In the course of such tracking of the target the system should change its

period of repetition Tr(t) in such a manner that error is minimal:

(s)-=-(-- ± 4) i',(') i(,), (7.1).1

where 'r(t) -changing magnitude of delay;

Tr(t) -period of repetition;

n - integer.

This system can consist of a discriminator and smoothing circuits the same

type as in an ordinary range finder. It is possible to show that the optimum system,
ensuring minimum mean square error F (I.), remains in thi*• case the same as the cjrcuý*t

of an optimum range finder. The difference is that in the given case, not the

magnitude of delay, but (n + +)Tr(t) should be controlled. We note that it is

sometimes more convenient technically to control proportionally to control volt, ag,.,J

not the pericd, but the frequency of repetition fr'

It is easy to prove that with use of the error signal for control of fr and

linear smoothing circuits the system does not ensure the required quality of tracking:

with movement of the target the equation of the system does not have a solution in

the form

+

h, (1) = + It),

where t(t) -small error which does not increase.
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In practice the quantity permitting control is not (n + ½)Tr(t), but the period

of repetition Tr(t). In this connection there arises the necessity of controlling

the gain factor of the open circuit proportionally to i/(n + 7). Such control is

especially necessary if the distance changes in the course of tracking by a factor

of several times. Inasmuch as linear change of the period is possible only in a

limited range, in this case jumps of period Tr by a nominal amount after passage by

the target through several "blind" zones with respect to distance are inevitable.

Thus, quantity n changes in the course of tracking, and in order to keep the speed

of operation of the range tracking system constant it is necessary to change the

gain factor of the open circuit KO.

To realize control of K0 and to properly, i.e., without losing the target,

choose moments of jumps it is necessary to measure the distance to the target.

Unsiabiguous measurement of distance can be effected with the use of outputs of the

period control and speed tracking systems. The latter always is present in coherent

single-target radars. Let E(t) = 0; then from (7.13.1) (n + ½ý)Tr(t) =(t) =2d(t)

Differentiating both parts of this equality, we obtain

whr + ( A(1), (7.13.2)

where V(t) - speed of approach;

f(t) -- Doppler frequency.

Eliminating n, we can obtain

d (11 M- V (Q) (7.13(3)

Calculation of range by formula (7.13.3) can be done by analog or digital com-

puters. To decrease fluctuations of voltage proportional to Tr(t) one can use v
additional smoothing circuits after differentiation of voltage at the output of the

period control system.

Let us find the magnitude of fluctuation error of range finding. We shall

consider fluctuations of functions Tr(t), Tr(t) and V(t) small as compared with

their mean values. Then error of unanbigous measurement of distance is

Ad (t)=dt) [r -T - , ).V(-I)]
2AV((1)) (7.13.4)

M [, + ,(s M +

where e (t) - fluctuation error of the system for range tracking of a target;

AV(t) - fluctuation error of the speed tracking system.
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Random variables E (t), s6(t), and AV(t) can be considered uncovrelated:

E (t) and ; (t) are uncorrelated with one another in view of the symmetry of the

spectrum of fluctuation error e( (t) with respect to zero frequency; while sý (t) and

ý, (t) are not correlated with AV(t) in view of the un-onnectedness of coding of

distance and speed in the received signal.

As a result the variance of fluctuation error is equal to

"go [', +2 2 , + 4 1
0. + . C%(7-13-5)

where to(t) = d(t)/V(t) - time remaining until target impact.

Error of tracking of distance. E2 can be calculated from the results of the

preceding paragraphs; error of measurement of speed can be defined by formulas of

Chapter IX, and 02 is equal to

S.9 ;-• -'S...5IH:-)II4, U-) d (7.i3,6)

where Hi(iw) - frequency response of the range tracking system;

H,(iw) -- frequency response of the filter intended for decreasing fluctuations
r•(t);

S equivalent spectral density of the discriminator of the range tracking.
system.

Quantity aV during speed tracking can comprise 0.1-0.5 m/sec or more, and 0.

)4 2with correct choic.e of smoothing circuit-,; will coincide in order with -- 2

4."1 to 10-i 6  Then, for instnwi', chen tw i0 irai

Thiti means that error obtained due to inaccuracy of measurement of' speed and mag-

nitude Tý r(t) may significantly exceed error of tracking for distance oa.

Thus, in the considered system accuracy of unambiguous range finding io deter-

mined, basically, not by the usual tracking range finder, tracking the target, but by

a computer.

§ 7.,i. Influence of Interferences on Coherent Radar Range Finders

As it was shown in Chapter I, application of contemporary radar means may be

accompanied by the influence on them of natural and man-made external interferences.

The presence of such interferences impedes work of the radar and, in particular,

decreases accuracy of range finding, and in certain cases generally leads to cessatioro

of work of a radar range finder [69-701. All this creates the necessity to consider
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the influence of external interferences on range finders,

In the case of coherent radio range finders such consideration is facilitated

by the very principle of their construction. Due to the presence in discriminators

of range finders of narrow-band elements, preceding amplitude or phase detection,

any interference having a random character and a spectrum width relatively large as

compared to the transmission bandwidth of the narrow-band filters turns out to be

statistically equivalent to normal white noise with the corresponding spectral

density. Therefore, the influence of interferences can be described by means of

corresponding increase of the level of noises at the input of the receiver of the

range finder.

Analysis of the influence of interferences leads then to determination of the

spectral density of such equivalent white noise and calculation of the new signal-

to-noise ratio. In other respects all results obtained in the preceding paragraphs

do not change. It is necessary only to substitute in all formulas for the previously

used signal-to-noise ratio h its new magnitude

N', N(7.14.)

where h -- signal-to-noise ratio in the presence of noise and interference; +

N -- spectral density of white noise, which is equivalent to interference
recalculated at the input of the receiver of a coherent radio range
finder.

Let us consider now examples of the most common external interferences.

7.14,1. Noise Interference

Active noise interference, radiated from the tracked or another target, by

virtue of its usual broad-banded nature, obviously, is equivalent to white noise with-

out any reservations. The spectral density of it at the input of the receiver is

determined from the power of the jamming transmitter P and width of the spectrum

of interference Af n by the distance formula

2 (4w)' Afod '2 (7.14.2)

where G nn -- antenna gain of the station of interferences;
Grip -gain of the receiving antenna of the radar in the direction to the

source of interference;

X - wavelength;

d - distance to the source of interference.

Decrease of the signal-to-noise ratio is determined by relationship
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+ PIo** GXr (4()- d.2

and is stronger, the larger the ratio.of the spectral density of radiated inter-

ference P1 G ir /Afn to the spectral density of internal noise and the larger

the ratio of the area of the receiving antenna to the square of the distance to the

source of interferences.

From formula (7.14.3) it follows that the signal-to-noise ratio h is

determined in many cases by the magnitude of external interference, and not the -

internal noises of the receiver. Therefo . I
for the case of a source of interferenci" i

combined with the target the signal-to-

-4• •noise ratio increases with approach to the

4 ,target approximately proportionally to

2 4a4 J / a not proportionally to i/d s i
00 the absence of interference. Curves of'

the dependence of the signal-to-noise
aU ratio on G n X2 k/(47r 2d2 fovaiu

g -" *" v W-D values of P0 G /214oAf are shown j

in Fig. 7.51.

Fig. 7.51. Decrease of the signal- 2Ct
to-noise ratio under the influence 7.Il.2. Pu.se Chaotic Intcrferenceof active noise interference. .Properties of such interference were

considered in Chapter I. Here, we ad.ditionally assume incoherence of pulse chaotic

interference, i.e., we consider that separate pulses of interference have independent

random initial phases. Then the signal of interference proceeding to the reciv.r

input can be recorded in the form

is (1) an V. 10 co Ro• (. + up) 4- ?#, (l,.4

where u,, (t) - function, describing the shape of the pulse of interferenee;

tk - random moment of appearance of the k-th pulse;

Yk - random phase of the high-frequency charge of the k-th pulse;
Wa - frequency separation between carrier frequencies of the radar and

the jamming station.

After multiplication of interference by a reference signal in the receiver

(heterodyning and gating) it takes the form
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V& (.) c6 1(-. + -. p) t+7QI4 (5)
=A,(t) cospg-t- +B (t) sin enpt,

where A(t), B(t) - periodic nonstationary random processes with zero mathematical

expectation and spectral density corresponding to the averaged correlation function

at zero frequency, equal to

2is-~ (7.1-4.6)
-a -

where Un (ie) - Fourier transform of u, (t);

C(T) - autocorrelation function of the sounding signal of the radar;

v - average frequency of interference pulses.

Quantity Nf is the spectral density of equivalent white noise, which is

contained in formula (7.14.1) and characterizes decrease of the signal-to-noise

ratio. The permissibility of the idealization of pulse chaotic interference by

white noise during action on a coherent radio range finder is determined by the rela-

tionship between the prolonged nature of the interference pulse and bandwidth of

the narrow-band filter. If Af ' T n << 1, where T - duration of the interferenceri

pulse, then such idealization is fully justified.

Formula (7.14.6) allows certain simplifications with the proper assumptions.

If, in particular, width of the spectrum of interference pulses is great as compared

to the width of the spectrum of modulation, and detuning of the carrier a) is

small as compared to the width of the spectrum of modulation, from expression

(7.13.6) it follows that

2a @* ' .

VY1us O( I v[ (1 ]'=V,,: 2 VC2 put(.47
-a a (7. 14

where P -. power of interference in the pulse,

u- pulse amplitude.

In the other extreme case, when the width of the spectrum of the pulse of

interference is small as compared to the width of the modulation spectrum,

go1
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where Afm S - effective width of the spectrum of modulation, determined by the

usual method and equal to 1/1_ C(r)dx on the basis of the relationship between spec-

trum width and correlation time.

In general, proceeding from the form of the integral in formula (7.1)4.6f) onc.:

should expect that

i(7.L4.9)•I +.Ad w-3-

Effectiveness of the influence of pulse chaotic interference, except for the

case when formula (7.14.8) is valid, depends not only on its mean power vTr F,,

but also on pulse duration Tn , where with lengthening of the pulse its effectlveness

increases.

Decrease of the signal-to-noise ratio under the influence of pulse chaotic

interference on a coherent range finder can be characterized by an expression
similar to (7.-4.3),

14. iko)
1+ , __+ _

C. .. . . . .

7.14.3. Return I:nterfer-ence

Effectiveness of return inter'er' cnce in reference to range finders essentially

depends on its concrete form. It is obvious that the return signal of a station of

interferences, radiated from an object without delay relative to the reflected signal,

is not actually interference, but only helps to measure target position data.

If the responder is located not on the target, so that the distances betwou:n

the radar and the target and between the. radar and the station of interferences

differ by more than the magnitude of the resolution capability, thanks to the

selective ability of discriminator with respect to range the signal of return inter-

ference does not affect work of the measuring system, of course, under the condition

that preliminary selecting of the required target was already performed. "Multipli-

cation" of the return signal also cannot lead to essential increase of the effec-

tiveness of return interference, since for this it is required that the period of

repetition of the multiplied signal be commensurate with the magnitude of the range

resolution capability of the radar, which for a sufficiently high resolution

k &J318-

i-



capability requires huge mean power of interference.

Interference with multiplication can cause a range finder to malfunction only

if the signal of interference in every period of repetition of modulation of the

signal appears at different, but sufficiently small as compared to resolution

capability, delays with respect to the signal from the target. In this case inter-

ference will pass to the discriminator output, and with fair effectiveness it will

either suppress the signal from the target with the help of an AGC system, or due to

shifts of the signal of the responder in range it will lead to swinging of the

tracking system and breakoff of tracking. If, however, one of the multiplied return

signals constantly coincides with the signal from the target, it only increases

accuracy of measurement, introducing, possibly, a certain systematic error upon

nonprecise coincidence of signals of the station of interferences and those reflected

from the target.

Additional circumstances, decreasing effectiveness of return interference With

multiplication, are:

i) the preference for complicated forms of modulation in coherent radars and

the connected difficulties of undistorted multiplication of signals with such modula-

tion;

2) difficulties of preserving coherence of the return signal, which is necessary' I

for accumulation of interference in narrow-band filters.

An effective means of affecting radio range finders using discriminators witini

switching of reference signals can be any return interference with low-frequency

modulation of a regular of random character. Beats of spectral components of' this

modulation with the frequency of switching can give low-frequency components which

are capable, without essential suppression, of passing through a closed-loop track-

ing system and causing it to swing.

An effective means of combatting all range finders can be return interference

with variable delay, which with sufficient intensity and a reasonably selected rate

of change of delay distracts the range finder from the target and forces it to track

the interference. Physically, the action of return interference with variable

delay, obviously, is equivalent to a single disturbing target, moving relative to

the selected target, and the question of the character and results of action of the

interference belongs, in point of fact, to the problem of resolution of targets in

radar, more exactly to the problem of dynamic resolution in the process of tracking

by a servo system. Here, one should establish the possibility of transition of' the

servo system from tracking one target to tracking anoth.,r, charac.terIstics of th-
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:process of transition, the dependence of these characteristics on the intensity and

and rate of movement of the interfering signal, etc.

Unfortunately, due to the necessity of solution of nonlinear nonstationri,:; I
problems this question to this day has not been studied. 10t is possible to lnd...tc

only certain qualitative considerations about improvements of characteristics ot

range finders in the presence of such intc-Žrfereaces. Rather obvious is the require-

ment of indication of the presence of an interiering signal, distinguishing thu use- I
ful and interfering signals, and subsequent compensation of the latter by various

methods. Further improvement of the quality of work of the range finder is possiblx,

using distinctions between laws governing change of dist.ance to the target arid

distance corresponding to delay of the interfering signal known a priori and

studied in the process of measurement. All these questions need systematic investi-

gation.

7.14.4. Passive Interference

In Chapter!Vit is shown that during conerent reception a signal from a

passive interference after multiplication by the reference signal and with narrow-

band filtration turns out to be, from rue point f view of its influence on narrow-

band filters and its further transformations, statistie-:lly equiwv;lent to a stationary

normal random signal whose spectral density on the basis of results of Chapter IV
is equal to

'x()H i,~ ¶7 Ic-"AA+ kw,),
(,.14.11)

where o - reflecting surface of the target;

c - reflecting surface of the interference in the resolution volume of the
radar;

6 -- difference between Doppler shifts of the signal from the target alid f.
the interference;

f(x) - describes the form of the spectrum of interference, whert f(O) I.

In deriving this formula it was assumed that Doppler shifts are small as com-

pared to the width of the spectrum of modulation.

As follows from (7.14.!1), the intensity of' interference, besides the total

reflecting surface of all dipule reflectors, ek*sjuilly dtepends on the diffcrencc

of Doppler shifts and the frequency of repetition. Summation in this formula

emphasizes the fact that interference is dangerous not only when &L• ý 0, but also

when L/ A - kw r. Since in the overwhelming majority of practical cases the width of
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the spectrum of interference is small as compared to the frequency of repetition,

in formula (7.14.11) actually only one term is essential, the one for which differ-

ence Aw Al-kr is minimal. In many cases selection of the frequency of repetition is

made so that this difference for all k X 0 is great, and in (7.14.11) one should

consider only the zero term. It is obvious that such selection of the frequency of

repetition in general ensures the greatest immunity for a coherent radar with respect

to passive interference, since here there decrease to a minimum the number of

situations in which to the input of the narrow-band filter there proceed the most

intense components of the spectrum of interference, corresponding to a maximum of

function

f(c - Aw;; + kwr) when Aw - kIo = 0.

The width of the spectrum of each of the bands of the signal reflected from

the cloud of interferences is determined by irregularity of movement of the dipoles

and the transmitter wavelength, and in the case of a moving radar also by the speed

of the radar with respect to the cloud of interferences and the width of its radia-

tion pattern. Depending upon wavelength, for a motionless radar the width of the

spectrum is 20-100 cycles, and for a moving radar it is from tens to thousands of

cycles per second. Such a width of the spectrum, other things being equal exceeds

the width of the spectrum of the reflected signal and the matcned transmission

bandwidth of the narrow-band filters. Therefore, with certain approximations in

coherent radio range finders passive interference also is equivalent to white

noise with spectral density

(7.14.12)

where the frequency of repetition is assumed sufficiently great as compared to all

possible values of Aw A. The signal-to-noise ratio decreases here by a factor of

times.

Ratio (7.14.13) essentially depends on the ratio of the difference of Doppler

shifts Af AwV2T to the width of the spectrum of interference Af0  . For large

Af /Af 0  function f(M¼) takes small values, and we achieve tuning away from

passive interference at the expense of frequency selection during coherent reception.

For small AfjAf0  , when there is no tuning, function f(Awo2 ) 1 1 and the discrimina-

tor of the range finder is affected by the most intense components of the spectrum

of interference. Here, by virtue of the relation existing in real situations
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A
hL3 /O' >> i, the signal-to-noise ratio sharply decreaste.a- and takes value h

depending only on the reflecting surfaces of the target and thre inter-

ference. The magnitude of a/0n is frequently considerably less than unity. This

means that with coincidence of speeds of the target and of the interference the

meter with high probability may be caused to rmalfunctIon. Speeds of the taro.At or,

correspondingly, the angles between the speeds of the target and the interference

with respect to the radar at which the difference of Doppl-r frequencies of the

target and the interference are close to zero are sometimes called "blind." Their

location and magnitude depend on the concrete situation and are specially calculated

in every case interesting us.

7.14.5. intermittent Interference

Any of the active interferences may be radiated, not continuously, but from t§.;>

to time interrupted at preselected or random moments of time. Interruption It used

for concentration of high power of interlerence in definite intervals of time, and

also for causing parametric action on tracking systems of the radar and swingint

them, achieving breakoff of tracking.

The frequency of interruptions may or; most. il.verse, and depending upon it the

results of the interference on the range finder wiii iiffer somewhat. With fast-

intermittent (as compared to the inertia of smoothing circuits of the ranige findr)

interference it generally turns out to be equivalent to continuous interference of

the same mean power. For instance, with p.rJ.(;c1ic interruption with times of the

action and absence of interfcrence: T "d ed nhe power of radiation of interforence

should be multiplied by T 1 /(TI + T2).

However, one should note that such equivalence of intermittent interference to

,,orlntinuous interference requires taking c.pecial measures to eliminate different

parasitic factors in the radar' receiver.

In particular, there should be taken measures to preventing overload in the

limit'.d range of the linear amplifiers of the receiver, so that after cessation of'

the action of interference the signal is passed by these ",mpllifiers without distor-

tion or suppression.

A second important element of the receiver, r-fqoiring special attention, is the

AGC system. After powerful interference Is ,qwi -hed on, th-e AGM system should

rapidly develop its level, lowering amplification of the receiver, fixed before

this from the signal level. Otherwise there will be different conditions during

transmisslon of the useful signal and of interference, and the signal-to-noise ratolu
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will decrease as compared to the case of a linear receiver without automatic gain jj
control.

After the interference is turned off, the AGC system, conversely, should

rapidly increase amplification of the receiver, restoring its sensitivity to the --

signal. Only when the first process is fast as compared to the time of action of U

the interference and the second is fast as compared with the time of its absence il

is there no worsening of the signal-to-noise ratio as compared to the case of can- I

tinuous interference of the same mean power.

A certain exception, for any frequency of interruption of interference, is a

range finder using a discrimimator with switching of reference signals. Application 44
of such discriminators is generaly undesirable from the point of view of the action II
of intermittent interferences, since beats of the frequency of switching with the !4

frequency of interruption of interference may yield haL .onics passing through the 11

servo system and leading to its excitation. H
With slow interruption of interference all processes in the range finder during '1

the time of its action or absence can be established, and on the whole the influence

of interference is characterized by the fact that the range finder works alternately,

first with signal-to-noise ratio h, (when the interference is turned off) and then
with signal-to-noise ratio hn (when the interference is on). Under the action o,'-

interference errors of measurement increase and can exceed permissible levels, and

with sufficiently great interference strength there may occur breakoff of tracking.

Another characteristic feature is the fact that as a result of the depen'hnce

of the gain factor of the open loop of a range finder on the signal-to-noise ratio

due to the normalizing properties of the AGC system during Interruption of inter-

ference the range finder as a whole experiences a parametric influence, Witht

sufficiently complicated smoothing circuits this influence will lead to parametric-

excttation of the tracking system and total disruption of its operation.

With an arbitrary frequency of switching of the interference calculation of

its influence on a range finder requires special, rather complex investigation.

Analyzing the servo system, one should consider that the gain factor of the discrim- h

inattr and the equivalent spectral density of noise at the input of the range finder

are functions of time; K = K(h(t)) and %M(t) = ss,4h(t)), taking values correspondingi

to the cignal-to-noise ratio h at those moments of tinie when there is nu iii:-r-

ference and to the signal-to-noise ratio h when there is interference. We wili

indicate only the method of solution of the problem of calculation of dynamic aidv

fluctuation errors in this case.
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The pulso response of the closed-loop system g(t, T) and the related pulse

response v(t, r) are determined as before by equations (6.2.12) and (b.2.!5), in

wn.icf, however, one should consider t" Uin fa.2tor K is a function of time.

Besides this, duiring calculation of Atlon error S, no longer can be removed

from under the integral sign, and one snould consider its dependence on time. For

instance, in the case of a very simple .moothing filter in the form a single

integrator the solution of equation (6.2.i2) has the form

.(t, %) KUKA () exp( SKxKA(S) dSý) (7A.i4.11)t

From this expression it follows that for any regular law of interruption of

interference parametric excitation of a system with 'ne integrator does not oceuvr.

since the pulse response remains limited. in this respect the considered exanplc

is not vcry informative. With chaotic interruption- with a certain probability eveni

a first-ordei. s:;stem may be excited. Fluctuation error in the considered example

is determined by the following expression:

.3.

---- 2 (KKjt (s) d

from which in this particular case the. e .'oll .w all the conclusions about the

relattive character of the iAsluence of fast-intermittent and slowly intermittent

interferences. A~nalysis of the effect of interferences on range finders with

crr. •:hLng circuits of higher order can, in principle, be conducted analogously;

nowoevr, It requires solutions of differential equations of the corresponding ori j

witi! variable coefficients.

§ 7.15. Nonlinear Phenomena in Tracking Range Finders

The whole preceding analysis was based on a linearized presentation of the track-

ing radar range finder. Here, we considered that the signal at the d1scrimInator

output is proportional to the average curront mismatch, and noises in most cases

were considered independent of mismatch. In fact, as follows from the results of

the first paragraphs of this chapter, the discrimination and fluctuation characteris-

tics of discriminators of coherent range finders meet these requirements only with

limited ranges of change of mismatch, which take place only with comparatively high
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signal-to-noise ratios. In real conditions, due to the influence of interferences,

which essentially decrease the magnitude of the signal-to-noise ratio, these

requirements can not be satisfied, and it is necessary therefore to consider non- 4
linearity of the discriminator.

Subsequently we shall limit ourselves to a simplified situation, when it is

possible to consider the fluctuation characteristic constant in required limits

and equal to quantity S. used everywhere earlier. This assumption is justified by

the fact that calculation of nonlinearity of the discriminator is most interesting

for comparatively small signal-to-noise ratios, and here irregularity of the flue-

tuation characteristic become less and less noticeable. Furthermore, due to demodu-

lation of signal fluctuations by the AGC system there occurs additional leveling of

the fluctuation characteristic, so that in real coherent receivers it does not I
differ greatly from a constant magnitude even for comparatively large signal-to-

noise ratius. The discrimination characteristics of range finders is expressed by

formulas for z(t, A), obtained in § 7.2-7.5, according to which, for detunings 5 1I-

which are not very great, the discrimination characteristic of practically any of'

the range finders considered above is I
ht, (A)-: KC (4) C (A)l ( 15. -I

where K - proportionality factor.

Henceforth, we shall consider only real C(A); therefore, in (7.15.1) we omit P
the sign of the real part.

The general approach to investigation of nonlinear phenomena in tracking mea-

suring systems and certain results of more concrete content in reference to systems

with a smoothing filter in the form of a single integrator are presented in Chapter I
VI. Basic attention there was paid to phenomenon of breakoff of tracking, by which ]I
we understood mismatch between the real and measured values of the measured coordin-

ate reaching certain boundary-points of the discrimination characteristic. %o cal-

culated basic statistical characteristics of breakoff - the probability of reaching

a boundary-point in a certain time t and the mean time to the first reaching of a

boundary-point - by which it is possible to judge the critical magnitude of cq!li½].cri

spectral density and, correspondingly, of the signal-to-noise ratio, already imper-

missiblc for normal work of the measuring system,

Along with such an approach to the investigation of nonlinear phenomena in a

tracking meter, based on the assumption of the absence in it of steady-state oper-

ating conditions, we may also use a solution with reflecting screens at the points
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corresponding to limitation of the output of the measuring system. Such limitation

practically always exists in tracking meters, and its approximate calculation with

the help of reflecting boundartes, valid for a signal-to-noise ratio which is not

too small, permits us to obtain the stationary distribution of probabilities anc

with its help the errors of measurement in steady-state operation. We shaL cluriB.L,

several examples of calculation of various characteristics for concrete forms o2

discriminators of range finding meters.iI

7.i5.1. Average Time to Breakoff of Tracking

Using formulas (6.3.26) and (7.i5.1), it is possible with the help of simple

transformations to obtain the following exact expression for the mean value uf the

time of the first attainment of a boundary-point of the discrimination character!.

tic, equal to under the condition that initial mismatch was zero:

"where oa --. 21f.O S*;

Af - variance of fluctuation error and the effective bandwidth of the track-
S ing system in the linearized consideration:

V - speed of the tracked target, assumed constant in time intervals the
order of T;

b = -C"(O) - mean square wirih of. the spectrum oft modulation of the sound-
ing signaul.

Considering that function C(A) actually depends on A•A, we replace [by by I and

Fbx and e, designate the relative magnitude of variance of fluctuation error in the

lineariz.ed system and the relative magnitude of dynranic error

and introduce designation C(A) = a(vA). Then the final expression for the average

time to breakoff can be given the form

) -- a' ( 2)--T = UA-T-• dj diexp ,,(.5)

where one should consider that a"(O) = -I. With initial mismatch A differing from

zero, tne lower limit of integration over Tj is replaced by rbA.

Analytic calculation of quadratures in (7.15.3) for practically interesting
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functions a(x) is impossible; therefore the average time to breakoff must be cal-

culated by numerical or graphical integration. From formula (7.15.3) it follows

- that the average time to breakoff, expressed in units of the time constant of the

tracking system I/Afqý , depends only on the relative magnitude of fluctuation

error of the linearized system, the boundary value of the discrimination characteris-

tic and the relative magnitude of dynamic error. Qualitative investigation of this

formula shows that the magnitude of T rapidly decreases with increase of dynamic

error and variance of fluctuation error. In order to estimate the influence of

dynamic error on breakoff, we shall consider the asymptotic case of high-level

noises, when p2 = ba2 is great (of the order of unity or larger). Then, from

(7.15.3) it follows that

T• •A, .• A, a

i.e., the average time to breakoff is equal to the time of movement of the target

the magnitude of the interval from zero to the boundary-point of the discrimination

characteristic.

From expression (7.15.3) we can obtain the approximate formula, valid for noises

at not too low a level and zero dynamic error,

T=IA16 04(7.15.5) I
which was already given in ChapterVI. This expression depends only on the ratio

of the width of the assigned zone of the discrimination characteristic to the fluc-

tuation error of the linearized system. Graphs of this expression and the investi-

gation of it given in Chapter VI show that the average time to breakoff rapidly

increases with growth of No/OJ , where as the threshold value of this ratio, ensur-

ing work of the tracking system for a sufficiently large number of its time con-

stantf, we can select quantity O/% Z 5 to 7. With further increase of this ratio

the phenomenon of breakoff practically is not observed.

Assigning magnitude A0 - 2/1¶, we obtain for the threshold value of • a quan-

tity of the order of 0.3-0.4, which permits us to find the permissible magnitude of

the signal-to-noise ratio in a coherent range finder. In particular, with a dis- I
criminator close to optimal, when S.E- Son, the critical signal-to-noise ratio is

determined by expression

(7.15.6)

where F(h) is given by formula (7.2.15).
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Dependence of the critical signal-to-noise ratio h on the ratio of bandwidths

Af 0 /&f K for the case of an exponential correlation function for fluctuations is

shown in Fig. 7.52. For other correla-
hA

-•-"tion functions the magnitude of hx.

experiences only immaturial ,

relative to the given law. The inag-

nitude of hlq., naturally, decreases

- -•--- with decrease of ratio Afc /Afat

S - - and for practically interesting values

of this ratio it is in the range of

O.1 to 3.

hf/o_ The dependence of the average

time to breakoff, calculated by exact
Fig. 7.52. Dependence of the critical
signal-to-noise ratio on 6f, /Afa . formula with the help of numerical

integration, on L is shown in Fig. Y.3 A

for rhA 2 and a Gaussian autocorelation function for the sounding signal a(x) =

x 2

This relationship very exactly coincides with that obtained by approximate

formula (7.15.5).

Use of other approximations

- -of a(x), corresponding to other

methods of modulation of the

sounding signal, does not lead

V - to essential changes, since for

all smooth functions of a(x) U.

behavior within limits of the

.- basic maximum is approximatuly

identical. Comparison of th,'

curve of Fig. 7,53 with the curve

Fig. 7.53. Dependence of average time to in Fig. 6.7, constructed by the

breakoff on error of measurement in a linear- approximate formula, shows the
ized system.

good coincidencc and the satis-

factoriness of approximation of the expression for average time to breakoff by formula

Let us consider for illustration one concrete example of analysis of phenomena
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of breakoff of tracking in a coherent range finder. Let us assume that on the range

finder there acts an active noise interference with spectral density P a /Af

and distance df - 300 km. The receiving antenna of the radar has diameter 1.5 m,

and the noise factor is 5. Let the signal-to-noise ratio h in the range finder

receiver in the absence of interference by equal to 50. Then the signal-to-noise

ratio in the presence of interference is

where P n G nn /Afn in watts/Mc.

Assuming that the discriminator of the range finder is close in characteristics

to optimum, the spectrum of signal fluctuations is square with width ALf 30

cycles, the effective bandwidth of the system is equal to I cycle, and taking boundary

value of mistuning A = 2/r, we obtain

* a /-((I -+- 10Pm0 3 lAt.) (I + 2PDG.u/Af.)

This relationship permits us to find the average time to breakoff as a function

of the spectral density of interference. This function is shown in Fig. 7.54, from

T.sec which it is clear that a spectral densityt

- -of interference near I watt/M in certain

cases still gives an acceptable value of

the average time to breakoff of the order

it of 50 sec. Slight decrease or increase

of the spectral density of interference

leads correspondingly to sharp increase .

or decrease of average time. With changr

f o w e mof spectral density in any direction by a I
P&A 2# 5 # • factor of two there occurs more than a

i-- Mc tenfold change of average time to breakoff.

These results emphasize the great critical-
Fig. 7.54. Dependence of average
time to breakoff on the spectral ity of a range finder to the level of
density of interference.

Interferences acting on them.

7.15.2. Fluctuation Error of Measurement Taking into Account Nonlinearity

As already noted above, breakoff of tracking, understood as the first time the

magnitude of mismatch reaches a certain conditional point on the falling section of



the discrimination characteristic, cannot be, of course, an adequate description of

the behavior of a tracking system during allowance for its nonlinearity.

Reaching a boundary-point, mismatch with noticeable probability may again take

a small value, and the system will work normally, but, of course, with larGe errors.

Therefore, the magnitude of mismatch, going beyond certain limits, still does no1

signify breakoff of tracking in the direct sense, Experimental study of nonlinear

conditions of tracking meters also emphasizes the applicability of an approach

-- based on the assumption of the absence in a nonlinear system of steady-state operat-

ing conditions.

In tracking range finders such an approach gives the correct answer for very

large interferences and when tracking in comparatively small intervals of time is

of interest. In examining the behavior of a system in large time intervals, due to T

the practically inevitable limitation on output in it, there sets in steady-state

operating conditions, characteristics of which in a number of cases are of the

greatest practical interest. Calculation of statistical characteristics of thes,

conditions, in particular variance of fluctuation error, permits us to find the

critical magnitude of the signal-to-noise ratio, at which fluctuation error' .

is within permissible limits. Comparison of this critical magnitude with the

corresponding quantity, calculated in the preceding paragraph, permits us to charac-

terize more fully nonlinear operating conditions of the meter and more completely

find conditions when linearization of a ÷racking radar range finder is permissible.

Using formulas (6.3.22) and (7.15.1 ), it is pcoss•ible to reduce the expression

for variance of fltctu;t. :rr of m•ascrcmrrt, found during idealization of the

limitation at the system output by a reflecting screen at. points ±At,, to the

L•.oW.Lowing form:

a ib-- V4 -p y (7-15,7')

where all designations are the same as in Paragrapri (.15.1.

For low-level noises, when V is small, from this expression it follows that

For high-level noises, when L' >> J,

.rc flrl~p . - ~ .f~ZJ r' _ W#~~~C~'



(7.15.9)

i.e., the magnitude of variance here is determined only by the level of limitation

on the output of the system, and the distribution of probabilities for mismatch

becomes uniform.

Expression (7.15.7) allows us for certain forms of a sounding signal to perform

analytic calculation. For instance, for a Gaussian C(a)

(7 15

hsl

where it is assumed that YVA 1 in accordance with real conditions is much larger than

,r. one. A similar expression can be

AW a o -obtained for cosinusoidal function A

C(4), and also for a series of

other autocorrelation functions.

.0 Relative variance of error of

measurement as a function of 1iJ is

S__ _shown in Fig. 7.55 for various

values of the relative level of

S limitation YA From formulas

(7.15.7) and (7.15.10) and this

figure it follows that already at
Fig. 7.55. Dependence of error of range
finding on g = for various levels of • = 0.3 and at Ai > 5 to 10 the

limitation IbAl. magnitude of error is determined

to a significant degree by the
level of limitation. For larger 4 it is practically equal to the asymptotic value

from formula (7.15.9).

The curves of Fig. 7.55 show that the dependence of fluctuation error on the

signal-to-noise ratio (error of a linearized system) also has a clearly expressed

threshold character. Critical values of ýL, corresponding, for instance, to fluctua-

tion error a = 2/Z, are in this case somewhat smaller than the same values found

from the average time to breakoff of tracking (of the order of 0.15-0.3). In

accordance with this permissible signal-to-noise ratios h increase somewhat. However,
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this increase is not so considerable that one should take it into account.

Formulas (7.15.7) and (7.15.10) and the curves of Fig. 7.55 permit investigation

of another interesting question - the limits of applicability of the linearized.

approach to a tracding range finder. From Fig. 7.55 it follows that equality of c ;Cn.

a• is preserved approximately to values L - 0.12-0.15. This range of values is

very narrow so that at practically any level of limitation nonlinearity of the dis-

criminator of a range finder starts to appear at the same signal-to-noise ratio.

The magnitude of the signal-to-noise ratio at which linearized consideration of a

tracking range finder with a discriminator close to optimum is still permissible is

determined by this magnitude and can be found from equation
Y Ar

The dependence of h on the ratio of bandwidths Af0 /Afa for the case of a

square spectrum of fluctuations is shown in Fig. 7.56. For real relationships of

bandwidth of the system and the width of

the spectrum of fluctuations h varies
S (-

from 6.2 tu 6, which approximately exceuds

2 - by a fact'or -f 2 the corresponding values

1. - calculated from the critical magnitude

-,- - -of the average time to breakoff. Thus,

breakoff of tracking in the sense of the

.- - preceding paragraph occurs at approximately

X fN * ot OVA F j5 the same signal-to-hoise ratios at which

allowance for nonlinearities of the dis-

ig, 7.56. Dependence of- the crit- criminator becomes necessary for calculatinr[

ical signal-to-noise ratio on fluctuation error.

Steady-state operation of a trackihfr!

range finder in nonlinear conditions was

studied experimentally. A range finder was simulated by an analog computer. In the

* simulation we reproduced a nonlinear discrimination characteristic and established

limitation on output of the system. Analysis of results of the experiment showed

satisfactory coincidence with the theoretically found probability distributions for

mismatch obtained by solution of the boundary value problem for a Fokker-Planck

equation with reflecting screens. In the course of the experiment we also studied

characteristics of nonstationary conditions. We investigated change of the lis-

tribution of probabilities of mismatch with time and found the dependence of
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fluctuation error on time. Data of the experiment, in general, well confirm con-

clusions of theoretical analysis, but for high-level noises there are certain diver-

gences, caused by the approximate nature of the allowance for limitation on output.

For illustration, in Fig. " are theoretically calculated and experimentally taken

probability densities for mismatch in a range finder with one integrator with an

effective bandwidth of the tracking system Af B 1.5 cycles and the discrimination

characteristic shown in Fig. 7.58. Curves correspond to the ratio of error of a

linearized system to the half-width of the discrimination characteristic a• /AO,

equal to 0.44 and i.1.

-1"-1--1 ' -

- - -2 -4 - .
i

Fig. 7.57. Probability densities for mismatch:

Sexperimental curve for oa /A0 = o.44; ---

theoretical curve for . /Ao = 0.44: -.-.- ex-

perimental curve for oa /A 0 = i.i .

theoretical curve for oa /%0 = 1.1.
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We shall consider one illustrating

example of calculation of errors of

range finding taking into account non-

-I ILI *A linearity in a coherent range finder.

We consider that the sounding signal

Fig. 7.58. Discrimination characteris- of the radar is modulated by pulses

tic of the range finder in the experi-
ment. close in form to Gaussian with linear

frequency modulation, where frequency

deviation due to the prolonged nature of the pulse is great as compared to the

width of its spectrum. Then the autocorrelation function of the sounding signal

is described by a Gaussian curve with parameter

b- , (7.15.12)

where a - rate of change of frequency;

T - effective pulse duration.

6 6 -.
Let frequency deviation 2wm = 2r.i0 rad/sec. Then, ¶ 2.5.10 sec-. We

consider that limitation on output of ri. range finder is determined by natural

factors - mismatch reaching a magnitude equal t.o the period of repetition of thle

signal. Considering the frequency of repetition equal to 25 kilocycles, we find

A1i = 100. We consider that the signal-to-noise ratio h does not depend on

distance and is equal to

*am •".. .x
2A13N (4'*'_ (7.15.13)

where h 0 - signal-to-noise ratio in the absence of' interferences at distance do,

corik-sponding to the moment of switching on of interference.

Asjigning values h 0  100, dO 25 km, the diameter of the antenna equal tu

30 cm, 9nd noise factor of the receiver of the radar equal to 10, we obtain

a.re'.

where spectral density FP G rn /AfH is expressed in watts/Mc. Assuming that

the discriminator of the range finder is close to optimum, the width of the spectrum

of the reflected signal is 100 cycles, and the bandwidth of the tracking system is

4 cycles, we obtain the following expression for variance of fluctuation error of

the linearized system:

, = -P'' M + P.O.

0034 Q.
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which gives the possibility of determining with the help of the graphs of Fig. 7,55

6e .error of range finding taking into account non-

linearity. Dependence of this error on the spec-

tral density of the radiated interference is shown

in Fig. 7.59. As follows from this figure, the

-i dependence of accuracy of range finding on the

spectral density of interference has a clearly

SI -expressed threshold character. With change of

P n G nn /Af n from 0.5 watts/Me to I watt/Me

- - error increases by more than 60 times. The

critical value of spectral density of interference

comprises in the considered example about 0.6-0.7 I
F/, watt/Mc.

ef0 04 44 46 0. t For high levels of interference accuracy of

range finding becomes too low.

Fig. 7.59. Dependence of §7.16. Conclusion
error of range finding on the

spectral density of noise This consideration of coherent range finders
interference, showed that in a significant majority of cases

the above-described methods of realizing optimum operations permit us to obtain

accuracy close to that which is potentially possible. This particularly pertains

to discriminators of tracking radio range finders, which with sufficiently careful

selection of their parameters, turn out to be close to optimal in their characteris- I
tics. Analysis in this chapter allowed us to find the influence on characteristics

of a discriminator and on accuracy of range finding in general of parameters of

modulation of the sounding signal, power features of the received signal and

imperfections of its generation in the circuit of the radio range finder. Not

dwelling on tiresome, detailed enumeration of the results of this chapter, we note

only those directions in which there remain definite gaps and where there is

required additional investigation.

Questions of the analysis of discriminators can be considered sufficiently ex-

haustively investigated. Here we should only consider in more detail the influence

of the AGC system on aiscriminator characteribLib for comparatively low oignal-to-

noise ratios, when the cross interaction of the signal with noise in the AGC system

is substantial, and there occurs modulation of the signal by noises passing through

the feedback circuit. Another question is more detailed consideration of the case

of slow fluctuations, when during the time of processing of the signal in the
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-discriminator signal amplitude remains constant.

The case of fluctuations which are slow or comparable in speed with the rate

of variation of parameters, in general, is of great interest from the point of view

of synthesis of measuring systems and, in particular, of ranging meters. Very -A

interesting is allowance for the non-Gaussian character of signal fluctuat-ions, uh,

in a number of cases takes place.

The next important question requiring investigation is consideration of the o

range finders in § 7.2 of the type using for measurement a unit of detection

channels. Here, i- would be useful to study the influence of overlapping of

channels and nonorrhogonality of their output signals, to calculate characteri:.tics

of such a meter allowing for disharmony of reference signals in the unit of detct

channels with the sounding signal and change of the measured distance.

Many problems of concrete content still remain in the question of analysis of
iI

a range finder as a whole. It would be interesting to consider examples of ,mooth-

ing circuits of more complex structure, especially optimum smoothing circuits,

corresponding to aquasi-regularlaw of change of the measured distance. Here, the

most important question is a sufficiently deep explanation of the influence of

errors in the statistics used during synth(:sis as tompared the real statistics.

Especially interesting is investigation of' cases when such errors have a qualitative

character; however, interesting, too, would be more detailed investigation of the

influence of quantitative errors. An important question is consideration of range

finders with smoothing circuits in the form of' filters with a finite memory. The

requirement of finiteness of' memory can become essential in optimum smoothing cir-

cults with vartat].c parameters when their structure is very complicated, and it

cauc' s great difficulties in technical realization.
Above we alreidy discussed the importance of investigation of operating c.ul>

tLions of' the tracking range finder, when in its selection zone there are severl;.1

targets or a target and delayed signals of return interference, At prescnt this,

in point of fact, is an open domain. At the same time investigation of the process

of resolution of targets by a tracking range finder permitted us to establish new

laws, to find requirements on the sounding signal and on methods of ccnstructi,.n

of range finders.

And, finally, problems connected with th_ iiwv_-stigation of nonlinear" cond!tions

of tracking range finders also are very far from complete solution. In this area

we need more precise definition both of already obtained results ý.ith consideration )

of a large number of quantitative examples, aid also solution of new problems. il.
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would be very interesting to obtain other characteristics of nonszationary operating

conditions, and also definitized characteristics of steady-state operating condi-

tions with allowance for limiting. It is important to consider nonlinear phenomena

in systems with smoothing circuits of higher order and with smoothing circuits in

the form of filters with variable parameters.

All these questions are nut, however, decisive, and the level of understanding

of problems pertaining to methods of construction of range finders and characteris-

tics of ac'curacy cf their work already attained permits us to competently approach

their practical development. Available knowledge gives development engineers the

possibility in a well-founded and reasonable manner of selecting the structure both

of the discriminatoc, and of smoothing circuits of a range finder, of correctly

selecting their parameters and of fully intelligently making various simplif`catnns

and technical compromises, having estimated their influence beforehand.

-3i
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C H A P T E R VIII

RANGE FINDING WITH AN INCOHERENT SIGNAL

§ 8.1. Introduction

An incoherent pulse signal at present is widely used in various radars. Along

with normal pulse modulation there are used signals of more complicated form with

additional intrapulse modulation of various forms [35-39]. Properties of an inco-

.rent signal are described in Chapter I. Theoretical synthesis of range disrrimi-

nators for the case of an incoherent fluctuating signal is hampered by the fact

that for such a signal the general form of the likelihood functional is unknown.

Therefore, during solution of the problem of synthesis it is necessary to limit orUr-

selves only to certain particular cases and to maize definite assumptions, sometimes

not covering all cases in practice. In contrast to this the problem of analysis o0'

existing discriminators can be solved with the same degree of correctness as in the

ease of a coherent signal. This to an identical degree pertains both to the work

of the range finder with only its own noises, and also to cases of the influence

of various kinds of interferences.

As for problems of analysis of a range finder as a whole and synthesis of

smoothing circuits, it is obvious that the form of the signal introduces nothing r,ew.

Actually, as soon as we have determined characteristics of the discriminator and we

have assigned statistics of the measured distance, it already makes absolutely no

difference to what these characteristics correspond. Therefore, after we have

obtained a solution of the corresponding problems for coherent range finders, their

solution for incoherent range finders reduces to trivial replarement of character-

istics of the one discriminator by characteristics of the other, In connection with

this the present chapter to a still lesser degree than the preceding one will de•.1
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with questions of analysis of range Uinders as a whole. 'Daoic attention will be

allo.tted namely to discriminators of incoherent range finders,

The present chapter is organized on the same plan as Chapter VII. First, we

consider possibilities and certain particular results of synthesis of an optimum

discriminator. Then in general form we investigate baslo m.rcthods of creatini. a

discrimination characteristic taking into account a series. of inevitable technical

deviations from optimality. Then, we consider different concrete forms of modulation,

give examples of analysis of range finders as a whole, study tne influence of itber-

ferences on incoherent distances and touch on ncnliriear plenomena ir, such range

finders. As will be clear subsequently, many results will permit broad analogies

with, and will sometimes even coincide wY'h the coherent case.

§ 8.2. Optimum Discriminator

To find operations of an optimum discriminator it is necessary to have the

l.garithn of the likelihood functional for an incoher nt signal. In § 5.2 it is

showi nat it can be presented in the forun: of a certain function [see (5.)

the voltage envelope, corresponding to tlc value of ".he correlation integral forin-d

ii Lie j-th perl.od of repetition of thcl.,a...

P C .. i expj'

w:er e ak - value of the rant-zim phase in the k-th period;

p(au, a2' a r. )- distribution VobalitiCs for phases;

vjk -- eIemepa ," .i ,,atri:: equal to the difference of' maLrices
v-4hicý1 are rec iprocal to correlation matrices fcr nolse and
for a signal mixed wit'- noise ',.n the absence of modulation;

hi.re a!j. designatlono are the same as in the preceding chapter.

Quaniitvy If J 1f(JTr)I obviously coincides with the value of envelope IQ(i, -)I

:rr, (1.2.4), If' pulse response h(t - s) from (7.2.4) is

"when (J-- 1)TK1-s<IT,
h,-a=owhen t-s<(i--i)r, t-s>jit,.

This definition of pulse response n(t - s) ('orresponds to the fact that due to

propurties of the incoherent sigrnal its coherent processing is possible only in an

interval of time equal to one period, and further accumulation of the signal can be

carri-' out only incoaerently. Pulse response (FI.2.2) defines an integrator over
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period Tr with clearing [?].

The form of function (5.2.3), determining the logarithm of the likelihood

functional, can be made concrete only with additional assumptions about the character

of fluctuations of the signal and the magnitude of the signal-to-noise ratio.

In § 5.2 it is shown that with certain conditions the logarithm of the functional

of probability density reduces to the sum of the squares of envelopes If I, taken in

all periods corresponding to the time of observation. This takes place:

a) for small signal-to-noise ratios and arbitrary speed of fluctuations;

b) for fluctuations, fast as compared to period Tr) and an arbitrary signal-to-

noise ratio;

c) for large signal-to-noise ratios and arbitrary speed of fluctuations, if the

spectral density of fluctuations of the signal differs from square.

In general the sum of squares is replaced by a certain inertial nonlinear

processing which considers the interperiod correlation of values of the envelope.

Accumulated experience in designing systems based on simple summation of the squares

of the envelope permits us to state that consideration of complicated systems con-

sidering interperiod correlation will lead only to slight improvement of their

characteristics. This statement is based on the fact that with a sufficiently large

signal-to-noise ratio incoherent range finders built without taking into account

interperiod correlation ensure, as will be shown later, practically the same accuracy,

as coherent ones, and with a small signal-to-noise ratio, when impairment of accuracy

in the incoherent case is considerable, simple processing is optimum.

From this point of view, complication of processing of the received signal,

ensuing from calculation of interperiod correlation, is hardly desirable, since it

increases technical complexity of realizing range finders without leading to ezsen-

tial improvement of accuracy. Therefore, subsequently, we shall consider that t11

logarilth of' the likelihood functional is presented in the form of the sum of sqnuar

of envelope If, i.e.,

P WVi)=C exp{(K j~~) C exP(K J (s)U(s-,)e'O~di32), ý .3
Jat J" n (I-Il F,

where C - factor, not depending on delay r;

n = [T/Tr] - number of periods of the signal accumulated during time T;

K - a certain coefficient, depending on the signal-to-noile ratio.

Such a presentation is sufficiently accurate in the above-cnsidered car.s, .

and, of course, for n 1, i.e., for the case of a single sending (f the signal. ir,
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accordance with expression (8.2.3) we shall consider only such a construction of

discriminators which does not take into account interperiod correlation of the

enve2ope. Namely thus are existing incoherent range discriminators built -

processing of the signal for one period is carried out in them cohertntlly, and Anter-

period accumulation is carried only with respect to the envelope without taKing initt,

account correlation of its values in various periods.

8.2.1. Operations of an Optimum Discriminator

In accordance with results of Chapter VI, output of the discriminator in this

case is defined as

Jrv

It is obvioius that z(t) - dissrete random process, taking values z = (jj r in i.ne

j-tn period. The concrete form of this process depends on the method of formation

of correlation integral f,, determining opti.munt processing of the signal in ,rne

period.

As we already noted above, this li•,t.•r• L can be formed by two methods - tUc.

correlation method end by an optimum filter with frequen'cy response matched wit

TrNe sp6ectrum of modulation. In the first case there is produced multi.pltcattsn of

the received signal by the sounding signal, shifted in frequency and in delay, arid

integration over the period with the help. f fil-ter (8.2.2), tuned to intermediate

f"requency. Actually, of course, lntru,ýrt-,o•n can be carried out by any filter with

a passband considerably larger tnan tne frequency of repetition of the signal, and

considerably s;maller than the width of the spectrum of modulation. In this case

;t.e, ;sIgnal at the output of an optimum detection channel is a periodic sequence of

* -,ar(.•z the envelopes of responses of this filter in every period under the [:

ence at the input of the filter of a signal consisting of tho product

S(e)u ( ( -- : ) e

During formation of z(t) in the range diseriTninator, the square of the envel.ope

is replaced by the product

zt)=--K2Re S (s-c)e'-ds X (S)U'(s-.tC M ds,
" U-I) ?, U -I)/T,

which corres.ponds to multiplication of the received signal in one channel by

u(t - i), and in the other by u t( -ti) and subsequent multiplication in tn-e 1 A•asc.

detector of output voltages of these channels.
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A

Thus, in this respect there is complete analogy with the coherent case. The

whole difference reduces to difference of pulse responses of filters (8.2.2) and

(7.2.5). The actual output voltage of the discriminator z(t), as a function of time,

can, as before, be presented by formula (7.2.7), where h(t) - pulse response of any

filter whose inertia is low as compared to the duration of the period, so that the

response of this filter to an incoming pulse attenuates by the moment of appearance I

of the next pulse.
A

With the correlation method of processing creation of a discrimination charac-
--A

teristic is possible only in circuits preceding detection. Here we can use both an A
A

exact method - multiplication of the received signal in two channels by a delayed

sounding signal and its derivative - and also approximate methods - either simultan-

eous, or alternate multiplication of the received signal by two reference signals

detuned with respect to delay.

With the second method of processing a pulse signal the received signal is

passed through a filter with pulse response h(t) = u(-t) (such a filter is frequently

called optimum for the given form of modulation, or "shortening," or matched with

the spectrum of modulation). It is obvious here that the value of the output voltage

envelope of this filter at time t = (J - i)Tr + T gives the needed value of Itji.

These values should be selected by gating the envelope by a narrow gate pulse and

then should be accumulated discretely.

Thus, in this case output voltage of the discriminator is a discrete random

process consisting in the optimum case of infinitely narrow pulses appearing at

moments tj = (j - i)Tr ± T. Operations of the optimum discriminator in this case

consist in transmission of the received signal through filters with pulse responses

u(-t) and u (-t), subsequent phase detection of output voltages of these filters ant

gating of the output voltage at moments tj •J-i)Tr + T. where T -- Output value

of delay. Approximate formation of optimum operations r Lrc.d case can be carried

out in post-detector circuits, on the envelope, since ttw. eyo',lope of output voltagc

of a "shortening" filter gives the possibility of forming the likelihood functional

for all values of T. Creation of the discrimination characteristic here is carried

out by two delay-detuned gates, tuned in accordance with the output value of delay.

Gates can be fed simultaneously or alternately with a certain period of repetition,

In practice, thanks to the great technical simplicity in real discriminators differ-

entiation of the logarithm of the likelihood functional is carried cut witb- respect

to the envelope (see Chapter IV and § 7.6).

-343-



With op~timum fulfillment of all~operations in (3.2.4) and (ý1.2.5) both methods

of constructi~on c)f the discriminator are absolutely identical. This foll.ows directly

from (8.2.5), since both methods are ',he realization of one and the same mathematical

expression. In real conditions, when the required operations are executed Iru1per-

feetly, these methods can lead to someahat differing iesults, due to the varytinlg

influence of any kind of deviations from optimality. Thorefore, subsequently, whlen

necesýsary, we shall conduct parallel consideration of them,

8.2.2. Characteristics of an Optimum D'scriminal:,<r

For calculation of characteristics of a discriminator, we record the input

signal in the form

V~t)~V~Re 1:Eig. Q--kTf) e"s+ 4(f),(.2)
h

where ER E(kTr) - the envelope of the reflected signal In the lk-tli period k-2)

a- independent random phases, evenly distributed In the interval-
(o0 to 27T);

-true velue of delay.

Function u 0 (t) is no longer periodlic, but lc-ribes a single pul-se and is

n,)rmalized as before by unit mean power.

In all expressions describing real discriminators there is product y(t)e

tVierefore, we introduce complex signal

and seek necesosary statist cal o har. ic ist Lc, namely for it, Signa.-i 7-1(t) according

to (8.2.6) contai-nic; a low-frequency :-onmpornerit and a component of frequency 2,o,. Witri

anrY If-AIllmrenit of the discriminator the last, component does not pjass to its output;

iherejore, in expressions for statiotical characteristics of 7j(t) we retain only

~.cw- l'qiiecycmoiprie-rcLq, considering that. integrals containing high-frequen.Cy/

ponents of' the correl'ation function of signal nj(t) all1 the same tu-rn Into zert.

Let uis tind ý-he low-fr~equency component of the correlation func1tio).. Dropping

high-frequency components, we obtain

where u Ok(t) u,(t - kT r)-



Averaging in (8.2.8) for amplitudes and phases is conducted separately due to

their independence. Furthermore, by virtue of the independence and uniformity of

the distribution of phases a in different periods all members in the double sum turn

into zero when j , k.

For calculation of the fluctuation characteristic and the equivalent spectral

density we will need a fourth mixed moment for values of n(t). As, too, during

calculation of the correlation function, it is possible to show that

In (4) -t,)iJ 10) V (4) -j, (4) q* (4)11 (Y) Vi (t,, -

Pt N+-- ,U"•l) 0a(t) 1h j (t4) uY. (4)

2( .h (tQ,)(4 4: IN(.-t. ( t)82)

When deriving formula (8.2.9), we consider that we are interested in integrals
of this expression over all ti, where integration over tI and t2, and correspondingly

over t3 and t 4 , will always be produced over the same period. J
Let us find the expression for the discrimination characteristic. We note,

first of all, that since in formulas (8.2.i), (8.2.3)-(8.2.5) integration is produced -

only over one period, in these formulas there actually enter values of the atm-- I]

lating function u(t - T.) and only in this period. Therefore,

/r, IT,

5 us-~ys~e"d 5Ua(8t%(Iul)Tr.)N(S)e''dS. (3.2.i0)
(i-) r, ".• U-4it,

Using the given circumstance, dropping immaterial numerical factor 2K in formula

(8.2.5), replacing variable s by s + T and introducing former designation -= T ,

we obtain
__________AT, AT,

z z(A)-Z(kTr, A)) - Re r 5 u*(s 1 -(k- 1)T)'.*;(s,-(k -1 )T,) v(s 1 *) (s,)dszds.=

Sa (ls,--(k --1)T,)u*)(s,--

At, U S

(AA t-) r.AT,

- IT,) -*:(s, - ( 1 -) T ,) u.(s, (- -i,) d .+.

hrv2 1 .

"=:--Re C(A)C-'(A)+N.T,C*'(O)) .= Re C(A) C"'(A), ( 2,I
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where C(A) - autocorrelation function of one period of modulation, defined in

Chapters I and VII [see, for instance, (7.2.9)].

Replacement of variables of integration in (8.2.11) without change of the

limits of the integrals is permissible due to the periodicity of the integrands.-

Comparison of expression (8.2.11) with (7.2.10) shows that the discrimina'.1on -"

characteristic in this case coincides with the discriminat.ion characteristic of an

optimum coherent discriminator with the accuracy of a factor. Therefore, its I
dependence on the form of modulation will have the same character as before. The -'A

gail, factor of the discriminator will be determined by expression

____(A P.T' r

2 "Re 1 0=--- - eC ()C*" (0).+ IC' (O)1- (82 ._.)2)

coinciding with the accuracy of a constant factor with the expression fr the ua1 n

factor in the coherent case.

Let us find now the expression for the Cluctuation characteristic. Just as

when c•icu.lating , we can obtain

in.-.T R {qh llC (A)I' IC' (4) 11 + C'1 (AL) C'" (A)I .+,

+ q+ a lb IC (A)I' IC' 1,A)1" + 2iaC * (A) V (A)l + (b - a')a k,, (0' 2.13) 4

where pi p((t k)Tr), p(t 1 - t 2 ) - correlatio'n function of fluctuations;

q = P Tr/2N0 - tl&,- i-atic' of the e:nergy of the received sig-
'LOt .t our ý, purld to the one-sided spectral

-- nnit: of no.,ise, already used earl.ier .hI
(Thapter V ats 'he signal-to-noise ratio it,
the incoherenit casc;

- Kronecker deUta k = 0

i"xpr' Ssion (.".2.13) characterizes tii- fluctuation component at the discrimi-

:t.r Utput in the discrete consideration. In the majority of real cases i.

the smoothing circuits is great as compared to the period of repetition of the

.- grnal. In these cases the discrete process at the discriminator outpu- can be

replaced by a continuous one. The rule of replacement follows from the presentation

of the output quantity of the range finder. In the discrete case it is equal It

where gnk = g(nTr, kTr) - values of the pulse response of the smoothing filter at

moments tn = iTr, k - Tr.
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If function g(t, r) changes slowly as compared to Tr,

gzT,*T,)z,%= g(nT.., kTF4~T r, g 1,z ,c d
where continuous process z(t) is defined as

hZ (t) dii zk, z (1) = Ih. 1, =T..

(A-I) r,

In accordance with this, during continuous consideration the expression for tne

gain factor found above should be divided by Tr, and the one for the correlation

function Rik, by Tr2 having defined the correlation function of the continuous process -3

by relationship

Ryit9 Q)---R(iTr, k,)=-=liM-" (S.,2.14)

Then on the basis of formulas (8.2.12)-(8.2.14) the correlation function of an

equivalent fluctuating disturbance at the input of the range finder, determining

equivalent spectral density, is equal to

R(01, ti,)=lim -- , 2I. eq'p' (,--t,)×

( UIC (&)I' IC' (A)l' + C*( C" (A),+rTrqa (t -1,) [bIC (A)I'
S~~~~+ IC' (A)l' +-2iaC* (A) C'(A)l + T, (b -Wa) (t, - ,),(j. ..

where t. kTr t 2 = iT,

lir • =• t,-.4t).
r,...o Tr

Formula (8.2.15) determines the fluctuation characteristtI c.' ip, discrimin.•0or:

Sol' (4) = R~t, )tt-) (,r_')' _a,+qrdci(4.:. ic,(F.+

+ 2iaC*(A) C'(A)l + 2TA1 S0 (a) ds t1C (A)I'IC (A)j' +C" (A) C" (A)I}. (,. 2. 1),

where as before SH() e _ p(,)e-"'di - normalized spectral density of fluctuatj.,.,nr

of the reflected signal.

The depondence of functions Soj(A) on characteristics of modulation completely

coincides wi.th the corresponding dependence for the coherent case (7.2,20), whici:

already was investigated in Chapter VII. The dependence on the signal-to-nse raiAr

and characteristics of fluctuations of the signal is found differcntly. Let us
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consider, first of' all, the value of S,,4,1) for L 0, i.e., equivalenit spectral

dennity of' the discriminator S.. From formula (8.2.16) it f-l-lows that

Sea' 29t1q (8 17)

This expression, obviously, coincides with expression (7.22.5ý) for thc cnherent

case if it is considered that spectral density of fluctuations of the signal has the.

f orm of a square function with width Af f ~r =I/T r- Such coincidence is com-

pletely natural, since with spectrum width Af =I/T the cohierent signal coincidoes

with the incoherent one. The dependence of S onq was already investigated earlier

in Chapter VII. It is obvious that the curve of Figf!. 7.5 for a square spectrum of'

fluctuations describes simultaneously the dependence on q of quantity S f rom I
(8~.2-17) with replacement of h by q. For large signal-to-noise ratios q, qua tity

Sois equal to NI/PC(b - a 2), which coincides with the limiting value -,f S,11n f -)

a cc-,Prent signal with large h. This means that with optimum construction and hj.ghC

signal levpels coherent and incoherent rang>,' finders ensure identical accuracy.

For signal- to-noise ratios which are not very large incoherence of the sigýna'L

leads to definite loss of accuracy, thL- magni-tude of which for the case (-f a square

spectrum of fluctuations of the signal can be deterAined by the following express Ion:

S.Utuagger M1+q +- f

wv.i~ch 1,.3 valid when A-f Tr < 1.

'When LAf C Tr. Ž I, this ratio turns int e. Formuia (.22< s:.-ows thctt for

Adel-tical a~ccra.,-y of coherent and incoheorent range fi'nders it is necessary that

ci i2igreat as compared to unity, and h is great as compared with 1/IAf. 1I' r The

2),1:r~ f rat-1o. (ý3.2.16) on h for various values Af G T r is showrn in Fi1 ý.

From this, figure it follows that with high frequencies of repetition and valuies oci

tje, sigrial-to-noisce ratio h ~10 to 1.00, the loss due to incoherence may be rather

.;,jbs1.ai,'ial. Presence of such loss is one more ground for selection in incohierent,

radar.- of a low freqjuency of repetition (see Chapter V).

Let us, find ihow the spectral density -f parametric fluctuations. IFrom (.2lE

If i'11nw. tnt

Sa =I dos.e.(V) S2

S~~, 1 *Aj, 1 3 0  )dm-(.2.19)

i~e-.j I' coincides withý an accuracy of numerical factor a of the order of 0.5 to) 1
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with the magnitude of $/1fe and thus, as in an optimum coherent range finder, does

not depend on the form of modulation of the sounding signal. With a square spectrum

of fluctuations a = i, and in the case of an exponential correlation function a = 0.5.

Fig. 8.1. Loss in accuracy of incoher-
ent range finders.

Thus, the optimum incoherent discriminator both in the character of dependences

of the discrimination and fluctuation characteristics on the form of modulation and

the magnitude of mismatch, and also in the magnitude of equivalent spectral density

with sufficiently large signal-to-noise ratios does not differ from a coherent one.

SubsLantial difference in characteristics of accuracy can occur only for signal-to-

noise ratios q which are small as compared to unity, where the loss in accuracy is

approximately equal (for small Afc Tr) to quantity (i + q)/q,

§ 8.3. Discriminators Using Correlation Processing of the Signal

Discriminators with correlation processing of the signal in methods of construe-

tion and calculation of characteristics are the closest to coherent discriminators,

Considering analogies which exist here, we shall start our consideration with them.

Approximate fulfillment of optimum operations during correlation processing can be

realized by any of three nwth~odst with thc help of two delay-dpt.¶ned channels, in

the form of a single-channel discriminator with switching of reference signals, with

the help of a two-channel discriminator using a reference signal.

1[



3.3.1. Discriminator with Two Doetuned Channels

The block diagram of a discriminator with two range-detuned channels is shown

in Fig. 8.2. In its functional structure it coincides with the corresponding diagram-

of a coherent discriminator. The received

signal is multiplIed after transfer tm

mediate frequency or before this transfer by

two reference signals ut(t) and u 2 (t), wi:h

to some degree of accuracy repoat. the lavw

g bof modulation of the sounding sIgnal andi Fig. b.2. Block diagram of a corre-

lation discriminator with two delay- have a corresponding high-frequency i.IA-Ing.
chotuned channels: I - local escil-
lator; 2 - mixer; 3 - controlled Signals ui(t) and u 2 (t) are delayed reletive
gentrat'.r of reference signals; 4 -
multiplier; 5 - intermediate-fre- to the sounding signal by T + 5 and -,
quency filter; 6 - detector; 7-
subtractor. respectively. After multiplication the

signals are passed through filters with pulse response h(t) cos Onpt, are detected

and suontracted, forming output voltage of the discriminator. The differen•ce betwee

the incoherent arid the coherent cases is only the inertia of the filters, which

in the incoherent case should be small as o'.nqpared to the period of repetiti,. f

signal, in such a manner that responses of the fili:rr to adjacent puJ.css do) not cv, v-

lap. In the optimum case this filter sho,uld represent an integrator for a porid

writh clearing; however, as we shall prove subsequently, final results do not depend

un the form1 of toe characteristic of the f. n-r if only it possesses integrating

pro-perties during a time equal to 1-- e nl se duýiation of the signal. Let us assume,

f[o"su, that this condition is satisfied, i.e., that Af i., << I, where TI -- pulse

O;ratJon of tI.. Sitý;Jal, ,.nd Aft - bandwidth of the filter. Then we shall consider

"-*e :' -o wren this conqdit.ion is not satisfied.

Out., v'.itkage of the discrim-Inator, analogously to ) 7.3, is presented in til.,

z, U,~' 5It-ls(s --i-) (s) e6"''dsj2- h (is) U (s -t +)y(s) el"*'ds2. i.3

where it is assumed that pulse responses of filters in both channels are identical.

Du', to nonstationarir.ess of the input signal and small (as compared to the period)

InBetia of the filter z(t, A) is a nonstationary rantom process with periodic non-

stationariness. Therefore, the discrimination, an• fluctuation characterist los are

determined by expressions

-)
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F
S' I ' • ) ( 8 .3 .2 ) :

z ( A) 1iM z (i, A)--8 dt,

0 _______ (.3
• ~r

r.-,•- [(t. A)z(1+-I-$ A)-- (8.3.3) .

zT, - ) z (t- ., ')l di, :.
where

KA!1JA)j (8.3.4)

is the gain factor of the discriminator (see § 7.4).

Expanding expression (8.3.1) and substituting in it the expression for the
ic~ot

correlation function of signal 71(t) y(t)e from (8.2.8), we obtain

2~ V.
a. (,.-*= 5+ (-,) h..i,-s, + ,)I (s1-. )

r" 2
- ATr.) . (s,- ;.- kT7) + N,+ ($, - S,)] ds, ds,=~

- C,(A + 8)1'1 + N, (Cal (0) Ca (0 ))}

where functions Ck(x) are determined by relationship

T,

C,. €X-) ! u(s+ sx)... (s) ds,

a, (8.+.x)

i.e., are crosscorrelation and autocorrelation functions for the totality set of souni.I-

ing and reference signals.

Thus, as in the preceding chapter, we shall be interested only in values of

these functions within the limits of one period, since mismatch exceeding the period

of repetition of the signal is not of practical interest.

Averaging (8.3.5) in time, for the discrimination characteristic we obtari nroE

following expression:

t (1 A) q ( " I)' - IC, (A • )i'1 + C. (0) -
OD

CM (0)) ;, ht (1) dt ={q (qiC, (A - M`)' -

IC. (A + 8)I'l + C,, (o) - C, (o)) N.,I,, (ý3-." )
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wflere I~4'e

and we. assumfe that li•( iC) = 1,

From comparison with (7-3.26b) it is cicear that a-cording t~o the character of'

the depentdence7 of brie, discrimination characteristic on the laws -)f modulation ",f the f
sxdlgand reference signals the considered discriminator Is comnpletely equivalent

Ic rtie correspond ¶nig coherent disc -imir-itor. In particular, soeand null shift.

6f the discrimination enaracteristi.,': are equal

(f, 0) C,, (0) -C,, (0)+ , IC,. , .$ýj'-C,* (8))1
T.- q qReIC".(-4) C%.(- )CIS (8) C* O~N v(<.

which differs from!! ('7.3.28) and (7.3,29) only by numieý,Ioal fact.ors. Null shift 1.3,

az.:f-r all A'111

IC., S0)-1=C,(0) ',(j i

.eIf -ondil4 ions of syr)n~etry of referernci. s lgnait riý- -.t >ve- to ouici inf- signal S ani-

of e6sll f gains In both channelsG are soife.The dependence- ,if !,ie gali. L
factor or, debuning betwe-:n the reference signrals is precisely the same as in th~e

coi e .di sor~lminlat.r-

its,-, f Ind -o the equlv -e 9,p, rI 'I -,s !jt y. We a-suree teliat conditions

(d.-5.3ii) acatifeHere, as in tht) co~herent diciLntr ecopnn f

til,ý d- "-- not, depenio or. the ~ - eratio) wi ll turn jot- zero,, are in I
c-xe-r281stsn fr t ere wllU remait nl;-y t(i-i 9 wild1- l/q arnd 1/q 2 .3, aIou~.['

irreai f''icjt 'onr H I,, 0 we thle helT' o'f (. ,executing transformatlert;,,

similar t thVose wt icir were, used in deriving ( . ).averaging th'- obs -alr.ed Xjl r- i-ý

sin)1 In time and zgrtn in acco'-dance with ('K3. 3), we car, obta,'n 1•- olirwing

T, o:T(2 1 C. (0 @1' j,, -ICS(91 IC.. 24)I2 +

+ 24I2C., (Ofl C1.(-)
- Re C,. (- 28) C0,1. 8 COF8.

-ReC., (28) C.n(3)Y 4ý%(8,M :(4q Re [C',,(8) C1,* -$. (-3811 12) 1
I' row compalri rn of. this 5 xr - .i wi Ii t- .he eo(rres~pondinp, expre.;- 'I u for I lie I

Ncoie retit dl soinator (7 3.30, i t 1'lou-1-e that expres; onn( .317 d fferr "r- 11 Ji1

ony by soeffic tent s wnich depend oni the e ignail.-LO-T10H l.cccat to. The s .,:-r



these coefficients in this case is still simpler -- they depend neither on the form

of spectral density of fluctuations of the signal nor on the frequency response of

* the filter. For small detunings 6 expression (8.3.12) approaches SOnT from (8.2.17),

and with arbitrary detuning the dependence on its magnitude and the form of the

sounding and reference signals can be described Just as in § 7.3 by introduction of

the equivalent signal-to-noise ratio qGHBand the equivalent width of the spectrum of

modulation bMB. Formula (8,3.12) here takes the for::

""" •,b,,, '(8.3.13) •_

,?.,!,e re q

- C. .(2)I' - Re C,,is-2')c*,, (-- C,, 1-8) --

-Re Ca (2O) ) ,, 1(8) C ',, (-). (9-3. 1-4)

-- IC (23)1'

b

2R.e C',. (- a) C.,. (- 8)1' 12C', (0) -
"Ab 12C,, (0) C ,(__4)12'- Re C,, (-2•) Ca,. (--8 C.,(--)-

-- C,, (28)1 - IC,, 1'1 (8.5. 1(58)
R- e C,, (Z) Cal (8) C.,, (8)12

coincide with the corresponding ratios h,/h and ha,/b from § 7.3, which already

were investigated in the preceding chapter. These relationships permit us with the

help of graphs for ha/h and baw/b for various concrete forms of modulation from

Chapter VII anr formula (8.3.13) for Fig. 8.1 to calculate the magnitude of 'St, f. r

any case interesting us.

8.3.2. Discriminator with Switching of the Reference Signals

The block diagram of an incoherent dlscriminator with £w-itch.ng of reference

signals differs from the corresponding conerent diagram (Fig. 7.7) only in tho for:.

of the filter h(t), In all other respects, as in the *preceding case, all opora.:l.

and the expression fo- the .output !oltage of the discriminator coincide with L,:;r

given in § 7.4. Due to the great (as compared to Af c ) bandwidth of the filter 1,-

the incoherent case there is possible selection of a. frequency of sw:lichlr -f

reference signals, ratier high as compared to Af . As shown in § .4, 7 .4,

.o_"rtion is very destrable from the point of view of decreasing tlhe comp,',nenf 'A

equlveler't. rpectral density which does not depend on tne signal-t,-,v'As,, r hi, l,

is caused by incomplote correlat ion )f ' e useful signal in adiacen. a' . " -t

of the frequency of :-¢wiching. ThI-.: component d-.sappears only when hP.e fru':/p,'n -:i
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of switching is great as compared to Af (see '7.4*.7).

In coherent discriminators possibilities of selection of the frequency of

switching are limited by the passband of the filter, matchied with the spectrum of

fluctuations of the signal; rapid switching and eliminat'.on of tbhc corrc~spcndinf, c omI.-

ponent of 6,are possible only with a wide f l~ter passband Lf ,2o triat. tnc- fre-

quency of switching f H should satisfy condition AI'& > > f 7. >> ,

During coherent processing this condition can be satisfied onl.ý in rare cas'.vs,

while in Incoherent discriminators, due to the great bandwidth of the fi-lter (An'd

iT fulfillment of this condition does not present any difficulty, and the

frequency of switching can be only half the frequency of repetitiCYri --f* the signal. -

We assume that conditions on the speed of switchiing, leading to elimination of h

* ~~component of equivalent spectral density which does not depend onl the sga-onlt4
ratio, are satisfied.

Thie gain factor of the discriminator with switching of reference signals and

its discrimination characteristic, as also In the noherent caot:, coinc~id.d with; aii

accl'.racy of coefficient 1/2 with the corresponding characteristics of a twc;-cliannel i
discriminator when Ciod C 2 (6 ii;equali-ty corresponds t~o t.hec natu~ral assur,-p- 44

tior. of coincidence in form of the refercnce signals, alternately utilized as thle

"leading' and "lagging" signals. The condition of absence of' systematic error her(,-

is the equality 1C Then, the gain factor w-i1l be proportional

C10 (~I

J~ust as Ln Paragraph 85.1A, we ca.,. obtairi. the following express!(o-n for eqi-iva-

lent spectral density:

T, I + 2q 1IC,. (8)11
Saa~u -qi** [Re C'.. (8) C*10), 3. 1h

ln parllcular, wit'i coincidence of modulations of the soundidng and the r'.'f-i -

7ON , 1 + 2q ic(a)j,

1.,s -1iaentity, depend-fng upon the selc.ction of 6, may differ suabstanti ally from

3 orn~jj wocrn.. t.1-,re Žx.Lsts a certain optimum val ie of deturiirg ensuring min~irwm Sr K

The phys!- ý! r'eP,.srmns for such a de~anO-nce uf S..on detaning are the same as In

the case of a coherent discrliznator (§ 7 .4); how,3ver. "te Pctual optimrum value SorT

iE Pound somewnat. differently. This quanli ~ty 4f, d& termireci from equat torl



and depends on signal-to-noise ratio q. Detailed investigation of the dependence of

SSE on detuning 6 and comparison of the considered discriminator with a two-channel

one will be conducted later in examining concrete forms of modulation.

8.3.3. Discriminator with Differentiation

of the Reference Signal

Such a discriminator in its principles of constraction is the closest to the

optimum one. Its block diagram coincides with the block diagram of the corresponding

coherent discriminator (Fig. 7.2). The difference, as also in the preceding cases,

is only in the bandwidth of the filter. Merits and deficiencies of such a method

of realizing optimum operations already were discussed in Chapter VII. Incoherence

of the signal in this respect introduces nothing new.

Designating reference signals in the two channels of discriminator u,(t) and

u 2 (t) and assuming that the frequency responses of filters in both channels are

identical, for output voltage of the discriminator we obtain an expression coinciding

with (7.5.1). From the latter, by transformations of § 8.?, Paragraphs 8.3.i and

8.3.2, and averaging in time we can find the following expressions for the gain

factor and equivalent spectral tensity:

Ka= N.Af4 q Re [C',. (0) Ci.. (0) + C*1. (0) T',. (0)], (8..1)
C,,(O)C,,(i) + Re C 2 (0) + q i(t,, (0) IC., (0)1' +

2.j' IRe (C't. (0) C'.,(0) +
+- C,, (0) IC,. (0)1' + 2 Re C,, (0) Cat (0) C*.,(O)l

+ Z..;so0) col (o))V, , (8.•. ( 3. )

where Cik(x) are determined by formulas (8.3.6), and we assume that there is no

systematic error. The condition of its absence is

Re C., (0) =Re Cis (0) C%. (0): 0. (8-.2!. -,)

With optimum reference signals ui(t) u(t) and u,(t) = u (t) formula (8.3.19) chai],g

into the expression for Scn, (5.2.17). With arbitrary ul(t) and u 2 (t), Just as 'in

P-.ragraph 8.3.1, it is possible to introdure equivalent values of the signal-to-
2

noise ratio q3 , and the mean square width of the spectrum of modulation (b - a

If, in particular, reference s ;',. u,(t) differs from the sounding signal, and

up(t) = ui(t), i.e., differentiation of the reference signal is produced exactly,

$. __ TV,, -i + q IC,. (0)1 (b,. - 2aa,, + allo.(.)
2q' IC,. (0)1' (Re b,, a 2 .m

where alk - Re Cik(O); b =
3 55k 1Ck.
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Thus, connideration of incoherent discriminators with correlation processing I
of the received signal shows that the character of the dependence of the gain factor

and equivalent spectral density on the method of constructlon of discriminator and -

the form of modulation of the sounding sl.gnal. and characteristics of t"le referep,• 4
signals remain the same as in the case of a coherent .;ignal. The dependenice 12 : _u n.

magnitude of detuning in two-channel discriminators also does not change, and in

discr:.%.,"ators with switching of reference signals the quantitr tive form of the

dependence changes somewhat, although qualitatively all remains as before.

The structure of tne formulas determining characteristics of incoherent discrli:-

inators does not differ from the corresponding coherent cases. Only, here, in

formulas for S,, pertaining to conerent range finders all integrals containinrg the

frequency response of the filter and spectral density of fluctuations are replaced V
by i/Tr, and the signal-to-noise ratio h is replaced by q. This gives us the pos-

sibiltty of using for calculation the characteristics of incoherent .iscrinminatcrs,

calculation formilas and graphs already givon -n Chapter VII, by a simple changcŽ f

scale.

A distinctive feature of incol-erent g:scr:Vjln~tors with corrolation processiingý,

Is independence of their character' -.. 's from the form ', the particular character-

istic of the filter and the magnitua, its, passband, if only the latter oatisfiees

relationships i/t » Af• »

§.4. Discrirnirat'.,r wth a "Shortening" Filter

In inco)herent range finders using a pulse signal in nany case's il Is Incre

rational to use :,he principle of optirnur:, filtration of the received signal in a

(';<:, u'tening") filter [4, 35, 38], This gives us the possibility to form the ]tkci -

f',oct 1 )1 mat and to measure the distance to many targets using the hjigh-Ire-

aq,'ercy part of toee radar set common for all meters and the detection unit.

Even in single-target radars use of a "shortening" filter can lead t,) grteat

tec•lt.cal simplicity as compared to correlation receivers.

8.li.1. Block Diagram of the Discriminator

A "shortening" filter, in principle, can be realized on a carrier of interme-

diate or low frequency. In practice, they most often use filtration at ritermediata

frr-quency. However, selection of the frequency at which the "shortening" filter is

realized does not affect analysis of the discriminator and its results. For

detinJI iveness in Fig. i3.i we show the block diagram. of a discriminator with a
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"shortening" filter at intermediate frequency.

The received signal y(t) after transfer

IM to Intermediatu frequency is passed through a

shortening filter and detected. Output vol-

tage of the detector is fed to two gating

stages, to which there are fed gating pulses

Fig. 8.3. Block diagram of F_ dis- (gates), detuned relative to the output value
criminator with a "shortening" fil7
ter: I - local oscillator; 2 - of delay by +b. Output voltages of the gating
mixer; 3 - "shortening" filter;
4 - detector; 5 - gating stage; 6 - stages are subtracted, forming the output vol-
controlled generator of gates; 7 -
subtractor. tage of the discriminator.

The derivative of the logarithm of the likelihood funtional in the given cir-

cuit will be formed approximately by the two detuned gate pulses. This approximation

will be all the better, the narrower the gate pulses and the less the detuning

between them. At the limit they should be delta-shaped and located with detuning

5 - 0. In practice gates have finite width and are detuned a finite quantity,

where both have a magnitude of the order of the duration of the pulse at the detector A-4

output. I
The considered circuit represents an analog of the correlation discriminator

with two range-detuned channels. It is obvious that the corresponding! ana.or fcrr a

circuit with switching of reference signals is a circuit in which gates are not fed

simultaneously, but one-by-one during a certain time Tn/ 2 . Such a change in thlo I
case is not a technical simplification, and at the same time, as in correlation

discriminators, it leads to certain loss depending on the degree of overlapping of

the gates, their form and the ratio of the width of the spectrum of signal fluctua- A

tions to the frequency of switching.

The circuit with differentiation in this case requires two "shortening" filter'..

with different characteristics, which, because of their complexity, is hardly an

acceptable technical solution. Therefore, subsequently we shall consider only th-

block diagram of Fig. 8.3, which, as we shall prove subsequently, in a broad range

of conditions gives results sufficiently nlose to thc:ie potentially attainable.

Pulse response ho(t) of the "shortening" filter in the block diagram of Fig...
iij) f t

.dbe sufficiently close to Re i 0(-t)e where u0 (t) - a function describing

Ofl, period of modulation. Only in the absence of additional inlrapulse modulatlir,

(,an this pulse response be presented, as for all filters eonsidered ear!.ier, in the

form h(t) cos (A)t, where h(t) is the pulse response envelopr .
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In general, witn intrapulse modulation this pul]se response can be presented by

low-frequency functions only in the form

Co ( N)•-t + • •sin M'J't,

where hl(t), h2 (t) - sine and cosine component• of pulse responrse.

For instance, for the pulse described by function 11O, with phase modulaticr!

according to the law ?p(t) for the case of an optimum shortening filter ]
h1 (t)-- u(-t) cos ?Po(-t), h2 (t) = -uaO(-t) sin V10 (-t).

With arbitrary modulation the pulse response of the filter can be recorded i!.

the form Re h(t)e i , where h(t) - the complex pulse response envelope of the

filter. In the above-mentioned example

Taking into account this circumstance we can record output voltage of the filter

in the form

us M-)= e (-s) e ' -Y (s) cos (.. + wp) sds=
in t

-2 h AQ -R ) (s) e'"ds, (4. L.l)

where tnere are omitted components with doubled frequency . Then, on the basis

of (".4,1) we can describe output volta.1 e of ir-e discriminator by the following ex-

preLssion:

wher'e there are omitted immaterial numerical coefficients, and v(t) -- a functL,8

describing the sequunce of gate pairs, so that

V (t) = V.. - at,), (i.•

T - measured value of delay.

linction Vo(t) must have negative and pr,-sit Ivc values, since onr,ly in this case

is creation of a discrimination characteristic possible. In accordance with the
'block diagram of Fig. 8.3 function v0(t) is the difference of functions describing

gating pulses fed to the various gating stages. For example, with square gates vo(t)

has the form shown in Fig. 8.4. This form depends or. the amplitudes of the gates



and detuning between them. By selection of tht form of the gates and parameters of

channels one should try to ensure that function v,(t) is odd.

Fig. 8.11 The form of function v,(t) depending, upon

th~e amplitude of the gates and oletuning between them,

8..2. Discriminator Characteristics

Lot us find characteristics of the considered discriminator. Substituting, in

i~ 0
formulas (3,J4 .2) the expression for correlation furCIcAor rj(t.) =y(t)e f roi,,

(32. , we ýttain the mean value

X ~ ~ S I4(*i (~)+oI(Si *, dsds2 cuQ - T

kk

where

h* ds a. ( s) d

is the result of passage of signal u,(t) through a filter with pulse response h (y.

whi:m 'It is possible t(- treat the samne as the function of cross correlation b(twoeen

the piilse response of thie filter and thte fixnction describing- the law of nodulaticýr,

of the signal in one period. Such treatment is useful for finding an analogy w4-11-.

the correlation metiiod of processing a signal. In particular, with an optim~uii

"shreig"fle Lh(t) =u 0 (-t))

IOTX (t),

where 0(t), as heforý-,, is the autocorrelattzn funci Ion f-f the signal, To prod,'(2(

lhb- dtscrimination charucte3ristiL we average expression (6.4.4 ime. Tnrn S
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z ft. (z (1) A).-~ di

0 0 -o -0

IHence, the gain fac-i~or of' the discriminator

During calculation of discriminator characteristics it is ofter, more cmuven.Iený:

to use, not -a time, but. a frequency prosontation of funictions. PassinE in epctA

(8.4-7) to spectra., we obtain

__U[i."(ox)IX
zTt A2-, l

T,~ d 2no,2* )

wh,-.re IJ(iu) , H (iu) , V-(1U)- FcUŽ:.icc.( trzaný; tm he correspondinr liu

Likewise, thie gain factor of the discrmirdna-,or

PC I~ H C U*U ) [i(a + X)l X

40 -M~

Fro)m formulp (".4 .7) it follolws that the cond-Ir.10DB of the absence of systemat~ic

T~first -fn:ccd iccroi sts of' the ro-qo ire-mei,i. or equali ty of Itha

areas or' tha poci) I.vo and riega-,,ve pa ra ot' v,, , arid lie !eend is, the revji remnent

(T 1';n AyOf uhe square of tle i-.rulme p1 1 sr ernve! opc wit.1i functiont v, (i.

11' lne, iva'es navH Ldh2.; hape, K:;r :t 1 Cornd (fi7Thn of,. lmdu!ol,

t the Ofr T.11 Fkfeep'~ pi!n o 1 rrnloIo huint for dý-Iay. W i tin -ymniime IrI

Crn:r9 tie E ht ! 1 jre 'i: mvi.p h tOV'lO i t ciccIoW t Fj lr



but with asymmetric form it should be determined in such a manner that (8.4.12)

is satisfied. In practice conditions (8.4.11) and (8.4.12) usually are satisfied.

Moreover, gates, as a rule, are selected identical, so that

VY) =.,+ )-- Vt .- ), (8.4.13)

where -(t) - function describing the form of the gate;

S- detuning relative to their center.

Subsequently, we shall consider systematic error absent.

In discriminators of the considered type they very often use square gates of

certain duration . Detuning 5 here can, without loss of generality, be considered

larger than .2, since when 5 < Tn/ 2 the form of function v 0 (t) coincides with the

form of this function for 6 > 7,,,/2 with an accuracy of quantitative parameters

(Fig. 8.4). With such a form of gates

and the expression for the gain factor has the forma {j, ((t- ( ±+

(6 n2 priuafor the most wiesra aewhen gates are located endto-e!d

K - ( 1{ If ()) '

Let us find now the correlation function of output voltag of the discriminator.

Using formula (8.2.9) and assuming conditions of the absence of s•ystematic error to

be satisfied, for zero mismatch we obtain

P

)X - - i (s2) 1* (1') -( . 1

- Ui (,) i" ((.,) an (ss)min (cn o doth,da,dsn (o.. .e r t

X h'(1+8- .,) V. (I [ -,1N*Pe R~e VI* (I k T,)fI(I +0-5 - kT1 ) X
A

x V Y It.) V. Y+O-)
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Averaging this expression over time t, we cbtaini

1c" y. f (s+ fj) dsr I . (t) V. (t + 0) dt +

+ Re P(t*.(j)il- -O) .lt+O)dAX £ f'(s)h(s+1)ds.

Integrating the expression for Rz(e) over e and diviaing by Lhe square of the

gain factor, we find the following expression for equivalent spertra] density:

h(s) h(sj+ 4))ds+ Ih*(s)h(s+$)dslX3
0 *

I• •,,SI 1× *

-00

Just as in formula (8.4.10), integration over time in (8.4.1.8) can be replaced

everywhere by i.ntegration over frequency: then in the expression for S th9ere ,it ._

be only spectra of the corresponding functions. Pi,.-,dtu.cing the necessary transforma-

tions, consisting of multiple application cf Parseval's formla, wI-: arrive a.t the

following expression for •wa

12q ~-y Re I' ý U(ix)H*(- iX)(J'(iy) X

SX H 1 -- ) V , (i( -x )] V -. [i (a -- H * "1 i o) X

XI ) (-- i,1 ddxdy+ ,' (i.)O H' (is) H (is) X

X ,•j (a+.x)] H ' (*-+-x)}dsdx 1: iWU*X

X -m+ x) •-•I (a + x)] U (ix) * (-x) V. (is) ,,x}. d. .i

Let us ccnsilder the case when the duration of gates is small as compared to

duration of' the pulse at the detecto-r output. , e. function v(,t) can br presented

,1 (e- 8(t -8), (.•. un. t ,i

wh~re h(t) -- delta-function.



He re

X 1 .• s T I (it A N - l -- I I (a - -A )l } . . l) -

and the gain factor of the discriminator will be equal to

X=h2 Re {'()I(8) f(a)1 (*)). (8.4.22)

Substitutlig (8.4.20) in formula (8.4.18) for equivalent spectral density, we

obtain

IS@P'=T?, 9 ReI (-&)Ik+ if (&)I.)th(jda() ()h*(a)h (8+2&)ds -I

- 11'F(a) Ii(,)h(S+-8da +r [(Ih (a)(s -(s) d
j J 7 \~I I(8.M .23)

A* (s) h (s+ 2a) ds (J'(-q R 8)l( 8)-

From comparison ef this formula with (8.3.12) it follows that both expressions

coincide if we set
4 :

(8. 4. 24

Thus, the considered discriminator with gates which are narrow as comparedi lo

the duration of the shortened pulse is completely equivalent to a two-channel dis-

criminator with correlation signal processing, in which reference signals are idee' 1.,.

cal and are determined in accordance with (8.4.24). In particular, with an optim-ou.

"shortening" filter h(t) = u(-t) and detunings 6, small as compared to the dursti.,n

of the shortened pulse, formula (8.4.23) becomes expression (2.17) for S

h(t) = u(-t) (8. 4 .6) is satisfied, and

h)* (s) h (s- 1) ds -T-,C(1). (..!. ) .

Further investigation of tha discriminator without specifying the form of mojidu-

lation of the sounding signal and Characteristics of the optimum filier is dff'cult.

The obtained general results permit us t.o conduct such an invest 'tocticn in ony cui..rt

case. We shall pursue this in subsequent paragraphs.

§ "• Incoherent Pulse Radiation Without Addltion-ti Modulation

Simple pulse radiation, Frebably, is the most wide-spread in practace [i, 2ý T

r-]. The matched filter in this case can be called "shortenlng" only in qjt tc'1s. L.



reality it Is a n.)rmal i-f amplIfier (IJPCh) w,.ith a bandwidth., approximately match-ed

with the spectrum width of the pulse. Requirements on the form of the frequency

response of the UPCh are not very critical; in practice exact matching of it with the

Vorm of the pulse spectrumn is not achieved [30, 4:]. With a pulse signa.L without

additional modulation most rational from the technical point o2 viewr i.s the applica-

tion of discriminators with "shortening" filters; however, in prinlLiple, there can

also be used correlation discriminators. We will consider, basically, discriminators

with a "shortening" filter; however, we shall also touch on norrelation discrimnor.n1tn1.

8.5.1. Discriminator with a Broad-Band UPCh

We consider first one particular case of a discriminator uslng.r filtration,

without specifying the form of the pulse.

Quite often bandwidth of the UPCh (Y[rN)

h5 (t) jt IIH ('my.ja.
considerably exceeds the matciied bandwidth, so that Afy•-u TZ >> I (pulse respnse 5'f

trie filter h(t) during pulse radiatiorn ,ji.icut aad..tonal modulation is real). Ther,

the puolse passes to the UPCh output without distortion, soc thal

I ()= u.) (. M.( )

and formulas for the gain factor and sp31 d.•sify take tihe form

21 54E)v (1) di - v-5 (I)dt J-5H (io)l' do
son,-. .:.)

'- n

Aherv frequency response .)f the filter is normalized so that l(iu) , and tntet'ral

has the order of Azfry and is equal to Ay,.{ in the ease of a Gquare freqluenIcIy

response, 7fyri{ witlh a frequency response of tne UPCY coutii.ciing WI.r! ine frF-

quency response of a single LAC-circuit, and (i/I•)AfY:-.T
j withi a Gaussian frejwn:,

respon.-,e.



'4

For validity of formula (8.5.4) there is required, in general, not only condi-

tion Afy-l t.1 >> i, but also the condition that bandwidth of the UPCh is great as

compared to the width of the spectrum of gates. From expressions (8.5.3) and (S.5.4)

by means of calculations we can obtain particular results for any concrete form of

the signal, pulse and of gates, in particular for square gates of duration ¶c0 and

detuning 5 Ta/2:

qTI Si u(1) dt E AYqc
SORM= Tr 2eH o A(-3.5.5)

+ 4 ('Go ) +Ii(iioc)
Se.= --T, -T,

where a - coefficient of the order of 0.5-1, characterizing the difference of

integral I S IH (i1,)14 do from AfyflL 1

8.5.: Square Pulse

Let us consider first of all the case when the frequency response of the UPCh

is matched with the spectrum of the pulse, and the gates are narrow as compared to

its duration. Then

and from formula (5.4.23) it follows that

Just as in the case of a cherent dizcriminatcr, this enpression approaches

zero as b- 0. Actually SMW seeks a value determined by th(n,! duration of the p'ilce

edile. The dependence of on detun!ng 5 1s identical with (7.6.3), de.scr 11)4 1nft

same dependence in a coherent discriminator.

Wit., a broad-bans uPCn and square gideb uf durat'n nc.r. .. wt.h d.tuning +t•(5 2

/ • TI/)T from fr,rmula ('•,5.5) we obtain

son],"( + a n")"'.-

" ~- 365- :



Fromt this formula i~t follows that wi1th finite duration of the gates ('ro '

,>> i/tIC-p- ) accuracy of' range finding Is finite for ail 8 and Isý determl-ined byI

puiseý duration. The dependence of 3OBon q for different 'EmyF,, 1 i shown in

Firi. 83.5, from Which it follo-ws, that with sufficiently larjg.e signal-to-noise rt'

e' 1.1,ronsjdered. disci'im1ioacu I
uncritical. to the width of rthe UPCh

passband and duratiun of the gat~es.

N -Let us furthex consider th~e "(,5Qs

___ _____when the frequency response ol' the

UPCh is, matchnd with ',he pusr.'sctr'

square shape. In accordance wi "It iv~;

14ý this is moost frequently done in praz.-M

is 00 40 50 tice, we shall consider that gate~s

are locate-d end-to-end, i.e. 5
FL g. ' 1,,q~ . 'cj i vA Ienit fpectral dens ityth dsrinae

for a. di;crlmlneator ~;it~h a broad-band UPCh; Thie gain factor of th ]cirin-.~
a~fp~j~ - a~f~~~ ~ic q~r:is p~ropo)rtiojnal, to

yll Trc 10q-

and reahsa aiu valuei at'rr F r,.iurf~1 er expasts int of the ga&te.- 5 j. ti&5 _

1-n c pulse duration with respect to zer"":. at the output. of theý rmatchýed UPCI, A

'al. aT, Lt the Power ,-If tbe us' f':t ,nal at; the discriminator output

ri',t i~nf rease , arid theo power !A' nol'.) -i'I**l, rows, inasmuch- as titnIfegrat oin )f1

iol.Sý ('r' U. no c r; vr t;he wit' le large interval of time, Therefore vie zriaJl consider -

iiututio t ng xp rE SS ion ( 5. F, n r-d fin1er t. In v 0 (t),des iIc

re.. r CormulA (.1; i) we obtain as a. result f.,f tnt fýrat I) ),ri eet.Iown

whero a1, a 2 -furi I, ions do -scribing tii dependence (if' cc-Pip'ments .'f ,peetral R.11i:11,y

'rn 'hh, rat. to 'if' the durattlons of gates and 'f 1he pulse , These functionis lovr- t,¶i



v . , 'toe

a 4(32- , (8.5,11)

In~ me$"F % +0

Sso . (-n-) 2

C4

4gm %as o IIA

In particular, when -%/'r = i coefficients a1 and a 2 take values a1 = .i:J arid

a-- 0.142. For small 'r T"/v both coefficients have the order of '•/t. The dependence

a2+2

Sof a, and a 2 on ,' 1 is shown in Fig. 8.6. For small signal-to-noise ratios q dura-

tion of the gate rather strongly affects

- - -accuracy of measurement. For large

SiI signal-to-noise ratios this influence Ic

- - - / less essential if duration of the gates is

2

/ not very small -- in the domain 1/2 <
S" t 'r• K I coefficient a1 varies little.

a. 0.42. For small the dependence of a1 on

of a, a oi.8.6 is approximately linear. Thus, with

// a matched UPCh it is useful to decrease
duration of the gates; in spite of decrets,
of the gain factor of the discriminator

0 , le ss0 quantity f decreases with decrease So

F .ct For very small - resultt of

FFor small nflenc the depedenc of• aoo

a discriminator with a matched UPCh on analysis, of course, do not reflect

Sd. reality --wno need allowtnce for te c finite

duration of the edge and nonlinearity of the discrimiaoation and fluctuation char,,c-

istics,
We shall briefly discuss discriminators with correlation processing. Fs w a

two-chaanel discriminator with detuned channels we need only repeat what was already

said in examining coherent range finders (see Paragraphs 7.6.1 and 8.3.1). F-r a
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di.scrimyinator with switching of reference signals of interc-- Is the dependence of'

2qutvale~nt spectral density on detuning. Considerltog that tihcý duration of the gate

pulse, which In this case is the reference signal, 'tl , on the basils C.f for-

mulas (7.6,7) and (8.3.16) we obtain

As~~~~~~~ fo+w2ro hseprsin qu-aetseta est oooia

iAs fomagnitude rof etuhins clorseston, equpaectralsdenstyal increaseswih .liit

wiisai caused by decrease -)f the gain factor. Here increase of S-ic faster 'A:-.,

in a two-channei discriminator. An optimumr for detuning, which exis'ed in the

c.uhetrent case, is absenV, here.

It is iioteresting to compare týhe accuracy of the discriminator with switching

rf ireiurerice signals wit~i the accuracty of , twn-channel correlation-type- discrle.t! :.-

1f'r, for which quantity SCAHwi~th coiro ,id!.Yr&

I '3 .~t-f, the pulse ar1A gal- isI e

1. r~~' ir l , <1''orusl4, b~yfrcla( .. )

'il v ratio of qcaiititi~es S;:f-r, b(Ot c e

q.0i ec'.o:l to

S2"2

where F) is expressed by formula (A5 v.[7)

whel. -1 C=

9~9 As to~0, . For small q the discriminator e'

switching of reference signaib giv-z; a loss
i,-, .7. The n-ilu~ence o~f detuning

and1( the eln ~torlerati() q on of at least one half, and for large q, at

3H1f:)r a dl'scrimitriator wiith switch- lesonfurh Inbticesm iumos
1rig, of reference signals,.es n orh nbt ae iniuiin

is I'-1e.!.ned at b = 0.ý-, -thr depenidence of

r 0i (3 .),.'4 ) orn detuning 6 for varl qu 15I shown in, Fig. b.'(.

8.53.3 Gaussian Pulse

Le-1 us consider now the case when the form of the pulse, is approxima ted D

Gauss "a curve of fursm (7,6.9). In the case of s-quare gates and a UPCh with a.
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broad band as compared to i/¶4 on the basis of (8.5.5) we t~ave

2 .aty,,. 'me + q I1(20 ,,.l. -1,,=n,% - +qI 11 -- p(-- I ,)- (8.5.15)

where O(x) - integral of probability.

Por small T.,this expression is valid if AfyFTq Tn¶ > 3 to 5. For larger l

and q quantity S, is determined by asymptotic expression

rd (8.5.16)

which is 7r/2 times larger than the magnitude of SOnT from (8.2.17) for large q (let

12
us remember that for a Gaussian pulse a = 0, b = 7/2¶1 .).

Analysis of formula (8.5.15) shows that duration of the gates should be selc(tee o

sufficiently great as compared to T, since increase of T increases the gain

factor to a greater degree than the spectral densitý of output voltage of the dis-

criminator. For very small jc the asymptotic expression for S..nas the form

Sol(, =I TO. af, (S.5.17)

Practically, ratio T/T should be near 1.0. Further increase of duration of

the gates already almost does not change the gain factor of the discriminator but

increases the influence of the noise term

in S... The dependence of ratio i So On"q

"on q for different oafyTvrC and r/Tr is

shown in Fig. 8.8.

We shall consider now an example of

a more general nature. Let us assume thai

___" _ frequency response of the UPCh has the

form of a Gaussian curve of arbitrary

'4D M x W width, i.e.,

Fig. 6.8. The dependence of ratio

SM!So-1q on q for the case of a Gaussian HH(u)j2,=)=e , (,.1;,)

pulse arid a broad-band UPCh:
SL-- If yp.q ",'c - 3; - - .- afyIjq ThC = 10.

and gates also are Gaussian. with width -i•cand detuning 8, i.e.,

.- -e e
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Designating ;,'=Y, AfyjjlM/AfC,~ m 2Af-17T T, X 1~q /2- 1 ,), z

= ~~and perforzming neceissary calculations bi, formulas (13J.4.1) and(3.i;)

I' .r equivalent spectral density we obtain the following ex~pr-sslon:

~I .- exp{2k±9
-- TI, (I + xl)12x' + M(I +fx~ 3 1_________

So ' Icax~g cx= Ix' g"i+x

2 wv x I + M,+xJ ) Y ) ( 12 u'+ x(2 + x ,' I + x " ( + x )]( 5. 0

When x =I W~fyj Y1L fo), y ý CO (, To ), z - 0 (6 ý 0) this expression

tutrns into S GTIwith b = v/2'r, reaching its ninimumn. Inve-tigation of formula

(8.5.20) shows that S amcomparatively .-.eakly depends on detuning z, especially if

tlhe passnand (..f the UP~b is close to the matched band. For small z the exTiressi~or

f,,r eqiivalent spectrai density 'ýakes the form

"CH___ (I +I + .t')l' Y, 0

+ (~+~+ 2qyg(I + -V)' I
+ + X2 + AVgt) 312 (2.0 v'g -j.~ - X3 + X4)31

which i., cons.Lderably more convenient f or calculali':ms.

The dependencýe of S/omon q for various x and y is shown in, Fig. ..

Curvtes of this figure show that loss in accuracy increases with decrease of the

signal -to-noise ratio q and

____AN" increase of' duration of the gate

and the difference between fr--

and Afoj This loss for small I

3V can reach substantial magnitudeý.

Analysis of formulas (.3Ž)

(0.5.21), and Filg, 8.9 permnit~s us

to draw the foll-o"Y,,nrr conclusions:

1. For Af 1  N AfoPj theO11147:j ~ magnitude of S -Js less., the

lar-ger y, i.e., the less the dura-

If tion of the gate. Wheie A~rY1
Fig.0. 'C ~f duration of the gateFigdependence- of ratio, on ( ,cr

for Gatisslan gates and pulse: - x 0.31; shoujld be increased to a rnagnit~ude'
--- x =1 x ;-. X 10

of the order of mTI (y T-1.



necessity for this is the faster drop of the gain factor with reduction of the gates

as compared to decrease of the spectral density at the discriminator output in the

case of an expanded passband of the UPCh.

2. The influence of expansion of the passband, in particular, on the component

of S. with factor I/q is stronger, the shorter the gates.

3. For large x and y the magnitude of S decreases with increase of detuning

-o values ensuring maximum slope of the discrimination characteristic, i.e., to

z = V(2x2 + Y2 + x 2 y 2 )/xy. For instance, when x - 3 and y - 10, selecting z from

this condition, we obtain for SX/SonT the following values: B/S~onT = 1.51 fur

q = 0.1; Sa/sonr = i.41 for q = 3; - =/SOn1 - 1.25 for q = 1.00, which is consider-

ably smaller than corresponding values for small values of z.

4. In general, selection of parameters of the discriminator should be carried

out in such a manner that x = 1 to 3, Y = I to 3, and the magnitude of detuning

ensures a maximum gain factor. Then, for all signal-to-noise ratios q the magnitude

of &m will not exceed S OfT by more than a factor of two, and, in practice, the

range finder will realize its potential accuracy.

Characteristics of a two-uliannel discriminator with correlation processing of

the signal f.c the considered case were actually already found in Chapter VII.

Equivalent spectral density here is determined by formula (8.3.13), where quantities

b5E and q., determined by formulas (8.3.14) and (8.3.15), are given for an arbitrary

duration of gates of Gaussian form and arbitrary detuning by expressions (7.6.17)

arid (7.6.18) and the curves of Fig. 7.17. Let us remember that ratio q,/q - hr/h.

Therefore, it remains only to repeat what was said in Paragraph 7.6.2 about the

given case.

We shall investigate further the influence of the magnitude of detuiiing on

accuracy of a correlation-type discriminator with switching of reference signals. 1 J L

shall consider that durations of gate pulses coincide with pulse duration. Then

uP

saw$== I+ 2qe "ý . D

For bLth large and sr.nall 5/-, the magnitud of for all q .ncreases without

limit. The minimum of S EB for small q is reached with detuning 0 which ensurrls a

maximum gain factor, i.e., at [ = 1/7, and for large q at b T•27/TW. The ratio
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71
Fd

d,)tuL ~ ~ Fig 8.he The dpendence of loss. o te init-os r ion i!n~,vr-- 7us~ni

,rlagf6T ors aiscgreatear, with switchin ofrfe.c

Wi~th rsigalstith a G, uesi ntfom o thenwt pulsIe. tteeaie h,

neest g~fra exa(f.i.2 to e So spe atfuncio of det so unn signal by is hontrp s f o duvarions

In Fig. 8.0. s ca- efolwngb sen ra thIns fw gre loss c anie seeatt eain ublst ta of asuc -

n lliatlrý ev nc forr o ptimum sel e msfr-ituction of' deuo ~i.iscrimin Fors small e

dtulnsthe'1 depenidenc o ls s ) o-ýu nty thet sInac-to-dnie ratt~io reurmne t s x of; prn:-itŽ

r' are w /-rn loss ise gc reraofIter, h e sma dller o isget scmprdtot

,- lip, P01fr ampl itude u io ulst bn

Wthýnc hrig. radiationsly, mose t cond ee t f rom tha tn o th naen t hor ai e

n(-r cessivey cf ex nin the sperume of a h d sc; ndingor with yofire lramio e mo uaion.a

differentiationd cofter efresod ng cemesinl Snc for largetu) onI a T dicImint i orsiblurtoer

dhisregarof the pspibiltru of Ttapusemoutiona isncreaefacctrasy ofmpasredento by

wsidgnthe fo th p e splse wtrsin fr a relse c

l'• us r o ns ( dcr fir.s2) to ~ ], amplitude io m ofdul tion of a , pu sb sinuo idal.* lawr i th •.

inrth Fg..ivenA cane bste shemen ofro atdiscfir{aure wits correattion processting ,and-

t difer;eentia pimmseetion of thdrfeneuinal . nce for. •' l arge u-•.'/Su, t is p• orssiblet

disren~gar the dpossibilit of additionatle sincraseto-naccuracyiof measu vremnt ubytni

using thre form lossth puse renvtoer , *h whihe gie qeaie.otiuint

ne s*We have in mind a pulEe envelope without sinusoidal modulation.
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accuracy of the order of i/(wmTii) , then it is sufficient to carry out differentia- A

tion of the reference signal only with respect to the additional amplitude modulation,

not differentiating the pulse envelope. Then the operation of differentiation is

realized by shift of the modulating voltage in phase and heterodyning.

ThF block diagram of the discriminator allowing for this circumstance is shown

in Fig. 8.11. The received signal after transfer to intermediate frequency and

preamplification proceeds to two mixers, to which there are fed voltages m cos wm ×

x (t - T) and m sin wm(t - T) with phase wm¶, controlled by the output quantity of

the range finder. The signal from the output of the cosine mixer is added to the

input signal of the mixer. Then both signals are gated, are approximately matched

with the duration of the signal pulse by gate pulses, are passed through filters,

from which there is required sufficient identity of phase responses, and they are

mixed in the phase detector, forming output voltage of the discriminator. With

respect to the bandwidth of the filters all remarks in §§ 8.2 and 8.3 are valid.

However, in this case we assume that bandwidth of the filter does not necessarily

satisfy condition Aft -r < i, but has arbitrary magnitude.

Fig. 8.11. Block diagram of a discriminator for
a signal with additional sinusoidal mc'-.lation:
i - local oscillator; 2 - mixer; 3 - p-eampli-
fier; 4 - generator of sinusoidal oscillations
with controlled phase; 5 - mixer; 6 - adder;
7 - controlled generator of gate pulses; 8 -

broad-band gated amplifier; 9 - i-f filter;
10 - phase detector.

If condition Aft ', << I is satisfied, the equivalent spectral density is

determined by formula (8.3.i9). The law of modulation of the sounding signal can

be recorded in this case in the form

+I I M Cos Mfla. {t)} -- ( 1. ,.,- CO M - (8 .6. i )

and for reference signals

, --V)- ' ,. (8.6.2)
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wnerO It, is assumed that gate pulses in b,',Eh channels are identical and are cle-3

-oribed by function v(t), which we for coover-,ie,,, can nurmalize io that

4v (t) dt=1(..)

Such normalization is valid, too, for the pulse envelope uao(t).

If durations of' pulses uao(t) and v(t.) are great as compared to l/w., the

cross -correlation functions Cilk(x) will havo. th(e f orm:

,l~) -2M S*,(t) v(1) Al b~.D

Tr(b.67

CX) C,() C1,O(x) CTr ua s)vXi i (8K. C)

2-00

wOer (X -,l 
i ~

(M3.)ll

2-1 +h



is the mean square width of the spectrum of modulation for the considered case, and

__it q() v ) (8.6.12)

is the equivalent signal-to-noise ratio, decrease of wnich is caused by mismatch of

dural]wns of the sounding pulse and the gate pulses. With sufficiently large Tc/T A

ru: Lo q8,/q for any form of pulse and gate pulses is equal to T ',j"; for a square

pulse and square gate pulses there is exact equality when T. /zt, and, conversely,

o a ( / q = " rc / T M w h e n T 0 < T 14 ,

Thus, nonoptimality of processing, consisting of the mismatching of durations

of the sounding and reference signals, leads in this case simply to corresponding

decrease of the signal-to-noise ratio. If in circuits of this type we cannot acniv.i::

identity of phase responses of the two channels, then, just as Ln c.orresponding

circuits of coherent discriminators, there occurs additional increase of errors -,f

measurement. The equivalent spectral density increases proportionally to i/cosF p.

where p - phase delay in one channel relative to the other.

Now let. us assume that the bandwidth of the filter satisfies requirement.

f » >> I/Tr, but is not limited from above. Then, using the expression for output

voltage of the discriminator and performing the same transformations as in §§ .

and 8.3, for equivalent spectral density we can obtain the following expression:

'+ H (i) I'[ H (ha.) .V ti(,j+wsj)1'+

+ qP(1aj,)FQ() V* [1(u, + ,)1 da%04d .6.13)

X I F(i1) I' dcs

where 11(icu) - frequency response of the filter;

V(iw)-- Fourier transform of function v (t);

F(iw) - Fourier transform of function uao(t)v(t).

If function IH(iw)l is narrow as compared to functions IV(iio)l and IF(iw)l,

expression (8.6.13) changes into (8.6.10), and for v(t) = uao(t.) into the expressioim

for S0 11, with coefficient b, determined by formula (8.6.11). In general, e.g., fo-

a Gaussian form of pulses, of gat'e pulses and of the frequency-response curve of

filters with passband Af• - Afyn from formula (8.6.1.3) it follows that
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+ I2- +Y,)'(0 + z'+ Y' +q (+ P,)t0+x3+p A _

wiicýe all designationoý. are the same as In Paragraph 83.5.3. This forrnulo, 1ý1-rr;iit3

to investigate a iw-riet) of llimitinig cases.,K Fse)r~ w1ith exoarll".olL WJ

passband of tih t ilIter (x -cD) and y << I

m~U~q' (q +OA~

MID 2
whitch, with the oxcuption of the proportionality factor, -if-peridli-Ig on !.he. form -,f

modulation, coincides with the expression for equival-Ient spectral densily o f a dc

criminator for a simple pulse slignial with a broad-band UPCh.

If duration c;1' i-he gatvý pulse. considerably exceeds pulse duration Y

TI ( Iý) I+2 IX
NO, a' 4&FX XV2T-71

an,', f inal ly, with a f ilt~er whien 1 s nar-row-band as .-orpart-1 to t~he 1 d'th .--f the i
spectrum of tAhe puise formula (8.6.10) is valid, vwhere in this case

2-

1 rom fcirnrulaF (8ý.6.14~) and (8.6A.1) -it foll-ws, tha-i expars],on. of the ft]i olr

oa>~aoend of durati-on -of the gate noilse !'.-r not. very smnall values cA x basically

111ý 101S 1-21'11 ll , IC. -mwithiI/ anid, conseauert-ly, is

diff,.,entiation if-, Af coumrse, not unique f':.r the given ease. For Instance, It is

also possible to use a, discriminator with a "short.-oning" filter, which sraie

in thiis vase by tfiree i-I' amplifiers matoned with tne spectrum of the pulse. envelope,

tuned 1c frequencies wq and (L n ± W m , respectively. Gain factors of the UPCh 1

tu-ned to frequencies ±DTF u ~m should be a faclor of m/2 less thian the gain fact--*r

of the basic UPCh. Ouipli voltage,. of all thre-e UPCIh's are added, detected and Itot
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Fig. 8.12. Influence of the passband of the
UPCh and duration of the gate pulse on S,.:

y = 0.3; ---- y 1.0.

to gat ling s•tap-ef3. With sufficiently ratiunal selection of parameters toe charace• r-

istics of this discriminator will be the same as those considered above.

§ 8.7. Frequency Intrapulse Modulation

One of the most studied forms of intrapulse modulation at present is lii.ea'

frequency modulation [38, 39]. The form of the pulse here, as a rule, is selecten

symmetric. With the given form of modulation various methods of construction of

discriminators may be reasonable from the technical point of view. Let us consider

first a. discriminator with a shortening filter. The shortening filter for the -- sr'

of frequency modulation can be made in different ways, The mfost well-knowl) is,,;.*

of delay lines with taps [12, 38]. Amplitudes and phases of signals taken fr•no i !!,-

different taps will be selected in such a manner that as a whole the frequency

response of the filter is conjugate with the spectrum of the signal.

Influence of the form of the pulse envelupe on accuracy and range resrclut.iL

capability was already discussed in Chapter VII (see Paragraph 7.8.1); in tnis ca,

as follows from general expre3sions of §§ 8.2, 8.3, and 3.)I, in this respect :vevry-

thing remains constant. Therefore, we will be interested basically only ai 1111

influence of nonoptimality of processing on accuracy of rangt, finding.

Let us assume first that the shortening filter is optimoum. Then for gates

which are narrow as compared to the duration of the shortened puise I-e c'uivalet.'

spectral density is determined by expression (8.2.17) for SOM, Parameter h !i1 i
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formula 1s determined by the fol.lowing express.ions:

a square puis,: enve].l op

bI

for a Gaýusslan envelope .

b P .7.-

rt' a cosinusoidal envelope(-)

no$ 4(%2-6) 2

where a - speed of change of frequency withi.t 1 !,nlts o.f pulse;

"e- effective pulse duration;

Lkr= aM .. - effective frequency devliu*.ion for tihe duratiorn of a pulse.

Withl fiLnlt: duration of gates accuracy somewhat worsens, Let us consi:der, for

[ic out' , the cas, when the pulse enve io,-, as thr 'aco of a Gaussian curve.

accord npu to (7. '.6) the form of the short,=nud pulse is also described by a t a;ss a

c:urve- of form

(0¼)= " •',) ' .

m'"eans that the considered case with i.- optimum sortening filter is equivais.: - .-

I.2, uimple pul;? modulation by Gaussiaarn .,: ,ith dupiatl...

Voria,,e r with a matched UYPJCI. Assumi ng one form of the gates Gaussian :a
we sec possible to use- expr)ssion S

.. .,') wihlch one should set x = I (\C = A , . Then for the considf r-".1

,s-:rL:,•;.ctrrfrmuia.(,.1 is also valid, corresponding to smal.l delini~nln

!&<twifn. ;,ates; curves of Fig. B.c~ 9 nd all conclusions of Paragraph, ýý5.5. per', sin to [

' ,,, c ,';, x 1 ,Ii
,,tim, j mo rctc necr use a realizat~ion of' the shf-,r'c-.ning fjltý,r, I

Inpractic oe cr

vio f eor in certain respects, which ensuies directly from the pr(e.enta!ion of outpuit

w,.l au ,:.f 4the dlsw:r~minator in the op'Amom, case. Ap. we alroady said abo~ve, 'his !

v,, vp. detE-rmirned through the modulus of quantity f from (8.2.1), which for

ar'y per! -,d, when we.: use optimum shortening filtration, is recorded In the form
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where moment T in the upper limit of the integral coincides with delay of the

reflected signal, uo(t) in this case is uaO(t)eiat/2, a- rate of linear change .f

frequency,

Then

-+1

t(~)=f'yb~a ~ e) .' v+'adsj=

S e""'Ip+ "I' ( sr.,, ) ds 0 7 .6

-a4

This means that the output voltage of the optimum shorteninr filr-v -.1 t.; A

t = T can be formed by heterodyning the received signal y(t) with voltage of a

frequency-modulated local oscillator and passing it through a filter with a fre-

quency response matched with the spectrum of the pulse envelope. This filter :rrouOct

be tuned to frequency wnp + ar, depending on the distance interesting us,

In order tro ensure full equivalence with the usual shortening fflter, formif

the integral of f(T) for all delays Ti, we need a unit of identical fLiters tuned

to frequencies a) + aTi, and a unit of lagging gate pulses by which there s,,u'

be carried out tapping of output voltages of filters, each at the correspc(nauinr

moment Tv The set of filters and gate pulses gives at the output a shortened

pulse,

Optimality of processing is preserved, of course, only when the pulse respornsr:

of the filter of the UPCh satisfies the condition of matcning hi(t) = ho(t) = ua,(-t),

and gate pulses are narrow as compared to the duration of the shortened pulse. ';ecl

a realization of a shortening filter may be more convenient technically when tne

radar is intended for simultaneous work in a small range of distances. Then the

numlnr of filters can be comparatively small; gate pul.ses, if the usual coundit.I•-:

small duration of the shortened pulse as compared to the duration of the S,-iirtlriP

pulse envelope is satisfied, can be fed simultaneously, and voltage of the ]-,cai

oscillator can- also be pulsed. Here it is necessary only that the pulse d'jrai 1. r.

of the local oscillator be sufficient for complete overlapping (if the signal pi.so,.

The pfssibility of using pulse mode in the local oscillator frees us from tie,

necessity of providing too large deviations of its frequency.

For realization of a discriminator sufficient arF 1 wo channe].s, luner I-

frequencies coN + aT ± a6, where 7 - measured value of delay. For tuning ni 'a, raiqnr
-3579-



disc riminator w'ý can use change of' the intermediate frequenc~y, So) iuhat Us,_ ,
±at . From this point of view such a discriminator is like a discriminator of cu:r-4

reiatiof. type In Witch the reference signal is changed in ýýjcrordance withi change of

the, measured val~ue of delay. Ir: this cacor thoi change consisits not in fcidfl cf' li.-

refurence si~gnal, but Ln change of thte loca.) "j:ilYrTreVu.incy. Theb(x-~1

of Lhe discrimiAnator is shiown in Fig. ýý.13.

Fir. *_,.i3. Block. diagram of e.discriminator for
frequency-modulateJl pulses. I - preamplifier;
2 - amplitude- and fr unymd acdlocal
oscillator with conir'ri1ed de-lay of amplitude
cod-ulation; 3 - mix r-; i1'- 1cal ioscillator with
coit~rolled frequency; - UCh' with frequency of
tuning _i.,- t; 6 -pl U ."', w , 1 frequency of

tuning tfa 4-- d0 am - *' i -

fier; 9 -subtractor; lb - lied gene~rator
of gate pulses,.

To I ird characteristics of the discvl~m I ator we can use gieneral forinula. o~f

SK.We shall 1 irnit ourozeives to the. ;f- c~t' narr' w gott( 1p;l.es, but we shill1-

dSidcýY the UP~h ftrequjiinc:Irz-y r~} , arit ey. Yri;t orwiparlos.ui of(K )

w~itIh (e',,7.6 ) It. follIow* that. twe curmplex. pulpe. response of the! 1,11ter 11(tL) i.1, th11s

oiri5jl idA bo ,: 1 . e q0(ual 1ic,

Then, assumning duration of the pulse envelope great. as compared to dura..';

th&i rhort~ened pulse(_, we obtain

ao)=.ýSh(4)=±8L its~ (i)el44 dlau

and the expre-ssion for equivalent spectral density will take the form



sen 1r, -- Jb 1to1' + 94 1b M01/a ()12J'- Re ct (8J)b (28)]

59,2----ra, .(),AS (8.7.10)

In particular, for a Gaussian form of the pulse and of frequency-response

curves of t!he UPCh

2 2 "1 V_ + -'.,'52

a- -- "(•7 e.12)

e Al., -I~fl4 =a,2

where, as before, x Afv,¶I/Afc.,n 26fy1 j xZ, and w aT.,/2,

Then according to (8.7.10) equivalent spectral density is equal to

418 46 25'

so X e I I e )+7. 1
•,,,-X2 X ( 1 +e-IS .33- T (Ixg4e'A -,l • 0+ •- (3.7.>7.)

where z = - relative magnitude of detuning.

When x I and z - 0 formula (8.7.13) changes into the expression for S with

croeff.icient b (from 8.7.2). As also in other cases, the dependence on z is rela-

tively weak; practically up to values z/x - I in formula (8.7.13) it is possible I.)

consider detuniing zero, especially with a sufficiently large signal-to-noise rati' .

The exact dependence of SwSson. on detuning with a matched band (x = i) il s;hown

in Fig. 8.14, fr,)m which it is clear that increase of detuning to a value providi.ng

a maximum gain factor of the discriminator (z - 0.7) increases cvcn when q-•.I

by not more than 15%. The influence of mismatching of the band of the UPCh for

various q is illustrated in Fig. 8.15. This dependence turns out to be rather

strrng - expansion of the passband in the considered cirot.i.1 ; leads, probably,

.wplcasant consequencem. than in any other or)e. I

14 z

Fig. •.i'. Influence of detuning on equlvaiej•t
spectral density In an FM range finder.
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The block da.'granm of Fig. 3.t5 allows

1 for a definite modificaLion, in its. es-

sence corresponding to correlation pro-

* cessing of the received signal. With su:.

processing the received s.gnal ,.a, iu -

ing sent to tfie filters should be multi,-

w •@ • plied by a gate pulse approximately

matched with the signal, pulse envel n.
Fig. D.)5. Influence of' mismatch of the
passband of the UPCh on Sal, in an FM This can be attained, for instance, if
range finder. voltage of the FM local oscillator i.

:roduiated in amplitude by a certain pulse v(t) with durati;r, of toe- rrder of dura'.i

of the sounding pulse,

Filters of' the UPCh in this case need not be matched with trne width of the

spectirumn of the pulse envelope; conversely, operation of the discriminator Is nearer

Lo. tun, the les;s the magnitude of 61: -v,.. tiating of output voltages -'"1 tiL

TUPCil also is not nr.cessary; these output voltages should be detected and ;ubtracted.

Changes il the bluok dlagr~am of In. . 7.. reduce ' ''' case to ... A,,-) . .

local oscillator in amplitude, and having no gatlti, s;iages in general, Such a

"scheme is simpler in that there is no need I.o carry out cootro' of t1,1!fsi.rrow gate:

pulses fed to gating stages; however, in piace• uli this there Is required control ,

1.tie position of tIhe local oscillator pulc,

Thus, in both cases there arFe, requ>red tw{. -Icontrol circuits - for 'delay and for-

freqluency - but in the c:'..d cas,( requiremtnl.; -)n the clrciints fnr control of the

1,f'.r•c-ý s!ital I.- dela.a-y and or) arrour'y o-,f thlis control are considerably weaker,

hi•.s processing in the given circuit is attained when the foa rn of the pulse

"r• '�mi . )f the local oscillator coincides with the form of the sounding pulset

''yciopc: and bandwidth of the filters of toe UPCh satisfies relationships i/i..»

H> Afy; >> i/Tr. If' the last condition is satisfied, and the stiape of the pulse of'

'he iocial oscillator v(t) differs from u ao(t), the equivalent spectral density, as

before, is given by formula (8.7.10), where in expressions (,.7,3) and (8.7, o) for

a(5) and b(O) one should replace pulse respnse of the filter h 1 (t) by a function

describing the form of the local oscillator pulse v(t).

In the more gFeneral case, when both conditions of optimality are not satisfied,

there i.s dependence of S... on the form and parameters of the frequency response of

the filter of the UPCh. The expression for equivalent spectral density here can be

obtained by normal means and has the form
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S lt,=---a , V (is-,) H (ims,)I [ . )

+ 2•q (kj F (ij) V, (I (a, + .. ))IH (i (w, - ag))l X

X[ H(i(s ,+4•))I'IH (i(.--a8)) I')deAdm

where, ,j,sL as in § 8.6, V(iw) -- Fourier'transform of func!,io-n v2 (t), anld P(iw)

the transform of function v(t)Ua0 (t).

Let us give final results for a Gaussian form of the pulse e'Lvelupn, (f t;l

pulse envelope of the local oscillator v(t) and of frequency responses of the UPC-i.

Subsi;ltuting the corresponding functions in (8.7.14), we obi

SN 4+ + 1, I i-elp I 4z' T- •B-..i28z'' . -

UL2(1 
++eSe { x3 +2(l+ 1))''

+flj..j. ' )2(1 + e)I Ix+ 2 u' (1 + x2 + u,)l[ •' (V + if,),
X~l-expL IX'+ 2•( + # 2) 'U+ +'+ 2)' 1' (8.7.1%

where x 2Afy~ YT4 -u z W21 =ý y

As also in other cases, this expression weakly depends on detuning z, only

slightly increasing with increase of it. Therefore, the magnitude of z should be

selected such as to ensure a maximum discriminator gain factor, which correspenids to

values of z - 0.6 to 0.8. In place of formula (8.7.15) here it is possible with

erroc not exceeding 25-30% to use the expression for $.. when z 0, which has the

form

semiI (I+,+') +640..q (,XI + 1?,+~

+ Ifiq(0+ e),SJ,' + 2 (1 + e))3!1 Ir" + 2y' (I + X, + •)m1

and is c(rnsiderably more convenient for practical calculation.

When i, z- 0, x- (3 the quantity changes into S Mismatch ,,f'

durations of the sounding pulse and of the local osciliator pulse leads L1. .I.E za;-,C

consequences as in a circuit with amplitude modulation. Bandwidth of the UPCh for

Af YIN <- 'fcornpractica~lly does not affect the magnitude of & and further expano;l, ,
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Fig. 8.16. lDependence of on (I for a
range fin~der with frequency imrodulation: -- y

0. 7; - - - y =1

of the band.d :,o increase of %~baoic~ally due to the noise terra. CurvErý

ihe dependence of S ~/S uA n q for variouis values of x and y, iillustrating 1AiC'

111fiuexicet 4' pal'aimuturs on~ acCUMlcý o"-~;J :.: are sho),wn 'In 11; ~I

§ .. Phase-Code li,1ra pi se IManipulat !.-

With incoherent radiation there can o].-fs-- be uised phase-codec ranaripuilatio r~i o'lý0

the pulse, ()uestions of selection of corr!,1 .anc gen(ioral properties of the auto-

netinfiuncti )n olf the phase,-.nlP* '~. ar po- .... ir (I pu I .(; signal weealready dis-

in Chapter T, and measurement, ol dis Lance by 1,11( do tay Of suchý signals in tit

wi-ý-. has already been said above.

`i't. uptniumu dl ~ccrlminator in this case can br! roa1.nzed both by correlati'

* proc.- sci]rig, and also by a shortening filter (1.2]. One possible bloc-k diag-ramj f e

discriminator with a shortening filter Is shown in Fig. n3.17. The receiv'-d signal

af~r-!i, conversion of frocquency and transmission through a UPICh, matched in bandwidth

with duration o-"f ttiv code Interval -TkI. i fed to a delay linie with taps, corresponding.

to delay X-IL, (k =1,,.. n), Delayed 8ignals are fe~d to an adder with a Plus

or mrdnus sIgn zdepending upon what value (0 or if) ttie phiase of the signal in1fi e

crre6sptoudLng conccl Irterval has. At thc output ,:f thc afddc" tr ...fll form a pOIS,-

which is then processed Just as in a discriminator- for a niormal pulse signal. Such

a circuit is co.mpletely equivalent to the usual pulse range findcer (qee§8.)



working on a square pulse of duration Tk"

2 Therefore, for calculation of characteristics

of the range finder it is possible to us- all

the findings of Paragraph 8.5.2.

Characteristics of discriminators with

correlation processing, for instance, with a dy

two detuned channels or With switching of
Fig. 8.:17. Block diagram of a dis-criminator with PCM and a shortening tsinals, actual

fig.er8.17 Blc diagermamtofe a dis- reeec inlskloatalywr ledfilter: I -filter matched with Tk; found above. It is necessary only to use I,

2 - delay line with taps; 3 - adder;
4 - detector; 5 - gating stage; 6 - formulas relating to the case of a square
controlled generator of gate pulses;}
7 -- subtractor. pulse everywhere replacing its duration by I]
the duration of the code interval T Here one should consider that at. present in V
examining possibilities of using phase-code manipulation with a pulse Zigne.l they II

almost exclusively consider a pulse with a ýqheare envelope.

This is explained, first, by the siniplic~lty of technical realization of circuits

for processing a signal with a square pulse and, second, by the fact that for an HI

assigned peak power of the signal selection of a squarce envelope ensures maximum

pulse energy. At the same time with a square envelope in discriminators of correla- AI'

tion type it is possible without special difficulties to ensure coincidence of thu

reference and sounding signals. Therefore it is possible to consider only the case I
of coinciding modulations of the sounding and reference signals. Here in the formu-

las determining the discriminator characteristics Cik(x) = Coo(x) = C(x), i.e., 4

the cross-correlation functions can be assumed equal to the autocorrelation functions

of thl sounding signal. This circumstance simplifies calculations.

The above investigation of discriminators of incoherent radar range finders

shows that, as for a coherent signal, accuracy of range finding is determined by

characteristics of modulation of the sounding signal and the magnitude of the signa: H
to-noise ratio. For a sufficiently large signal-to-noise ratio and other conditins

being equal accuracy of range finding is not worse than in the case of a coherent

signal. For small signal-to-noise ratios there is obtained a loss, precisely I,

depending on relationship Af 0 I fr = AIf Tr* The dependence of accuracy on charac-

teristics of modulation of the sounding signal, on the form of the reference signals

and the magnitude of detuning in discriminators using correlation processing also ic IA

identical in both cases. Mismatch of characteristics of "shortening" filters with

the spectrum of the sounding signal in incoherent discriminators leads to the same
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consequences as noncoincidence of modulationls ur reference and Pounding sIgnals inA

correlation discriminators.

Discriminator characteristic fotind above can be di~rectly used for analysis ol

track~ing range finders as a whole with an) smoothing circuits.

§ .. Analysis of Accuracy of InooetRan.Ce Finder.

As was shown above, the problem of analysis of the accu~racy of tracking metý-orz;-

iss -olved by a single method regardless of what magnitude is mecasured arid how thte-

discriminator of the meter is constructed. If characteristics, oi tlie dsrlrot

are found. It remains only to use gencra.1 formulas Of' Ch~apter V1, sosiutgin

them the corresponding expressions for characteristics of thu( di,;crimrinato.(r. A'.' -

cording to this the whole problem _)f analysis of accuracy of Aincoherent rangt!

finders reduces to s&mple replacement in formul~as of' § -(.i0, charact~eri ring ro

(:f tieasurement, of the expressitons for KA and Samfound for coherent dlscrilsinatovr!

"by 1.1i c-orresponding expressions for K and S which were found in the preredlny

paragraph~s for injco-herent discriminators. Tiis means that all laws governing, a"._,-

racy of range finding which were investigat~ed in §7.10 are completely preserved

and do; not need repeated discussion. T ro-.weshaIJ limit oursel1vcs in i

chapte(r only to consideration of a series of illustrati-ve eap.s

WVh shall dliscuss the influence of Aut~oiiatic Gain GControl (AGC) -In a c

-c t er s. In incoherent range finders, in iro-neral, there- are the sare. regularities

c-aused by the normalizing action of the A .2- syrý;;ein; however, the concrete form of

-uoo dependence of' discrininal -,, gain, en 'he signal1-to-noise ratio is somewhat dif-

ferent. In disc-ririnators with corrcelal Lon processing of the sIgnial the AGC systeii

1'Viu L0.be Loei -from the. output of the. t ý rl o filter, Then the average power

A .ot otvo~ltago of a receiver with AGC 's

arid discriminator gain varies as

1+ 42K .--- (8.9.1

where, as before K O-the gain factor of the discrlmirnat or in tie absence of flolses.

In discriminators with a "sho~rtening" filter thp AGO system is closed from the

output. of the detec~tor, which follows aftLer the "shortening" filter, whiere to

decrease noise components in the control voltage o~f' the system of AGC output voiltage

of the detector is gated by a pulse travelling after the poise of the signal. In)
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i
practice gating is frequently carried out directly in the "shortening" filter - in

normal pulse receivers, as a rule, the UPCh is gated. Duration of the gate pulsu

here is several times greater than the duration of the "shortened" pulse. Gating

leads to decrease of intensity of noise with respect to rO/Tr, and thanks to this in

such discriminators

KA =KX. (8.9.2),+Arm"q..

where c duration of the gating pulse;

Af yq -- bandwidth of the "shortening" filter (UPCh without intrapulse modula-
tion).

If in the correlation discriminator the passband of the filter Lft is great, 1A

to decrease noise components of the control voltage in this case, too, it is possible
'A

to use gating of the output voltage of the filter. Formulas (8.9.1) and (8.9.2),

obviously, can be reduced to the form of (7.10.4) where quantity y is equal to

Af• /Af and Af y1 1 •'c/AfC Tr, respectively; however, in the given case it is

more convenient to consider the dependence of K on q. Both formulas (8.9.1) and

(8.ý .2) can be recorded in a single form

-- q +

where y - f Tr or, accordingly, Y1  Af y= T.

Thanks to this the dependence of the effective bandwidth of closed-loop tracyil.ig

systems with incoherent discriminators and smoothing filters with constant parameters

on the signal-to-noise ratio q coincides with the dependence of effective bandwidth

on signal-to-noise ratio h in coherent range finders (see Paragraph 7.10.2).

Let us consider a range finder with a smoothing circuit in the form of a singi;

integrator with gain factor K We consider that measurement of distance is carr,

out by a pulse signal without additional modulation. Let us assume that the dis-

criminator of the range finder has a UPCh, matched with pulse duration -rn, and gatos

are located end-to-end and have duration ro-= ' Then, according to the formula

(8.5.10), equivalent spectral density is

The dimensional gain factor of the open loop of a tracking meter is

=CAx=xK --!-( 4 ( 3•. 9. 5)

q+#1 q+ a''
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where K0 -- nominal value of the gain factor in the absence o,f rnol Ees, and yl in this I
ca,,-' is Afymt T 0 " .

Since the effective passband of the closed-loop tracking system Af, is equal

Lo K/4, fluctuation error of measurement is determined by expression -

2 2,25-10-" 6,25- 10-'
% Af,.. = 

.' ( + . q(q+)

whure Af KC/4 - nominal value of the effective passband of the closed-l,,,,p :•

tracking system.

on q for various y1 is shown in Fig. 8.i8. With an assigned value of Af 0 '

tuation error decreases with increase of this corresponds to the fac:t. that.

with increase of yi decrease of 4 leads to still more considerable narrowing of *Lv:

effective 'bandwidth. The influence -of

S• -- is more essential, the less thet tw•wrJ -

tude of the signal-to-noise ratio. For

" -Large q C:bangrý o.f 'i "-es not Lead t

4 noticeable c:hnngl, of fiuctuat;i,:,,. uerro'.

The magnitude of product _M' T :3

usually 101-0 to 10-; then error of

mea.urement. may comprise tenths and

_ hrictndredthi of tihe pulse duration,

V Dynamic error, corresponding to a A

.i. •:.J_ý, Fluctuation error of range a c
+Lr.n• In a system with one integrator,

the considered case in accordance wil;r

(7.10.29) is equal to A

where a 1-speed of the target.

Dynamic error increases with decrease of the signal-to-n.,ise ratio, where this

increase is stronger, the larger y,.

Let us consider now the example of a range finder with a smoothing filter I.n

the form of a double integrator with correction, whose transfer function is deter-

mined by expression (7.10.11). Let us assume that measurement of distance is pro- \

duccod "'ith the help of a pulse signal with a Gaussian envelope and intrapulse
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frequency modulation with frequency deviation 2 wm. We consider that the discrimin-

ator is close to optimum, so that

TOsStSOqR (8.9.8)

Assaming in the circuit of the discriminator the presence of an AGO system,

for the effective bandwidth we obtain the following expression:

I+K.T, •--
At6-- 4?.•' (8.9.9)

where K0 -- as before, the gain factor of the open system in the absence of noises
2A(KO = K1 AKA 0 has dimensionality of 1/sec ).

We saw in Paragraph 7.10.3 that the minimum of errors of measurement which iU

obtained in an optimum system with double integrator is attained under condition
KT2 = 2(K = KO[q/(q + yi)]). Consider that this condition is satisfied for a

certain value of q0, i.e.,

Then
[ +2

Using formula (8.9.8) and (8.9.10), for variance of fluctuation error we obtain

the following expression:

I + 2

The dependence of the relative magnitude of error 0•l/ 1Truu8,- TE on the
signal-to-noise ratio q is show.n in Fig. 8.19 for different y, and q0. Investigat''!

of this dependence shows that fluctuation error of measurement with a fixed magnitud(

of TH rather essentially depends on selection of q0 and yi It turns out that for

fixed q. error increases with increase of y, if q > q0, and decreases if q ý q0.

On the whole fluctuation error for any q and y, decreases with increase of q0;

first this decrease is rather fast (with change uf q. from 0.1 to 1, a# dccrcasce
iI

for various q and i by a factor of 1.5-3), and then slows, so that increase of (10

above values q0 - 10 no longer practically leads to change of error for values of .1

y1 considered in the example, More exactly, dependence on q. dsappears if Y< '•;.
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Decrease oft'~ with increase of q for values of'q which are not very zomiiai
LI# a

Ise eomewhat slower than analogo~us decrease of eqiilye lent spectral density. InI order

to oýbtain an idea about. absolut~e values of fluctuation error, we consider the exarripi.:

6when frequency deviation is 2u't 2w-10 m/cfrequency of repet-ilion of pui:es I
ii t r i//T r = 100 ops., and the time OonLat. Oft,0 : C,)'r9CtO~ifg circuit T,.=. .2

Then ttue scale factor c)' is Pqual to 9.4 in, arid fluctuationl error, ,)r-

responding to Fig. 8.i9, will be in the range 1L70 to 1.7 m.

TIN

a--

v. 1 Flu. luol i 1 error of' range I iii~i ni
a systemp w~tona d-`,tA-c integraltor: - S1

-e o'onsidfcr ni-wv toe dependence -,f dynamic error on theic altcno

*ratio. With, a smoothing filt(er with two inutegrators error in speed In steady-.-

.oiErat Ing c oridIIirni absent, and stationary erroýr is .

Gt A, a,(q+M) , 2 qq(q + MI) P ý

In formula (3.-11) a 2 - accel-eral. on -iI' he itarget, anul it. iJs assumed that,

condit. 1c KT~ 2s satisfied when q

2Tl'c -Ic cnder o ýf tne relati~ve m,9n~n¶tdp (Af dynamir error o. /aT C nnq for

various q) arid y1 is sho-iri in; Fig. 3. 20, For all q. and yj dynamic error drcreases

with lrncrease Tf q, where, this decrease Is rather criarp.
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Fig. 8.20. Dynamic error of range finding in a

system with a double integrator: Y= 1;

--- Y = 3; y'-- Y1 = 10.

Dependence of GA on qo and y, has a sharper character than in the case of.)'

For all y, and a quantity oa decreases with decrease of q.. The dependence on y,

is such that for q < q. quantity o. increases with increase of yi, and when q > q

it decreases with increase of yi. Since for large q dynamic error Is thus small,

for its decrease for small q we must select sufficiently small values of y,, the more'

so since the quantity y, comparatively weakly affects the magnitude of fluctuatiof

error.

Selection of small values of q0 is impermissible from the point of view :f

quantity C ; obviously, an acceptable compromise in many cases will be selec-, f

a magnitude of q. of the order of 1, and y, of the order of 2-5. If, as above. T,,

- 0.1 sec, at a 2 = 100 m/sec 2 product a 2 T. is I m, and dynamic error in accordaiC"

with Fig. 8.20 will not exceed 50 m in the most unfavorable case.

Let us consider one more examp1e, when the measured distance varies as a pr .A-

nomial of degree n, i.e.,

i_



d(t)= Pak,912

and in the range finder there is used an optimum smoothing fiiter, tL1-e L~rULturo :1

which Is determined by expression (7.10.44), :1. fl~t ~r with po e- ',2

where AijjT() -matrix elements;

A(--) 11 A~t) 1= I(8.9.14)-'

= I~~j -matrix of second moments for the coefficl.ants of the polynom.tlo

(7Lk 0);

F-r f.uffcicentiy large ti1me of mea~surem-nit.

where this equtality is uli.e f.t•is 'trtne uncertainty it. r,nuwiudgt- uPý

c'offci~r~~cof ',he nolynomiai; the conItioni of validltv of this approxi'mate equal It.;

The-n, from (8.9.15) it fol'ows thai

whnere a fi. - elements of a matrix which is, n-ot time-dependent and ts the rectp.r-u,

of mnat'71 Y.

As it was shown ton Chapter VI, erri of' measuremerit is equal to G(t, here -

rf.re in thIS CaSE' for large t we have the fAJ1.owtng, equ~al1.ty:

Vu;q alk.
a. a~ s.6.4

VOL'u I. MM- - = -z -rs, r ý * A= IMt " !'tAI'A P-- .'-M! Wr'I, ý..?tM <I'



It is pobsible to show that for matrix a, d4finrted by relationship (8.9.19), the

A 2
sum of all its elements L aa is equal to (n + 1) ; therefore the final expression

S. hl-l D

for variance of error of range finding has the form

.. ,- ' s .(8.9.21)

2 2
that OBUx with an accuracy of coefficient (n + 1) /t coincides with the equivallen-

spectral density. Error decreases without limit with time, and for any fixed t it,

decreases more, the higher the degree of the polynomial. For small t expression

(8.9.21) gives an overstated value of error.

We shall touch on nonlinear phenomena in incoherent tracking range finders. It

is obvious that in the framework of the theory of these phenomena developed in

Chapter VI incoherence introduces nothing new. Actually, with the idealizations

used in Chapters VI and VII characteristics of breakoff of tracking and variance

of error, taking into account nonlinearity of the discriminator, are completely

determined by the form of the discrimination characteristic and the magnitude of

fluctuation error in a linearized system, where the dependence on the detailed form

of the discrimination characteristic is not very essential.

In incoherent range finders, sufficiently close in their structure to opttmun,

the form of the discri.,ination characteristic, as before, is determined by the aut-

correlation function of ýhe sounding signal, i.e., remains the same as in the case

of a coherent range finder. Therefore, from this point of view nothing changes.

Variance of fluctuation error of a linearized system is completely determined

by the equivalent spectral density. This means that the whole difference reduces

to corresponding replacement of some expressions for -%B by others. Taking this

circumstance into account, for determination of the average time to breakoff of

tracking and of variance of fluctuation error of range finding we can use formulat:

(7.15.3)-(7.i5.5), (7.i5-7)-(7.15.10).

Most interesting is the question of the critical magnitude of the signal-to-

noise ratio, at which still it is possible to ignore nonlinearity of the discrimiti-

ator.
As It was shown in § 7.15 the critical magnitude of the signal-to-noise ratio

is determined by the critical value of parameter p. , equal to the product of varianc,',

2 na
of fluctuation error of a linearized system oi and the mean square width of the

2 2
spectrum of modulation of the sounding signal, i.e., 2 = bex The critical value
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of ýt varies somewhat, depending upon determination of the limit of applicability of

the linearized consideration - by average time to the first breakoff of tracking )r

by the magnitude of variance of fluctuation error taking into account nonlinearity.

However, as shown in § 7.15, this difference leads only To slight change of the

critical value of the signal-to-noise ratio. Oriented to the worst case, it is poR

sible to consider (see S 7.15) that ýLxp f 0.12 to 0.15. Then with a discriminator

sufficiently close from the point of view of the magnitude of equivalent spectral

density to optimum the critical value of the signal-to-noise ratio will. be deter-

mined from equation

28,x,+ (#.p) =l 2
2S.x. (q.,) AI.,b- = f,( -- qp 0.02, (8. 9. ,

which coincides with the corresponding equation for h. with a square spectrum of

fluctuations and replacement of Af by i/Tr, Solving equation (8.9.22), we obtaij

q.p = 25 IrAto, + /(T-Af.,p) + O,02T 7Aj6,]. (•j.

This dependence Is shown in Fig. d.21. From this figure it follows that. lncor

conditions in a tracking meter are preser/.rd for nuagnitudce, of signai-t--'r-i• C.9 ,-

q exceeding 0.03-10, depending on inertia u-f the t.-ack.tng system and the pulse

repetition period.

-§ 8.10. Influence of Interferences
on Incoherent Range

F~inders

0or T'h•I influence of interferences on

-- incoherent tracking range finders Vf9-70]

leads to results which in many respects are

sLmilar to the case of coherent range find,.

- - - This especially pertains to active Jnt..i•

ferences. The character of the influeiic- of

I" jr4 Ir 3" C5•' i ' 1'19" passive interferences in this case is some-

what different, and noise imrmunity of in-
Fig. 8.21. Dependence of qcr on
AfC Tr. coherent range finders with respect to it Is

lower. We snall consider these questions in greater detail.

8.10.1. Active Noise Interference

As also in the case of coherent radars, the influence of active noise inter-

ference, due to its broadband nature as compared tn the width of the spectrum of
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the sounding signal, is equivalent to the influence of natural noises of the receiver.

Therefore, the presence of noise interference can be accounted for by introduction

of a new signal-to-noise ratio q nW, equal to the ratio of the energy of the

signal received for a period to the sum of spectral densities of natural noise and

interf,-rr•e'- at the input of the receiver of the radar. This quantity is connected

with the signal-to-noise ratio q in the absence of interferences by an expression

.,smlar to (7.14.1) and (7.14.3), i.e.,

S+ +

where all designations are the same as in Paragraph 7.14.1.

From comparison with (7.14.3) it follows that ratio q nw /q coincides with

ratio h,, /h for a coherent radar; therefore q., /q in various sJtuations, as

before, is given by the curves of Fig. 7.51, and all conclusions made in Paragrapih

7.14.1 are preserved.

Thus, the relative influence of active noise interference in both cases is

equal, but, in general, accuracy of range finding by an incoherent range finder under

the influence of Interference is lowered more than in a coherent one. For low In-

tensities of interference this difference may be immaterial; however, if the lnter.-

sity of interference is great, even for q >> I and identical accuracy of coherent

and incoherent range finders in the absence and in the presence of interferences

quantity q may be less than 1. Here, along with lowering of accuracy of range

finding due to decrease of the signal-to-noise ratio there appears loss of accuracy

due to incoherence (see § 8.2).

Thereby, an incoherent range finder, providing identical accuracy with a

coherent one in the absence of interferences, will give greater errors of measurenor.

In the presence of interferences, in spite of the fact that in both cases the signu-

to-ncise ratio is lowered by an identical factor.
I

8,i0.2. Pulse Chaotic Interference

In this case there also is an analogy with a coherent range finder, and the

influence of interference, true, with a somewhat worse approximation than during

no>•sp Interference, can be described as the influence of equivalent white noise.

This analogy is evident for incoherent range finders with correlation processing of

the signal, 4hen the passband of the integrating filter is small as compared to t'he

width of tne spectrum of the pulse envelope of the signal. 'I
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Actually, for pulses of interference which are not very long there is no qual-

itat.i.ve difference between coherent and incoherent range finders - in both cases

pulses of interference after multiplication by the reference signal are passed

through narrowband filters and are expanded. As a result they form a rando,. nr;rnoc'

equivalent in statistical characteristics bo a random process at the outpult o!f !his

filter upon feeding its input white noise with spectral densit~y N. -, which is deter-

mined by formulas (7.14.6)-(7.14.9). I

Then the influence of interference, as before, can be quantitatively described

by introduction of a new signal-to-noise ratio q .- and use of the former formulas.

Ratio q n /q, as with noise interference, coincides with hn1  /h and is giver by

formula (7.14.10) and curves of Fig. 7.51. It is obvious that here the finding f-

the preceding paragraph about the worse noise immunity of incoherent range finders

remains in effect, since quantitative characteristics of pulse chaotic interference

are such that q n 21 in real conditions may be less than one.

Ii incoherent discriminators with "shortening" filters, in general, there ai.:

less grounds for replacing pulse chaotic interference with equivalent white noise,

especially if the pulse duration of interte rence is small as compared to the durat ion

of the pulse envelope. However, even in this case pulse chaotic interference c-81

bpn replaced by a continuous random process with the same level of s:pectral denslity

a' the maximum, but now of finite spectrum width. Therefore, all results are appr-Y.-

imately valid for such discriminators, but the formula for u• m gives a somewhat

understa!ed value, i.e., estimation of ioise ,iimmunity by q11 1 Is obtained with a

certain safety martin.

8.10,3. Re. turnj Interference

:,e 2naracter and results of the influence of return interference on incoher'

S rann" finders completely coincide with the case of coherent range finders. Ther.'-

fc-re, here there remain all the same problems which we discussed in Paragraph 7.14."

8.10.4. Passive Interference

Well-known is the fact that noise Immunity of incoherent radars without special

means o.f protection from passive Interferences is very low. This has a clear physical

foundatlon and is illustrated in detail in Chapter V In examining incoherent detec-

tion systems. Analogously, the influence of passive interferences on incoherent

range finders leads to sharp increase of errors of measurement, and with sufft.clent

intensity of interference, to breakoff of tracking and cessation of the regime of
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tracking. Let us consider as confirmation of this one example of the influence of

interference on an incoherent range finder.

In order to be sure that low noise immunity of incoherent range finders to

passive interferences has a fundamental character, we consider a range finder with

an opt-.1in discriminator. For definitiveness we consider that the discriminator iI

realized by a "shortening" filter ideally matched with the sounding signal, a square-

-aw detector and two gates, narrow as compared to the duration of the "shortened"

pulse, with detuning 26, which we now will consider finite, and in final results we

pass to the limit 5-* 0, i.e., we turn to the case of an optimum discriminatcr.

Modulation of the signal we consider arbitrary. For narrow triangular gate pulstes

the process at the output of the discriminator can be considered a discrete random

process with a period of repetition of the signal Tr.

If the value of this process in the j-th period is equal to v.(L), where A is

mismatch, it has mean value 7 and correlation function

Rju,() = IDj (0)- i;(0)] [vk (0)'- v;--)l,

tne gain factor and the equivalent spectral density of the equivalent continuous

process are determined by relationships

s.. = T
0-h

Output voltage of the discriminator v,(A) can be recorded through the square f'

the envelope of output voltage of the "shortening" filter in the J-th period zp(.t)

in the following way:

V j ( a = z i N + -. ) -z j (,V, --1-0) • . "1.;•

Here O -- true value of delay; $T0 - A = - its measured value,

- the square of the envelope of output voltage of the "shortening" filter witl, lb

response h(t) = uo(-t) (uo(t) describes modulation in one period); yJ(t) -- the signal

v'c,'-[•1 is, the j-th period.

Thern
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where Rj k(t 1 t 2 ) = [zj(tl) - z-t--] [zk(tq) - r- c v. Lat ion ftunctIon o.f

values of the square of the envelope in tne J-Ph ,nu .-.o periods.

Let us find the mean value of the square of the envelope. It is obvlou,: tonaq

-- 0 -aRo

where Ryj'(t 1 , t 2 ) - correlation function o!" the received signal, consisting of a

mixture of the signal reflected from the targo, l, internal noise and the signal from

passive interference. As it was showm in Chapter I, this correlation function i,

equal to

Ry j(t,. ) Pc Re uo (t, - ;) U, (-- .,) pjhe I-. -

-4-N.8(Y. -t.)8, -- Re G O(-)u°(Q, -- 0a*#(I.--t) X dlrjiek I" (h)eiA(-h) (8.o0. J )
where Jk -- coefficiri't of interperiod correlation of signal;

r - coefficient of interperiod correlation of .r'-er-
.1k Peec

0 = XOTr - [LATr/2" ]2v - phase shift: for -3 period, caused by difference of'
Doppler frequencies of the signai and iterfnrence;

[&,r/2T3 -- integral part of ratio AmT21r;

&i• - difference of Doppler frequencies of signal and
interfei ,-nce.

FPhase shift e is convenlentl, fr.•.,•ted i.n the form
IA

Ad WA Tro
".%n'Žr.- A• - LaiaTr/•2w]2t/Tr -- diff.,rerc(: of the difference Doppler frequc.rncy

"41(i '.:- nearest, frequency to It, which is a multiple of the frequency of repet.LI.
of t.ie signal.

Function o(-i) Ln formula (8.10.9) is the distribution density of power wit .

respect to range reflected from passive interference, expressed, for instance, in

w/L•s.c. This fu'nction is connected with the distribution density of range reflectors

by the simple relationship

* ' (1) =C) P.(8ii)2 2
where 00 - effective reflecting surface of one reflector;

0, - effective reflecting surface of target;

n(r) - distribution density of range reflectors (number of reflectors In a lay, r
of unit thickness).
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Substituting expression (8.10.9) in formula (8.10.8) and integrating, we obtain

S-(--' + a (8.10.1c)

where C(x) -- autocorrelation function of one period of modulation.

If density of reflectors o(i) is constant within limits of the interval of

range resolution, the component caused by the presence of passive interference is

C(-.-t)Isd¶ VWt) I IC(.-)I'd.'c (.o.) S C(x) 11 dx, (8.10.12)

i.e., does not depend on t. Therefore, the presence of passive interference, as

also the presence of internal noises, does not affect the gain factor of the dis-

criminator, and magnitude of K remains the same as before (§ 8.2).

Note that in a nonoptimal discriminator, having in the absence of interferen':lc

null shift of the discrimination characteristic due to noises, in the presence of

passive interference due to imbalance of channels there will appear additional b
systematic error, the magnitude of which may be very significant due to the high

level of interference.

Likewise, calculating the correlation function, as we have done many times for

the case when there are only a reflected signal and noise, we can obtain the fol]t'winl!.

expression:
Rj,,(Y" i.)-• T' P2 ... i)c(so€•'÷

33

+-O,-1)C C( t4)d 8AL,• r,.- to) C X 1) ,( t)d
.!1 4 h• I sl

+- P.T1 A

,he -2 , - (TO.) C( .--. ) X C*(ta'I.)dx

! (8.lu.i•)

where we again assumed that the density of reflectors within limits of the range

resolution interval near point T0 is constant and equal to v('1O)' i.e., its value

at the point of location of the target. This assumption sufficiently well Is realized

in practice already for comparatively low range resolution capability of the radar.
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Substituting the found expression for the correlation function in (8.10.7), 'A

summing in accordance with formula (8.10.3) and passing in the obtained expressi-n

to limit 5- 0, for equivalent spectral density we find the following expression: 4

+q [ W1'+ C'X Is dx+

oo , afar,

+- I c(X'x jIIC(x) ldx +'xT C_ dIis x I.r (,. I'4N•.b II (J) Mo bfr , )
-~ .

where it is assumed that the width of spectral band of passive inte(rference Af,, is

great as compared to the width of the spectrum of fluctuations of the signal ,L,
,0

and function f(Af. Tr, 4/f ) is equal tc

I (•LuTrt, "')•' keI i,

I-h

F-::r great width of the spectrum of interference as compared to the frequoncyv

'of repetition, when rh 5 jk' this function is equal to one, and in the opposite

case, when Af Tr << 1, summatic,. in can be r-lac-d by l...gra-.a

tion, and then

I (AIrJ "•=•l S. s(&e.), (6. 1.0. ") ,A

where Sn (w) - spectral density of' lnter-.&r•,nce, normalized so that S (0) = 1.

In the particular case cf exponen l.al correlatLun of interference, when

-2Af'. Trli-ki,
= e , the exact expression for f(Af n TrI 6/ )h f

(NTr "A• I"|' (8. 0. 17)

',Considering In greater detail the expression for S ax we see that the firs-(,. i:.•

terms are caused by the presence of internal noises and remain in the absene- of
interference, characterizing accuracy of measurement with internal noises alone.

T'he last term is caused by the interaction of' the signal with interference and

depends, at least, for a frequency of repetition high as compared to Af . on the

difference of Doppler frequencies of the signal and interference. This term coincides

with the corresponding component of 5,, caused by the presence of passive inter-

ference; in coherent systems and with selection of a high frequency of repetition

it is determined only by the magnitude of the difference Doppler frequency. There-

fore, for all "nonblind" speeds (see Paragraph 7.14.4) this term does not lead to
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1i
increased errors of measurement.

The third term in formula (8.10.14) is caused by interaction of interference

with noise and has an order of i/q (let us remember that in accordance with (8.10.10)

o(rO) has an order of PC). This term has a specific incoherent form - it does not

depend a, Af Tr and A' In coherent systems, thanks to the presence of narrow-

band filtration of noise at the signal frequency, this term also depends on the

:ifference Doppler frequency and for sufficiently great detuning turns out to be

small as compared to q.

An analogous state of affairs occurs with respect to the fourth term, which is

caused by the interaction of interference with interference. This term gives the !i

main component of spectral density - it does not depend on the signal-to-noise rati s

q. In coherent systems, thanks to the fact that to the discriminator output there I,'
pass only lateral components of the spectrum of interference, this term also depends

on detuning.

Integrals in formula (8.io.i4) have the order of magnitude of the effective

range resolution interval AT 1b, i.e., Ii

404

__x ¢ (- (8.io.is) 2

__ W

where oil =ao nt - -n total reflecting surface of interference in the

resolving volume of the radar.

With an accuracy of a numerical coefficient of the order of unity, equal to 11.1

quantity, too, is the product
a (I) C. (I'd x- P.

More exactly, integrals (8.10.18) and (8.10,19), for instance, for the Gaussla.1i

autocorrclation function !

C (x) T(exp -- i 7

-o!

q uantity too, i th.rI[I
• ' ' • % : ' • 7 - . . . .. . . ... .. . ... . . .. . . . . . .i . .... . . - . . . .. .. . • .. . . ... . ...C. . . ...x.. . .. .. .. . ....e x. .... ...n (. .... . .. . . .. . ... . .. . ..
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Thus, taking into account (8.10.20) and ('3.10.21), we can give equivalent

spectral density the form

where a - numerical coefficient of the order of unity (for Gaussian C(x) it As

equal to 1/2).

Consequently, even for a large signal-to-noise ratio q, a narrow spectrum of

interference, and great detuning in frequency(&n•/Afr >> i), the equivalent ape _

density may be very great. Its limiting value is determined by (a /GQ 2 " If it I
is qonsidered that. in the resolved volume there are reflectors with total reflecti-o: n-

2surface o n 50 m2, then even for the largest air targets with a. reflecting sur', ec2Iof ,ie order of c 10 to 20 m2 [26] , l.pectl. *nsity of •K• is (C to i-1/1

i.e., is the same as in the absence of interferences; and for a signal-to-noise rae

q - 0.4 to 0.2. Here, as follows from results in § 8.9, in most cases th.ec'.,'.'i

disturbance of linear conditions in the tracking system, errors of measurement

essentially increase, and breakoff of tv"a-t1Clng becomes possIble. In many cases rat].o i
/ can reach considerably I argo . -.eues. Therefore, the Influence of passive

Interference on an incoherent range finder leads, actually, to the impossibility of

rane, finding.

..lie ornly specifically incoherent meatns of combatting passive interferences Kr,

at present is incoherent alternating-period compensation [i, 34]. It conisls.•.o

the following: "shortened" pulses after detection are delayed a period and are sub-

tracted from the undelayed sequence (see Chapter IV). Thenthe differer,:re signal is

fed to gating stages for formation of the signal of range mismatch,

If the width of the spectrum of interference is sufficiently small as compared

to the frequency of repetition, the components of output voltages, caused by the

presence of interference, due to their correlatedness are partially compensated, I
and the signal-to-interference ratio is improved. With incoherent compensation

there occurs, basically, decrease of the basic component of' equivalent spectral

density, which is caused by interaction of interference with itself (the term In

-402



2formula (8.10.24) which is proportional to (o' /oil)). The magnitude of suppression

essentially depends on the degree of interperind correlation of interference and

the form of its spectral density. The relative magnitude of suppression, i.e., the

degree of increase of the signal-to-interference ratio, depends also on the speed

of the tsraet.

On the basis of estimates given in Chapter IV one may assume that suppression

of Lnterference has an order of I/Af n Tr. For normally used frequencies of repeti-

tion and width of the spectrum of interference of several tens of cycles per second,

which •s characteristic of fixed, e.g., ground radars, this suppression can attain

10-20 db. In the case of moving airborne radars, due to great width of the spectrum I
of passive interference suppression turns out to be essentially smaller or may,

general, be absent.

Thus, incoherent compensation of passive interference is not a radical mearn.

of protecting radars and in many cases cannot ensure reliable range finding. Ther--

fore, the only truly effective means of protect:ing pulse range finders from passive

interferences is application of coherent techniques.

Most frequently this is attained by introduction of colierexit alternatiig-per•,d

compensation (Chapter IV), which for sufficiently high multiplicity ensures approx1-

mately the same results as the coherent range finders considered in the preceding._

chapter. Theoretically, it turns out that all terms in formula (8.10.24) depend

on the difference Doppler frequency and for sufficiently greal. detuning are small. el

In practice, due to the presence of blind speeds and nonoptimality of processing,

efficiency of a system with alternating-period subtraction is lower than efficiency

of a radar with a coherent range finder (see Chapter IV); however, in many Impnrtani

cases suppression of interference is sufficient to guarantee normal efficiency of

the range finder.

§ 8.11. Conclusion

The conducted investigation of incoherent tracking radar range finders and

comparison with results pertaining to coherent meters shows that from many pclnts

of view differences in the form of sounding radiation of the radar and in methods

of processing the received signal do not lead to any essential difference in ciharas-

terin!,ic. of accuracy of jmeasureraent.

In particular, with external interferences and a sufficiently large signal-ic- •

noise ratio potential accuracy of range finding is identical for coherent and inro-

herent signals. Just as in coherent systems, different approximate methods -f f
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real.zation of optimum operations considered in thi.s chapter mnsure accuracy clo,ne

to the potential, if only we reasonably select parameters of the correspondi.n. olr.-

cu'.os. The dependence of accuracy of measurement on the fort of iriodulali.rn in i,

herent discriminators is the same as in coherent, The .. nfiuencc of var'i,,ns -:i1,-c.: --

of nonideal.nessos of processing also, basically, remaslri the sane,.

Essential difference in the characteristics of accuracy of coherent and inec-

herent radar range finders can take place with external interferences, especially

passive ones, In this respect incoherent systems give considerable loss, and i.n qs

number of cases the presence of passive interferences le& is to) impossibility of 1its. 4

application. Another peculiarity of the investigated incoherent rangeý firders,

worse accuracy for low signal levels and, connected with this, the. necessiity - f

allowing for nonlinearity of discriminators and phenomena of breakofi' of tlrac.,ng. I
Regarding questions requiring further investigation and more detailed workii,,

out., here it is possible. to repeat everything said in § 7.16 with respect to pr, 1 
>.,

cone<:rnng coherent range finders. Actually, problems enumerated there Dave `

less urgency and inzerest in thts case. This list can be supplemented by a s-.

of sqopoifieai1y "ineoherpnt" p.rnh 1ems. F-.,' 11  practical point f vico *:e .

ost' interesting such problems is more detailed st.,dy of interference resistai e I

incoherent range finders with respect to passive interferences. ivo j'. ,s d, .

theý linvestigatlion of the system of incohei-ent. aiternating-perisd compcr1n,-;-..zat PIII

in p and studying{ other possible means of I ote -Iion from ,ass lye initerf'ýreonee, a

cortibined system using for protecti ,n fr-jn 'sýive jn'k.cri'erencoes slicit |i -omrt:fsa-

tier, with external and internal, coheren~ce, etc.

Another Interesting question is nut e precise doV'irltori[n of soloutiot of the
i Lenb• of synthesis of an optimum incoherent discriminator. Here w should con-

:•!4. 0 L!, p c set.. of inteperLod correlaeti.on (-f the received signal, find op'.- ,

.v winch there is replaced accumulation of squares .-f the envelope, and enaL'7@

.heir influence on accuracy of measurement. Although physical considlrfl.cl -..1s and

:onsideration of' the limiting cases force us to think that the influennce of An cr-

p Fri.od correlatii,)n is ha-rdl.y essential., nonetheless:; 1'. Wcnld£ be Inte rv-1 int{ L.c., blali,

e irict analytic confirmation of this circumstance.

One more important question is investigation of. nontracking incoherr.nt rarli.

finders. Practically, most interesting are meters using a unit of detection eljan-

ne.s. This problem obtains special urgency in connt:ction with app] ical.!,n ol inco-

"herent signals with high range resolution capability, pro)vided by intrapulse
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modulation. In the given question one should seek optimum operations of processing

the signal from the output of the unit of channels, and study characteristics of

accuracy for these and other possible operations.

In incoherent range finders we can use quantization of the output signal by

level. (This quantization may be, in principle, applied in coherent range finders,

too.) Investigation of systems with quantization is also interesting for practice.

liere the most important question is the question of the influence cf the magnitude

of quantization on accuracy of measurement and of finding conditions when quantiza-

tion can be disregarded. IA

However, in spite of the fact that- there are a number of unsolved questions,

results of the present chapter, in general, permit us with sufficient knowledge '4'

the matter to approach the problem of construction of incoherent radar range finders

with arbitrary intrapulse modulation and of investigation of their accuracy in

various conditions. These results give the possibility of correctly silecting tntý

functional circuit of the discriminator of a range finder, to estimate the influence

of various kinds of deviations from optimality of processing, to calculate characlter-

istics of discrim inators taking into account these deviations, and t.: analyze accu-

racy of range finding with different laws of motion of the target and different

smoothing filters. The formulas for accuracy of measurement obtained above permit,

uzs to correctly select the required magnitudes of width of the spectrum of modula-

tion and of the energy of the received signal.
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CHAPTER IX

MEASUREMENT OF SPEED
Ii

§ 9.1. Introductory Remarks

Requirements on contemporary radars frequently lead to the necessity of the i

measurement not only of current coordinates of targets, but also rates of their "

change. In certain radar systems it is desirable to measure both radial, and also i

tanguntial components of velocity and to find as a final result the velocity vector

of the target with respect to the radar. Moreover, there exist technical problems•

leading to the necessity of measurement of the second derivative of coordinates of ¼

targets for discerning the latter and for exact prolongation of their trajectories.

However, of greatest interest is measurement of the radial component of velocit'y.

It is needed, for instance, for navigational systems, where there are used Duppler

groundspeed meters (dead reckoners). Measurement of radial velocity in the variant i

of automatic tracking of frequency of refl.ected signal is necessary during construc-

tion of any coherent radars, since they contain narrow-band filters (see Chapters

IV anfJ VII), which it is necessary to cune upon change of frequency of the signs]

T1hus, from the principle of construction of coherent radars there ensue;; thc I-

necessity of measurement of Doppler shift of frequency of the signal

2V

where V - radial velocity;

X - wavelength of the generated oscillations.

Namely for this of greatest interest is investigation of Doppler speed meferf;,,

which is the basic content of this chanter. Besides direct measurement of radial

velocity using the Doppler effect there are applied other method. of findin,; ii.,
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based on use of range-finding systems, since voltages at ceonain points of fi].erI

of range finders are proportional to radial velocity. Such a method i- essentially

the only one for incoherent pulse radars with short pulse duration:, since attemptspf-,

to measure speed by Doppler shift of frequency, determined during *9 pulse duvoni- .

usuallj do not stand up to criticism in connecitinn with low accuracy of met surrmdxt. I
Measurement of tangent components of velocity can be perf'ormied using gonionetrical

systems of radars. Questions of measurement of speed with the help of range finders

and goniometers also will be seen In this charter.

As also in preceding chapters, we will be interes;ted first of' all in findinot

optimum methods of construction of speed meters (their discriminators arid ssi5o.Th'n--

circuits), allowing us to obtain minimum errors of measurement jn the preserice

rnuises and with allowance for fluctuations of the signal reflected from the tar--- t.

Quantitative estimation of these errors, just as of errors of measurement oi spee r

with various applied methods of construction of discriminators and smoothing circuitn..,

1:- the !text problem of this chapter. Furthermore, we analyze nonlinear phenorarir I
speec meters, taking place with intense noises and leading to breakoff of trswkin.i

of' automatic tracking meters, and als,, ,ut-.tios of the influence or, then of certain S

forms of active and passive interferenues.

As also during investigation of range ycLsteas, we will widely use- .ils c-I'

Chqpter VI in accordance with which during synthesis of optimum :;peed meters" :S.,'V

are tracking systems of definite form, we iphal be basially interested in synthesis

of the optimum discriminator. Suciothi:,n c ircý'[ts are synthesJized for iny meters,;

in Chapter VI. Correspondingly, being interested in Doppler speed meters, we shall

first, determine operations of an optimum frequency di.criminator, Audge dif'erent.

1.ecti~ncaI methods of construction of the discriminator, giving results close to.

OJ' si~r!,, and make certain recommendations ensuing from comparison of' circuits I
d,.i.crinators. Smoothing circuits will be considered from the point of' view -I

application of results of' Chapter VI to measurement of speed giving physical treatment; -,

iarid examples, illustrating accuracy of the obtained meters as a whole. Special

attentlon 'ill be paid to the question of' deviations from the opltlmum rsethoh u0'

construction of meters and their influence n accuracy of ireasurerrrnt. of' spee,

SEstimates of the influence of strong noioses and interferences on Doppler

tracking speed meters are given on the basis of' a consideration of the phenomi-n.,n

"of' breakoff of tracking, which is conductea from tenets of the utw,, criteria ,f'

breakoff considered in Chapter VI.
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In a number of cases they apply nontracking speed meters, in particular, I
meters containing a unit of filters tuned to various Doppler frequenci( . Analysis I

of potentialities of such meters is also given in this chapter.

Investigating properties of meters of speed, determined by differentiation of

a co--ra'a.,ite (range, angle), we shall find optimum circuits of meters for certain

p;ar-tcular forms of statistics of change of speed, and also we shall analyze

accuracy of measurement during application of usual forms of linear filters with

constant parameters.

All these investigations give us the possibility to estimate performance of'

speed meters not only in the presence of internal noises of systems, but also under

the influence of certain wide-spread forms of interferences, whose effect. ý.s will A

be shown, is equivalent to the effect of noise.

§ 9.2. Synthesis of an Optimum Frequency Eiscriminator

We turn first of all to measurement of radial velocity on the basis of the

Doppler effect. The measured parameter of the received radar signal here is

Doppler shift of frequency a,, = which varies, in generil, randomly in tm. The

function of the discriminator of a tracking radar meter is singling out voltage

proportional to current mismatch between the true magnitude of ow,(t) and its iaer5ji..r(d

value, which is the output variable of the tracking system. Here, as foll.o. lron
~1

Chapter VIan optimum discriminator, ensuring minimum spectral density of' the

random component of voltage at its output, should form the derivative

61Q(t, W;ý) 12/ for w¢, equal to the estimated value (output variabjo of the Itrfafk-

ing meter). Here Q(t, w) is determined by the presentation of the logarithm iof

the functional of the probability density of the received signal y(t) for an ri 1

value of' parameter cu. in the form

where C does nct depend on OA.

To find the functional of probability density P[y(t)/awa(t)j riecessry 1',

further calculations it is necessary to assign the form of' signal y(t). Ir Mccn!arce

with the description of the signal, given in Chapter I, the reflected signarl can

often be con:sidered a normal random process. We shall be interested In il,;;

reception in white Gaussian noise of spectral density 1J(. [his florre-8podl ,

case.; of the presence of internal noises of the receiver, of' 'road-uarnd ac' lye

Interf'erences, and, with certain a., sumptions, stated in r 9.', passive irl'ere:.('e:;
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Then the received signal (mixture of reflected •.ignal anu interference) y(tI

Is a normal random process whose correlation function, according to (i.•.3), is

determined by expression

SCOS a (it - t) + *A (it) (01 - t) + ( - - ( -'01+

+ N-4

where, as before, Ua(t) and V,(t) - laws of ampliltude and phase modulation of th•-

signal, respectively; i - delay of the reflected signal; I - its mear power;

(t) - correlation function of fluctuatiorn, of the signal; .U a function,

representing Doppler shift of the frequency of' the signal,, slow as compared to

r/ (t).

C.alculation of the functional of prc.,.,..:,t.ity density of a normal random sif!uial

with correlation function of form (9.2.1) already is given in Chapter IV daring

synthesis of an :)ptimum detector of a. cos'. "'g)ol. Accordirg to (4.3.-11'; the

logarithm of the likelihood function (fucchon.L oV' proba.bility dernity of signal I
y(t)) is presented in the form Just now ment-ioned: Ij

T

&9..? I YaA)I

-S-rine ly speaking,, wlth .• ra•''].j .. :;r,.) :-Lrid ra( lIat velocity ± the target.i
varying, in ttiie one snould talk asuo.ut random chaigesi )J phase of' the signal, con-
neetufd with radial velocity, These chtlges can be pres;ented in the form

I ) A (s) do,

ri the e;;pr' o oln .'r the correlation function of the signal there is the dil'UCrt,, J

In cornec Lion with the ossumption 01' the 1ýuickness of change of components; of the i
random signal as -ompared to changes ,' speed )I' the target for intervals t -t
corresponding to the interval of correlation of the shown components, this approxi-

mate equality I!: valid:

AV , (it) (to -- to),

It directly leads to formula (9.2.1) for the co)rrelation function and to 1he abuove-
indicated interpretation of the function of the discriminator,
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which gives the possibility of direct interpretation of operations of an optimum

discriminator. Here Q(t, w.) is the result of passage of the product of the observed

realization of signal y(t) and a reference signal, which in complex form is expressed

as
as 0t -,C) e '+A•÷t'

through a filter, the square of the modulus of whose frequency response, according

to (4.3.8), is equal to
is- h., (a) 0

(9.2.3)

Quantity h is the signal-to-noise ratio and is defined as• P• I

Af, - effective band of fluctuations of the signal;

S0 (w) - normalized spectral density of fluctuations.

Correspondingly,

IQ (, A) I' (s) U. (t--s)(ss e". (9.2.4)

where ho(t) - pulse response of a filter, whose frequency response is Ho(iW). This

filter is a low-frequency equivalent of the optimum filter of a coherent receiver,

encountered already in problems of detection and range finding. The obtained result

is valid in the cas3 of rapid fluctuations of the signal.

Output voltage of the optimum frequency discriminator is defined as

Zt

where w - fixed frequency (ho(t) cos w.r.t pulse response of the optimum filter);

a W

Z(t) -- estimated value of Doppler frequency, obtained from the output of the meter,

Recording of output voltage of the discriminator z(t) in the form of (9.2.i;)

permits us to easily give the following physical interpretation of operations of

the optimum discriminator. The expression in braces is the square of the envelope

of voltage, formed by mixing the received signal y(t) with reference signal
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Ua(t - c) cos [cu, t + V1 (t - r)] and passing this signal through an optimum filter,

tuned to intermediate frequency uýir" Here, delay of modulation of± the reference

signal T should correspond to the true distance to the target; it- is determined .

practically by output voltage of the rangle syrt.em. The frequency of t!,• he .*•-

dyne oscillator should be tuned to w + WA(t) ± o], which is attained with the nelp

of the voltage from the output of the synthesized speed meter. Mixing of the

recieved signal with the shown reference signal ensures convolution of phase modula-

tion, as a result of which there is obtained a signal unmodulated in phase and the

best separation of the amplitude-modulated signal from noises,

Naturally, convolution of phase modulation during mixing with heterodyne v;it•o.

and multiplication by function ua(t - i), expressing the law of anplitude modu.ati.,

(gating during pulse modulation of the signal) by no means must necessarily be

produced by giving to heterodyne voltage the corresponding law of amplitude modula-

tion. These two functions can also be realized separately.

Formation of the square of the envelope of voltage at the output of the fi.' Ier

can be carried out by a square-law detector. In order to produce voltage, prTpof-

rional to the derivative with respect to auc , it [. possible to realize Two chanLnels
oif the described form, filters of which are detuned relative to 2o!, by , and to

subtract the output voltages of these cnannels. As a result we replace differentla-

tion by calculation of the difference and as &- - 0 output voltage of the resulting

circuit seeks z(t). Optimum speed meter i:, seen in Fig. '1.1.

Comparison of the obtained form

of optimum processing of a signal

with results of Chapter 1V shows that

an optimum, frequency discriminator

consists of two channels oi opt.f rlts

detection, detuned with respect. t.o

Pi.g. 9.1. Optimum speed meter: I - con- the measured parameter (frequency),
trolled local os-illator; 2 - mixer; 3- which facilitates construction of
filter; 4 - square-law detector; .5 --

smoothing circuit, radars optimum boLh in conditions

of detection and in conditions of measurements.

We emphasize that the optimum circuit is synthesized for an arbitrary form of

radiation, both continuous and also pulse, Operations of processing the signal,

starting with narrow-band filtration, do riot depend on the method of radiation and

form of modulation. This will facilitate our further consideration of different

-412-A i ~



deviations from the optimum method of construction of the frequency discriminator,

allowing us not to turn to concrete forms of modulation.

§ 9.3. Characteristics of an Optimum Frequency Discriminator

The found frequency discriminator is optimum from the point of view of obtaining

maximum accuracy of measurement of speed. Therefore, its basic characteristics are

:,Lagnitudes characterizing accuracy, i.e., in accordance with ChapterVI, equivalent

spectral density SenT and a coefficient determining the intensity of parametric

fluctuations Shnp.

Equaivalent spectral density with an optimum discriminator can be found accord-

ing to (6.7.33) by the formula
T r

$- F (11 12U, t,.) dRU, Y , T) d14d1.,
omt 2( )

where R(ti, t2 , m,) - correlation function of the received signal, determined by
formula (9.2.1);

W(tl, t 2 , () - function, found from solution of equation (6.7,20), equal to

W ('1, t., MA) = - V u (. -0) U (. --- )Cos [(RO +MA)(-,)+
AS• , S (to) e'd

N,- ,+hS*(,.)

i---" • .", ,).(9.3. 2)i
V,

Substituting (9.2.1) and (9.3.2) in (9.3.1) and performing calculations, we

obtain

S-1 'I AS'* (in).S.,,• •I + hs, (ca)
_, LthSQ jo (9.53.-;

where the stroke is the sign of differentiation.

The same result can be obtained by another method, if we consider that for a.n

optimum discriminator

x.., ' -Ke" 1 4

where K - the gain factor of the discriminator, defined as

K0 ,1 ==(j zJ.. * )I
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Averaging in set (9.2.5), we easily obtain for the discriminiation character-

'istic of an optimum frequency discriminator

IH2Iw•)12 (IS'.(a +2.o. ):

where b c - w,, and IH0(iw)l is determined by expression (9.2.3).

From (9.3.5) and (9.3.6) we can obtain formula (9.3.3) for equivalent spectral

density. Moreover, we incidentally obtain the expression for the discrimination

characteristic of the optimum discriminator, needed during the analysis of procosses

* occurring with strong noises and interferences.

* For finding the coefficient of parametric fluctuations S-,, we calculate th.e

equivalent fluctuation characteristic of the discriminator

S~~~~S., (a) z-(t a) lzlt ZzT+, a)-iý! z~t •)(1 , ,) (9.:.•

Performing calculations, we obtain

som (a H. (i (a 4- r-))j- [hS. I-)I 'dw...
U2" do 3.-8)

Coefficient Siaf is now calculated as

S• " ! d's.,,(a) I
S2 d=l -0dI' (9.s..-)

From the obtained expressions, I. 1:..i.lows t;ha. both equivalent spectoral

density So2 n, and coefficient do not depend on the form of' modulation of the

sounding siL-;nal but are determined only by the signal-to-noiuc ratio h and the

form of the spectrum of fluctuations of the reflected signal So(CO),

Of basic importance for determining error of the speed meteal is the equiw't.,,

spectral density S0,l. Let us find it for certain characteristic forms of S3(cu)

If spectral density of the signal corresponds to white noise passing through

an tC-filter, then S. (e) ----=

, + \ .](9.3.10)

where Af0  - effective band of fluctuations of the signal.

Substituting (9.3.10) in (9.3.3), we obtain

s.,..4 .(9,/i)-
AtA
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When the spectral density of the signal corresponds to white noise passing

through two series-coupled RC-filters

S, I (9.3.12) L

++ 1(9.3.3) we obtain

)VITA-t +]

24--+1 '-kI k-l (9.3.1.3) •

If, however, the spectrum of the signal has a Gaussian form,

SA
S.(w) -- exp -• -. 3 •

it is possible to calculate Sonq approximately, obtaining here

(16I )$j - (in h)'11

Dependenzes of Son,/Afc on the signal-to-noise ratio h for the three considered

cases are shown in Fig. 9.2.

These three cases do not exhaust, of course, all possibilities. However, they

belong to one family of functions SO(w, n), depending on integral parameter n,

Si(* n).--- .+ 1,,.)1;'(9.3.i6)

where (1n--I
n=• 2,--1. 1)!i"

Generalizing the obtained results for an arbitrary n, we can obtain limitirqf

relationships for SOnT for small and large signal-to-noise ratios:

At. 2'-'(2n+ I)f(n--)!J'((2n)!j'
S ( ' n' (4n)l (2n - 2)! h -*. J 0,( Q.

.n3 , (2 n - 2)!

From these relationships and from Fig. 9.2 it follows that, for small h the

magnitude of S depends little on the form of the spectrum, being proportioralOuT

-415;



S- -to i/hc. Por large h(h > 10u)

1*' f., - - -the magnitude of S essentiallty

D.M' - - - - -depends on the form of the spectrum,

.' •- - -- - -varying as h- a) from2.f (.• =

- t- 0 (n - to). In Table 9.1 is

U ... given the dependence of limiting

-- - : -value6 of SoH! on the approximation

S.D- -- -of the Spectrum far fWull (9.3.1.r

- - -. - -• For very large .,igna1-to-uci.;E

- - - ratios the question of optimiz- -l.:
to MJ R1 100 *1V Sj JW

of a meter usually does not aris,.

Fig. 9.2. Dependence of equivalent spL-cr51
density of an optimum frequency discrimina- Therefore, working slnal-to-noi:e

totr SM on the signal-to-noise ratio h: ratios should be considered magnitudes

- is oxpressed by formula (9.3.10);

" ... ((o) is expressed by formula (9.3.12); of h = 0.1 to 10G. In this range

SI(m) is expressed by formula (9.3.14); of h the dependence of SonT on the

form of the £pectruim of fluctuatio-ns

of the signal is not great aria it often can be ignored, considering for simplicity

approximation (9.3.10).

It should be noted that one should riot especially trust the obtained valuef. of

OW for very large h, since the calculating formulas used here become insufficiently

* exact.

.Table 9.1

1r1 AS 01 - 16 18,3 18,35 18,32 18,3 17. 7

1 lr 2 I O,E9 0,4 0,29 0

Besides consideration of the dependence of S on h one should emphasize the

proportionality ,f S OnT' and consequently, and of variance of error nif tn.sur~rent

of speed, to the effective width of the spectrum of fluctuations of the signal

/1f*c Here there exists a fundamental difference between results obtained for

IDoppler speed meters and meters for range and coordinates, and using range finders
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and goniometers. It consists in the fact that there exists a limiting error of

measurement of speed for any size signal-to-noise ratio, while in range finders and

goniometers error:decreases without limit with increase of this ratio. Physically

this is explained by the fact that in a speed meter subjected to measurement is the

derI',,•.i.e of the phase of the signal, which for the accepted idealizations contains,

due: L, fluctuations of the signal, an additive random addition, not depending on

the signal-to-noise ratio.

Thus, the method of encoding the measured parameter (speed) in the signal in

principle- does not permit us to compensate the influence of fluctuations of the

sigruai, in distinction from range finders and goniometers where such compensation

is possible.

Assigning the simplest form of spectral density of fluctuations of the SinLla

(9.3.10), by formulas (9.3.8) and (9.3.9) we find S Results of rather eumber-ome

calculations are presented in the fori of
2S, | _'__" the curve of Fig. 9.3. As h - o quantity

IS... reacnes its maximum. and is equn] t-

1/2,ifC • We do not give values -f S lia for

41 : small h, since here conditions of optimalily-

of the synthesized circuit are no longer

4', -- realized, and the model of the trackirnu

meter accepted for analysis of accuracy

E -loses its meaning, which leads during formal

application of the expression for S to

t VS .physically inexplicable rEsults,. 1e.:h-.1i

Fig. -).3. Dependence of the coef- postpone estimation of the increase Ut.. fl'-
ficient of parametric fluctuations

of an optimum frequency dis- tuation error due to parametric f]luctuo:i.

criminitor on the signal-to-noise until our consicer~ti.n 4 suoi.iti 'iJ -tv.
rauio h.

and of errors of the ._peed in, ter c. i t.hol,

§ 9.4. Analysis of Certain Circuits of Frequency Discriminators

Let us turn to analysis of frequency discriminators, whose circuits differ from

t.he PhovP--OnnidP~red optimum eireuilt. Analyzing properties of thesp dl serimiral.or.

and characterizing them by parameters SSam and Sna.,I we have the possibility of

comparing different discriminators with one another and with an optimum discrimina1.(,.

As a result we shall find conditions in which certain of the circuits are Close iT,
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performance to optimum ones, i.e., accuracy of measurement of speed provided by

* them is close to potential accuracy belonging to an optimum meter.f

For convenience of consideration we introduce certain nionessential ldealization:.. j

During the analysis of different circuits we assume that convolution of t:he •l-

of an arbitrarily modulated received signal is realised ideally. This asoumplioni I
means that the arbitrarily modulated signal will be converted into a signal, con-

taining only one spectral component of width Af0 , by which we measure the Doppler

frequency, without change of the signal-to-noise ratio with respect to the input

signal of the receiver, As a result characteristics of the considered circuits wi1l

not depend on the form of' modulation similarly to how this took place for theI

optimum circuit. Subsequently, we shall take into account those changes to which

imperfectness of convolution of the spectrum of the signal leads. It turns out tral.

this is possible to do in sufficiently general form without turning to consideratlo:,

IQ the concrete forms of modulation.

We shall subsequently assume that the receiver in the considered discriminators, r

* has an automatic gain control [AGC] system, which reduces the average level of .

v* tltafp • t the nutput of the amplifier cowv--red by to a constant level. Thus, :

assumptions abcut the function executed by the AGC system remain the saine as in

ChapterVII. With application of square-law detectors or multipliers iii circuiit I

* of discriminators this leads, naturally, t-) the same dependence of the discriminator

gain factor K on the signal-to-noise rotl. h

K P=q+A *7A,.) (9.4.1)

where K, -- nominal value of the gain factor in the absence cf noises;

- effective bandwith f he ,mplifier covered by the AGC loop (Af >>

>> ' )

When, there is n:) AGC syst.m, or It Co s not work due to smal.Lness of tht-

amplitude of the signal, the dependence of KA on h changes. Here, the gain factor

oif the discriminator is proportional to h. There may be other dependences, deter-

r mined by suppression of the signal by noise due to various nonlinearities in the

radio channel. However, we henceforth take dependence (9.4.1).

Let us consider in the above-described plan some of the most widely used eir-

* cults of frequency discriminators.

A
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9.4.1. Circuit with a Tuned Loop and a Phase Shifter

The diagram of a frequency discriminator is shown in Fig. 9.4. Input signal

y(t) is fed to a mixer. Heterodyne voltage, proceeding to the same mixer, is

modulated in phase in such a way that

there is ensured phase demodulation

of the signal. Heterodyne frequency

- is controlled by the output voltage

of the speed meter. After heterudynid.ng
Fig. <. ;. Diagram of a frequency dis-
criminauor with a tuned loop and a phase the signal is subjected to amplifies-
shifter: I - mixer; 2 - controlled local
oscillator; 3 - amplifier; 4 - modulator; tion, where the gain factor changes in

amplifier with controlled gain; 6 --
AGC circuit; 7 - tuned loop; 8 - phase accordance with the law of amp Litude
shifter; 9 -- phase detector.

modulation of the received signal.

In Ihle case of a pulse signal the shown operations simply signify gating of the

ampiifier with the proper form of gate pulse. Delay of phase modulation of the lvŽ. .i

oscillator and amplitude modulation in the amplifier is controlled from the output

of the range finder. Then the signal is passed through an amplifier with band

Af >> Af , which is subject to automatic gain control. Note that in practice

preceding stages (gated stages) may also have gain control.

We assume that band Af is sufficiently small to ensure suppression of side-

bands of amplitude modulation of the signal. This assumption is made for convenuwie1ce

of further analysis, although it is obvious that results are not changed if it is

not realized. The described part of the circuit, ensuring demodulation of the signal

and reduction of it to a level corresponding to work of subsequent stages in a

linear regime, is common both for the considered, and also for the following cir-

cuit- of discriminators.

After demodulation the signal proceeds to the tuned loop of the discriminaic'r

vith passband AfX and from its output it is fed to a phase detecLor; simulteouu:

to the phase detector there is fed voltage from the output of the amplifier, s3hifteCU

71/2 by a phase shifter. Output voltage of the phase detector, which multipli-s

these voltages, is the output variable of' the discriminator, which after anplifi-

cation and smoothing controls the frequency of the local oscillator. The principle

of action or the circuit is based cn the fact that the phase-frequency resporl5 (I'

a loop tuned to a certain frequency is an odd function of detuning relative 'o

this frequency, approximately linear with small detuning. As a result during

detuning of middle frequencies of' tne filter and of the signal beats between
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::Qirnpknent,. of the sigiial at the phase detector inpwt, sh> u or esP[ondjjýing,v 6

A)CI cSe hifte- and -filter, form a constant component., approximn~tely proporuici,%

t(- detuning.

The mixture of the signal and noifse azc the input. of the dsrr.n.o

tune-d to frequency oj,. can be presented in the fOrIlL

as(1 A (t) cos waS + B (t) sin Sp t  (9.4 .~2;)

where A () = os 8 + b (t)sn8t + t (t),
B ~ ~ ~ ~ ~ ~ ~ t. (t.5) sn8 McsB

ýj-detuning between frequencies of the local oscillator and the ir.

a(t) and b(t) - independent normal random proce:.;ses, characterizing fluct~uations
the received signral, with spectral density S()

E(t) and rý(t) - noises with spectral density, uniform in the pascband of the loop
arid equal to i/h.

Strictly speaking, voltage at the outpui. of' the loop is not: equal, but propor-

tional to ui(t) with a pro,.%rtionality factor which depends- on amplification of'

the channel and the Lower of' the ,,Jgnal at. the input., Huwever, subsequently this

proportiona-ll ty factor- has no significance, sinlce we inturoduced characteristics of:i

tne discriminator which do not depend on constant proportionality fac tci',.

Out~put voltage of the discriminator u, (t, 5) is obtained by multLiplying the.c

result of passage of u,(t) through a file" ith pulse response h(t) cos w, t and

the1c result of shit u, ( t) in phRse -'Y :I/, lerformlrig Oi lr cowi! operations, we

* have, with an accuracy of a constant coefficierit,

I rnInlring by usual method the [fain factor of the discriminator K we hr.-

where 1-1(iLo) - Fourier transform of h(t); *-designate; a complex conjugate magnitude;

!ý111d the stroke - sign of' differentiation.

Equivalenit spectral density SM determini~ed by the value of the fluctuation

characteristic_ for b 0,is equal to

Fur the simplest form of spectral denisity (..1)and a loop whose
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low-frequency equivalent has frequency response

l + 'a ' 947
2 .A.

expressions (9.4.5) and (9.4.6) take form

""[,A+,+ (,). .t)

+ + t+ -) + 2,San+4)2,fo (+ +

+- L (9.4I Cý:

Here U =fxiýf 0 ; k -- proportionality factor, not affecting the magnitude .-:1 %HB7

but, In general, depending on the signal-to-noise ratio due to the inf-eunce cf .he

AGC systers, described above. As a result the dependence of K on h is deterjilrnd

by formula (9.4.1). Formula (9.4.8) determines the dependence of Kz on the p.ss-

band of the loop af.. From (9.4.8) it follows that maximum }i' i5 attained at'

a = LfH/i.fG = i, but as in other meters this still does not minimize S 3B.

Quantity S09 consists of three components, caused by beats of components of the -

sig"nal at inputs of the phase detector (component not ýepending on h), beats of' !.!I

sitrnal with noise (component containing 1/h) and beats of noise with noise (coiqmrsm10en

with i/h'). For low-level noises the first component predominates; for high levc:L•,

the third. For any value of h quantity SKB has a minimum at a certain value of

the ratio of bandwidth of the loop and signal a. This testifies to presence, es

in the optimum circuit, of an optimum value of bandwidth af Minimum is

o trained at

+ h<1l

in !.he optimum circuit, according to results obtained above, the 'ilter .nOo I

thI( same lorm of frequency response with the relationship )f" barideiid~ttjh

Thus, Imn a circuit with a tuned loop ano a phase simifter 'he bet oandw:dv,

.f the loop is approximately i/3 as broad as in the optimum cr',uit for small. i, .3trl

* as b ro.,i an in the optirnum fIor L g u, 'i 'i. i.s e .. :i ri. b , Lh, ,il " ., 'i •_'
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the~ haracuter oul pr:~uessirg of the signal. It is utoeful tu estima~t,, qUa-LiltA..

%h( r-c-'rjidored e.~rcitit, comparing i, witýh the opt~imum ,iruuIt. The-refore, of

irerstis crpvs of 8 detl by form~ula .,,witri A ,,c e.;

UY(7..1) for !a,-ioa8 value2 of

'Results of such curaparison are presented in F 4..9. -. For Lw vlnie

and large a. from formula (9.4.9) and from the given curves iL Is clear that, the -

m ~iagnitud~e of' S LJ i.C.

I, 71 ~~~the eircuiit 1n its~rrpet(~

not dJ.Iff'r-r frcmni tht-z:

F2 Cr1 hifj'h-ICovel noais-es alnd u~ >y

- - -~ .LmeIrisgflibudeof 1

m ate. 1ly I)ropor t.1-')[iA a-, . '

Is, Expli8i1Cd both by laeir

Uthe galr f ao1, or f-.1 Si:di ;c

L ~~tor, and &-ls,: UY increase 'Af I!(

00,!wer of noises at the om:ptc

hilco without rýLx-erl,li iiIet~'

t ime narrowingr 01.' LYi , It

respecSt, t'.. the optimuum valu~e

41 4lop h D i i ,

t -Y )rwth -T' S due t,.. ] d-r a F.
Ii,,'. ependenue jf' (.on mif

r i'ji t.1 - to-*nc 1 1 a., io hi For di opr mir ifin o the gýaini lee tor.c * lIO the-
p loo I-' a ehase f:. 1nv' S I' C.T a.3j 1 ,1

&.11 ad cjlfT'vr~ri~atiJi± for). v-11itiu;; J1,, gvnuvswe:c ot.nth

r'angeofE 01' a. t-.I s aio

--1 ~10Ký lo3.e inr the conisidered Aircuit as compared to th(. il-A1mium cw; o

x-duc-ed by selectiun of the passband of thiW loop for small hx to 2~ xit' e Mol

x-v latrgc' piali iy to zero,

1iriLng the. tanalysiAs of' nonlinear pleic-ino occurlingl for 11i 1l-Iee. nol sen

it may be useful to knowv the for1m Of 1,11C d-1.isCrJ.1fimLAtlon1 '2harac8 -PIeti f'ion-

~i~'~circui~t. 1,1y averagingrw, 4 we o~btain f *r it 1,xe expr.etssi nn

-0
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41 4 0 40I , iiP
Fit,. 9.7. Dependence of S on a for

discriminators with a tuned loop and a
phase shifter and with mixers and dif-
ferentiation for signal-to-noise ratio
h - co.

dot For spectral density of signal (9.3.1u) anld

,lo frequency response (9.4.7) this expression, after

calculations, gives

a (8).=k~ i + - n+i ,' (. .1)

where a
,,, ,, ,,..1-- 1s... yI) (9.4+ 1.4 )

S9.3. epndeceoft%8 and ki -proportionality factor,
oil h for a discriminator with a
turud loop and a phase shifter Calculation of the fluctuation charactl,.,rH:ti.r,
fi+nr dif'ferent a.,

ofh on e discriminatr wdrrion iifator on the .arr,

assuimptions with respect to the form of the opectrum of fluctue?.l.onz and frru,.u.iicy

r~r.•ponse of' the loop leads to expression

S... (x) =241p a_' -- (I + A4),' •- +< +"

+ L +' + 0+ 2s) x2 4 + .2 +s
qF 11 +XI)I "t ""

Cocfficient S,,,,, is found from this as
.m I 8",I,,,(,)) I I I ,. --

SX -- T r2T7., + R '= --J TA LT T"- +
+2 (1+ a) (2! - ')I(' ' .

vilierr, thr! two strokes designate the second derivative of SKwitt, r3e0H-wWt, t(,

int, vh,, ).6 arc dependences of S on th, si:gnal-to-noise ratir h for 1.13.1. Wu;no]
vao;•.,u ' thOe ratio of bandwidthr; of the loop and -i.iignl. Ao h -co the marnif,,i.fi

of a r,-k;.,c a 1linit ing value, the depc.ndeL--e of' whicL.h on CL i:} pr;ecented iiL ]" " .

With decrease of h the magnituici of r grown h|iver'fn].y prpirt-1,linmy ty , if.,

I fA
I! -14215-



9.4.2. Circuit with Mixers and Differentiation

During presentation of circuits of frequency discriminators here and subsequently

wt, shall not depict circuits of demodulation of the signal and of preliminary pro-

cessing, which remain the same as in the circuit of Fig. 9.4. The part of the

circuit determining the principle of action of the considered discriminator iss

shown in Fig. 9.8. Output voltage of amplifier enters two mixers to which as the

reference voltages there are fed the

voltage of a local oscillator tuned

from the output of the meter and the same-

voltage, shifted in phase T/2 (with the

help of a phase shifter). Output vol'.ai,(-i

of one of the mixers is fed to a low-

frequency filter, and from the other to

a differentiating circuit with the same
F•v. I .r . Circuit of a frequency
discriminatur with mixers and differen- time constant. Output voltages of the
tiation: i - mixer; 2 - phase shifter;
3-controlled local oscillator; 4 -- filter and the differentiating circuit
!..)W-frequercy filter; 5 - diffcrcntia-
tor; 6 - phase detector, are multAiplled in a phase detector,

forming the output voltage of the discriminator.

The principle of action of this discriminator is based on the fact that with

detuning b between frequencies of the local oscillator and the signal at the output

V_ mixers there occur variable components of frequency t, ,;hifted in phase Tr/2.

ThIe differentiator removes thi.: phase shift, forming voltage whose amplitude is

determined by dotun'ing. Ao a result, after multiplication in the phase detector

Sthor, .Ibtaiied a quantity which is prop. ,rtional to detuning b.

In connection witn the fact that the local oscillator is tuned from the fre-

quen.,;y -,f' the input signal of the mixers, voltage at the output of one of' them

is eoual to A(t), and at the output of the other is B(t) (9,4.3). At the discrimina-

iA,* ouojput there will be formed

do -00

where h(t) -- pulse response of a low-frequency filter;

1j.(to pu.so: r.c;pence of the diffr'r-Wqt1, r 1 ririt, whose frequency response
is rc]lated to the frequency response ol' the low-freqeoncy rl'it'•:,
11I( .u) by relationship
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Using formula (9.4.17) and performing proper averaging, we obtain the gain factor

of the discriminator

O U Y L • M- S (l.m) H-, _ (i m) Ss, ( w) d - .• .1
(i)PQ)Swd (9.4.19)

-.0

and equivalent spectral density

j-Ft IjH (im) H,'(i-)I- [S.Q(m)±+ f'dw.

In order to have the possibility of comparing properties of the considered

ciscriminator with properties of the preceding circuits, we consider that the low-

frequency filter in this case has frequency response H(iw), determined by (9.4.7),

i.e., is the 1-f equivalent of the bandpass filter of the preceding circuit. Then,

as it is easy to show, the discrimination and fluctuation characteristics of the

considered discriminator and of the discriminator with a tuned loop and a phase

shifter coincide. In particular, expressions for K. and S obtained from (9.4.15))

and (9.4.20) coincide with formulas (9.4.8) and (9.4.9), respectively. The coef-

ficient of parametric fluctuations is determined by formula (9.4.16). This means

that although in the method of formation of the signal of error the circuits of

Figs. 9.4 and 9.8 differ from each other, their characteristics completely coincide

(with satisfaction of the imposed conditions), and all dependences obtained abovt •

remain in force for the given discriminator.

Thus, these two discriminators are equivalent. The basis for application
of the circuit of Fig. 9.8 instead of the preceding one, in spite of greater

complexity, is the possibility of using low-frequency filters instead of bandpass

filters, creation of which causes technical difficulties in cases when the sig-nal

has a very narrow band. In these cases there is required high stability of the

bandpass filters, obtained by application of crystal filtors, whereas during crealini,

-If low-frequency filters no difficulties arise.

9.4.3. Circuit with Detuned Loops

The considered circuit without networks intended for convoluiioni of the

spectrum of the signal is presented in Fig. 9.9. The signal from the output ,f' the

-425-



amplifier proceeds to two mutually detuned

(by 4w) loops. Output voltages of the xg

loops are detected and substracted, forming

the output quantity of the discriminator.

Fig. 9.9. Circuit of a frequency It is clear that as Am approaches zero and

discriminator- with d cetuned loops: with matching of' frequency responses of the .
I - loop; 2 - detector.

loops with the spectrum of the signal the

circuit exactly executes optimum operations. However, here the transmission factor

of the discriminator seeks zero, which should be compensated by a high-gain tuipli-

fier, coupled in series with the depicted part of the discriminator circuit. In

order to avoid considerable loss in amplification, in the real circuit detuning of'

loops ts produced by a finite quantity Aw, comparable with the width of the spectrum

of Lhe signal. Furthermore, there is practically selected some transmission band

of the loops Af., which does not change with change of the signal-to-noise ratio

h. Freqitently, due to technical conditions it is impossible to select this band

in such a way as to ensure matching of the loops with the spectrum of the signal.

Considering the shown peculiarities, we shal. analyze qua].ities of the circuit

with detuned loops. Voltage to the input of the analyzed part of the circuit is

determined, as before, by expression (9.4.2). This voltage is passed through filters

with pulse responses h(t) cos (WnP - As/2)t and h(t) cos (,u :no. + Ano/2)t. Squares of

the moduli of voltages obtained at the ýuuput of Unt. fi iters, formed by square-law

dEt•uctors, are subtracted. Consicierinj these opErations, for the output of the.

discriminator, with an accuracy of a constant coefficient, we obtain

-- e -- a

X[A (tj B (t,)- A (1)8 (B,)1 dlrdt,. (9. 4. .i

Calculating by the usual method the slope of the discrimination characteistic

and equivalent spectral density, we have

and

(077 e- _))F] [S, H++fdw.
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The discrimination characteristic of the given form of a frequency discriminator

is expressed as

S(9.4.24)

whereas its equivalent fluctuation characteristic is found by formula

+ 

.2

The obtained characteristics determine all properties of the considered dis-

criminator interesting us. As also for the preceding circuits, we calculate themif

with spectral density SO(w) having the form of (9.3.10) and frequency response H(Lz)

of form (9.4.7). Then the transmission factor cif the discriminator is expressed by

formula (A--k 2,(0 + ,) F,•

-- • + 0,11' (9.4.20)

where k, as before, is a coefficient which depends on h due to the influence of

automatic gain control; -_ h .Af. A.'

Equivalent spectral density takes the form

_+r (++ (++a)' (+

+I lO + (• + a)'] (10 +I +)U + 5a,) +

IT(•.'".+7

Quantity SB, as also for the preceding circuits, has three terms, variously

depending on the signal-to-noise ratio h and explained by beats of different cn-

ponents of the mixture of the signal with noise. The dependence of Saon h, -. , nd

L can be investigated most vividly by graph. In Fig. 9.10 there is shown t.he

dcpcndencc of •BIs)W,, on h for different. vnlues of a and a. From these curvcs

we see that the dependence of SM/S 0 •l on the ratio of bandwidths a = Afz/,A"C

is not monotonic, and as for the preceding circuits there exists an optimum valaue

of the bandwith of the loops Af., minimizing SM'.. For small ýL this optimum baied
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_4iI

is close to Af v V-7, as one

to -should have expected, since as 4 0

and with such selection of the

loop bandwidth the circuit approaches

its optimum form. For large .L the

value of the optimum bandwidth of

\ \ the loops changes.

~If, fixing band of the loops

and the signal-to-noise xatio, we
t \

investigate the dependence of the

\magnitude of S-on detuning of'

loops p, it is easy to see that

for large a it increases with

growth of detuning R, while for

small a in a certain range of vwria-

tion of h there is the minimum

f *NS spectral density for a certain

Fig. 9.10. Dependence of on the optimal value of detaning 1.

sIgnal-to-noiso ratio h for a discriminator Thus, in this circuit, just as
with detuned loops: -- b=0.3; 1- ;
-.- th de e lin the others, deýviation fion optimum

value by one of the parameters

(bandwidth of loops) leads t, change of The optimum value of the other parameter

(detuning). From Pig. 9.40 It follows that with some, at first glance, fully

rcaona~bL±t: sutlc"tiui of parameters uf the circuit its accuracy may be an order or

"two tower than the potential. This testifies to the necessity of careful selection

of' bands of the loops and their detuning in the considered circuit, and also the

g ! reat sensitivity of this form of discriminator to its parameters.

For a more complete judgement of accuracies which are provided by the given

circuit it is also necessary to calculate the coefficient of parametric fluctua-

tions S• It, as earlier, is calculated from the fluctuation characteristic and

is presented graphically in Fig. 9.11. Quantity 5,,,, contains a component not

depending on h, owing its origin to beats of Aignal components. With decrease of h

coefficient S,,,., grows inversely proportionally to h. i-or very small h there is

no sons in using the obtained dependences, since error of the system of measurement I

4[ no longer is expressed correctly through S
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US Or, _ _F-g. 9.11, Dependence of Snap on

- h for a discriminator with detuned
loops: - = 0.3; --- 1;

N 9 .4.4. Circuit with Frequency
Variation

A r'tPart of the considered dis-

criminator circuit, determining the

principle of its action, without

"circuits of preliminary processing
aW1

- .- of the signal, is presented in Fig.

S9.12. The input signal is mixed

with output voltage of a local

"oscillator controlled from the out-

put of' the meter. The output. of

the meter determines the mean value

41t 1 9 of the frequency of the local

oscillator, periodically varying (near this mean value) according to a law assigned

by the generator of reference voltage. From the output of the mixer the signal

proceeds to a bandpass filter (tuned loop), is detected by a square-].aw amplitude

detector and enters a stage which multiplies it by the reference voltage. Output

of this stage is the output of the discriminator. 1:1
The control voltage will be formed by frequency variation of the signal at tne

output of the mixer near the frequency of tuning of the loop. The reference voltae,

varying the frequency of the

S. -- -- local oscillator, and con,oe-

quently also of the signal at.

the input of the loop, may

have different laws

Most frequently thlr volta-,.

,. & .12. Circuit nf e. freqwuercv discriminator has i square form, so that if
v..'th f'requency variation: 1 - mixer; 2 - tuned
luop; 3 - square-law detector; 4 - stage of constitutes a sequence of
multiplicaticn; I --•enerator of reference vol-
tage; 6 - filter; 7 - controlled local oscil- positive and rligative ul;cs
lator.

of identical amplitude, .)I'
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duration T /2, with period TT , As a remult frequencies of' the local oscillator

and the signal at the input of the loop deviate from face values in successive half-

periods by respectively. Uith such form of reference voltage the element2!
mulLiplying output voltage of the detector by the reference .signal is simply a

conunutation switch.

To ensure normal work of the circuit the frequency of pulses of reference

voltage should be great as compared to the effective bandwidth of the tracking speed

meter. At the same time it should be small as compared to, bandwidth of the loop

iof the discriminator.

In this case output voltage of the discriminator u (t, b) can be found if we

present the signal at the input of the depicted circuit in the form A

at M = '(,c- (.) .-)+t+,h (+9. ,4. 28)

wmiere i,.(t) and q(t) - randuo functions, where

E(t) cos v(t) and E(t) sin q(t) - independent normal random processes with
spectral density SO(o) + i/h;

,, -- center frequency of tuning of the heterodyn-T' in•3 ,.., il].ator;

= W + 5 - frequency of tuning of the loop.

Designating the pulse response of the loop h(t) cos a) t, for output voltege

of the discriminator we can obtain the foiic.'.ing expression;

-- ao -a
. . * . * . . .hA (tJ h t (,)EXC,.C 2 ,-d%

ACU+ [(+.-,)<~s',-,.,-,+.,+,,.,]+,.,,,.

S.:here f(t) - periodic function with period T': , determined as

I= (a-. t< (n±!)T.,

nI- Int~g.re.,

Considering the tirertia of subsequent smoothing circuits, the characteristic

of the considered circuit interesting us can be found by averaging in peri 'd T

the results of averagings of the set, connected with use of (9.4.29). Then for
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the gain factor and equivalent spectral density of the discriminator it is possible

to write

Ka dunVYI di-KA

" ~ J10Cw J~k UO)~(9.4,31)

r

Ss KN4. IuA 01 ) sUA( + - t, 0)s

WAUa(t, O) u (1t, 0)J dcdtz=
2V Hm~j ~ S'.. ~d.(9.4.32)

where as before H(im) -- Fourier transform of h(t).

ior a spectral density of the signal S2(5 ) of form (9.3.10) and frequency

response H(icz) of form (9.4.7) calculation by formulas (9.4.31) and (9.4.32) gives

I +a) IL (904.33) -
[•-.kI-., + V + 1I .- ' -

and

J (10 ,+ (I +')'1I
"- a.+OIL '--, ( +a+'),* 0'+ (l-,)'+

+(1 +) 0,(a + 0 + 4)')]++ rI' + ( + ,)'I 1,'+
+(I + a)'(I +2a)J+ [!'+(1 ((.I,.+) 71

I
where a AfH/Afc ; Az = aw/4Af c .

The transmission factor of the discriminator here depends on parameters nt' the

circuit just as in the circuit with detuned loops; howe, ', the equivalent spectral

density has another magnitude. Investigation of formula (9.4.34) and the graphic

presentation of the dependence of S on h for different a and L, shown in

Fig. 9.13, show that the spectral density of fluctuations at the output 2f the

given form of discriminator considerably exceeds that for the optimum discri iriris1, Ir. J
This occurs for any combinations of parameters Aw, Afx; Afc and h.

In distinction from the circuit with detuned loops, as /xcu - (with simultlati ,U.

increase of amplification in the circuit) the magnitude of SoR3'for a circuit wil.h J
frequency vari.ation c2rows proportionally t. 1/ . Increase of frequency devi.

AmLu also leads to growth of S,3 B, proportional to (AW)u. With Lncrease of h, if
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Ld/ýW and 4Af /6w are great_

a~ e.N this equality is satisfied:

urnS. 32Af4_ ud

2 e ., for large signal-to-nul.se

- ratios the spectral density of'

N fluctuations at the out.put of a

- - --- *discriminator with frequtency varlcý-

-o tion will be Ini(L'/J '>

*-- x (~1 /t)great~er than in A,11

optimum discriminator and all

discriminators previously con-

Thus, the considered circuit

gives sharp worsen~ig of results

41 42 41 1 2 5 ze f W*ao cuirpared to thec preceiing cir-

Fig. 9.i3. Dependence of' Sn/S,, on the ýuits. The physical explanation
sLEgn&.-to-noise ratio h for a discriminator of nonoptimraila/ oP h ifcil
with frequency variation: - ii 0.3;th icn-

nator with frequency variatcion is

the followingi. Signals in various half-per-!Lods T_. /2 are uncorrelated, since tor
no~rmal wo(-rk of th1e circuit there rhoulcO be. satiofie-d tile relationship T11.

>> i/At *: Therefore, uay averag'ing (A' reo;ultc; of ucquoýntial ampIlitude detectiun

of' ;i.gnals in vcxit,-,s ha] f-periodc- cannot coriipensate 2lrLatln, whereao in tlhe

usr. < -sircultr, such compen~sation occurred.

Consoideringr nonoptimality of the considered circuit, vie shall not investigater.

it' in mrore detail. In particular, we shall riot calculate the coeff'icient of' param-

etxr:Lc fl~c tuationsS

It is necegsary to note that a circuit with frequency variation is- Sen'sitive

to interferences mrodulated by the frequency of switching c il1.,s odd harmonics. In

this rcespect the given dlk-criininator i-- arialugaýus to gonioMfetric' di-scriminators with

conical or square scanning, which will be conrsdidered in detail In subsequent

chapters;. Therefore, we will not di.scuss this que:;tton i~n d -tall here.

9.4.5. Inaccuracy of' Reproduction of' l4Adulatior ul' the
Signal During Reception)

Letring the analysis of' different frequency discriminators; we assumed that in



them there is performed exact demodulation in phase (frequency) and exact mutipli-

cation by a function expressing the law of amplitude modulation of signal, taking

into account the true value of its delay (matched gating in the case of a pulse

signal). In real radar receivers exact fulfillment of these functions is impossible.

Besides technical tolerances on laws of gating and change of frequency of hetero-:

dyne oscillators, here more essential circumstances play a role. Thus, delay of the

function expressing the law of modulation of the signal reproduced during reception I
never coincides exactly with true delay of the reflected signal due to the presence

of errors of range finders; during gating we often specially apply gate pulses which

are longer than the pulse of the signal, proceeding from considerations connected

with breakoff of tracking during intense noises, etc.

We shall show that mismatch of laws of modulati.>n of the reflected signal and

of signals used for processing the received signal in the receiver leads simply to

decrease of the signal-to-noise ratio. Actually, if in the receiver as laws of

amplitude and phase modulation of the signal we use functions uai(t - r - A) and

T- - L) instead of functions Ua(t - r) and P(t - r), the signals at the inputA

of the narrow-band filters of the discriminators have the form

v (t)z=-1;"TPE(t).(-)(t - t -).(i - - )c-A)os.,t+
++ V-,- ÷.-0 -) +(1 0 +,F, .Y)

+ as, ( i - ,&- ) n (t) co [wd -A%(t- -•
where A - time shift caused by inaccuracy of range tracking;

- - delay of the function describing the law of modulation of the
reflected signal;

E(t) and P(t) - random functions representing fluctuations of the reflected
signal;

n(t) - white noise with spectral density No;

PC - mean signal power. J

We assume the following normalization of signals:

where Tr - period of functions ua(t), v'(t), Uai(t), 41i(t).

Due to narrow-bandcdness of filters of thp dispr1minatorg through them thcr.

only pass components of the signal spectrum which are concentrated near frequewn-/

W n•"Therefore, according to the character of their influence on the dincriminat.,r,

signals with periodic modulation are equivalent to continuous urmodulated sic•rals.

As it was shown in Chapter IV, the signal-to-noise ratio for ;uch an equiva]eiti.
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urnmodulated signal with ideal matchtng of ua(t) with us(t) and V 1 (t) with 4(t) is

equal to h = P C12Af 0 NX. With imperfect matching of thest functions at the input

of the narrow-band filter there acts v(t), determined by (9.4.36). Averaging the

result of passage of v(t) througn the filter and calculatlng the power of the

signal and of the components, we find the new signal-to-noise ratio

TV

r s U,•T - lt --f-A)de td
faa U.1i) (aI A -fe t IE)-* di ~ )id

0

All formulas obtained for the above-considered discriminators remain valid upon

replacement of hi1 for h. It should be noted that in such an approach we consider

assigned both the form of' functions uai(t) and * 1 (t), and also quantity A. By

virt-hu, of the random nature of the output of the rasnge finder, A, Jin general,

randomly varies iii time. It is possible, however, to fix some, for instance, thce

vo..rst value of A and, by calculating the corresponding quantity hi, to find how much

accuracy of measurement of speed will decrease.

For illustration of magnitudes of change of the silnaw-to-nolse ratio we shall

consider two exanples.

i. Let A.n assume that the signal isi modulated only in amplitude by square

pulses of duration. 17, and that the ga.. p ..s. a.".3:s !,uare forim and duration

" Eo From ().4.37) we ' b4ain

2I s +__ 242 U t N
_h__-- __ A'°-'a C&' !.(..8

halo2 2

Th i relatonrshi)p shows the power loss connected with inerease of duration oi'

the gate as compared to r7,. aorresponding loss in spectral density S.. arid con-

--zquently, in accuracy Do' measurement of speed can be estimated from the preceding

formutas and graphs.

P. Let us aýssume that the signal is undulated in frequcncy by a sinus-olol

law with frequency Q and deviation wmi and heterodyne voltage has different frequency

deviation woi. re, ith zc ro m., 1..t-.ch A 1,ulatoZ b- y 47. I. -
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where Jj(x) -Bessel function of zero order.

For sufficiently large values of' wn - w /a the signal-to-noise ratio rapidly

drops, and for certain values of w m - Wml/' the signal of the mixer, in general, is

absent. From relationship (9.1t.39) there ensues the expediency of selection oi a low

frequencyr of modulation B at which a comparatively large difference in deviations

wim and womi does not lead to substantial increase of errors of measurement.

9.4.6. Comparison of' Circuits of Discriminators 11
As follows from the conducted analysis, the first three of the four considered

forms of discriminators with proper selection of their parameters give results -{
very close to an optimum discriminator. The fourth circuit, with frequency variation

of the heterodyne oscillator, is the farthest from optimum. It gives substantially

less accuracy of measurements, is sensitive to easily created interferences with

periodic modulation and, furthermore, on it there must be stringent requirements f

identity of' the positive and negative half-periods of the reference voltage. Non-

fulfillment of these requirements and also instability of the frequency of tuing li

of filters lead to the appearance of systematic errors of measurement of speed. B1y

virtue of these circumstances it is doubtful whether one should recommend application

of' this scheme of a frequency discriminator, if, of course, requirements on accuracy

of measurement are rather high.

The circuit with detuned loops ensures -ccuracy of measurements close to tie

potential (2• is close to S0,1), even if we select detuning of' loops proceeding

froi the condition of a maximum gain factor of the discriminator K.. However, with

small variation of parameters of the circuit its errors can increase rather c-,n-

siderably, i.e., among deficiencies of the cia'cuit are criticallty with respect to

the parameters. One ,ghould note especially that with discrimination at sufficiently

highi frequcncies it is necessary to have two filters, tuned to closE, but, in

princpile, different frequencies. Instability of these frequencies can lead herrL

t,) appearance of systema.ic error of measurement, which in characturistic for other

circuilts, to substantial change of' the fluctuation error of.' measurement and (-vl. i

o u.lt, or ,.,I' work of the discriminator if the freqouencies of tuning_ become iiI.. I

or, c,,ov,, g. to I'ar apart. Therefore, although in principle the circuit

,Lit+ . .•,i ' .e ]-)op is als') a lose to optimum, it is not always; possible to ree) airii.t-ii

its Us;C,.

T1 Ii most acceptable of those , iJr sri for pi': ti, apt,-it at l.u "ii' 'i .111
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discriminators with a tuned loop and a phase shifter and those with mixers and

differentiation. These circuits are identical in their characteristics, and with

correct selection of parameters, in particular the bandwidth of the loops, they

give results sufficiently close to an optimum discriminator. In particular, quiv-

alent spectral density for them does not exceed SORT by more than 'S. 'The

influence of instability of parameters for such circuits is considerably less than

for the ones discussed above. Choice between these two circuits should be made

from considerations of technical convenience. The circuit with a tuned loop and a

phase shifter in principle is less bulky, but requires creation of a njarrow-band (if

most cases, quartz) filter. The circuit with mixers and differentiation does not

possess this deficiency; during its realization it is not necessary to think about

stability of tuning of the loop, but it is sensitive to inaccuracy of the phase

shifter of the heterodyne voltage. Furthermore, this circuit contains two filters

instead of the one in the circuit with a tuned loop.

We can, of course, use other schemes of frequency discriminators. Their

qualities should be compared with qualitlete of the optimum circuit to find the expedi-

eno f their application.

Let us discuss briefly selection of the transmiss;ion band of filters in the two

best circuits. Usually meters on which there are requirements of high aclturocy

work at a high signal-to-noise ratio h. Here, the selected transmission band should

be changed with change of h and depending upon the width of the- -,pectrum of the

signal.. However, in practice neither she signal-to-noise ratio nor the width of Eihe

spectrum of the signal are ever known exactly. Therefore, it is necessary to

select bandwidth of the filters proceeding from the worst case, considering thai

"ORB monotonically decreases with g;rowth of h and with decrease of' width of the

spectrum of the signal. Considering these circumstances, it is necessary to nei.ot

filter bandwidth from the highest possible width of the spectrum of the .gnal. and

from a minimum signal-to-noise ratio, occurring at the maximum range, determined

by conditions of lock-on and transition to automatic tracking. With such selection

of' bandwidth of' the filters with decrease of distance and with narriowinp- of the

width of the spectrum 2f the signal the system of' measurement of speed will be

further from the optimum than under the assumed conditions; however, its error will

always be within permissible limits,

Often from technical considerationr. it is necessary to expiinI fhi: bandw.•idth 'I'

the fl'Jters with respect to its optimum value, since the signal :;pectrum has a
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width of the order of units of cycles per second or even fractions of cycles per

second, and stabilities of frequencies obtainable relatively simple are such that

the bandwidth of filters cannot be made smaller than ten cycles per second. Usually

this does not lead to essential impairment of qualities of the discriminator.

§ 9.5. Smoothing Circuits and Accuracy of Measurement of Speed

Studying properries of discriminators of Doppler speed meters, we turn to

estimation of accuracy of these meters. For this it is necessary to assign the

second component part of the tracking meter - the smoothing circuits. Very often

there are applied linear smoothing circuits with constant parameters of certain

very simple forms. Let us consider, first of all, error of speed meters with such

smoothing circuits. This can be done by applying formulas of § 6.2, determining

fluctuation, dynamic and systematic errors of tracking meters. We shall specially

discuss cases in which optimum smoothing circuits have constants parameters, and we

shall estimate accordingly accuracies of optimum speed meters. However, in other

cases optimum smoothing circuits, as it was shown In Chapter VI, have variable

parameters. Therefore, we shall also investigate accuracy of speed meters with

variable parameters of their smoothing circuits.

9.5.1. Smoothing Circuits with Constant Parameters

In speed meters there are applied smoothing circuits of the same forms as in

range finders. Therefore, many formulas and results of § 7.10 (Paragraph 7.i0.2)

remain in force for speed meters.

If we disregard parametric fluctuations, fluctuation error of the meter is

expressed as before by formula

(9.5.1)
in which S$B is determined by the abovp-mentioned analysis of frequency discrimina-

tors, and Lfg• - effective bandwidth of the closed tracking speed meter.

As it was shown in § 7.10, for a smoothing circuit in the form of an integrator

SK,_._a, ( 9. 2, P)
4

where K - gain factor (dimensional) of the Integrator;

K..- discriminator gain factor.

For an RC-filter

l~o 4,,(9.I). 3)

47T
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where T1  RC, and K - gain factor.

For a smoothing circuit in the form of a double integrator with correction I

. -I +KK (95.)
4T%

where K gain factor of the two integratorsi

T - time constant of the correcting network.

The value of Afa reaches a minimum, equal to 1;/2, at T i/K K.

Finally, if the smoothing filter consists of two RC-circuits (inertial links)

with correction

KI,4, KK~T.(9.5.5)

where TI and T2 - time constants of the inertial links.

In the last case the minimum of Af is reached at T VT T /2KK, and is

3I* V_2XrK, (9.5.6)

If we select the mirimum effective banawidth in the absence of noise, the

dependences of the effective bandwidth on the signal-to-noise ratio h, determined Oy

formulas (7.10.i9), (7.10.14) and (7.i0.I0), also remain in force. Then with use

of an optimum discriminator [with the simplest form of spectral density of fluctua.-

tions (9.3.10)) for smoothing circuits of the first order we have

V-1-h (I+ IVMirý h AF ,(9.5.7)*' = 4AI,&f.,. iTY• I' + i,-'± , 9 °

where L/f 0 -- value of the effective bandwidth of a tracking speed meter in the

absence cf noises, and

A, , (9.5.9')

is the ratio of bandwidth of the amplifier covered by the AGC loop to the signal

bandwidth. In the case of application of a smoothing circuit in the form of a

double integrator with correction

o V,,I , (9-.5.9)

Curves of the dependence of variance of fluctuation error on the signal-to-

noise ratio h for various y are shown in Fig. 9.i4. Consideration of them leafis

to the conclusion that with the selection of an identical effective bandwidth in

the absence of noise Af 0~ ~flucuation error with noise in the case oi application
th abec]fnos fa



hi

of filters of the 2nd order is greater than with application of filters of the

ist order. This is explained by the varying dependence of the effective bandwidth

of the system on the gain factor of the discriminator in the two considered cases.

For smoothing circuits of the ist

order there is noticeable dependence

of fluctuation error on selection

f •w of amplifier bandwidth Afy (or

y). With broadening of this band

error decreases due to increase

r k 4V .of intensity of noise at the out- 4

put of the amplifier, suppression

of the gain factor, and consequently

also of the effective bandwidth

* of the system. For smoothing

circuits of the 2nd order the

W dependence of fluctuation error
on Af is immaterial.

Increase of fluctuation

______errors with application of non-

optimal discriminators is easily
Pig. 9,i4. Dependence of variance of fluctua-

tion error of a speed meter a2 on the signal- found by multiplication of the

to-noise ratio h during application of an obtained values of
optimum discriminator and smoothing circuits f by ratio

with constant parameters: - for circuits qSon, found for various discri-
of the Ist order; --- for circuits of the 2ndorder. minators in the precedin-g paragraph.Sorder.

It should be noted that from consideration of Fig. 9.14 one should not make

conclusions about the advantages of filters of the ist order, since it is also

necessary to consider other components of errors of measurement (dynamic and systematic

errors), which turn out to be larger for smoothing circuits of the Ist order.

Passing to consideration of dynamic and systematic errors, let us note thAt.

all results obtained in Chapter VII for systems of range finding remain valid for

speed meters. In particular, considering that speed of the target has a component

which varies randomly, and assuming that this component is a stationary random

process with spectral density S((u), for dynamic error, according to (7.10.20), we

have formula

-4 3 9 -
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(9. 10

where K - transmission factor of the discriminator;

H(iw) - frequency response of the smoothing circuit.

With a very simple form of spectral density of speed

Soo , (9.5.-1l)•

2
(where 00 - variance of the random component of speed, and T- time of correlation

of the process of its change) formulas (7.iO.22) and ('7.10.23) for a2 turn out to

be valid, from which, in particular, it follows that dynamic error increases with

decrease of the effective bandwidth of the tracking meter, taking place with J
decrease of the signal-to-noise ratio h.

If the measured speed varies as a linear combination of assigned functions with

unknown coefficients

V M hi iJ M) + V (0

where •i 0 0, 7 = Mik, 7T-- mathematical expectation of speed, according to

(7.10.25) we have

Here *1' i• ()-- e(t 1,() s,. (9.5.14)

b(t, i) is determined by equation (6.2.6), and by virtue of constancy of parameters

of smoothing circuJts the Fourier transform of 'b(t - T) is found as

l+KI1(i. (9.-,.i5) 14

With a nonstatistical approach to the question of changes of speed dynamic

error can be obtained if in (9.5.i3) we set Mik = 1. Thei., using as tAe smoothing

circuit an integrator and with change of speed according to the law V(t) = v + v t

dynamic error as t - we determine as

@An=-- K9 (9.5.16 )

Analogouuly, with smoothing circuits with two integrators and V(t) v 0 +

+ v t + v t 2 ,
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Vs (9.5.17)

Dynamic error is inversely proportional to the gain factor of the open circuit

of the tracking speed meter and increases with decrease of the signal-to-noise ratio.

Dynaj•ic errors in the nonstatistical approach to measurement of speed are

deteriined in the same manner as systematic errors, so that it is possible to cons.-ider

we have simultaneously discussed the method of finding the latter.

By virtue of the different dependences of fluctuati , and dynamic errors on the

gain factor, and thus on the signal-to-noise ratio h, as, too, for range finders, -

a compromise selection of the gain factor of the open loop is reasonable. Let us

consider two examples of such selection.

1. Let us assume that the smoothing circuit is an integrator, and that the .1
speed of the target varies as V(t) = v 0 + v t. Then, the square of total error of

measurement of speed in accordance with (9.5.1) and (9.5.16) is

+ 0,80 2(Ka'KA)'~

In the statistical approach to dynamic error v. must be replaced by v

2Minimizing a by selection of K.K , we obtain the optimum value of the gain factor

of the open loop

3/ 40'i
(KnUV ou'= -- (9.5.9

at which total error is

it ==119 (V,$,,,)2/0. (9.5.2o

Substituting in (9.5.19) the dependence of S,,,on h, it is easy to find how

the gain factor of the open loop should be changed with change of the signal-to-

noise ratio. In particular, for an optimum frequency discriminator and spectral

density of fluctuations of the signal of form (9.3.i0)

$ / hs

(KuKX)o, =-K.+ (9.").2i)

where K -. the value of the gain factor when h- o, I ie., in the absence of IloiAr-e.

The dependence of the optimum gain factor on h is shown in Fig. 9.15.

2. Let us consider a smoothing circuit in the form of a double integrator with

correction and the case of a square-law changre of speed. The square of tdtal

error in this case is determined by expression ((.10.35) and
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.,62, ,- 44 "I (9.5.22)
Sena;

so that with optimum gain

2
In the statistical approach to dynamic error in the formulas instead of v 2

-2
there enters V2 . With the same dependence of S S on h as in the preceding case

the optimum gain factor should vary with change of the signal-to-noise ratio as

Tnhis change is also presented in Fig. 9 15, where it is easy to see that

dependences of the gain factor on the signa .to-noise ratio for smoothing circuits

in the form of one integrator and of two ýegrators with correction are very close.

In Fig. 9.i5 there are also given

curves of the dependences on h of the

00 gain factor of the open loop, obtained

due to the normalizing action of the

Of *t" AGC system. These curves are con-

structed on the assumption that in

00, 40 the absence of noise (h - m ) the gain

.- .factor is equal to the optimum. From

40 the figure it is clear that when

"h > i and we have small ratios A'

bandwidths of the amplifier covered

J •by automatic gain control and of the

ff "1t signal (y = 2 to 3) necessary uhaiige

Fig. 9.i5. Thu dependence of the gain of the gain factor with suffioient

factor of the open loop K on the signal- accuracy is provided by the AGC

to-noise ratio h: i - optimum gain fori
circuits of the lot order; 2 - optimum gain system. For small h whe system of
for a circuit of' the 2nd order. --- change
of gain from the circuit of automatic gain automatic gain control leads to
control.

unnecessary lowering of the gain

factor. 'hus, in spite of the fact that with decrease of y fluctuation error grows

(see Fig. 9.i4), from the point of view of' providing minimum total error it is

necessary to select sufficiently small values of y.

The obtained relationships permit us to find error of speed meters under
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conditions when it is possible to disregard parametric fluctuations. However in a

number of cases such disregard is impermissible, since the spectral density of

paiametric fluctuations, as we have seen, can attain for the considered forms of

frequency discriminators considerable magnitudes. Therefore, calculation of param-

etric fluctuations is of interest.

In accordance with formula (6.2.44) variance of total error during calculation

of parametric fluctuations is defined as

2 (91 + .5.2)

where - the variance of error in the absence of parametric fluctuations, found0

above.

Considering that for frequency discriminators S = ./Afc, where x - a coef-

ficient, varying in a wide range depending on the form and parameters of the fre-

quency discriminator, and also on the magnitude of the signal-to-noise ratio h,

we obtain

For large signal-to-noise ratios (h-. c) coefficient n takes the following

value:

- for an optimum discriminator x = 0.5;

- for a discriminators with a tuned loop and a phase shifter, and also with
mixers and differentiation % varies from 0.5 to i depending up CL Af=/Afc:

- for a discriminator with detuned loops R varies in the same range, depending

upon the magnitude of dotunlng.

Therefore, with rapid fluctuations, when ratio Af /Af is small (it mayBC !03

attain magnitudes of the order of 1 ),there are conditions in which parametric

fluctuations can be disregarded. With slower fluctuations and for smaller h, at

which X grows; thesL conditions may not be observed. It is necessary, however, to
Af

recall that wth 2n r- comparable with unity formula (9.5.26) ceases to be
c

valid. Therefore, it gives the possibility of obtaining coprrctions due to pa:.iutv!

fluctuations only under the condition of smallness of these corrections, and the

basic meaning of its application consists in determining conditions in which linear

approximations arc still valid.

Certain lowering of the Influence of parametric fluctuations occurs from the

AGC system. However, for Doppler speed meters this lowering is no longer found by

formulas of Chapter VII inasmuch as parametric fluctuations (during rapid
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fluctuations of the signal) are determined here not only by the random nature of

changes of amplitude, but also by the random nature of changes of phase, not corn-

pensated by the AGC system.

9.5.2. Optimum Smoothing Circuits for Randomly Varying Speed

Linear smoothing circuits with constant parameters in certain cases analyzed

in ChapterVl are optimum, i.e., ensure with application of the proper discriminater

minimum error of measurement. This occurs when speed is either a stationary random

process, or a random process with stationary increments.

Speed is a stationary random process, for instance, in the case of measurement

of groundspeed by a Doppler dead-roeckoner. With stationary random oscillations

of the flying object relative to the horizontal line of flight, small stationary

changes of its speed and sufficiently uniform relief of the locale, the measured

components of groundspeed, just as the reflected signal, can be considered stationary

processes.

The method of finding both the optimum filter and also errors of measurement

obtained during its application is presented In § 6.8 for an arbitrary form of

spectral density of the measured parameter. Let us consider the particular case of

spectral density of speed of the form of (9.5.11), for which the frequency response

of the optimum smoothing filter for a large time of observation, according to

(6.8,1ii), has the form

S-- 1 (9.5.27)" "+Vr 2+8 TC , + ior

where o2 -- variance;

T - time of correlation of the process of change of speed;

Ko,. - gain factor of the optimum discriminator.

Variance of the total error of measurement of speed according to (6.8.13) is

equal to

t+VI2S.T.*,(9.5).28)

Considering that in (9.5.28) there is implied application of an optimum fre-

quency discriminator, and considering that its eqL!vs8ent sp-ctral density Jfs

determined by expression (9.3.11), we !-\1
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,, 1 1"4w\'_" i'4w\' "ITr,×,
he A

X ,,(9.5.29)

whence .

. ". (9.5.30)

For very small signal-to-noise ratios (h-- 0) quantity 15.. is equal to the a priori F
variance of change of speed; for large signal-to-noise ratios (h c).

SA
o ,•,. F I-'& (4•)'•T(9.5.31) i

The dependence of the mean square error of measurement of speed on the sirnal-

to-noise ratio we shall show with an example. Considering a = 10 sec'm c ,10

cps, T iO see, and X - 4 cm, for high-level noises (h- 0) we obtain a
sec * 0.8 m/sec; the dependence -

= .0 m for low-level noises (h -c) we obtaina 0. /e;tedpnnc

of aB~X on h is shown in Fig. 9.16.

It is necessary to note that the obtained values of errc.r of measurement of

speed correspond to an optimum system, the gain factor of whose open loop should be

equal to

24:TKesvK-P " i/I +t 2,•TKoi,, (.5.32) '
+(9..2

and takes different, values with change of the signal-to-noise ratio h. The graph

of the dependence of K on h for the given example is shown in Fig. 9.17. s

pI

Fig. 9.16. Dependence of the mean
square error of measurement of speed

SoBUX on the signal-to-noise ratio h
for the example of an optimum meter when
speed is a stationary process.

In the same figure there are shown

curves of the dependence of the gain

. .... factor on h, determined by action of the

automatic gain control system for three

values of y = Al' /Af c From

Si..4 4 5 --
I.LII
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Its

! Fig. 9.17. Dependence of the gain factor of the open
loop Kpon the signal-to-noise ratio h for the example

of an optimun meter when speed is a stationary process:
- optimum gain; - gain with application of automatic

gain control.

consideration of these curves it may be concluded that satisfactory reproduction

of the requircd law of change of amplification by automatic gain control is attained

for values of h = i to O0 for y =4 to 6.

SIn most cases the assumption of stationary random change of speed is not reali-.

[ zed. Thus, in many cases the radar target can at any moment start to maneuver and

i never return to the past direction of mc~t1'91, due to which the radial component

l i of speed will change. However, sufficiently often change of speed can be considered.

Sa process with stationary increments. In particular, if7 changes of engine thrust,

* and consequently also of acceleration of the target are stationary, speed is non-

stationary, but has a stationary first derivative, i.e., can be included in processes

S• vwith stationary increments.

If we idealize the process of change of acceleration, considering it white noise

S with spectral density Bmse3,the speed is a Wiener process. For large time

of observation the optimum smoothing filter, according to (6.8.28), is an integrator

!• with a gain factor equal to •o'where Kn- gain factor of the discriminator.

S The gain factor of the open loop here is defined as •- and should be different

f rdifferent iga-onieratios h. Tufor anotmmdiscriminator in the

i same conditions as in the preceding case

!4

6*.6-

Fig 9.1. Deedec of th gai fatroteoe



The magnitude of variance of error of the meter turns out to be equal to

out n IF (95.4

where
= (9-5.35)

+

Relationship (9.5.35) is shown in Fig. 9.18. The dotted c ve in this figure

shows that the required dependence is sufficiently well reproduced by the system of

automatic gain control.

In order to illustrate the magnitude of errors of measurement of speed in the

case when acceleration can be considered white noise we shall give the following

example. Let us assume that wavelength of the radar X = 3.4 cm, and the bandwidth

Fig. 9.18. Dependence of x = Kr on the signal-to-

noise ratio h when speed is a process with a stationary
Ist derivative: - optimum change of gain; --- change
of gain from automatic gain control.

of fluctuations of the signal Afo 30 cps. Errors

of measurement of speed for a large signal-to-noise

ratio (h - co) and for different mean square values of

I - Sspeed developed in I sec are given in Table 9.2. In A

it there are also given corresponding errors of

measurement of frequency and values of the effective bandwidth of the tracking meterl,

calculated from (9.5.2).

Table 9.2.

Mean square value of speed developed by the target in
I sec, in/se(c 0J.5 5 5()

Bi, m2/sec 3  0.25 25 2o00

Mean square error of measurement of frequency af, cps 6 19

Mean square error of mte:Ksureient of speed C m-,CC 0.1 0.32 i

Effective bandwidth of the system Aft , cps 66 000
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Acceleration of the target cannot always be assumed uncorrelated. However, if

acceleration is finite, and its derivative is approxtmately stationary and changes

rapidly, speed can be considered the doubl.e integral of white noise with a certain

spectral density B2 [m /sec 5 ]. For a large time of observation according to (6.6.37)

the optimum smoothing filter is a double integrator Yvith correction. The gain

factor of the open loop turns out to be equal to

1CP (9.5.36)

and with the same the optimum frequency discrirniiat(cr depiends in the same way on the

signal-to-noise ratio h as in the case of uncorrelated accelerations. The time

constant of the correcting circuit is defined as

B K (9.5.37)

and, finally, variance of error of measurement of speed according to (6.8.33) is

equal to

The dependence of ratio , 2 2 o6 h (where viacas

obtained from (9.5.38) is shown in Fig. 9.1q. It i. valid for chang.e of K and

T with change of h in accordance with the above-mentioned formulas. In the

Fig. of' variance of error of

c ' speed oBHX or) the signal-to-noise

-ratio h wher, speed is a process with a stationary; ~2nd derivative,.i

case of fixed selection of K and T the syitemj

ceases to be optimum.

For illustration of the possibilities of an optimum system of measurement of

speed when the derivative of acceleration is white noise, we turn again to the

example of a radar for which X m 3.4 cm, and the bandwidth of the received signal

is Af' = 30 cps. Assigning the magnitudes of the mean squý-re value of acceleration

developed in i sec and calculating mean square error of measurement of speed as

h -0 CO, we obtain the resultB presented in Table 9.i. In this table, as also in the

preceding example, there .re given values of error of measurement of frequency and

the effective bandwidth of a tracking meter, calculated by formula (9.5.4).

-44A 
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Table 9.3.

Mean square value of acceleration developed by the target in-
I sec, m/sec 0.5 5 50

B 2 " J /sec 0.25 25 250u

Mean square error of measurement of freqaency a., cps 3.3 5.8 :0.5 .

Mean square error of r.easurement of speed a.... m/see u.056 0.1 O.iA

Zffective bandwidth of system 'fo , cp' 2.6 8.2 26

FroAm th tatole It Is cl ear that the dependen-e ()f error of meacurement or

dynernic properties of the target, characterizeu by coefficient B2 , in t), j case

tI; very weak.

9.,.3. SmooLhInr rlrcuits with Variable Parameters

In many cases the law of change c~f speed can be sufficiently approYimated by 9

lInctti~oi ; asnigned form, iut dependingý or, a certain number of unknown parameter,.

)it(, falr'y frequently tnere are satisf-ed conditions In which approximation-

(,. :'.I2) i-v%.lld, and the inevured speed Is pre.ented in the form

*V () -==V-) +~ I&Afk().

w; ' 77t')--- lra.,ematical ewpr'tad., of the la9w -i" change" ':

l ') - ar,:;il'ln d 2'ur:cti.,'rcj"--

IL normalrhJy .3 Intr lb .cu ran,,. Ar, v uriable-
Y.7

,I waL; Lg!(jf in lChapter 71,,>e, ' trw Ftj.,TthDIj; ,:.2:Ii,; u i;noth caren pc)''..;

V' r ¶l - 1)ar¢Mi'. temlp,( and their pUlse r 1' :;,I' ; In th, :. - .-. ,'ir''tr1 aT,:-r':'

,'" ;:¢:.,,',d' (ItII'.nt e.;re ,I•.t(rul¢, '" by/ c rI', ;I ,IL .o2o; 5• ;t l:l (' o. ,i uesj|,'er'.i ,' .

cI nl;lift] . K t.. ) 1r ar :,8,.ran'. '' ,. ri , ilht( c tr'I n J' I d .,I ti. t., Lyleh 1 - -

V (It ='V(i) 4.-p4(it). . .. . j -
j- f_,



Considering 4T = 2 we have for the pulse r(i:',w of thf. smoothing circuit0
according to (6 .8.49)

£9. ý.)

1+ d. Ad

and for error of measurement

LeG us consider the following examples.

1. After lock-on the radar should i.-i Ia to autloinatic target tracking. Let U3

assutme that after lock-on there exists a cert.ain initial error of tuning in frequency,

arid consequently also of measurement of speed. Let us assume also that speed varies

accorling to a law, known with the error oft this initial error (tor itstance, speed

is uonsAtant dturing the time of measuremenri). TIcon f(t) ý 1, and a -- variance A

of the initial error of measurement of ýijeed. 3onsidering to = 0, ve obtain

2 02

The smoothing circuit coizi.rts of an ari;f.1cr with u variabl.: gain fa(.,cor

o i C KWITut •en an integrator. Varianri c : error decreases in time for large A

tinmes of observation as i/K,,,t. In tb,. 1 ;-,n 1 ub: n" exanples we siiall not

girv phy:;ical expjinatluns of th-, ,,ar, W , .ball,;i of otbin•: circuit,.. tinot

this quesJti.on was Gene rally consldere -` CUi,.cr VT.

With' apall'.catn on sa opk.2.rr'nV trequu c: ni riiiihitov with a gain ffac,,t:r

o ;'.'I,'ire•d by (e..2)) error oLf rl.as it , o01 L)(.d . defin(.u af;

+T)(..~,,,

v V) Is+ C + 2VF1F

kur thL, rýYRmr ,].C already repeatedl].. .;. ( ri. / 3-- . cif., t,1'3.
C

!', ' . " i (ti f'r,t t~hr(c V;.imi( ' ', L ji efo I')r va Iioi': f IF, I b2 1 rr•,

(A' lheasuro'iw_ t r ' , 0 o:rr''sp .i',, r,, I d.. . . '. ' , , i ;i ;d 'i., lIT

i e-!Abs '," a

, ', .. . . .. ...... .... ... . . .- i , -, ..... .. -..-..-.-. .-.-- ,---, ,-•- •: • ; . .
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Fig. 9.20. Dependence of error of measurement of

speed on time t for the example of an ptimum meter
with f(t) = 1: - Af = 10 cps: -.- Af = 20 eps;

Af c( ps.I

.2. Let us assume that acceleration of an object whose speed is measured by a 4

radar is constant in a certain stage of observation. Due to scattering of thrust

of en,;tnes we can only know the mean value of acceleration and the magnitude of

scattering of acceleration near this average. Heree f(t) - t and from (9.5.41),

(9.,.4 . 2) for to = u we have

g~I, ,)- .,-

I + Ko.,ng*; (93 .4.
o:.,(0=lw~ 3 0 ' . ~ *a pl f

.2 4 •-

"wh'c're o - vAriance of acceleration.

The optimum smoothing cizCuub her(- conzists of a oerie'z-cýupled .mplifler w.i

ii -,aln fac'.or varying in time according tu the law , an rntegrat ana

1.1Il wi th ai vain fac, tom v aryliii, m., t. I'rr, -r of' mneawtr;,i mmaEn t I r tho 1, 1

• I + ,.,,j..

In~r •i.• • : r), t,, t-nd 1%," - a I ar i,&( ti m o l obse-rv ufi,)ii 11. de ci"t.a r-tr ve 3/K ;r-,,•, A,

------------------------------------------- -- t ---------------------------------------------- - -- - - - - -- - - - - -- - - - - -- - - - - -- - --=
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• . k Kf3• ) 'V"<..:

and with the same assumptions about the frequency discriminator it is determined by

the formula

For case X = 3.4 cm, Af. 30 cps in Fig. 9.21 are curves of the dependence

of CTBX m on h for three mean square values of acceLeration. It turns out that

mean square error of measurement of' speed in the given optimuirr ;ystem in a wided

range of accelerations and signal-to-noise ratios (h = I to 100) is a quantity in it .- A

frequency expression correspondin- to only part of the width of the silnm.1 spectru-..

JI

FJr. f.21. bependenc:e ., uauAianum error of'measurement u f' s pe c.o -B/ 0!,_ .J 1 ~ n .l t - o s

r a t i : 1h f , .) r ! ,h e e.x a m pl• l e o f' a ll o p. t i'i mu ln Ine t e r w h e n

3. If the target i& a body ii1()vini5 rapidly ard experiencing suie drae i 1h:

attmusp here, then with observance of eertaln hardly limitit ng condid.tionls o•ne may arssamie

V (t): V"' -4, ".(• '.))i

Cunsidering as before -4 = and p, o I a t' ,,i• ('4 2.
we obtain

FTa

i -,,5•.



+ (e2 •"1)
and (9.5.50)

2 2.

S+ 0 (e ?at-

The smoothing circuit consists of a series-coupled amplifier with variable gain

______ an integrator and an amplifier with gain eat.

+ 2 (e~'t
For large times of observation,

g0, 'g)- 2% ea It-V,( .,.:) •-

and pulse response of the closed tracking meter

Ko,,c (t "•)+ 2•e-" -.. ( 9.5.52 )

Here variance of error of measurement of speed is

Thus, if we are interes ±n error for large times of observation, the optimum

tracking meter possesses cons parameters and is equivalent to an inertial link

(RC-circuit) with time constant i/a. Variance of error cf the meter is equal here

to 2aSonT(h), which determines the form of its dtpendence on tý- signal-to-noise ratio

h. It is necessary to note that for realization of an optimum meter possessing

the shown properties it is necessary in the smoothing circuit to have an amplifier

whose gain factor is proportional to i/Konr = ScnT(h). If in the preceding examples

the optimum gain factor of the open circuit decreased with decrease of h, and wit.1h

some deg.OLe of accuracy this change was reproduced by the syftem of automatic gain

control, in this case with a system of automatic gain control it is necessary to

compensate its normalizing action so that the resultant gain fact-l, remains const,Urnt.

The radial component of' the speed of a target, measured by a Doppler speed

meter, in many cases contains both componontn of assigned form, but depending 1I

rsridom p,;irl;.mr terf;, a.'I al . : r-'iy litcm'"'.,pOli'Ilta, Th ' I'k |i :':liR.,1.hiA.'

circuits optimum for such cases already wa* discusud In Chapter VT. In the two-

lu.op variant tney c:)ntairi tw.'o chajineJlJ . O)ix ,, tnezii .hsnrfis ,r.ni,,clded baz13nl :y

fsu, pr,,duc,,i or of the cctnppune t01 of tho law .,f ,hntre of thf, iae ioprfd variable w.-•I

liar, ths' ace i grl c form for f1 irid nl, true v lu .I tie of il..ri pt-rrwnf.er, e The other chr ri•.i



is intended basically for tracking the purely random part o[' the measured variable.

Howevar, other method of realizing smoothing circuits are possible. We meet one

of them in the following example.

Let us find optimum smoothing circuits ar:'l corresponding potential accuracy of

a speed meter when speed is

+ P"t + ((9.5.( )

where V - known mathematical expectation of speed;

i-- random, normally distributed variable (t = 0,t

•(t) - Wiener process with variance Bt..

Then, composing the correlation function of process V(0), substituting it in

equations (6.6 .53) and (6.6.54) and solving them, for the pulse response of smoothingr

circuits we obtain

sh ds
chs--hsb(s+Bp/BK..40 2 )-(

X c$'ts. •. •5 +) r|T fo)
of a c•ertai sun o of V ari (bV t -n tl _T + B e•ra' b l7 , t-,ho, to h

In conrectlon with the fact that (t,, -r) turns out to oe equal to the product

Sof a certain function of variable t arid ttw ;. function of variable T, the smoothing,

circuits in the single-loop variant of t.; kRire' meter (Fig. 9.22) contain coupled in

series:

an amplifier with variablr- gain

ar, integrator and amplifier with vax"Lable gain

wheres

eI sb S (S + B VBK.1 j., '

ýcar srna]1l times of observatiox, (t - 0 an'd 1 -- i .) (,Hin factors of amI lifters,

,1-cteci i-n Fig. ,11 T, v'ry r.s

1For large timeB of' observation (t v rvi ' t



Fig. 9.22. Diagram of an optimum speed
meter when

i - discriminator; 2 - amplifier with
gain factor f,(t); 3 - integrator; 4 --

amplifier with gain factor f 2(t); 5 -

generator of law of change of 7T7,; 6-
adder.

Bf M

so that the smoothing circuit contains only an integrator with gain factor V

It is easy to find that for intermediate values of t the gain factor fi(t) has a

maximum at value t = tAV determined by equation

and f 2 (t) has a minimum at t t2 , determined from equation

Laws of change of gain factors of the amplifiers are shown in Fig. 9.23.

00 @f 11Calculating by (6.6.48) variance

of error of the considered optimum raeter,

we obtain

B X

As t w this varianor.e taKes v;,].,d-

Fig. 9.23. Form of laws of change of
gain factors f£(t) and fit).

Qu-antity v in the formulas is the ratio o , 0p.x(WJ) to varianc..e u

0O0
the linear component ýit i. (9.5.5•4) over interval of tim:, (Ifrum -nrime-it of bugirini"ii

of obsrvation) 5 - (BK•,.I equal), to th:, s•t-up timi in the circuit, calculat' U

!',)j' , Wiener process.

In Viig. 9.24 accardintL to (9.. .,) thire are a howr, ,.urv,.; ,I tii dipendeze'.f

oax( t)/eEUX(a) on time for diifer ent, vabiL4.rt of pararrt,' v . r h, l.tted 11n'.' !iu! .

th-'a s-/.ymrtotir VaaLue and th- ]or'u - Irc X IaxlLfii '/n ýI e.AI ,

i -,5',



_i=_S\ I I

Fig. 9.24. Dependence of' variance of error on time
t for the example of a meter of speed, determined as

The dependence of o~u(t) on the signal-to-foire ratio h is easy to find,

as~igning K0 nT, for in'uance, in the form r~f (9.5,29). For aB,,(r) here results

obtained above for an optimum meter 1i cj.) i of .,.tcd which is a Wiener process

are valid.

9.5.4. The Influence of Errors in a, Priori Data on Accuracy
of' t, :. rM.. ement

optimum speed meters, error.r of' 1},ht.-'n ýio ian-ly.ved above, car, be realized only

for known a priori stati sties buth 0 .i:•l.; and a1.ý: ot their parameters. Change

of a priori statistics of the s.Ignal 'Ircad. to variation of parameters of' the optimum

discrlmi.nat~or, whereas change of a priori :.tatistic3 of the measured variable

(speed) loads to change of smoothing circuIlts. Usually "a priori difficulty" with

respect to statistic:-, of the measured paramerer are stronger than with respect to th-

Sreceived signal. Therefore, nonsideration of the case of a discrimninator which doe,,;

not differ In its properties from tho optimum and of nonoptimal •rnuot1.ig circuils,

it; of lnte; :t. I-Jere we assume that :s;moothin. circuits are synthe.?ized preceeding

vrom -cert,'; -, priori :ýt'tistics of the law ol' chonge ot speed, but in fa, t tho:;e

statistics are dift',:rent,

We snall consider this qualse IIw .ii vi'Lli,'Jl.

Let us asSumo thnt acce'lAra'i.. o 0 the t ar•,., t iirc, random, -f..;itionary and us-

correlated. Then speed isi a W iner pr',-.;:. HO'tVO 1, v'triance (_X thi:; ior :: t

B e It difficult to know e.xactly, I'll ' ,' r",F, w(- i that smoothlnig "irouit..



are synthesized counting on some other variance Bit. As it was shown above, as the

smoothing filter in this case one should apply an integrator with gain factor

IE . Error of tracking in steady-state operating conditions will be composed

of fluctuation and dynamic errors. Variance of the first of them is defined as

I 4M
2V V Y (9.5.60).

where G(iw) -- frequency response of the integrator.

Variance of dynamic error* can be found, proceeding from the following reasonings.

Dynamic error is defined as

CA-M 0 Q-%) V(tc) d%= b(1-%)d'u E(s) ds -

(9.5.61)

where V(t) - law of change of the random component of speed, consisting of the integral

of white noise ý(t), having spectral density Bio: $(t) - pulse response of the

P
closed system, if we consider mismatch the output variable

Variance of dynamic error

A .. (t) = B9. .

dw 15

where we use the circumstance that the Fourier transform of ý(t) is I/ I + K 'J(

2 2 2Total error has variane U 0 4o, FM . Its ratio to minimum possible

hlx o = "Bio/"o•T, obtained for B. Ba,, is Qqu~l to

This fojxrmula also dletermnines increase Of' error -hie to a priori. dIataq incorrectly

presented during synthenis of the sytte. Fm,

*Hlerv, In accordance with 'Tha;,terVj, we ariplld the statistlecl approach 0to
d *•a;• i!r'or,



If the measured speed is the double integral of white noise, absolutely

analogously it is possible to derive formula

1M1 (B\'/'I (B 2* 'Ii(9-5.64)_= - I Y'
G'MI 0

where B2 0 - true spectral density of white noise, the riouble integral of which is

speed, and B2 -- its value assumed during synthesis of the filter.

In Fig. 9.25 formulas (9.5.63)

*a.* and (9.5.64) are presented graphically.

From the graphs we see the low

ment of speed to selection of magni-

0 •%tudes of BI and B2, respectively.

'N ~Thus, for B1 = lOB 0 or B, 1  1

- (which are equivalent to expansion

__or narrowing of bandwidth of the

-A system by a factor of 3.2 as compared

Fig. 9.25. Curves of the dependence of to the optimum) error increases by

increase of error of measurement of speed on r 2,%, and for B2 162.
error in a priori data presented during ( .
synthesis: - i/B0; ""2/B20" expansion of the band by a factor of

2) this growtb comprises 24% In all.

With decrease of B2 /B 20 quantity so that in
201 .1ý ,,ows s;o,.irwhat morz! strongly, s h t i

systems of the second order certain ux,<ansion of bandwidth is pr,!ferable if dynamic

properties of' thp target are not kRonsm n, ,x9cf.ly.

Let us consider now the case when speed varies as

v () == v (1) + Pi + (1),

wfiere a(t) - Wiener process with variance Bt;
-7

- normally distributed random variable o' = O, • 0).

Let us assume that this process does not influen:e the optimain -.ystem of

FIg. 9.22, but a meter designed for the fact that speed is a Wiener process. Then

the smoothing filter is an integrator with 1,mlzi '7r,. Calculation uf variance of

total error for larGe timcr of obcrvatlc. . (,•(t m) j Ivcz

*1 2 +, 2 4)
from which the ratio of variance of' error to it,; mriimiirmum, 1,oiltit,le value (9.';.',9),

peculiar to an optimum system, i:, derfin,-, asI



S(9.5.65)

-10auMZ 0

whe re B/B

-2

When v < I growth of error is substantial. If we assume that in the con-

sidered speed meter there is not introduced the mean value of 7-M, for 7(T7 at

error will increase additionally magnitude a/!/B., RT

For the above-considered example of a radar with wavelength X = 3.4 cm with

signal bandwidth Afc = 30 cps and a large signal-to-noise ratio (h - cm) increase,

of errors due to disregarding the quasi-regular component of speed and failaire to

insert the mean value is illustrated by Table 9.4.o

Table 9.4

Error with Error with applioation ofMinimum app• oaation ark integrator And without
as 'error of an insertion Of the mearn value

i~ntegr ppiatiori f norgrtrad ih

0,0324 0,035 2.06 0,455 26,8 4,235 2M5
0.25"10-' 0,1 0,032411,9 0,053 3,1 0,473 27.8 4,253 250

0,324 0,14 8,2 0,56 33 4.34 255

0,1 0,059 3.5 0,192 11.3 1,39 81,8
0,210-1 0,3240.05763,4 0,072 4,25 0,205 12,1 1,4 82,2

1 0,014 8,55 0,278 16,3 1,47 86,5
_ý-0o , 04 0,4 8,7' ,0,25 1 0.105 6 0.113 6,48 0,155 9,1 0,5331 31,4

3,24 0,1717 10 0,217 12,8 0,595 35

As can be seen from the table, for comp/aratieL:y low rvt.; of chorange ol

the mean value of measured speed (acceleration of 1 and 10 m/sece) errors of measur', -

ment, expressed in units of Doi, ler frequency shift, attain Oubstantial manrd Wntru~i,

exceeding the width of the spectrum of' fluctuations of the signsl. Due to th,ý

narrow bands of filters of the discriminator breakoff of tracking if; p~ossible, hfere,

To avoid it, It l1; necessary to widet, the C I'fe'-tiv' b!rij, of tlh ','.i.. im, i r''" [.,

fluctuation error of mcasurement, or' to switch t , smoothing circuits conuq~ioJr,-

two ilhtegrators, introduction u"j th'e: ieeai .,au.ae and use of c slool. r;ing. !, . .;i

variable parameters prr'mrts us to narrow the effective hari•wilth enl to obte¾i;

minimum errors given in the table.

- fI
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§ 9.6. Breakoff of Tracking in Doppler Speed Meters

With intense noises and interferences in speed meters therc, occur nonlinear

phenomena, leading ultimately to breakoff of tracking. Such phenomena were studied

in ChapterVI for tracking meters of any to•.ramV-t'. ers of 1,oý:ion of a target. There

we discussed two criteria of breakoff of tracking: the criterion of sharp decrease

of average time to the first breakoff and the criterion of sharp increase of fluctua-

tion error of measurement in steady-state operating conditions. With sinusoidal

approximation of the discrintination characteristic we found the critical value of the

ratio of the half-width of. the selected domain a to the mean square value of fluctuating

error of a linearized system o at which bre-•akoff of tracking occurs.

For the criterion of the average time to breakoff this ratio is (L\1 0 )cp

and for the criterion of steady-sta-te error it is (A/c )lp

Let us consider the phenomenon of breakoff of tracking for Doppler speed meters,

considering application of the forms of frequency discriminators investigated above.

Here, besides using results of Chapter VI jubt now mentioned we analyze nonlinear

phenomena in certain speed meters without using a sinusoidal approximation of the

discrimination curve, which gives us the oss'titi'.y o!' estimating accuracy of finding

* critical intensities of interferences.

We turn, first of all, to a speed meter with an optimum frequency discriminatoV.

Its discrimination characteristic is determined by expression (9.3.6).

Considering that the spectral den.,ity., of fluctuations of the signal is describel

by formula (9.3.i0), after ,:-aiculation, we obtain

a + f+) (9.6

We assume that there Is realized a discriminator comiletely optimum only foi, a signal.-

to-noise ratio h = hI and unturiable with change of h.

Then from (9.6.1) and (9.5.11) the eciulvalent discrimination chai•'ctýeristlc is

n1(8) 48X +4 I,,

where

a, I+VI I + (9.6.3)

In the case of application o' a 2'inusoilal ap.roximation the eqii'vn lent

discrimination characteristic is
<I
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A.. "a (9.6.4)

quantity A can be found by equating areas of curves (9.6.2) and (9.6.4k) in the

domain 6 > 0:

ax.(9) A8=a~ i(9) da,

from which we obtain

A =Af a1, (9.6.5)

There can be applied other methods of approximation of the discrimination

characteristic by a sinusoid. In particular, it is possible to equate abscissas of

maxima.

Then
A=4 A---• af •= 2,l!•la,.( 9.6.5, )

Applying the criterion of average time to breakoff, we have

&I= =25.

Substituting in this formula expression (9.7.5) for variance of fluctuation error of

a linearized speed meter with application of an integrator as the smoothing circuit,

it is easy to find the relationship for the critical signal-to-noise ratio. For the

first method of approximation it has the form

10 Al.#
I 10 l~i.(9.6,6)

for the second method of approximation it has the form

'18.7 Al...

Here Af 3 b - effective bandwidth of the tracking meter in the absence of noises,

and dependence

_h 1 I+--Y (9..7

is shown in Fig. 9.14. (

Let us assume for instance, that Af,, 30 cps, Afat 0 I eI ps, y ' 11l

h 1 .; then from the curve for y = 5 in Fig. 9.14 we obtain h,,,, = 0.17 with thI

first method of approximation and hXi TI 0.35 for the second method.

When usini the criteri,,Ln of steady-state error

As= =a o"0.

the e'iuation for ri take; the form

' •--46t-, .



(9.6.8)

40 Ale$,iT

for the first method of approximation, and "2• Aftr
•(h~ p) 7-s A7•,,.(9.6.8 ,).••

for the second method of approximation.

For the preceding example we obtain h 1. and h 6. In connection with

the fact that between the values of h obtained using different criteria there

exists a marked difference in cases when from conditions of work of system it is

impossible to give obvious preference to the criterion of average time to breakoff,

one should use equations (9.6.8).

Let us find the equation for hl, without resorting to sinusoidal approximation

of the discrimination characteristic. Using the criterion of steadly-state error on

the basis of the general formulas (K_.3.22) assuming the absence of dynamic errC

for variance of fluctuating error we have

a, a' a.(81) d} d8i= 0==t (9.6.9)

5.p (ramm( 8 1datda
-1

where I -- level of limitation.

Substituting (9.6.2) in (9.O,,), oi.rl

xe 1+x` 2 1' dx

ei~ r,,62j di

(9.6.11)

a2A

Calculating (9.6.10) approximately f'or Inc'f,c it (].ow level or" noises), we have
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Dependence (9.6.1.2) is shown in Fig.

"E -" "9.26. Considering that for 4 = 10 this

dependence al.ready gives clearly minimized

U values, it is necessary to consider that LI• =

= 15 to 20. If we consider 0= 2, for hH

- - - - we again obtain equation (9.6.8).

Let us analyze breakoff of tracking during

"- - -,_. application of discriminators with a tuned

circuit and a phase shifter and also with

V if if 40 P mixers and differentiation. According to

Fig. 9.26. The dependence of (9.4.13) the ecuivalent discrimination char-
increase of variance of error of
measurement of speed on parameter ki acteristic of these discriminators has the form
in che case of application of an
optimum frequency discriminator. . - +

Approximating (9.6.13) by a sinusoid, with the help of equating of abscissas of'

maxima* we have

4 (Ao + fu),(9.6.114)

from~which, during application of the criterion of steady-state -rr,. (,_ = C0)

and using expression (9.4.9) for equivalent spectral density, ..-- .ta.

F (h~p)O= ,04a(I + a)k,(.'

where

,elt= ---iz+ +) + v. (+

and a = Afx/Arfc

Relationship F(h) for y = 3 and a I is shown in Fig. 9,27. For the above-

mentioned example from the curve of Fig. 9.27 we find h = 1.5.

If we do not use sinusoidal approximation of the discrimination characteristic,

the law of distribution of probabilities for mismatch is defined as

W ().= Ce"(9.. A,')

[,+]

"The method of arproximation based on eriuatirn/ areas; of curves It, Jnapr•r. lrirý
in this case, since the integral of ('.t.i3) oe o WlnF1 rtty.
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FA

De signat.1rng

P r + I ~4(Atc + AI.)11

-and

k ,,--fl4(Afc+.At.)" __, !

we reduce (9.6.17) to a. Student dis-

1 •tribution [8].

Then, with no limiiitation in, thc

11 * smoothing circuits, we obtain j

Fig. 9.27. Relationship F(h), illustrating a- n-
formala (9.6.16). ___-_-__

'4(At+ At1)'
(9.6.19)

Dopondeence

3 , (9.6.P0)

where
Ga

iF shown in Fig. 9.28.

irofeefing from this dependence, critical value of V = 0.8 to 0.9. Consider-

i rlf'.' V 0J.8, vie- find

AI-;E•,"(9.6.21)

Fo r the example ccnsidered in this paiagraph from the curve of' Fig. 9.28 we obtain

•,Jf,•. 9,P . Deien-lencp. of increase of variant:.
of error of ieasurenent of speed on PrPetet
Swhen using a. discriminator with a tiine'i
circuit and phase shifter or a discriminator
with mixers and differentiation.

S:"rorn the given examples it is clear that

ev,.-i in the framework of one criterion of

breakoff ,' tracking, dependinil upon the

Sform and tmrtiod] of ,ijprro.imation of the

Siiscrimination charact'eristic we can obta.ir t

0 4j 44 * 40 40 42F
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rather substantial scattering in determination of the critical value of the signal-

to-noise ratio h.p. Therefore, when we have formulas for h obtained without any

approximations, one should use them. Results obtained by sinusoidal approximation

of the discrimination characteristic can serve only for estimating the order of

quantity hxp.
iI

I I § 9.7. Nontracking Speed Meters

In multipurpose radars, to which class most detection and acquisition radars

belong, they often use nontracking meters. Therefore, consideration of the question

of accuracy attainable when using nontracking Doppler speed meters, and of methods

of constructing such meters merits our attention.

Tn accordance with Chapter VI (Paragraph 6.6.5) optimum nontracking meters should

be constructed by the scheme of Fig. 6.17 and should consist of an estimator unit,

issuing the maximum likelihood estimate of measured speed at every given moment of

time, an accuracy unit which with normally satisfactory limiting assumptions can be

absent, and a certain linear filter. The estimator unit can be approximately jresente.i

in the form of a multichannel system for processing the receives radio signal,

channels of which are mutually detuneo, in frequency (theoretically there should

be infinitely many of them). Every channel should be constructed in such a way that

the voltage at its output, formed during time T, for which the measured speed

(Doppler shift of frequency) does not change, is proportional to the value of the

likelihood function for some value of w., Selection of the maximum of the obtained

voltages gives the maximum likelihood estimate of speed.

The form of each channel here is determined in Chapter .Ha.nd is illustrated by

Fig. 9.29. As also in discriminators of tracking meters, in the channel there occucis

J shifting of phase modulation by

1.,: terodyning and multiplication bU'

3 4 .5function ex; ressing the la- orf-

" t oampliti:de modulation (gatini - for 5
Fig. 9.29. Scheme of a channel of an optimum
nontracking speed meter:- mixer.; 2 - pulse modulation). Thus ,1ocesred,

amplifier; 3 filter; 4 - square-law de- "
tector; 5 oinlegriWor (absent with slow the signal is subjected to narrow-
f luc tuations ). !

band filtration and then squa'e-law

detection. The form of the filter is different for fart and sl.ow fluctuatiunis,,:

]oW-frueue*icy equivalent of its frequency response is determined by (9.2.5); for

slow fluctuations this low-frequency equivalent corresponds to anr integrator. TIo
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practice, parameters of such systems of course differ frow the optimum, which leads

to lowering of accuracy. We, however, shall limit ourbelves to analysis of the

potential accuracy peculiar to the described optimum CircuLt of signal processing.

In accordance with the analysis in Chapter VI(Paragraph 6.6.9), witih measurement

by the method of maximum likelihood of speed, constant In a certain interval T,

variance of error of measurement with broad assumptions is close to variance of the

efficient estimate and is defined as
; 03 .- Son,,

S, "(9.7.1)

where S -nT equivalent spectral density of the optimum dis]criminator of the tracking

speed meter.

According to (9.53i)

2=.- 1 -(11 t2 ''S) ORt(41" ), * d 4,idi (9.7.2)

where R(t 1 , t 2, uw) - correlation function of the signal, determined by (9,2.1),

and W(t1 , t 2 , 0i1) in accordance with (6"7.20')(I found from solution of equation

R Y 5QS) W(s, tJ)ds A, t1 ,). ("1 .7.

P'resenting W(ti, t,) in the form

J iWltS, tj K-- t., ts) Re (U (t ij tU . (t Q-t, ek4*F"j0 (14-'211

'+4.8 - t,),
vwnere u(t) = u(t)ei'(t), we transform :.1.5) rod (9.7.?) 135

p (t, -s) (st,) ds + N.W, tt)= itN ) (9.7.5)
0

?311 LI

Tr
* s-2 iua- 1, u t,2 jwI.Q(t1, t.) dt1d1 a'0.* 4 SP(9.7.1-

where -I- mean signal power;

N0 - spectral density of noise;

p(ti - t 2 ) -- correlation function of fluctuations.

Approximate solution of (9.7.5) aiv, ualculotion of (9,7.6) can be performed

imraraediately in asymototic cases of fast and slow filuctuations. For fast fluctuations; .t

C(L T >> 1) this solution is given by formula (9.7.1) with substitution in It o.'j

S,, found in §9.3. As a result

0 6
2x 1. IF S'(W) do•



and with spectral density of fluctuatiodis So(•o), determined by (9.3.i0),

26f, V2-& " '(I +h /"T-'+)'
.T h (9.7.8)

where Afc - effective bandwidth of signal fluctuations.

For slow fluctuations (Afo T << 1), assuming that during time T the coefficient

of correlation p(t., t') = 1, we obtain
2 6 I+p
, - , , (9.7.9)

where
PeT

(9.7.10)

However, asymptotic results are insufficient, first, because we are interested

in error of measurement in intermediate cases and, secondly, formula (9.7.9) needs

more precise definition of conditions of its applicability, since as t- - • according

2 2
to this formula. a+ -0 , while for fast fluctuations a differs from zero. To

2
find o for arbitrary time of correlation of the signal it is necessary to assign

the concrete form of the correlation function. Producing calculations for exy)onential I

correlation

e (0 = - "4.1,(9.7. .1-)

we obtain

Cf.;.T (97.

X a-- Al,- 9X, +3X + I +2Ae-(x+,)o 1t- 3 + (X2 -- I)a

21 -

2Af0-- IT)for any) (i-e.,),ariance

X~~~a+U3 ~ ~ / +913- 2k(A 1) 13()I-

SX L--r 2h(k + I),(K - 1) (-i'+ O)'( - 1)
, €•/x--rn'1 (9.7 .12)

where X Vi "/•-+ h,

=2AjoT. (9.7.1 3)

As bh--cc this exoression leads to a• 2Af C /T for any ,fc C i.e., Variance

of the efficient estimate of frequency (sneed) in the case of absence of no.s-s

both for fast and for slow fluctuations of t.he sign91 is identical. In the case

of slow fluctuations Xa = 2AfC T/-'v" is a small quantity. From (9.7.12) aplroxi-

mately for h >> I we obtain
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-~2 T''( tiW!~(9.7.14)

from which it follows that asymptotic formula (9.7.9) is valid only when k' <<

<< 5/16Af 0  T, i.e., for not too large a signal-to-noise ratio h.

For large Xa, occurring either in the case of fast fluctuations or duri-g-
sufficiently large signal-to-noise ratios h, formula (9.7.12) Is simplified, taking

form-

h'T t, ,L T +)L
4 2 Xr 'F 2A1

+ + (9-7)'~+

The obtained expressions determine potential accuracy of nontracking Doppler

se.eed meters in case of absence of averaging of data from the output of the estimator

urit.. For illustration of errors of meaureLnent of speed, obtained for different

values of Af T and h, in Fig. 9.30 we give a graph of

*I (A.T. A) -U(Ater. A)W f' == 2
t~lC *,Co. Mx)7-

de;9endinjr upon the signal-to-noise ratio h t or various .' T. As already noted,

with increase of h quantity o2 seeks 2Af /T. However, for finite h the obtained

Y1g. 9.30. Dependence of variance of
error of an optimum nontracking speed

- meter on the signal-to-noise ratio for
different products of bandwidth of
fluctuations of' signal by the time ofSkobservation Af T

ID -- -, - - -

variance of error of measurement

It' strongly depends on AfC T if Af T <<

I" << 1. Therefore, one should select

time of estimate T in such a manner that

there is observed the condition

N Uf T >> 1. As can be seen from the
C

6raph, considerable in."rcazc of Af T

as compared to unity is not required.

When for measurement of' speed --
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there are used da.ta from the output of the estimator unit, experiencing additional

smoothing by some filter, the obPained variances of efficient estimates characterize

- the intensity of the random components at the input of this filter. Here if the tim .

of formation of the estimate T and the time of correlation of signal fluctuations are

small as compared to the inertia of the filter, then, as also in the case of measure-

ment of distance, it is possible to approximately consider that at the input of the

filter there acts white noise with spectral density

SsX T. (9.7.i()

For fast fluctuations SBX - S on0 and, consequently, with proper selection of

smoothing circuits tracking and in noutracking optimum meters ensure identical

accuracy, which was noted in Chapter YI.

The obtained results permit us to estimate the accuracy with which it is possible

to measure speed on the basis of the Doppler effect with incoherent pulse radiation.

IIf for pulse duration r,,, as normally occurs, fluctuations of signal are considered•

slow, then variance of the efficient estimate of Doppler frequency shift, obtained

during the time of the pulse, is, according to (9.7.9), found as

2 = 6 1+q.0 . 2 q , ,(9 .7 .1 7 )

where

Pass PeT,

P - power in pulse;IV
Tr - period of repetition of pulses.

Expression (9.7.17) determines accuracy of a unit measurement of Doppler fre-

quency. If these measurements are cross-correlated and we average them for tinme T,
62 o2 ,
2 2 T-p-' (9.7,18)

For large signal-bo-noise ratios (q >> 1)

2-- 6 IT , 6 " (9.1.19)

The obtained accuracy of measurements for the usual relationships of iaramectrs

is very low. Thus, for instance, when , = i ýjseI , q =10 and T/Ir - .wubti:,

* 390 cps, i.e., error is gres, even for a very large sinnal-to-noise ratio.

Therefore, for sufficiently accurate measurement of radial speed by the Doll'-er

effect it is necessary to have a coherent signal.
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§ 9.8. Measurement of Radial and Tangential Componernts of S2eed

as Derivatives of Distance and An ular Coordi nates

In the preceding paragraphs we considered in detail iuestions of measurement of .

speed on the basis of the Doppler effect. Not always, however, As this method of

measurement of speed applicable. As we have seen, in the case of widely-used

incoherent pulse radiation with the usual combinations of parameters there is un-

satisfactory accuracy of measurement. Furthermore, we aie not alway interested in the

radial component of speed alone; in certain cases it is also necessary to measure

its tangential component. Therefore, we shall investigate methods of measurement of

components of speed of target, based on the fact that these components are derivative:,

of distance and angular coordinates.

We shall consider that there are applied tracking range meters and goniometers

(rig. 9.31), general analysis of which was conducted in Chapter VI. We designate

k(t) - a parameter varying in time (distance, angle), to be measured. The component

f t) Fig. 9.31. Tracking range meter and gonlo-
meter: • - discriminator; 2 - smoothing
circuits

of speed interesting us is the derivative of this parameter 1'(t). Jarameter X(t)

is; coded in the received radar signal, mixed with noise y[t, 1(t)]. As a result of

tse influence of this signal on the discri ninator there will be formed mismatch signal

7[t, s(t)], where E(t) = X(t) - 1,(t, \n: 1(t) Is the output of the range meter or

goniometer. The mismatch signal influences smoothing circuits of' some form, forming,

Such a, meter can be both optimum, or nonoptimal depending upon selection of the

.iseriminator and smoothing circuits. Investigation of different ranfge discrimlinator:

it conducted in Chapters VII and VIII, and ang{,ular discriminators are investiit'ed in

Chapters YA and XI. In all cases for low levels of noises or interferences there

are small mismatches, for which the discriminator can be linearized, i.e., z(t, E(t))

can be presented in the form

z(t, ,))s Ke(t) )1 (9

where JK -ain factor of the disc•rimnatcr;

,(t)- equivalent noise, which, thanks to the inertia of the smoothing circuits,
can be considered "white" and is characterized by its spectral lencity

-470-
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"We .4 It is required to measure not
only coordinate X(t), but also speed

lit) X'(t), this can be done by passing the

Fig. 9.32. A speed meter based on dif- output quantity of the tracking meter
ferentiation of a coordinate: I - discrim- It
Inator; 2 - smoothing circuits; 3 - dif- X(t) through a filter which to-some
ferent(ator, degree of accuracy carries out

differentiation (Fig. 9.32). often the voltages at certain points of filters of

range finders and goniometers are proportional to the derivative of the measured

coordinate; in these cases there is no need for additional differentiating filters.

Of interest is investigation of accuracy of measurement of speed by the shown method

for various forms of smoothing circuits; also of interest is synthesis of an op tirnum

meter of speed as the derivative of a coordinate and finding the potentiaL accuv,.'±

of such measurements. These problems are the content of the present paragraph.

9.8.1. Accuracy of Measurement of Speed by a System with Constant Parameters

As follows from the preceding chapters, in many eases both the ones most wide-

spread in practice, and also optimum smoothing filters are linear and possess con:tant

parameters. We shall investigate accuracy of measurement of speed by such systems.

If we designate by G(p) the transfer function of a smoothing filter of a range

meter or goniometer, with observance of condition (9.8.1) the Laplace transform of

the output variable of the meter will be recorded in the form
KxO(p) [(P) [A (p) + S(p)I, (9.8.2)

where A(p) and E(p) - Laplace transforms of X(t) and •o(t), resrectively.

We consider that formation of the derivative is also carried out by a linear

filter with constant parameters with transfer function H(p). The Laplace transfoi-i,

of the output variable of this filter takes the form

i. • ~o(MA(p)+.E\p)
I' - "+ K-T (P3 L" ,) ().(9.-'.i

Considering that A(p) - pA(p), for error of measurement of speed tran!;foied

according to Laplace we have

-p + p-- H(p)]K.0 (p)
I + KG((P),

KG(p)H(p)

jJ
The first term in the direct part 1' (9.8.4) depicts dynamic error, and the

-471-



seco~d - fluctuation error, Then dynamic error of mea.sturement of speed can be

i'olufi by the formula 41
6ABKR( 1 ) = ¶vq -'t)Z(td,c(..) 1c

where v(t) - reverse Laplace transform of

V (p) --- p+ (p -- H (P)I KA (p)

T + K~A(p) (9.6.6)

Variance of fluctuation error of measurement of speed in steady-state operating

conditions (t -m), according to (9.8.4), iA. de-fined as

K* ] (if) 1 ,w (9.8.7)2

--C

As also earlier, dynamic error can be considered statistically, or for ,nknown

statistics of X(t) we can determine it iron model disturbances. In the statistical

approach vwe consider assigned the mathematik:al expectation of coordinate % an,1

its correlotion function RW(t, a). Then statistical characteristics of dynamic

error of measurement of speed can be catc rloted by formulas known from the theory

of random processes [9]. In particular, when -tC; = R\'z - [ (condition of
stationariness of the random part of X(t v vlane of dynamic .tro in st-1dy-s tate'

o.e toting conditions is

2A.r rf V ,a) d-, (9.8.8)

whe'• S (') -- Fourier ti.ýans.fors of 1,\( ).

The mathematical expectation of' dynamic error is

TAnt. 6( Y ~(-t) dt. (9.8.9)fI

In the nonstatistical approach to dynamic error of measurement of spee4d we p[re-

--ent coordinate X(t) in the form of' a polynomial of a certain degree n. We shall

limrt our consideration to steady-state operating conditions. Then, using the

formula knovm from theory of dynamic systems [4"-], we shall pre3ent dynamic error

in the form

where X(k)(t) - dk (t)/dtk - derivatives of some assisgned model law of chanjge of

I dkV(p)coordinate 1(t); coefficients V0 h----dp _ "p"
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With presentation of X(t) by a polynomial of degree n series (9.8.10) .1..9

only the first n + i terms, and the requirement of finiteness of A H(t) as t -c

leads to condition v0 = v =1 Vn-i

Usually to guarantee smallness of dynamic errors of measurement of coordinate

X(t) there are applied smoothing circuits possessing astaticism of a certain order

M0, . e, G (P)
6(p (p)(981)-

where Gi(p) does not contain factors I/p.

Substituting (9.8.1i) in (9.8.6), we have

V 0 "+ + Ip - (MAI KG, (P)
P + KAG(,p)

We require that

p H ((p) = p-+H,(p),

where H1 (O) - finite quantity; then

V (p v=p .+, I + KH, (p)G, (p)
P-I-KAGs(p)

and the first m + I coefficients in (9.8.10) are equal to zero (v 0 = v= ... V

= 0).

If the polynomial by which we present coordinate X(t) has a degree not higher

than m, there is ensured zero dynamic error of measurement of speed. When n a r I-

dynamic error is determined by coefficient

i + KAH,(O)GI(O)

m+ -- A ,(0(-O)

Condition (9.8.12) is satisfied, in particular, with application of a purely

differentiating filter, when Hi(p) = 0 and H(p) = p. Here, c efficient Vm+i, and

consequently, dynamic error, too, reaches its minimum at n = m + 1. This, however,

does not mean that it is necessary to apply ideal differentiation of distanc,:, :tnu

angles, since from (9.8.7) it follows that fluctuation error decreases if H(i<Y;/iu

has a steep drop at high frec.uencies. When H(ign) = io this dip, in general, i,•

absent, and for certain forms of frequency response of the filter of the tr-pr.in,

meter of coordinate G(iwo) variance of fluctuating error of measurermenL of spe.(.o iýý

formally obtained as infinite. Turning to i'ilLui, jiut , o naryil',ja idoal

ferEritiation, one should note that for large m filters caii bt rather complier., t, t.t.

Then, proceeding to certain increase of dynamic errors, it is r( rr-;onable te, lisu

on the filter forming the estimate of spr.cd the condition
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p -- 1(p) ---p1 "H, (P), ('.• .

where i(O -- finite quantity, and k < in. Hiere, v - - v =kO, and

ll~O). (9.9. to)

rThc question of selection of the filter for formation of t.he speed estimate we: shall

consider later in the course of synthesis of an optimum meter; how.ser, we first

shell, examine with examples errors of measurement or speoi for cyrtain nurmal forms

of filters.

I. Let us assume that the meter of distance or angle as its jilter conteill-9

an integrator, i.e., K G(p) = K/p, where K - overall gain fa-ctor of the open trac'.ki;

system, having dimensionality I/sec. Lot uo assume that as the filter intended for

moasurement of speed there is used a differentiating RC-circuit, i.eý., H(p)

±3/i + pT. Consideration of this case gives us the possibility of obtaining all

tli n<c:ssa3ry results for pure differentiation, too, if we set T = 0.

Ac.cording to (9.b.7) variance of fluctua.ting error

T I C K'w'S,,dm, __ K5•. K

2x I ((.b.i7)

K"ýJ SKS 24dBt, C vari,5n(-f c -]utt•ti ýor of measurcmont 0!'
c oordin-,ý,_, > t•

K
Af t# -,•J•:i, banaw•idth of 'uht' ý,,oscct tracking system.

'oromr expressi~on (9.8.1.7) it follows that fi'uctu-atii•,j error of megasuremrent of

: tii. ,r-rases with growth cf the-, ti-ie constant T uC• the differentiating j'iit( •

it h i•urý differ{.ntition (T --- U) variance of fluctuating error turns into infiitiy.

i'h111s is obtainaed, of urse, due to the accepted id;alizations, since we considgrr ot

L j white nol.,,v In reality., due to certain inertia of tne disc Iilfin,ýtor this is

iiot, wlle niois~e, W(: c'an approximately as3SUMe thutt tlL spectr-al du-llsitY of' 'ý(t) iL-

-uonsturit in thE! band of the discriminator Af< the magnitu'•.e of which isdt.ri•.

by thtf: forem of' opera~tions and parameters ul" (ý_v<:-±ry Eiveni disc riminator, and is

3,.u ,,,, •I and be-yond týhis band it i,ý r-quL-•.l to zero. Then integration in: (Q.8.1'(

mustA be producea withnin1 I Int H (-2•~A +2;IA,,], •i

<~~ ~~~~ T 0• 72)( reKA,•-K .

SA. ---: % ,• K;'( - 474- U. .2:



With ideal differentiation, i.e., when T = 0, we obtain

hA26= *:aK(4Af,-K)0.(981)i
Thus, variance of fluctuating error of measurement of speed in this case, too,

is finite and is determined by the bandwidth of the discriminator Af A. With a

coherent signal Af• is a quantity of' the order of the bandwidth of the narrow-bars

rilters of the discriminator; for an incoherent signal Af = F r, where F r. - frequency 14

of repetition.

In Fig. 9.33 are curves of the dependence of the relative fluctuation error -

of' m,.asurement of speed 4/oviK on Kr for various ratios of bandwidths of thev

discrimin~ator and the closod I
S_ _system of measurement of the co-

_ ordinate AfM/tx'e, = 4AfZ/K. .A

Curves are constructed for va.lu,_z

Afa/Af•, >> 1. To estimate thi, 0

______ _____ ___ _ order of' magnitudus of' luotuatir [

errors of' measurc-mcnt of spýEed '-

41 we consider that very often

A = (I to 40) cpo,

, l;~9 (K ='4 to 40) I/sec,. eid-,i! -
!'L,_, .5. Depende.nce. of relative fluctuatingi

b!' ,fmeasurement of' speed cn the product
ol' th,...iain fdctor of an open lystem K for tha obtain J m/se: we Must m.ti-
timf eoistanl of the differentiator T with at
Various Af A/Afzf . ply o5d by a coefficient, usua..lly.

umeric-al~y e quasI to several units or even tens. Thus, for instance, when K • 12

l/jec (Af'•. = 2.,) cps) and with KT = i from the graph of Fig. 9.33 we detcrmin-

that ;7 = 70 [m/sec].

We now turn to consideration of dynamic errors. Substituting expr,esslorls

(I(p) a•rid ll(p) in (9.8.6), we have

I + KT + pr
V(p)==ps TT(Yp) (IJ-pT) '(..2

from whion v 0  V 1  0, and coefficient v 2 In formula (9.8.10) for dynamic ,r'i't 1

I ± KT i

K i r2

1 2
Then, for Lnitarvce, when X(t) +0  X t + 2
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_1H (+1(T). (9.6.2~2)I

T-rnm t lie obtained expressions it f ollows thiat A dec'reases with decreasc of T.,
g .IW4

ilowever, this dependence is relativo-ly weak,, thereforc one should n~ot st-lect iiiagii

tu&:s of KT which are too small, in order no,-t to inc'reaste fluctuatin.g error to a

consderble egre, Slecionof the magnlituide of KT is best pr~oduced pioceedingl

frm hereureen o inmu ttl rrr fmeasurement of speed. For, instance,

If -(.t) is quadlratic, IAz is determined by exprusrsion (i9.8."2ŽJ, arnd the optAimrUM

viuof KT is found from condition A ZL. + Ad Min. Here vie obtain 1.1i

dlepn:rdellce of (U),H on~ x =jf;K shown in Fig. 9),34. l-or small. x quantity

is approximately proportional to 7; ic,r large x it, is propor1;i...nal to&"X.

In thie same figure we show the dependencue of' the relative magniitude o.f' total error

V,'/V +/ o~ on x. 11f in thi.; syste-m gain of1 ttiu- opv-n loop is slctooptimally

ft ia, thje condition of miinimum error of mi~~l~ntof* coordinate >(t) ten, ras it

i* !isasy to show,

aiS'Iberi V:'om Fig. 9.3hit is clear that for orsmelix, thir{place withl UL .7

of le ta g t freoO -'A UV! r fl 'it, I It, 'A' L 1)t- ca 1o ir; : Ixc eed ,j l

rag ______ x., nd ;wIth Optimum Wo i oh0

K, 'riid AIxc) of K11, ii, is easy to) Ii.1,ir

- -thaIt -rfol- of, ireasu~rrre lit')I' "'"0

isl equal to

Teii,!in,ihitudA( of -rior Ira. conisidurubl~y

i d'-penrd-rice on 11

.. lal u11 XI- and S31(-. f lor

J q .rouc ji Idf the o iit i rrtum v L u,

* t lye totsu I i ~jsr of' measuremen.t of ap ( A di-§(1g/5Ifc wiith 'C erto

( p~c'3 UV')sripiairetX'x -- )~1P1



2 2x2 = 0.$ deg/sec2 ; A .0.2 deg/sec with X= 0.04 deg/sec and A = 0.1 deg/see with
2 2i2

x2 = 10-2 deg/sec

2. Let us assume that the smoothing filter of the tracking meter '" distance I
or angle is a double integrator with correction. Then

i/se 2; (9.8.24)

where K - gain factor of the open loop, having dimensionality 1/sec

T -- time constant of the correcting circuit.

We shall consider that for formation of the estimate of speed, as aLso in thr.

preceding example, there is used a differentiating RC-circuit, i.e., H(p) = p/i + '.T

Below we shall show that the greatest accuracy of measurement of speed is attaim~ln

at T = T ; therefore, we assume that this condition is realized. Consýicering

equaltity K G(p)li(p) = K/p, we note that with observance of the mentioned conditions

there is no need to install a special differentiating filter. As the estimate of'

speed Xk(t) it is possible to use the output of first integrator of thr. smoothingz

circuits of the tracking system (Fig. 9.35), Here, fomuls grrors o!' IIc'suV1meU ,,

Fig. 9.35. ideter of coordinate
A• X(t) and the roate of its chngr

I (t) ' - -. discriminator; 2 -

integrator; 3 - integrator with
correction.

obtained above, remain valid. According to (9.8.7) variance of fluctuating err'or

of measurement of speed

1a K" •- 'd KS+" " -

TI --

where(, aIT 2SaHBf3t - variancu of fluctuating error of muasureim(iit o
2( coordinate X(t);

Af + KT )/4T 1 - effective bandwidth of the closed trac'kiIW' :'y'.1t_,fI.

The dependence of the relative magnitude of fluctuating error

or, 1t1- dimensionless parP,tir K T2 iq shown in Fig., 9.36. EIrror reaches a, m,')xirnen

at KT = 0., If' We KT2  1- to ( and have an effective bandwidth o0 thu

system Afo (1 to 10) cycles, fluctuating error of ric'asurement ot spr-ed •' =

= (0.5 to 15)r, ,,, i.e., is o. smaller magnitude than in a first-o'rdt: syst,.m. V.,
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instance, when Af 2.ý cps and KT 2

~ ~ -- which corresponds to transition of the

tracking system from oscillatory to a'peh'ouic, ..........

45 ~Calculating dynamic error, we kiave

0.25+J(I+;.' u=V L=O, VZ=TM.

At 442 4J I5 41 1 D~.9~.6

Fir,,, 9. 36. Dependence of relative 'thaqurla ofcngoi t)t -2-
* fluc tuating error of measurement of state error is equal to

the 5peed of a target by a system
with a smoothing, filter consisting

re~lationiships between parameters of system

her, lavig ti:,qu.estion to snhisof' optimum speed mreters.

syste. Inthiscase

Dynamic error decreases as compared tothe preceding c;s and for quadratic

t 'It, iti gene-rally absent. Hoeve(,ftr, (u:ueiin rol. iiicrcasec. arid, 11 wf, dor

cosierfinitene-ss of thWý di~dth ý)f sý'tr ( t) , it turriz into infinity. All-owing

!as be f'ore, for- tr.e form of finiteriess oi' the- discriminator band, we find

II lictu"Aing ro is lhrc eas'ed as compared to the case T = T by a factor of

KT (I + KT'j< )Af/Altd d . With thr- ,ibove-mentiollf.d seltectionl o01,o~rtite ol,

this cm)js (I to 5) V'A 11,f ~. which corre~sponds to large loss in the

a iccuraciy of' measurement of' fpeed.

3. A formi of smoothing circuits veriy wide-spread in practice i3 a. circuit with

i(I + PTO

"ri"ncrst1ritL4 here usually satisfy condition T I T 2< at, which stibility



of the system is ensured for any K. Frequently ratio T2/T M is selected in the

range 0.1 to 0.5 and TI/T. in the range 2 to 50. The order of magnitudes of KTH

and Ti/T£ is usually identical. The effective bandwidth of the closed system turns

out to be equal to

K T,+T,*+ KT
4 "-"To + To -+- K TT +- TT. -- TT)" (9.8,31)

Finding errors of measurement of speed for such a system on the assumption that

there is executed ideal differentiation (H(p) - p), we have

2K'0'0(I + 461T 2)Stdu I
*A---x- Iiw(I + i(aT,)(t + lwT,) + K (0+idT)'-r

KS... IT,T, + r. (I + KT.)i
"2T,, I(T,+T,) (+ "t (T., -+ JT T,T -

r, ToS+KT. + TL,- T-
_L. • , T. . .. (9.8.32)

Calculating coefficients of dynamic error, we obtain

V.=V,==O, . (9.8-33)

i.e., for quadratic X(t) dynamic error is

A D " "(9.8.34)

as also in a system with a single integrator. However, by selection of time

constants Ti, T2 and T. in the considered case with an assigned effective band-

width we can obtain a large value of coefficient K and thereby decrease dynamic

error. In practice it is possible to increase gain K by a factor of approximately

TI/T as compared to a system with one integrator. The dependence of relative

fluctuating error on parameter KT, for different TI/T. and T2/TH is shown

in Fig. 9.37. It is easy to see that with change of KT in a wide rangeH
- (0.i to 0.5)(3 . The magnitude of error decreases with growth of Ti/TH and

with decrease of T2 /T ; however, these dependences are weak. Although the eon-

sidered system with ideal differentiation for formation of the estimate of spe(:d

ensures higher accuracy than a system with a single integrator, this accuracy i?

nevertheless low, TILus, for instance, when K = (iO0 to 500)i/sec fluctuating error

A = (10 to 250)o0#, which is usually absolutely unacceptable.
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Ioluctuating error can be sub-

stantially lowered by applying, e.g.,

__________ _______ a differentiating BC-circuit [11{(p)

p p/I + PTL 1

The i

Ks.

inl Fig. 9.58 there arc- shuwna

___________________________curves of the dependence of relativ'

X1, flu 'iating error on KT for

Fig. 9.37. Dependence of relative f luctua-
ting error of measurement of speed by a vaiu 1 / ~ n u 2 /T~=02
syst4n. with a smoothing filter of the

:o'iorder and ideal differentiation or With those same values of parxameters

arajue urK- 2 /TH --0-1 as in the preceding case fluctuatiing

~ 05.error is much less =s (0.01 to

0.2) a#K; howevF-r, dynamic L-rror iues. The first cefietof error d"flfring

froma 2sero v, + KT /K, i.e., with quadratic It, rror A increases by

:1 + IP ascompared tothe precedinga case.

Let us consider numerical examples:b

a)O Let u.; aissutme that we are me asoru:,c. ron iaI :p fedl as the de riv at ive o f the

rug.L~et US assume that thce valL;gýI Ih 'i r has a smoothing filte-r of the last-

conisidered type- with parameters K 200 i/see, T1  I sec, T = 0.01 sec,

pedbasytmwtFig. 9.38. Dependence of relativH

__________fluctuating error of measurement ult

filter of the second order and a
A,, __________ differentiating RC-circuit on param-

* ~eter KT*

4M T 0.1 sec, and the transfef

function of the differentiating

f'ilte~r is H1(p) =p/i + pTx. Let

us assume that radial speed of the

target can attain a value
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2!
x= Vr = 1000 m/see, and radial acceleration can reach 02 rn m/sec 2 . For the

selected values of the parameters Af = 8 cps,

o.--4Vga.s [m), 11/ 7=326 -g--[;,

where S. is expressed in m /cps. Dynamic errors of measurement of distance and

speeds are equal to

,Au.t=(5-+-O,O5t) m, A, ,0-==1 c, see

and values of fluctuating errors are given in Table 9.5a.

Table 9.5a ]

SoISOPS 1 3 10 30 100

w*, m 4 6.9 12,6 21.8 40

, 32. 6 56.5 103 178 126

b) Let us assume that the tangential component of speed is measured by dif-

ferentiation of the angular coordinate, and filters have th, same form and the

same parameters as in the preceding example. Let us assume that angular velocity

is characterized by quantity X1 = deg/sec, and angular acceleration is character-

2ized by X2 = 0.1 deg/sec . Here, dynamic errors of measurement of the angle and

angular velocities are equal to

sA. ='-(! "F',05t)j)1-2 deg, &A•..-=1,O,5.1O-' s-e.

and fluctuating errors are found by the same formulas, in which S, is expressed
2

in deg /cps. Their values are given in Table 9.5b.

Table 9.5b

2deg-. 10-' 3.10-' 10-' 3.10-' 10-'
cps

o deg 0.126 0,218 0,4 0.69 1,26

Aft see 1.03 1.78 3,26 5,65 10,3

FrLm the given examples it is clear that in a number of cases accuracy of '1

measurement of speed by the considered method is low. However, it essentially
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-i.

depends on the method of construction of systems and selectison of their parameters.

For estimuting potential possibilities of measurement of speed as the deriv,.tive

of the coordinate it is necessary to turn to an optimum meter and its jIroperties.

9.8.2. Optimum Speed Meter

Solution of problem of synthesis of an optimum system of measurement of speed

as the derivative of a coordinate with Gaussian statistics of the coordinate X(t)

ensues from results obtained in Chapter VI(Paragraphs 6.6.9 and 6.8.5) concerning

oI)tlimum systems of measurement of functionals of parameters ef a random process.

According to these results the optimum speed meter is the scheme of Fig. ).39.

It consists of an optimum meter of the actual coordinate X(t), the principle of

construction and action of which already has been up.ated(y d-Iscussed, and an

additional filter, serving to form the estimate of speed X (t), to whose input

there is fed voltage from the output of' the discriminator z(t). Generally speaking,

there should also take place formation of' the mathematical expectation of speed

to which the output quantity of the filter is added.
S~Of greatest interest is synthesis

of the: optimum filter for estimating

speed, since remaining operations of

2 4fe) the meter either are already known

from synthesis of the meter of coordi-

14 _ . iiate k(t), or are trivial. Pulse

lig. 9.39. Optimum meter for measujr *r.,, response h(t, -c) of the filter esti-
speed as tne derivative of the coordinate:
I - discriminiator; P - smoothing circuits; mating speed can be found simultaneously
* - filtetr estimating speed; 4 - adder.

with the pulse response of the filter

of Wte tracking meter of the coordinate g(t, r) from solution of equations (6.6.1io),

((,.6.i0), (6.6.5i), and (6.6.32), if we consider that function F(t, s) in this

case is defined as

FS)=-8'(t -s), (9.8.36)
where the ,troke is the sign of differentiation.

Then these equations have the form

0 , Y-••(, C) +Ko-T b(f, s)g($, %)d$, (9.8.37)

b Yt, ")+ K ofi'? b (t, s) I? (s, %) ds •-dR (1, t)d

(b, (o)=0 when )(9.8.3)
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C~t Y)- 't C) + Ko.,- •C(t. s) g(s, )ds (9 8. 5')

C -)t--o,,,Sc (t s)R (s, c) d (t, )

(C (t. -)=o ,when I < .c), (9.8.4o)

whe re K0 - gain factor of the optimum discriminator for measurement of coordi-

FITJ

nate X(t) ;

R(t, T,) -correlation function of coordinate X(t).

Equations (9.8.39) and (9.8.40) determine the optimum str'ucture of smoothing .

circuits of the meter of X(t), and equations (9.8.37) and (9.8.38) determine theIA I

cties t )Krenc( s)R g(s, d) nds (t, () uu

w en e ence wginfcth o of the optimum discri or f measurement of co -the

sa••tim, so)wha correltiona fntion oiara cord Finat (t.3.Frhmoe ts

Epqsuatsteon is (.5)ned (9.8. termnee theoptimum s trctueof sothin

circuitse ofo the meteriofnat), and equations (9..) qand (98 t) detere thei

struture ofaditiogteegnala circuits, neeed fornstideraetiing texdriatives of (ptimu

Ac otiuall filtersiwinthraekon e scluaehr h pulse responses gof)adht ) sal aemn

comono leetsthi ch simpliadrrrfimeasuthemcicut of thee otmmmeemkig.tt

mabe-tracking metere, but here there should. t applied a filter with pulse rsspicnl.

t$t, in) determined from equation

t,(,, 4, s ) ds. ( 9.8. 41)>

In accordance with (6.6ov09) variance of error of measurement or speed bo tixc

optimum system is defined as

2 dbi) S(

-C'--C I.=e " (9.8. 4-/)
After giving these general results we consider certain examples of optimum

speed meters. We assume that the form and basic characteristic Kon -- /S~n or

the optimum discriminator are known. Let us calculate here the pulse response;s CA

smoothing filters and error of measurement of speed.

1. Let us assume that 1(t) be a stationary random process or a process with

stationary increments and that we are interested in moments of time very far re'move•d

from the beginning of observation t0 . Then in accordance with results of !•,-%',•v'n-,

6.8.5 solutions of equations (9.8.58) and (9.8.40) can be pres•ented by their Four'i,-v

t r'aui fo eraus
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o (- -C•)- B (it,)e d ,, 09.8,44)

where S(w•) -- spectral density of process ),(t);

w (i,,,• (-.I) + Ko.u,S (w),

wV.here •'(iw) has zeroes arid poles in th•e upper half-plane of complex variable U),

Sand T•(-iw•) has th],ý-.r In the lower. Operation [ 4- signifies singl~ing out of that

i part of the expression in parentheses which has pole's in the upper half-plane of w•.

y! A soiution of the problem of measurement of' the derivative exists if S(w) at inl-

f'inity seeks zero not slower than 1/634. Functions g(t - T) and h(t -. -r) are

41

deter*mined according to (9.8.39) and (9.8.7) by their Fourier transforms with the

help of expressions

C (im) i) (-i) --B () (1 + KA, -)] (9.8.45)

if, for inst)as nce, e (t) correspond: to uppetion of the target with vncorreltd

L.andoi accelerations, caused by various random dlsturbances, where the mean squate

ateed of the target developed in I sec due to the random disturb hanc f-s is equal to

BOA tuen f(t) -t double integral of white noise with sdectral density Bo and spectral

* ±in'sity S(eek) z eO/no Direct application . thF written e-)anities here givesdTerminted acordingm tmoo(th.i)nd (9.8.er byt theirForer transfg cormsat w~th the

heulp oftexpressionsht os n alir n h piu fle o sial

G Giu) C p):G ,I(p)= Kw T

-K,,() V B.K. (i)A 0  i).08 5

Thf, f -ortinstnce smot) in correspond to e motioeort t tarkige worinth uncorr isted

random acceleratorwt orions, casehyaious wranotdom dithrbacaes wher the mea sqar

Bte Xt)-double, integral of white noise wn aleaidth spetralm denityr foan especatralg

speed is an integDator with gain K. As o result the signal which is the estimatt.

Pt

of' speed A (t) can be taken from the output of the first integrator of the filter

of the tracking system, or be formed by means of trtansmission of the output of the

courdie•ite-tracklng meter X(t) through ra differentiating RC-circlit with transfer

function 03(p) = p/i *e pT". Consequently, the system analyzed in the preceding )
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paragraph, with T T is optimum for the case when the target moves with uneor-

related accelerations. Parameters of the optimum system K and T are not arbitrary,

but according to (9.8.46) are functions of the intensity of accelerations B0 ,

characterizing maneuverability of target, and of the intensity of equivalent noises

at the input of the linearized discriminator0T = i/K 0 •,.

Using the fact that variance of measurement of coordinate X= c(t, t),

while variance of measurement of speed is determined by expression (9.8.42), we

obtain
° I '11 '•

2 4B@ __, Bo1 1/4

' )'IKou) (9.8.47)

From formulas (9.8.47) it is clear that error of measurement of sp[eed d(pends

more on maneuverability of the target (B 0 ) and less on the level. of noises I/o

than error of measurement of the coordinate. For illustration we calculated c-rror I
of measurement of distance (ad) and of radial speed (ad') of an optimuM system

for two values of equivalent spectral density S and several values of B i
OnT

Results of the calculation are given in Table 9.6. In this table there are I
given values of the gain factor of the open loop, the time consta,,t of the A

correcting circuit and the effective bandwidth of the system. .

Table 9,6 6
'o • I ,o'

1' 10 10' 0S 104 1 10 10' 10' 104:

0.1 0,316 1 3,15 10 0,01 0,0316 0,1 0,316 1

Ta Joel 4,5 2,5 1,41 0,7?9 0,4 14,1 7.9 4,5 2.5 1,41

MOO [opal 0,17 0,3 0,53 0,95 1,7 0,053 0,095 0,17 0.3 0,53 -

ed JMI 6,7 9 12 18 21 37,5 50 67 90 1183,-- --- _ ._ _ ,-

1,, 1.6 3,8 9 21.4 50 2,9 6,8 16,2 38.5 90
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E'rrors given in the table characterize \bth fluctuation and dynamicir componenxts;

moreover the latter is understood in the statistical sense--. From the tabLe it

follows that change of' the magnitude of 13 two orders. leads to change of error of

measurement of distance by a factor of 5-b and of error (A: measurement of Speed by

a. factor of' 1.8. Even with high maneuverability of the target accuracy of ineasouremnent

of1 speed is relatively high.

The obtained results give the possibility of' comparing potential accuracy of

measurement of radial. speed by Doppler frequency and by the derivative of distaýnce

in thE. case of coherent radiation. In the consid&.red example speed is the inteCgrxA.

of' whiite noise, ýand according to (9.5.34) variance of' error of its measurement by

the Doppler frequency shift is equal to

2(9.1. 48)

where i/1K = Sv 01.r - equivalent spectral density for an optimum frequency di3c rimci-I
i ta tor. For large signal-to-noise ratios, according to (9.5. 2 1))

Here \-wavelength; Af C - el'fectiv(e -, ti,( spectrum of fluctuations of' thes

"Signatl.

Variance of' error of measurement of' speed a~the derivative of' distance is

dVtermined by (9.8.47) and depends on K ,),-. For large signa~l-to-rzoistc ratios h I
according to (7.2.15) and (7.2.16)

(9.8. L0)

wrm reI' -(,ped 01' light;

- mean square: width of the spectr-um of' modulation o1' tht' signal utilized for'
me-asurement of' distance.

Thus, the ratio of errors is

whe re a)- carrier frequency of the emitted signal.

In order to determine the usual order ol' fna-gnitudes of ratios of errors, wt.

cosdrthat product Af' k weakly depenelq on th(. wpvcdIongt~h ;and f'rfecupntlv is.

a magnitude of' the order of' I m/sec. The ratio of thep carrier fre-.quenicy to the(

width of' the spectrum of modulation is usually very Cre-at, so that eve~n for I arg(
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2 2 5 6
signal-to-noise ratios w6/h2 > 10 to 10. Then, considering that usually the

width of the spectrum of the reflected signal has an order of units or tens of

cycles per second, we find that even with small maneuverability of targets (B0

- :1 m2/sec3) ratio Od,/Gv > 3 to 5. Thus, measurement of radial speed by Doppler

frequency shift of the signal ensures great accuracy where, with increase of

maneuverability of the target, the gain increases. It is necessary to note that

ratio ad,/ov weakly depends on its determining parameters; therefore even with

rather strong change of them the relationships of accuracies of measurement of1

speed by the two discussed methods changes little.

2. Let us assume that the law of change of coordinate X(t) is known with an

accuracy of certain random coefficients bk(k = 0, 1, 2, ... , n). Thus arc matters,>

for instance, when a certain body moves in a ballistic curve. Coefficients [Lk

here are random due to the randomness of the initial conditions. As"Ii

we already have repeatedly indicated, frequently there are observed conditions whul.
pres, ,ation of X(t) in this form is valid: a

Sl•,t (t), ( 9.h. 52;)•

h=O

where fkt - assigned functions.

If, for instance, fk(t) (t - t0 ) , coefficients ýk constitute values of 1(t)

and n its firet derivative at the initial moment t = to. We assume that 7k= .

This does not disrupt generality, since the known mathematical expectation can &lv;yz

be accourntea for during measurement. Then the correlation function of process X(t) p
is

R (I, ') S MIND (') f = ( f) f+ () Mf (,

where Mik = FF s;

M- symmetric matrix with elements Mik;

f(t) = (fo(t), fi(t) ..... fn(t)) - column vectors, and + signifies treza>-

position (f+(t) -. line vector).

Equations (9.8.37)-(9.8.40) here are equations with a degenerate nucleus and

their solutions are easy. They have form: i

A=

g0. )f 4+ () [M-' + u (01j`(10) ¶,A. h(IA4 ,(I).A(¶),
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b (A, f[(t)] •W +),I U ,(1)] 1

1.k=

dl, 1=O

whtre matiix A(t) [M + UOt)]-, and matrix U(t) = i (t)ij is determined by

expression

The block diagram of an optimum meter of coordinate X(t) and the rate of its

I

change u (t), corresponding to the: obtained expressions, is presented in Fig. 9.40.

I d

2 j

V pirt filt, 10 & It l

Fig. ~.40. Optimum speed rmeter with quasi-retý.lar
ch;i1Lg(* of coordinat, >-(t) 1 - disc riminrtor; 2 -
vqriabLe-gain amplificr; 3- integrator; 4 - variable-
gain amplifier; 5 - adder.

-3 the input of tc, dic.criminator of the metpr there Is fed a mixture of' the signal

with] ncisc y(t, )(t)), From the output of' the opt~imum discriminatui voltagto z(t,

is fed to n + 1 amplifiers with variable gain fpcto.'s.

_ 
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The law of change of the gain factor of the i-th amplifier is deterwined by
a

expression y A,(0)4h(t). . Output voltages of amplifiers are integrated, as a
k•o

result of which there are formed estimates of coefficients a.V Then the voltages

representing the estimates are passed through two groups of amplifiers with gain

factors fi(t) and dfi(t)/dt respectively. The formed voltages are added by groups.

As a result of summation of voltages from outputs of the amplifiers with gain factors_

fi(t) there will be formed the estimate of coordinate X(t), which controls tunings

of the discriminator, and from those with gain factors dfi(t)/dt we get the UStiMate

of speed X (t).

Let us consider with what accuracy speed is measured by such a system, VariarcE: A

of error of measurement of speed according to (9.8.42) has the form

d + ~ df (1)°, w I-'+ (t)] r !i+

R•A ,,•h(1) r.(
-d-•i d (9.8.59)

Let us turn to the particular case n 0, f 0 (t) - f(t). Then, designating

O4 G2= 0 we obtain

_[df (t)] , . o
! ~I

o2 +)OST f'f(1)ds

For large t

Ko., . I' () ds

Usually the asymptotic value of (9.8.01) is reached rather fast. From tht. ubtaii,,. i

expressions 'it is clear that for functions f(t) growing,with,unlirait d ini-s. {,I

t no faster than any finite power of t error of tue ufceiaant' as t-* o- appro;ach•to:,

z!ro. lif, for instance, f(t) = tn and t0  0, tbe, , = n2 (2n + i)/Koit. ]it

general, when variance o,2 is determined by formula. (9.8.,)), for large tinicm: ufi

observatfion of matrix



A-= [M- -+ U (1j1- U- (t)

and the expression for variance of error of measurement Is simplified,

Thus, for instance, if 1(t) is a polynomial of the n-th degree and t. = 0,
i.e., fi(t). = t 1 , calculating by the given formulas, we have

whore values of a for various n are given in Table 9.7.nJ

Table 9.7

a, 12 j192 II~ 4800 14700 370 880

As L -c0 error in the considered cases approaches zero. Therefore, ,,'ith a

quasi-regular law of change of 1(t) by the: optimum system of measu~rement of speeci

there is attained substantially higher accuracy of measurement than with a purely

random law of change of %(t), if only .ht hin'e of measurement can be suf'ficitently

large. Here, however, more strongly than loc purely random change of 1(t), error

is influenced by the equivalent intensity of noise S Error turns out to be

proportional to Y0' . In spite of this, for large times of measurement error ispnst f ia te f a esmall and the given method of measurement .an e:xceed all others in accuracy, includin.g

measurement of Doppler frequency shift. Thus, for instance, in the- case of change

of' distance aecor'ding to the law d(t) ut'1 (. -- random coefficient) for large

times of' observati on variance of measurement of speed, as the derivative of distance,

was just now found, and variance of' mea.surement of speed by Doppler frequency shift

is determined by formula (9.5.42), and, if' we consider that V(t) ntni, it is

eqiual to

2n-I
(goal# 9. )

The ratio of variances is

2
(" , n'(2n +I)K. o, I(2 {n--i)K(, ., •- (9. 6.64'

• and as t -:0 it approaches zero. in the last expressions K - the gain factor
v onr

1of a optimum discriminator for measurement of speed by Doppler frequency shift,

Kd '0.,.T- the gain factor of the optimum range discriminator. It should be ijoted

that such an effect occurs only with quasi -t'eiula' cnair 0, ol'a ..
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§ 9.9. Speed Meters Under the Action of Interferences

Speed meters, Just as other devices, in a radar, can experience not only

natural noises of the system, but also all the possible interferences which were

mentioned in Chapter I. In the presence of interferences accuracy of measurement

of speed decreases or even the process of measurement may be disturbed [70]. This V
is connected with different nonlinear phenomena in elements of the meter, in 4
particular with the phenomenon of breakoff of tracking in tracking speed meters

discussed above. Disruption of the process of measurement of speed may also take i

place in meters using differentiation of distance or angles. Only in these forms

of meters it occurs due to breakoff of tracking of range finders or goniometers.

Let us consider briefly questions of the influence of interferences on speed meters.

In most cases speed meters are coherent and use during processing of signala

narrow-band filters up to detection. Thus stands the matter with respect to Doppler

speed meters, since, as was shown above, for an incoherent pulse signal these meters

do not ensure the usually acceptable accuracy. Meters of speed as the derivative of

a coordinate also in many cases are based on coherent processing of the signal. In

connection with this circumstance many forms of stochastic interferences, having

: a spectrum width much larger than the passband of filters in the meter, are noriializ U

during passage through filters and their action turns out to be equivalent to the

action of Gaussian white noise. Here, the action of interference reduces to equi-

valent increase of the level of noises at the input of the radar receiver or tu

decrease of the signal-to-noise ratio. Therefore, in the case of action on speed

meters by such interferences we can use all the preceding results for accuracy of

measurement and for estimating failures of tracking speed meters. The only dif-

ference as compared to the preceding formulas is the fact that the signal-to-noice

ratio h should be replaced by quantity

/in u`2AI a(No+No) (- .N ,' (9 . fl

where h - signal-to-noise ratio in the presence of noise and intiýrfrexnc
n -

1N - spectral density of white noise, equivalent in its action to -titer.-
ference.

Further calculation of noisc immunity of speed int-.rs thus reduces to finding

quantity 14 , which was already done in Chapter VIl duringK ti.e analyLis of the

influence of interferences on coherent range finders. We shall •ive the basic

formula obtained there. For noise interference, according to (7.1i.3),

F -491-
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h PO,. G.~kII 2+. /.a9. (4. )9

whe re X - wave length;

P - power of the jamming transmitter;

Lfn - width of the spectrum of interfernee;

" -- antenna gain of the station of interferences;

G - gain of the receiving antenna of the radar in the direction to the
source of interference;

dn -- distance of the source of i.,terferences.

Magnitudes of lowering of the signal-to-noise ratio with noise interferences. al"

illustrated by graphs of Fig. 7.51.

During calcuiltion of noise immunity of radar it is necessary to determine the

critical strength of interference, and consequently also quantity h n = W

at which one or another undersirable change of properties of system sets in. In this

case such a change may be error of the speed meter reaching a certain assigned

impermissible magnitude or bresakoff of tracking, determined by one of the above-

indicated methods. Critical intensity of noise inte'ference.(P Gn1/6fn)1P

a [/cps] can be found from (9.9.2) if we consider that N0  P, /21,fC h and

according to the radar formula n Pu. pG'•IP

, "' (9,9.3)

wi erc, 0 - reflecting surface of tit,ect;

0 - antenna. gain of radar in the direction to the target;

P - mean pcw,-.;r of tne transmitter of the radar;

"distaine to the target.

Under the cundition of spatial coincicence of the source of .Jl.,;erferences

with the target and with the condition normally observed in cooi 1 fions of measure-

Sments in the presence of only natural noise h >> h it is easy to find thiat

Paox. =- I Pa.po--g( A. -A. 4ixhI,d2 
'(9.n9.4)

where h is found citnetr by formulas of §3 .5 ana1 9.8 for accuracy of' measur-ra:int

Cio soeed (if we assign permissible accuracy), or by formulas of § 9.6 if we apply

criteria connected with breakoff of tracking.

For illustration we give the following examplc.
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Let us assume that the radar is characterized by the following data: P ep.

100 w, G - 90"3, X 10 cm, Af- 30 cps and should work for a target where

i0 m2 at distance d, - 100 km. Let us assume that according to one of the

criteria there is obtained the critical value of the signal-to-interference ratio

h = i. Then from (9.9.4), (PrGnn/Afn)Rp = 2.37 w/Mc, i.e., for the given

sufficiently typical values of parameters it composes a fully attainable quantity

in contemporary conditions. If, however, we take G - 25.103 (increasing the diameter

of the antenna from 3 to 5 m), raise the power of the transmitter to Pnep - 1 kw, and

2
assume the presence of a target with a - 50 m , then (PiGnn/Afn)RP = 340 w/Mc,

i.e., composes a normally unattainable magnitude.

For pulse chaotic interference with the assumptions made in Paragraph 7.144.'

2N,. I+ 2 2 4)d
A ~ ~ w:nm~

where Pr - power in a pulse of the jamming transmitter;

'r - pulse duration of interferences;

v - average frequency of pulses of interference;

Afm ý -- effective width of spectrum of modulation of the signal; the remain'rig
designations are as before.

If we again assume spatial coincidence of the source of interference with the

target and fulfillment of inequality h >> hHp, the critical value of the magnLtudf

of intensity of interference [ 2w/MP] according to (9.9.3) and (9.9.5) is

defined as

h.u 4xiadlj/i + f ' (9.)

i.e., composes a magnitude Vn- + Af 2 2_ times larger than the critical intensity

of noise interference, which shows the lesser effectiveness of pulse chaotic inter-

ference in the conditions formulated above. If, for instance, duration of puises

of interference and of the signal coincide, then Afm Ben is a quantity of the rde r

of unity. When Afin r 1, for creation of the same effect as from noise •,ter-

ference it is necessary to have VT more power of pulse chaotic interference.

For passive interference, broad in band as compared to the signal, accoiding

to (7.1i.13)

S+ .L ("Am)
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where i - reflecting surface of target;p[
o - reflecting surface of interference in the resolution cavity of the radar;

Lý-st - difference of Doppler frequencies of signals reflected from the target
and interference;

f(mY- function describing the form of the spectrum of the signal reflectocl
from interference (f(O) = I); and it is assumed that there is select-cI
a sufficiently large frequency of repetition F,.

From (9.9.7) for h >> h HP we obtain

-(9.9.8)

from which it is easy to calculate the density of passive interference necessa,.ry

to "swamp" radar (to knock out the speed meter). It is clear that with great detunl.-

of Doppler frequencies of signals reflected from target and from interference

S f(.a << 1, noise immunity with respect to passive interference is high; in partic-

ULLIr, when h4 , I it turns out that (a u ) or- » o- If however A,, 0, f (Aw,) i

and for hi, we have relationship (a I )Xc. • , which signifies for attainable

densities of interferences absolutely unsatisfactory noise immunity.

Further conclusions, ensuing from lowering of the signal-to-interference ratio,

according to formulas (9.9.2), (9.9.5), and (9.9.7', do not differ at all from

those given in § 7.i4; therefore we will not repeat them here.

Intermittent active interferences act on coherent speed meters just as on

coherent range meters. In the presence at -rapid Xntermittent (as compared to inertia

or the speed meter) interferences and duoing apýlication of high-speed AGC systems

irintre.'ences act Just as 3ontinuous interferences of the same mean power.

>1ith a silow. AGC system we start to see nonlinear phenomena, which appear in

S vu.i:• ways" for different schemes of processing the signal and for their quantitative

Si •:,itimating require carrying out of co'rtesrorriing investigations of the, separate

!! 'urm of 'circuits.

Slowly intermittent interferences lead to parameters of the system or mcla?,3urement

Lf s-.ed intermittently changing in connection with the fact that there exist

i.:,,erval o!' time in "'hich the signal-to-noise ratio is equal to h, and intervals

in which this ratio is equal to h Besides the fact that in intervals of

action of interference there can occur the same phenomenon as during continuous

i•terference, there also occurs parametric influence, which may cause parametric

elxcitation of the tr-.cking system. These questions require further study; their

formulation does not differ at all from that given ii § 7.14.
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As we already noted during the analysis of frequency discriminators, there

exists a type of discriminator - with commutation switching of reference voltages-- '1

which is especially susceptible to the influence of intermittent interferences with

frequencies of switching close to the frequency of the reference voltage or to one

of the frequencies which is a multiple of it. As a result of appearing beats

between the reference voltage and interference there can appear low-frequency oscil- q

lations, passing to the output of the tracking system and leading to the appearance

of large errors or even to breakoff of tracking.

It is necessary to make several remarks about the influence on coherent speed

meters of return interference. This interference is applied mainly during pulse

radiation of the radar and, as was indicated in Chapter I, can be created both by

starting by pulses of the radar of a certain transmitter, and also by amplification

and reradiation of the radar pulses themselves. In the first case there appear

difficulties in ensuring coherence of return interference, but the incoherent pulse

interference for coherent radar is not ver-y effective. In the second case coherence

is ensured automatically. However, if there is absent some additional modulation

of the pulses of return interference, being radiated from the irradiated target,

It permitcs us more exactly than by the reflected signal to measure parameters or

motion of the target, in particular speed.

Such a phenomenon takes place due to the absence of fluctuations and to the.

great power of pulses of interference as compared to the reflected signal. There.fore,

for a system of measurement of speed by Doppler frequency return interference is

only effective with additional frequency modulation, where changes of frequency -,f

the interference should be so slow that they are tracked by the tracking system.

In this respect we have complete analogy with the influence of return interference

on range finders with this difference only, that variable delay of modulation,

necessary for misleading the range finder, is replaced by a variable carrier

frequency of pulses of incerference for misleading the speed meter. When thu

Jamming transmitter is not on the target, just as during breeding of pulses oif iLbU'-V-

ference, all remarks made when examining the influence of return interference Oh

cohercnt range finders remain valid.

Considering the influence of Interferences on meters of bp[t-d as the dc- .. V.

of a c\ordinate,.one should turn first of all to noise immunity of range finderu

and goniometers. Short duration failure of meters tracking cooralro.ites leads t,
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cessation of measurement of speed. In cases when there is no short duration failure

and increase of errors of measurement of coordinates is determined only by change

of signal-to-noise ratio (h n m /h - in coherent case and q n • /q -- in the in-

coherent case), increased error of measurement of speed also is determined by the

formulas obtaine•d above, if in them we replace h by h T t (or q by q n )

§ 9.10. Conclusion

Resuming the basic results of theoretical research of questions of measuremenlt

of speed in the given chapter we first of all should emphasize that the basic

method of measurement of the radial component of speed should be considered measure-

ment by Doppler frequency shift. This method for coherent radiation ensur'es in tht,

vast majority of cases greater accuracy than the other considered method, based on

differentiation of the distance to the target.

Being interested in the most wide-spread tracking Doppler sr-eed meters, we with

not very limiting assumptions found an optimum frequency discriminator and optimum

smoothing circuits of such meters. The optimum frequency discriminator cannot be

r•.lized -xactly; however two of the considered practically realizable schemes are:

a discriminator with a tuned circuit and phase shifter and a discriminator with two

mixers and differentiation, very close to the optimum discriminator in its pro-

perties. Here as the criterion of optimality we, as in preceding chapters used

accuracy of measurement.

When using a tracking meter for tracking, purely random components of change

of speed optimum smoothing circuits frequently are linear with constant parameters

and in a number of cases coincide in form with practically applied filters. In a case J
cti ed is aqoasi-regularprocess, optimum filters possess variable parameters

and frequently are characterized by gradual cutoff of the discriminator and by

accuracy of measurement unlimitedly increasing in time. It is necessary to note

that in practice speed will always have a certain purely random component. Therefore,

verry small errors are not obtained, even if we ignore instrument errors, disregard

of which is justified only with sufficiently large fluctuation and dynamic errors.

With intense noises and interferences tracking meters are subject to failure

(breakoff of tracking). The formulas obtained for quantitative estimate of this

S phenomenon can be, unfortunately, used only for rough estimation of the order 01,

S magnitudec, of intensities of noises and interferences at which f'ailure begins. Onc'.i

-should make such a conclusion, first, in connection with the fact that analysit; of ) I
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breakoff of tracking could. be conducted only for smoothing circuits of very simple

form and, secondly, the obtained results rather strongly differ for various criteria

of breakoff and for various methods of approximation of the discrimination character-

istic.

Investigation of potentialities of nontraciing Doppler speed meters leads to

the conclusion that in principle these meters can ensure the same
accuracy as tracking ones if we consider measurements with sufficiently fast signal

fluctuations.

During attempts to measure speed by Doppler frequency shift for an incoherent

pulse signal we usually obtain very low accuracy of measurement, due to which with

this form of radiation measurement of speed as the derivative of distance is pre -

ferable. The tangential component of speed can be measured as the derivative of all

angular coordinate.

Accuracies of measurement of speed as the derivative of a coordinate found ii,

a number of cases have acceptable magnitudes for accelerations whiclh are not too

high; with high accelerations accuracies of measurement of speed are low. This 'so.so

pertains to optimum meters in the case of purely random change of the coordinate:.

With quasi-regular change of it potential error of measurement of speed approacht-s

zero as t- co, for radial speed in certain cases even faster than error of measure-

ment by Doppler shift of the signal frequency. Consequently, in these cases

instrument error predominates.

Quantitative estimation of the influence of interferences on speed meters is

determined by the fact that these meters in most cases are coherent. Therefore, thE

influence of the most wide-spread interferences reduces simply to the influence of

equivalent noise and, consequently, to change of the signal-to-noise ratio.

Thus, we have conducted a rather detailed analysis of speed meters from posi-

tions of accuracy of measurement, including investigation of the question of

cessation of these measurements under the influence of intense noisus and irdt<r-

ferences. In order of formulating still unsolved problems, connected with 11-T. .t-

ment of speed, we should first of all pay attention to investigation of the -'sc ]u:i. j

capabitity of speed meters, including synthesis of meters optimum from this; poin~t

of view. Currently urgent. qwostions of rcsolution of targe•ts! stIll he- vr not Voa

sLffficiently complete theoretical solution and need ear(.ul u onsideration.

It is desirable, besides frequency, to investigatc hasc uiseriminatois, L A
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can be applied with success in Doppler speed meters, giving, possibl.y, no worse

results than frequency discriminators. The number of' analyzed types of frequency

discriminators also should be increased.

Very urgent, for meters of other parameters of motion of thie tar[gets, to., is

more detailed study of questions of breakoff of tracking. In particular, it should

be interesting to find solution of these questions with applicetion of smoothing

circuits of high order, Apparently, here we will not manage to obtain all nece-ssary

rleglarities. purely theoretically, and it is necessary to ut.l]ze appropua•Jtely e-mu -

latE.d experiment.

In these investigations we assumed Gaussianness both of' the reflected signal,

also the process of change of speed. Although this assumption corresponds to s

very large number of practical eases, it nonetheless is of interest to investigate

asccoray of speed meters with other assumptions. It would also be very interesting I
to conuuct a whole complex of investigations Ifor slow fluctuations of the signal,

the speed of which is commensurate with the speed of processes of set-up in the

systems. Tne questions found .I this chapter are only a very superficial reflection.

Questions of the influence on speed mete:rs of vario~is forms of interferences,

including synthesis of meters optimum ii, the presence of thse inter'ferences, need

more(- careful consideration.
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C H A P T E R X

MEASUREMENT OF ANGULAR DATA WITH A COHERENT SIGNAL

§ 10.1 Introductory Remarks

Measurement of' angular data is one of the most important functions executed b,,

radar sets of various assJ.gnme•nt. Continuously increasing requirements on a,-curac•v

of measurement of angles has led to a need for thorough theoretical research o•

possibilities of radar measurement of angrular data. Especially important is theý pinrt-

lem of' finding potential accuracy of goniometry in conditions of a fluctuating radar

si-nal received against a background of internal noises, and also the prublem o1

synthesis of' circuits of' optimum goniometers realizing this potential accuracy.

flowver, in contemporary radar literature there exists a comparatively small riumnb, i

of works on these problems.

The first works in which there are attempts at optimization of' radar goniom:t(,r.$:

are [10 and li]. In them there is considored the problem of optimum mnasurF'menI. -t'

antular data by a surveillance radar. Here there is introduced a series of vo-ýry

limiting assumptions. Circuits of goniometers are assumed assigned up to and in.:iu&J :,]

the amplitude detector, and only post-detector pro-essing is opLimized. The ti,.1.

],s assumed either nut fluctuating at all, 'or fluctuating ro that.s reflts :tin, s.,-

* l'z; does not change during the time of passage over the target of the dir:e ti.•-naI

,at1-;r e of' the antenna, but takes independent values in dif•orent periods L- a.i.

For solution of' problems of optimization in these works there is used the tIheery

statil,;lral maximum likelihood estimates.

We! note further the work [4.], in which, in point ol fact, the radio channel

of a traeking radar gonlumeter is optimized. We consider the method of" directio_,n

finding with a scanning directional pattern. The circuit of the radio chann(el ataln
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is assumed assigned up to and including the ampl tude detector. The signal Is

assumed to be fluctuating so that its amplitude is constant within the duraulon ec'

pulses, but is independent from pulse to pulse. For solution of problems U1 ontimiza-

tion there is used the method of inverse probability.

The very limiting initial assumptions used in [ii, ii, 45] lower the value of

the results obtained in them. However, already in these works there is shown the

connection between the considered problems and mathematical statistics, although its

powe.rful techniq-ues are evidently used insufficiently.

lRecently there appeared works [!2, 4o] where there is solved the problcm Xi

estiwating angular data on the basis of the observed realization of the si gnal ",.

d I'al Is assumed f'luctuating, but rigidly correlated during tie time 01' observ'. ",

Consideration was conducted, for example, for methods of instantaneous contpari 5cr, o!

sign•als, both in amplitude and phase. In [12, 46] they used estimates (A' maximum a

postwriori probability. The essential fact is that in these works with respect to

tile circuit ci' tie goniometer there were introduced no preliminary assumptLons, and

it was completely optimized.

The assumption o£ rigid ccrreiatdriccs of the signal for the time cf observation

In inese works is rather limiting. More common in pea: tic. is the case when the time

of correlation of' fluctuations of' the signal is comparable to or considerably less

tacan the time of observation.

in tee present and subsequent chapters we shall give a detailed and systematic

study of the. problem of radar measurem-nt of angular data relying on this last case.

The account will be conducted basically in the same plan as in all the preceding

* , Satrs: FVirst we synthesize and study optimum circuitfs; then we analy/ze circuits

,l.se to optimum. During the synthesis of optimum goniometers we will make no pre-

Sliminary assumptionis about the possible circuit of the goniometer. However, ,e sii•"'

assume assignee the method of direction v nLoing (i.e., the struelcure of ticŽ an :tIla ifi

..:.yst,.) and the methiod of coding angular data in the radar signal, d(etermined by this.

iere we shall systematically consider existing or possible methods of directi.on

I inoing.

Synthesis of' radar goniometers without assignment of the method of direction

finoing is a difficult problem which can be solved suffieiently accurately onl•y for

intennas of the phased arr'y type. This question is the subject uf § i0.13.

In the present clapter we shall study the problem of' radar measurement A'-

angular data with a coherent signal. The material here is divided into three t, aste A I
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groups of problems: goniometers with a tracking antenna, goniometers in which tracking

is carried out electronically (not by the antenna), and, finally, nontracking goniom-

cters (not containing a feedback circuit).

The main part of the chapter is devoted to goniometers with a tracking antenna,

since this class of goniometers is the broadest. First we synthesize the circuit. of

an optimum radio channel for these goniometers with very general assumptions about

the method of direction finding utilized. Then this circuit is specified for the

most important methods of direction finding utilized in practice: the method of

pattern scanning, the method of scann-ng with compensation, of instantaneous aoplitwte

comparison of signals, the method of phase c,ýnter scanning and of' instantaneous phase

comparison of signals. The most attention is paid to the question of the inliuoenc-

on accuracy of synthesized goniometer circuits of various deviations from iaealnm:s

in them, inevitable during practical realization of the circuits.

Then we study radar goniometers with antennas of phased array type. For the,-

goniometers together with the optimum radio channel we also synthesize the optimum

method of direction finding (optimum processing of the field in the aperture of th,-

antenna system).

Then we investigated total error of a closed-loop goniometer tracking system in

linear conditions (with small mistuning ) and touch briefly on question oLf nonlinear "

phenomena in tracking goniometers, occurring with high noise levels (breakoff uo'

tracking). Approximately in the same aspect we consider goniometers in which tea :ing

is carried out electronically. Here we study the so-called method of' two-dimensiesi Il
scanning of the directional pattern.

At the end of the chapter we study nontracking goniometers. Here basic attlzel I,•,

is paid to synthesis of the "estimator unit" (or "unit of primary processing"), e.ieP

issues the maximum likelihood estimate of an angular coordinate from the realia' i

of a signal of finite duration, within limits of' which the angular coordinate &.i th,

target does not change. We study methods of instantaneous amplitude and phas.. p.. -4

son of signals most frequently used in nontracking goniometers. I
The last section is devoted to study of the influence of certain Forms (' in'. r-

ferences on radar goniometers.

§ i0.2. Radar Methods of Direction Finding

In radar goniometers the measured parameters (angular coordinates of tih: Ia1'.' .) '4

are ceded in the received radar signal. On angular targ.:t cooed That.s (on cu.r.:nt
angular mismatches in goniometers with a tracking antenna) there may depend hot, 1 ht,
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amplitude and the phase of' the received signal. The form of this dependence is detor-

mined by the structure of the antenna system or, so to speak, the method of directiiun

finding applied in the goniometer. Obviously, the structure of optimum goniometor

systems will essentially depend on the method of direction finding; therefore, be'ore

solving tne problem of synthesis of optimum goniometers we shall give a description

of methods of direction finding. Our description will be rather short, inasmuch

as radar methods of direction finding are well-known.

At present there have been proposed a large number of methods of direction find-

ing, using different physical principles. The most well-known of the methods of

direction finding is the so-called method of scanning the directional pattern of

the receiving antenna t47]. Reception of the signal in this method is by an antenna

whose directional pattern scans with respect to the axis of scanning in an angular

sect.-or, narrow as compared to the width of the pattern. On the received signal here

th:re Is superimposed a signal, modulated in amplilude according to a law which

depends on the ati.gular uivergence of the target from the axis of scanning.

We shall find the farm of amplitude modula-

Axis of tho tion of the ,'._,,vod signal introduced by the
pater scanning pattern. HeoL and subsequi_-ntly we shall

Axis ,f 11limit ourselves to the case of measurement of oneý
e X angular coordinate of the target, considering

• - - "---- tracniming of the o,-ncr ,_oordinate exact. The

Targ.et grounds f(,r suci roinsLdcratiuon will be given in

ChapterXIl. devoted to multi-dimensional meters.
"Fig. i0.o. The method of

s:m arg ol the directional Consider Fig. 10.1, in which thaw is Aepict<C
patt,!vn of a receiving antenna, a section of a sphere, passed from an antenna

thirout.h a larget (with large distances to the target this section can be considered

two-dimensional). If we designate the measured angular divergence from the axis of

scanning by a, the angle bf.tween the axis of the directional pattern and the axis ul'

c;cOa:fl o / : , and tne polar coordinate of the current position of the axis ot' tnc

directional pattern by $(t), then, as it is easy to see from Fig. 10.1, the angl,:

between the direction to the target and the axis of the directional pattern will be

cýcqual tr,

opI Vi + a' + 2y'acos 8 (

Let us assume that the directional pattern (for voltage) has axisymmetri, )
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form Gg(@). In this case the received signal will be amplitude-modulated according

to the law

U0h1 ")= j'-T- 2aycos (a0.2.1)

Here we assume that target is irradiated by a certain nonscanning pattern. For

definitiveness we shall consider this assumption carried out if nothing further is

said. More complicated cases can e-'ily be considered if desired, and the difference

of them will be quite immaterial.

In expression (i0.2.i) function g(p) in a definite way is normalized. Its

normalization will be selected later. Coefficient G accounts for the gain of the

directional pattern.

For small a expression (10.2.1) can be rewritten in the following form:

Ua V, ) =g (1[) + Pa04 Cos# , (10. 2.2)

where

Pa -- t (y1 )I(y) (10. ; 2,3)

iu the gain factor of the directional pattern along the axis of scanning.

Obviously, when the target is located on the scan axis., amplitude modulation Ul'

the received signal disappears; therefore, the direction determined by the scan ax.is

is also frequently called the equisignal direction.

The law of change of angle $(t) may differ. When $(t) = noEt + 4. we obtain

2o-called conical scanning of the directional pattern (with angular frequency ýCY);

if 4(t) takes values $0, $0 + v/2, $0 + 7, 0 + 35r/2, etc., changing over intervals

of time T,,/ 4 , we obtain so-called quadrant scanning (with period TCH).

The next method of direction finding which we shall consider Is the method ol'

scanning with two directional patterns, often called the method of scanning with

compensation. (As we shall see later, this method provides compensation of the hoe>:

ilu! influence of fluctuations of the signal.) In the given method reception of I ,n

reflected signal is effected by two directional patterns scanning with respect to on.e

axis. Angles of inclination of axes of the patterns to the scan axis may b1.- diiI',r,.rIt,

In particular, one of the angles may be equalto 0, which corresponds to one 'I..1

pattern.

The mutual location of' the target arid the patterns in the mutnod or scannine

with compensation is depicted in Fig. 10.2, where by a we again designate angular

livergence of' the target from the scan axis; by -yi - the angle tr)twne.n the scan

j __ 
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I
axis and tLe axis of' the i-th.

. Axis oftthe first
dIr-Ctiona pattern pattern (i = 1, i); by 4i(t) - the

current value of' the polar coordinate

/ ( \ ~of the i-th pattern. From this

i i i':h;ure it is easy •,- see that the
Sc.an. I angle between the direction to the

S% .• gt I target and tne axis of the i-Lh.\-_2 /
1% (t).0 •pattern is equal to

) =V' + y2 + 2a-, cos•O,(
Axis Cf the scooondTfwnwdsiat
direotional pattern If we now designate by G (•)th

Sform of' thp,- i-th pattern (for.•

FL... iC.2. Metnod of scanning with compeor-
voltage), we find that the signal

received in this pattern will be amplitude-modulated according to thtie law

u, (, ,)= , 1/••+', + 2a,:Fs ,(j } o.•

From (i0.2.4) it is clear that if the target is located on the scan axis inodula-

* tien of signals received in both patterns disappers, 1.., the scan axis determines

ttie equisignal direction. We note also that if one of the directi-Aijal pauttcrns is

fixL•(i i.e., for it -'i = 0, the signal receivw.d in this pattern will havw aiwl;!.ud(-

Uai(t, a) = gi(a), depending on the angulo.r divergence of the target from thv- sc(a

axis, but not depending on time.

or small a, (iu .... 4) -aui be i'. i-d n 1. ne form

U*W(, Q)=91(YJ)[1 +P iCOS,Ycs,)]- 2•,. 1...,

Pat eg' (YA)g, (IT) (t;. .m)

.: thu gain factor of the directLonal pattern.

Muthods si' scanning of a directional pattern without compensation and with

compensation are usually used in -oniometers in which tracking Is carriedt out dlir H.tLy

by the antenna. In these goniometers the measured value of angular dlvertence of tl,.

target Prom the scan axis is used to control the antenna, which turns in such a

way that the scan axis passes through the target. Consequently, the angular positiorn

of' the scan axis, obvi, usly, is also the measu'ed valuE, of the angular coordinat ofi'

thu tara*'vt, and angular divergence of the target from the scan axis is the di l''ereric-!
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I

between the true value of the angular coordinate and i .s measured value.

Let us consider now the method of direction findiwi. called the method of instan-

taneous amplitude comparison of signals (IAC) [27, 48, 49]. In this method, as we

know, during measurement of angle a reception of the reflected signal is conducted

by two patterns, the intersection of which by the plane of angle a is depicted in

Directionto Fig. 10,3. If we designate by -i

the angle between the axis of the

i-th pattern (i = 1, 2) and the

equisignal direction; by a-

angula divergence of the target.

from the equisignal axis; and bj

Fig. 10.3. Method of instantaneous amplitude Ggi(T) - the form of the i-1.h
comparison of signals.

pattern in the considered planr

(voltage), then it is clear that amplitude of signal received by the Ist and 2nd

patterns will be equal, respectively, to,

U.,a . 4) =, (TI . ( .4.2.7)
Us-$ 0. 4) = ,(T; + 4).

When a 0, i.e., when the target is located on the equisignal direction, ainplJ-

tod.sof the received signals become identical, since g.(y1 ) = g 2 (y 2 ) (Fig. 10.7).

Let us note that from the formal point of view the IAC method can be considered

a particular case of the method of scanning with compensation, in which the directional

patterns are motionless and have coordinates $,(t) = 0 and $ 2 (t) = ir.

For small a expressions (102.7) can be rewritten in the form

V.AX, a)=g1 ('f,)(1 - Ua,(t, ')=g(,)(I +i•.,•), ( n. . .)

where gain factors ýta are determined analogously to (10.2.6).
i

The IAC method is used both in goniometers with a tracking antenna and iii tcrj-

tracking goniometers. In the last case the directional patterns arc seleet.-,d :2u11' I-

ciently wide so that the sector in which they intersect covers the sector (it

values of the angular coordinate of the target. Pere the patterns are mutiolli.;r,
L

and the angular coordinate of the target is measured by the difference of ampli tk(e!

of the received signals.

Next we consider the so-called muthod of linear or two-dJmensional scannriir ',

A In this method a rather narrow directional pattern" periodically passes over a cnil.ahi,
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angular sector, covering the sector ol

possible values of' the angular target

coordinate. If the angular target coordI--

i T~regst dli,•6etn nate in this sector is a (Vig. 1.,.4), tne

intersection of the pattern with the con-

sidered plane has with respect to pot-;or

the form Gg(y) (we assume that.irradiatian •

Figf. iU..4. Method of two-dimensional
scanning. o1 the 1a vg is .y Ihica t.rn, ii n' .J-

- disregard the propagation time of the

rad•ar signal to the target and back), and fl - angular velocity ol' motion of 1,u

directional pattern over the sector, then at tne input of the receiver there will

received a periodic sequence of signal packs (pulses), having form Gg(Qt) and delajvd

relative to the beginning of the period time Tr a/-/. In other words, the receiv, d

sigjail will be amplitude-modulated according to the law

U.(t 01)= to Y %- + nFU,)l

where T period of survey of the sector by thcr directional pattern.

lHere it is assumed for simplicity triat the patte!ii hac, no reverse mCvemient ov-,:

the sector. If, upon reaching the boundary of the sector the pattern i nstaltly jura}::

to Its beginning, obviously,

wlcerc •- angular dirmensJoi or 1.tie sector.

;oniomet-er' ,si'g tre metriod ot two-dimensional scanrning are usually l.rackitil-

ly,"., itoever, tr'ackirng here is ca).'j oct out by an eh:ctoron-io ci cIt, wn.icli

trac-s tA,,! signal pulses. Therefore, the method ol Awo-dimensrioial scanxilirg it c ! ;

(:,alod the methodl Co pulse tracking. This method we shall consicer subsequi. I..

iDir•¢tlor, to tie t&rgat aLet us now turn to c.tnc;ideratJo;iT

1. of' the so-callud me!.hfi' ci phase

v center scanning. Tn thli ,ldiol '(!-

ception of the reflected ,jigoal is by

an aritc 1iaa whoso phase cen-iter lIIt
[: •(scan:;) in the aperture plan(! ul1' th-ý

Fig, lo.;,. Methuo (r phase center scanning.

-nt, nna, Thieni the ieee /.d s I tnal

becomes plase-mnodu•at•ed accordlng to a law which depends on tlo' acceptance arw;jl: A,'

the re-."ar s1gial, i,c,, on the angular pusition of the target,
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Let us find the form of this modulation. We designate by a the angle between

the target direction and the normal to the aperture plane of the antenna (which

determines the equiphase direction), and by 5(t) - the coordinate of the projection

of the phase center on the considered plane (Fig. 10.5). Then, obviously, the phase
of th~e received signal is time-dependent and is equal to

V, a)1--P +) -=-i+ sin , (10.2.10)

where g0 - phase of the received signal when the target is on the equiphase direction;

X - wavelength of the radar signal.

For small a, sin a in (10.2.10) can be replaced by a. The method of phase

center scanning is usually used in goniometers with a tracking antenna. The angle a

here is the difference between the true and measured values of the angular target

coordinate.

A considerably more wide-spread method of direction finding is the method of

instantaneous phase comparison of signals (IPC) [27, 48, 49]. Here during measurement

of angle a reception of the re-
flected signal is by two antennas

SPhase center of whose phase centers lie in thu

plane of angle a and are separated

distance d, called the base of

Dioverse p•kass dirotJon isthe antenna system. By 0, we r:iall

understand the angle between the

ev target direction and the normal

to the plane in whi.h the phase
Ph~e cente r of

seoondknt•rn& centers lie (Fig. 10.6). It, is

Fig. 10.6. Method of instantaneous phase corn- easy to see that phases of gI1,.1

parison of signals. received by the Ist and 2nd

antennas are equal, respec.tiivelf,

to

e3, )=.- sin a; Its(t, To ~+ ~-Vsina. (10. 2.11)

where all designations are the same as in (10.2.10).

The IPC method is used both in gfinlometers with a tracking antenna, and also

with a nontracking antenna. In nontracking goniometers the antenna system is mc(,lt,1-

less, and its base d is not too great for angular sector jil < arcsin X/2d tin wiIch

phases cý,(t, a) and 42 (t, a) (10.2.11) unambiguously determine a]

-507-
i~i J............. ..............................



to CoVer the sector' of possible values of angular (oordinats of' the, t axU~- At, AnreiAa r

targe coordinate a is determnined in this case by the difference of phases o!i th,

received signals.

F Thus, we have characterized all. basic miethdAs, of dirct-ion fnngapplied at,

orcsont. in radar. We note the possibility of comrbined use of vaioo methu of,

direction f'inding.ý Generalizations in this direction are obviouct. F-or Insta@nce, -I1

is- possible to use a. method with simultaneous scanning of' the directional pat tot-il

arid phi'ase center s:canning.

. h rcie- inal in this case, becomes modulated in amplit tuoý- and , phas ,it

laws of modulation whichi oepond on the angular oo~sitlom of 1-ixe targ , i* ,V:1lI'):

as It were, m~ore infiormative, which should lead, ulu±1nauciy, to increasez of a(ccr'.:18..

oi' measurement or angular data. Also there can be used the method of' Instan' aneous

ampli~tude-phasýe co-mparison of signals, consisting of the reception Ai' the rt,!flee tf-d

.LlI¶ in t.wo -anteýnnas withý separated phaseý centers arid directional nal~tFr-ns onened

a cortain anrgle to -one another. The received signals in this method will uili'ier

bot~h in amplitudes and in phases, the difference of' whiich depends on thie aocr-jt~iiO-

ang~le of the radar signal. Continuing g~cneYrilli.zatlrn)ns in this direction we arriv'it

ol.i- radar methoci of direction finding whnich cons~iists c.,. xeorqý tiofl (,1' a. radar- sig'nal

it, ant- arbitrary number of antennas, directional patterns and phase cojntnrs of. Ml,": ~

1-nby certaii. laws. Any o±' the methods si irection tindinrT is a part) so-lar cast:

¼ cia gxent-i-ri 11 ed method.C and is oh' I n'--f on-n ar! .1$ i ti-v number 01of -A i

anreoSird lao-c; o I scanning_ t,1 Ltht;il ýý Itt
1 ,t 2-rio Saici p1120S 1 hE (

iSO(101:1,tife shall1 cor~isder, as; Car rio 110138 bl, goniomtOe to vi5i-lh fti ,.- ei:1

I :4~'A ~Ir-cctio(,n findiingý, oe yn, wiere( i1t is ra:C es sary, fiinal ral:

ln ---il -u_,,t!, ts. approach is, applic abl': to gon-_It I"s e I ~ aL t i~a, 1-i op11 ar I I-Ilria'j

n § lo.3. wpimu Rai for Gonlo::ters cas ft~ oim

In the following sutosw ilstudy tems motn.t-a, -f -dl oim

U':illc~l INSll a 15rac-king anteýnna. The p resenit t;( ccti onri ,, e vottd1 -o

I li~es is of an p -onr~adio ihantircl for sue -h gontiloneters.

As; wte alt-oeary srt! d, among go-niomeaters with a tracking, antenna. we, lrniliue gonium-

'-Lii Is ori we I i,:n 1i. ,Lg .,t 'tracking Io produced detybly the.anty.rion a cray.

oler c tli; 12 ifu ax-c very wJ.idely used, inasmuchi as they p ssabest the -:.w-

'clra te i 
t .~s(powse i- i always radiated In tedi rue tion 01' the. tar-get-).

I I liit 1'. c-¾; uO ;oniiiornterS wi. U a I;rae kinfg OTtr: h-ra t lie op jlfL riu adi o c hanni p
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can be synthesized for the generalized method of direction finding described in the

preceding paragraph, when reception of the reflected signal is conducted in any

number of antennas, directional patterns and phase centers of which scan

by arbitrary laws. Here we shall assume that there exists a single equisignal direc-

tion: if the target is located on this direction, the amplitude and phase modulations

of the received signals introduced during scanning of the directional patterns

and phase centers of the antennas disappear. This assumption is very significant

subsequently.

Most methods of direction finding applied in practice - scanning of the direc-

tional pattern without compensation and with compensation, IAC, phase center scanning,

IPC - are applicable to this case.

Thus, we assume that the goniometer has n antennas, and the received signal at

the output of the i-th antenna due to scanning of its directional pattern and priase

center is modulated in amplitude and phase by laws Uai(t, a) and <i(t, 0), dependinU

on the angular divergence a of the target from the equisignal axis. Obviously,

Uai(t, 0) = const and %l(t, 0) = const, since by condition coordinate a = s detrinjn* £

the equisignal axis. We assume that there is carried out normalization

U,1 (1, 0)1. (io...)

We introduce the designation

U1(. Y ) -- UY, a)e d,, d. (e1'.. .)

Quantity Ui(t, a) we shall call the complex directional pattern of the i-th anturinno.

of the goniometer.

The received signal at the output of' the i-th antenna can be recorded 1n h,l-

form

, (1) = VP-U, (1, a)MU. (f)(a (1) co f.t + 4.(1) +
+*d £U,')lI+ b(t)sin [,,/-+'I ()+4' ,,,(t, *)]}+-i

"+ y iR'n4 ()= r Re U- (1. ') E (-P)- e''+V -,a(. (:o.; ý..

Here ua(t) and 7P(t) are laws of amplitude and phase modulation of the o.uridjng

signal; function ua(t) is normalized

7, a)'dtl, (1,.3.4)

where Tr - the period of repetition of the sounding signal:

is (i) = ,(t) e'#
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a(t) and b(t) - independent stationary random processe~s with zer'o mean value and

with correlation function a(t)a(s) = bt7bTs= p(t - s), normalized so that

p (0) 1
E)-- ( )-ib (); (io.5 .)

n,(t) - white noise with unit spectral density; noises ni(t), i 1, 2, ... , n
are independent;

-N spectral density of noise added to the signal at the input ot' the i-th
antenina;

PC i - :ea r.: power of this signal.

We assume that the time position and carrier frequency of signal (10.,3.3) are

knownui exactly. This means that we know exactly thu delay of the received signal

(distance to the target) and Loppler shift of frequency of the reflected sigrial.

(speed of tnie target). Being interested exclusively in the problem of measurement o,;'

angular data, we can consider these assumptions realized. The influence of inacc(.Lrate

knowledge o1' the delay and frequency of' the received signal on measurement of anglt'

will be considered subsequently during 12.0e analysis of goniometer circuits.

The set of" signals (I)DI)will] i,ria an n-dimensional normal procýess, c:hall~c-

terized by a matrix of' correlation funct•ins R, ,., t2, a•) Ri(tt t2,

From (iO.3.3) we can easily find thidt

Rij (ii, 4s,a =-- KP j~) (1, -4) Re Vi (Y, 'A) U~ (,2 4) X
X U 1u(ij4)e* ~ Q--E VNN, aQ -4) (.5

where ý,C - Kronecker delta, ard by t tinere is ,usifla.ted the c(ompl.ex conjugate of z.

To finding the operation executed Ll,' the optimum radio channel we necd to knot

th.e .fl,, functional of the probability density of the set of' signal,5 (iu,.5.5). Such 'i

fUnCtion9.l Was alrcedy given in § (;.7. In this case it is equal to

y.%) J=-Kexp(--ISS (.)~iiyt)dI dl' IgI I

WI e r'e(0, T) - inter'val, observation of the procel;x

Y( .) -culu~mni-w.tor of' [digrals (10.3t. 5);

Y+(t) -- row vector of' tkhie• signals;

it+ II t~ (t t2)1 I -metr -W' sn-ralled in e re-cor-relation fun Aic -io s,

I I satlisfyin g equation

W (i,,1)R(,, to) R Y= Is,(, -- 1 ), (1 '..*.3.,)

(I- uni" matrix).
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In more expanded form matrix equation (10.3.9) can be written in the form of tht.

following system of integral equations:

Wo (t,. t.) RJA (4, to, f. t, = f0• (t;- i). (10.10)

Coefficient K in (10.3.8) is determined by the relationshipr r
as- 2 SSe • S,,sdtd,=_

r TT

2 SI *R#,,( I..) j (t,, t.) dd4.(

We introduce likelihood function L(a), which is simply the functional of the

distribution of probabilities, considered as a function of parameter a.

In Chapter VI it was shown that operatioon z(t) of an optimum radio channel of a

meter of angle a is determined by relationship

d In L (a
,-• (~c>. ,.. 12)

Here likelihood function L(a) is taken in interval (t, t-At), where At considerably

exceeds the time of correlation of fluctuations of the signal, but during At the

angular coordinate of the target a can be considered constant.

Substituting (10.3.8) in (10.3.12) and considering (10.3.11), we can obtain

MaL

jr- 2) W001" 2) 60+

+ ~~(ij,,) (d,)uY (4) tddt. .

Thus, to find the operation of an optimum radio channel we need to find value-

of functions Wij(ti, t2) and their derivatives with respect to a when a = 0.

We shall look for a solution of system of equations (10,3.9) in the forrt,

"wi t"1= P (-- , t,) Re Ui (tv, ,) U"j (to,, a) X
VO"' t ico --- #L0,

;.•i~cr'* 1'u ItiA• v(t 1 , t2) is slow in comparison with eiW0t. ,ubstituting oxpr,, a:/ i

(10.3,7) and (10.3.14) in equations (10.3.10) and replacing under the sig ir-
vals rapidly oscillating functions by their time-averaged vie obtain

-511-



for v(t:, t 2 ) the equation

Alo 1 (t,)j' hi Ui (t, d)1' P (1, -- 4,) V (t, ,)d, +

where M' - effective width of the spectrum of' signal !'Iuctuations
C

(1) dt.

h= PC V/I2NoiAf C -- ratio of mean signal power at the output of the 1-ta antenna

to the power of the corresponding noise in the band of signal fluctuations.

Equation (i0.3.15) must be solved during synthesis of' circuits of optimum .;onf':

* t •.'s. In the case of' goniometers with a tracking antenna it can be solved. As w,•

determined, we need to find only the values of function v(t., t and its .irst

derivatives with respect to a when a = 0. However, for goniometers with a trackiný7

antenna Ui(t, 0) 1 [by virtue of normalization of (10.3.1)]. Substituting a =

in (10.3.15) w, outaln

I

hi At ju (,)r' p (t,- i) (t,, ,)j.=0 dt, +
+ p(1, - .) + .V Yt, t,)l.- 0 =o , 0 ., : ."

whke re

,= h, + h,+.. + ,. (io.3 i6,)

We introlduce now the assumption of' smallness of the period of repetition of' the

n IJa as compared t the time of cc; --lation of1 its fluc-.ations, which was proven

and widely used in the preceding chapters. With this assumption function Iu(t 2)i
ii will be rapidly oscillating as compared to other functions under the sign of' the

integral in (10.,.16), and therefore it can be replaced there by its time-averaged

value, Using normalization (I0.3.4), instead of (i0-3.16) we obtain equation
I

coincldln, with equation (4.3.5) (with accuracy of a cocfficient). Solution of this

equation, as it was shown in Chapter IV, has the form

0 S,(.) eQr1,0,1dS,(
4,, 4,)l,. .N-- g,-5l--+ , i
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whe re

Se.(a)-4fo pc(t)e'"Mdt (10.5.19)
' (:,LO 3.19) l

is the spectrum of fluctuations of the signal, normalized in such a way that So(O) =

We determine now function v'(t 1 , t 2)t•0 . Differentiating equation (10.3.15)

with respect to a and considering a = 0, we obtain

tAt (tilt h,- 1U (x , -(4) X Q I
X ( ,,)jl. dl, +--' (41, t)1.0 +

+ hzAfqSIU (lp (t4 - t.) cf(,, t,)l.=0 df,= 0.

g Not stopping to discuss methods of solution of this equation, WE, immediately,
give the final result I

V, (it, ,,j. =At.,_ lU(41 I',j-, lUj(t., )1' X 4.'

X(t Jv(i ,t)dt, Qo (i-x is)

It is easy by simple substitution of' this expression in (10.3.20) to prove that .,

this really is its solution.

We introduce subsequently the assumption that Tr << T (T - period ol srannint•

of directional patterns and phase centers), which practically always is reali;zed.

Here lu(t2) 2 under the integral in (10.3.21) changes considerably more rapidly 1.1,i'

the remaining functions, and can be replaced by its time-averaged value, equal t i.

The expression for v'(ti, t then takes the simple formi

)<v~~~~~~I ((to 4,4 l (' 4".~~ ~~~~~~ Xu (i,, Q t,),l, €,dt,.o _.,.,,1)

Thus, we have found all the basic characteristics necessary for construuti(i )I

the operation of an optimum radio channel.

Using (10.3.21'), (10.3.8) and (10.3.11), it is possible to expand Cxpr.i.Et,



(10,3.12) in thu lollowing way:

tt t

X o' ( ,) ev y ' Wt Re, U (i.) ())<

i ~(io. 3. •)

if, as this is done in Chapter IV, we introduce function h1 o0 1 jt), related t,.

," v(t 1 , t 2 ) by equation

SI h1o.. (1, - I,) h~ou. (4, -- t) dl, = -- /3 Afov(t,, t,(o.3.23

and. de-•ignate

*hao,()= 0iefcV •fo. ', + )I..0 (10.3.23,)

[as can be sean from (10.3.18) v(ti, t1 + t)Ic•(., depends only on t], then from i

(10.3.22) we can obtain an explicit expression for operation of an optimum radio

channel: I
z (i) = • .f h~. ( s)j 7  o0, IhU,(s,4) X

I-At 1I:Al

X 
Xi

x 0 h,0 1, is) ("1) yk-• ,, (st,, ( ) t'd

t-h 1= (io.3?. h)

; , Expression (i0.3.2~4) shows what operations the optimum radio channel of a radar

S gonometer should produce on the received signals. The most essential here are opera-

! tions of optimum linear filtration. Pulse responses of the obtained optimum filters

S in a definite way are matched with the spectrum of signal fluctuations. The filter]

with pulse response hi(t), determined by relationship (10.3.23), already has been

repeateolty encountered in preoeding ohapter's. The square of its gain-frequency ,

response has the form

24

h~u 1 I2 h~o,, (ýs t) dis hz•'vt, (t

r , -- + t~s t a,) b (10. 3.231) . -4J2
(a-a.esenfo51031)vt. j+t1M_-( deed nyo ] hnfo

(10.3.22)~~~~~ wecnotiInepii xrsin o prto fa piu ai



Phase-frequency response of this filter is arbitrary. If we approximate SO(w) by i

function (

then for IHionT(i()1 2 we obtain

I) !f (10.3.27)

i.e., the form of the square of the gain-frequency response of this filter coincides

with the form of the spectrum of signal fluctuations, and the width of its trans- 1

mission band is larger than the width of the spectrum of fluctuations by a factor of'

1 4- h.. The physical meaning of this fact was discussed in Chapters IV and VII.

The second filter contained in (I0.3.24) has pulse response h 2 0 n.:(t) (I0.3.2fl),

i.e., frequency response
H~~o. U -)h= Vso (,A)

h:S, (w) ÷ I"(10.3.28) :h .... I
This filter, obviously, is not realizable physically. The question of construe-

tion of a physically realizable equivalent of this filter will be considered belo;:

in § 10.5.

For construction of a block diagram realizing operation (10.3.24) it is usefuJ.

to rewrite the latter in real form. For this we introduce intermediate frequency

•o considerably exceeding the width of the frequency spectrum of signals yi(t)

(10.3.3). Then operation (i0.3.24) can be reduced to form

X [hU'.i (s, O) y, (s) u. (s) cos ljWs + ' (S)I +

S(s, 0) M, (S) MA (S) Sin [Ms~. + '?(sA] ds{ hi05? ('-s ) X
S.

cs h'.• ( s, ' -- OO (S-) COS(9111 )-X u , hP" (s) ya (s)(cos [ots + ,(s)lds-

10. 3 1

where w = CU0 - mp heterodyne frequency.
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The block diagram of the unit realizing operation (10.3.29) (with an accur,'2,;

of immaterial coefficient 8Af 0 /PC i)' is shown in Fig. 10.7. First, in the circuit

there occurs normalization of the re-

ceived signals in order to eliminate-

effects related to nonidentical gain of 0

directional patterns and unequalness of.o

noises acting in each channel (if this

takes place). If the gain of the pa.-

terns and noises are identical, the

shown normalization is absent.

After normalization, the signal

R •from the output of each antenna is sepa-

. rated into two channels, conditionally

* called subsequently the first and second,

and in each channel it is heterodyned.

Here signals of the heterodyne, directed

£ I towards the second channels (see Fig.
! i0.7), are sthifted w-ith I espect to

Fig. 10.7. Optimum circuit of the radio

channel of a radar gcniometer with a gen- signals directed towards the first.
eralized method of direction finding: 1)
adder; 2) optimum filters with frequency channels, by 7r/2. Heterodyne signals
response 1iI 0nT(iw); 3) optimum filter
S wil~h frequency response H0 ,T (iw•)] 4) slould coincide in form with the emitted

square-law detector, radar sigt:nal.

After heterodynling, the signals in the first channels are multiplied by deriva-

tives wltn respect co th-e measured angle in the equisignal direction of moduli of

complex gains of corresponding directional patterns, and signals in the second

channels are multiplied by the derivatives of the arguments of complex gains Uf" thee,

patterns. After that all signals are added, filtered by an optimum filter with

characteristic (10.3.25) and are fed to one input of the multiplier (phase detector).

* As a reference signal for this phase detector there is used the sum of signals of the

first channels (see Fig. 10.7), pa sed through precisely the same optimum filter.

This same sum, furthermore, proceeds to an optimum filter with characteristic

(10-3.27), is detected by a square-law detectorand is multiplied by thc sum of

derivatives in the equisignal direction of moduli of complex gains of all directional

patterns, (taken with weights equal to the signal-to-noise ratio in the corresponding

charnel,.). The obtained signal is subtracted from the output signal of the phase
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detector.

Thus, all operations produced by the optimum circuit are sufficiently simple

and are encountered in one form or another in radar goniometer technology. However,

the sequence of operations and responses of the filters are new.

The physical meaning of transformations of the signal in the optimum circuit J
we shall discuss later, in examining concrete methods of direction finding.

Let us turn to the question of potential accuracy of measurement of angles in

goniometers of the considered type. As it was shown in Chapter VI, the equivalent

spectral density of the optimum radio channel is equal to

[OIn L(a)11=

where likelihood function L(a) is constructed as before in an interval of auration

At, small as compared to the time of correlation of angular shifts, but sufficiently

great as compared to the time of correlation of fluctuations of the reflected signal

[in this case expression (10.3.30), as it is possible to show, does not depend on

At].

Calculation by the formula (10.3.30) using expressions (iO.5.8) and (0.3.ii).

gives

I-AU Z,1 1 Q1 1i.|

This formula is very important subsequently.

Using expressions (10.3.7), (10.3.8) and (10.3.14), it is possible to reduce !.•

0.3.31) to the following form:

Son-? -At1, ) di X

-- A tiiY

) (4 Q (1.0 Re) ju=l 01 0 hiU'Wt 0oildt
Ati

I-At I-At

Xl /A, Uj (t, O)j' V l Us (t °0) •tt - (1'. 5.
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Expression 'iO.¾.32) is very cumbersome, since it contains uncalculable ijte-

grils. Calcula' integrals in this formula in such a general form, wI..ICIU"

specifying func. w.t, J ), i.e., the method of ifirection finding, is difficult.

These calculations, and also investigation of potential ,accuracy we shall postpone

until our consideration of' concrete methods, of direction finding. Formuj.. (iO.3.5c?

will be the starting point for these considerations.

Thus, we succeeded in a very general form in synthesizing the circuit of an

optimum radio channel of a radar goniometer with a tracking antenna. 'hi. results

obtained here are basis for a systematic study of this class of gotniometers fre: ti.

point of view of their potential and real properties, which will be conducted JnS

subsequent paragraphs.

§ 10.4. Method or Scanning of the Directional
Pattern (Optimum Circuits)

The method of scanning of the directiornal pattern has been used in radar for a

long time. Experience itn the use of thJ.s method testifies to its low rnoise inmunity

to active interferences which are modulated by irequencies close to frequencies of

scanning, and to decrease of accuracy )i' :ueasorerint of angles by tnits3 methou in ti.,;

presence of amplitude fluctuations of the rsflec si.nal, the spec t,rurn of' whichI

contain as components the frequencies of scanning. In particular, i.n the f ',c rIL:

of' ;u(:er fluctuations f' the signal in cir" .its i,'' the method of sc:anning, the p'nttttn

ut.lixca in pramctic e even with complet,. )-, ,Penc' ef noise.: there exists a fin-ul

l'lu(.tatu-A.lng error, of tariget t cac}ing. ,he I,: 0':, have a. simple piy:'iel expla:.a-

* Lion: when using the method of' pattern scanning the. useful inf'oriz-tion about thr!

anla~r ce..nuti;aL•: of the targetu is; included in the: amplitude, of tle recrAved

s gi~,l., and any distortion of' th(-eir amplitude leads directly to distortion of the

* ,,cu o nILinurmation and, ultimately, to error or measurement. In this conlllecti,..

:tu.y (A' 1' optimum circuits, el' o he method of pattern scannJ.ng which have, obvio,us;.ly,

* means of o ptImum suppression of the harmful influence of amplitude 1' tuations of

rel lucuted signal is of Great theoretical an(t practical Interest.

loIf.1. Syntitesls 1of Optilrii Circuits lor the Method of Scannrin!
the birectional Pattern

S._tl.muT. c-Arcuit for thc mcthod of pattern zcanning1 is eqsily ,',1l.alneud from

Iseire: 0 cral circe:It of 1ig. 1).7 *i.,r th:L',t meth(o, obviously, 11 = I (,,n, antenna),

S V.(t, u) 0 (the phase center of tiic antenna is mtiornl,'sso), and U (i, a) i; expresed

by o',ur':2.a. (Wo.2";2). Using (1).3.-O), we o.,btain the optimum circuit. 'ui' me',unusUPretifn1. )
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of angle a in the form depicted in Fig. 10.8.

The circuit of Fig. 10.8 contains three channels to which the signal proceeds

after heterodyning. In the first channel there first is produced multiplication of

the signal by a function varying

according to the law of its amplitude

modulation, introduced by the scan-

ning pattern, and then optimum filtra-

tion (10.3.25). The output signal of
A

this channel enters the phase detector.

Useful information about angular cu-

ordinates of the target is containý;d
Fig. 10.8. Optimum circuit of the radio
channel of a goniometer with a scanning in the side spectral components or the
pattern: i--optimum filters with frequency
response IIH 1 T (icz); 2- optimum filter received signal, and in the absentee of

with frequency response 12 cnT (iw) 3 - the shown multiplication we would e

square-law detector, forced to further insert a sufficiently

broad-banded filter, which would not cut off the side spectral components oI' the

signal. This would lead to unnecessary increase of noises at the filter output. The

operation applied in the optimum circuit produces transfer of the side spectral,

components of the signal to the center frequency, after which there can be carri•d

out filtration of the signal by a sufficiently narrow-band filter, passing the

signal and noise in the optimum relationship.

As the reference signal to the phase detector there proceed center spectral

components of the received signal, separated by an optimum filter in the second

chaanel. The filter here io the same as in the first channel.

At the output of the phase detector there will be formed, ohvioucily, the bacic

component of the signal of error. The third channel, as it is easy to see, is

intended exactly for compensation of the harmful influence of amplitude flutuati .

of' the reflected signal. At first the signal in this channel is filtered by •.r'

optimum filter with response (10.3.28 ), and then it is detected by a squart-:e-Law

detector, at the output of which there are obtained in pure form amplitude I.i'.j,:u,

tions of the signal. Multiplying them by a function which varies accurdirw to t1,,

law ul patternr ucanning, we separate the informatiun m1,out angular cordinate., ci,-

tained in the amplitude wnich is false. The false information is then extr)ctlud

from the total information separated by the first twr, channils. Thu;. there J':eu':;

optimum compensation of the harmful influence of amplitude fluctuation,; ,i' th,: W;j.I.
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Having considered in general form the work of the optimum circuit, let us turn

to investigation of certain limiting cases of practical interest. The first of ttuese

cases is the case of a high frequency of scanning, considerably exceeding the width ,

of the spectrum of signal fluctuations.

Here, as it is easy to see, the third chan-

nel in the circuit of Fig. i0.8 disappears.

The circuit of the optimum radio channel

Stakes the form depictea in Fig. 10 , i, ]
"i;.. 10.9. Optimum circuit of the radio physically obtained simplification is

channel of' a goniometer with a scanning understandable, since withundestadabe, sncewit highL J're qtanc ic,
pattern with high frequencies of scan-hhI - optimum filters with frequency

.1-optimu filts wof scanning amplitude fluctuations of tir!re-sponse

signal which are low-frequency cease to

affect accuracy of' direction finding. The circuit of Fig. 10.9 is rather simple and

is vwery attractive, but in the practice of radar goniometry it has not been encoun-

tered. More detailed study of this circuit is of interest and will be made in the

following section.

Let us turn now to another extreme ri.se, when the frequency of soanning is con-

siderably smaller than the transmission band of th, fl.ter (10.3,25)-

T i multiplication by cos $(t) in the first channel. can be transfe'rre. to the

-;tut. of the filter. The circuit of the optimum radio channel takes the form

denicted in Fig. 1.0.10, where the filter nas the squar,- of the gain-frequency response

4hS (,,s)"( )
HSOU,(19.24 .)

W,! a Ttf(:a.lyn a filter of such furm ii Cihapteu' VII. As was shown ther.

(iW)1 is , double.-humped curve with maxima at frequencies CO and o)2, for

_ li, cii , () 0=1, and a dip to l4h/(1 + I)) at zerJo frequency. Thanks t., this t':.rrn,

t'tg,. fin-fr(rquency response of' the filter, we in the very best mnanner suppress cyt,:i

'(.•,jl•,Cnt.f a' the• signal, emphasizing to the greatest degree its d;d components,

I11 a, the useful4] information. Here we achieve the maximum possibl(. dcrease of the

Sharmful Influence of amplitude fluctuations (A the signal on accuracy of direction

finding. When I < i the response of' thiu filter becomes single-humpenr. Physically

t lh; is explainei by the fact that for high noise levels it becomes more profitable

to cut off natural noises more strongly than to worry abouIt decrease of the influenc•

of signal fluctuations.

Wo note that the circuit uf the method of' pattern scanning usually applied in
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practice coincides in structure with the circuit of Fig. 10.10. The results above

show in what cases this circuit turns out to be optimum, i.e., realizes the poten-

tialities of the method of pattern scan-

Sning. More detailed study of this cir-

cuit and comparison of it with the circuit

of Fig. 10.9 will be given in the next

Fig. 10.10. Optimum circuit of the radio section.
channel of a goniometer with a scanning -•

pattern with low frequencies of scanning: In conclusion let us note that
I - optimum filter with frequency response
H3 0RT (io); 2 - square-law detector, optimum circuits for measurement of the:

angle in another plane will be precisely the same, only everywhere multiplication by

cos 4(t) will be replaced by multiplication by sin 1(t).

1U.4.2. Equivalent Spectral Density of the Optimum Circuit -I
of the Method of Scanning the Directional Pattern

Let us turn to the question of the potential accuracy of the method of pattern

scanning.

Considering n I in (i0.n.i), substituting there expression (10.2.2) ind pro-

ducing calculation of integrals, we obtain

J SO,(+ dou+

+ -cI~tA.S) S(a) S*r±Mk) dcal
!-,+ASO(*) I + hS4+.k.,s (,U.+ I.-)

whe re

[c1 (Cos# (fl)'dt. A. --- I coe(I)e•fd; (Co- (t )
T

T -- period of scanning;
CH

S= 2•r/Tc - angular frequency of scanning.

Let us note now that SOI1T for measurermjnt of the angle in th•, other pltr,-: w•.'11

have the same form as ( 10.4.2), only coefzl'cients c2 and c, zhoul, b ropaafc by

s2 and sk, respectively:

TI. I~

*T.. .;

The complicated form of formula (io.4.2,) oes not permit u= to see directly

from it the law governing change of S r depending upon h and otiher quantities.

Therefore we will consider the most interesting limiting cases, as we. dil in ';x&r:ir i,

the optimum circuit.

-52.-.



In the case of a rather high frequency of scanning, whun SO(oŽ + 0) 01, the -1
second component in parentheses in (10.4.2) vanishes arid we obtain

Son, e 0 + ,hS , ( 6 10 -d ol - (1o.4.5)

In the usually occurring range of variation of h the second integral in (10.4.5)

is negative [in approximation (10.3.26) this occurs when h > 1]. Then S will be

the smallest if Tom
cos (t) di -O,

and Socr is equal to a

Accuracy in this case, obviously, does not depend on the form of the law of

scanning and is determined only by c'. If it was problem of measurement of only one

angular coordinate, then the best scanning would be jumps of the directional pattern

to two extreme p:.It1ons in the plane of this angle. here cos $(t) = ±1, and e2 - 1.

However, such scanning is unsuitable if it is necessary to measure angular coordinates I
of a target in two planes. Roughly speaKing o' dct!rmines that part of the total

received power which goes to measurement of the angle :n - n,* plane. Co')effJicient s' I
(IGu.4.4) has analogous meaning (obviously, + c =" In this connection the

relatl nship of c' and s- should be sel1Pf''- based on tuv r-oquired relationship of

a(curai--es of measurement of angles in Dh; two plane,.,I" particular, if these

aoccuracies must be .1 dentcaýl, vhich norme ].Ly is the -i.ie thern w--! naturally consider

C 2 Tht,- we shall assume subs4equently.

Lot us now turn to the limiting! ca.3e of' ]ow frcqý,encles of sranning. If' the
frequencies of scanning are so low that for those values of k for which ck w ,w'

.till have S0(w + ka2) S((), then instead of (10.4.2) we obtain (considering, a,;

agreed, c2 = 1/2)

• $°•--•A' •" oS(a) do 1048

SFor comparison of accuracies at high and low frequencies of scanning let us note

that during transition from low frequencies of scanning to high quantity ..l/•lýiL 1O

changes by
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This integral coincides with the second integral in (i0.11.5). As we already 1
established, for sufficiently large values of h (in approximation (10.3.26), when

h > i] this integral is positive, i.e., accuracy of high-frequency scanning is higher

than accuracy of low-frequency scanning. For small h everytning will be the opposite.

This fact is curious. It is explained by the fact that for small h the basic influ-

ence on accuracy of direction finding is rendered by natural noises. At low fre-

quencies of scanning the total transmission band of the filters must be smaller,

UI• which leads to decrease of natural noires.

Let us nov. perfcrm calculation by

N - _ -formula (1O.11.2) with approximation of the

spectrum (10.3.26). For simplicity wvt ýýiiall

consider the case of conical scanning ':1i

the directional pattern, i.e., ci /

-and at i/± i, c 0. Performing the

¶ necessary calculations, we obtain

SSo, -,- . x

.1I. + (h +4)' + 2 (3h + 4) 4
X ++5 + 10 + 2

+ (3h+"4)1 .4h' (h+)

where 0 1/2Mf0 .

IL The graph of thp dependence of S__ on

Sh, calculated by formula (10.4.10), is

Fig. 10.11. Dependence of SoMT on h for shown in Fig. 10.11. All laws governinil
the method with a scanning pattern for change of S are eacily perceived froi.
different frequencies of scanning. oqre

this graph: with growth of h, S,<. ratLur

sharply drops; for values of h normal in measuring systems (when h > i) wjlY •crua:;

of' the scan frequency SonT increases.

We note the very simple formulas for 3 ensuing from (i0.4.1.i) for largc aU

small values of the signal-to-noise ratio for high and low frequencies of st-anning:

S 2 h. 1, CI. ;

* ~~O!IT 2& rh ~ >, Ic l'S OnT K2fh; 1 _i V..

OrIT AthA
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The simplic ity of these formuflas permidos us to ro--cOnumfixt2 themi as basic dlurln r

apprai~sals, of' pu)tential accuracy of' the method of patr carnm Frruii themi Vt

is c-lear that with lO,:w frequencies of' scanning, thu equtvalenit spectral denisity with

* glruwth of' the signal-to-noise ratio, increases c)nsideŽ'ably sl1ower than with highI
frequenc-ies of'scanrning. lloaiever, evenl wi-l.l'w*'ruecs of, chunn (i -W

quantity 3 0. This contradicts the established opinion that with low -frurjuenceies

of' scanning even without noises accuracy will be limrited thanks to the influence of'4

* amrplitude fluctuations of the signal. Such an op.1inlon develo-ed onliy a;; a resiil I
ci' operations Of 1i-r1)tonotimal cir~cuits. WAIth optimum9 prc:sn itsinals3, as carn

be seýen from what has been said, we succeed i11 sufficien~jtlyý -'liip3UtCjjy cmcict~

tliý lharmnful influence- of amplitudea fluctualtion:; of thie signfAl. t.,(t Us molt thel

formu~las (.1.),although calculated for a rLah':x' particular Apps'oxivrmtiuon uf thr,

spilrumoI' s;ignal fluctuation;;, give a sofficicontly g~ood niprorximation for' S 1  in

mc no eneral caseýs.

'1 §0.: luvee :1 ation of S' nithesizted Circuits for the viethjod

a1 S-c~arnln g af Directiontal Patterns -I

Lxx1 the pros exilt section wf{; shall Purx's cc o s .y i :grý)lj: fci' rqucotions on':te

with practical realization of' circuiLts, close, to optimum. Asc a Jr~It . lviw's' A1

is'vcctigatI ens we: criould find how well it cposs-ible to realize too ictentiAEl

'(.)I' ic ISi:0tdc Pattern s'Caloinit2 'rleiu. ,it is re'cu-sax'y to ot.ain

fruln~ L ':t. If-".it ()ry-i LT-.LYl~(,i7sci zoulx the1 prT-CeCd eg, seectionri ll the formI illwii yul

ccdepice WI :n Fis ~ L 0*9and 10 * JI' are, o~ cl, eysiml"Ifie1d,

'teyi't'r~ tonly the basic:, fundamental operations produced on the iga.In

pr'':tcalrealismti'ars these circuits will require additional technical ccnp'n~cn' 1,c.

'thetst ones Of I,] less; components, of course, should hIc),-- 'urdr'' g0015I

ui' U-! real accuracy of' the considered circuits. In itself' appraiririji. ci' thel comnplex-

Ity ol' ehia --j':entruction of differeýnt circuits is also onr 'ii' triefi rrportant

charicsteis tics of reial c.ircuits.

In 1l114. 10 * i( as an example there is, de-picted ai circ!uit of' thin typ:of ci' Pi.

le. 1o 1.'t'..Lx1r. 1ti m con basic- tech sital c:omip oteri ½, izx!!vitlablF. -turllf I ig oliStrue'lionl

:1' 11.1 i ciicut * li': inal in1 tllis c.irc,,uitl 1'ii'.; ,-i t" 1,':': 1 ol '', (n'' bg r:

iclt i ca trnse ci signal to the into imudlt InLi Ii'qut!nuly. '11i.. mrixer I t,).( F F ),.
j -524-



source of natural noises added to the signal. Then there follows an UPCh [i-f ampli-

fier] whose passband is usually vry great (considerably exceed the width of the

spectrum of signal fluctuations). 4.

After the UPCh the signal enters a

1 g 4 mixer with phase modulation. Here

the signal is transferred to the

___ ___ _finder second intermediate frequency with

inversion of phase modulation. Then

__. there is an amplitude modulator,

Fig. 10.12. Practical circuit of the radio
channel of a goniometer with a scanning
pattern: i - mixer of r-f amplifier; 2 -

heterodyne oscillator; 3 - UPCh; 4 - mixer
with phase modulation; 5 - controlled hetero-
dyne with phase modulation; 6 - amplitude ing to the lax'; of amplitude module-
modulator; 7 - controlled generator of ampli- toh n
rude modulation; B - narrow-band filter; 9 -
s~yctem of automatic gain control; 10 - ampli- ;
tude detector; ii - phase detector; 12 - GON frequency of the signal of th.
[r(:ference voltage gcnerator]. erodyne with phase modulation i:

continuously tuned by the system of speed measurement, and its phase modulai;i•-1n, a,

well, as the modulating signal from the amplitude modulator, is tuned by the sy;ttr:

of range measurement, tne

After these operations the signal. enters a narrow-band filter whose fr•;qucnIy

response is matched as far as possible with the spectrum of fluctuations of thl

signal (usually, of course, matching concerns only the transm.ission bandwidtjh of '-r

filter). In view of the limitedness of the range of linearity of amplifiers• in !A

practical circuits there always are used AGC systems, maintaining the necessary

signal level in the circuit. From the output of the narrow-band filter the silgnal

enters an amplitude detector and then a phase detector. Reference voltage prce-,.

to the phase detector from a generator of reference voltages (GON); the sarýe vultý'

controls scanning of the directional pattern.

Analogous variants of circuits of Figs. i0.8 and 10.9 complicated by ;

technical components we shall not give, since they are very similar to th- "1

con•sidered Just Thow, from the example of which w( clearly ;ee thu 1.a:;.i. . ...

such complication.

Thus, practical circuits rather greatly dilfer rrom th•eir tiieuxetis. . .

Now it is easy to establish in what componento of pra-tical ci r,:uVts dit'fi'crý,,,: f

the operations produced on signals from idealized optimum operations is pol.ibl,.

First of all, due to the limited accuracy of measurement of speed there will be-
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produced Insufficiently exact tuning of the frequency of the heterodyne with phasu-

modulation, and after transformation the signal will have a frequency diff'ering

somewhat from that to which the narrow-band filter is tuned. Due to the limited

accuracy of measurement of range the phase modulation of the heterodyne signal will

lag somewhat relative to the phase modulation of the received signal (or outstrip

it). The same pertains to the signal of the amplitude modulator.

In the case of pulse radiation to avoid losses of the useful signal pulses of

the amplitude modulator (strobes) are made, as a rule, even seceral, times longer

than pulses of the received signal. Finally, the formn of the spcctrum o0' fluctuati.n,.

of the reflected signal, and also the signal.-to-noise ratio in the circuit, necessaen

for calculation of the frequency response of' the narrow-band filter, are known by

S uu very approximately. This will lead to uncontrollable divergence of the frequencyj

respunse of the narrow-band filter from the calculated, which may be considerable.

Thus, to exactly realize an optimum *irnuit in prac-tice is imp(ossible. It is

pussible to exactly maintain the structture of the circuit, i.e., the sequence of

basic operations produced on the received signal; however parameters of the circuit

* will differ to greater or lesser extent f ror their optimum values.

Wc shall make several remarks about conparativ" aporals-1l of circuits of Figs.

"2. 1, l).) and 10.10 from the point of view of complexity of their teclhnical uonltrluc-

tioi. It is clear that the circuit of Fig. Io.8 is the most complicated of them,

and we shall subsequently allot to it thie i6nifnuimYum attention.

Circuits of Figs. 1.0.9 and 101.. cat b: won.Aidered identical in complexity;

in any case, the wifference between them is insignificant. The fact is that the most

* -complicated compoinents of these circuits (tiP,'hs, mixero with inversion of phase

r:,ilaltlon, amplitude modulators, phase detectors) are contained in both circuits

iri icontical number.
:lubsoquAently trio circuit of Fig. i.h (but with parameters, possibly dii't,,rirc

l'rom Ineir optlimum values) we shall call a quasi-optimumcircuit; the circuit of 1,19.

S i,. -- a circuit with narrow-band filters; and the circuit of rig. V;.10 - a circuit

witi a broad-ba;nd iltutor. These names correutly reflect the essence of the matter

and will be used as basic te:rms.

10.5.2. Investigation of the Quasi-Optimum Circuit and the Gircuit
With Harrow-Band lilte rs

We start our investigation of circuits witri the circuit of0 1-iig. 10.8. Let us

assume that the htrerodyne signal has the form v(t) cos[ + p(t)], where Va(t) r

-526-
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differs, in general, from the amplitude modulation of the received signal ua(t),
and p(t) differs from its phase modulation 7(t). Thus, the received signal is

multipli, '):
V& (0 COs [,t• (Y ) Re v (1) e

S() ( ((0.5.)

The pulse response of filters in the first two channels we designate h1 (t) cos

[w.t + 01 (t)]. These filters we shall consider identical, which substantially will

simplify further calculations. The pulse response of the filter in the third

channel we shall designate by h 2 (t) cos [wrp t + 02 (t)]. We set

(t) -h,()el(t) (, i--1,2, (10.5.2)

i.e., Hi(icu) - frequency response of the low-frequency equivalents of the considered

filters.

For definitiveness during the analysis of circuits we shall limit ourselves

only to consideration of uniform conical scanning of the directional pattern.

Modulation of the received signal Ua(t, a) is expressed in this case by formula

(10.2._.!). Obviously, the basic laws obtained here are qualitatively preserved with

other laws of scanning.

The signal at the output of the circuit of Fig. 10.8 with these assumptions

can be recorded in the following rather bulky form:

(1) =Re , (Y -- )ep y (,) Rev (c) e'," cos ftlid X

X t ReVl•(--)e'e (s)Rev(i)et)e "- Id

[ iRe h,(1--)e"'P y(¶)Rev(,t)elfrdj'cosDJ.

"Producing in reverse order the reasonings by which we performed transition 1A

from expression (10.3.24) to (10.3.29), it is possible to reduce (10.5.5) to thl: :*wn K

most convenient for further calculations, namely:

,(,)=Re,, h* (1--)ow)y()cosfle•''d x,.
- g .5• ' - ) ( ) h a"d ' )' * (i• . ('o)e,.,'d

The first stage of calculation of accuracy of the circuit is calculation of th(-

slope of the discrimination characteristic (or transmission foactor of the radio

channel)
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KA TI mT dt (10.-1 d Lo

0
and of systematic error

We shall calculate these quantities j.n detail, since tnt ualculations produced

here are typical for calculation of goniometer systemts. Multiplying in (Io.5.4) the

integrals, averaging under the sign of intograls the rapidly . ters, and

producing also statistical averaging we obtain

"'= 5 5• P0 U. (4t, U) u. (t4, ) Cos 0t1U* (t) U (4) X
( •it Ist) A,.* (I - 10,), (t Q t. Y, (t,,, (Q, dl~dr, +

+V• Ni, (i -,c) Is v (c) 1" cos nfid,--

X "( )- h, (t- -) - (1) 4)(4)v* (4) dd- ±
I

- I h, I (t-,)I' I (t)ld%]cosfVl.
0(0.5.7)

Then we allow for the circumstance t,;at functions u(t) and v(t) vary consider-

Sably more rapidly than the remaining f.-nc. i(IS uricnr the si]rn: of integrals in

(i0.,5.7). Averaging them, we lr..ve

-211
-C- P=U=(4, a)U.Y, a)UCos, WP(ts-- )X

-41 -- M

X "A.. (i--t)h, (t- t, d,-- xN. cosi,.--,jc 11], !

~coat [uxi5 PeUa Voa) U& (i, )P(01~4

(10.5.8)
where

Finding the derivative of (10.5.H) with respect to ca for a 0 and averaging it in

tA
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KA ~ ~~ ~ ~ ~ v. h, P v.'-(I+Cs, t -1

-•

0

Xdidti"- 2 Re-- (1)1A (is) p(t,- ),) cos (,-didia
0 0

40
P,-- -:1  HIIf ,f(is) Is + I H, (i• in) -

-2 Re H,(i,) l,* (i%- + in)l S. (,) d. (ICl.5.i,) *1-
Considering a = 0 directly in expression (10.5.8), we obtain A = 0, i.e., systema,.ic

error is absent.

Now we shall study calculation of the basic accuvacy characteristic of a c'ruit

- the equivalent spectral density. This quantity is defined, as it is known, in th,ý.

following way: _ Go
3SS= .- - t S T() z1,c) d,.K 2 l T -. o = "

Omitting the calculations, which are very similar to those just now made, we

obtain a result in the following form:

Sso. 2s ff ! , 1i(.) 14 + IH, (im) J' I H, (,o) + ig)1' J

+ He (I*) H, (I s + i) I' - 4H, (im + i6) X
X I I + h ) , ( ia) + ,)l I + Hs. (w + 1Q)l

-0-m i

-2 Re -, " (is) 1 -* Q + )l S. (a.) d -2 ,

where r

U (1 .15())d

0.

Expression (10.5.12) is rather bulky. However, from is we can draw certain

general conclusions with respect to the influence on S of various factors. In

particular, from (10.5.12) it is clear that imperfectnesses of hoterodyn-ing lead 1o

equivalent change of the signal-to-noise ratio according to the formula (iu,5.23).

It Is easy to see that
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where the sign of equality is attained only in case v(t) u(t). For instance, when

Ua) are pulses of duration T,1, Va(t) -- pulses of' duration "•"and ther'e is no plhq -tý

a~t) a
I

modulation of the signal (or it is exactly inlverted), we obtain:

IsI

S T F,

I v (f) J'di 1 . -4

•-A

Thus, any imgerfectness of hetedodyning lcads to a) effect, equrivalent to ia -

crease of naturals noises of the receiver.

T2his phenomenon has a very general character. In the preceding chapters it was

-shown that it occurs, for instance, in ran_,re and] treýquenoy metering radar circuits.

Imperfectness of haterodyning in all cas]es led tu equlivalent decrease of the signal-
to-nolse ratio, where this decrease is expressed by a single formula (o0b5.ti)n It

is obvious that this phenomenon will take place in all circuits of radar goniometers.

Therefore, subsequently, during investiga.Liu.n )f cl-uniometer circuits we for simplic-

ity shall. consider heterodyning ideal. Imperfectness of heter'odyning if desired

Scan tasily be accountled for by mearis of replacement of' signal- to-noise ratio h by h'.
Let us consider now in greater detail expression (10.5.12) for 'di. It contains

thr'ee com.ponents: one which does not depend Dn signal-to-noise ratio h, a secoid] Whj_ý:.
Is pruportuaonal to i/h and, a tird which is proportional to a/hn . The first compi-

nent asoises as a result of nonlinear transformation of the useful signal, carried

out in the circuit. This component s athe result of incorte re lecti n of character-

isthcs of filters. In the optimum circuit, as we noted in the preceding section,

such a component of error is absent. The other two components in (d0.5.8) are ex-

plained, respectively, by interaction of the usefdba signal with noise and nonlinear

transformation of noise. These components of error in annot c e compueiear goimete.d,

and it is possible only to decrease them by proper selection of characteristics of-

itsfilters.
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By direct variation of expression (10.5.12) with respect to frequency responses I
of filters Hi(iw) it is easy to prove that S5 B reaches a minimum, when IHi(iw)I i2

determined by forrula (10.3.25), and H2 (i'w) is determined by formula (10.3.28), where

h will be replaced, of course, by h. Then S will become equal to So. This

confirms the correctness of the obtained results.

Let us return now to the question of the physically realizable equivalent of an

optimum filter with frequency response (10.3.28), left unsolved in 1 10.3. From 4,

formula (10.5.12) it is clear that frequency response Hy(iw) is contained in it in

the form of expressions Re H2 (ico)H 2 (i'w + iQ). This means that $,OBwill not vary 11i

instead of a filter with characteristic H2 on1ET (icz) we use a filter with characteristic; Al

1 120ofU(io)e-ikoTc, where k is any integer. Selecting k so large that h2 o. (kTek)

= , A Afc v(t, t + kTOX)J a_0  0, it is possible to make a filter with character- r-

istic H2 oT (i(o)e'iTCX physically realizable. I
We turn to consideration of the circuit of Fig. 10.9. It, aL* it was estatlished, =.

is optimum for high frequencies of scanning. Therefore, besides allowance for non-

idealnesses of processing in this circuit it is of interest to estimate also ti,

worsening of accuracy as compared to the optimum which this circuit gives for other

face values of the frequency of scanning. If filters in the circuit have 'reqAicy

response Hi(iw), and the heterodyne signal has the form (i0.5.i), the expression aot

equivalent spectral density is obtained immediately from (iC.5.i2), 11' thery '.-. 1 t.

H2 (iW) 0. Then

sonhs (=j ) Hs I H, (0-) Is 1, (iw + ig) ']x

X +1 hS. (')I [l+ AS. (t + 0)] d. X

X([It H, (is) I' + IH. (is + 12) 111 So (a)dl

In spite of the considerable simplification of this formula as compared to

(10.5.12), it is difficult to perceive the dependence of accuracy of measurement. (An

the form of the frequency response of the filter or the -aagnitade of the freqoent.y

of scanning directly from it. For investigation of these dependences it is nfec•rsnAr'y

to prduee c-,alculation of integrals In (10.5.13), using suitable appioxiinati,.,ric (,1
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the frequency response of the filters and of the spectrum of fluctuation. I
A

Let us produce this valculation, airpeoxlmat~n,-r fnrqi,ýo"cy response of' the filter

111(iao) by expression Z9

11,(U') = -I

+ (10.5.16)

and So(wQ) by expression (10.3.26). Here we obtain

V+±(I +X)' 0t + x) I'+ I +x)'(I+ 2x)]±.

p.26,1+2(I +2 )'I' 1 2(t-x)xIl'+(I +x)l I

+ (x -I)'] (C + 4) (x + + W))

r'SCI + CI (x' + 4x +3) + 2(x - I)' (x + 1) (2x +1)Vl --V) IV + (z- t' (43 + Wx) r

-__ z(I +X) IV + C',(5x,+ 4U +3)+2 (x-,),(x+ 1) (2x + I)h+
-(' + (X - 1)1 (V' + 40')

+ V( +2) + V, (I +') x(4-v + 3),+ 2(x + 1)4 (1 + 2x)2 C + (I+XI]
2 (2' + 4x')

(10.5.17)

where 1 = •/2Af C X C i

Let us iniestigate formula (10.5.17). AIthough it: is obtainud with rather

partizular approximatior'sof the frequency '-,sponse of the filters and of thai spectrumn

of' fluctuations of the signal, the laws gt,;r:rning change of S )B expressed by this

formula are preserved, too, in more ,'-,:>i '..-. First of all we shall consider

limiting cases when the lawof ,i*A '/ La'..iof. ,if c are cond;16er ab2y simplified. For

small x instead of formula (10.5.17) we obtbsin

I P, + 2+C1i; + i ),
s ays ,2AI.X +( 2)1 ( 10. 5.1ý3)

Thus, the spectral density of error with decrease of x, i.e., with narrowing

the passband of the filter, grows inversely pruportionally to X. For smali X the com-

ponent of error from nonlinear transformation of the useful signal, monotonically

drops with growth of the frequency of scanning. The remaining components of error

almost do not depend on t.

For large x, i.e., with expansion of the passband of' the filters, formula

(10.5.17) takes the very simple form

S5(10.519)

-532-



From this it is clear that for sufficiently broad-banded filters the spectral density

of error of measurement is caused basically by nonlinear transformation of the signal

and grows proportionally to x. Error in this case does not depend on the frequency

of scanning.

For large • equivalent spectral density is equal to

1II __

From (i0.5.20) one may see that reaches its minimum at x t/ 1 + h. ThiS

is understandable, since the considered circuit for large C is optimum. Decreas-

o.' increase of x in comparison with |/T1 +7 4eads ýto increase of the spoectral aeniity.,

For small • we also obtain, a very simp.iLe f,)rmula:

1.I2+ 11 + +2SONS I _tlxF- I+x1
(2 +I1x+2 h hx+ a) (io. .- i)

In this case the optimum for x is attained when x i + h (3U reaches its minimum

value), and not when x = V(/ + h, since for small ( this circuit is not optimum, and

the laws will be different here,

In order to Judge the relative change of accuracy of the considered cireuit as

compared to the optimum, it is of interest to investigate ratio S3Y/So0 . Spectral

den!;ity S OnTwith approximation of the spectrum of fluctuations by formula (i<..)

was calculated in the preceding section and was presented by formula (iO.4.1ti). 1h,

graph of the dependence of ratio SM/SonT on h for different values of x and ý is

shown in Fig. 10.i3. From this figure it is clear that at high frequencies of'

scanning ( 00) accuracy of the considered circuit is close to optimum in a very

broad range of variation of x (for x = 2-40 ratio So'I -1-1-.5)° For low IT'-

quencies of scanning accuracy of the considered circuit rather strongly diffýr:zs f1r.

the optimum; the difference is even greater, the larger h. This is oxplairLd by th,

fact that at low frequencies of scanning the equivalent spectral density of' tre con-

sidered circuit as h - c seeks a finite magnitude (since there is a compon:u. of'

S.caused by nonlinear transformation of the useful signal); for an optimum cire',cL.

equivalent spectral density as h -w tends to zero.

We shall now discuss the spectral density of parametric fluctuations. As it,

was shown in Chapter VI, it has the Vorm

I d

Sna iiii M -LIt () -z (s)dsj.(
2K -MM raa



. . - -We sh~all ,.alculaiýe for tlic!

*- -- _ _4 case oi. higi i'requenoies uf scannlr.1.,6g
* _____ -when SOBis already small, and a con-

______ -_______siderable sh'rarc of' total errc.r is

Ai caused by parametric fluctuations.

Calculations in findcing S,, are ver~y

- / , similar to those by which we calculated

K, arid c4m. Therefore, we! shall

3 -- 4 immediately give thie f'inal rosult,

01/ IH,(toi) IS. (o~))'do
* 7" -Snap 

2 % a'

Thus, S does not depend on the
ne p

* Afnial-to-noise ratio andt trequency of
ijig, 10.1,3. The dependence of on scaj,'ilng. Cale'ilati-ori by (10.15.23)
h for a circuit wi th narrow-band filters
of the radio channel of a. goniometer with with approximation (ib.1:.1(j) and
a scanning pattern: - i00; - - -

10; - -. .1.(1G.3.26' gives.

i I±3x+xs .4Sno ":ý -(10.152)

For large x quantity S,, 1/Af ; for small x spe.ctral density S

~I/XA11 =i/Alf,. Laws of' this kind are preserved qualitatively also for ct Iit

forms of' frequency response and of' the spectrum of' fluctuations.

10.5.3. Investigation ot' a Circuit with a Broad-Band Filter

Let us consider now the circuit of' Fig. 10.10, If' we designate the frequency

response of the filter in this c-Licuilt 1i(ico), the #-oxpression for the equivalent

spectral density' of' such a circuit could be obtained from (..),if we set HI1(iW)

However let us note thiat for niot too low frequencies of' scannirwl modulation of'

receivý'A signal introduced by scanning pattern will be delayed durring passage through



I,

the filter. This delay should be, of course, introduced in the reference signal

from the GON in order to ensure a maximum value of the transmission factor of the

radio channel. Calculations of characteristics of a circuit in these conditions have

to be redone.

The signal at the output of the circuit of Fig. 10.10 has the form

2 () cGB ( 1)(1a) %)y u e'- - (10.-5-25)

where h(t) -- complex amplitude of the pulse response of the filter in this circuit

[determined as in (M0.5.20)], and delay -r should be selected from the condition of 11

maximum K . Using formula (10.5.5), we can obtain (calculations are similar to thope

already made, and therefore we omit them)

maxl j H (is) H* (i + 10))S.(w) dwl2K - - (io.:.2C)

In an analogous way from formula (10.5.11) we have

x[ IH(0) H (is + "O)/S, ' (a) do
--m

(10.5.27)

We shall perform our calculation from this formula, using approximation (1(;.L.jt

for pJ(io)12 and (10.3.26) for SO(w). As a result of calculation of integrals

(10.5.27) we obtain

I Ica+ 0 +X210 + X)

+_L ~+ C9(5x'+4x+3)±2(x-1)'(X+1)(2X+t) +
Ais+ (I- 4I1 i' + 4 (x + I)]'

+%4+s~l+x)l +4(xc- I)'(X2+ 3X+ 1)

.-)<•j) '

where as before =/2Afc x Af'. ,/Af.

Let us consider different limiting cases for • and x. For srrall x fror: (i'..
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we have

S-8 At.x I+ 4- " (10.5.29)

From this it is clear that the equivalent spectral density for small x is inversely

proportional to x and monotonically drops with increase of r (the drop is basically

due to the component of error caused by nonlinear transformation of the useful

signal). Comparison of (10.5.29) with (10.5.18) shows that for small x the circuit

of 10g. 10.i has spectral density less by a factor of' (CC + ) ( 2 + 1)/(? ++

than the circuit of Fig. 10.9. However, let us note that

< ~ M + 2A,

so that both circuits for small x are practically identical.

For large x from (10.5.2d) we obtain

Comparison of (10.-.50) and (10.5.19) shows that for large x the circuit of

Fig. 10.9 has a spectral density Lalf L.- ., c the ioW- t of Fig. 13,13.

We now consider the case of' large L. Frwii (1;.:... wcbtain

I + /x

Here, obviously, there is an optimutm it .'o J/T--. orrparison uf (10.5.31)

and (10.5.20) shows that for larir, , , cio'fi.t o± Fig. 10.9 has the best accuracy
'or, small htwice asgodfr lreh -- better by .'actor of' 1 2"' + 1 .

" " 2 x+l 1

Finally, for low frequencies of' scartnng (small Q) from (10.5.28) we (;btaln

Sof I "(2 + I _x + 22+llxXl+ 2+1 Ix

which completely coincides with (10.5.21). fhus, cpmparison of circuits of F'0 . u.

rand Fig, 10.1.0 ihowa that these circuits for identical parametets (x and C) have

approximately identical accuracy; the circuit of Fig. 10.9 is less critical to

widenin~g of the pass band of the filters and ensures for wide filters twice the

accuracy (with respect to equivalent spectral. density) of the circuit of Fig. i,10... 10.

For more detailed study of accuracy of the circuit of Fig. 10.10 in Fig. 10.141

there is constructed the graph of the dependence of S3/B/SoriT n h for this circuit,

calculated with the same approximatlons as in the ireccding case. From this graph

it is clear that the considered circuit, in genural, realizes the nutential accuracy
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Fig. 10.14. ?he dependcnce of /S on h for
,'I, B MT

the circuit with a broad-band filter of the radio
channel. of a goniometer with a scanning pattern:
-- -100; . .- = 10; -, -, -, =

of the method of pattern scanning worse than the preceding circuit. For low frerjufmer-

cies of scanning (ý < 10) only in the range h = i-10 does it ensure accuracy wo',s.:

than the potential by a factor of i-i.5(with respect to equivalent spectral density).

With further growth of h ratio S,,'Son rather sharply increases (due to the compuncnt i

of error caused by nonlinear transformation of the signal). FoI high frequencies c'

scanning (• 100) accuracy of the circuit nears the optimum (SB/Son = 1-1.5) when

h > 10.

We note that ratio S,,/So,, for both the considered circults in a wide rang,:

change of their parameters does not exeed 4.

§ 10.6, Method of Scanning with Comprensation qnd
Inst~antaneous Ampl1itude, CommarSon

of Signals (Optimum Circuits)'

Besides the method of scanning the directional pattern of the receiving antenna

in goniometrical practice there are widely applied the method of scanning with com-

pensation and the method of instantaneous amplitude comparison of signals (IAC). Ini

the use of these methods there are simultaneously observed several signals, rec.:.Aved

LiJ



by different directional patterns. Inasmuch as fluc:tuations of amplitudes of the-

signals received by the various patterns will be identical, this is the prerequisite

fur their elimination or, at least, partial compensation. Therefore from these

methods there is anticipated heightened, as conmpared to methoa of' pattern scanning,

accuracy of measurement during a fluctuating signal, and also Jncreased noise

immunity against amplitude-modulated active interferences.

Finally, a very important consideration in favor of the method of scanning with

compensation and IAC is connected with the efficiýency of use o1f the aport re of the

antenna system. The fact is that during use ol' the metthod of pattern sca;nrning nt-.

may approximately assume that there is used power fron only part of the antenna

aperture. The section f- )m which power is selected shifts over the aperture (X' -

antenna in accordance ;h a certain periodic law. In the presence oA' angular diw.r-

gence of the target f', m the equisignal direction the distribution of the field in

the aperture of the antenna is asymmetric, and, consequently, there oc:curs periodi,:

change of amplitude of the received signal. If all the power from the aperture of

the antenna system was used, the received signal would have constant amplitude and

would not contain information about ang<ular' cutud'hatos of the target. Thus, during

use of' the method of pattern scanning the recei vee power comprises onl.y a certain

share of the power reaching the aperture o.f' ie antenna system (usually half). This

circumstance is fundamental.

I)uring use of scanning with compei tsa•or,i 'IAr' one. may a._,proximately assume

that in one channel there J-- used powe. i'o, on- cart cY the antenna aperture, and

in other - puwer from the remaining part, so that the total received power is equai

to 'il. the power entering the aperture of t.he antenna system. In tte case of asyrn-

metric distribution of the field in the aperture (with angular divergence of' the

target from the equisignal direction) the powers entering each of the channt:ls rtre

unequal and their difference depends on the angular coordinates of the target. Thus;,

* the compensation method and IAC ensure more efficient use of the aperture (A' the

antenna system than the method of pattern scanning: total power received during use

of' these methods is approximately twice the average power received with the method of'

scanning the directional pattern of the antenna system.

In the present section we shall study potentialities of the method of scanning

with compensation and IAC and their optimum circuits. We combine consideration of
.4

these two methods in view of their very great similarity physically and matheinati-

cally. -t
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From the technical point of view these methods, of course, rather greatly

differ, which is not decisive in this case.

10.6.1. Synthesis of Optimum Circuits for Methods
of Scanning with Compensation and IAC

The optimum circuit for the method of scanning with compensation can easily be

obtained from the general circuit of Fig. 10.7, where it is necessary to set n - 2

(two antennas), 4i(t, a) = 0 (phase centers of antennas coincide and are fixed), and

Ua(t, a) is determined by formula (10.2.4). Here, using in (10.2.4) different cufn-

crete values for laws of scanning of patterns $i(t), it is possible to consider a.

large number of particular cases of the method of scanning with compensation. How-

ever we immediately will separate methods of scanning in which this method has the

best potential properties and subsequently will limit our consideration to only

such cases.

From consideration of the general circuit of Fig. 10.7 it is clear that the

optimum cLircuit o0' the method of scanning with compensation, besides the two basic:

channels, contains, in general, an additional, third channel which, as was snown in

§ 10.3, carries out singling out of false information from the amplitude fluctuation,;;

of the signal, which permits us subsequently to partially compensate the harmful

influence of these fluctuations. It is easy to see that with fulfillment of condi-
ticn

hIL, Cos ,(1) + /Y,j, Cos 6, (t)-0( ..

in the circuit measuring angle a the third channel disappears. Consequently, (iti.

fulfillment of condition (10.6.1) in this circuit there occurs automatic compensacol

of amplitude fluctuations of signals, i.e., there is realized that concept whic'h was

pursued during development of the method of scanning with compensation.

Let us consider conditions (10.6.1) in greater detail. They signify a dofinJ'li

symmetry of receiving channels. If hi = h2 and the directional patterns of the.

antennas are identical, these conditions will be satisfied when

Expression (10.6.2) means that the directional patterns occupy the extreme pc;ss2.bie

positions and scan without changing their mutual lucatiui±. The dirc•.ctio,•nal pott..ern.

forming such a figure are sometimes c'. "waltzing," 'AA

Thus, only with fulfillment of' condition (10.6.2) does the m•ethod of scanning

with compensation ensure complete compensation of amplitude tlucýuat ions of to'..
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signal. Any other forms of scanning one should recognize as unsatisfactory, since

they do not ensure realization of the potential of this method. In particular, the

widely known variant of the method of. scanning with compensation with one fixed and

one scanning pattern should be recognized a8 a failure. Henceforth we shall limit

ourselves only to consideration of this method with 'waltzing" patterns, considering

here spectral densities of noises in the channels to be identical.

We shall make a series of remarks about the optimum circuit of scanning with

compensation. Making the proper simplifications it, formula (10.3.29), we can record

the optimum operation of the radio channel Ior th.is method in the fo1'rm

t

(1)= hoT (I--s) cos-mp( -C s) [y, (s) -Y. O(s)

X Cos (8) U. (S) Cos [-rs +I + (s)I ds • ~,,( -S

XCOS#U(5C-) [Y()Y(Ua(S)COS[SrS+'?(S)IdS ,SX 'o .,p (, -- a) [y. a)± g2• (s)l U& (s) +o [, -- i.(6) ..3)

where yi(s) - received signals, expressed by formulas (103.3).

Let us designate the useful cc. -.on':tc , hese signals by "YiS), i..., Yi(s) .

Voq,7 j;.(s). Then

-S) (S) =Y1 (S) -v s-- /~ 1 ()-/a s

v(s) + Y.(s) =Y& (s)-IY7,(s)+ VMy.-n.(s) 4- 09--n. (s)

-U ~ ~ P +~+Y (sS) $a (a, (S + /t (S)

Inasmeca a-3 x,, ks) and n2(s) are indepenoent, independent, too, will be noises

r, (s) and i_(s). It. follows from thýý2 that from the point 0f view of statistical

charac teristics it is possible to form the sum and difference of signals after the!-"i-

mixing with the two independent noises or it is possible to add independent nois.•s

already to the "sum" and "difference" signal. This remark is very significant,

olnce technically it is often more convenient to form the sum and differunce signals

directly at the outputs of the antenna system. Using this remark, it is possible to

present the circuit of the optimum radio channel in the compensation method in the

form depicted in Pig. 10.15.

Let us discuss in greater det•ll the cneration of the circuit of Fig. 10.15.

In this circuit signals from outputs of the antenna system first enter a unit which

forms their sum and difference (hybrid ring Junction, T-Junction, etc). The sum - L

and diflerence signals are heterodyned. Then the difference signal is multiplied
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by a function varying according to the

law of scanning of the directional

patterns. After these transformations

the signals are filtered by optimum

filters with response (10.3.25) and are

i multiplied. The optimum circuit of

Fi u.1.5. Optimum circuit of the radio Fig. 10.15 is not more complicated than
°channel of a goniometer using scanning
with compensation: i) optimum filters with known circuits of the method o)f scanning
frequency response Hl c with compensation and therefore dki'ervos1

the attentive study which will be conducted in the next section. When the frequeny I
of scanning of the directional patterns is sufficiently small as compared to the;

width of the passband of the filters in the circuit of Fig. i0.15, multiplicatico1n of

the difference signal by a function varying according to the law of scanning can -:e i

carried out after filtration. Here the circuit can be transformed to the form

depicted in Fig. 10.16. Here signals directly from the output of the anuenna sys'tem

are heterodyned, are filtered by

optimum filters with response

- (10.3.25), are detected by squarre-

M law detectors, and are subtracted;A

the obtained difference is mulitiplild
Fig. 1,.i6. Optimum circuit of the radio
channel of a goniometer using scanning with by a function varying accovUirF: to
compensation for low frequencies of scanLing:
1) optimum filters with frequency response the law of scanning. This CircuAit,,

Hi 0 T(iw); 2) square-law detectors.
well-Known in goniometer practice,

is close to the optimum only for low-frequency scanning of the directional pattertis.

The optimum circuits for the JAC method are very similar to the circuits of

scanning with compensation. If we take as initial prerequisites identity of dirc-t

tional patterns of the antennas in the goniometer with JAC and identity of noises

added to the signals, the optimum circuit for IAC will be obtained from the cirAit

synthesized just now for the method of scanning with compensation (Fig. iC,> ) if we

there set $(t) = 0. The optimum circuit for IAC is shown in Fig. 10.17. C:; ,iusly

it can be converted identically to the form in Fig. iO.18. Both variants of Cir*2uiu,;

for IAC are known and have been described in the literature, [49].

Let us note that with unequalness of dircctional patterns of the ant.p.n Aystem

and unequalness of noises in optimum circuits for IAC besides the two basi.c chatioel;,

there would appear, just as for the method of scanning with compensation, an addo-

tional channel intended for compensation of harmful effects caused by the shown
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disylmietry. i-iowever, consideration

*2\ of these cases does not have practical

Y-A#Cj 0 value.

In conclusion we note that for

measurement of an angular coordinate

Fig. 10.17. Variant of an optimum circuit Of a target in another plane the
of the radio channel of a goniometer with
IAC (circuit with multiplication of sig- optimum circuits of the method of'
nabs). 1) optimum filters with frequency
response curve H. o00 , (iu) . scanning witn compensation, obviously,

do not change, only mv)ltiplicatioll by

cos $(t)/,Ze eplaced by nlult'plicati-,i.
&sit cesl -0In/by Sin $(t). Optimum. circuits of' lIA..

in general, do not depend on what

angular coordinate of the target is
Fig. 10.i8. Vari-ant of an optimum circuit
of the radio channol of a goniometer wit!- measured: 1AC circuits wxill measure
IAI (ci:,rcuit with subtraction of' sinj)
!) optimusi, filters with frequency response one or the other a~ngular coordinate

* curve H. (IT (im); 2) square-law detectors. fteartdpnigon epirf

* outputs of the antenna to whicl, it is joju.ýd..

10.6.2. Equivalent Spectral. Den.-Ltlies ci' Optimum.
Circuits for Methods of Sc~anning

with Compensat i un and 1AC

Let us turn to the question of' p'l~eur~.ial 9accuracy C!' the nfethod of scanning

with compensation uan lAC. Wc, fivc C ider the co~mpensazion mfethod. Considering

in (iO..5.3i) ni 2, (t, a) = , irntroduc ing U !a (t, a) according to expression

(ii. ur) ýfliacring here all assumptilons of syinm-etry made in the beginning of this

sut.ioLr., in particular (10.6.2?), and then calculating integrals in (10.3.`3i), for

* equivalent. spectral density of the optimum circuit we obtain the following e-xpre;ýE

Ss S(u)' dwi
L1 +AhISSd4) W (1.6.5)

where h h+ h-h ratio of total signal power received by bjth di~rec--

tional patterns, to the power of noise of one channel in the band of' signal fluctua-

tions), and coerfficient c P is the same as in formulas of accuracy for the method of

pattern scannina (1 in~ 3) Rqulvalent spectral density during measurement of an

angular coordinate in another plane iis expressed by the same formula as (10.6.5),

wher itis ecesav toreplace c' by s2 (i0.14.4). As also in the methud of' pattern

scannýng, coefficients c' and s ,the sum of' which is equal to 1, characterizýe,
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roughly speaking, the distribution of received power for measurement of angles in

various planes.

Usually there is required identical accuracy of measurement of both angles;

therefore we naturally select the law of scanning so that

2'= (io.6.,6)

This we shall assume subsequently. However, rote that if we need to measure only

one of the angles, best accuracy will be rendered by switching of the directional

patterns in the plane of this angle or even measurement. with .ilec ,atterns, LDCCZL,

in the given plane; in these cases cos $(t) = -11 and c2 = i. For motionless patu:'n2-

we obtain nothing other than a two-dimensional variant of the lAC method.

It is easy to show that potential accuracy of IAC when th.'re "s j,'quir'...W3

measurement -of angles in two planes with identical accuracy is expressed by frmula

(10.u.!, where c = 1/2. From this it follows that potential accuracy of lAG and

of' the method of' scanning wAut! compensation are identical.,

Comparison of formulas (10.6.5) and (i0.4.9) shows also thhat putectial a':..ur'ecy;
of IAC (or of the method of scanning with c ompensation) and of the method of r.tt--rn

scanning (with use in the latter of high frequencies of scanning) are identical it

we consider identical the total powers received in each case. llowever, as wa. .. ,ea:

shown, the power received in the method of pattern scanning is approximately hatl'

the. total power received in the method of scanning with compensation or witi, IA; (Vo,r

an antenna with the same total aperture area). Thus, if we fix the aperture ar,:a

of the antenna potential accuracy of the method of pattern scanning, even with hig

Frequencies of scanning, will be less than the-accuracy of 1AC (of the metl, v ' I
scanning with compensation). However, we note that this is connected with ii- I

use of the aperture of the antenna system during the method of pattern scatiin,iw.

Let us consider formula (10.6.5) in greater detail. For small noises, I.e.,

when U7 >> 1, from (10.6.5) we obtain the very simple expression

(remember that we set c2 1/2).

Inasmuch as h Z, (PC I + PC 2 )/2of'fc C equivalent spec ttral dercity Y Iii ± a...

does wot depend on statistical CRnterlstics of' fluctuations 1f' the zigr.a].

In general we make our calculation my formula (10.6.¼)), using approxtma' i,

(10.5.26) of the spectrum of fluctuations. Here, we obtain
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.i. (10.6.8))

We already have the graph of function (iO.6.5) in Fig. iO.11 (ease -4n).

We note also the formula for Sori for small values of h,, easily obtained from -

(i.~8):
S2

so., (10.6.9)

Subsequontly for brevity we shall. call the c'.. ',tO ci Figs. 10.15 sod IC 1i;

circuits with multiplication, and the cii.cuits ,J' F ; (. (0.16 and i1.1o -- ocrco t. I

wit.b subtraction of signals.

§ 10.7. Investigation of' Synthesized Circuits for Methods of

Scanning with Compensation and for IAC

We shall investigate real accuracy of synthesized circuits for the method of

atcn:n with compensation and, correspondingly, for IAC. The meaning o-' thls inves.-

t~iJat.on :; to a.,.count for the influence on accuracy of different deviations from

opuimality in parameters of these circuits, inevitable during their practical realiza-

tiron.

Peculiarities appearing during practical realizar-ion of theoretically synthesized

circuits were described in sufficient detail in § 10.5. All tne facts mentio1i'-u

tiere, obviously, directly apply to the u..-io;2dered circuits as well. However here

tncre are certain additional peculiarifirs wý ,! muo t oiý :onsldered during calcula-

Lion .f real accuracy. Basically t]c,; rodcu, Lo the fact thiat in each channel of'

these circuits th, oe are mixers and UPCh's , and these devizes are complicated and

dJ.1 "T" -- IL to make [dentical; from tnis there follows nonidentity o' the frequency

res;ponse- of' the channels inevitable In practical realization of such circuits, thc

influence ol which on accuracy we must consider,

Thus, we shall assume subsequently that filters in channels have different

pulse responses

h, (OCOS [&p + 53(1)1 uW h. (t)cOS [Mapt +±0 (t)].

For frequency responses we preserve designations of (10-5.2).

107,71. Investigations oa Circuits with

Multiplication of Signals

The output signal from the tIrc•it of' Fig. iu.115 can, obviously, be recorded

in .he form

5
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x ~ ~(10.7.1)

whurcý y 1 (t), (for J. l~2) are determined by form~lia (10.3.5), in which, in turn,

i ai (t, a) are expressed by formula (10.2.4).

I -"'IlTe output signal from the circuit of Fig. 10.17 ha~s a siimplej, form:

Re u1 1~f~r 1y()u)e"'' d-cX (.

Y - . (0 00)0 t

weoY 1 (t') is air!o give~n by foriiula (10.3.5) nwihU 1 t r)aeepo. ~t

t'-'mUlas (Ký.2.5).

Then oubs U tut Ing Wtim obtain,ýd uvxere~slons in 10.i r (0 anid ac. t;.] 11,

Ly tihc rulco already daseýribed, It Is easy tc, find that in bohcates A 0,andl K%

will ýeexpressed bý the same formula

KA= PzIReff 0,(i) H's (i-) S. (e) do.
-40

Using_ furmul~i (10.5.11), we; obtain in both casas the foljlow,.in~'exsNci

Ilhi, (1o)II III*(h.. )h3 [I'+ hzSS (qo)j dw

*1 3Re H& (10) tP, Qu) So (o) do

F'rom (w1r.7.i) it. follaw.ý that the minimumn of S~y (Which It. 1is easy to VV 1,

simple variation) takes place when li1(ic) =iL (1w) and ii. (1w)j are C e~r

formula (10.3.25). This minimum is .qual simply to S,.iitiroo frrm .3

anid (1),. 'i.4) it Is easy to pcre elvo the r.d 111,urricU 01, Tir~deOfr.l, c.I. f S' '..

coj~r' a filtoir,. Obviously, noriidenti ty (A' thu ,rairi-frc1 urnhr,;, rfsponoro;-:-

I i 1A Ic Nonicdent..liy of pnaias- frequency r~pno;lead. tc. i-srr a].

U~ ( --,reult ,I utrr rease of' Kg) . Ar:te-~a] Iy , wilth dtle ot'0 e thoe illa:, -I n-

"A ~ S IN, (*u)' Ill, (iu)j' .5,(a) Cos Av k'4) do, (
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iii) Kmay be zero or ývnchange sig. he ,!ircuit wil not wrk hee.Duý;

of basiQ importance for the considereo

circuits is aialakIng the phase-frequency

responses of filters identical-,

Let us calculate S~ by formula

4 (10.7.4), considering filters, identical

and approximating their gain-frequency

responce by formula (H E!6) er".

wa obtaini
I 2+1xx++2 + jx\N

where as before iM5'

Thio formula is vury :;imple, and

from it, it is casy to perkceivce all 1-1;

47 laws governing variation of S

CurveE of "lie dependence of S /3O

CIn ar~e shown in Yjg. 10.19. Frcm

satlori cr TAC.

(X r 0.5%-i6) for h. > 1 leads t-o, increa,-ti -. r,:ctra1 92s~t, es .nipared to the

upt~imIu'f by rnot more' thian L imes.

T'he spe-ýtctal dec yof paravietri' fluctuations i'ur tie- Qo;1. edercuits

w~tit ilt.nti'vil filters is easily calculated by formula ai..2)nt! turns o'It to

!I> lyc CinifGde with ;p's ýn(u., T5 Analysits ul this expruosiort was rrw~',

10. l., nvestlgation ,21 the- Circuit with Subtra:.tiun of Slignals
11)v thie Met1lou ci c, k3carnzi~nLý t oriest

DA us tuirn to conoide' rat.Loin of' ýhc -- r cult t*fo)r the me thor!r of' .,eýarninril withi

o Jhi~n.' t1 IL( i~ .10.1f,). As wo es tablishied, this c-ircuit .; J- r1,'--- to ti,' op tli.m

only wi Ui ±2 ri.oi o of'saodg Tio-low'ye', PL eriul t ,'1 tnd t,ý'pr- 1.: w'

pro Uci,~i~dit I. .:A inte reft tc' atiailyze ts a' ra .r r'ac a va luf:m 1(c if 1.

quen7:Oy ofI scaryiri ri wil': n are nuot, too low.

':i: outPut. N.1( ýi-1w'~ ;irt ti nf Pig. nit.- tie .-. ilýnn



-z Co A,(t-)yeu (Y e*df u (10.7.6

where y 1 (i) and yj() are the same as in (10.7.1), and ¶ -- delay of the reference

signal, selected from the condition of maximum K• (see § 10.5).

This condition exceptionally hampers calculation in general, and we subsequently

shall limit our consideration to the case of conical scaining of directional patterns.

In this case all calculations are considerably simplified, and after simple calcu-

lations we obtain

MaiK P•--- SI (1.) AA, (i( + ifl) +
.-eO

+ H. (im) ll' (im + in)J s.()dh, (-0. .7)

Sa msS 5 IIh (iU)" IH (i-+ iQ)l' +
- C.

s (0)]- - IH. ( s)I'If.(isI +-O)I' X+~ ~ ~ so. (-0l ) so +(ccll + 0) as X

XJ [, (is) if*, (i-+-10) + H, (is) H% (is+if)JS 0(.)d", (1.., . )

where h - ratio of the totel signal power to the power of noise of one channel in

the band of signal fluctuations, Systematic error LA in the considered case I".

equal to 0.

Let us consider formula (10.7.8) in greater detail. From it. we can ea;;ily

ceive that in general for different gain-frequency responses of filters ther,-:-

a component of' equivalent spectral density caused by nonlinear transformati,,

the useful signal. This component in tfie given circuit causes error ,f ,ea-',',,it

even v,•,,th complete elimination of noisos. With Jdentical -,

istics of filters such a component of equivalent spectral density dlsappear.. ._

influence of ronidentity of fj'ters on accuracy of the considered circuit leads bard;-

call,; to appearanct 'f this compo..'rt of error,

We shall conduct further tnvetitgalior of foiomila (10.'7,W), considerrin t • ,

ido',ni•ca r arM urcIng usual aporoximat.untj-: .2 and (1 j.l V) . Here we '. .' i,,



I+ x I t
4 + ,(5x+,4x ++3)+2,(x,- I)'i(+ 1) (2r 1)Sams 2 ;:ý ' Xý +--| 1 (X -- W1' [V' +l 4 (x + IN' •

+2 (1 +.XI, + + XI7.9)48 + 4(x + I)'-

where as before . f ,/2Uf0  ; x = At /af' I

For high frequencies of scanning, i.e., for large C from (10.7.9) we obtain

I I1 + ,x+i.x + 2 + ..x

Comparison of this formula with (isn.7, 5 snow that for nigh frequencies of

scaniiing the considered circuit gives accuracy identical to the a2curacy of L1h

cir,:uit of Fig. 10.15 only when x >> I and h2 >> i. In the remaininL cases accuracy

o1' the considered circuit is approximately half the accuracy of the circuit of

;'i1. 10.1i (in equivalent spectral density).

For low L'rucquCciles of scanning from (1.0.7.9) we obtain for S an expression

exactly coinciding with (i0.7.5), . tho accuracy of the considered circuit in

this case is the same as accuracy -f the ci rcu:. i-. wIig. 10.15.

SCDrv'si r wnr_- ,iw,.ndenc, of

S_ SE /ý3 f, - on h.v, calculated wi'hS. 1 a[,rm;.ximnations (iQ.3.' 5.) and •

S-('.•i'..Lj. .), for different C are

'2 ' ••',nr iG, t .10.. ?, Prom this

______ ___figure it is clear that in the

range of chainges 1 I-3 the con-

• __ -- - - sidered circuit sufficiently w-A. 1,

realizes the potential of thc

method of scanning with compensa-

ticn, givlng for x = 1-5 equva-

lent spec.tral (tensity exceeding

-So, by not more then in 2.5 times

Fig. 10.20. The dependence of
"3/s, on h- for' a circuit with

subtraction of sgnals of a gurn-
ometcr usiang scanning with compen-

a •sati(n - P I



(and for hZ > 1, S• exceeds S by not more than 1.8 times). For higher frequen-

cles of scanning properties of this circuit worsen.

10.7.3. Investigation of a Circuit with Subtracti-,n

of Signals for IAC

Let us analyze, finally, the last circuit of Fig. 10.18 for IAC. The output

signal of this circuit is equal to

~~==~ 5 A ~1 9) -'4 y(-) U(~''¶'

where y, (t) are the same as in (10.7.2). Substituting this expression in (10.,. /

and (10.5.11), we obtain, respectively,

= •#4 If, (S [H, -)i-- JH, (iw)!'1 S. (w) dco, (.i,,. -. )

S9K9~~~~~~ 4" JIIH, (i-)l' _ l/t, (1=)0) 141 - j(i(.~ H(i)) d=6
A~ 2

1 1H +

It is easy to see that (10.7.7) and (10.7.8) for small _ are t-ransformecd into

(i0.7.12) and (10.7.13), respectively, i.e., accuracy of the circuit of Fig. 10.i.-'

for IAC and accuracy of the circuit of Fig. 10.16 for the method of scanning wt,,.

compensation for low frequencies of scannin0 are idenLical, From (10.7,i7) it. is

clear that nonidentity of the gain-frequericy responses of filters *lea]5 in t.,-'

circuit to the same effect as in the circuit of Fig. 10.16 of the method o,. ;"tnini,

with compensation: the appearance of a very undesirahl- comp-,rient of ,r. r, T :.
by no,:Ilin,:ar transformation of the slj.n-c . -urthermore, in tie-' (oisidelrf.-A rc' I. I.

for different gain-frequency responses th•re, will exist cerl-ain syst1remric elr'z

difff-ririj from zero, calculable by formula (1..).

• . ._ . .. . . . . . . . . . .. ... .. . . . . .4;,-



(H, (a)I' - IH, (i)I'I I + So S (a) da*
2& 5 h2

5UH, ('i)l' + jH, (I S. (a) dSo (0)do
"-• (i07. 14)

In particu~ar, when ii1 (ioJ)I KI F2 (icu)j ( i.e., if only gains of the channels

dilfer) and with approximation (10.5.12) we will have a quite. simple expression

Caculation of SDB for approximations (10.5.26) and (10.5.16) will lead, ccvi.-

ously, to formula (10.7.5), since S.R. as we already noted, coincides wit.h (10.7.

wheot (, << 1, which in turn reduces to (iO.7.5).

The spectral density of parametric fluctuations we shall consider again for

ide!rSical filters (when systematic error is• equal to 0, equivalent spectral dens*...y

of error is also small, and parametric fluctuations give an appreciable contribution

to total error of measurement). In this case it completely coincides with (10.5.23).

We sum up our investigation. First*-*,. :*'': twr wviti Identical channels the

circ~uit of Pig. O.i5 for the method of scanning with cumpn.nc:;ation ,ar)] the circuit

for the method of' IAC (Pigs 0.i.7 and IO.2"; have absolutely identical accuracy,

rather close to the potential accuracy ," These methods. The circuit of Fig. 10.16

1',r tie method of scanning with compen. ni ; Se In -..:s-curacy to the.e circuits

only at low frequencie r., sanning. With it.sYeas.. ;the fr:.quency of scanning

accuracy of this !.I.rcuit monotonically worsens, attaining a limit of approximately

ha., i tq magnitude at low frequencies of .ct:anning.

NornIdentity of channels influences, in general, different circumits, diffrn" -.

' , the circuits 0i' Figs. 10.15 and 10.17 with nonidentical channels accuracy rmail...

absolutely identical. In these circuits the basic influence on accuracy is rendered

emily by nunidentity of the phase-frequency responses of the filters, leading to

S dc'cze:se o(' the tranimission fact•or of the radio channel and through it to increase

of ecuivalent spectral] density.

In the circuits of Figs. 10.16 and i.1, the basic influence on accuracy comes

"from nondentlty r.' the gain-frequency, rospS•'e of f.th filters, Tn the ci.riii of

1ig. 1;. 1 'for the method of scanning with compeinsat.on this nunidertity lead:; to

th~e appearance uf a component of' error caused] by nonlinear trarisfermation (I the

siftI /ai, nmr] in the ,ircu i. for thie TAC method (F!týg . 11 ItV), 'urthre iure, it leadsI -550-



to the appearance of systematic error.

Now we introduce considerations about the technical complexity of the considered

circuits.

As we already said in § 10.5, the most complicated components of goniometor

circuits are the UPCh's, mixers with inversion of phase modulation, and amplitude

modulators. It is easy to see that circuits with compensation contain the least

number of such components: each of these circuits has 2 channels .h ruch eomp:nents

and provides measurement of angular target data in two planes. It is easy I, -'e

that the circuit of the IAC method (Fig. i0.17) for measurement of angular coe•,i:•aos

in two planes will already require 3 such channels (since here there should be i

channel with the sum signal and 2 channels with the difference signal), arid L:,e ,i,-

cult of Fig. iO.18 even requires 4 channels (2 channel for measurement of tic anle..

in orie plane and 2 in the other). Thus, the circuits of the method of scanning wilhk

compensation are the simplest, the circuit of the IAC method of Fig. 10.1( is morei

complicated, and the circuit; of Fig. i0.18 is the most complicated.

If we assume that making both the phase-frequency responses of filters anecj

their gain-frequency responses identical is a difficult task, then among the oolsid-

ered set of circuits the circuit of Fig. 10.15 of the method of scaninlg it: w 0::-

pensation will have obvious advantages over the other circuits: maving tfo gi'at.,•t A
accuracy and simplicity, it is least critical to nonidentity of c-hann-:ls, llow,.,:r,

in many cases it is easier to ensure identity of gain-fre-uer•,••y rfesp,_,ur § ]'_._

In this case the advantage, for the same reasons, will lie or th(e side ,. of o.:tt :ui

(Fig, 10.i6) of the method of scanning with compensation with use, in it of low I'n..-

qucericies of scanning. However, in view of the small differenct of accuraic:- ot ;,..-

diffurent circuits these recommendations one should consider very relative, aai t.

best solution can be realized only by taking into account the concreco sltuaeton, Ii

§ 10.8. Method of Phase Center Scanning&

Let us turn to investigation of phase methods of direc-tion fiding, uo;t., f

direction finding of a target effects connected with, the detpendenci, (ori.d.'r i. .t

condJtionnc) of phases of arriving radar signals on angular cooruina o1 i ;.: ,, t

The simplert of the phase methods of dlrec ion finding I.:c tt-ot.'i ,f" the

s 'arinilnI. The givc:n method, if it I c poss.. ,ie to oan,' so, Is tl -"

the iJtci,,d, 01' pattern sl .ali-ing.

,: ,h (! i ierlo. 01 to i.,f m• rth d :j i.,,', il [ i . .'' O '1 . i 1 0 ' i. . 2;,
i Wii lb .I,,. ]'fo~quenci'n z ." ,;li..f);c•,i ,,.q' 1*1.!. V '8X •]•i.,, : •,2 1 : 2;, .' il n-,I"".: . .. ; ', .

-554-



incl-uedo in the law of' measurement of the phase o.f the arriving signal, and at low

frequencies of scanning this law will be distorted by phase fluctuations. Here

intuition does not suggest any measures of compensating phase fluctuations. S t;ud(Iy

etthe potential 01' this method, therefore, is of special -rinterest.

10.8.1. Optimum Circuit for the Method of Phiase Center Scanning

thuptimium. circuit for the method of phase center scanning is. easily rbtainedj

fr-ým the general cIrcQuit of' Fig. 10.7 if' we there sr", n -I L (o-ne recC-Ivin:; ant'mrin*),

I(i.e.*, toie signal during rec eptio 107 1WL fQ, tInt'ri ! G ~' :'.Ul j-3:' oI.

an10 1(t, a) is expresscd by formula (..).Slub.-titut~in,- these- dateinf.. . -

We t ti theu optimum Circuit of the mieth~od of phase- ceinter scanning In btne ftorn.r

depic; tooý in Lig. 10.21, The circuit for measurement of ithe angle int thE other pa

will be o.bviou1sly, th~e safm%, only iiulN

tiplitcatiort by ii(t) mrust. be replace'c ';ii

multiplication by a furs; tion varyirotj

according to the law of mrotion, of. the:

ovojection of' the phase centter in the,

oncoi-n'. PI'ne output signal of the

OMs(v tWAW C0 t?]D antenna system here- ii~dielatJ otr

:1., 21 .. optimuAm circuIt of' the radio te
atosof -a gronio-meter using phase centc;;canlI hioteei ol

s-canning!. 1) "opti-mum. filters with fre- Ictrdnn.Aociaiyo eeo

ccurSfPl:-,troat 1jcl(j ~l'htlol proceeds to. one, of to' e hmcnfels

~t u a sail tcar sh-ifting the p)hase of this signal. 71/2-. Tiieer, the sigrnal in

7.'1,3t~iI mu] tilp]iled by a functio)n varying according to the law ofscanning

o, !I Cttr-(ole exactly, by th~e projec~tilonl of tlhis fuolc tion .in theic;C

ci' t ecnue nl).Al'ter such transformations signalz of both channels, arC

;lLDoru.-: by an optimwum filter with response (10.3.25) and are multiplied.

.rt its~~clmoaning of these trans-formations is appro)ximately theý saino as in

tivo o.ptimumn ofrti 71' te meth~od o;f pattern sc.anning. Mult~iplying the received

si ,ý;.a 1 by Staclo wh~i. h varl o 5 b.; the l-aw of' phss'' ce:±tc~ : scanninzg, we trtan.c he rod

bA'e ,1Oci spC f1c ofliJun-'its (.fi theý 5 igrial, enailguse ful inflormnation, to thc

~,~i ow-amfilt er-, isiga. rAiihiuirom c:, rin ses wi tioult lossi of' o;ful; I1,U niora i of)I

oh[l, toe i ,o.ai. It A cc cL-dses that itxre cis riot all., cOmnpensatio oft ''Ieas';1]. . ta hC;



of the signal. Inasmuch as this circuit is optimum, then from this there follows

the conclusion about the impossiblility of compensation of phase fluctuations of the

signal. In order to grasp the peculiarities distinguishing phase from amplitude

fluctuations, partial compensation of which turns out to be possible, we note the

following: addition of a constant to amplitude will change its law of distribution ii
of probabilities, but addition of' a constant to phase will not change its distribu.-

Lion of probabilities. This graphically shows that fluctuations of phase lead r()

more significant distortion of information included in tne phase than occurs fo:r

amplitudes.

10,8.2. Equivalent Spectral Density of the Optimum Circuit
for the Method of Phase Center Scanning

Let us consider potential accuracy of measurement of angles by the methcd oi*

phase center scanning. Considering in formula (1O.3.)i) n 1, substituting .here

expressiorn (10.2.7) and producing the n.cessary calculations, we obtain J

ODl
SO,- C t 4)2d

SONY ( S,1  
__0 ___ so (f + k9

lc~s S(.SQ+ doW
I + hSO ((0) J

where

T - perlod of phase center scanning;

27,/TCI( - angular frequency of scanning;

- wavelength;

d - maximum deviation of the phase center from Its center positon.

In the other plane SC) .• will have the same form, only cc and c ,i mu, b,

replaced by s and I Skl 2 , expressed analogously to (10.8.2) through thu law ci,

motion of the projection of the phase cente- in this plane.

Let us consider certain limiting cases. With high frequencies of scanninvi w:

obtain

SO~ SOW,\:~j~ dol'
$,)' +

C#.1



From this it is clear that the best scanning is, symmetric,, scanning of the phase

center, whe-re cto = 0. Then (1n.8.3) takes form

Son t 7 Fd -TSO n dol]108so.,=, " -OD-

coinciding with (i0.4.8) with replacement of ta by rd/X, and of c 2 by cp.

Regarding magnitudes of coefficients c and s4 it is possible to conduct
' O 5

reasoning analogous to the reasoning regarding coelficlients c ard s' for the meticha

of pattern scanning (§ 10.4+). Here it will beome ,lear that i' it is requ.re.d to

measure only one angle, the best scanning- wiil be Jn':- of the phase center ttwo

extreme positions in the plane of this angle, where c. = i and s" = 0. If, however,

it is required to measure angles in two planes with identical accuracy, the law of

scanning of the phase center one should select in such a manner that cp = 2S 2

Subsequently, we assume namely the latter.

At low frequencies of scanning, obviously, So' -•m, i.e., measurement of aSngu-

lar coordinates is impossible.

As h- -c (decrease of noises) we obtain

Icon? S; 1b~~Q~ Ž aaji' (aO.82)
'C 

=
Thus, for the method of phase center zoanning due to fluctuations of the pna1CC

ou thtc signal for finite Q there oxiostý e-l COr 01 'Ieas-rre:ent diff!erlng from zero

cvenr with complete elimination or ioi' u.

%ur investigation of the general case we produce by for-mula (1,.8.1) a calcla-

tiert u1sig, approxi.rLation (10.3.26) for S,,t). Lct US cunonidor the ca.se of uniform

c :L.ICI' scanning of the phase center, i.e., with cq+_ = 1/2, and with i i ;1, cj

= ,u, l�tre we obtain

+ V , ' (0 +.. 6)

S whte I = /•SAfe.

Curvob of' the aependence of' or, h, calculatea by this formula (for different

values of C), are shuwn in Fig. 10.22. From t~ie curves it is clear that with growthi

of n spectral density S(Tq, monotonically drops to a certain finite quantity, seeking

0 as -w.o With decrease of ' it monotonically Inc.reases, incriasing to irrinity. i
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Fig. 10.22. The dependence of SO0,1 on h

for the method of phase center scanning.

10.8.3 Investigation of the Synthesized Circuit for the Method
of Phase Conter Scanning

Let us consider now the question of the real aecuracy of the circuit of FJI.

10.21. We assume that filters in this circuit have pulse response h(t) cos [Wt

+ b(t)]. We introduce also designations analogous to (10.5.?), The output signa!-

of the circuit of Fig. 10.21 here will have the form

wl0=Re -,t)e'('"'.()u7) A -¶--__

where y(T)- received signal.

Subsequently we shall limit ourselves to the case of uniform circu~ar scan>

of the phase center !n the aperture plane, where o(t) d cos Ot.

Calculation by the usual rules using jormula (io.t.5) ardi (a Y..li) g~w .;

-a•

- 24 R_ eH,(iw)H,(iw) Is,(c -- s.(-+n)jdw,(-555-

Si ~-555- •



X D ud " +If, (i)r1 jH (io)r1 + +S , (+ )J" d <

X I Ho (Ito -+ 0)111 [1 +- h. (to)] [I + -/S. (w +. L)] dw X

X SRe H, I)If, (i)(SoSoo) -s°(,a+f)w}'. (+c3.i.•.)

It is also easy to calculate that systematic error A = 0. From (10.8.,9) it is

clear that nonidentity of gain-frequency responses little affects accuracy of the

cir:uit; nonidentity of phase-frequency responses leads to decrease of K and, cef--

sequently, to increase of Here considerable divergence of phasý;e r,.SLt, sco _:aL

even lead to change of the sign of K

Calculation by formula (10.8.9) we pcrfoim on the assumption of identity of t2

filters, approximating their frequency responses by formula (I0.5.i2). here wc

tain for S,,,an expression coinciding with (10.5.17), only factor

((. + X) /4 a Af G + 2(1 + X) 2 ] befuore ;the braces must be replaced by the sip;ý,l*

+ (i + x) 2/(md/") 2 Af 0  . This will inLruduce definite changes in the law cf

the dependence of S on h, x and I. In particular, for small x we will have the

fullowing expression for B:

Ifrom whIch we see infinite growth of S_.. -, For large x w, o. tain

alxd ,2 ( lo. E. I :ý

•Ieru we see the exceptional criticality of the circuit to expansion of the

pu•:.•3•o of the f1lt.ers. Equivalenit spectral density increases proportionall>.'

z-. 1vowever, th(; dependence on the frequency of scanning is preserved. Increa:',,

of the frequency of scanning leads to considerable decrease of the equivalint

.3peutral density.

;lith respect 'o limiting cases for ý we note that for large, C the expre;s.Lor.

icr S31 will coincide with (it.h3.(,') (witn rrpJIacurricnt of ýL by wd/X), i.e., in thi,;

t-ase accurecy of the considered circuit coinciaes with the accuracy of the circuit

i .ig. i1.8 fur ti,,a ,nnd ui tterncni..' ,r small hve

(0++ +.x,+ +,, X)

some (2 + 1/- 2 -411/r+ + _ j



i.e., the drop of accuracj is propor-

tional to .

MIN 
7 1 ' -• Curves of the dependence of

S•/S O on h, calculated with these

- same approximations, are shown in J.

Fig. 10.23.

As can be seen from these curves,

" --"- 7with high frequencies of scanning A

100) the considered circuit suf-

. ficiently well realizes potential- / -- A
/ accuracy of the method in a wji,; rango gc

- _-_____ - of variation of x(x = 2-i0). For lwer

* --- frequencies of scanning ( J = 10) acCi1-

S /racy of the circuit already will

___.,_ - sharply depend on x (for h i change

Thus, results of investigation c.A

Fig. 10.23. The dependence of '/SORT the method of phase center ncaniir

h for a q,,,as .is-optJmum circult of the rad.lo
channeal of a goniometer with phase center can be summarized in the following
sca'rnning: - .J.-- C 1-0.

way; this riethod isapplicat~lý oni;

with sufficiently high frecjuencies of . car-ind (1. - .0o), where it ensures accut:.-y

equal to the accuracy of high-frequency scanning of the directional pattern (or the_

method of scanning with compensation or IAC), only ta = 7rd/X and the received p•,-_.r

are identical; the synthesized circuit of the method of phase seanning is not v,.r;:

critical to the degree of matching of filters with the spectrum of fluctuatioue r,

signal only at very high frequencies of' -ý.nning; already at, r 10 it te,.- .'.

critical that it is possible to place in doubt the expediencv Cf its pra.e tic,.i-

realization. j
From the obtained results it is clear that in many 'zs.s the Ji:thjed ,_.

cent•er scanning is less desirable in comparison with the alx:ve-co•nsiderod ampiiiVut',

me-(,IAodLa ( icection, fi,-ding.

LL



§ 10.9. Method of Instantaneous Phase Cinparison of Signals

10.9.1. Optimum Circuits and. Potential C
Accuracy for IPC

The method of instantaneous phase comparison of signals (IPC) is the phase

-analog of the IAC'method. In IPC circuits the presence of several outputs of the

antenna array with separated phase centers means that phase fluctuations of the

received signals differ only by' a constant component, and, consequently, there exist

the prerequisites for compensation of phase fluctuations. This indicates that from

the IPC method we are justifi;d in expecting higher accuracy of measurements during

operation on a fluctuating signal, than from the method of phase center scanning.

The circuit of the optimum radio channel for IPC is easy to obtain from the

general circuit of Fig. 10.7 if we there set n = 2 (two receiving antennas), U ai(t,

a) = I (amplitudes of the received signals are identical), and we introduce 0,(t, a)

according to expressions (10.2.8). The circuit of the radio channel of IPC is

obtained here in the form depicted in

Fig. 10.24, which can easily be abso-

lutely identically transformed to the

form depicted in Fig. 10.25.

In both variants of optimum IPC

circuits signals from the output of the

antenna system after transformations

of the type of addition or subtraction

of these signals enter two channels.

Fig. 10.2k. Variant of the optimum cir-
cuit with format of the sum a ir- There the signals are 'heterodyned, wherecutwith formation of the sum and differ-

ence signals of the radio channel of a
goniometer for IPC. 1) optimum filters heterodyne signals proceeding into thezc

with frequency response HI Or!T (iW). channels are shifted in phase ir/2.

Then the signals are filtered by an optimum filter of type (10.3.25) and are multi-

plied. Both circuits are very simple and are similar to the circuit of the radio

channel with phase center scanning (if in the latter we exclude multiplication by

the function varying according to the law of scanning).

Potential accuracy of IPC can be calculated by formula (10.3.31) if there we

set n = 2, Uai(t, a) = 1, and introduce Yit, a) by formula (10.2.8). Then

IoT dh kSo(*) don (i0.9.1)
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This formula will completely coincide

) with (10.6.5), characterizing the potential

accuracy of the method of scanning with corn-

pensation and IAC, if there te replace La on

by rd/X (as we agreed, c2 . 1/2). It follows

from this that potential accuracy of IPC is

identical with potential accuracy of IAC (or

the method of scanning with compensation), if
Fig. ±0.25. Variant of the'opti-
mum circuit (without formation of the total received powers in both cases are
the sum ard difference signals) of identica= and if 4a - -wd/k. Accuracy of the
the radio channel of a goniometer
for IPC. 1) optimum filters with
frequency response HI OnT(iw). method of phase center scanning nears the

accuracy of IPC only at high frequencies of

scanning (if the received total powers in both cases are identical).

The dependence of SonT on different factors was studied in sufficient detail in

1 ±0.6.

±0.9.2. Investigation of Synthesized Circuits for IPC

Let us analyze real accuracy of synethesized circuits of IPC. All assumptions

about circuits and designations we keep the same as in the preceding paragraph. We

consider first the circuit of Fig. 10.24. The output signal of this circuit has the

form

z(I)Re -9 IV. -[v(s) +v (,s)] n (¶e'*' d-cX

X Q-,)1 (,) -, (),i) (10.9.2)

where y1 (t) - are the received signals.

Substituting this expression in (i0.5.5), (10.5.6), (10.5.11) and (10.5.22),

we can calculate K., 4, S•. and Snap. It is interesting to note that the results

here are absolutely the same as for the circuit of Fig. 10.15 or for the circuit of

Fig. 10.17, only 4a is replaced by rd/%, i.e., K. is expresse6 by formula (10.7.2),

t. by formula (10.7.3), A - 0, and Snsp (with A.dentical filters) is expr.ssed by

Zormula (10. 7. 6). Invnstigation of accuracy of these circuit,- was conducted in

deta.l In 1 10.7. We rorall the basic results of tilis invl'stigation: with identical

channels the circuit well realizes potential accuracy of measurement; the degree

or mnfctbfnP of filters w ith the apectru, of signal fluctat 'o,,' w•a•kly Influt•rcrs



accuracy of the circuic; che greatest danger to 2dentJ.ty of ciannels is nonideritiJy

(. jinas'-1reA'eney response.sý of filters, leading to decrease of K A and increase of

The circuit of Fig. 10.25 in its prope•rties, as IJt turns out, coracýiderabl]y

differs from the circuit of Fig. iO.24. The output signal of the circuit of Fig.

10.25 has, obviously, the form (10.9.2), only under the sign of Lhe first integral

instead of the combination of received signals there should be y,(T), and undo•r thet-

seoond integral - y2,(T). Substitution of this expreasilon in (i0.1. ;) after simple

ca]t-ulations gives ior K• again the expression (10.7.2) (with repiacra:o t Lf a Q

sd/,). However, the other characteristics of the circuit, turn out to be differcc,

In p'irtiuUlar, 2•, f'or this circuit equals

Sum --- [1 fr (is) I' I 1 (isa) ' (1 +- hz S,(w))',--[-

4--- h S,(W)' Re H, (iw)Hf*,(iw)Ij do +

+4-A fim If, (is) 11*2 (is) S, (w) dw} XH% e r Is (is) S.~s ds 2- -w+--2h Xmi)1'(w)• d ý ReH, lliH*(.S!).

].'rthormore, systematic error A for this circuit is different; x, ro .ni( is

t:q-Aal tu c
2 m Ift1 (h(o) 1. (1w) S, (w) dw

t44S1 Ic A I Re fIf (w) 11*, (ivo)S, (ca) din(1.. a
-00

With idunrtijal filters, obviously, accuracy of both circuits of Fig. i0.24 and

iJ.. ,25 are identical. However, nonidentity o01 filters in the circuit of Pig.

I ',.vao. to considerably more serious consequences than in thte circuit of Fi'.

[,U.24. Analysis of expression (10.9.3) shows that with nonidentical filters In t,-:

lcircuit, of Fg. io.25 there occurs decrease of K and, consequently, increase of

3 tu the same measure as for the circuit of Fig. 10.24. However, nunidentity of

flt•.(ers here leads to the appearance of a component of equivalent spectral. density

caus;d by nunlinear signal transformation. This compone.nt of equivalent spectral

density cauceq in particular, error of measurement in the considered circuit even

with total Thosence of noises. Finally, a very negative property or the considered

circuit Is the presence of systematic error with nonidentical filters. Let us note

thti thu basic influen-e on accuracy of tbp iJrsuit 1- rcndered only by nonldentity
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of phase-frequency responses of the filters. To the above we must add that the

circuit of Fig. 10.25 is more complicated technically than the circuit of Fig. i0.24,

since it, like the circuit of Fig. iO.i8, requires for measurement of the angles in

two planes four UPCh's, four mixers wibh inversion of phase modulation, etc., while

the circuit of Fig. ±0.23 in this respect is similar to the circuit of Fig. 10.17

end requires only three UPCh's, etc. On the basis of this we can draw conclusions

concerning the obvious advantages of the circuit of the IPC method of Fig. 10.24

over the circuit of Fig. 10.25. Let us note that investigation of real properties

of circuits leads to this conclurion. In ideal conditions both circuits are identi-

cal.

Thus, the IPC method has the same potential accuracy as IAC or the method of

scanning with compensation, if pa and -d/X are identical. Accuracy close to the

potential for the IPC method can be realized with success in practice by the circuit

of Fig. 10.24.

§ 10.10. The Method of Flat Scanning (Optimum Circuits)

Let us study the method of flat scanning or the method of tracking by puls-

packs. With this method, as was shown in § 10.2, there is realized tracking of

pulse packs of the received signal by an electronic circuit. Pulse packs are received

at the moments of passage of the directional pattern through the target during its

scanning in a certain angular sector, in which this target is located.

Thus, the method of tracking by pulse packs no longer belongs to methods with

a tracking antenna, and the preceding results, in particular, general results of

§ 10.3, here are not directly applicable. Synthesis of the optimum circuit here

should be done anew.

10.10.1. Synthesis of an Optimum Circuit
for the Method of Flat Scanning

Let us assume that the directional pattern (for power) of the antenna array of

a goniometer using the method of tracking by pulse packs has in plane of the measured

angle a symmetric form Gg(T). For g(•) we select the following normalization:

•, g (f 'dip -= 1,( O )

where i angular velocity of mcoton of the pattern over the sector;

TS period of repeti'tion of pulse packs.
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Antenna gain is accounted for by coefficient G. Here the received signal can

be recorded in the form (10.3.3), where 0(t, a) = 0 (the antenna array during recep-

tion does not introduce in the received signal any phase modulation), and Ua(t, a)

is determined by formula (10.2.6). The amplitude and phase modulations of the

sounding signal are arbitrary.

We introduce one assumption with respect to the character of fluctuations of

the received signal. The assumption we make here reduces to the fact that reflecting

properties of the target do not change during the time during which the directional

pattern passes over the target. This will lead the signal inside the pack to be

rigidly correlated or, so to speak, the pack will be "harmoniously fluctuating." Th:.

degree of correlatedness of different packs may, in general, be arbitrary, since tho

period of repetition of the packs almost always is comparible with the time of

correlation of fluctuations of the signal. Tihe assumption of "harmoniously fluctua-

ting" packs is very signfificant later.

Furthermore, we shall subsequently consider that the period of repetition Tr is

considerably less than the duration of a pulse pack. This assumption, in general,

is more limiting than the preceding one; however, :Ln many cases it to greater or

lesser extent is realized. Furthermore, it also will considerably facilitate our

finding of optimum operations for the method of tracking by pulse packs.

To find the operation of the optimum radio channel for the method of tracking

by packs we need, as usual, to first construct the likelihood functional L(a) of

parameter a. For th,.s we must solve integral equation (10.3.9) cr, ultimately,

equation (10.3.14). Solution of the last equation for the method of tracking by

pulse packs involves considerable difficulties, since here that method which we

used in examining goniometers with a tracking antenna is unapplicable. However here

very useful is our assumption of "harmoniously fluctuating packs." Really, function

Ua(t 2 , a) 2 , under the sign of the integral in (10.3.14) differs from zero only in

the environments of moments iT n + a/n, determined by the width of the directional

pattern and the rate of scanning (i - integers). We assume for definitiveness that

t-61< (a -m)Tn+asfl (A -,m+ 1) To +
+t-ILI < .(10.10.2)

The assumption of harmonicas fluctuations of the signal inside the packs means

thal during a time of the order of durati -oh of one pack the correlation function of

fluctuations of' signal p(t) practically does not vary. We also consider the assump-

tion ri omallness of the period of repetition of the signal Tr as compared to the
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duration of the pack, thanks to which it is possible under the sign of the integral

in (10.3°15) to replace Ju(t 2 )1 by its time-averaged value, which is equal to 1.

Here from equation (10.3.15) we can obtain the following expression (see also

Chapter VI.):

AfA P=VL+ _iUiO (10. 10.3 )

whi.rp h, as before, is the ratio of mean signal power to the power of noise in the

band of fluctuatlons of' the signal,

pi-PIO--)Tn"., v,,----- TrAf+,1•. k a-/I. (0.1c.4.l)

Thi..; e'uation is solved using discrete Fourier transforms. Considering

S,(s)•- T OAI. p(kT.) e-mT" .,

it L.; t.Ample to obtain
"6" Sor,(,)eeec-'srU

2-a AF + ASor.(W).d. (iO.iO.6)

We n',te that, as can be seen from (iO.i0.6), vj does not depend on a. Thus, we p

coulr not the whole function v(t,, t2), but only a set of its values Ii ...-

Screteý moments of time (10.1.0.2). However, this very set of values is necessary to

us Vor construction of the operation of' the optimum radio channel.

The operation of the optimum radio channel z(t) for the considered case should

be found from relationship

I• dinl L(') I

whelc a - estimated value of angle a, introduced in the radio channel from the oCU!x.,Li

of the tracking circuit [this is the distinction between (10.10.7) and (iO.J..).

Hence

. ~ ~ ReS 5UQI )U.(tz96)X<

X a (ti),,*(1J v (ti,1, ) g, (t,) g (ti) e~'"-"tdt,. I,:

e to the presence of function Ua(ti, a)Ua(t 2, a) in (10.10.8) under the sign

or une integral the integrand will differ from zero only in the environment ol'

moments of time (10.10.2) where function v(t 1 , t 2 ) takes value vi. In connectAon

with this (iO.10.8) can be rewritten in the form
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A-*G -U

* whe re

.z, r. -. U'(I, a)1 (0 y (tO~'dl; (,iO.i....aao) :_

6t- intervals of time of the order of the duration of n pulse pack.
Cor nsider now quantity hok, rolated to ' by rulationship

Ok' Te t,_S,.

Ii' we introduce the discrete Fourier transform of sequence hoi-

* r (i-) - TrV. N h,k ekhkr", (1o.io.i?)

foum (iG.10.i1) it is easy to find that

, ' + ISor(,) (1o. o0. ))

where SOT (w) is expressed by fcrmula (v.iu.•:,). L;.' the !ielp ol' hok exoression

(ao. I0.q) can be rewritten (with atciuracy to a proportionality factor) in thi fure-X is5~ ~ ~ ~ ~ (o ziiod 14 > ~h.Z

Then, consiue£ring (1i0,.10,1), -e,:an write

Sh•_ tzr " hk_ i U&,(t,) U (t) W t el"Odt=

--, U , + c/- i) U. (,a) a (t1 ) y (t) e"Sdlg

whtei-, function h(,(t) is introduced in such a way that ho)(kT) = h0k; Values .f this

S:uctonin the r-emaining momrents of' time are riot essential and can bt•- anything,

inasmuch as due to filtering pruperties of function Ua(t, a) they simply disappear.

Substituting (10.10.1,) in (lO.k0.14) , we obtain

5()Aý TS , h. I ( k T..(+,x/ U,((~~ a) X
t At . --A t

Sh. (s 1 c) U. (,c "°td U y ,)e*•dl
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or

Azhet(s U ) u(1, ¶)i 0y (';)e'"' d,, (10.10,16)

Thus, in the considered case the optimum operation already has a familiar form,

derived earlier (see Chapter VI). However, the pulse response of the optimum filter

h1(t) is assigned by the set of its values hok in muments of time kT11  by relation-

ships (10.10.12) and (iO.iO.i3). In the remaining moments of time values of pulse

response are arbitrary.

Let us consider this optimum filter in greater detail. We introduce for the.

correlation function of fluctuations of toe signal the approximation p(t) = Ie-2Afe Iti 4
- e0  I, i.e., we approximate the spectrum of fluctuations by expressi.onl

(i0.3.26). Here, from (iOiO.5) we obtain

Actert - (10 )
S -r,(S) p2 - 2p. Cos rt +, I

where 2 cTr-

By virtue of (iO.10.i3) we have

.. -hT. f.(I --p;) +p1 - 2p, co, uT. + I(10.10.1',

It is of interest to find the pulse response h(t) of the optimum filter in li, l,'Er

e( -" ' (10.1,.1G.,

i.e., the gain-frequency response of this filter has the form

Ij11(1m)j'=-- C

Hfere IHOT (io)) 2 , defined by relationship (it.i0.ih), should I, t P.,,,.

transform of sequence ce . We bring (10.10A18) to fo.:rm

GMHA. (iw)= -" • 1 -- e-)(r(
o r s A S _X • ' • , '

whe re A 4Vh lr5Ah/ (I 4--p 0 4-Pd-+
+ VAhT Alo (1 p') +-0 -- PC)';

BTn.hD (... P. 1+(± + -p

hTAJ. (I -- p,' ) I PC).1
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From this it is easy to find that the pulse response can be taken namely in the form

(10.10.19),

where
Inn AID

along 0 (10.10.22)

A and B are determined by formulas (10.10.21), and

C , Tyl t.(t - p.)

Thus, the optimum filter, as also in the preceding cases, has a frequency response

similar to the spectrum of fluctuations of the signal; however the width of the

'filter passband has a more complicated dependence on h. The passband also essen•IJall;

depends on the degree of correlatedness of neighboring pulse packs, i.e., on quantitý,

T n f" In particular, when T n Af0  >> I (neighboring pulse packs fluctuate

independently) and T, << T« the passband of the optimum filter should satisfy

condition

,, (10.10. 23)

where tr - duration of the pack.

Consequently, the optimum filter in this case should integrate every pack, where

response of the filter to a given pack should attenuate before the arrival of the

following pack. In Fig. 10.26 there is depicted the dependence of Afont on h for

different values of T * Af c" As can be seen from this figure, with growth of h,

AfrT increases; however the rate of this growth drops with increase of T Af c

(i.e., with constant h with growth of the number of correlated packs the passband of

the filter narrows). Physically these laws are understandable.

Operation (i0.i0.6) can easily be reduced to a real form analogously to how we

obtained expression (10.3.29). Here there become clear the block diagrams of the

optimum radio channel realizing operation (i0.i0.16). We can offer two block diagrams

of the optimum radio channel, depicted in Figs. 10.27 and 10.28. The circuit of

Fig. 10.27 is obtained when in expression (10.10.6) we carry out exact differentia-

tion with respect to parameter a. In this circuit the output signal from the

antenna is first heterodyned, as in other optimum circuits, and then enters two

channels. Ir these channels the signal is gated. Gate pulses in one channel in form

should coincide with the form of -the pack, and in the other channel - with the

derivative of the pack. The time position of the gate pulses is established in
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accordance with the measured delay of the.

_ _ / packs (i.e., in accordance with the

u - ,-measured angular position of the target).

- After gating, the signals are filtered by

d -f- optimum filters with response (10.0i.1.8) .

5 -/and are multiplied.

The block diagram of Fig. 1b2t IsA

obtained if we reila(,co calculatin of the

5 __________.__e 'drivative in (20.iG. )ar, i.rr , b ,;

calculation of thu difference. TIh

;Aigial in thiz cir,i'uIt arter HOe', Vi ,i

-- as in the preceding c~sze, enterv: tw,

channels where it Is gatod. Gate d.4
1 '+.-

in both chianel-l coincide in form wii•,

A4h rorn ofl the pul-t2; pack; hw,,;v r, Libue

are dctunod relative to each otnet in tiL,ý

tSLt 4 by a certain time iitnrfval. The timefIi
Vr'1•: I) , 0 . ;)fp,:ncicnce (it IA2 ... midwidti, po i i n o h s g t- u s s I

01 ci juptlull, I'llt'.r X o n h for rosition t i,-

(•Om~lot.'rs ucil!• ti i riothod A' flat lizhod in accordance: with the ,fLO'A9U,'fm

delay of the packI3; ho(wever their r, i v, 1
d," turI 4Y i* premicl-vud, 'Ihoj tir, :Agnu.i.; .re filtered, doted'A by a sqar'-..•. li
detectur, and one signal is s'ubtrarted from the other.

Fig, 10.27. Optimum circuit with Pig. 10.28. Optimum circuit with 'etuned

differentiation of gates of the gates of the radio channel of a gcniometer
r&dlv ohanjjl of u goniomr,ner with with flat scanning of the directional
flat. ;canning of the directional pattern: 1) optimum fIlter• with discrete

pattern: 1) optimum flIters with frequency response HOT (iw); 2) square-
dincrete frequency response
H (OT law detectors.
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The obtained circuits are very similar to the circuits of the optimum radio

channel of a range finder, if we ignore the form of the optimum filters and of the

gate pulses. This is understandable, since in both cases the matter ultimately

leads to measurement of delay of the signal relative to the beginning of the period.

Filtration was different due to the different fluctuating properties of the received

signal: if in range finders pulses of the signal whose delay was measured were

* rigidly correlated, the correlation coefficient of the equivalent packs of pulses in

the method of angular tracking by packs no longer is equal to unity. The form OT'

gate pulses is determined in the given case by the form of the pulse packs.

10.10.2. Equivalent Spectral Density of Optimum Circuits
for the Method of Flat Scanning

Let us consider now the potential accuracy of measurements using the method uf

flat scanning. Equivalent spectral density in this case can be presented in the forn',

X _iTl d,% d
IU IIsrO

where )
ee)t 5. (1o.10. 25)-

T'he form of the directional pattern a, ffects accuracy through quantity c. * et

us calculate this magnitude for some aprrc:'imai1on of the direct ional pattern. i1'

I' ta3ke a Gaussian ilrectionR, patterin

[taking into account normalization (1O.iO.1i)], where A! - width of the directional

pattern of a level of half power, then it is easy to find that

"es =2, (1o.0o.27)

From (i0.i0.25) it is clear that c2 increases infinitely with increase of the

steepness of the leading edge of the pack.

Let us consider fuormala (10.10.24) in greater detail. Obviously, as h -co

quantity Son 1 -0 0, i.e., In the absence of noises there does not exist fluctuating

error of target tracking, in spite of fluctuations of the received signal. As

h-,O
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Son. ,,,,t; pU
&=_O[ (10.10. 28)

i.e., accuracy decreases inversely proportionally to the square of the signal-to-

noise ratio. We also give the formula occurring for T n Af >> 1, i.e., with

independently fluctuating pulse packs:

son? 0-- • k-+ rATa " (1.10. 28,')

To more fully 6udge the laws governing variation of SOOT, we calculate it by

formula (10.i0.24) with approximation of the spectrum of signal fluctuations by

expression (10.3.26). Here, as was shown, ST (wu) is e2xpressed ty formula

(10.10.5). Substituting (10.10.5) in (10.10.24), we obtain

I. 1+.
-_____ __ 1+ V Ph.j~' Ih~g

i2r

S0n'r + + Afcoh' VQhTn&f )+ 2hTnAfc +p2
h(Tz4t,),+27nfe 2re (Io.10.29)

Curves of the dependence of S ,I on h for different values of T n Af0  are

shown in Fig. 10.29. As can be seen from this figure, S drops rather rapidly

with increase of h. Very curious is the dependence of S on T Af . With

growth of T Af for an assigned magnitude of h quantity S drops, I.e.,i- c <crT '

accuracy of angle measurement increases. The physical explanation of thiL phuncim-

enon is the following. Increase of T Af for a fixed h means that there occvurý-

decrease of the frequency of repetition of packs with increase of the energy in

each pack. As a result there is increased, if it is possible to express it thus,

the energy of signal sections which retain their coherence during reflection fron

a fluctuating target. Increase of accuracy due to this effect depends on 1.. Fc,

large h it is insignificant; for h = 1, S onT will decrease approximately by A !tact;or

of 4 (with change of T fl Af from 0.3 to 100).

In conclusion we note that for the method of tracking by packs It is sometiriec

profitable to take as the power characteristic the ratio of maximum signal power

(which would exist if the directiuial pattern of thc antenna alwqye "looked" at the

target) to the power of noise in the band of signal fluctuations•. Designating this

characteristic by hm, it is easy to find its relationship to h [with approxlmiat.on
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- - ______ - 10.1. A, of the directional patterni

11' we designate by 4) the macr~i.tude

F.Aff.of the examined angular sector anc considc-r

- 14fathat -QT 0, from (iO.10.i-JC) we obtain

- 1~~~e note thiat the o-rder cf mgi s

o1 h in for the method of tLcacling by pL-`.

INN packs is comparable with th(-. Qrder of

magnitude h for methods with a tracklflf,

- _____-antenna (since with these mr.ethods the

directional pattern of the antenna system

$always "looks" at the target). Inasmuen

h a., assael l Acp << (D for the method of
Flg. CI,-10.29. Dependence of'SMI on h takn ,ypý1l ak <h ie h
for the method of flat scanning of the takn byplepksh« m II e.Ith
dietoa toten method of tracking by pulse pacKs Jli L-.iJi

c,ýpowr i cosieraly nfeiortomethoscs with a tracking antenna. However, here

it, ~ ~ ~ ~ ~ ~ at i~ eesayt osielte furs t. I ons of' the method of tracking by

p ulse packs (tracking of many targe ,L), cosgijelling us to put, up with this loss in

terms of' power.

'§ 10.11. Investigation of' Synthesized Circuits
fr t7e Method of Flat Scanning

Let us pursue the study of real accuracy of the synthesized circuits of FAQ:ý.

1,_:` and J13.28 for the, method of flat scanning. We consider here certain back

1a'ssturs of the type of' various nonidentities and imperfeetnesses affecting. accuracy

ofc mea.curement of angles. First of all, the gate pulses fed to different channel--

of' the synthesized circuits are practically formed each separately, and therefore

will not be matched in form both with each other, and also with the form of the pulse

p~ck. Thus, "he gatco must be considered different and differing In form from the

poise pack.

Filters in the circuits should be matched with the spectrum of signal fluctua-

l ions. Hlowever, as already repeatedly noted, this matching cannot be realized
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sufficiently accurately practically, and during the analysis of the frequency re-

sponse of the filters it should be considered, in general, arbitrary. Regarding

identity of filters in each of the circuits, it is possible to consider it suffi-

ciently good.

10.ii.l. Investigation of a Circuit with .
Differentiation of Gate Pulses

Let us consider first the circuit of Fig. 10.27. We introduce for characteris- I
tics of the filters designation (10.5.2). urthermore, trains of gate nulsco

encering different channels of this circuit we desighate by u,(t) -and u 2 (t). Thl(en

the output signal can easily be reduced to the form'
z ( - Re r • - ' '( • "( ) • • w "( ) u. (,c -- ;),c" (•)'d X • - b . (• .1•

where x - delay of gate pulses issued by the tracking system.

By formula (10.5.5) it is easy to find that the slope of the discriminattion

characteristic of the considered circuit is determined by

K A TI, P r e H r .( w) 'S OT, ( w) dw IX IC "' (0) C g. (0) + C (0) C, 8(0)- (1,, W .. )
-Sir,

wheres e (ho) T " h (kT ")ceA °n -f discrete Fourier transform of the [,ul ~r r'e-

sponse envelope of the filters;

To

me*Q =,U(;

strokes designate derivatives (note that results obtained here are very similar

results of Chapter VII, dealing with range meters).

Furthermore, in this case there will exist systematic error equal to

C,()isCoe.0 QYCgs (0) + j 11r (iss) 11d.a 1 1 1 I)I SOT. (co i)

A - C',1 (0) Coe (0) + + CIO (0) C',V (0)

As can be seen from (iO.11.4), systematic error is absent if Cý,(O)
X (0) = o. This condition, obviously, means that one of the gate pulses ohould br,

symmetric and the other, asyýrýctric (with a syrruntrir pulse pack).

Equivalent spectral density in this case turns out to be equal to

-571-

. - wllm 
m " m m -• - , -



+I H, (. ( 1c, (0)c" (0) + c& ( (0) +

+ 20c (0) Coo (0) C,, (0)] + 2h"So,. (.) cd, (0) C2 (0)) d. X

X (j~ )C P . 0 .() 0H, .(is) I o, (a) do (1.15

From tnis exprecsion it is clear that whun C01 (O) C02(0) ý 0 there exists a

component of error caused by nonlinear transformation of the signal; it does not

depend on h and will give error of measurement with complete elimination of noisec.

This component of error disappears together with systematic error.

It is difficult to study in more detail the dependence of S... on different

parameters in view of the complexity of expression (10-.1.5). We will conduct this

study in two stages. First, we assume gating to be ideal; equivalent spectral

density during ideal gating we ahall designate by SMH. It is easy to find that

1nHr a u) r 11 + ASor. (a)] dca

$=mMr. (*),I ,r .((o6).6

We produc4 by formula (10.11.6) calzulation for the most typical approximations of

characteristics of the filter and of the spectrum of fluctuations of the signal. We

shall approximate the response envelope of the filters by expression h(t) = e

Theii by the formula (0.1l.2) we have

* i * 4 2 . c a b u ( 
(T --

( 1)

where W- A,

ratio of the effective passband of the filter to the width

of the band of fluctuations of the signal.

For SOT (w) we Introduce approximation (0O.i0.17). Substituting (10.10.17) in
Onk

(10.I1.6), we obtain
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+ IO-k+_ Fe6) ('- 4 "

.i - rwt+ -rA p *) (- .1.8

The curve of the dependence of SMMH/SonT on h, where SorT 1o calculated with

these same approximations and is given by formula (10.Ac.29), is shown in Fig. 1C.30.

As can be sen from the figure, nonmatching

of filters with the spectrum of fluctuations

00- " has greater influence, the larger quantity

T n A The difference botvwe,.n SMVH and

- - - - SOnT can attain a very considerable magni-

tude (a factor of 10 or more).

Zoe Knowing the dependence of SM&H/S nT

S zwas on basic parameters of the circuit, we con-

-_ - -esider now ratio %x'S/ H. - This ratio

Op- essentially depends on the form of the gate

S5 ~pulses. For simplicity we shall consider

* -- -• .- "~ that gate pulses possess the necessary

* symmetry. The influence of asymmetry of

10" x gate pulses was already estimated quali-

R "' tatively. If we consider, for instance,

gate pulses ui(t) symmetric, and gate pulses

Su 2 (t) asymmetric, in (10.11.5) we have the

F 1following simplification: C,2(0) = 0,

Fig. 1O.3O. The dependence of .UM/SOnT c() - , C1(0) = 0. Taking into
on h for circuits of the method of flat 1200
scanning: account this simplification, it is easy .:

-- rS/..I@- - - - el--%.J" ..... rahl.

see that for sufficiently large h (h 1 10)

ratio Sý ../S will not depend on characteristics of the filters, but will depend on

characteristic of the gate pulses:
Cs,, ,C C (Oo+C11(oC(O) (0.i. 9)

7 - Ci (0) C,, (0),'

We produce calculation by formula (10.11.9). For thin we approximate the

diTrct',0oral nattern of the antenna syritemby formula (i0.I0. 6). Pulse packs he re

h1avo, fcr:,
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wh,'ze • e . - duration .. f the pack at 1:\,elv 0.•. 0

Gate pulses u,(t) we approximate also by a Gaussian functibn -

wh, r- C', - duration of the gate pulse at level 0.5.

Gate pulses u,(t) we consider derivativec of Gaussian pulses, i.e.,

M, (t) = le " i.' .

With such approximations all coefficients in ('Vu.il.9) are easily calculated, as a

result of which we obtain

a--.J. -- L• '( 10.11.1i5)•,

where --.!! --

11'us, always S W 1S4. I The
, 1 .ign of equality is rJ',L&Led -when • 1.

-'.'The graph of the dependence of S /0

on ý for differernt values of' Tj Is shown

: .10.51.. As can be seen from

( this fi.gure, inporfectre•ss of gating can

lead to very great worsening of accuracy

of measurement.

Having dependence S.• 5i 1/So 0  (F!;,.

10.30) and % (Fig. 10.31), we

can, if we so desire, find the ratio

for S D/SonT We recall once again that

Fig. 10.31 is constructed for large h.

The spectral density of parametric

_ _ fluctuations will be given for the case

of idcal gating. It turns out, to be
1ig. 10.31, The dependence of , on

the relationship of durations of the pack equal to
and gate pulses in a circuit with differ-
entiation of gate pulses.
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air,

rHr, (l) I' $ora (a) do
! ) ~~~~soap ""2% i. .4

ujS3I tir 10~ V-O. w doe

As can be seen from this, it does not depend on h. If the filter has a ,uffi-

ciently wide band, Snap turns out to be equal to T coth TnAfo. Wirih decrease of'

Af. quantity Snap grows. When TnAfe a i we have 3Snap * Tn If the filter has a

sufficiently narrow band, then S f T coth Af Tnx, where x . AflAfe. Lawe

"governing the change of S here are as before, only the approximation ofnap zaT with increase of Af0 is slower.

10.11.2. Investigation of a Circuit with Detuned Gate PAt l.'a

Let us turn to consideration of the circuit of' Fig. iO.,. All (Ieign'3,An& wf

leave the same. The output signal of this circuit, obviously, haI- f1crm

.: From formula (10.5.5) it is easy to find that. the slc.pc of the discritranaLI,r,

characteristic of the given radio channel io; uqual to

Poo (Cie. (8))C,,I(a)l-C',.(-lC,(-)CI , .
' -1% I~T~1,Q)I S07 mHr.)' , ((is) .,o

Systematic error with the general assumptions with respect to the form of gdt.tý

pulses differs from zero and is equal to
air,

CI O C,)- Cie*(- 8),+ CO1 (0)-- Co (0)e)Sr()e i
"I I

As in the preceding case, systematic error is caused by nonidentity of go.Onai.
:,i ~Systematic error will be absent if Cli(O) W 0,,(0) and Cio(b) 20-),T, -:

conditions in general are rather rigid and practically signify identity of y'.t,:

pulses in both channels. Obviously, to en:ure identity of gato2 p:iloZ in tv,, (!hron'i?7,,

' ~~is practically more difficult than simply to ensure symmetry of gate III'e, 'far:h

:; ~channel, which was required for elimination of' systematic: er'or in th~e Anechn I

case. Thus, from this point of' view the cirr:uit of Fig. 1O.28 one, ,!-.hou]ld conf~i•l I' -

somewhat more critical to imperfectnesses of gating, than the! u:z,,l f Fig'lo.g i,,;,"
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U.qulI VIA I OntL. ;pluttaI d erii I ty frthrý Aozto~ -'uit I..;tt (!ua I to

-Cgs (2&)' + 21ISa. (a) [Cog (0) C, 8) - C., (0,',, $)I (--)

-Ce (N8) Cie (6) Cal (9) - Cal (-. 28) Cos (- 8) Cie (A)l 4+
+ h4' (a) [IO,() C,.( &)'I) do X

-P-

ýltvthlitil I i, t ~ o for ~3 there I~xirntc u ;orriponent cal.Ljec by rnori.l~near tLri~ris-

1SI'm-ILt~o: .i' I' 01' o;rtii , It will 1',i.vv fluc tualit,irL~ crror even wilthl corniplfteAc.ri:

U' ouI ~, ,iblit vumpon.ent. of error, dijea14Lj(uvr Wviwl U&co 0 2 ( -t,) . e*, 2i.

there, in noy~ni'h Irr

LILl~h~atLLiI Y gc.014'Lty .4Y '.'1i' 'dcr~. it, .1 also imnportanit to

iuoLab r in I,~ thl- i JI, 6 III oriI ha, ic ': ~~ LU t' 1, U 1; 1.,, . I,(, !'AI.t (if d t' turdi.rI L~17 o gate-

J.;'.A 1.~ 1, IlciHee it 1.1 114jeueoaVry to) note the! fI,11owiifL. timoiti" i' tiý cofluid(re(I

(,j r-cuit. viri',z fixtwoly app~roximates the uptliIj:t, tile leon (); however, in practle.e, fcv

offitti b Vil wil tobAAR1l 01rirall valu'1 of~0 )~[ Cd 1 'Ar Io.ii.rlmiflation eharacteriatiu

I WhIA dWill. 1.0Ad LLo dir~nn ' -rz~' :~ u'.~ of thp yte.Conse-

1J"I"1' to IIV11~fth(' cipenuponcu, (A' Fonii wi introduce approxinmation (10).11,10)

~ and gate P1ulo3Q U,(t) and U,(i.) we antsume identical and approxiinate them

by J~.ir'!L~lio (I.iiii) lore, ast 1, is eaay to calculate,

411a. 1.1

Wi... A, 67--wicith of thti directional patte~rn.

1) i('ý vrtph of Ov. U Upentrienco W, !' l 1 (~f(~ C",(oC,(b on 7 when ~, I

JI in Fit1g. 7. 17 (thovu thiz dependoairicu Ise _jv'niUij fur oth'r.r app rox.Jinrations of the

pj~lj; p)Rok Xano_ gatfe 1pu1eluea livw~er, fQIr U11dorctan'iir'Y qUrl.litA.tAVP laws one approxi-

r~at~iiiiufice). iualyuiej o.f F~ig, .1 of C~hapter V11 shows that C11 0)(ti)C 0 (o)

- (I () tie 2 0 ~?),arv corusequ~jntly, alim the. itopt! of' the discrimination character-

ii l.It~ain a trroximnurri at z 0.4, i, e., whon time dleturtintg of' gate pulses is

-5'(b -
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approximately 40% of the duration of the pack. Thus, namely such detuning is desir-

able in practice.

Investigation of the dependence of S. on different parameters, as in the pre-

ceding case, we produce in two stages. First we consider cases of ideally matched

gate pulses and zero detuning. The value of S• here we designate by I It is

not difficult to see that SH in this case is expressed again by formula (iO.ii.S).

Studying ratio S we examine, as in the preceding case, ratio ¾/•M1'H

For simplicity we shall consider that gate pulses are identical. Influence of non-

identity of gate pulses we have already studied qualitatively. Here, as it is eas;y

to see, for sufficiently large h (h 1 ±0) we have

S..S -- C' [C, (O)C. (b)'+C, (0) C14(- 8), -

C- Cu (28) C,. () C,, (8) - C,, (- 21) C,, (-•8) C,, (0)1 X<
X (a',. (a) C., (a-- C,, 1- ) C',, (-- &A1-'.; (10. 11. 2o)

Using the earlier Gaussian approximations for pulse packs and gate pulses, we

obtain

.._ The graph of the dependence of
SIM*

S - /S M /S on . for different values of

z is shown in Fig. 10.32. As can be

seen from this figure, the value z = 0,11

is characteristic in that approximately

34,2I '- at this z there occurs the local minimuii,

______-__ of SaWSzH, very close to unity. Thus,

mismatch of' gate pulses, if Qnlyj gat,

pulses in the various channels are

identical, with detuning 5 I,.,

IllI I ,# leads to considerable worst:•iii, i'

accuracy as compared with the Qasu u!

Fig. i.32. The dependence of S ideal gating, n

the relationship of durations of the pack,
gate pulges and detuning between gate Finishing the present section, we 4
pulses i-i a circuit with detuned gate
pulses. shall say several words on cumparison

of the circuits of Figs. 10.27 and I0.28 for the method of tracking by pulse packs.
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In accuracy the circults are almost iduntIcal. If, however, we talk about those

small differences which nevertheless take place, then it is possible to note somewhat.

lower criticality of the circuit of Fig. 10,27 to imperfectness of gating: to elimi.-

nate systematic error in the circuit of Fig. i0.27 it is necessary to ensure only

zyrnnetry of gate pulses, while in the circuit of Žig. 10.28 gate pulses must be

identical.

§ 10.12. Comparison of Methods of Direction Finding

For the practice of radar goniometry it is extr"a.ordinarily interestingly to Lay-.

comparative characteristics both of methods of angular direction finoing and .lt

of separate circuits of radar goniometer radio channels. Such comparison and basi,

conclusions from it were produced in the preceding sections; however it Is of' interest

to systematicallyv expound the questions pertinent here.

* N Potential accuracy corresponding to different methods of direction finding in

most cases is expressed by formulas of the same time. Namely for methods of pattitrn

scanning with high frequencies of scaniiing, scanning with compensation, IAC, phase

center scanning with high frequencies +' scrnnin-, -:IP, and, f4nally, flat scanning

(when h > 1) minimum equivalent spectral densiieu are expressed by the single formula
JI

S d.I
Sou, ["O4Ch' I~ l+hS.(,)bJ iftx

In (i0.]2a_'t) by h It is nicen;v 'o m i;'*;tni the rotlo o1' tho total mean

signal power recej.ivd lbj the anitenna jsy•tei of the cu~nium,•trr t. LUpwe of nloiste

acttng ir, one cha~nnel, and coefficient c is expressed through parameters of the

iy-,.'.,r.ýk-ter antenna system and di1Tfers for different methods of' direction finding;

for methods of pattern scanning, scanning with compensation and IAC

1(10212,2)

where PK- gain factor of the -directional pattern in the direction of the axis of

axis of scanning or the equisignal axis,

for the method of phase center sczanning and TP(!

c'g= (iov2.5

where d - amplitude of oscillations of the phase center or the dis!tance lJ;tWOL phase

cent, ers, X - wavelength;

for the method o1' flat scann:Ing -,
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where il- angular velocity of pattern scanning;

12 - period of repetition of packl3;

gi(q) - power directional pattern (appropriately normalivodf I
in particular, f'or a Gaussian directional patte~rn V

wheru A~-width of' the dire.-tioniv~ pattertI, fur th', 11!1PA, of halrf r',wf'r,

In all the enumerated cases, whan equivl#.1-nt aipecra1. durawiti" tior'-! Lxj'r'.-iC'l .1

by formula (±~~iit is rather simple 1to comrpareo Ynetlh')dfl ':' uj ?Ec1Ai.,,A1 flivd~hu

For this it ia necessary to Quinparo the ~nltooi r1i ha CoL'jI'lolli'.'II

cd fuLr the ai'fferent methods uf dircctiui. i, dn~ n)L±I! -L~j~rAt 'A df,ina.1-t'

noino, ratiojs 11 ivs poosible to indicatfi WIC, llwiw Il' til" Up' A'A~' U,-1.'

ant~erins% aynterft of the gor.iornotur in fixvd, ther, Ln the til't:Uod tf*.i:rtn wit I'I.

pensution, IMC and DIC, there in~ received MA.l thri powor refc.h)irg th'j a.joertl.ir': *IT L)(:

anturina zyntem; in thc, mo-thoda (A' patt's rn aiel plalc.u(artrhi.iv jrly ),rll ti-, [

reccived, i.e., the agrial-to-notic ratiO 1fur ti1'1oo 111#30146 In (Ajp 'tL).

that 1'c-t the above-mentioneil1 muthods.

In the mnutitud k'L flat. ~jsaia~itq, aio u.i~hy i. td , !Ai r, ;~ I '-Al I'cl -I, I' V1, ' I' P 1,

usually a minute share (of' ther cirior of'//4 where 14, - widthi t' till,~~u>r~

pattarrnj 4' - angular dimeri~iunr of thli iicmn imcfor) (if the pr-jyltj Mill Whim oul, if U

ruouivojd by art antenna with thri aesmm, ripor~ur ur. Ji~g thij IA2 iIIw 'Al-. l.' v

cumparizon of' the method uf' flat ~ucnitig with nitthoda IAC, iLl-C, £aI~til Jn I I

necesnory to conuidez' othtr tautical Vuucotioutio or tli"1 111JIt(tA ')1' 1110ai.I~,, 60:'~liL

fyirg Whu i~ndic~ated power luoccrj Th'Ahr" IS wrj igrnor~ titie Fri, 1,1'14 (A' 1,110, :. 1ii

uf tue m~riailning, no thodis of' direQ tiuj iliu io tli:j j,-Iji. tat v11wV i'. th'i~ "

to-noise ratiu blat. are the in#-thou Uf oziin Wi 1,11 cum110~a1 'di(4, Wzil Ll' 1r-

IM,~ ari.n lIPJ, where all thu powlir IJ1¶r01i'l Lh~ai.il., ',P._I to' i -Iii Y, --h.

Nlow Via Produce CompoalIz (it' glo aI1 i t Vrk 'SJr v, (dvit uuiiyl, '1~'. I~ 4) tlv

I'')rrr and un.r'u u. Ut' lh' apriztrfiU'f IIII'l ' MI'Lti~ JI' P $")I' th14 fll' fIvA1[ l1 Jd Ii 'l 4`14111 1 u Ii l i',

* ~Ll' Intlirlt~ wil~ ', compiel:uii'tjo, nid 34C',( ir ijtl L',f 0* If', llI nr:irr iiii'., w, 'LI,

a IqI(41JAE 141jJEItUI'O1 Vqii1,t djfiii'iii1 j ii .11 A,, Iif 1.1t /Ii' l tii 1 1", V' lt ':



these methods

C 2  (d) (10.12.6)

where X - wavelength.

Thus, comparison of the methods of pattern scanning, scanning with compensation

and IAC absolutely definitely testifies to the advantages of IAC snd the method of

scanning with compensation over the-method o'pattern scanning. Here the method of

scanning with compensation and IAC are equivalent.

We produce now comparison of the phase method with IAC. In a number of cases

the advantage of the phase method is obvious. Thl.s occurs when the antenrma system

aperture consists of two parts, separated a considerable distance d from each other.

Here quantity (wd/X)2 considerably exceeds the possible gain factors of the direc-

tional patterns, which can be provided due to the dimensions of the aperture of the

antenna system.

Less clear is the question of comparison of methods of IAC and IPC if the

aperture is of simple form, for instance square. If the dimension of the aperture

in the plane of the angle interesting is d, the gain factor of the directional

pattern which we will have for the IAC method is expressed by formula (10.12.6). But

it is absolutely obvious that if we use the IPC method, dividing the aperture into

two parts, we obtain a distance between phase centers equal to d/2. Putting d/2

instead of d in (10.12.3) and comparing the obtained expression with (10.12.6), we

see that IAC and IPC are equivalent. Thus, with an aperture of the assigned simple

form it is possible to use IPC or IAC.

Thus, consideration of slopes c did not change our corclusion concerning the

equivalence of IAC, IPC and scanning with compensation and their advantage with re-

spe'zt to methods of pattern scanning and phase center scanning, which in the same con-

Aitions are equivalent to one another.

For comparison of the method of flat scanning, for instance with IAC, it is

necessary to compare the square of the gain fa&tor of the directional pattern in

a 2IAC iwt (i0.12.'4). With a Gaussian approximation of the directional pattern

instead of (10.12.4) we have expression (10.12.5) for c 2 . With such an approximation

of the directional for IAC we have % a 2/AT2. Thus, for the method of flat scanning

on the assumption of equality of the mean received powers there is a somewhat better

result. However, as already noted, comparison of the method of flat scanning with

IAC, IPC and other mpthods is not quite just in view of tne difference of the
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tactical function of these methods.

We have till now left from consideration methods of pattern scanning and phase

scanning in cases when the frequencies of scanning are not too high. However, this

gap is easily filled if we recall results of comparison of these methods in the

shown cases with cases of high-frequency scanning. Such comparison was conducted

earlier and showed that accuracy of methods of pattern scanning and phase scanning

rather sharply drops with decrease of the frequency scanning. Numerically, the

drop of accuracy with decrease of frequency of scanning can be found from graphs

of Figs. iO.ii and 10.22. I-
Thus, we have compared the considered methods of direction finding. The best

one should recognize is the methods of scanning with compensation, IAC and IPC. PITe

wurst, results come from methods of pattern scanning and phase center scanning,

espe.cially at low frequencies of scanning.

5i.i3. Optimum Measurement of Angular Coordinates
by Antennas of Phased Array Type

'Till now we were occupied with synthesis and study of optimum radar meters of'

angular coordinates with assigned methods of direction finding. By this we under-

stood that there is assigned the structure of the antenna array of the goniomnetr,

i.e., there are determined operations produced on the electromagnetic field in the

aperture of the antenna array. Such a formulation of the problem is limited. It

does not give a complete answer to this question: if we are assigned the geometric

form and dimensions of the aperture of the antenna array, what method of dire;ction

finding will be best?

Certainly, it is possible by comparing all methods of direction findinc to

e&tablirh the best of them, However there is no guarantee that there will not teo

found a certain method of direction finding, not considered by us, which gives-

greater accuracy of angle measurement. In order to obtain an answer to this quI,.:4 h,,11

it is necessary to synthesize an optimum goniometer, originating, not from an assA.-ned

method of direction finding, but from an assigned aperture of tho, antenna

in one case, very important and interesting, the tachniquu. de;*e..lopAu ijn t,;.>

preceding sections permits us to carry out complete synthesis of the goni( ,orter cir-

cuit, inuludling operations produced in the Antenna system. We are talking about the

case when there are used antennas of the phased array type.

Such antennas, as it is known, consist of a set of discrti- radiators (usouallj

isotropic), each of which is fed current with its own amplitude and phase. Sel-ctJir,,1

Ir • ' ' : • ; • "•~~-58-i i-i i i1 I I I•



of w:iplitudes and phases of feed of the radiators permits us to obtain from the sys-

tem of radiators various forms of' directional patterns. Clearly, the sum of the

ei'f.ctive areas of the radiators is approximately equal. to the area. occupied by all

the radiators so that power losses due to the discrete s.tructure "Ina

arrays are insignificant. Interest in antennas of the phased a e.ent

has sharply increase_

During use of antennas of the phased

array type the received signals from e,',.v

Si-th radiator element u o tAe trvenn "ssally are fiis,

process'd separately up to and Inc. 11.o.:

transformation of frequencies, aud oi.:

then are they cross-processed. This
cross-processing determines the structure

"of the device, which should be selected

= •optimally.

ŽFg. 1U..3. Finding the forn of signals Let us assume that the antenna array
received by elements of an antenna array.

v.•:: -i~(I, ii elements, having (in a

certain system of coordinates) polar coordinates Ri, (i. 1- i (i n).

Vector nl of the normal to the incident wave (which we consider planar in the vicif. •I

of tho antenna) we assume has coordinates u and 0 (Pig. "U.35). If we designate by

cpO the phase of the incident wave at tiU 2,,, or co.-,-d.r~ates, thc phase of the

slgiual received by the i-th oit.men; ofl ai, a 2-:a -].e equal to

0. +~t 2g P)v+ (Ri sinat~ s, na Cos (P-j-+Ri Cos ai os a).

-:oen the received signals are recorded in the form

Mt (0= Re (1) u (t) X
v+ -(it, an ., san a Cos (P) +~ R, Cos 4, cos ]

Xe + V74+ n V)
whero . -- power of the signal received by the i-th element of the antenna,ci

*'i -- spectral density of noises acting in the channel of thi3 element.

Subsequently to facilitate calculation we shall limit our consideration to the

most important practical case of a flat square unifuvm array with identical elements

(Fig. 10.34). Here for definitiveness we shall consider the variant with a tracking

antenna, i.e., in the process of target trackiu6 the actual array turns to match the

normal to the array plane with the direction to the target. Considering here mais-

L match with respect to one of the coordinates equal to zero, as we did in all cases, F
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we can consider the array oriented

so that one of its sides (we call it

transverse) is parallel to the

leading edge of the incident wave.

Then signals received by elements

. -- - of transverse rows will be identical.

This is equivalent to observing n

signals of power m Pc .' where P c --

power received by one element; wL -

number of elements in the transvierso

row; n - number of elements in LiheI

longitudinal row. Denoting by d
Fig. i0.34. Square uniform antenna array.

the distance between elements in the

longitudinal row of the array, we see that the phase in the i-th row of radiators

(i 1, 2, ... , n, Fig. 10.31) is equal to

a)-rdsin a. (iO.15.i)

Thus, the received signals turn out to be equal to

yj (t) =

=d/mPo,1 ReEQ() uQ()e (eg 1jeria (. .2)1

We now use a-general expression for the operation of the optimum radio channel

(10.3.29). Substituting (10.3.1) in this formula, we obtain

g ii

z) : d 5, on.,•o(cs)cos fp(c-s)XX iyd(s)u,(s) sin [msr+ (s±9 IdsX

X 'hot--• coswnp(----)

"s-as %S)O(DP(9-) Yi(S)Ua(S)COS(wrS+!u(s))ds. (~55
it

The block diagram realizing this operation is depicted in Fig. 10.55. As ca±l U!

seen from this diagram, the signal from each element of the antenna is separated

into two channels, in which it is heterodyndc by, voltages shifter] relatliv: to earrn

other in phase by 7/2. Signals heterodyned with one phase air: added, are Lilternu

by an optimum filter with gain-frequency response curve (10.3.>) and entvcr f.r,,
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p~ha.5b(: ue ,t-e iAur axo refe~rcace vOltege(.,

Signals hct.2rodyncýd by vltaLge .-.il,

the other phi.se, are added with

scales 1, 2, .,, n, are f.'IltereJ

by tto ame filter uane t.nter the

other input oi the phase detectr.

Summnation with scales has a siniple
S~pn~'si,.a.l rseani~ng; ;he iurthc r- :a

g:.ven radiator is removed from t-,V-

i-th, tLe greater the inforsiat4,,n

about, angular coordinates in th-L

signal from this radiasor and the

gre•ater the weight with which thts

signal should be considered, Note

that the weights with which we con-

sider signals from different racia-
1 la. I.3. P•lec diagram of.,an cptImui.
reueiver during measurement of' angular t•,rs are determined ambiguously:.
co,,rdinites with the help of an antenna of
phaw.nl a't.ay-type: 1) adder; 2) optimu,. a. ta ' t,.e.Ž can ,c. used quailti-
filtes wi.th frequency response Hi OnT (iw)T ties C, 0 + 1, c + n

c is uny nuober, including a negative nu::,d- ;r. Operatior ' f +.lke circuit in rno way is.ý

c'hahiigd by titis.

We r<.,w calculrte p utse, !.ial en ' rea-u 'fothmulat (1 t.u2hu.r cousrdinates by a

p~hased array. F'or .,his we use general formula (it0.).i52). Substituting there expres-

si" ( . ) tl, equivalent spectral densJty Of measurement of one angle (takingI

S i:tto .c,:utL1, "the usual assumption that we hatve tc, measure both angles with identity.

S acouracy), we obtain the following formula:

I

where h.,- ratio of total signal power receiveU by all elements of the array to the

spectral density of noise in one channel;

d - distance between neighboring radiaturs;

X - wa'velength.
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We calculate the sum in (10.13.3); finally we find

So-,, = (io.$3.4)

I" + hzs (40) 3
-40

It is interesting for comparison to consider analogs of the methods of IAC and

IPC during use of phased arrays as antennas and to compare accuracy with the potuntial

accuracy found by us.

In the 1AC method all signcils

received by radiators are added, and

±- there will be formed a diff'erer,,., oul, Iý 1

representing the difference betw,-en tJ,(:

sum of the signals of one half o(j th..

rac~iators and tiee sum of the oiki!nalfe
of the other half of the rdiat.i.

i (ig.iC.36 . urtil'erj irocessinif All,

only be on these tU, sVI a,. ,

Fig. 10.36. Coupling of radiators of the s ina the :own o,,'tt- .array with the IAC method, on the signals (I.32,to 1~iJ•.0~,

the sum signal i;ý proprtllina., i.

g+(a)--- Cos sin aiv

(sum directional pattern), and the difference is proportional to I
g - (a) =si. sin a

(difference directional pattern). Comparing these expressions witAi (•",)i,?') ,od

considering normalization (10.3.1), it is easy to Qalculate the gain i'fcb,,,Y'Xti,,r

directional pattern entering all formulas for accuracy of the IA. moet),,u:

- n ud (4' . : :

i.e., the equivalent spectral density of the IAC method ii; rqu,,. ' '

S,(a)i n Ind
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Coinparing this expression with (10.,1.4), we see that the optimum method of measure-

ment of angles ensures somewhat higher accuracy than IAC; however this gain is

Insignificant. When n > 6

S'oul 4 n'- I 4

We shall now consider the IPC method. With this method radiators are coupled

as shown in Fig. 10.37, i.e., the signals of two groups of radiators are added

separately, and subsequently only the two sum signals thus obtained are processed.

These two signals are easily found by corre-

sponding summation of signals (I0.13.2). It is

easy to find that one of the sum signals diffev.

from the second only by complex factor

e iwl sina From this it is clear that

the equivalent base of the considered IPC method

Fig. 10.37. Coupling of radiators is equal to nd/t. Consequently, potential
of the array in tne IPC method.

accuracy of this method, too, is expressed by

formula (10.13.6). Thus, accuracies of IAC and IPC are identical and somewhat lower

than the accuracy of the optimum method of direction finding.

In the obtained results on synthesis of the optimum method of direction finding

using antennas of phased array type it would have been possible to pass to the limit

"� c , d - i/ n . H e r e , a d i s c r e t e a r r a y. i s tu z n e d i n t o a n a n t e n n a w i t h a c o n t i n u o u s

aperture (51.

Thus, from consideration of antennas of phased array type it is clear that there

cxlzts an optimum method of processing the field in the aperture of an antenna system

(method of direction finding) which does not reduce to the widely applied IAC or IT,

methods. However, accuracy of measurement provided by the optimum method insignift-

cantly exceeds accuracy of IAC or IPC (by 18% for equivalent spectral density), which

Las no opecial practical value.

§ 1.1•'~. :nel.ysis of Accuracy of Tracking Radar Goniometers

In the preceding sections we studied in detail radio channels of tracking radar

,oniome rrs. However accuracy of meacuremont of angular coordinates of a target by

rt tr r•ktrii goniometer ir, determinend to a considerable extent by thu ntructur'e of the

mot, htnt,, ,, rr:uits,. In Chapter V3 it was shown that, moan siquar(, I'luetuatlng error
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is determined by the characteristic of the radio channel SSE and characteristics of

the smoothing circuits, Thus, for instance, during application of linear smoothing

cireu.%ts with constant parameters error is determined by effective bandwidth of the

system afý , which depends basically from the form of the smoothing circuits.

Furthermore, by smoothing circuits we determine dynamic error, constituting a con-

siderable share of total error of tracking a target by angles.

The present section considers different types of smoothing circuits and analyzes

accuracy of measurement of angular coordinates by tracking radar goniometers.

iO.114.i. Influence of a System of Automatic Gain Control
on Accuracy of Tracking Goniometers

In analysis of accuracy of tracking radar goniometers it is necessary first of

all to consider the influence of the system of automatic gain control. From results

of Chapter II it follows that the AGC system can be considered in first approximation

a linear inertial amplifier of the signal amplitude envelope, the gain factor of

which depends on the level of amplitude of the signal. Action of AGC leads basically

to normalization of the output signal of the amplifier covered by the AGC loop, so

that the mean value of signal amplitude remains constant. In this approximation the

AGC system, as it is easy to see, does not affect the magnitude of equivalent spectral

density at the input of the discriminator.

However for analysis of accuracy of a tracking goniometer as a whole the AGC

system murt be taken into account. Actually, due to automatic gain control there

is established a definite gain factor of the radio channel, depending on the signal-

to-noise ratio. This leads to dependence of the effective bandwidth and other

characteristics of the closed tracking system on the signal-to-noise ratio, which in

a certain way affects fluctuating and dynamic error of a tracking goniometer.

In goniometers using one antenna the gain factor of the radio channel with

automatic gain control is calculated just as in § 7.10. The AGC loop in these

goniometers covers the UPCh, whose passband is sufficiently wide as compared to the

band of subsequent filters. The input signal of the radio channel ha: the fontn

(i0.3.3). Jain of the UPCh K is established in such a way that
yr

K72 (2N,•A- + Po) = const,
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where N0 - spectral density of noise;

Af -- oandwioth of the amplifier covered by the AGC loop.

Hence, as Lt is easy to see, the slope of the discrimination characteristic is-

equal to

I hI,= -, (Io, _4.i)

where ,= Y /Aff - ratio of the band of amplification of the UP(Th 1o Lhe band

K 0-- nslope of' the discrimination characteristic in the absence o.f

h - ratio of mean signal power to the power of noise in th'- ½ >

of signal fluctuations.

In circuits of goniometers using several antennas there exists a variety of

methods of coupling in automatic gain control. Most frequently automatic gain con-

trol is coupled in one of the channels, sim-ultaneously controlling amplification of

the remaining channels. In this case the slope of the discrimination characteristic

of the gonlometer has thtie form (10.14.1); however, by h it is necessary to under-

itand the signal-to-noise ratio of only ot,: one ehannel in whiich the AGC system is

coupled. In a number of cases to the AGC systION Lrc j.i simultaneously inserted

voltage frm several channels, taken with certain scales. The slope of the ,isri-

iuination characteristic will again be expr>::,s-d by formula (10.12.1), where by h it

-is neccssarv to understand the w-eighte! s: uf I..c signaJ-to-nol so ratios in the

channels to which the AGC system I,: ,:,.led. a ,uantjty K is calculated analogously

in miore comrplicate<] cases, too.

Besitc.-e• the influen;ce on the tr'ans'nifssion f'actor of the radio channel automatic

.a.in. control also leads to decrease of the spectra! density of parametric fluctuati( r,

,crease of the spectral density of parametric fluctuations is caused by the dk:.-m.u-

lating action of the AGC system. This decrease can be easily calculated with ti:t,.

rc.]p of results of Chapter II. According to (2.7.54) the spectral density of para-

metric: fluctuations 3(1) with the presence of an AGC system is connected with the

magnitude of S calculated in the preceding sections by relati,.,usbip

where n. a coefficient which depends on parameters of the AGOC system and the signal-

to-noise- ratn. vt,, vdtr-
n1 IA
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Hereh - the signal-to-noise ratio corresponding to a signal equal to the delay
0

level of the AGC system; nO - the value of parameter n corresponding t the delay

level (see also Paragraph 7.10.1).

10.14.2. Errors of Goniometers with Smoothing Circuits
with Constant Parameters

Usually in smoothing circuits of radar goniometers there are used filters with

.onstant parameters. Here it is essential that the structure of thu smoothing cir-

cuits of tracking goniometers in distinction from range finders and speed mnetersn,

turns out in a number of cases to be rather complicated, inasmuch as smoothing cirz- i
cuits include such elements as actuator motors, power amplifiers, etc., rlecesa.ry

for rotation of the antenna.

Changes of smoothing circuits here can be carried out only by introductic.zr ofl

additional correcting links.

Smoothing circuit transfer functions used in practice have one of the followJn,

fmI + ApT, 1 + p?.)'
H,()-- PT,)Q+pT,•' (Ip) - o+p?,)'(1+p,) ' -

, (pT) 0 + P, P U + pT,)' 0+Pro)I)

P I +pT)(-+p,)'' ''V P (I + 0T1 .t + ps,))

IH.
P 0 PTO0 + ro)'+,p,)8 (I + p•7",1 I

where T > T T,} 2 > 5

Smoothing circuits of a very simple type in the furm of an integrrator (Tf,-y' Lu, r)

or a double integrator (double RC-filter) with correction, studied in detail iri thW

preceding chapters, in the practice of radar goniometers are almost never met.

Therefore, we will pursue our study of meters with smoothing circuits of type

(i0.i4.3), using methods of approximation for calculation, developed in radar aut,-

mation, since obtaining of exact results here is very difficult in view of thre e.,nm-

plexity of these expressions.

Smoothing circuits are characterized by Q-factor D and time constants TV., 'J",:

T,.

However, in practice, smoothing circuits are better 'haract,.red by -.

generalized parameters, having considerably greater phy;ical and trchnical iranin:

Q-factor D, cutoff frequency (Z and reserve phase sta0ility w "-

Cutoff frequency W is determined by relationship
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thu reserve of phase stability

y = I + arg H (i-a). (iO.14.r)

ThMse parameters usually are assigned.

The relationship of time constants T,, T, and T with parameters D,ow0 and CPU

in general, is rather complicated; however with accuracy sufficient fur practical

applications it can be fixed as follows. -:

For an example we shall consider only function H1.(p) from (10.14.)). Results

fur the remaining transfer functions are establisht.. sb.;ulely an-igou;ly I'>in

(10.14.4) we have i :

It i.ý easy to see that i/T,< < < I/T.; considering x4 x• for x > i and

""I- f x < 1, for 11.) we ooa

The same result is obtained for trarnrer' :;';ir•ilon !{IT.(r). For transfer func-

tions of type .1.1 (p) and HIv(p) in an aIn.l',gnuý; i;a,y ýe v -fLo

We consider now the phase-frquIncy,v :W;i, .. ie LYxv',

arg Hf, (log)= - a, C tg v,, T, ii tg -me T, - arc tg w r,.

Considering that, arc t; x sw 7T/2 - i/k heti > I and arc tg x .x wrien r < 1ý it is

f2ai;y to I'Inc that; fur l(p)

where-

For transfer functions {1,1(p), }Ili(p) and IllV(P) analogouw expressions will

have the form

P. .+(,-To. lit-.(-

Analysis of errors of the used approx1mat1iA-r;; fhows that urrurs hemr ar'- fully

permi Lsillu [S)].
-S

-A

- 90- • '.



As can be seen from expressions (io.14.6) and (IO.14.10), time constants T.,

T and T are determined by parameters D, w,0 and p. ambiguously, i.e., there exists

a broad class of systems with assigned D, we and •e , but with different time con-

stants TVi T2 , and T Inasmuch as basic parameters D, co and q) are fixed, these

systems possess approximately identical dynamic properties; the difference of time

constants Ti, T2 and T3 plays a less essential role. However, from the point of

view of operation most profitable is the system for which ratio T2 /T 3 is minimum

(52]. Here, in particular, the system has a phase-frequency response changing little

near the cutoff frequency, which ensures constancy of T' with change of amplifica-

tion. Therefore in practice there are used basically systems possessing for assigned

D, w and qc a minimum value of ratio. T,/T. We subsequently will limit our con-

sideration to such systems.

Using expressions (10o.i4.8) and (iO.14.iO), in Table ±0.1. we give minimum values

of ratio T./T3 for fixed 1, w% and PC

From this table it is easy to obtain expressions for tirwi constants T1i, T," andl

T3 in terms of basic parameters of the smoothing circuits, 1, o) 0 and (c' given in

Table i0.2.
Tablei._______What has been presented can bt, aiutiua-

cuits of goniom,!ter syatems are ho,,ra,ntrpr-
Hi(p) 1( D iled by bazic Dia'r,.t,..v.: Co aR110:'

Transfer functions of' smoothing circuitri

Hi ()have form (10.14i.3~), whi-re Ti. T2~. ar n 'I Y

-- are exprensoa through i), tu ~.And Q ,. V/10.

Hill (p) -- the hulp ofI Tablj I,;:, !

- / ) Numerical valuna of ba';ic paramntert,

1)for real tracklig nyrtvmn havy, dJll,•Yr,:t

valmuon The 'renuvo p)htiio attdili.t,y

tiiually ii; ne•c,-.ted fIn riI'ch a nnhr th O ,m

20" 9 OV *; IJi)IIIIJ]d qý

W aiol I,, can have dif'f'erenf. val.utwe dperiding upon thrv amishl7imhri!Ii, ,l' Ltii ra, r

ejarI y Lo ;$ .' L , Li,I urdl'r tit' tI. C-,. ,t, s U1 , 1 , '



Table 10.2
He@) _________,_______

- __ _ 11__ _______ ...
2 (Do

4 4

2 2W

4 4n

Let us turn to study of fluctuating errors. These errors, as At iz known, are

expressed through the effective bandwidth of the tracking system. '

Let us calculate effective bandwidths of closed systems for all t•ypes of

smoothing circuits (10.14.3). 'They are determined by expression

where K.- the slope of te discrimination characteristic of the radio channel.

Substituting fcr H(im) consecutively the. expressions from (10.14.3) and calcu-

lating this integral in every case, we ;btain (calculated by M. M. Kreymerman):

for HI-(p)

+ KaD, (T2 + -T,) ( +-T, + T')I(,o ) -
- K1DT 4 ( I +2TOrI 0- TT (I + T .jA)- T ,)'--

- Kj8jD (r, + 2r,)' + T, (T, -+ 2T,) (T, + 2T, +

(KADT22)(I -)KADT,)]"; (io.i4.1.)



A.== iDK: T, (2T + T- KADTTS (1 +KMDT,) +

)I+ KIM (T, + 2T6) (2T, + Tj. [- TT, (1 + KxDT,)' -
- TKAD (2T, + To), + (Ts + 2T,) (T, + 2T.) x

X (I + KjDT,)]- ' (10o. 14. 14 )

for HIV(p)

Also' -41 x {,T2 ITITIKD -- 2 (T, + To) (I + 2DT,)I +

+ 2K2 D72T TrT, (KDTr + 2T, + 2T,) -

- 4K. D'T2 (T,+ To) (T2 + TJ+ 4T1T3) -2

2K62 -T- TD (T, + T,) + K(nDT 2T + 2T, +

+ 2")Y + 4KADTIT, (T, + T,)2 (1 + 2DT,) -

- 2KAD (TI+ T,) (T + T: + 4T,T,) (KADT2 + 2T, +

+-2T,)){- 73 K iD'+4KADTT• (T,-j T,)(I +
+ 2T,KAD) + KADTIT, (T? + T3- + 4T=T,) (KADT 2 +
+.2T,-+ 2T+ ) - 2KAD (T, + T,) (T? + T32 + 4TT)' --

- , (1 + 2KADT,) (KADT!2 + 2T,-+ 2T)--

- 4TT, (T, + T,)' (1 + 2KADT,) -+ 2(T,+T,) (T? + T32 +

+4T,T,) (1 + 2KADT=) (KADT• + 2T, + 2T)}-'. (1o. i4.15)

Expressions (10.14.12)-(10.14.15) give exact values of the effective passbands

of the closed system. It is possible to express them in parameters D, C'c and W..

according to the formulas (10.14.6)-(10.14.10). For large values of K.D/Wc

(KAD/coc 4 10), which practically always takes place, in Table 10.3 there are given

simple approximate expressions for effective bands of a closed tracking system.

Inasmuch as N depends on the signal-to-noise ratio in the radio channel, Af

also will depend on this ratio. We note that for large reserves of phase stability

( 50°)Afs for all types of transfer function has the same asymptotic form

Knowing the effective band of the closed tracking system, we can write an expres-

sion for fluctuating error of angle measurement, which is equal to a# = 2Sam~Af .t

To decrease fluctuating error it is necessary, obviously, to decrease Af ad. As

can be ce'.'n from Table i0.3, to decrease Af it is necessary to decrease (z and

Ka; how;wov-r it is necessary to consider that dynamic errors here wil.l increaoe.

0ptImurn values of parameter:] of smoothing circuits must be selected from
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'"'i of' a epromi�bt.een dynamic ,,r,J luctLat.Lng errors.

41-0C

,I
T3abl. 1.0J3 1

I, (p) 61.,
-( - 1

--- I•

{~~ ~~~~Hl (P)o•vt <-•i,--

K.A 0 J1/6) + ,
##Il (P) KASI 1,4 .... p. iK,<

t 3 .

;ý -lt< io - - I, oI

/'v (p) KAOC Kat.14--16)- Po

:veral wor'ds about the: condition -/,, : "' uo-rd by us, allowing to obtain

a. V-;'Y ;sirnlle uj'resionc for effective hands. 'Pnit. conditioli is realized practically

alwntyjn if h >> 1, With decrease of h, as can be seen from expression (iu.i4 .1),

"" i tarts to drop, and with Sufflicently •am•,l1 values of Il approximate expressions
1ev et'ec tiv banos of Table I0v3 will .Lreal n, . ±w'rne. This is necessary

tL ;,hI:ider during ptvct i'},t. caIc•'Lati, .i

A* an exam, l:z we hall calclate iluctuating error of measurement of an angle

by. 41 .'cter- using lAg with the circuit of Fig.. 10.1'7 (or the method of scanning with

coirp,.iat.icon with the circuit of Fig. 10.15)). We assume that smoothing circuits

have, a tranisfer function of type 8I(p). We consider that automatic gain control is

C c]o.,sed through the sum channel.

i-r' calculation of' fluctuating error we use formula (10.7.5) for and

(10.1",1) for K,, (where h is replaced by hZ - the signal-to-nois(e. ratio in the sum

channel, and K - 1). The expression for the effective band we take from Table

S 10.5. We have

(2+Xt., SA + P.

Six'7 2K+pI• , .. (10.14.1.6) 1
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We take in (10.14.16) x - 5, P C 30'. Ratio % /4af we will change. Curves

of the dependence of 2a on hZ for different wc /4Arc and y shown in Fig. 10.38.

When using these graphs it is necessary

__0 *A to consider that expression (10.14.16) is

valid, as we already noted, when

guS DK /wo Z 10, i.e., if D = 400 i/sec and

W03 " = iO i/see, expression (10.14.16) is

valid only when K 1/4. This means that

the curves of Fig. 10.33 are valid only up I
to values i/(i + y/hZ) a 1/4, For instance, I

at y = 5 we should have h. k i.6; at

y = 100 we have considerably greater

limitations on the permissible range of

values of hz (hE Z 33). In order to have

a dependence of on h., valid for all

t VI 0 values of h>,, it is necessary in (io.i4.16)

Fig. 10.38. Example of the dependence to substitute the exact value of the
of fluctuating error of a tracking
goniometer on the signal-to-noise ratio, effective band of the closed system
- CU 0.; - - - CU0/fAf =

cOO .1- 0  f(i0.14.12)-(iO.i14.15). This would lead

to very bulky expressions, and therefore we will limit ourselves to the given approxi-

mate calculations, covering, incidentally, the most interesting cases for practice.

We shall now study dynamic errors of tracking goniometer systems. First of all

we shall consider an input of the form

I-- i

where $%(t) - known functions;

•i - random normally distributed coefficients with characteristics

The presentation of an input in the form (io.14.i-1) is rather general and

covers a large number of practically important cases. This we already discussed in

detail in the preceding chapters.

In Chapter VI we showed that mean square dynamic error in the considered caco(

will be expressed by formula
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m -

',.- M ,,,(t), (io. 14.18)

where functions ek(t) have Laplace transforms

(p)-- + KAM (p)

ek(p) -- Laplace transform of functions $,(t);

_H(p) - transfer function of the smoothing circuits.

For smoothing circuits of any of the types considered here, having astatlcism

of the ist oraer, for large t we have

,, (t) I,, (0(bAA. 1.2. •

Formula (10.14.19) is most often used in practice for estimating dynamic errors

of tracking systems. Relationships (10.14.18) and (10.14.19) show that the steady-

state value of dynamic error only exists when functions O%(t) have a bounded ist

derivative. Otherwise dynamic error grows without limit. For instance, in the case

of linear functions

a .(t)= # J+ a, (i0o.4.20)

we have

a,• (10.14•. 21)

Mean square dynamic error here is 1:qual to
M m

%. = _ ,, (10.14.22)

Thus, dynamic error is inversely proportional to the slope of' the discrimination

characteristic K and Q-factor D. With decrease of K,,, taking place with decrease 01

the signal-to-noise ratio, dynamic error increases. For example, in Fig. 10.39

there is given the dependence of Da /a, on h. Analogously we can consider error

with more complicated inputs of form (10.14-17).

in the considered simple case dynamic and fluctuating components of total

tracking error are minimized independently. To lower the first component it is

necessary to increase Q-factor D); to lower the second-t'is necessary to increase.the4  .

cutoff frequency wc " However, consideration of more complicabAd inputs leads to

more complicated conditions of a minimum of overall error, ensuing from the com-

promise between dynamic and fluctuating errors.
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Let us consider dynamic errors with purely random inputs. As it is known,

during depletion [? processing (text misprint)] of a stationary random input with

spectral density S•(•c) there exists dynamic

error, the mean square of which is equal to

fins A-2 NS - IsI, ,*) .do. (±o.14.23) 1
For calculation by this formula we

approximate S,,(w)*by expression

10, - 01> 0. (io. 14.• 24:

Let us consider particular cases A

occurring with different-relationships of

Fig. 10.39. Example of the dependence L , Ti, T2 T 3.
of dynamic error of a tracking goniom- We turn to transfer function HJp)

eter on the signal-to-noise ratio with I

with random coefficients.
an input in the form of Inown functions Wesalueppoiton

D I q'I D IH, 00))l 1 ,00I 0 1-wr T. <,,• (1o.14.25) i

(which already were used in deriving formula (10.14.6)). We note that when

w < 1/< 2 quantity IHl(iW)I >> I..

Here j

2' dw

8 3

RUN031 2~ 7- 3I3H(

a' " $" "- '

.I< (io.14.26)

Analogously for the remaining types of transfer functions we obtain the following

results: ii range Tw < 1 quantity o' in all cases is identical and is expressed

by forinula (10.i.26); in range 1i/I' < fu K< i/,P for transfer function HIII(p) the

square ol error o 2 has the same form as for H.lp), i.e., is expressed by formula

(iO.i4.?u), and for functD.ons 1AIT(P) and ]-[iV(p) by
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Note that the obtained formulas occur, of course, only for the case of K which

is not too small [so that it is valid to disregard the one in the denominator of the

integrand in (io.i4.23)]. Time constant T in formulas (I0.14.26) and (10.14.27)

can be replaced, if desired, bv the expression containing parameters Wn , D and T

from Table I0.3.

In Fig, 10.40 we constructed from formula (10.14.26) the dependence of

KUp;H/aO0= 2O ( mean square value of input) on the width of thie spectrum of

input CU 4 for different cco " During calculation

of this dependence we assumed D =400 i/uee,
o00n 

0 0.1 see. Note that a section

of this dependence to w. = I cps is valid when

SDK.4T [?] >> i, i.e., Kd >> 1.25.10-3 [for

y = 100 in formula (10.14.1) the pernissible

signal-to-,;, ratio h >> 1.0-i] The section

W > I cps is valid practically only at K. 1,

i.e., for rather low noise levels.

Let us turn to the question of optimum selec-

tioi ), parameteis of omoothing circuits in the
0( presence of a random input. This question we

shall consider purely illustratively, inasmuch

as complete analysis is very difficult to perform

here. Let us assume that the random inputt has a

&*PAP square spectrum (i0.14.24) with i/T 1 < <i/T,.

Fig. 10.40. Example of' the If the smoothing circuit has transfer function
dependence of dynamic error of
a tracking goniometer on the HI(p), total error of tracking is equal (when
width of the spectrum of a ran-
dom input. U) T, >> I)

@a~~a@:. K + 5.4Qý %a+ a-o S...+ p.
4,2~ 4OST~~ 2J2

Varying this expression with respect to wC and %c P it is easy to Zinc tnat the

optimum cutoff frequency is equal to
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-=0,7-., (io.ik.29)7( 4A+ . Sae(0.J 9

and the optimum reserve of phase stability for K. P OflT =2/5, i~e., % = I
67.,

Substituting•this value "ot,'c in (104.'132), we'obtain' (for Ki - ±).

- o0,=0.88-, • (io.14. 3o) *1
Thus, the optimum cutoff frequency is proportional to the bandwidth of the

spectrum of the random input; with growth of the spectral density of this input Wc

inbreases, and with growth of it drops; however, the dependency of a) on these

quantities is rather weak.

The given example shows that there exist optimum values of parameters of

smoothing circuits, depending on the type of input. Optimum values depend also on

the signal-to-noise ratio (through K• and equivalent spectral density %,,) and

should be adjusted with change of this ratio. In an analogous way we can investigate

cases of other inputs.

Let us consider now in brief the question of the influence of parametric fluctua-

tions. As shown in Chapter VI, the presence of parametric fluctuations leads to

increase of errors of measurement. With smoothing circuits with constant parameters

this increase is expressed by relationship (6.2.39).' As we have seen earlier, the

spectral density of parametric fluctuations in almost all cases is expressed by

formula (10.5.23) with (10.5.24). In Paragraph 10.14.1 it is shown that with AGC

the spectral density of parametric fluctuations decreases according to relationship

(10.14.2). From this we find that for the considered circuit error taking into

account parametric fluctuations is expressed by formula

• ~ ~ ~ n --0 .=p/, -- • x(I-I-x) n=').

where a -2 error ignoring parametric fluctuations, and the remaining designations

are the same as before [see designations for formulas (10.5.24) and (10.14.2)].

10.14.3. Optimum Smoothing Circuits and Smoothing

Circuits with Variable Parameters J

Smoothing circuits considered in the preceding paragraph, as already noted, are

practically the most commonly used in radar'goniometers.

However, it is of interest to'discuss other possible types of smoothing circuits.
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Although the problem of" their synthesis in principle is solved in the rather general

aaaumptions about the character of the input (see § 6.8), an erfective solution

cannot always be obtained. The simplest solutions are obtained when the input is a

stationary random process or a process with stationary increments. The smoothing

filter here has constant parameters, depending on the statistical properties of the

input. Here the smoothing circuits synthesized for the goniometer will not differ

at all from smoothing circuits of a range finder or speed meter if properties of

the input in all these cases are identical. Therefore all results obtained in

Chapters VII and IX regarding optimum smoothing circuits almost without change can

be tranferredto the case of measurement of angles. For instance, if the angular

'coordinate of the target is presented in the form of the double integral of white

noise with spectral density B2, the optimum smoothing filter is a double integrator

with correction, with transfer function

S I.: K"(t,,,+ p,) ,( 0.14.31)

where . and Tk are expressed by characteristics of the radio channel KA and S., in

the following way:

K,=-LI X; V'3;S... T (10.14.32)

(coefficient B2 has dimensionality [deg 2 cps 3) and is equal to the mean square of the

angular velocity developed by the target in I sec). Variance of total error of

measurement in this case is equal to

e'= �2(BIS,. )"tN (io.i4.33)

Let us consider, for example, a tracking goniometer in which there is used the

IAC method. The circuit of the goniometer with smoothing circuits (10.14.31) is

depicted in Fig. 10.15. From formulas (10.7.5) and (10.11.33) we find that total

error is equal to

.(2+11x+x+2+ llx 1/4

IRt ,1 3 (io.i4.34)

Considering ta 1.4/4, where 69 - width of' the directional pattern, we reduce

formula (10.14.34) to a form convenient for calculation

0,87 BI 2+ li
A1%-',t

-0



Curves of the dependence of a/AT on hZ for various x are shown in Fig. ±O.41.

Daring calculation we assumed B2 - i07 deg 2 cps3, 69 = 10, Afc = 30 cps.

Note that parameters of the optimum

smoothing filter (10.14.32) depend on the

signal-to-noise ratio. With practical reali-

zation of such a filter they will be selected.,

of course, constant, and error can be expres-

sed by a fromula differing from (i0.i4.33).

This and similar cases were considered in

detail in Chapters VII and IX. The results

obtained there are easily generalized to the

case of goniometers.

In many cases a minimum of errors in

radar meters is ensured with the use of
Fig. 10.41. The dependence of total
error of an tracking goniometer on the smoothing circuits with variable parameters.
signal-to-noise ratio with an input in
the form of the double integral of Practically such circuits in radar goniom-
white noise.

eters are almost never used; however,

considering the prospects of development of technology, it is of interest to analyze

error of radar goniometers using smoothing filters with variable parameters. Here

again it is necessary to note that from the point of view of smoothing the goniometer

has no individual specific character as compared to meters of other types. Therefore,

results obtained for range finders and speed meters are almost completely transferable

to the case of goniometers.

Let us briefly discuss basic propositions concerning smoothing circuits with

variable parameters. If the angular target coordinate varies according to the law

where gi - normally distributed random variables; i = 0; irk = Mik; $i(t) - known

functions, the optimum smoothing filter will have variable parameters. Its pulse re-

sponne (with an optimum discriminator) and variance of error are expressed by formulas

ir, ror instance, the angular tarrut coordinate varies according to the law

* () =(O~+ 820) + (PI + Pat),
where IA , 4.2oa, accordlng to (6.8.54) pulsc response a , thc amoothing Ci;lter

in equal ~



02 2

'+ +,6 +

Variance of error of measurement is found in the form

all +3.S+ 416p

I '+ I ll+ + 411011
SORT~ ~ ~ I Mn 2SI2

With growth of' t error seeks 0. For large t, obviously, we have

O -- 4So,_.T.

With arbitrary smoothing circuits with variable parameters error of tracking

is determined by formula (6.2.15). No difficulties appear during use of this

formula.

§ 10.15. Nonlinear Phenomena in Tracking Goniometers

The whole preceding analysis of tracking radar goniometers was based on their

linearized presentation. Such a presentation is valid if tracking of angles is

carried out with sufficiently high accuracy. In this case it turns out that the mean

value of the output signal of the radio channel is proportional to the current angu-

lar mismatch, and the spectral density of noises does not depend on mismatch. How-

ever, these idealizations take place only with a comparatively high signal-to-noise

ratio. In real conditions, especially in the ease of the action of interferences,

essentially decreasing the signal-to-noise, mismatch during tracking may be consid-

erable.

Here the discrimination and fluctuation characteristcs of the radio channel

of the goniometer become nonlinear functions of mismatch. Study of the process ci'

tracking and of errors of goniometers in this regime represents an important and

interesting task.

The task of investigating tracking systems in a nonlinear regime was considered

in § 6.3. This problem is very complicated, and results obtained upon its solution

are approximate and particular. However by them we can draw certain conclusions

about nonlinear phenomena in tracking goniometers and find the order of numerlcal

characteristics of these phenomena. We then use these results to study the pheno-

mena of breakoff of tracking occurring with a sufriciently high level of noises,

when increasing mismatch becomes comparable to the width of the directional pattern.
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In order to best approximate conditions in which we produced analysis in § 6.3,

we shall limit ourselves henceforth to the simplified situation when the fluctuation

characteristic in required limits can be considered constant and equal to the

characteristic % used everywhere earlier. This assumption is well Justified,

since due to demodulating properties of automatic gain control the Zluctuation char-

acteristic is essentially leveled. Furthermore,'mosf fht5i'resting is the case of

allowing for nonlinearity of the discrimination characteristic. In the preceding

chapters, conforming to requirements of linear theory, we calculated only the slope

of the discrimination characteristic at zero mismatch. Now we need, in general,

knowledge of all the behavior of the discrimination characteristics.

The form of the discrimination characteristics of radar goniometers essentially

depends on the methods of direction finding utilized and, in general, turns out to

be very complicated. We will limit ourselves to consideration, as an example, of a

goniometer using the IAC method. For a goniometer with TAC, in which reception of

signals is carried out by two directional patterns having form. eir() and g2 (w), the

received signals, as it is known, can be rccordcd in the form of' formula (10.3.3),

in which n = 2, and Ui(t, a) are determined by relationships (10.2.7). Determining

for any of the circuits of the IAC method the error signal and averaging, we obtain

(assuming identity of filters in the circuits) for the discrimination characteristic

the following expression:

"a(a) ReMH, (Ao) H* (Iu)) s3 (w) dw)( (X0.i[).i)

xg(~ + a)-- (Y - =K 2 (y. + a) - g (, -

Thus, the form of the discrimination characteristic essentially depends on tle --

form of the directional pattern. We use the very wide-spread cosine approximation
of the directional pattern, considering the diagrvams identical:

giMv- g, t' Cos 2Ay

where AT - width of the directional pattern at the level of half power.

We also assume -y, = Ap/2. Here,
! •a (a) == h -1( si

We obtained a discrimination charrcutori~otir: in th(u Verm in which it was approxi-

mated in § ('.3. 0on.;equently, it is sib l'• t, n': di rutly tof' f,•lto u' § ,3,

considering the half-width of the se:lnctod region A 14,
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From results of .it folow that the critical value of the ratio of mean

square error of the linearized system cJ to the half-width of the selected region

A - A4 at which breakoff of tracking occurs is (oil /6y)X1 - 0.2 (by the criterion

of sharp increase of the average time to the firat. bheakuff) end (a. /6T) 014

(by the criterion of sharp growth of mean squartr error).

Considering a. -, (dynamni errors are absentt) and using cxprecol8orn

S.for the investigated circuit (10.7.5), it is easy to find the critical signal-

to-noise ratio, at which failure occurs

f2+1x 'x+2+ IlxV AX +-
S-==0,2 or 0,1.

Hence when x -i and2Af /I..± - iO we have 1,,- 2., (by the criterion of

sharp growth of mean square error). 'he ol'taintid mAgnitudeo of h coinciae in order

with those that. are known from practice.

Consideration of more complicated exam•,ipa,., accounting for tho proximity (J' the

obtained results, does not have n#eanin,,.

§ IQ.16 . f2.akQHvE~ ~rimt

We shall investigate radar goniomet,.oir not ()ntalning t'edbacke arnd #Ivin.r arn

eitimate of the angular coordinate cf a tartgcot at thy output uf ai (ifirl circuit.

There exist nany tactical taska In whi' ju;!t p.tiu•t.- o V ,lu. su:h gordomiterl l, rtrj

expedient.

As a rule, nontracking goniomiterc; w,,1k 1,'j th1, IoliLwing Vj 111111,. , DirectISIfIal

patterns ol tne antenna ayetem vf nu,•., 6; ivetr'. thi -ea,-tor of0'- ihi ValUa

of the angular coordinates of the, targot. T''f LIrc,1ri,.4ter ct•'ninta two bavie Uri.; I

a unit of primary proceosing of the signal un(AI u unit of secondlAry J)I'uUuvolIlI'. 1[''

unit of primary processing continuously innu,:o en ,#rýt.matc of' the angu]ar c,.,."lnmxti

of a target from the obmierved realizatiosi of a rignal of durAtion At,. Iloil time

4t, naturally, is sufrIcilantly small so tht, the angular ooordinatm "Vf thti target

will not vary, The unit of' aevondary pr,.cvusaing rimnothets the data of prirriary pro-

cepuslrg taking Iritc, aucount a priorz lawi; &1 char_,'" of' angular coordirnat,:s,,

F Synthesis of an optimum non',rackinng mctyr wan rvrformed in § 0,6. In thai raui

of' a rapidly fluctuating signal anti for riuff'id!'Jr0t'ly 'iargo eignal-t,-ntiai rat1'.

the optimum operation is given by expre'•s i, (I,.,',.), Th tru,:turE '4 th12 1)i,,I, rltrn

nontracking meter turrn out to be vory oloPo to thmt wl),1|i was doi•i'm'Ihd iLbuVt,



The meter contains a unit, of' primary pruvessing, ca]llod in Chaptler VI an "Ostimatur

unit," which isouueo the mayIrnun, 11ikehfiv- astifrrt of' the IrneacUrec pstram~tor from

the segment of realization of thn signal. durIng a tima cnxiiderahlhy excesiding thn

timei of correlation of the nignal, but a~naidra~ly s;ml,~r.r' lAAz.'h time, or urrr-

#4~ reipondo given by rnlott1iro4Iip (lo.b,5). Poijg;-,44M m_.,~tt~Uk(,y or nuntrac1~int:

meteor here tcoireAid!4u with1 the agaruracy of tr&a',lnti, fm-tirv4,

Thi'hn we nhal2. otucy mytithmalo ,r up' lioi,~ ii-t,1itita~ltii w~,rd-mItirnif ~' 'An1n Lh 1

IAC' ani4 )VIC ifn'thodn. F'or thassn ryithodlit 11, In ponnb1r t,, uciiijilotuty Vinid Wll, ~AI1

cli x'uit uf' aI tiontrra!y.1t &Qrr4Mi omn(ror 3XA', tu L- nurt'i wI u, LI Jtrt~afi attiihtI

ot' ths" dii'actioria3 P~attuern) . Win'thar mth-Q AN U1, H"'u ' il.f J1 1Iltiili i-

p~onlhCjmljtqrf azv j~ prar'tincal2y rrA uod

wil ii IM

W" Utt4.Vt iltiz' 9 1 14Jj M I 'll, 4'4,i 1 41, W tA, .L tl t,3j~, IA' ttthl, WI th~l plth A 4 I -. t' Iiji1

re"'Gia 'd 4. pair (it' digI&ALi, luý if. (h''.e ,, ) ? a ~ U41I., a) Parts '301~,0'rrfine' Ly I if'1}

(If(' L11¶. iltarval U1, loatiri'uw- U s.,'~ nie.thu's lo itnia, U.' 1 g'ivieby ialr (10 dis" I- ).

~I'Lk~~ Iitszya oXobss r~_44.-4 11'1dritp ji ri(, tý t r th, Ia frio.l IT. W42ofdu . -Ai

rhI, 1AAF)' , 4 11 a,111 11 I. I l ci May . nag al lI ei ei th r 11: r.1 mle , V)t~Iil, I~ 1") V/'~1t

P4 11 (Y1--11) (is to dis+ (t 11 (14'14

f'tsi mA i nr, aJil umn4t Livl. hi LII i 4'Ah.±1!'s ( ,,. 4 ~ t h. ha f11P1 U(t I,) w

11"A ha i i f". If,.5. I ) tu -* UIlf I f, 1-0' I 'iir Iea. ,4t"s a,~ '.wi t, ~U'

~Iri~d!I1I'O1'peg p(,4t,. LtJ~~t1'1 4' -- ,) (Is, I, dt LP I, Ij'41 -I' 14' (I ~ ~ g Is) -- 0,! ~,Ji~.1



A% cu.it be tsiuuil Pviijri (io~ ,v,.3), runl:Lion v(r.,, t.~) vd11. nut do-p-ric1 -,r, a.

We vairropost now tits max1.twuni likalthubd. equ#Ltti'f l'or moasuriment oft param'over c. -

CLaIu~,at1zhg bY 1'urm'jLtj, It J9 "DYLy ti prvr that 6 It, K/Ylu T'ct";" ~

mraximum ).1-keinodycugo4 *r 4Ulp,i tki rui

vYJ(i W (1, it) V (Ij)dl,a16 ,

0 I 1 F (1j, Ij (v (1)y A) i d g 0

0C~'~t1AI~ ~jf, L,,s)L n'blaiiji 'i~i1mp kfi 016 VY 4,1(,, It exp2,ciotly,

a - rcctg 1.C$ r'(i )u (Ii 0 (10e'"')

Ill1)~' h t!d,1 V1,~i~ I2.).' OP~j~r v t'l I.) _~ti WhUL euti

uZ1].1 '.~ ur . 'F'r1) (dJ~ ViriUL- (,I lisfs ttian&, As it, is -,arjy tu

I) lit, ii' tvii.s3 caah' Jo~ ititinti,i.1 tcj cquation and 1) , 1.01,o

(~~~Wl * t*'. ,w rk Tj, xIntr the Uptimuni oporanl, rr, of reamiurernerit in~ thie no.iovaing vorm:

av~arccig d-t d 4n )Mi 1

X1 N (a) e*-# daln- /r(i S).Y' (S) it (S) C"#dS X
d-%e; i~o, (v S Y,(s)it s) "*& dshI4T

(S) cOb s



where the pulse response of the optimum filter h 0., is determined by relationship

S(iu.3.2.) (the gain-frequency response of the filter is 6ivun by formula (10.3.25)].

Expression (10.16.6) can be easily converted to real form [analogous to the transi-

tion from (i0.".24) to (10.3.29)].

The complete block diagram of an optimum nontracking meter using IAC can be

Pri;cinted in the form depicted in Fig. i0.42. Let us describe briefly the work of

this circuit. Signals from the

output of the antennas first are

heterodyned (it is understood that

heterodyne voltage has the proper

amplitude modulation), are fil-

SItered by optimum filters with fre-

quency response (10.3.25), are
Fig. 1i.42. Optimum circuit of a nontracking detected by square-law detectors,
meter with IAC for rapid fluctuations of the

sinal: 1) optitum filter;; with frequency
response li .(1w); 2) square-law detectors; and are subtracted. The difference ]
3) integrators; 4) dividers; 5) nonlinear is integrated and enters a divider
uaitj 6) smoothing circuits.

(as the dividend). To the second

input of the divider (the divisor) there proceeds the integrated result of multipli-

cation of signals from the output of the optimum filters (phase detection). The

result of division enters an inertialess unit with nonlinear characteristic y

arc ctg x (y - output, and x - input quantities).

The output signal of the nonlinear unit, multiplied by AT/w (AT - width of the

directional pattern), enters the smoothing circuits. Optimum smoothing circuits,

as shown in § 6.6, are &, linear filter with pulse response (b.6.ý5).

Let us consider the question of accuracy of measurement of angle3 in the

synthesized circuit.

First of all we investigate accuracy of the estimator unit. In general in tli.:

presence in the circuit of an estimator unit estimates of deviations of its accuracy

from optirality are very difficult to calculate. However, for an optimum clicuit

accuracy can easily be found. It is possible to show that the operation pC-:rorme;fA
by the estimator unit gives an asymptotically efficient ,stimate of the angular

coordinate for large values of AtAf where f -band of fluctuations of the
C

signal; At - time of observation. Variance of the efficient estimate, as it is
J

known, is expressed by formula
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I- -- (10.16.7) - -

where L(a) - likelihood funculon.

Substituting expression (10.3.8) in (10.16.7), we obtain

2 0 O l ,j ý.

(similar transformations we already made in § 10o. during calculation of the minimum

possible equivalent spectral density, which ic proportional to the variance of thic

efficient estimate). We substitute expre.-ionz (10.3.7), (i0. 3 .14) and (10.3.18) in

(io.16.8); then

b.- ,I.2. l+JSo,(Q) d -1, (10.16.9)

where h. P0 Z/2NoAfe - ratio of signal power to the power of noise in the band
of signal fluctuations,

O(u))-- apectrum of signal fluc.uations.

Thus, variance of the efficient estimate decreases with grotqtli of At (inversely

proportional dependence). It is essential to note that the found variance does not

depend on angle a, i.e., accuracy of meat.orement of the angular coordinate does not

depend on the position of the target ir. th,-ý considered sector.

We shall not investigate expression (10.16.9), since with an accuracy of pro-

portionality factors it coincides with expression (10.6.5), studied in detail in

S 10.0. We indicate only the order of error; for hE = 10 and AtAfe 10 we obtain

04 = 0.064 Aj.

We shall prove now the asymptotic efficiency of the estimate issued by the

estimator unit. As it is known, an estimate of a parameter is close to efficient if

(es(.)aU(,)\S OIL (s) Ia-.2= (10.16.10)

i.e., if the mean square value of deviations or 6-L(a)/bu from Itb 1ea value iz

negligible (see [8, 13]). As it is easy to show, for sets of normal signals of

type (10.3.7) we have
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2 t At A( At

(a) (a)--'I6~g~&
ULV., . SSSwltL t!x

' ... • |,,kI----I0 0 0 0 "

XW"ki (t,, tQ) Ri (tG, (, ,) R11 (t,, t,,. a) dtdtdt~dt,. (10.16.11) -

Substituting in (10.16.1l) expressions (10.3.7), (10.3.14) and (10.3.18) [instead

of v(t1, t92 and using approximation (10.16.2), we obtain

(1o.16.12) -4Gh2:

From which we have

1 r So (W))" d[t),L(•,)~i -L(-);-- +.s(),d
&2 2

_____(_)__d ( 10. 16. 13) ),

The ratio of integrals has the order I/V'C (with a square apprcx<imation of
So(w•) this ratio is equal to 1/• 0 ] Thus, rat~co (i0.16.13) has the order i

and seeks 0 with growth of At (as compared to the time of correlation of

fluctuations). It follows from this that for large Utaf the maximuni likeli~hood ;

ostler,ate becomes efficient, and operation (10.16.6) ensures measurenment with ths

minimum possible error, given by formula (10.16.9).

Error of the goniometer after smoothing can easily be found for any linear

smoothing circuits. Actually, by virtue otf the the uolj-

mate issued by the estimator unit the output signal of this unit will be equal ,(.. t),,

sum of the true value of the angular coordinate and white noise with spectraL deilo I

2o At, where At - duration of the section of the signal procesoed in the oetfiate]

unit. Quantity aht, as can be seen from (10.16.9), does not doplnd on Lt and

coincides with 3 01 met during the study of tracking gonioomete'ro From thil it

follows that tracking and nontrackin', goniometers with iaeal coni;truc;tion of radio

channelG and identical structuro (. oiroc 1 ,hing circulto (in tho care of a track•Cii

meter wq have, in mind the structure of the cloned-loop ."ystem) ,.ili gLiv, identical

accuracy of meas~urement.

In [46, 47] considerable attention wao also paid to thrl!(:a:'i,- of a *'Jw].

fluctuating signal, For thic c,-r rynthe 1si of r.io ,,.rn, ,,,,n ''a , was n(,t •:aI' ,,L

out. , , it i, , . t,, . -, un0t,



processing, which gives the stirnate or an angular ccrdIinate for a small time, when

this coordinate cannot change.

For such synthesis it is necessary in expressi~on (io.i.6.5), giving the maximum -

likelihood estimate, to substitute function v(t,,, tY, calcuilated with various

assumptions about the character of signal fluctuation. We assume that during the

time of observation At the amplitude an" phase of the signal cannot change (due to

f luctuations of the target). As it was shown in Ch~apter VI, equation (10.16.)) has

in this case the solution

v(4 4 const -(i 1 ; 1

Here (10.16.5) takes form

a ~arcctg 4j ) 1 (1) a (t) e'v* di

j~(i) u (1) e'00 diJ' j[2Re v (t) 1 (1) e'*#' di X

The block diagram of aUnit re-aliZi~ng operation (10.16,15) is depicted in F~ig.

to.43. It contains a filter wit~h pulse onrr:-' rvelt.u; e

This circuit differs from the praodinE; cir'-ýuit in that basic accumulation in the,

estimaitor unit occurs immediately after heterodyniing. Accuracy of the circuit of

* 1Fig. 10.4+3 is very difficult; to

tQe'fficient eE~tinlate for thu

curoidredcasc. Subotituting in

chanalof'a nn'tackngmeter with IA(C with ad(o1,4,adas



ye can obtain a very simple expression for variance of the efficient estimate of the

angular coordinate a:

2€ ==0.A,' (.0.16.16)

whe re
S° q -'--pczAt

2NO

is the ratio of the total energy of the received signal (during time At) to the

spectral density of noise.

However it is easy to prove that the maximum likelihood estimate in this case

differs from the efficient one: ratio. (I0.i6.3) in the considered case turns out to

be constant and equal to 0.36. Consequently, it is only possible to state that

variance of error of the circuit of Fig. 1.0.43 cannot be less than a 2

In order to find the accuracy of this circuit, it is necessary to directly to
find the mathematical expectation and variance of quantity a, Civen by formula

(10.16.15). We will not produce these calculations, but note only that as q-m

estimate a - a, and with growth of q it decreases proportionally to i/q.

10,16.2. Optimum Circuit of a Nontrackingr Goniometer with IPC

We now shall consider the phase method. With this method there is received a

pair of signals of form (10.3.3), where 41(t, a) is determined by formula (IO.l?.').

Signal amplitudes are not modulat;ed during reception, i.e., Ui(t, a) = 1. Corre].ation

functions of these signals are given by expression (10.3.7), and their functional

of the distribution of probabilities in interval (O, At) hab th; furm (10.3.8), and

we need only firnd the matrix of inverse correlation functions. Solving equations

(10.3.10) by methods already described, we can find that in the considered case the

inverse correlation functions have form (10.3.14), where v(ti, t 2 ) satisfies equatl.t

(10.16,3). In contrast to the preceding case this is valid without any approximaa-

tions.

The maximum likelihood equation, as before, is determined by expression

(i0.it,.4). Substituting (10.3.1.4) in it, taking into account (16.3.2) and (W.2,6),

rwe obtain likelihood equation

W-Re e-- V (t 1)Y' ()Y(,)- X M (1 1)U (U0) el't'-') d•,dl_ 0.



From this it is already easy to obtain an explicit solution of the likelihood equation:

sin a A=%-Ect (Re V 01, to) Y, Y .(0 y,4X ..

0.0

X X U (t)j ("t2)e' i Vdltd." (10.1me)

The sector of uniqueness of measurement of an angle with the phase method, as

shown in § 10.2, is jai < arc sin X/2d. When d >> X the sector of uniqueness i I
small and in formula (10.16.17) sin a can be replaced by a.

Let us consider in greater detail operaiion (10.16.17). Here it is necessary I
to substitute function v(t , t2), found from equation (i0.16.3). Let us consider the

case of rapid fluctuations. Here, using expression (10.3.18) for v(tV, t2), we can

reduce the optimum operation (10.16.17) to the form i1

As
sin a --- arcctg dc Re h-o. (-r S) M. W X

o
H

uI(s)e '%ds¶•'h1o 0 (C - s) y (s) a* (s) e-4 %ds X

N~~ ~ ~ dV3 ~o.( - ) (s) 0 (S) e•0 ds o, (--)

X aa(8edl.(10.16.18)i

where the pulse response of the optimum filter h1 owl(t) is determined by relat•ic'L.ah.8

(10.3.23) [its frequency response has the form (10.3.25)]. The optimum circuit of a w

nontraclding goniometer with 1AC is represented in Fig. io.k44. Here signals from the

output of the antennas first are heterodyned, where the output of one of the antennas -

is connected to two channels (we call them for briefness the 2nd and 3rd), to wh.uh

there are fed heterodyne signals, shifted in , .ase IT/2. All signals after heterodyning

are filtered by optimum filters with gain-frequency response (10.3.25). After filtra-

tion the signals are multiplied, integrated, divided and red to an inertlaless non-

linear element with response y = arc ctg x.

The output signal of the nonlinear element after multiplication by X/2rd enters )
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complicated and requires special investigation. We shall discuss this in greater

detail in 1 .he concluding section of the present chapter.

§ 10.17. Influence of Interferences on Coherent Goniometers

In practice a goniometer is often subjected to the influence not only of a II
fluutuating signal and internal noises, but also to active and passive interferences,

distortinp the process of measurement or even completely disrupting it [70]. The

numnber of interferences which it is poss-ble to create for radar goniometers is, very ,:A

great, IHowever, to otudy the influence of each form of interference in the same

detail as the influence of fluctuations of the signal and natural noises is hardly I
useful due to the large number of part•ieular cases which can be encountered. There-

fore, we shall study the influence of interferences basically in api.,proximation,

limiting ourselves to giving the simplest formulas.

First of all we shall classify possible interferences to goniometer devices, so

tha; we ic in whiat order we are to study them. We consider, first, active inter-

ferences. They can be sent from the targot whose -rngular coordinates are being

measur••cl, and also from another target, located in an essentially different direction.

In the first case interference acts on the basic lobe of the directional patterI

F1aPI In the second - on side lobes, The influ(:nce of both types of interferences

sharply differs, The effect of interference acting on the basic lobe, in turn,

essentially depends on the form of interference, and also on the method of direction

finding utilized in the considered goniometer. Interferences with amplitude modula-

tion will strongly affect gonlometers with pattern scanning 'nd weakly affect othre'

goniometers. Inturf(:ernce with great power; suppressing th- useful, signals throulph

the AGC system, will have a different affect from interference with low power.

Thus, the number of possible cases here is very gi.eat. ]burinI. the study of

interferences we will widely usc the fact that the influence. ot' randorri interferences

on a coherent radar, due to narrow-bandedness of its cciip,.ne.nt;',, i.e equivalent to the

influence of white noise (Chapter VII).

.i0..i .1.1. Influence uf ]r ta:-Band

on Side Lobes

";'!1e ini'].uorr c or' a.-twve l:ot.r r'er r. on sid. l.obe(s of the ri.re tional pattern

of radar ;ni_ , umeters it-, a vwry llkeýly (:aee . At the 6aile 'i,, ,lie level el' Sýi (

lobes o.i ie pattern in if1o0:t ca:,; 1i" stucn that we: (:cannot pruvi.dc :;uffieient .;upprics-

s;on of ,f.:t i:terferene

M,



The influence of random interference acting on side lobes can be estimated

approximately rather simply. If the interference is broad-band, then it is equivalent

-to white noise, the magnitude of which does not depend on angular coordinates of the I _

target, i.e., it is equivalent to the internal noise of the receiver. Certainly, in

goniometers with pattern scanning such interfereneL obtains amplitude modulation;

however the side lobes have a more or less constant level, so that such modulation

can, in most cases, be ignored. Formulas for accuracy of a goniometer under the

influence of such interferences coincide with formulas for accuracy of goniometers inl

normal conditions (without interferences), in which the: spectral density of noiseos i,.

must be replaced by N0 + N n , where N It - spectral density of the equivalent noisc

replacing interference. Spectral density N should be calculated in the followi:..

way. If the influence is a broad-band noise interference with bandwid',h Lfo,

2N, P.G=W All
2N nAuAd2 (10. 17. 1)

where P, - mean power ci ,Jamnming tranrmeittcr;

ni - gain of the antenna of' " !1,•an• - transmitter;

X - wavelength of the consid-red rauar;

S- level of side lobes;

d - distance to source of interf.relc es.

If the influence is a pulse chati,: iAterýcrenee, tifen, using formula (7.14.9)

derived in Chapter VII, we obtain

P- =k~', 1 (1O.1i7.2 )

(4s)8d Y+ A' ,

where P -- pulse power of jamming trarnimitter;

- mean frequency of repetition (f' pulbes of interference;

T• -- duratlon of interference pulse;

A' - effective width of the spectrum uAf' signal modulation.

Thus, the influence of broad-band interference on the side lobe ]eads simply

to equivalent increase of natural noises, i.e., to equivalent decrease of the signal-

to-noise ratio.

1017.2, Influence of iroad-Barid Interfe'rences From the Targ-t -

Broad-band interference from the targe(t (nOiose or pulse chaotli littrfercncc

with a high frequency of repetition) is alsi. a very common type if interferences.

Hlowever, this kind of interference is intended p,'itnarily for suppre-ssion o' such
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functions of radars as measurement of range or speed, and for gonionieters does not

present serious danger. In fact, this interference itself carries information about

angular cocrdinates, and the goniometer can measure angular coordinates of the target

from the interference.

Let us consider in greater detail the influence of such interference on goniom--

etere. First of all we note that, in view of the considerable excess of interference §

power over the signal, both the useful signal, and also natural noises will be suppres-

sed, by the AGC system and measurement will be conducted exclusively of interference,

Considering the broad-bandedness of the interference, it is possible to say that

accuracy of measurement of angles will be determined by the same formulas with which

we determined accuracy of roniometers in normal conditions, considering h - OU (internal

noises are absent) and ratio af / /ac << I (since the width of the Interference

band considerably exceeds the width of the passbands of filters in the goniometer).

In both circuits with scanning (Figs. 10.9 and i0.ir) there will. exist fluctuating

error with eqlivalent spectral density, equal, rcspectiv-ly, to

SOD--8 1At (1.W.1
S4 I , (t: .(. *

These formulas are obtained from formulas (10.5.17) and (iO.t.-2). From this it is

clear that tracking of a target by interference radiated from it always occurs with

limited accuracy. If, for instance, iLa 0.P 1/deg and L&. iuO cl;, then for

we obtain the corresponding values

So.- 0,03 deg2 /cps, Sai--,0O,06 deg 2/cpe.

In many cases such magnitudes of S are already impermissible; therefore the con-

sidered interference for the method o.C pattern scanning of diagram will be rather

dangerous, especially for the circuit of Fig. iO.iO0

Wp note that for the circuit of Fig, iO.), for which th,: fr,,queinc, oi' ianning

can be nlec tod 9. high as one wishes, error of tracking by Int. ri'cr,:nce crin bo ,rrus,

minute, i' the frequency of scp.aidnrng con .•dourably (!•c'n(cd., th,! widthl of the sOjm:ctrum

f., ' r-.r,, v,', .... , . l,]uc!1;u ti ng error here remains only (Jut ',, ;h,, parairjr!tric cimportent

if' tter,: :ir•, dj inic u rrol's o' to'eekirti.). I'h,' op,,t .]. d:rt:: ty ,Of jAr1',:11 ii

1l'l cturi tl ,,io , ac it, .z -any t, find 'rni f',rum lo; (1 ',,2," ) ,.rtJ (1 ,1. 2-u), llt. b,

equal L,,
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For circuitt with multiplicat;on of' jignals of' the compennation method and,

correspondingly$ of IAC during tracking of a t~roj#,t by broad-band intr-rf'Pr,;n¢,, radia-

ted from It we have 3'O-1 0 [see (14'.7.5) a3• hs--o•J. Tnii will take place even in

the case vf nonidentity of channelt. JHowev(-r, as it ir O aJc y t (- Mr'• frorf O ''(j. •'7 'P)

n,•nident, ty leads to decrease of the slope of' tho ditncriminatlon charauc.rintic KAP,

which will lead to worsening of dysinic pz'cpjrtiea of' the tracking iyatem during

tracking of interference rrom the target.

In the circuit with subtractira, of winalo V'r fuanning with compensatiurn the

considered interVerence will lead to the w(ofult result,. In the cauf ouf nonidentlty

of channels S. will differ alroeadry from ,crt.. If" for sImplicity wt. consider dif-

ferant only the Gain of the channelsl, fronm rzxIrci~L1 (V:).7.8) for h -a? and A 0 >>

>> At' it is easy to obtain

where k - ratio uf' thm squarco of' gain 2'actor. ol : .ivnn,.-la of th!, r'adi' charu,(ýl.

Fur the IA(; circuit with sulAtzactfLcti ,v' |1ifnali' fo' r n tiAcde1.W it,,& channolu 0,

will also be expresned by formula (10.17.6).

Furthermore, here there will exiWat yt'imnatic errur, abuent in the circuit W,

thet m(ithod of scanning with crimprfnlsaJ1,i,,

I -. k'

n'tlu;, tracking of' intoerf mru-e 1'iorr, a target will have orror only in the ea*se

u Vf n,--1nidentity of channels, With identity o.,f them r'esultn} will lit! preclisely the ]air,'

au fur' circuito with inultiplioatJon of' ;ignalrs, i.e., SMB 1) arnd 6 - , lluw',v.r, Iti

both circuits here there will exist fluctuating er'or' due to paraiot.ric fluutueati.ons,

' Thc spectral density of' parametric fluctuations will as before be ex.pr,'esied by

'ormula (io.3.15). As already noted, thifh orrrur is insignif'l:ant.

Absolutely analogously one ca' lI',iv,! that, duirngrg tracking of interfeririu. from

o1 target using the method of phase corit,.' ai,'nr.nnis there will oxist very ifr,-at

irlutui.ting error with eqiuivalent spectr;,l d,,nk.l ty
[

S-N,
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where At' width of the OPectrum of interference.

When uoing a gonioneter with II,(2 (Fig. 10.2.) we alwayr, will have 0- O

Nonidentity of cannels will lead only to decrease of KA and worsening of dynamic

properties of the trauking syatem.

When using IPC by the circuit of Fig. 10.24 interference from the target will

have considerably stronger influence. For an example we shall consider the gain-fre-

quenny reasp.:,nes to differ by a constant A•. Then, during tracking of Interference

from a target there will exist fluctuating error with equivalent ,pectral density

4 JIH4 ')I (1 )I4 ") "

tg'AT. (10.17.9)

, [ obtained frr 1  formrunu~, (1 ,.9.3) as h '- a ].

J.hut, fluctuating urrlor hrere increascu very faqt with growth of nonidentity of

phare-freq'I,:ncy rýpnses. Syzltematic error existing in this circuit is equal to

I A = ! t~~~g A',. (• .7 • )

With identical channelo this circuit behaves Just as the preceding one.

Consequently tracking of broad-band random interference from a target when using

methodo of ocannine the directional pattern and phase center occurs fluctuating error

diff'ering from zero. This erroi, as rough calculation shows, is considerable. In

methods of scanning with compensation, IAC and IPC with identical channels SKB ,

and f2jictuating error (very insig,,nificant) exists only due t(, parameitric fluctuations,'

Fluctuating error appears in circuits without formation of sum and difference signal.

when there are nonidentical channels, In circuits with formation of sum and dlfferen•ce

siignals nonidentity of channel leads only to decrease of K and, consequently, tc

worsening of dynami(c properties of tracking Pystems,

Vi.,17, ,, Influence of Active Interferences with L-P Modulation

As; already noted, agttinst goniometers using the method of' pattern scanning

there rway te used int,(:rf•e-rence (noise, pul.e, return) with low-frequency amplitude

modulationr. With coincidence of frequencies of modulation of' Jnterference with ttie

frequenc!y (,.' .;•'.anning thiM., interference will, obviously, be very effective. For
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gorliometers usIng the method of phase center scanrdin(7, lnte~rferenc6 with low-fre(quency

I~haje modulation will lead, obviousl:/, to analogous result--. 11e now pass to con-

sicieration of' the influence of this kind of interference on goniometers.)

Let us study the effect of interfercncc from a. targut; with special low.-t 1'equency

amplitude modulation on goniorneters using the -newlivd of pattern scanning, arid alzo

the compensation method. The fluctuating s.-ignal cconsidered in the precieding para-

graphs is not equivalent to such interferenice, since it contains d~efinite phase modu-

latiun. We will produce approximate calculation1 of .;Iifi infliaenud (-)I tile considered

furs, of interference, seeking, basically, qualita,1.Iv- cccuin.We aosume that

inte rfe rence, has the form

where' ý(t) - modulating random pro,.-ýss with EL zero mean anid small variance.

Let us consider first the tfi(thod of .- ttern scanning7 in conditions of applica

tion of the circuit of Fig. 10.9. Fo r simpilc-ity we assume that the circuit is

intended for work on an unmnodulated signal (there is no inversion of phase modulationI

* ~ .idcorresponding transformation of amcpli-;u&d modulation of the received signal), and
A1

* also that scanning is uniform and conical. ThE; ±'ci,(:-ved signal, after heterodyning,,A

'~ill obviously have form

U's[,+W(1)J(1+&,aCOSOt+...)COS(WuP1+4m). (10.17-12)

Noises and the reflected signal vie di ~~~cdeoniderrinZ interference sufficiently

powerful. Considering thI-e -raiuj;~ .'i ara and the narrowness ofI the spectrum

Of process ý(t), for the output ;Jignal of the, circuit wie obtain

Aence equivalent spectral density of fluc;tuating error is equal to

2S(Q) 42

where 6 ~Z spectral density of ý(t) at i.requency Q;

G variance of ý(t);

6f width of spectrum ý(t) (one-.-wa.i).

Ala.logously it is eaby tu prove. that fur tl.e circuit of FIc, 10,10 equivalent

spectral density du~ring tracking of thic cunsidurod interferenceý will be precisely the

same. Analysis of expression (i.. f hows that the more exactly the modulation

of interference is tuned to the frequency of' scanning (i.e., Af~ decreases), the

------------------------------------------- .---- -- -



greater the error of tracking.

Now we consider a circuit of scanning with compensation. In the circuit of

Fig. 10.i5, as it is easy to show, during tracking of the considered interference we

will have S..= 0, i.e., this interference is well compensated. Nonidentity of

channels will only lead to decrease of the slope of the discrimination characteristic.

In the circuit of Fig. iO.16 with identical channels wie also will have .= 0.

However, with nonidentical channels there will appear fluctuating error with S.

equal to.

SIX,, 2o/ - ,
+ a',) , (10.97.i5)

where k - the ratio of squares of the gain factors in the channels.

With identical channels k = I and S = 0. However, even with identical channels j
in both the considered circuits fluctuating error due to parametric fluctuations will

remain. Simple calculation shows that for both circuits, assuming identity of their

channels 
S4$,,,p n"-A(T) .•.• (10,.17.16)

where all designations are the same as before.

If the spectrum of modulation of interference does not contain components at

zero frequency, SFI~= 0, and guidance from such interference is accomplished, in ii
general, without fluctuating errors.

Thus, interference from a target with amplitude modulation is very dangerous ii

for the method of pattern scanning. For the method of scanning wIth compensation it t

is no longer dangerous. Fluctuating error will exist here only for the circuit with-

out formation of sum and difference signals in the case of nonidentity of channels -f

the circuit. In the remaining casee S = 0, and fluctuating error exists only du.:

to parametric fluctuations, if only the spectrum of interference modulation contain,-.

components at zero frequency. This error has an insignificant relative magnitude,

and for sýB/ 0 we can disregard it.

Absolutely analogously to the preceding we can consider the influence oI' Izitr-

ference with low-frequency phase modulation on goniome.tes using the method (.' pijt..'

center scanning. Recording interference In the form un c.rc [(, + +(t)],

(t) -- randon process with a zero mean and small variance, it Is poc;cible to :a:;ily

show that the equivalent spectral density of fluctuating error .J' trackinrg of fuch

bp2i-



interference is equal toI

22

where a variance of' i(t); -
lat' width of spectrum e(t).

1-0.17.41. Influence of' Powerful IntermittentI
Inte rfesrences V rf• Taivgt!e

Let us consider the influence of ce.rtain tyy'::;, at iint;erferencýes frcom the- targvt

the influence of which reduces to, artificital. dioItubanco(_ ci') the process of' rect.ep-iondr

ofci the radar signal (for instance, due to iexcitat3.'.ni of' transienti; in the receive;').

We arc talking about intert'ererict from lti:; LUrgct, :inashnuon am initerfeo:rence trl-iy Causef.

distur-bances of thiu; type only vi~th coinsidoerablte at250o' powi'v oveý,r th s laI

which ccan occur, basýically, during i.'tu c-1 till.Inof ricof' the, iain loA)t

'Phi.; inturi'nrence can bo return, ij''I~t:, p)Ultln ciactic, eta.ý Specifics CffIC~

* with interruptions do niot tr j 'j-,rr thA;' u'aivofIntsi'valf: of the- pvnes,_rcLcc Of

interference and the frequency of tneir 1.1t.: LLCC ;1zov!seletred olucl that there does

niot eýxist a steadly-state negiime of WOrK' 01 tfl' VE 'aj f.I ve iv E,' r' .11 U"pC to Inlter-

* leenceor to the s~ignal, aria ti~ju rcie . l':,a tWf: in a PJ'Q1OiW I_'d

transient regimeu. Such an effec-t flP-,pp.rG'ur 01f,1 (11, T'ý(d ' int'. 'rnittont inti.'~rt'urflu of'

high po.wer to Input of' n. ruccivf': r with hurn,~. tidn1-'vVýil5 In, Uetittix'

c detail As already nut 'ic, in !'d4'i'II If A(~* L it. ii afiiip.i fil , coVuAClod b theL

AGC' system, hat IiiS.le L tic'. jT~isO lw ' tic', tlJ,' Imv Li a olr teu A(*#( ny'0Lenh tuvrun

out t I,- bc uouaitJ.J y ':oncl do rably [rvfl t~i' ivu, 1.i'! 111-1,11,1a (if th.' aij iivi. 111V 12 V e y

J. t". !1o sh" ownl '41 Chlap I,uL!r '11, '1/ j Lj I c (.'I; If, A,,;_ 11 uSI j tirful 1,1 (hJ i L 1 ir a, I. strill 1,, ''3 I114. ' d I i -

1ouId I,( an auplir.- ii mot, of a 1powe rfl lIt in'V n!~I hl'i i']11'4'(' I rlic

atid cIrg Irntht- lit La tion.t a le L I

T t 111' - oiu Lauill oA I5'; I 1 I.,; V 1' , 1w' 4lifI, I'' 1 11 ;-1 ft I k3 , (jJ

- -1n i, thu Ail'.d 115

KIn , 1tj fo. I,,, i n *ý c ont' 11:1 1 11W 'J.xi tt 1''1,f1,41'1 1A3'h~ c i''(Jj''it , 1,14

],I)1ý1 _,jnt ,A v A Iia-tf I' ( ljo i j, ili'l~ l'li t"
If 2tI',I . ! (J Ji l$ 41-1



ur,:and E~ - level of limitation and voltage of delay of' automatic gain control.;

- amplitude of interference at the input. of the tJPCh.I

Here there is esu Ashed such IIPCh gain that the useful signal is completely

suppressed. After turning off' of' interference the output signal of' the UPCh is equal

to /zerrc, and will rise to its normal magnitude approximately after time

gamma_ T#InWbNNo KI+ .O (10. 17 48)L

where and b- pa~rameters of linear approximation of' the dependence of !JPC'h gain

or. :-ontrul volta.,,c at a point corrozpcndirig. to steady-state regime for a given Input

level, of the usef'ul signal,

Let ur. anauuwii n~ow that the duration of the timo or co~tirmniug infli~ernco of'

Intux'3t~erj(.- in equal to and thzý duratilon of' timf: when intoerference iu turned

Lf :' L''02 t- li'r-r r.t the 1JP~h output there will occur a ae-quence of irktfr-

vi'ur~iice ptil~i"D of' ampijrAtude iA ,, equfl tot tivu outrff level of' thr. U['Ch, regrrdletnr (if

1.ic Vurm of' the umeful '.ignal,. It its obvioýuz that in thic ;Ui iwduidCnetC Ors uiiiiL- i'hv

methud of' gicmnziný, thij alr,zuticnal pattern, and at.no thle miithoa o' nce-Annfine with

CUrnjA-10atit~n or IAO,, wor'king on cireuita withiout; formation of' ;iur anti difference

Dij~ftifirs Will abrOIolutely Mal Ancto In all thorie canes the output nlgi~,a2 of' the~

goniorritter circuits will not contain information about angular coordinates of' the

In LJi-Ouita of, the rIisuthoo C,1 Ocanning with compensation and IAC in whir.h there

arir i'orml~d n~um and differtnce sig.nala at, theý output of the antennia isy~otem the rnattir

will 1,r oorrnowhat diffevtnit, In th'igie circuito of the mfl~t1LO' of fcv'arnrling with rc

pt.-iat~i on anid IAC in which thero are f ormied Pum and (" ' unoc(, nigrisalfr at the outpit

of' Lhr anteinna nyotara tho matter will be aonie(what difforent. In thert! circuit;, the

di to 'onu Ifgnill, W11t,1 exa'r t tran~kirng of' tho tar 1;i inj cqual to /,f:I'o, and' witri

aufi(J-t'tly ninall t:r'r'ir of tra,:kin6j thir3n rijnal in Clone tu '/.'Vo,

Th fl),o'. IIVAY al~lumrn that, under the irfltuoneri of intte'erfroncrl the igArv:l ird thl

dl. T'I-1-11cfle channole dc'en not fall. uiv1'"r lintatalion, 'ihf. amplit Lud. olI thfe Outbput rSiLfrI]..

(A' tho UP-II. i l the i li 1ecuC luriu!] iii p ropurtional to lmiwlaotch , bu~t it ci T I t

rn,~ ~ ~~~Iif ~ ft in' ay air, lao tox of the UI'Ch in tho difi ftrinec~ channel dirop:o

I uiiai Ith1 io ecEiiy to calnulrO.tr, that -, (imp.A1 itudte oi3 1A o1.LxmJi iii thec .~'t eo

chaniv-3, wl. 11 tv rus -acording to the- law



,, 4 (.', =,. K.- (,,.p,- E)(I _e 0A,) (10.17.19) 3i-

(with the AGO circuit depicted in Fig. 2.20). After turning off of interference the

output signal of the UPCh to the difference channel disappears. Therefore at the

output of the circuit there will appear pulses of duration tW and form Laa/2 u(t)uo,

wlhere u(t) is given by formula (10.17.19), and uO - cutoff level of the UPCh in the

sum channel. Tracking of a target in this case will continue, however, inasmuch

as the time interval between pulses of the error signal, equal to t is usually

gnrat, and the tracking system will pass into a mode of discrete operation.

Similar phenomena will be observed in circuits using phase methods of direction

finding. Intermittent interference in these cases also, ooviously, will not lead

to considerable disturbances of the process of measurement angular mismatch. Actually,

out to the influence of intermittent interference at the UPCh output there appear

pulses with amplitude equal to the cutoff level of the UPCh; ½owever, the phase of

the filling of thes.e pulses is not di.otorted during passage through UPCh. Inasmuch

ýao useful information here is included in phase, an error signal will be produced.

].•., for IPC the signal of error will be pulses of duration t. with amplitude

CaO2'•d/X, where u0 - cutoff level of the UP~h (with identical channels).

Thus, the tracking system will contsiue to work; however, due to the great time

interval between pulses of the error signal, equal to t... work of the tracking

system will be in discrete mode. Due to the influence of such interferences dynamic

propertico of the tracking system change.

i0.17.5. Influence of Passive Interference

On the basis of results of Chapter I we can affirm that the signal from a pas-

fsive interference, received by the antenna of a goniometer, after multiplication by

the reference signal is equivalent to a stationary normal process with a definite

spectral density Sr (w), depending on the difference oZ Doppler frequencies of the

signal from the target and from the interference. The spectrum of interference is a

sequence of expanded spectral lines, removed from each other the frequency of repeti-

tion of the signal. The width of each line is determined by irregularity of motion

of the dipoles, the wavelength of the radar, the speed of the radar wIth respect to

the cloud of interferences and the width of its alrectional pattern. As we already

noted in § 7.14, the width of each spectral line is tens of cycles per second with

-624-



a motionless radar and can reach thousands of cycles per second with a moving radar.

Therefore with good approximation in coherent goniometers passive interference is

equivalent to white noise with spectral density

Mn (±0.1.20)

where oa - reflecting surface of the target;

- reflecting surface of the interference in the resolution volume of the
radar;

d - difference of Doppler frequencies of the signal from the target and from
interference;

f() -- form of the spectral line u,' interference (f(O) = I).

As soon as passive interference is reduced to equivalent white noise its influ-

ence on accuracy of goniometers can easily be accounted for. In goniometers with

one antenna (i.c; in goniometers with scarýiing of the directional pattern or phase

center, 'and also with flat scanning of the pattern) for calculation of accuracy

during passive interferences we can directly use the formulas derived in the pre-

ceding paragraphs, only the signal-to-noise ratio should be replaced by the signal-

to-interference ratio

The magnitude of aU/aj is usually considerably less than one. Acceptable

signal-to-interference ratios occur only with sufficiently large frequency separa-

tions of the signal and interference Arz when f(J) (< 1. With coincidence of

the speeds of the target and interference 1nw 0 and f(&ou) I; therefore theA•
signal-to-interference ratio in this case will be minute.

In the case of goniometers with two or more antennas the possibility of use

during passive interferences of the formulas for accuracy derived for the case ofI

natural noises is not clear. The fact is that the directional patterns receive

reflected signals from the same reflectors; therefore interferences at the output
of the antennas are correlated. However, it is possible to show that in the practi-

cally most interesting cases this correlation does not lead to change of the shown

formula. Let us consider, for instance, a goniometer with IAC. Let us designate

signals from the passive interference at the output of the antennas by n . 1 (t)

and n• ( t). If we assume the cloud of reflectors uniiform in a sufficiently wide

angular range, and the directional patterns of antennas identical, interferences

n (t) and n 1 2 (t) are correlate-d and have identical variances T. I'
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If at the output of the antennas there are formed sum and difference signals,

interferences in the sum and difference channels will be equal to:

t.+ () = f,,, (t) -M ', (t).

It is easy to see that the sum and difference interferences are not correlated,

Actually,

fnl+ (t)na.. 1) = nit. (' -- a,, (t' = 0.
Consequently, accuracy of JAC circuits with formation of sum and differnce

signals in the presence of passive interference can be estimated by the formulas

derived for the case of natural noises with replacement of the signal-to-noise ratl>

by the signal-to-interference ratio (10.17.21). A circuit without formation of sum

and difference signals with identical channels, as we know, is identical to a cir-

cuit vwith formation of such signals. Consequently, accuracy of circuits without

formation of sum and difference signals with passive interferences is expressed by

the formulas derived for the case of natural noises.

Everything said, obviously, also pertains to the method of scanning with com-

pensation and to the IPC method.

Thus it is rather easy to approximately allow for the influence of' passive

interferences: under the influence of passive interference goniometer circuits be-

have the same way as with natural noise wi~n so•ic ne:w spectral density, which is

expressed through parameters of' thce Int.:rferernue. More exact analysis is compli-

cated, although in principle it is a clear problem. We will not continue our study I
of the•se, n4tiuns.

§ iO.. Conclusion j
In the preceding sections we synthesized and studied in detail optimum radar

goniometers. Basic attention was allotted to synthesis and analysis of radio channels

of' &oniometer devices. Namely, here there is manifested to the greatest extent the
A

specific character of the problem of measurement of angles, in many respects differing

in initial prerequisites and results of the conducted investigation from that pre-

sented in chapters devoted to other radar meters. To a considerably lesser extent

this specific character affects smooLiiiiu clrcults of meters, since the structure of

smoothing circuits does not depend on the method of encoding the measured parameter

in the radar signal, but is determined, basically, by ltws of change of the para-

meter.
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Synthesized circuits of optimum radio channels of tracking goniometers were

found close in basic featureB to circuits described in the literature, created on

the basis of technical and physical intuitions. An exception are the circuits of

optimum radio channels of gontometers using the method of pattern scanning or

scanning with compensation. For these methods of direction finding synthesized

circuits ensure considerable or even total compensation of the harmful influence of

amplitude flu-ctuations of the signal and somewhat differ from known circuits.

Analysis, which was allotted considerable attention, had as it purpose to reveal

the criticality of circuits to various deviations from optimality in their structure.

We. showed, in particular, that imperfectness of heterodyning (imperfectness of inver-

sion of amplitude and phase modulations of the received signal) is always equivalent

to some decrease of the signal-to-noise ratio. In circuits for the method of scanning

with compensation, lAC and IPC nonidentity of channels leads to very halinful con-

sequences. Here there is established the evident advantage of circuits with forma-

tion of sum and difference signals, which turned out to be least critical to non-

identity of channels.

Let us enumerate the most important problems concerning radar goniometers not

touched on or insufficiently illuminated in the present chapter and requiring further

investigation.

The first problem is the problem of synthesis of an optimum radar goniorneter

when the method of direction finding is not assigned, and there are assigned, e.g.s

only the dimensions and geometric shape of the aperture of the antenna array.

In this chapter this problem was solved for antennas of phased grids type. For

th• case when the aperture of the antenna array is an arbitrary planar region, the

problem of synthesis of an optimum goniometer, including processing of the field in

the assigned aperture, has not yet been solved. The essence of this problem and

difficulties in its formulation were discussed in dtetail in § 10.13.

Another important problem not yet solved is the problem of synthesis of optimum

radar goniometers for the case when the time of correlation of fluctuations of the

radar signal is comparable to the time of correlation of angular shifts of the target.

This problem is very important, inasmuch as the shown case is often encountered in

pigztice. However, in the way of solution of this problem there are considerable

difficulties of a mathematical character.

We nmote further a number of problems concerning smoothing circuits of goniom-

eters, hiere it is necessary to produce systematic study of a prlov.i statistics of
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angular zhiflts 4Iie tnt uz'get and to oynlth'ý,isig 'sptiA~flh MiOafi cti'e*ýtts. It is ]
ipteratil~ alsott. ý.1v~sti'a~tr_ the i~nt'uencf~ or' iaaccuracies in ai 4 vntofa

priori, statistics of' angular s~t'. naceurev.y of'th gonlometers.

Pl.oally, very far trout comple~te ý4oluttioyn. 4~ii prorbl.m~s connected with A.,sti

gaton f onln -,rregun?ý, o traclv~ng (fnimeter litre it would be desirable to

obtainf c:jr onney~'..p: ror:2 ins f or' error of tracking with large n-asmatch and for an

av';ragc ttýme be, brtakoff 0±' o traczking with real smoothing Circuits of tracking4

The enixn.eratec' problems present dutsspractic;al interest. However, evenl

the p~roblems elr'eady sol'ved permi1t u2 t..' handae m aany tques~tions of radar gonio~metry,

in pas'ticular, to correctly selec-,t In each case the structure at' the gontometer and

1_sensibly mfle various tcchr-inical. sirnpifii'iations, estimating, their effect before-



--C H k P T E R XI

MEASUREMENT OF ANGULAR COORDINATES
WITH AN INCOHERENT SIGNAL

§ 11.1. Introductory Remarks

In radar pra(ctice incoherent pulse radiation is widely used. Let us remember

thaLt according to the terminology of Chapter I we called incoherent pulse signals

with random initial phases of the high-frequency filling in each pulse.

I~e of incoherent signals, as was shown in the preceding chnpters, provides,

in gen,vrnl, less possibilities both in radar detection of targets and also in

menýýirement of coordinates. However, in many cases the loss due to incoherence i2

not essential, and generation of such signals is a technically simpler task than

gene'ratton of cohe:'ent pulse signa!lc. Therefore, application of' in•coherent signal

Is often fully justified and desirable. In the present chapter we will pursue a

systernatic study of radar goniometers using incoherent signals, or more simpl¾ý, -')I

incoherent goniometers.

31, dis inctlon from a coherent signal, statistical r'op.,]tic;; of' an incjheieti
r signal reflected from a target are very c.omplicated, The functional of the

.lo probabilities of' a fluctuating incoherent signal 'annot be cc1.i,, I ...!

ir, gencral]. In connec:tion with thi;:, ,c, also ,annni. :-nthe:Iie the circuit of

otiu ncherent goniometers. Thuref'ore, we shall be limited here to an

aplrr;iJ-11rute ripproach to synthe.,i; 'if opl.].miui cirrnits, ,t lt wh.c ;

i.;;od, 1'."r in:stance, In Chapter %1i1.

I;, -,!.........totc the p ,r,,~h 1-,,n I,' yruythnsi , anal.ysi." 01' i1.2c.dJe i.nt , i' iii lt.c ':00•

],,. Jit, ' 5','f; i• 0' gonefI• 'i I, v ttll. iiitl *,n t! e lut.: *. llntl't. in.. : c '. 1]rlt• ],:t •: J :;n1].t s.t ,'' J 1

• i ,•n./ . i1 •.?ie, pre...tot. *'h.r1.tfr ,i. ¶ lii,] a.tzuroriles Si'H d I'erer1 ' Kill., us o' ,

m.!



incoherent goniometers, we investigate dependences of these accuracies on different

parameters, we compare real accuracy with potential. Consideration is conducted

conosecutively for all the methods of angular direction finding described In § 10.2.

Thus, in its structure and actual content the present chapter is close to the

preceding, which was devoted to coherent goniometera. Further we shall widely use

the designations of the preceding chapter.

§ 11.2. Optimum Radio Channel of Incoherent Goniometers

In examining the problem of synthesis of the optimum radio channel of incoherent.

goniometers we, as in the preceding chapter, start from a generalized method of'

direction finding, nonsisting in reception of a signal on several antennas with

scanning directional patterns and phase centers. Preserving all the designations

introduced in § 10.3, we can record output s.ignals of the antennas of the considered

gonicineter in the formt

ml (t)= ,/P ju, (1, =) ua (t) a (t) cos [wj + j (t) +

+ (1)oll + V/e., an, (t) = rP'•., Re u, (t, a) E (f) X
X n (t) •lo'f + ; (f) + _. ,.e-fit (I,)••'; );!

where b(t) takes cons-,ant random and independent values in every period of repetition

of' the signal, uniformly distributed in Interval (0,2w), and Ua(t) and i(t) - periodic

functions with period TrJ being the intrave'riod amplitude and phase modulations of

the Incoherent signal.

The functional of the distribUo, c,',• r'oteblli.tte of Hn incoherent signal

for certain cases (for instance, for a small signal-to-noise ratio) was calculated

ii, T•ht'~ers V and VI. A peculiarity of the consloered .rublem is the presence of

severol dependent signals, for which It i: necessery to obtain a Joint functional

oi the p1rctability density, We repeat in brief the reasonings of Chapters V and V1I:

reference to this more general problem. The conditional functional of distribution

of* prol.,abilities of signals (11.2.1) with assigned phases 5(t) has form [see

*(io ,3. 8) )t.

P Iva (), g,.), .,•, (0), a I V M1=/

3=exp (--T1y)( )W (t,. t,)y(I&)ddt, di

K K exp A-- -M ,) X Yj( s)d,-i
ii"11d11i,'T (h-? -Il 2g( - r, '. , '2,)
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where a - angular coordinate of the target;

m - number of periods of' repetition at' the 3ignetl inI the in~terval of' observation
(0, T) (all designations here are the same as In §1.)

If In (11.2.2) vie substitute for Wij(til t.2) expression (10.3.14) (with

replacpm7rnet. of *'(t) by ~i(t) + b(t)), functional (11,2,2) can be reduced to form

I=K'exp{4 _

X Re Uj(kTr, a) U' (ITr, G) fhije 1(ahi}(1..3

*( = VAI=V (kr"y, 17r);

ond K1 mr b, 2, e . , n a aluc s ot, Phase ý( t) In t'~tiferent perluds- of ropetitirI. il

oI the :4ignral.

Wor proritction, ot' an uncoridj~tiora,- furnctional of di:;,tritution of the coný;T.'lrf:;I

:2ignvi. -it is ne'zessar'j in (1.1.2.3) to ave-re.e phas-es b~± . .. , 6 This veC1ii

it) gnf"C-lrai is herd La prochuce. Howe ier, for instoocve.. with a. zuffticiln-,.y smeoll

I-gnal-to-roise ratio it I- ouil to exp-inn lrurn-tona~l(1.2) in FA series ;

povifru, ot, thi~s ratio and. being lmItAd to the fii-~t two terms of the ohtasinedl

exp:orcsIun, to rprodlce elierar~ing. here wp wil.l ulbtain1

svK'exP{ j7U (kr N1,42

H~ere ,fe lio ued tnecrmhne that, by virtue 4'('.31)for a frnnll

!Agnr3 l-to(-nui.se ratio v ( t1  t,) .(t ~J ols

2. I I ~5 31 leto :"how U1,11, tt, 1iin U ord it onfi .1 iurv2l, ions -l oIl'Ta~ ~ ~ r

o:'n~ itv,!oherent wio1 ill Ila,( 'i hevrnef lorm ir re ri al. :-Athu r forx; lnx' A nt o

P(:t' tin U n(- -I-n l ;Wrjl ICt. C' or2 be anyIt..lin- . .{ cjooV iy, tv' tft 1'ro11;

lop'~ :,jC 11.2 j~ c n focImtI.otn lros lit U;-it,'' tti *:yrti.I.
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Proceeding from this expression, it Is possible to oorstru~at the operation of

the optimum radio channel of an incoherent goniometer. In fact, obviously, we have

where the stroke denotes, as alway5, the derivative with rospect to a (here we used

the fact that I~n K', a.3 it is easy to show (sýee §10.2), does not depend on a). it

follows from this that operation of the optimum radio channel consists of' formation

of sIgnal z(t), for which

z(kT,)==ReX re qjUj(k~r,, ;)'

&r1, 

nI

where J'r ti o- oino '~~~i r period of repetition at the output.

of the j-th RriternH 1.o tht ~e~r den-sity of the corresponding

a -ti~ neisued vau ou agl r r ~ordias (in the caioe of goniometer;;



Z (kT,) Re r -,i u 1 ,() d

'qj EUaj (kTr, 0) -W(kT, OA) X

A?, (11. 2.7)1
X (t) y) U) cev' dt.

One of the variants of the block diagram of a device realizing operation (10.2.7)

[�,:i i.. s.hown in Fig. 11.1 (we qhall not stop to discuss the transformation of '

(11.2.7) to real form, on the basis of which. there is constructed the block diagram, '4

since this was done in

, sufficient detail in the A

. preceding chapter). In thic;

circuit signals are fiirst

Ae 2 normalized to the same level

(normalization is necessary

in the case of different

gains of antennas and a

different level of noise:,

• tIti•[.,f[tJ in the channels); then tih,:y

Fig. 11.1. Optimum circuit of the radio channel are heterodyned with simulia-
so' an incoherent radar goniometer with a general-
ized method of direction finding. I - optimum neous multiplication by tihe
filters with pulse response (11.2.8); 2 - adders. law of intraperi d ampliteb

' o.;ulations and with inversion of phase modulation. After this the signals are

'illtfere i. The filter must have pulse responsle

'Co (o po-•t, 0< t < T,,
; h~t)----. O, I'> T,,('i•

i.o,, must reatize clearing of the accumulated voltage at ttie enrd ol the period :W

reel, fit]r)n o()!' the sig]nal. Th(e low-f'requency equivalent of tl.i:' fi]ter i.E a n lt',:t:-r,e r

wi ti 2lr'i rip,. When the :ignal has a large off-duty factor, i~e., the duration .f

thii .:hrncl pul:ie <, (< Tr, as the! i ritcated filter we ,can use any filter wit, ,

Ak !

Al al helis [~e noletI n::h



The signal from the output of each such filter e:iters two channels: in one

channel it is multiplied by a function varying according to the law of scanning of

the directional pattern of the corresponding antenna; in the other after a shift in _,)

phase of r/2 it is multiplied by a function varying according to the law of scanning

of the phase center of this antenna. After these operations all signals are added

and proceed to the phase detector. As the reference voltage of the phase detector

there is used the sum of signals taken directly from the output of the filters.

This circuit may, of course, be modifled. For instance, multiplication by

functions varying according to laws of scanning could have been carried out before

filtration. However, these modificat'ons are nonessential. More essential is

modification connected with other in •rpretation of the operation of taking integral'

over the period of repetition in ( .2.7). Namely, it is possible to carry out the

operation of heterodyning in the &Dsence of modulation of the heterodyne voltage,

and then pass the signal through a filter with pulse response

a (t) . Re • (--t)e ,p' . (1.1.2. 1 o)

From the output voltage of the filter it is necessary then to separate only

the values corresponding to discrete moments of time kT . This can be carried out

by gating the output voltage of the filters by gate pulses of sufficiently small

duration, with period Tr. Gating may also, obviously, be carried out after all I
* operations of the discriminator.

A filter of type (11.2.10) is callicd "matched with the form of the signal" or

*• "shortening." Processing using such a filter is called "filtrational," while

j;roc,.,,::l ng in the initial interpretation iZ called "correlation.' These terms already

were introduced in Chapter VIII, and we shall not discuss them in detail here. The

bl.oc;k diagram of filtrational procensing differs from the circuit of Fig. :11.1

insignificantly: the heterodyne signal should have the form cos ut, and filters

,should have pulse response (11.2,10); at the output of the circuit there should be

- gating unit. In other respects the circuits coincide.

Thus, the basic alilerunce between an incoherent circuit and the corresponding

coherent one (see Fig. 10.7) is that in the incoierent circuit each period of the

signal is processed separately, and results are totaled, In tne coherent Ziicuit,

due to the presence of narrow-band filters there .ccurs Joint processing of many

periods of the signal,
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More detailed study of synthesized circuits we postpone to subsequent sections,

where we shall consider concrete'mthods of••

Thus, with very general assumptions with respect to the method of direction

finding we performed approximate synthesis of optimum circuits of incoherent

goniometers. The purpose of further investigation is a detailed and systematic

study of quasi-optimum circuits from the point of view of their real accuracy. In

particular very interesting is the study of such circuits with a large signal-to-noise

ratio, since their optimality in this case is not clear a priori. Basic attention

during the study of different circuits we will allot to variants with correlation

processing, since in radar goniometers circuits with correlation processing are the

most common. However, here we shall not limit our consideration to filters carrying

out integration of the signal during the period of repetition: characteristics of

filters as far as possible will be assumed arbitrary.

Study of quasi-optimum circuits in the above-described aspect, as already

iepeatedly noted, is very interesting and important from the practical point of view,

since only such study will allow us to solve the question of the possibility of

sufficiently good appro:-imation of properties of optimum circuits.

§ 11.3. Method of Scanning the Directional Pattern

Let us turn to a study of incoherent goniometers using the method of scanning

the directional pattern. The optimum circuit of the radio channel of such a

goniometer can easily be obtained after certain concretizations from the general

circuit of Fig. 11.1. For this it is necessary to set n = i (one antenna), D(t, a)

= 0 (the phase center of the antenna is fixed), and express Ua(t, a) by formula

(10.2.2). The optimum circult can easily be reduced to the form depicted in Fig.

11.2. This circuit is known; however, the conducted synthecis permits us to more

exactly formulate the requirements for the circuit from the point of view of its

optimality: exact processing of intraperiod modulation of the signal and use of

. filter whose low-frequency equivalent is an integrator with clearing. The influence

on accuracy of all possible deviations from optimality in the circuit will b? stuoied

in detail in the present section.

Before passing to analysis of real accuracy of the synthesized circuit, we note

that tIhe circuit of Fig. 11.2 is theoretical and reflects only the fundamental

oror'itlons performed on the signal. The practical variant of this circuit., depicted

in Figs. ii.5, wzill, of' roursc, differ somewhat from its theoretical prototype.
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The difference is caused by the

necessity of introducing certain

elements, necessary during practical

.Optimum circuitof the radio use of the circuit. Such an

ch.nnel.. faniincohprentu guofnioeter with•°•>hanel~g~anincoeret~ggi~mter ithelement in the first place is a

pattern scanning: I - optimum filter with
pulse response (11.2.8); 2 - square-law system of automatic gain control
detector.

[AGC]. It is introduced, as we

8 already said, to maintain a constant

8 . level of the received signal, thanks

to which the amplifier in the

circuit always works in linear

condktions. Furthermore, in the

incoherent circuit of the method of

Fig. 11.3. Practical circuit of the radio pattern scanning after the amplitude
channel of an incoherent goniometer with
pattern scanning: I - high-frequency detector in practice there usually
amplifier-mixer; 2 - amplitude modulator;
3 - heterodyne oscillator; 4 - generator is used a so-called pulse detector.
of gate pulses; 5 - UPCh; 6 - system of
automatic gain control; 7 - amplitude The discharge time of the capacitor
detector; 9 - pulse detector; 9 - phase
detector; 10 - GON (reference voltage in the circuit of this detector
generator).

is selected sufficiently large

(so that the capacitor was discharged before the moment of arrival of the following

pulse, there frequently is used forced discharge of this capacitor). Use of a pulse

detector in such circuits permits us to obtain a very high transmission factor of

the radio channel with minimum technical expenditures (otherwise at the output of

the circuit it would be necessary to substitute an amplifier with a rather high gain

factor).

As we already said in the preceding chapter, an AGC system in the first

approximation influences only the slope of the discrimination characteristic of the

circuit, and, consequently, such characteristics of accuracy as equivalent spectral

density can be calculated without taking into account the AGC system. The influence

of the AGC system on the slope of the discrimination characteristic of the circuit

and :n accuracy of incoherent goniometers as a whcll we shall consider later, in

S 11.7.

The pulse detector, as calculations show [53], approximately is equivalent to

a normal amplifier. Consequently, from the -)olnt ol' view of calculation of accuracy
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of ¶.c g-3niometer and study of the dependence of accuracy on the signal-to-noiseI

ratio the pulse detector is a link such as con be omitted in general.

Thus, let us turn to analysis of accuracy of the circuit of Fig. l1.2. Calcula-

tion of arl ,uracy characteristics of this circuit we shall produce in comparative

Sti 1 ., aro that we car, subfequentiy om.t analogous calculations. Let us note that

t.',,; calcula.ion,; are very Il2re to those with which we dealt in examining coherent

T)' received y(t) in the conzidered circuit has the form

g() = /P0 Re U (t, a) E (1) u (0eIO&(+ /F n (J),

1101, c) i. ic. by i'orm.la (lO .2. -), arr ttie remrining parameters were introducedc

eari.ler [;;ee the explanation with formula (i.i) ].

AL the ,uutput or the circuit, obvi.u-,Ay, we have signal

z (i)--cos&(t) J 3(t--,)u(,c)v()e'd•%d', (

where ,h(t) - complex pulse re:porIcse envelope of the filter in the circuit; J

v(t) - complex zignal amplitude envelope oi the heterudyne oscillator.

I'leb ].ly 1, 0<1<y

0.# o t>T,.

tee l',-.rnul.-o (119.2)], and v(t) should coincide with the complex signal amplitude

envelope u(t). However, !.n order to allow for possible imperfectnesses of filtration

and pro,.!esizng ot' intraperiod modulation of the signal, we shall consider h(t) arid

v(t) nrbitrary, We introducr only the assumption that the passband of the filter

I, >,, ;2 • which always occurs in incoherent gi;ni,jeters. We shall place no

further limitation:s on chara-teric;tico of the filter.

LCet, W1 calculate the mean v.9lue z-`t, necessary for calculation of' the slope

of' tfe di:ýcrimination characteri.,tic and systematic error. Obviously,

X v (tI) e'"O'v*lt,)e'-•'' dl,dl,

C06 O y,-- jA ( . (. t,-1

X Re U (,, I a) U" (to, 4) U (I,) U * (t,) X
X es 01- IJ + 1 V ,- ,.V + M.8 0. -- t)} X

X v (t)v* (1,,) e~m ' ''d, ,. . .
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We use the broad-banded nature of the filter, so that with respect to functions

p(t) and U(t, a) pulse response h(t) can be consideived a 6-function. Here we have

(averaging also the rapidly oscillating functions under the sign of the integrals)

2 0 Cos M Pe IU y a)j- I st
X a (s #

Averaging now =77 in time and reducing by usual methods the integrals over

time to integrals over frequency, we obtain -..

. -it_ di- -I If Hi' IF (n) 1 a.,

where

F (Is) = arI (t) tP(I) e~tdt,(i *)

* 0

and H(ia) -- frequency response of the filter (more exactly, of its low-frequency

equivalent).

It follows from this that systematic error ini the o.onsidered circuit is absent,

5,u¢ -- d w-$

The slope of' the discrimination characte.ristic turns out. to be equal to

-- m -1tM -(I I/H (1o) IF (i-,) I'da.
O -0 ( 1_q, 3. +*+)

*For equivalent spectral density it is easy to analogously obtain the following.

OD'
0 -d

lIm ,- di S dt cos 0 (0cos 0(z) X

"-nin "-a 'S A y I, -( i)•(

(X V (t M(i1)y( ,)U(t) v* (,) >(
X V (%I) U (,C) t'l%,- 18+%,-",d11dIt,d%,d.. (1, 3. b')
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Producing simple, but rather bulky calculations and limiting ourselves for

simplicity to the case of uniform conical scanning, we finally can obtain

>< 12 Re qF (i,) F* ('-,) V* (iw, + im,) +

where

S()--�==� 3p(t)'e-' t dt; (1. 5.;)

p(t) correlation function of fluct,'ations of the rign-l, normaiize.i so that P(1)j

I- ratio of energy of the signal for the period of repetition and the spectral
density of noise;

- angular f;equency of -. 'anning;
TI.t

0

When p(t) = e-Af 0 ItI hiei
( ),

'+ A;T)

Let us study the found results in more detail. The simplest formulas are

obtained in the case of a rather narrow-band filter whose passband satisfies

elation,,-hip (l1.2.9). In this case under the sign of integrlo in (11.2.9) it I-,

o"2 = 2(wk,)Af' , where I' - effective width of the pasiban

of the filter (gain of the filter is assumed to be one). Here we easily obtain tLe

f'ollowing results. The slope of the discrimination characteris-lic is equal to I

IT I1JaorxA, (i

*1

ailo,,s: for imperfectness of processing, of modulation o]' tho signal. For equivalen~t.i

.;ue-: t al density we obtain the very simple formula
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+ S~ ir, Re 2q F (0) isVO(0)+ V (0)S

21-.2-99
it,o (a +1 jL, I

wher e

,.W -
T S Jvt'~d

q, (11.3.11)a

Ratio %I/x2 as we saw in the preceding chapter, is always smaller than one and

equal to I only with ideal processing of modulat ].or of the signal. Thus, imperfect-

ness of processing of modulation with a narrow-band filter is equivalent to decrease

of' the signal-to-noise ratio.

From formula (11.3.10) it is clear that even with total elimination of noises

there exists a residual value of equivalent spectral density

$sou = SO.-) (il.3.12)

caused by fluctuations of the signal. With increase oj' the frequency of scarning

the error caused by this factor disappears, and we obtairn

21& kq. q' (11. 3.13)

Let us consider asymptotic. ASe. - , h;gl. otnd low noise levw-ls. With high noise

levels

T.

With ideal processing of signal modulation, when q = q, this formula give.-.,

obviously, the potential value of equivalent spectral. density for a small signal-to-

noise ratio, since the analyzed circuit is optimum for thir ease. It is therefore

of interest to compare '11.3.14) with the equivalent spectral density of' an optimum

coherent circuit with a small signal-to-nolse ratio. With approximation of the

spectrum of the signal by formula (10.3.,26) and for the case of uniform conical

scanning it is easy to find that the PquivAlent speciral density of error in the

optimum coherent circuit [formula (10.4.10)] i1 U,!;f, than the equivalent spectral

density in the incoherent circuit by a factor of 1/14T.r Af G Let us emphasize once
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again that this occurs only for small signal-to-noise ratios.

Consider now the case of large signal-to-noise ratios. In this case

Let us compare the equivalent spectral density for the given case with the

optimum spectral density of a coherent circuit.

For large signal-to-noise ratios S for the coherent circuit we take from
OnT

formula (iO.4.1i). Here it is easy to find that the ratio of the equivalent spectral

density of the considered incoherent circuit and the optimum spectral density of the

cohercnt circuit (in the case of high frequencies of scanning) is'equal to
.S,uam in, Ih&~

Thus, for large values of the signal-to-noise ratio the considered incoherent

circuit (with ideal processing of signal modulation) ensures the same accuracy as

an optimum coherent circuit. From this we can conclude that the circuit of Fig. 11.2

realizes the potential accuracy of the method of pattern scanning also for a large

signal-to-noise ratio, i.e., is a good approximation of the optimum circuit in the

whole range of changes of the signal-to-noise ratio.

We reeoeat that everything said pertains to the case when the frequencies of

scanning are sufficiently great as compared to the width of the spectrum of signal

fluctuations. With low frequencies of scanning this circuit gives a 'component of

error (11.3.12) which does not depend on the signal-to-noise ratio, and for a

sufficiently large value of the signal-to-noise ratio, apparently, differing from

the optimum.

Investigation of formula (11.3.5) with an arbitrary width of the filter passband

is better produced for some concrete approximation of the form of modulation of the

sounding and heterodyne signals and of the frequency response of the filter. Let

us consider, for instance, the case of a pulse signal without phase modulation

with pulses of Gaussian form:

."Ua (t)"- 1. 5 In ("A. 3.15)

where T- duration of the pulse at level 0.5 [the coefficient is selected from

condition of' normalization (10.3.4)].

Grito Pul:es we consider to haw the same form, but with different duration:
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(11. 3. 16)

We approximate the frequency response of the filter by function

We designate

At 5.6 I 0.9

A filter with bandwidth Af = Afcors frequently is called matched. We assume,

further, that

Calculation by formula (11.3.4) with such approximations gives the following

result:
S,+ F+,')(V +X+ +

2 (0 + 10) 0 + '+ )

q V xU+2( • +s)j!••+2 9yk(1±X +- (11.319)

With high frequencies of scanning the first term can be disregarded. Here S.

attains if minimum value SMVH at x = 0, y - 1. This value coincides with (11.3.13),

where it is necessary to set q q. However, already with small deviation of y from

I the picture changes rather sharply: the minimum of %,, starts to be reached at

x - 1. This one may see well from graphs of the dependence of •/S M on q, shown

for different values of y and x (Fig. 11.4).

Thus, with nonideal gating the optim im filter is a filter, ilose to the matched

one. With ideal gating the optimum is a narrow-band filter, integrating the signal

in the period of repetition. However, all optima here lie rather- clcsely to one

another.

Let us note the very simple formulas obtained from (11.3.19) in limiting cases.

For sufficiently wide gate pulses, when y << 1, we have

•tT'Il+X'• 2. 1 +xvI

T, 1+x'2e (11.3.20)

This formula with considerable widening of the band of the filter, i.e., when x ) 1,

takes the following very simple form

-642- ( ! +T]" (1 .)
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We shall now discuss the question of parametric fluctuations, The spectral

density of parametric fluctuations in general is difficult to calculate, in view of

the very great cumbersomeness of computations. We will give results of calculation

of the spectral density of parametric fluctuations for the case of high frequencies

of scanning, when the component of error caused by equivalent spectral density is

rather small, In this case we have the very simple relationship

Snp -S- (0), (11.3.22)

where 10 (n) is determined by formula (11.3.6). In particular, with approximation

-2Af Iti
p(t) = e we obtain

Snap = 'Ise.

Thus, the spectral density of parametric fluctuations does not depend on the

forin of modulation of the sounding signal and is inversely proportional to the

width of the spectrum of signal fluctuations.

"."

1*-

Y \

Fig. 11.4. Gi ph of the dependence of
•/•H or the signal-to-noise ratio q

for the circuit of the method of pattern
scanning: x = 0.1; x =0.3;

X
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i1.4. Methods of Scanning with Compensation and IAC

11.4.1 Optimum Circuits and Their Characteristics

Optimum circuits for the method of scanning with compensation are easily ob-

tained from the general circuit of Fig. 11.1, where n = 2 (two directional patterns)

and ¢i(t, c) = 0 (their phase

centers are fixed and coincide).

Function Uai(t, a) must here be

expressed by formula (10.2.5) for

CaWt) the method of scanning with compen.-

*ISIWI• t sation or by formula (10.2.8) for

Fig. 11.5. Variant of the optimum circuit of
the radio channel of an incoherent goniometer IAC [the latter one coincides with
for the method of scanning with compensation:
I - optimum filters with pulse response (10.2.5), if there we set $1 (t) =
(11.2.8); 2 - square-law detectors. = 0, $2 (t) = 7]I. If we consider

the amplifications and gain factors of the directional patterns, and also noises in

channels identical, and consider the laws of scanning connected by relationship

(10.6.2) ($ 1 (t) = $(t) = 42 (t) + 7), we can present the optimum circuit for the

method of scanning with compensation in one of two forms, depicted in Figs. 11.5

and 11.6. By analogy with the terminology of Chapter X the circuit of Fig. 11.5

we shall subsequently call a circuit with subtraction, and the circuit of Fig. 11.6 -

a circuit with multiplication of signals. Circuits for IAC have, obviously, pre-

cisely the same form, only it is necessary to set $(t) = 0, i.e., multiplication

by cos $(t) at the output of the circuits will be absent. The obtained circuits

are very similar to the corresponding coherent circuits, synthesized in Chapter X.

Fig. 11.6. Variant of the optimum circuit
of the radio channel of an incoherent
goniometer for the method of scanning with
compensation. I - optimum filters with
pulse response (11.2.8).
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ii.4.2. Investigation of Circuits with Multiplication of Signal-

Let us investigate characteristics of synthesized circuits. It is obvious that

. both considered variants of circuits (with multiplication and subtraction of signals)

with ideal construction give identical accuracy. The difference between these

circuits will appear only in their unequal criticality with respect to nonidentity

of channels. Investigation of this question is very interesting from the practical

point of view.

In view of cumbersomeness of calculations we shall produce a simplified allowance

for nonidentity of channels of the circuits, seeking basically to find .the physics of

the influence of nonidentity of different parameters and o•'tain simple calculating

formulas.

Let us consider first the circuit with multiplicat:,on of signals. The output

signal of the circuit of Fig. 11.6 has, obviously, forra (10.7.1) or (10.7.2) (the

latter when ý(t) = 0). The received signals are equal to

Y,= VP-Re U5 (1, ()E (t)e'%01+ 4-1 1 + NIn(11141

where U.(t, a) are expressed by formulas (10.2.5) or (10.2.8).

We assume that the width of the band. of the filters in the circuit satisfies

relationship (11.2.9). We assume that the frequency responses of the filters are

identical; however between che channels there is a certain constant phase shift A&.

Obviously, this type of nonidentity is the most essential for circuits with multipli-

cation of signals.

Omitting intermediate computations, we give the final results, identical for

circuits of the method of scanning with compensation and IAC. The slope of the

discrimination characteristic turns out to be equal to

2 cos ,(11.4.2)

where P -- total power of signals; the remaining designations are the same as in

formula (11.3.9).

From this it is clear tnat in the presence of phase shift betwepn channels the

slope of the discrimination characteristic decreases. With very great nonidentity

of channels slope K. can fall to zero or even be,-cme negative. The circuit in this

case, obviously, will not work.

Systematic error in the considered circuit will sIways be absent. This is

nlso understandable from very simple reasonings: if the target is in the equisignal
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dtre'tion, the signal in the difference channel will be equal to zero. Consequently,

Sthe .•in]of er-ror aloo will be equal to zero, rekarqmle,3o of Identity ofri nonceritity

0o.' the channels.

For the equivalent spectral densi.ty oi error In the- circuit with mnultiplication

o0' signals we obtain

&I- • .9 ,•,( x•.43

where q 1 3s detk.,rmained by formula (11.3.11) (with replaecement o,4 PC by Pc )

From thiz we see that with nonidert.ty of *:hmneli ,rere also occure irncrea;.e

oi' tte equivalent. -petral density of error. 'TLI' formula differs Fomewhat from thy

ar.olr 1 ou8 'fc.rmul, (11.3.13) ror the ror el pi1ttf iTt saconning.

Let us assureu- now that thri filter hae c ve'ij wide band, so that there does not

Occtir pre integration of the signal, H're we zh,.]. limit ourselves to the .ease o* ,f

I1..ion, :al chunne..,. hesultll will oe tn.l,4g7ur, tL, I I,;::e which we had for the method'

or 1,ýttern :;cann[r,;-: the IA1 ope Of thi' : r t'ninumi.ri characteristic is detex.riifned

by Itrl"AtIla (11. 3.7,) (With, rei ou .ni t o* |c Ly P'O X.), afi equIvolent sipectrat density

...... ,,,,',n• ed by oin -Xp pI~ r s .ion ;ioml-w(I111, ' I r.,r, ( .5.4-

X S H (i ] If (•I"') R'e qF (iw) F' (Iig) V! (i's, Lei) +

+ I V (lei + lips)I'I do-d-,. 11 4, 4'"')

';,!'"2 t i' ' 1 h. tcrrfl '?U•.IJ'.. by JnI•r lrr,',ir u|L,,'I•'e',rfitII,•fl f-;19 t,?i, U1?0 1 ;tgI]'l ,

I'll , l uit'i.r '' , VII' 1 I er'ri ll •, l.I ', l 'qil1 o Q IT 1/A , 11 d0l' lA d ly 0 to '.t l 1'

11, ll -n n ',t , j, rornr la (1 . I4) i L '0 : t u, ' ; , in formula (m , ,, )

,,i(JI 17)I tt! J."W""'-•t!

,... . [il '

,4j 4s m

Al '. . ._ T ,
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insignificantly differing from (11.3.19). All qualitative conclusions with respect

to the influence on •. of various factors remain the same as before.

11.4.3. Investigation of Circuits with Subtraction of Signals

In circuits with subtraction of signals there already is a certain difference

between the method of scanning with compensation and IAC.

The signal of error at the output of the circuit of Fig. 11.5 has the form

(10.7.6) in the case of scanning with compensation (where T = 0 in view of the

broad-band nature of the filters) or form (10.7.12) in the case of IAC. The received

signals, as before, are expressed by formula (11.4.1). For these circuits the most

essential type of nonidentity is nonidentity of gain factors of the channels.

Let us consider the case of a rather narrow-banded filter. Proceeding from the

expression for the output signal, after simple transformations we obtain for the

method of scanning with compensation the following results.

The slope of the discrimination characteris.ic

K2 = 4p%~rn~i Afo.(Kl +K2), (11..4.6)

where K1 and K2 - gain factors of the channels.

Equivalent spectral density (in the case of uniform conical scanning)

s ((a)+ T + (1.4.7)ai 2pa\fq#2

where k = K 2 -- ratio of squares of gain factors of the channels; the remaining

designations are the same as before.

Systematic error in the considered case is absent.

From formula (11.4.7) it is clear that in the case of nonidentity of channels

there exists a component of error caused by nonlinear transformation of the signal

and not canceled even with complete elimination of noises. We had an analogous

component of error in the case of the Method of pattern scanning (11.3.). With

growth of the frequency of scanning this component of error disappears. With

identical channels, when k = i, this component of F&rror is absent.

For the IAC method calculations oo not differ at all fron calculations "or the

method of scanning with compensation. Results Pre somewhat different. Gain factor

KA I., oxprczsed by the :;.me formula (1i.4.6). However, now there will exist

..ystcmatic error equal to

-647-



Systematic error monotonically grows with growth of nonidentity of gain of the

channels. The signal-to-noise ratio also affects systematic error.

For equivalent spectral density in the case of IAC we obtain the following C
expression:

Ti £IL3I' (11. 4. 9)

Thus, here there also exists a residual value of error, caused by amplitude

f1uctuations of the signal. In the case of identical channels, as one should have

expected, formulas (11.4.9) and (11.4.7) coincide, i.e., the methods of scanning with

compensation and IAC give identical accuracy, regardless of the circuit of the

radio channel, if the channels of the latter are completely identical. This occurs,

naturally, also for arbitrary frequency responses of the filters; then for circuits

with subtraction accuracy will be characterized already by the known formula (ii.4.4).

Comparing circuits of the method of scanning with compensation and with IAC, we

note that any of the circuits with compensation with two channels can provide

measurement of angular coordinates in two planes. Circuits with IAC for measuring

two angular coordinates with switching will contain three channels (one with the sum

signal and two with different signals). The IAC circuit with subtraction should

already contain 4 channels (two channels for measurement of the angle in one plane

and two for the other). Thus, simplest are circuits of the method of scanning with

compensation, then follows the IAC circuit with multiplication of signals and,

finally, the IAC circuit with subtraction of signals.

From the point of view of criticality of the circuits to various rnonidentities

it is possible to note the following. Circuits with multiplication are critical

besically to nonidentity of phase-frequency responses, where circuits of the method

of scanning with compensation and IAC are equivalent. Circuits with subtraction

are basically critical to nonidentity of gain of the channels. Here the circuit of

the method of scanning with compensation has an obvious advantage over the IAC circuit,

especially in the case of high frequencies of scanning: at high frequencies of

scanning noni lentity of gain in the circuit of the method of scanning with compensa-

tion does not affect accuracy; in the IAC circuit it always leads to the appearance

of a component of equivalent spectral density, not depending on the signal-to-noise

ratio, and also appearance of systematic error,
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S11.5. Method of Instantaneous Phase Comparison of Signals

Of phase methods of direction finding with an incoherent signal we can use only

the method of instantaneous phase comparison of signals (IPC). The method of scanning

the phase center with an incoherent signal is not useful for measurement of angular

coordinates. The IPC method can be used with an incoherent signal and will give

accuracy of the same order as, for example, IAC.

The optimum circuit for IPC can be obtained from the general circuit of Fig. 11.i,

if in it we set n = 2, Uai(t, a) = 1, and introduce 4i(t, a) according to formula

(10.2.9).

It is easy to see that there are two identical variants of IPC circuits, depicted

in Figs. 11.7 and 11.8: a circuit with formation of sum and difference signals and

a circuit without formation of these. In structure these circuits are the same

as for a coherent signal; however characteristic of the filters already are substan-

tipl~y different.

Fig. 11.7. " ariant of the optimum Fig. 11.8. Variant of ýhe
circuit of ths radio channel of an optimum circuit of the radio
incoherent goniometer with IPC. channel of an incoherent
I - optimum filters with pulse goniometer with IPC. I -
response (11.2.8). optimum filters with pulse

response (11.2.8).

Let us in,;estigate the synthesized circuits. We consider first the case of

sufficiently narro'.-banded filters, carrying out exact integration of eveery period

of tho signal. We consider tl.at channels of the circuits are nonidentical: bctween

channeL: there is a constant phase shift A.. Nonidentity of gains also can be

considered: however, it does not influence accuracy of the considered circuits.

As aInco tric case of a coherent signal, the circuit of' Fig. 1l.8 Cor IPC is

compI.2...el equivalent to the circuit with multiplication for IAC in the sense that
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accuracy of the circuits are expressed by absolutely identical formulas; only the

role of the gain factor of the directional pattern in the case of IPC is played by

7d/A. This is eady to prove by calculating the signal of error at the output of the

circuit of Fig. 11.8 and finding the characteristic of accuracy of the circuit.

Calculation shows that the slope of the discrimination characteristic will be expressed

by the known formula (11.4.4), and S3XB is expressed by formula (10.4.5), where ýa

must be replaced by rd/A. Systematic error is equal to zero.

For a circuit without formation of a sum and difference signal results are

substantially different. Although the slope of the discrimination characteristic

in this case is expressed by formula (11.4.4) with replacement of 1a by rd/X, here

there will already exist systematic error

A-- -tg Alp. (11.5-1)

Equivalent spectral density, as calculation shows, is expressed in the following

way:

From (11.5.2) it is clear that with nonidentical channels there exists a compo-

nent of error which is not canceled with total elimination of noises, i.e., caused

exclusively by fluctuations of the signal. From this we see that the circuit with

IPC without formation of the sum and difference signals is considerably more critical

to nonidentity of channels than a circuit with formation of the sum and difference

signals, so that the latter circuit is preferable. With identical channels, when

AD = 0, both circuits are identical. Without dwelling on the calculation, we note

that in the case of filters whose bandwidth is comparable with the broadened spectrum

of modulation of the signal accuracies of both circuits are identical and are

expressed by formula (11.4.4), in which it is necessary to replace ýa by rd/A.

We shall now stop to compare the considered methods of direction finding. It

is easy to see that with a large signal-to-noise ratio and high frequencies of

scanning (for the method of pattern scanning) accuracies of the considered methods

of direction finding with ideal construction of the radio channel are expressed by

the same formula

S/. T l "q ,

2 =2where c= L (for methods of scanning th directional pattern, scanning with

compensation and IAC) and c 2  ( 2- (for the IPC method). Comparison of methods
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here is very easy to carry out, and results are the same as in the coherent case:

K) the method of pattern scanning is inferior to methods of IAC and scanning with

compensation in view of a worse signal-to-noise ratio; with decrease of the frequency

of scanning accuracy of the method of pattern scanning becomes still lower. Methods

of IAC and scanning with compensation are equivalent in accuracy. For comparison
2 7Td 2of IPC and IAC it is necessary to compare Lt and J7 ; in particular, for a square

aperture of an antenna system of assigned dimensions use of the methods of IAC and

IPC is equivalent.

1 ±1.6. Method of Flat Scanning of the Directional Pattern

We shall investigate incoherent circuits of the method o± flat scanning of the

directionalpattern (method of tracking by pulse packs). For this method the incoher-

ent circuit will essentially differ from the coherent. From general expression

(11.2.6) it is easy to obtain the optimum operation for the pack method in the

following form:

ATA

Substituting for modulation Ua(kTr, a) its value from (10.2.6) for the method

of flat scanning, we obtain

z~T,= C (I)v(e'~dilly +~l~T a+T.JgOkT ATft'nl
WY, g ( ' ( k',--+ . g-(1.6.1)

A A

whore " a/A - measured value of delay of packs of the signal;

g(g) - form of the directional pattern (for power);

S- angular velocity of motion of the pattern over the sector;

Tr - period of the sector scan.

Note that for every k in formula (11.6.1) there is only one term of the sum

standing there with number

[h=81 -r , 1I Z , J,

where [x] signifies the integer nearest to x.

The block diagram of the device realLzing operation (11.6.1-) is presented in

Fig. ii."'. Here, after heterodyning, filtration and square detection, the signal

IF mu2tiplied by gate pulses having formig(St) g'(nt), delay of which is controlled.

The, .... gate pulses are bipolar, which is equivalent to multiplica~tion by singlc-pole
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gate pulses and further subtraction. The circuit o) Fig. ii.9 is well-known , Our

analysis will help one to establish optimuim values of parameters of this circuit.

Let us turn to Investigation of charakteristlc6 of th'" synthesized eircuit. We

assume, as before, that there is used a filter with possband Aft, >> i/Tr and

arbitrary frequency response, and that the netern•dyne signal is not matched with tie

received signacl. Furthermore, we

consider that; the strobes by which

the output signal ic multiplied have

,to (t a certaln derivative form f(t). we
Fig. ii.9. Optimum circuit of the radio
channel of a goniometer using the method introduce the hypothesis that the
of flat scanning. I - optimum filter peeko. fluctuate harmoniously. All.ovo~i
with pulse response (ii.2,8).

for distortion of packs resulting frm•

fluctuations of the signal is an extraordinarily difficuls and cumbersome problela.

The signal of' error at the output of the circuiL of Fig. ili. has the form

z h(11 1e~tftc +nT) i.62
-i S

* where the received signal y(t) is equal to

yv (t)-- V• •e In (i - ' + nTr)j]X

i ~~~X Re E (t) uIt) e'° ÷: V/+ N~n (1). •

Hlere T A/;' -a angular coordinati: ct tar1,,et. 5he remaining designations

arC thc same as before.

" 'o e s •: c a l l, ]Ia ti o n s w e Ot.,um ; t • ,u t f ,, . a (t ) : o l d D t h r w i : se c e ]el a t.2ors P,

ancl r'ul'. become i ve-y cumber.uohee.

. 'e-ca[ing e xbre •ril n ( -i..6 .2) -,v',. i.1 er1. t !, Pp :, 'ý er time, we obtain

ihn @ )d=-1 5. + 1f(im)l, tF(iSo)Idx •..S g.(f_( i -or f y(-,) di

I -- H (1 )1 I 
9ie 

jd & . t
-~ 0

From thii; it A:- oa:;y to find thl, 1-x '.;i .t ;, ti :;u; 01 t.41 Sl. imiCui')f

'l r 'a c t e r6 5 2

t-- 5



-KA1

whe die

IC"" S IH (hi,)I' ( l.)'C IF (1w12d-w,)'

To

0

Fortheequivalent ispvecryl gensral anf error we obtain dfclth tollwn pereiva -n:

jm~~~ 2: Reng r, Cq deIendin on (11ff eVen faIto*, + e exp2n] do, rm (11. 6,.



Vhere T - A/-- duration of a pack of the signal at level 0.5. We Thall

approximate gate pulse f(t) by function

i.e., gate pulses of form f(t) are obtained by differentiation of Gaussian gate

pulses having duration -T at-level 0.5. With these assumptions :t is easy toCj

calculate that

!3C1  0,07

C, = 0,09

where x T ./-

Substituting these results in formula (vi.6.), ie obtain

so.----0.07 + q1. + 05x')".Ita

where = Tr -- nucber of periods 3f re 1 .... on oC the signal in a paock (number of

pulses in a pack),

2N,

is the ratio of energy of the signal for the period of reti.etttion of packs to the

spectral density of noise.

In formula (i1,6.') factor f/Q' i- takeoi f-.l0 ,i1utioi] of the spectral. density

and error of nlsasur-;ment of delay of triu signail. To determine error of measurement

of an ongle we need to drop factor /i, which wve rhall do subsequently.

Let us study the formula for In rrenter aetail.

, For small signel--o--noise ratios

S,.M 0,07 +

The minimum value of1 S,' in this case occur.;, obviously, at x = - 1.4, and

is equal

Sum,. - 0,2 r.Ally
;.; •(ii.6. 8)

If we also consider processing of signal ii(o,1u~ntj()ri Ideal, 5o that q n =

q then S MH wi l coincide with the rrlrr,,im pos.qib i va•iu of ý1uivelent opactrol
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density for hi±h noise levels, since with the given assumptions the analyzed circuit

Is optimutm. It is curious to compare, therefore, formula (II.6.8) with formula

(10.10.28), giving the minimum possible value of equivalent spectral density So.T

for the method of flat scanning with a small signal-to-noise ratic and a coherent

signal. This comparison gives the following:

Sn W 0,292__._. 0,2

Hence, i.! 'he case of rigidly correlated packs, when T < 1, we have (with

a Gaussian approximation of the d'Iectional pattern and exponential approximation

of the correlation function of fluctuation)

'Son, 0,3T.Af,

From this formula it is clear that for small values of the sIgnal-to-noise ratio

an Incoherent goniometer gives considerable worsening of accuracy as compared to a

coherent one. The worsening is inversely proportional. to the number of prck, in the

interval ofr correlation of the signal, and proportional to the number of pulses in

a pack. Physicnlly, both circumstances are understandable.

In the case of independently fluctuating packs, when Tn AfC >> i, we have

Son, .0.07

T.-'., h;,rp there natur!illy occurs lowering of accuracy, proportional to the number of

pulses of the signel in a pack.

Let us consider the case of large values of the signal-to-noise ratio. Here,

f'roir.Carmuln (11.6.7) we obtain

s ome. =0 ,18 6 r .A t ,' [i + o ,,54 1' ]

Tk is ýn.sy to ,ep that the obtained value of S" monotonically drops with

rlecreCr- of x, reichJng Its minimum at x - 0. Thus, f'or low noise levels gate

ipu I.,rm,nt iti b: talken ns wtde 'nr po,,ible.

Fr' nn nrfttrttry signal-to-nolse rntio there will exist n certnin optimum vwluf.

of' z. The s r:,r, of' the el,,pon rnnn -fr optimum value:n of x20.., on q n or

ll 1',.'-rt ,., rhown In Fi.,g. 1J.10. From thin gr'aph on- mauy .rnphitenlly nee whnt.

,,,-.-,|,t 'i•,.-. I,' ilt onnhI- ,if' durntalt on,: oi' twickn nnd gtn I puln r 1 x s nr T :houtld boe f t',o

ii f'fr'.rr' ' I.,li.h; ofg tI',, :I•r.a -[o.r !, . r- i .



In Fig. 11,11 ther_. is shown the dependence of rfi io %,,/S.., on the signal-to-

noise ratio q• , where is the equivalent spectral. density at optimum x.

From Fig. 11.11 it is clear that when x = 1.4 the equivx?].ert spectral density S,,,is"

very : lose to its minimum ,,slue in
- the wno].e range of signal-to-noise

ratioaý. At x = O.5 or x - 4 quantity

aim is considerably increased.

On this us complete our study

of the radio channel of incm.:,rent

-goniometerc, which toizether with

antennas comprise the discriminator

of the goniometer system, and we

t •urn to investigation of accuracy
Fig. 11.10. Graph of the dependence oif
oýt i!flum ralues of, XOT on the signal-to- ot" tracking gon.Lometers.
u)ise ratio q(

I -4 .......

SN

Fig.11.1. ',rj~j Of thedw-J.F-ndenrc. of'

-%fm/s onsigal-o-niseratio q.1
fortheciruitof hemethod o0 f f) at10
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§11.7. Analysis of Accuiracy of Incoherent Goniometers

Let us calculate errors of measurement of angular coQrdinates of a target by

t1F:-'Aing radar goniometers using an incoherent signal. These calculations contain

,t• ng i.Zw in principle as compared with the coherent case: it is necessary only

in to, 'zlas § 10.12 to replace the characteristics of the radio channel for the

ýohernt case by characteristics for the incoherent case. In view of this all laws

relating to accuracy of measurement of angles fixed !n § 10.12 are preserved and no

not need repeated discussion. Therefore, w..e shall limit, ourselves in the present

chapt(e basically to consideration of illustrative examples.

First of all we must consider tho influence of an AGC system. As we know,

under the influence of an AGC system there is established a certain transmiss-ion

factor of the radio channel, depending on the signal-to-noise ratio. There are n-o

peculiarities here as compared to coherent gonicnetersa. The syL.era of sutornti it,

gain c•ontrol in single-chunnei incoherent circuits is closed from the output of rho11
filter of' the radio channel. in the case of multiohannel radio chanlnel:s tite _y.silein )

automatic gain control is closed either from the outnut of one of the filters, Ci

the input voltage of the AGC will bo formed by means of summation of the output

voltages of the filters. In all cases, as it is easy to see, the transmission

factor of the radio channel will be expressed by formula (io.13.1), which at>. is

best reduced to form

- Kill - A
q + (11.7.1)

whore q - ratio oi/ energy of the signal for the period of' repetition to the spet'al
density of noise at the input of the AGOC system;

Xf - effective bandwidth of the amplifier covered by the AGC loop.

Let us turn t, consid3eration of examples of calculation of ý-rrcrs of" e'uer<

in trucking incoherent goniometers. Let usi stop on calculation n.r flluctuatin]g error

A -. uie we have a Toniometer with TAC, whose radio channel is constructed acror',d..£.

t.i th- circuit of Fig. 11.6. (circuit with multiplication of signals) with ide.tical

chinrie]ý. We assume that smoothing circuits are linear with cooA-tant parsoteŽ:"

and ha.,e .ranf-.fer function Hi(p) (1012.)).

FI-tctuating error in ;ouch goniomes-er will be expressad, cbt'Ic , y, b .. ',-.u,,1'I

z 4 -le

- - ~ .T,/rIy~~k--I\ ;-

Sf -6 5 7 -



We use here formula (11.4.7) for L"•i and (10.12.1• l '`or 'f D ' The graph of tne

de-iefri.ence of u2 aon q1, for diCfferent values of' y is 6hov;n in, "Fig. 1:,P (i'ur2
300). As can be seen from this figure, 2 lathe- soarply drops witn growth of

the signal-to-noise ratio. Here the best result:, ire _.,.iined 'or large y, i.e.,

for a wide passaband of the filter. However. the depcnuence on y is very weak,

tispecially for large signal-to-noise ratio,,.

Dyna•ic errors during process.' r of random or nonrandom inputs are expresed,

obviously, by the same formulas as in the ooherent oo-ee [see foriaulaa (nU.12.21) And

(10.12.25)). Inasmuch as the slope of the iiscriminatloo characterislic K,, in

incoherent circuits depends on the signsl-to-nri:.. .'tio q exartly ao it oej-.-nde4

Sun h in coherent cirults, dynamic ei'z")r Wlil 1Us: t1A:.. same, only in che cor 'e fsponu*- 1g

C"r" •.ons it is necessary inifte,. h t(, place q.

Thus, all the results of' the. rreoCEi rL: chapter with re- pect to dynailoc errors

9are identically transferable to ii-

! Tj oonsid red ease, so that t ,_Ltiorn-!

4, .o.. ..- o nit an incoherent

, _.goniometer is completely like the

coherent one with respect to nonlinear

of target'.:, inasmuch as the given

9 so .a discrimiciation characteristics of

Fig. 1i.12. Example of the depend-noe incoherent goniometers simply
a; meci ,,quare fluctuating error oi of

an Incoherent goniometer on the signal- coincide with discrimination character-! • to-nolse ratio q',,to-oerti qistics of coherent goniometers,

§ 11.8. Influence of Interferences on Incoherent Goniometers

.e turn to a study of the influence of interferences on incoherent goniometers

'O]. As compared with the cuherent ease there are no essential peculiarities here.

Tue, the passbands of filters in the radio channels of incuhevefit g,•nicmeters are

considerably wider than in coherent goniometers. Therefore, equivalence of certain

* i:I'erfei;416es tu ,Ilte ,,.i6e, i x.• .t :,uu. _mters, here occurs with

greater strains. We shall consider these questions In greater detail.
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1-1.8.1. Influence of Broad-Band Interferences on Side Lobes

Active interferences usually have a spectrum width considerably exceeding the

spectrum width of the sounding signal. Consequently, even for radio channels of'

incoherent goniometers such interferences can be considered equivalent to white

noise, if a broad-band interference influences a side lobe, it does not carry

information and is equivalent simply to natural noises of the receiver. Therefore,

the presence of such interference can be sufficiently accurately accounted for by

means of introduction of a new spectral density of noise, equal to NO + N7 , where

N -- spectral density of interference at the input of the radar receiver. It is

easy to see that the spectral density of interference N ri will be expressed by

absolutely the same formulas as for the coherent case: for noise interference we

have formula (10.13.1); for pulse chaotic, formula (10,13.2).

Accuracy of incoherent goniometers is given here by formulas derived in the

preceding sections with replacement of signal-to-noise ratio q = T by

qu
Hence fir weak interferences (and weak natural noises), when qn >> i, noise

immunity of coherent and incoherent goniometers against the considered interference

is identical. For strong interferences, when q << 1, incoherent goniometers will

have an equivalent spectral density of error, larger than the coherent by a factor
i

of approximately TIAf i.e., losses here may be very considerable.
Tr cf

i.8.2. Influence of Broad-Band Interferences From the Target

Bro;,rl-band interference radiated from a target also is equivalent to white

noise. However this interference carries in itself angular information, by which Li:

essentially differs from interference having effect on side lobes. In view of the

considerable excess of interference from the target over the signal, the latter I::,

usually suppressed through the AGC system, and tracking is conducted only ty the

interference. Let us calculate the accuracy of incoherent goniometers during sorb

on broad-band Interference f'iaM the target. We must not directly use fornnri.. ,II

t.,e ;,vecuuing sections gLving accuracy of measurement by a fluctuating -j.i.gnl here:,

sInce in 3.rlv.y± thee furmtulas tic widLh, . tbn -rtrum of I'I ulJc1r. so-

assumed -iderably narrower than the passband of the filter:;. For broad-band

inter;,.. nce we have the reverse case, so that ralculation here should be per!'or-nc:

anew. j

S~-659- {1I
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Let us consider first the method of pattern scanning. Calculation of accuracy

herfe can be produced proceeding from formulas (11.3.4) and (11.3.41), if we replace

the correlation function of signal fluctuations P0F(t - s) by N n 5(t - s), and also

set u(t) = i, N = 0 (i.e., natural noiseS are absent, and instead of the signal a

there acts white noise). With these replacements calculations are essentially

s.implified, and it is easy to obtain the following:

94&fKV (0'(u) I (iw1) H (i-D)i')X

X IV (is, + im-.)I' d,*adw,.

Whfere V(iw) is given by formula (11.3.7);

h(iai) is frequency response of the filter;

Af is its effective passband;

Tr is period of repetition of the signal.

If the filter band is so narrow that it integrates gate pulses proceeding to

it, then, c.onsiderlng IH(i,) I =9 rrf i,.we obtain
Slt 21I•: g , 2,, w o t i

This formula coincides with formula (10.13.4), occurring for the coherent

circuit, if we set Af d . If the fi]iim -is so broad-banded that it passes
r

Sgate pulses with minute distortion, thlen in!te• of (11.8.1) we have an essentially

cif] event result. Considering in tn!.,.; c•.ase

IV. w)l' =2•9 (f) dt,

wtý obtain

SX,2 *2A 2 , Iv ill'di

With a square approximation of gate pulses and the frequency response of the

filter we have

w:iere • -- duration of' a gate pulse.
C

The absolute value of error when tracking a target by broad-band interference

radiated from it can easily be found from the derived f'ormulas. For instance, at
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Tr =10- sec, a= 0.2 I/deg by (11.8.1) we find S 0.01 deg!/cps.

Let us consider now the influence of broad-band interference from the target

on goniometers using methods of scanning with compensation, lAC and IPC. The rules

here are the same as for coherent goniometers. When radio channels have identical

channel.-, tracking by interference occurs without fluctuating error (if we do not

consider parametric fluctuations). With nonidentical channels In circuits with

subtraction of signals there appear fluctuating and sometimes systematic errors. If

we assume the filters in the circuits have a suffIcaently narrow band so that gate

pulses proceeding to them are integrated, the formula for equivalent spectral

densities of errors can be obtained from the corresponding formulas for tihe cohereri

case (see § 10.13) by replacement of Aft by i/T. Systematic errors have absolutely/

identical form for coherent and incoherent circuits.

Thus, tor circuits of the method of scanning with compensation and IAC with

subtraction of signals we have

J1.Ž

where k - ratio of squares of gain factors in the channels.

Systematic error exists only for IAC and is expressed by formula i.31)

Analogously for an IPC circuit without formation of sum and difference signals,

with nonidentical channels we have equivalent spectral density

where L-- difference of' phases of signals at the output of the channels, caused by

nonidentity of channels.

Sy-itematic error, as before, is expressed by formula (10.13.21). Absolute

values_• of errors here are of the same order as error.; during ware on a fluctuathi.•g

signal with considerable excess of signal over noise. From what has bee- sai vs.

can c-n-ludc that interference radiated frovm a target for goniometer charm-.s iS

rada r; does not pr'esent danger, and tracking by cuch interference ore! .,

i ulLy permL--.-.xibi.e errors, ItL is necessary, of course, to mention thift for ) o, ,

;,.,a, < ts , of ,Intearlerence. in a nru,-abr:r of er .e should! take e cs-ertain pe_

s-52IV5.': widening of the gate pulten (with; broad-band 1'ilier -) and ,utof' of .,,

Outo•fýlft3 gain control (ShARP), if we have it (since ShARP would reduce the lev.el of

*lnter~e••ien-'c to- the lev;..l of natur],l noises). These measnres i•.•..nd on nortc

' -nnrd Ii -,n;:.,-
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1.8..3. Influence of Active Inter'er nco. witn bu.rrow-:Band
Amplitude Modulation

Let us consider the question of the influence of n)tive Interferences with 9
to a I narrow-band amplitude modulation, h 'ting a t:rpe-n.,t neat' the "rfrequency of

innuiing, on goniometers using methods of pattern .canning. The calculations; and

results here absolutely do not differ from what we had ofe coherent gonioieters, and

equivalent spectral density is expressed by the known formula (0, .15,25), Errors

;,e,'eV as shown in § 10.13, may be very C.onsFidErable.

Analogously for the method of scanning with compensation we can obtain resul]ts

completely coinciding with results for coherent goniometer.s: in a ciýrcuit wittn

Smull iplication of signals fluctuating err•or during tracking by amplitude-modulated

interference is equal to zero if we disregard parametric fluctuations; the spectral

o:,nsity of parametric fluctuations with iduntical channels is given by formula

(10.3.27). The same thing takes place in a 'ircuit with subtraction of signals with
~eoticd, channels, With nonidentical channels in a circuit with subtraction

J: different from zero and is expressed by formula (10.3.26). Error here depends

on the degree of nonidentity o[ ciani.s an.. us-uially is rather small. Consequently,

inter-fer-ence with narrow-band amplitude mnodui'Lat-ion ;i very dangerous for radars

using the method of pattern scanning and practiclcally does not affect, radars using

the method of' scanning with compensation.

The inriluence of powerful intermitf.[?, Jn:l1erences.exciting in the radar

re-ecvsr prolonrgeoi transients, W,:- (-I; . týf, -y st-ucted i'or the coherent cs:'e in

'>O.13.4. Everything presented there is-z completely triansferable Wo incbherent

circuits. QZuAntitatively, of course, there wil.l be certain dirferences, due to

r;2 nce of ihe parameters of coherent and inc;oherent circuits; however, the

inl],]uen' of intermittent interferences on goniometer devices practically does n:.t

" ielol t(' theoretical analysis, and the problem of obtaining quantitative chore' tc.r-

s.tics of the influmne of such interferences, as also in the coherent caue, has not

With respect to passive interference il is l~ssible to say the following. It

I' kn,,wn that noise immunity of inc:uherint ,iaC•-i'o ijitli respect to passive interfereence

cry low If there J- not. provi den spenil 1 meas•ures oi protection from this

interference (see, for instance, Chapters V, V1I andr Paragraph 8.10.4). Incoherent

radar goniometers are not an exception in this resjezt. The influence of passive

interleren-e on incoherent goniometers pract!,ally aLways lead to sharp increase
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of' errors of measurement and breakoff of tracking.

Theoretical analysis of the influence of passive interferences on incoherent

goniometers therefore is deprived of practical interest, and we shall not study it.

§ ii.9. Conclusion

In the two preceding chapters we studied radar goniometers using coherent and

incoherent signals. What conclusions can be drawn with respect to comparison of'

these two cases? Comparison of circuits of optimum radio channels ot' coherent and 3
incoherent goniometers shows that these circuits are similar in general. Their

structure in both cases is identical, and the whole difference reduces only to

difference of the characteristics of the filters, Filters of cornerent circuits aIrc

comparatively narrow-banded and ensure integration of the signal dufing the time oi

its correlation; filters of incoherant circuits usually a-re consioerably bl'ordev-

banded and ensure integration of signal only for the per-od of' its repetition.

Wn stop noe to discuss the relationship of accuracy of coherent. and incoh-rc i"t

goniometers. The preceding analysis showed that with large signal-to-noise rpitio.ý

accurAcies of' incoherent and coherent goniometers completely coincide, i.e., with a

large signal-to-noise ratio the form of the signal does not affect accuracy of

goniomeLerP. With small signal-to-noise ratios incoherent goniometers have cons iderabl_.

losses of accuracy as compared to coherent. The ratio of the equivalent spetral

den.'ities of coherent and incoherent circuits for small signal-to-noise ratio:; lia:

the order TrAf C i.e., lowering of' accuracy due to incoherence of the signal is

rapproximately proportional to the number of periods of repetition of the signo I in

the interval o2 Its correlation. From this there ensures lower noise immunit.. C,

incoherent goniometers as compared to coherent against interferences similar t(,

natural noises of receiyers (broad-band interferences in side lobes of the dire!:"- I

pattern of the antenna), The inf.luence of such interference is equivalert to

,•icreen•se of' the signal-to-noise ratio in. the goniometer, which will lead in h.i'oterirn',,

goniometers to greater decrease of accuracy than in coherent gonmometers. I
A very great deficiency of incoherent goniometers, greatly narrnwing tin.

dom i.n of, their application, is their very low immunity against passive in l'r;'e:. 4
:Icre! ;nerent gnniometers have a de,.:;:i'vr edvanta(t. i,ver ,cInherent ones.

o :-.hall now di.-cu'cc certain questions concernilig incoherent'.;,.tci., . 1.

requIre further investigation. In the first place here one sfi'l, i place ltc

iproblem of' exact syntiiesis of optimum gonismneters uz 1mn i.ncolferrot radiation.
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Iii:: problem was solved by us only with certain raitier limiting assumptions. Exact

• volution of this problem is of considerable interest. The remaining unsolved

tiestlons concerning incoherent goniometers ,re basically the same as were formulated

in ,hc" concluding section of the preceding chapter: synthesis of goniometers without

* jre Liminary assignment of the method of direction finding, synthesis of goniometer,

with comparable times of correlation of angular shifts of the target and of the

reflected signal, study of statistical regularities of angular shifts of the target

sann .ynthesis of optimlum smoothing circuiits, investigation of nonlinear phenomena

in t.racking incoherent goniometers.
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CHAPTER XII1

JOINT ME.StUREMENT OF SEVERAL COORDINATES

§ 12.1 Introduction

In Chapters VI-XI we considered separately measurement of each radar coordinate. I
Theoretical)y this is permi•ssible either when finding- approximate solutions or when

all remaining coordinates besides the measured one are constant or change in a c,-

rair way. Therefore, of simultaneously great practical and theoretical interest. are.

questions of analysis and synthesis of Joint meters of several coordinates. Only

complicated theoretical consideration can show how exact methods of analysis and

synthesis developed in idealized premises of one measured coordinate are.

With development of radar technology questions of multi-dimensional measurement

become more and more urgent. Thus, in early surveillance radars they usually [.:easorehl

two parameters, corresponding to bearing and range. For a long period they asec

incoherent radars of varying assignment, measuring range, bearIng and elevation.

Witn th;e appearance of coherent techniques as a fourth parameter there began •c

appear radial speed. Finally, at present they predict the appearance of n--Ler.. ¾
radar installations in which among the measured quantities there are included anel.i- ,"

velocitlies, radial acceleration, characteristics of' the form and fluctuatin.ris uf

tiue signal, and so forth.

Inasmuch as joint meters are known in radar practice, the liecry of (Ill

measurement, as in Chapter VI, is reasonably started from analysis .-)f jrint me',r

of ass ooner structure. This in brief is done in § 12.2. However, a whole series

of jije Lio rns, for Instance, concerning iniercur~lwu Li,01b 0± -,- .f measurer

cocrilinates in the signal, can be comprenended with difficul'.y :'the basis .,f

analysis atlone, without finding adequate potential characterir.tcs of tijis
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1 riterconnection. Therefore basic attention in thds chapele is paid to questions of

synthesl.s of joInt meters, to which we devote §§ 2.3-1.2.6, We synthesize compit-ete

drooizlts of optimum joint meters (§ 12.3). First wý, take. Gaussian distribution of

all parameters, but make no concrete assumptions about the structure of input sigtia:.s

and correlation properties of the paratneter,'c, We onVsider also the method of

synthesis with Markovian parameters. We sc-parately study questions of synathesis of

opt itrium discriminators (§ 12.4) and smoothing circuits (§ 12-5), We give several

examples of construction or joint meters (§ 12.6). During selection of these-

examples the authors were guided by considerations of their app.L.ied intcrest and

maximumr detection of the specifics of joi.nt measurement.

Theoretical propositions mentioned below are far from complete and can be coI

sidered the direction for new investigations. However, for insLance, measurement

of several coordinates of a single target can be considered on the basis of the

theory mentioned below fairly rigorously and- in detailed form,

* 12.2. Analysis of Multi-Dimensional Tracking Meters

Multi-dimensional meters known in practice usually are construccte i ln the form

of multi-dimezislonal tracking systems. In the 1'terrature there exists a whole

series of works on tracking systems with a great number of tracked quantities (e.g.,

[54]). However, the specific character of radar meters, of which we talked in

Chapter VI, forces us to examine from a new point of view questions of analysis of

Itracking systems in appflication to met-rs. A number of r'esults of analysis con-

sidorring the appearing peculJarjiies are L;Iven below.

12.2.1. Basic Features of Construction of Circuits
and Components jf Meas.iring Errors

Generally, a multi-aimensional tracking meter for I parameters can be presented

by to• block diagram of Fig. 12.1. In it there are marked two basic types of ele-

ments - discriminators and smoothing circuits with drives. Discriminators whose

.ut~pots are numbered from 1 to I detect mismatch between the input and output values

of sume parameters and are nonlinear radio devices for processing one or several

input signals. A peculiarity of the partial discriminators in a multi-dimensional

meter is the fact that to each of them there proceed measured values of all I coor-

dinates, and not only that by which the error signal is detected. This is explained

by tinch fact that radar coordinates are coded in the useful component of the input

mixture in such a connected form that during processing of the signal by narrowly-

F sei.c' ire devices, close to optimum, disturbance of selection with respect to any
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pa rarnet r nalns -it Impossible i.Q. det ect rinforynation immediately on all parameters,
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winkre 110.() (1),.. AM(1 (j))==1. (t) -. set of mcaoured pr:'..oe(eý-s ordinates)

Al, t-he output of each discriminator there will be forvcA a funct ion of time

(i..-jilLy in the form of voltage)

wlc--re 8(1){((),.. ())) current mismatches betwee~n s(. nd measured values of

uvP.r~meters ~ t ~ ~ t 0'so that.

The dependence in general of' eacl, (A' thc, outlput. vol I~agos5 V the dzrnA'.

on u~smatch with respect to all parameter-c is a purely mulidnni~n1effect. Ii

13 is n-A worth explaining that, as InL the one-dimensional case, valu-ee of' Xlt) and

e(t) determine Input and output voltage or discrlrrinators only in the!fi at L..i~iiol

u r~: co);'.crcrtc. realizations o1, y~t; )L(i ar(A Z(")ft,; e(t)]J are de',ermtrned by

iniput fluctuat~ing disturbances,

The number of input mixture5 mn JP, jEr-t,'.ra~l. car, be- arbitrary. It usually tn not
c oinected with thie number of measured *qý- i,', t>: InL .,~ilin f several mixtures

rcccording of discriminator inputs alone. Ls complicated, i.e., w(; (,onslder fset y~t

(()~t, .. , (myt) Nevertheless, tne. vcmaining dpaignations 9.F well as the

mc-,ethod of analysis of meters are. kept ýnt.

Let us stop t) classify 31 If r,, i;;A A'n't-1~ ' o-rrorzr of Tr~Sref~l I h

cornpron~itG are basically the same a:.r In LIK::o-imn on case, (fie of the com'-

oorrýt fluctuating errors due to) internal rol;.7ec of the reuelver, iiat~urall and

Jrma[, iznd interferences, and fluctuatinn:;, of' I h reflectled radar signial., A pecu-

InxD~ F h multi-dimensionl. cate stee istar t a lmlsdyami erro~ra duetetod cal.te of tpki

IcS red quantipatias thecrmselesandr fsuctutines ar syiitento becrrorslateodu, Th y

cerutpmin foordiratesing ofe signal.osve oorvr'rwe shal Actorouhiuderstlyfrc~anding f

f and dlyr~aric errors. With respect to tue( character of fiU~tUating distilrianees,)
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which sometimes are conveniently related to immaterial randomly varying parameters

of the signal, we shall limit ourselves to the assumption that all of them vary con- 14

siderably faster than the measured variables.
Sii

12.2.2. Characteristic of Discriminators

Tn conditions of rapid ra.odom disturbances the output voltage of every dis-

crI.Minator z(0)[t, e(t)] can be presented in the form of two parts: the mean ji.
a" (a,. 1)=z•"Q, (s ) (1 •.2•.z•) i

and white noise with (two-way) spectral density As________)__ S. )(:_ t)=-
= 5 [•()(, *)-~z(a)(t, a)I lz('q(I+:, s)-z(~'Q(j+', .)Ijdc,"-- U-

equal to th,! spectral density at low frequencies of the fluctiating cinponent of

funtione 7(' )(t, s). Aver-agting in (12,2.1) and (12.2.2) is produced over the vlm-[

pletc, ensreble of fluctuations, arid quanttites _ here are considered "frozen" inr

acc¢rdance with the assumption of ;3ovrness of thei.r variation, The first peculiarity

of ,•c. multi-dl-irnensional case:! 1.; the presence of 1,rctional dependence of a~r)(,, t)

arid s(2a)(e, t) on, all mismatches. We return to this circumstarne below. A second

peculiari.t,y is the necessity of introduction besides (12.2.2) of characteristics of

crossrorrelatioT- coupling of nluctuating components at the output of different

partial discriminators. Coupling between the a-th and P-th output voltages is ;J

cuaracterized by mutual spectra) density

--m

which, depending up•rn character of the coupling, can be posli.ive, negative or /,

Tte last ease is observed in the absence of correlation coupling of the con.; Jer'rd

disturbances, by no means signifying their complete independ.ncee.

!Thus, we have a square symnetric matrix (I x × ) of characteristics of f.Lucu-

ating disturbances, i.n which in all there are z (7, + i)/2 independent element.. 'ihe

st-at h.tcally equivalent form of re,!ording output voltages of t•ie discriviroil;or .

z.((, s) ---a(,' (s, i) + y 9is (g, 1) C(') (1), i . .,

, •(•)( W-- " ih ' n ,,s wi....h. uni t spectral den•i•y• , the . nrr-erTon,r,1,cti ,r ,,I'

Wh .'' I s :,LL ] ished by ro lat-Ji nschip

C r•B(j) (~i .-- .g) d• - ,(siul(s ) S€'1 ("0
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(a)
Functions a( )(e, t) we shall call discrimi-ation characteristics, and

- fluctuation characteristics. We sha'J find them by means of analysis

or passage of the signal and noises through a discriminator with fixed mismatches e. - )

The form of discrimination and fluctuation characteristics in an i-dimensional

parameter space is very complicated. We shall first of all give a qualitative

SIdeocription of these dependences in that particular case when each a-th output of'

the discriminator on the average is determined by mismatch with respect to the Q-th

psrariacter, and all other mismatches have an effect only if their magnitude is great,

de.erininLng several scale factors. Simultaneously we sfall consider absent cor-

relation couplings between noises at the output of the discriminators, i.e., matrix

lS(Q•)( 2 , t)II is diagonal, In these condit.ions tie a-th discrimination character--

Jsttc for fixed a.() 9 a) is described by an odd function of ea) of the same

form as in the one-dimensional case. Values of all. other mismatches basically

affect the scale of the curve. The scale is maximum at •(•) - (= 0 a) and varies

l Ittle for small I(0)j. For large values of I ()),, t) asymptotically seeks

zero independently of the value of E(l). For the case of two parameters the first

discrimination characteristic in plafF ((1), •(2)) is graphically presented in

Fig. 12.2.

Fig. 12.2,. Discrimination characteristic of a two-
dimensional meter.

"Fl]uctuation characteristic S(aa)(e, t) in the same conditions with fixed

E() ([ 9 a) is described by a symmetric curve of a form which is known from the

""re-dImensional case, With growth of other mismatches the double-humped structure

,f the considered sections is smoothed and S9 ah( 6, t) for any values of c'c" changes

.into a hyperplane, parallel to the coordinate hyperplane s. Fluctuation character-

i•tlc s3 i( 5 (i), c(2)) on plane (E(i), c•(2)) is shown in Fig. 12.3. .-

-670-



Fig. 12.3. Fluctuation characteristic of a two-
dimensional. meter.

The illustration helps us to comprehend the law that increase, of mismatch

E(ý) (j ý a) leads to the same change of t.he discriminat-ion a~a)(E) and fluctuation

S~ca)e)characteristics, constructed as a function of £(cO, as decrease of the

signal-to-noise ratio. This is understandable inasmuch -as increase of mismatch for

other coordinate-, -Leads to pt.wer losses, I'Llly equ-ivalenft to' &-crease of the rrecan

input signal level,

',nen all mismatches in the considered particular case are small, instead cof

general dependences (12.2.4) It is permissible to use expansions of characteristics

of discrimInators

where

=a~(); ~cz __ a~~(O)1 dOfta)(O)

In conditions of symmetry of the circuit a(', ~c are usually equal. to zr
a0 1

quantities K~a are called gain factors of the discriminators, Coefficients Q(')

show the influence of other miszmatche,' in; certain approximation leading 1.0o i~reace

of l.ne scale factor. During Invest-, gat Ion of accuracy of mc~asurements by virtue of'

Ov- rýo;a1lness of mismatches it is often suffi cient, to use formulas

a(G (e) A

which are, a simple repet~it ion rof one-dimreinional (h1.2. 9).



Thus, in the case of small errors, when linear approximations are valid, the

separate analysis of meters of separate parameters given in precedin chapters is

fully permissible.

An example of a multi-dimensional meter which satisfies the fornulated condi-

I-tions is a joint meter of range and speed in a coherent radar. If, for instance,

we are interested in the range discriminator, it contains narrow-band filters

(Figs. 7.7, 7.13) which are tuned from the output of the speed channel. With small

errors of measurement of speed the signal frequency is within the limits of the

frequency response of the filter.

In a number of cases the described dependences of a~a)(e) and S(•)(e) on e ar.

invalid. Roughly speaking, this distinction c,-cnsists of zero shift of clhe a-th

discriminator in the presence of mismatch for the P-th parameter (P ý a). Changes

of dependences appear also with large mismatches. Inasmuch as gent-l description,

even qualitative, is hampered here, we shall only discuss the case of small mis-

matches. The generalization of formulas (12.2.5) then will be

=1j 1,1•=I

i (• S''- ~~ __ t~a()j (12.2,8)

n:r conditions of synnx.etry of circuits of the partial discriminators, a(7)an
S ?(,)dI~sappear, and there remain these s:impler dependences:an

0 (12.2.6)

0 6 (,)

Goefficient K(e)we call the gain factor of the a-th discriminator for the •-th

parameter. Quantities SOaP) characterize fluctuating components not depending on

mismatch, and S(-P)- -- components proportional to ()(7= , ..... Fo)ula

S (12.2.9) and (i2.2.(0) correspond to the following presentation of output voltage

of discriminators:

-672-0
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! II

AV•l 8lI) '- " ' P)f Y) +(Km't)+ ") -(ll),(2..11

where r(5) and X(aý)(t) (a, P = 1, ... , 1) - random, uncorrelated, functions;

()(t)- - white noises having the dimensionality of the measured parameters with a

matrix of spectral densities S determined by recalculation of matrix B0 = 1S(al)hi

with the help of the matrix of gain factors of discriminators K• IIK(i•)I by the

formula

so,,,= II KII K;SKA . (12.2.12)

For proof of formula (12.2.12) it is sufficient to multiply vector KTI, repre-

senting noises at the discriminator output, by row (K rj)+, avernge. and, passing to

spectra, use the designation for the spectral matrix of vector n:

:• ~ ~S'=I KA' (t) (K~n (t-I-,))+ dv=KA • q(i •1+ (t+,c)drK+ - KAS.XK.+.
E ~A A

From this (12.2.12) is obtained by two matrix multiplications. Subsequently we shall

e. call SB the matrix of equivalent spectral densities of a multi-dimensional dis-

criminator.

Functions -A( a)(t) in (12.2.i1) are white noises with mutual spectral denstti.es

Subsequently we will not consider the influence of parametric fluctuation

on accuracy of measurement, concentrating our attention on noises (o(a)(t).

Their lvel, naturally, Is determined by the intensity of interfering signals a': the

input, not carrying information about the measured quantities. Basically, for •,')(i)

there are observed the same laws as in the one-dimens.ional case.

For illustration of the method of using the obtained relationships wc shall

consider the fairly simple example* of a discriminator for two parameters wth Wl.-

connected encoding in the signal.

Let us assume that the signal has a pulse structure with fluctuatIons,

tude E and phase T, independent between periods. It Is received against a bac~'Vp...w.i,.

of white noise n(t). Pulses have intrapulse linear frequency modulation (LChM).

The realization of the received mixture of the signal with noise ill one period has

the form

*Exartp.i, belongs to G. F, Pugartev.
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0(t) M Re (5 •e' Ua (y - C(- ) A/2+L )'o+=A) I + n (l),

where V - slope of LChM;

I - delay of regular modulation;

- Doppler frequency shift.

rhe last two quantities are also the measured parameters.

The circuit of a Joint discriminator of quantities -t and W is depicted in

Fig, 12.4. Signal y(t) is fed to mixer 1, where convolution of spectrum LChM is

effecl ed by rmaos of mu;A1;-t!.1ication by the vol-

fit tage of heterodyne 2

Re te1V(9Y (..+1 ^A+:

where t, W - measured values of parameters.

Simultaneously there is produced transfer

of oscillations to a frequency close to inter-

mediate un1. Then there is produced bandpass fil-
Fig. 12.4. Discriminator of tee
and T: 1 -- mixer; 2 - controlled tration in filters 3, 4, 5, of which filter
heterodyne oscillator; 3, 4-
bandpass filters tuned to fre- Lý exasttly tuned to w., and filters 3, 4 have
quencies dI -+ 6; 5 -- bandpass detuning o( :1-. Results of filtration are

filter tuned to frequency w1 ;
6 - amplitude detectors; 7 - detectcd In detectors 6. In the upper two
gated amplifiers; 8 - time dis- channels nf Fig. 12.4 in elements 7 there is
2!rimirnator; 9 - comparison cir-
Cuit; JO - generator of gateuIts -gepr,,,Iucciwl goting; the middle of the gate pulse

.:-.... • w,'ith -T, The difference of the two

formed voltages, formed in element 9, is the first output voltage of the joint dis-

criminator z(1). This voltage is sensitive to frequency shift of voltage at the

,Ju'.pt of the mixer.

In the lower channel of Fig. 12.4 after the detector there is time discrIiat"

-. I.s action reduces to multiplication by odd function 1(t), whose zero also :oin-
A

cld.s with T, and subsequxent accumulation (integration) of signals,

Consequently, there will be formed the second output voltage z(2) sensitive

prim~arily to time delay T.'

According to the above results for determilmnatlor of matrix Z,,,of errors of

measurement of 'I anct w with respect to a, unit pulse , rput It i necessary to cal-

culate the matrix of gain factors of the discriminator
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da. 0&1 (12.2e.14 )

where A A) -T, and the matrix of mean squares of fluctuating com-
p,-.nents of output$ is i

Ut

,,,,=o (12.2.15)

Analogously to (12.2.i1) matrix Zeq is equal. to

Zeno no K'Z Kt'.-(2...5

Passing to calculation, for simplicity we assume that the bandpass filters are

matched with amplitude modulation, i.e., their pulse response enveýlope is the AnvEr-

sion in time of function ua(t), that amplitude detectors 6 are square-law, and th.at

amplifiers 7 carry out ultranarrow gating. With some selection of overall gain

factors in channels, which do not affect final results, we have:

dA 9Re (I S (,u.'(t,) e-' dt, j I) -' t

1..0
-o I" ReIS a;' (1,) a.(t 1 -) Cdi, +I u. (t 1 ~)di- ]d (fL2.2.1Y

A4o,, 0

JA 1= 0

where - mean onergy ,f a sending.

From formula (12.2.17) 1.t is clear that the matrix of gain factor"s is nonde.-.,,gonaJL;

mismatch for T causes the appearance of a constant component of both output, voltagC

of the discriminator. This circumstance is easily explained. In fa.:t., the hetcr'o-

dyned oscillation carrier; infrCrmation about time shift of regular modulation b',)'.

in the amplitude envelope and also in the frequency.

It is inter(t-ftng that, i;stri• Z turns out to be diagonal:

II

(100103I a di' di~dl,-(12. 2.1
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where N0 - spectral density of noise;

q - signal-to-noise ratio in one period (seE: Chapter VI).

Now lot us take Gaussian approximations for ua(t) and 1(t):

elf-., exp {- -U')}-W

where , , 2 C constants; --

"- pulse duration; -•

- equivalent duration of gates of the time discriminator.

After we integrate according to formulas (12.2.t7) and .(12.2.18) and carry

out operations (12.2.16) on relationships (12.2.i4) and (12.2.15) elements of

matrix E,,will be quantities:

I 1

1 2 (1.2. 2.1•) •

~~fI~mI 2ý\nJqq2 hn'J
CA

where

Note that matrix Z in distinction from Z is not diagonal, which is a consc-

quenc, of the irnterconnection of encoding of' parameters.

Elements (12.2,19) depend on the gh,..-,-.-rioise ratio q, pulse duration 't

the slope of LChM V and two paramet,,'s of t'n discriminator, m and n. It is easy to

p' lrove that Zzoxbeoý mes diagonal only in the absence of frequency modulation. Remem-

ber' •iiai; according to Chapter I the principal axes of the ellipsoid, which is the

section of the autocorrelation function of signal, as V- 0 are oriented along axe.;

,r' coordinates i and to. This IF a graphic expression of the absence of inter-

dcpendence between the parameters of time delay and frequency shift of the input

12.2.3. Accuracy of Measurement

During the analysis of the work of multi-dlmensional tracking meters there arise

thu L•oa• problems as in the one-dimensilnn. case. In general it is necessary to

consider a nonlinear problem, This, In principle, is possible on the basis of' the

technique of the Fokker-Planck equation, the multi-dimensional generalization of

which is known in the literature [20). If, however, the level of input noises Is )
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low, during analysis of accuracy linearization of the meter Is permissible, which

we shall realize assuming smallness of parametric fluctuations. We assume that the

matrix of smoothing circuits is linear, but not necessarily with constant parameters,

so that its input and output quantities are connected by matrix relationship

0()= h (, c)z(c)di+ V(i), (12.2.20)

w,.'re h(t, C) = Ijh(a1)(t, i)II- matrix of pulse responses of smoothing circuits;

X (t) - column vector of function. rntroduced for compensa-
tions of known components of )L(t).

Substituting in (12.2.20) according to (12.2.1i) for z(t) the column vector

Z Y) = '(A# (1) + K•, Y) (12.2.2,. ),

and considering that X(t) = X(t) - s(t), we have equation

Mt +,. h V€, '0 KA, (,%) dc 0 - (i), h. 0,. '0 I( (,c) dC.. ,•,:'••

If we introduce the matrix of pulse responses g(t, T) of the closed system,

considering the output quantity vector X(t), it is determined by integral equation

I9 Y. , + h h(I. j) K;,g (s, *) ds = h (i, ,,) KA.(_.2 '

We introduce additionally the pulse response of the system Y(t, T), considering

mismatches the output quantities. It satisfies equetion

VOt, %)+ýMht, S)K.Av(S. -)ds==18(t--v). (•••,

It is easy to prove that the solution of equation (12.2.22) will be expressed

in the form

,(t)= •. (t, c), d% d+,. v (t. %) [).(%)- (,--51 dc +

Svt,

According to (12,2.25) current error is determined by the JoDint. ac;to( of inter-

ferenices (t) passed through matrix of filters (t, -) and of random variation tef

parameters X(t) - 7- and uncompensated regular measurements X77 " Jk B Nt pas;sed

f.hrroighi the matrix of filters Y(t, T). The first component in (12.2.25) naturalI y

is calleýd the- zet (vector) ef fluctuating errors, and to cor,,iponents F .,.,,,• anri

a•;i It) we give the name vectors of dynamic errors.
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Tne matrix of second moments of total errors of measurement is equal to

S•..t-,(t) , M t) I M g(t, s)s,..g + (t, s) ds +• S v (, S,) R, (S, 8,)v,-t s.) dsdas, + .

+ Sv(t, s)A(s,)A+(s,)V+(t, s,)dsds,, -2. 26)
i to to

where we use the property of. b-correlation of interferences , ela-

S tion matrix R. (t•,., t.) of the random part of the parameters and des,.,,

i = (t.) - X (t). Certain simplifiuations of expression (12.2.26) are possible upoxt

concretizatlcn of the form of smoothing circuits and the nature of change of X(t),

Let us assume, for instance, that random components of parameters are stationar"

[Rx(tt. t 2 ) - t)], regular components are completely compensated, and

smoothing circuits have constant parameters, i.e., h(t, r) = h(t - T). The Fourier

transforms from functions g(t - r) and v(t - ¶) by (12.2.23) and (12.2.24) are

easily expressed Ln this case through matrices of gain factors of the discriminator

1- ai3 1'rcquen.zy ruspunses of the smoothing circuits

H (I) h 0(') e7".' d%

in the form

G yo) =I + H () ]' H (i-) KA,

V (im)-= [I + H (i) K -'. (12.2.21-)

Thus, instead of (12.2.26) we can .h .-In

E..- (I + H* (1o) •AI' F*(iw)K~s.,l.•I (As)1+
-- 0

H(i•s) KAI ' do + (I [ + H* (ia) IQ- S). (co) R H|+ (io) KAI ' dw.
4.45

-0 (12. 2. 28)

whire Sx(a) S Rj(t)e-'gdt - spectral matrix of the parameters.

StUdying the first component In (12.2.28), we prove that the matrix of moments

of t'l.uctuating errors, in gcneral, cannoe be expressed thr,)ugh the product of the

matrix of spectral densities and a certain c:)nstant matrix characterizing the gen-

eralized effective o)assband of the system. However, we may encounter a case when

we are iriter('totd unly in the sum of diag•nýal teras ..f thic matrix, i.e., i's trace.*

*For this errors of measurement of parametcrs reduce to a certain unit measuire,

expressed in linear units of dispersion of the measured position of the object near
the i.r'i, position.
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Then according to (12.2.28)
+.5

spurEu•espurS,.xA+spur • ] S (a) M (4) do,
-J

where
M (n) ( I + H (is) KA I'}-'.

and
+CO

2-- K H+Q(i){ I+H(iw)) KA P-H*(iN)){HAdw
-00

is a constant matrix which is the multi--imensional general:ization of the effective

passband of the system.

Certain more coplloi*2ated forms of smoothing circuits will be studied in

subsequent sections, devoted to questions of synthesis.

§ 12.3. Synthesis of Multi-Dimensional Meters of Several Parameters

in Cha-pters VI-XI we considered questions of synthesis of meters of only one

j)ar Lemt: inasiucih as radars usually measure a whole set of coordinates (or

parameter c.f motion) of the target, there arises the question to what degree

resiLts obtaiineo on the assumption that all other parameters besides the measurcd

onc are known can be transfered to the case of simultaneous measurement of several

unknown quantities. In order to answer this question it is necessary to solve

the more complicated problem of' simultaneous filtration of several process-

parameters, randomly varying in time, from their nonadditive mixture with inter-

'erenecs and noises. If the conceptual side, concerning selection of thle method

of synth,--sis, remains the same here as in the one-dimensional case (see § 6.5;,

concrete methods -..f' discovering the form of the optimum operator of filtrati on

require additional study, since they are not a simple repetition of one-d une lojio

me Lhods.

i2.5.i. Method of Synthesis of an Optimum Meter

First of all- we shall del'initize the formulation of the •rzhiemf oopt.' ues

fI ltration fcX several parameters. Consider a set of is random signals (1 )Y(

(ni) /(), ail or part of whirh depend on t generally irlterconnec tci, and rondo,; ,,

var upIntl .e, parameters >J)(~ ( )(t) . We assumre that. a' moet:'.lfht

'.i1t ac<c.sslt toL ct srvot t A)v.......rA

parameai-rnis take value t

11"y",, (y, .... , (-)y,;.,. ; (1)yU, (')y . . .., (m)y} -=w y,

ii A-



when;r, by yand X we understandJ block column vcos

The cilit licns 1.ty at' di.s urL)tuoio-n of Y arid Xj: I'll'th fo til P(X)(YI ,10t

(X) -mlti-tmesloali (for n-outnto of oboe ovat Lorr anid ow Taine tern)ao o

* di-erribohion, and P(y IX) ---iwutlt--'d Line.nsional (fox' monmen'.Z- of. oboe ovation, swiranals

awlc paralile tees) ikAe lIIhood t'unetion, which we. -Iiul .1discuss later. * 'iC tbx.;iit

optimum fii tratlen Is Construetiofl of the col~uent v-ctolo ,,f Iisi~t ,1n scw elirse

* the closest to the combination of true values of t;he paramneters. As th~e loDss

" "uncretion, characte~rizinge' the degree of this.prrimlintv, 1-,( fi-,rst conlsid(ea' the

quad r'atic t'orin ci

iS S i;)g)()(.Q9 (12.3.1)

where tire order at co-factors in the-- seco&( and tiulerd elements ofl the chain oi'

enat tcscorresponds to operationo, of matrix multiplic(ation; sign + (raised)

signifies transpos.-ition; B = JIB. i.11 - block matrix with submatrix elements

B;; I=Bz'I, determinior_ tire value of e-rrors of the a-th and hý-th param'eters,

allowe-dinteitan -hmmnsMenrk

here is a. linear combination of second mcrnents of errors of measurement. ot' all

jaranrrieters in allI rsomnerts 01' time. Va' L•, !-: R( Afc-i' e stiirate s ?^X we c2ali prove

thi! t "'or any non- S g~logn r Dc tot ce iitar: u :r'c st:uleato , as in thle one -dimerro t~onal

* oa3eis the oi tonr mathematical eopjectation

P (y I k) P#i2(3)sA

]ry a met~hod analogous to § 6.5 it is possisic to prove that with symmetury of'

tire a ;rozte~riori dlist~ribution conditional mathemnatical expectation is ai universal.

w tinnimr.h st~inate, valid for a broader class of loss funrctionr (nanrel~y, for fanic t-iows

pOOv~ L~fthe propertýy of symmetry) . Inasmuch as di~rect integuration of (12.5.3")

in the most intereLsting oases canniot oe a-corrp-1-1ohud, iAt is again necessary It.)

sýolve approx~mately t: .systemn of equ~ationse

whjich ise anne tie r notationi for (,1. .3) .In eerier t, .prepare coard-It touns for soloti so

,)C this system, it. 13 necessary to tuorn to stony 01. tiLt attrrctarL of' the lt.Koliir)oJd

1,11:c *1 Aln.



12.3.2. Likelihood Function and Its Approximations j
A.; also In the one-dimensional problem, for the purpose of studying the

likal.ilood fun•ctim)n P(yIL) one should turn for analogies to the case of several

constant parameters. Then, upon the expiration of a certain interval of

obs;orvatton in a parameter space, whose dimensionality is equal to the number of

Mna;r ': i quantities Z, P(ylX) with Gaussian noises at the input can be connected by

c, •:onotoiic relationship with a multi-dimensional autocorrelatJon function of the

uieful component of the input M.ixture (mixtures) and a certain multi-dimensionalI
randcn. £unrttion whose arguments are the .measured quantities.

A ,jtcltl-dimenslonal autocorrelation function can be introduced not only for

.aramet,(rs in the fom of t-me delays and frequency shifts, as this is usually

don•• in the literature (see Chapter I), but in a number case for tihe angul•ar

cour,'fat,bc-.. Thisfunction in gecneral is not equal to the produc:t of onue-

ucmerurlonai, autocorrelation functions for all I coordinates o~tained on the amss.uap-

S-1!: tIo I i ,wing the o)ther I, .- i coordinates. This is explained by a certain

lt C,- I:,Ct.on of codi:,,.i• of ,ifferent par':stmeters, which we shall discuss furth:_,r

beow. Therer.fore, the muLti-chnensional peak o0 P(y X) will be flattened in

eutci�• d1irections, determined by the nature of the interconnection.

It the vertex of the multi-dimensional autocorrelation function 1i smooth,

Ji.u,, thLis function has Lne necessary derivatives with respect to X, likelihood

tu'•ir'i "n P(y I) for a low level of latral peaks of autocorrelation functions

arid a tu, 1.vul of ircterfcrcncer: will be an i-dimensional peak of approximatoli.

Onn:lnr ?form near the true combination of values of the parameters. Flatnes-s ,I'

th, j:&a k,;1.1i be express'ed in the fact that sections of constant level will tje

!:r': i) the form of hy..ere.llipsolds whose principal axes do not coilciu-1 wiLtl.

ti,! 'u')rdtnatO, axes. As also LIL the onc-dimensolonal case, increase of the time u'

Ut.z cvaliou leads to gradual -arrowing of the peak of -(y'X) and decrease of"

:,'i '.,1.jl of' tire p,?:rLlon of Its vertex neas.r the combination of true values 't 1'

1. ',,: 1 , Q to C! ,lie [, met ,1-X % 0 1, 1 •or•mnts of minimum e rrors of mneasurei rc Ient a) ' T,, Ste t;

-:, ra,';I:,-"r; l.r , rr;r;',,. Ithrough matrix A of' mean values of second derfte.-i] ''no 01

lu W '(y in !it;(' to'rrr
•" • -'; =-= [ 011n P (y' 1)

A .A u'n~¶)j

o'n" .,•i t;., : .r paran.u.nt ers Ln (ien!,: al. L 'a s to r

iP •',ii a t n,, in li urrh -(IaTiers.ji. 3,; , t ) h' erij, Lt to,:ý ass mLie, :i•"W'V' I, .i at, ':0

-r, di..



rate of variaticýn aof all mreasured parwriet(crs Is small as coh-ipareci to the rate of

varj,:.iat.n of parameters belonging to the class, of' iminwatcriai onez, and trInat thec

iocvel of interferences is small. Then it is again, possiblr. to separate rublntorval.;

of' obs3ervation in which the measured quantity can be considered 'I''ozen," and

JnsiLat~erlal parameters can be cons~idered to vajry so, that. for Lfleit the statistical

rolationship between values in the beginnings and end-, oIt intervals Is necgligliue.

As a supplement to the shown -onditions w~e ass~une that the mcasure-d qiuantlties

diiuler in their physical nature and are codell diss;irilari% . '1'- clearly formulateI

the deaof dissim irty" is fairly difficult, so that we siai3. try to illustratce

it, by radar examples. Like cuordinates of variousý targets (i-e., timre del'ays anid

shifts of frequiencies of signals close i~n form, and so forth) are coded similarl.,

in the sense that transposition of' paramet~ers 11n thU liltelin1ood) unct11ion) ILcadS tLc

a situation, differing little i~n "l.ikel1rihood" from thte true situation. Unik1c

coordinates of ono or various targets aru coded dis;similarly; their trarispcsition in

theI li~odfunction is lmenisu.(D1.spimi~arlt-y, however, still aen r~ot

signify disconrw-ýctedness- wi.th small deviations.)

With the initial encoding of P:arwr,-ter. t he likelhocunto btisa-

mulotipeak structure.* These case. arre cxclud~ed3 rs consiAderationl henceforth,

in the shiown simulified conditions, fully sufficienýrt, for' 11rtanee', for

cucmiideratlon of* 0imult-l.eoucs measuremrent of stveral coordinates of' a singlet tarr:t,nL

tlie likelihood function in. the shown so'etra f oh,.-ervation in an i-dimensional

i-o-ramc tenr space turns out to bo a ls oWaud~ p-,ak, * i the whiole interval of'

ossoi-rvation it will be et.p>jressc-d appr~noz Luatc.-ly tnrougn ti),. prowuc t of' the -Like linorcjd

f`enctioUns it'. !Ai'. subintervals . Its logFZarithmf, aialurfously to tne. orne-dimensionial

.,can he approximated by a quadr~atic; form which tis a truncated multi-dinlunsi.-nlal

'!'y ''i ceies;-o that

wher ~ , *,, ~(, ~L -column vector, coors inaliFin; o~f'

wh~ ch are assumeod c:lose to the true valuf-!s of thei measured parameters.

As in the 01ne-dlIMenSioral case, to eo,Lcrelle expansion 0type 1.( arl

"usefuL. 1 The firrst Is produced at Lhe; point (A' t111 1Tolti-dlnnicnsoioal optimiius )
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estimate of parameters X0 = X (X - complex column vector of the considered type).

Designating

hi (yX) ,L(, Q'), ,A(,•)LuP'I)=Lzi W--I) ' -JaF -,, (.12.3.7)

and introducing matrix notation with block column vectors z = (z,...,Zn

X ý {X 1...), ) and block square matrix A = IjAijI}, where a submatrix element is

--•al to Aij = IA )II, we have instead of (12.3.6) the relationship -1

P(yI,)PP(y)expZ+(4.-3.6) the rel)+A(Ion"hip

formallj coinciding with the one-dimensional (6.6.3). A

The second type of expansion corresponds to XO = k, where X- the point of

maximum value of P(yl)), and has the form

P(y j).)== P(y I ,)exp -io4. (12.5.9)

Here matrix A is determined through second derivatives at point X and practically

coinAides with matrix A.

Relationships (12.3.8) and (12.3.9) will be used for synthesis of a multi- I

dimensional optimum meter.

12.3.3. Optimum Tracking Multi-Dimensional Meter

Let us assume that the a priori distribution of parameters is Gaussian,

AL

pe () ý(21C) 2 (det R)"-,'exp(- ( 1) + VQ A.X (12.3.10)

where W - block column vector of mean values;

R IllijR1) - block (nI x ni) square matrix with submatrices (I x 1) X

-iR(cW)(tV, t ) 11, elements of which R(•')(ti, t ) show

crosscorrelation of the a-th parameter at time ti and of the

ý-th parameter at time tj;

V Ri - block square matrix, the inverse of R.

During synthesis of an optimum meter we first use an approximation of' the

likelihood function in the form (12.3.8). Crossmultiplying tlis relationsh1ip

with (12.3.10), reducing the logarithm of the resulting expression to formf

CS - (X- 1)+ C -( - ),

where C, X and C-1 do not depend on X, and equating X to the optimum estimate,

analogously to § 6.6 we obtain expression

A_



where the quantities and the order of their location have matrix meaning, and-i

IlCikl = [A + V] - matrix (in x in), determined in the interval of observation.

After transition to continuous functions at t+ 1 - ti A-. O, n-a, (i lip, .. ,

n; nA = t - t.) relationship (12.3.11) takes form

where Sta, +A12
C (in, ,s) = c Z,, = J z(.)d'i

1,104 Id +A/2Alk-- A d S ds Al(s,s).(1..)

As above, in passages to the limit of (12.3.13) quantity A is considered

limited from below by intervals exceeding the interval of correlation of the

irwiaterial parameters of mixtures (i)y(t), and vector function z(t) is determined

with accuracy to statistical. equivalence. We also indicate that after transition

to continuous time arguments matrices and columns in (12.3.12) and below have

dimensionality (I x 1) and (I x 1), respectively.

For the same reason of slowness o. Priation of the measured parameters

function A(t, 1) has filtering propey .ie with respect to time:

wler'p X(t) - (I x 1) matrix

Taking into account (12.3.14) we have the final expression for the optimum

metef-r:

C() (lt, 8) {z (S) + K (s) (s () -•(sl]} ds 1(t-), (12.3-1.5) i'

which in expanded form should be understood as

I (i S) du + T-) (12.3.16)

A block diagram illustrating an optimum joint filter-meter is given in

Fig. 12.t. The whole set of input mixtures proceeds to nonlinear units 1 and 2.

We indicate that unit 1 issues I voltages, on the average proportional to current
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CLP I%- J'1

Fig. 12.5. Two-loop variant of~ an op timum muiti-dimen-
sional meter: 1) multi-dimensional discriminator; 2)
multi-dimensional accuracy unit; 3, 4i, 7, 8) adders; 5)
linear filters with pulse responses K( C13(t, -r); 6) linear
"filters with pulse responses (t, ,)

mismatches between the true and measured values of parameters X(a)(t). unit 2

issues Z(. + 1)/2 voltages [according to the number ofindependent coefficients of

symmetric matrix K(t)], characterizing the current instantaneous accuracy of

measurements. Therefore unit 1 is reasonably named a multi-dir)ensional (or joint)

discriminator, and unit 2 - a multi-dimensional (or joint) accuracy unit. Output

voltages of discriminators through adders 3 are fed to a ( L. X Z) matrix of
smoothing filters 6, output quantities of which are combined by adders agali Into

L. groups. Thereby smoothing circuits turn out to be interconnecte-d. After additionr

in 8 of output voltages of unit 6 with a priori mean values of parameters trierr

are formed estimate-. of the measured parameters, which proceed to thnt

and accuracy unit for maintaining selection. Furthermore, grouped output s o f

6 are fed to a matrix of inertialess variabr gr-gain amplifiers a, from o itput

they proceed to adders of' luernal f's dback 3. Consequently, t-d ere arcn l (orointd,

as It weria, two basic -ulti-dlmensional control loops: ont) using a di!uniminator

srd an ageojrAcy unit. the other using adders at tile output of the disc riminators.

As also u thue onae-dimensional ca6e, we shall call this variant of meter dtreubffi

loop. Pulse responses of filters e and 5 are controlled by output voltagc:h o-' th...

nd * -6tero-



accuracy unit for compensation of unequal accuracy of separate measurements (or,

which is the same, parametric f'luctuations)

The other, single-loop variant of the meter corresponds to formula

I. i. g) j" #, .), (.) d. + •(12.3.17)-"

or in expanded form

=1, 2,...,l). (12. .3.18)

These relationships are obtained from (12.3.15) and (12.3.16), if we solve

them for the estimates. The new variant of circuit is illustrated in Fig. 12.6.

It is simpler than the two-loop variant inasmuch as instead of two matrices of

smoothing circuits it requires only one matrix of elements 3. Discriminator I

and accuracy unit 2 are kept in constant form.

For mnatrices of pulse responses c(t, -) and g(t, -) it is easy to obtain

integral matrix equations

tc V, + S s)K(s)R(s, c)d s=RQ(t, (12.3.i0)

completely analogous to the one-dimensional case.

Thus, the optimum system of measu ernt of several parameters is a multi-

dimensional self-tuning tracking system wit'h two rcnnlinear multi-dimensional units,

is.suing signals ot errors for separate parameters, and indicators of current

ac.-uracy of measurement. The system is cl ed by a matrix (or, two matrices) of

lhiiear sonot1hr1i, circuits, determined by the correlation matrix of parameters anrd

rmatrix K(t). Furthermore, in the system there is provided input of a priori mean

values of paramF.ters.

Correlation matrix R(t, 'i) characterizes the interconnection of the measured

paranoters, i.e., describes trajectory properties of the target, forming the set

of measured quantities. Matrix 1(t) determine. the interconnection of codingct of

* parameters in the signals, i.e., characterizemý the process of encoding paramet(ers

of thl trajQtoury In parameters of the sigena!. To the latter hluring reception

there are added noises and interferences. With diagonalness of R and K, when

parameters and their codings are not connected, matrices C and g also arc diagonal,
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onc-dimenn-ional cave. However, if matrix K is dia.gonal (esr on average.), then

z outputs of the discriminator and the I outputs of the aiccuracy u)nit are a simple

-et of outputs of one-dimensional eiseriminators and accuracy unite, syntitesized

for each parameter separately, with the distinction that derivatives oif the

logarithm of the likelihood t'u•ction are taken at a poinr-t (:orresponding to the s;et

of measured values of all I. measufed parameters.

Remember tnat in the one-dimensional, case derivatives with respect 's.o the

parameter were taken at the measured value of the measured :nuantltcy, and all. the

other coordinates were considered accurately known. The showIn ci.rcumstance is

fundamental, and absence of selection for even. one coordlinat.e leads to cower

for all the others. In radar practice such a law is well-known (see § 12.2). Ii',

howewver, ia.trix K is nondiagonal, then it is necessary additionally to 2Z quantities

to form in general 1(Z - 1)/2 more quantities, showing the current interconnection

of errors of separate measurements (and of the very signals of mismatches, ,iee

below; for all coordinates with connected coding. It is natural that such

compli.cation lead:;3 to more complicated technical solutions.

The dependence of' z(t) on midzsmatches X - X in general is nonlinear arid very

(-conlicat~ed. However, at a low level of nos.'s. t lb. linear expansion is permissil1e:

(i..'I r whte wi•th correltio ma, trix ( t)], t - i) •. Thereby

w,'J• r e:['

I (W- {EM0,., (t)};

v ... .. 3 22

:,.;, •£(.) agairi expressed through second derivatives with respeu't to •)'kJ

• " ].In vl,_'" ufl the speed of chlange of irranatevilal pararrieters, noises t(t) according t,.0

i [':.L~l.Oh}Lip (i,[5,/I)are white with correlation matrix Kr-tb(t - T), Thereby L_

W in fits physical meaning is the average gain factor of the m-th (f-th) outpUt

ol'. thju discriminator with respect to mismatch of the (-th (a-th) parameter an,,d

.;Jinmu.aneously is the mutual spectral density of white noises of the a-th and P-th

ouuput, If we recalculate t(t) to the input of the discrrimi.nator, we shall have a

tet of quantities q(t) = Y-TY- (t) of the dimrnsionality of' the measured parameters,

It easy to prove that tne matrix of spectral d.;nIsi tiLes j(t) has the form
Li - , e., -)-, analogously to th'- ,-"0-r case, has trmeaning ofn

the matrix of equivalent spectral densities of noises,* This interpretation of

i,-



matrix •)- is the most important, inasmuch as arbitrary inertialess matrix

transformation of output voltages of the discriminator changes the gain factor

Switr respect to separate parameters and the lev.l of output noises, but does not

change the matrix of equivalent noises recalculated to the input. One should

compare namely this matrix with the matrix of spectral densities obtained in the

pr•.....ai circuit performing the same function.

+

Fig. 12.7. Block diagram of an equivalent linear
tracking system: 1) subtractor; 2) linear filters

I
with pulse re.:ponses.44)Ew,,)K(PT)(,); 3) alders.

In FI'g. 12.7 is the block diagram of a linear tracking system, in its

characteristics absolutely equivalent to the optimium meter of 1-If. 12.6 with small

errors of reproduction of all L parameters, wrien approximatIon (12.!1..21) is velId,

To the input of the equivalent system there are fed mixtures of "signal•.' (t) -

-689-

LLii



and "interferences" q(t). The matrix of pulse responses of s~moothing circuits is

equal to c (i, c) K V) = I"~c (t, -),K1"%

Resultant accuracy of measurement for any variant of the circuit is determined,

analogously to Paragraph 6.6.2, by relationships

(t) = 0), nR,,..- Y, ) =Y(-, ,
ZZY(t)=c(t, t = g(t, t), (12.3.23)

where averagirg of c(t, T) is over the ensemble of input mixtures.

In the particular case when the random component of elements of matrix K(t)

can be ignored, accuracy units and control units for smoothing circuits disappear,

nonrandom pulse responses are determined by equations (1.2.3.19) and (12.3.20),

where K(t) is replaced by its mean, and during the analysis of accuracy properties

of the meters there is no need for additional averaging of c(t, T).

We shall also discuss the method of obtaining functions z(t) and X(t) from the

form of the likellhood functional of all the input signals. As also in the one-

dimensional case, the likelihood functional, completely accounting for propcrties

o" the whole set (')y(t), can usually be expres.ed in the form

P(yY() I ()) ---eXP 1 (,. I, y) dc (12.3.24 )

where y(s), X(s) - vector functions, con.;Idered in interval E E (to, ').

Then, analogously to § 6.6

). -) (12.3.26)

If all useful components of input mixtures are incoherent pulse ,signals, It i

ratcessary to produco modification of the method of synthesis, analogously to § 0.6.

'The optimum meter executes operations according to discrete expression

S.= C.A [z/ + Kit (kh - 1+.,(12.3.2• 7)

Into which (12.3.11) passes, taking into account the diagonal nature of complex

matrix A with respect to discrete time arguments. By z( and K[7•) one should

understand quantities grouped in a period of repetition
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01 -) Ih , y)d,, (12.3.29)

where I'k - functions in the expression for the likelihood functional

-I x (c, X., y)d-c. (12.3.30)P (y (Q )., (t)) --exp Z1 -

Matrices of discrete smoothing circuits are determined by equations analogous

to (6.6.20) and (6.6.22):

C CKR-I-R,
C+cKo--- (-2.5.31)

or in expanded form

lzh 1.1=, 12..2

Further concretization of the problem of optimum measurement consists in

finding the concrete form of the operation of formation of z(t) and K(t), the

equipment realization of these operations, and establishment of the algorithm of

smoothing in the linear filters.

Vie discuss these questions in subsequent paragraphs.

12.3.4. Optimum Nontracking Multi-Dimensional Metei'

Let us consider now an optimum nontracking meter of several parameters. The

nontracking variant of the meter is synthesized analogously to § 6.6. Multiplying

(12.3.10) by another approximation of likelihood function (i2.3.9) and transffo)min:,

the logarithm of the formed expression, we have

- (12.3 3.x)

After transition to continuous observation and allowing for the diagc.*r:a! nature

of matrix A for time arguments, we have finally

%(I) = Y. C(t ) K<()l (t) I-(,t)] dc + L (), . )

or in •×panded form
,('}()• X rI t I c -01 ' C) T(,t))X [ ( (' -- )( ) d'-- + T' (1) (a•- 1 '' 1 " 1 ' ' 5

ii 1691,iI -691-
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Fig. 12.81. Nontracking variant. of an optimum
multi-dimensional meter: 1) estiMator unit; 2)
subtractor; 3) linear filters with pulse responses

.4)adders.

A circu!it executing operations (i:33~ sgiven in Fig. 12.8. As alsc in

the oite-dimrncisionai case, heat~ r, st~t off a multi-dimiensional estimator

* unit 1 which gives the, set of functions X(a)(t) and K(cLý)(t) and a matrix of linear

t'i1ACTcs 3, '4 with pulse responses ¶t), K01)(C). We Indicate that the estimator

unIt here is a very complicated device which analizes the likelihood function for ail

incasured parameters in the whole a priori domain of their determination. As also

In the. ori3-dimenzJonal case, the nontracking circuit somewhat weakens the requirement

on the magnitude of variance of the initial distribution of error of measurement,

expan~ding as it were the linear section of the criaracteristics of accuracy of

measurement (12.3.23). This circumstance Is very important in the stage of' lock-on

and tranislticn to precision tracking. In a number of cases It will oe convenientL

to combine tracking and nontrackirig circuits for separate parameters.
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12.3.5. Optimum Meter of Linear Functionals of Parameters

Very often in radar along with measurement of parameters of input signals

there must be formed several linear functionals of them (derivatives, expected

values of parameters, integrals, and so forth). Sometimes measurement of linear

functionals is the basic function of devices. Therefore the problem of optimum

meas.u'rýient of an arbitrary number q of linear funetionals )(•'(t) of I parameters

(n)(t) coded in input signals is important.

The consideration below in many respects is analogous to material of Paragraph

6.6.8 describing the case of one parameter and one functional. As before we

assume Gaussian distribution of parameters X a) (t) -nd consequently, also of q t

The relationship between column vectors of functionals T(t) and parametcrc.

X(t) is established by a linear matrix integral relationship

•(T)=~ F(T, s) k (s) ds •..6

IN

I( (T Af + to TmAjt)(1.3)

where o, e and F in (12.3.37) are understood as complex columns and the matrix.

Let us assume that the input signal (signals) y(t) is accessible to observ!cti.ox:n

at moments ti, t2  tn from interval (t0, t), in no way attached to moiriert

2' n

T =tm, the argument of the functional (pm. Then mean risk in the quadratic io;

function with respect to errors of measurement of functionals in -,he n-th t fnom irt

of time is recorded in the form

AR (P,- V)= SS B' (P-) 0. & N... X PA+,. . , .. ;Q .X

N' No' Na' No

Varying Tný -. , 9) for estimates qi, we have the system of equation-s

S (Yn - in)P(,*.,1) (YIL) PO (N,. N1V) (X~) AL 0, (I .V

where subscripts in the likelihood fundrtion and the a priori distrihutionri

the number of moments of reading. As also for the one-dimensional ,h 1ct:o

easy to prove that direct formal solution of (12.3.39),
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3-h P(1*-)(i)X)PO(N,,N( ) m)ax

i ~P('"-) (S P PO1 (N. N.1 OM A)

ii, general is unacceptanle in view of dls-turlbncme of thLe principle of physi.al

realizabIlity oý' the optimtun operator. In other words, the linear functional I'

of: the optimum estimate of the parameters, in general, is not the optimum estimate

of lInear functional F.

To find a physically realizable solution of equation (12.3.)!G) we again a~ss,.',rno

that for P'(y X) approximatio!L (12.3,.8) is permissible. Expansion of In P(ylx) we

pI-oduce at. the point. of the crrent physicalily, realizable estun.,,ate of parameters,

which it is possible to demand beforenand. Permissibility of formation and use in

a meter of functionals as auxiliary functions of optimum estimates of coded

parameters does not raise doubts either t.,eoretically or practically. Substituting

(12.3.3) and (12.3.10) in (12.._39) and integrating, taking into account the

diagonal nature of the matr-Ix of second derivatives, we have

N1 1 A+
. FBmA IZA,+ Kh t ( [z-iJ + K hit N1..1

Here C iV + Q]- inverse matrix; Q - tatrix of ofiuer x ( - Ni) ],determined

by relationship

0 i,k >n; i, k< 1. (...'2

0 ,t. 1ex �ratrix B is determincd in expanded form by relationship

0 k>n; k<1.

From (12.3.-4), taking into account valijes of 0 ik and Vik, we can obtain

equation

No

relating matrix BiR with the correlation matrix of parameters Ri and the matrix

function of tlhfe- linear functional Fik.

Another presentation of solution (12.3.41) hasu the form
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,, N e

9mX WAZ+ X(12.3.'1'))

where Hltis connected with B by relationship

H.1= Bk+ +, (12.3.46)

Gik in turn is determined through RE according to equations (12.3.32),

deocribing the optimum meter of parameters )(t) themsclves. As we see, the case of

many functionals and pirameters formally has great s' larity with the one-uiU-ns.iLoual

care.

Tranoition to continuous observation gives relationship

b (T, s) (z (s) + K (s) 1s(s)-(s)UI ds + F (TI, s)(s) ds, (12.347)

where transition from Zk, Kk, Bmk and P to z(t), K(t), b(T, s) and F(t, o) i tfee

l~ght o:' results of Paragraph i2.3.3 does not require explanation;.T = m,6 + t.,

t 0-- t and t(t; , t ý B - matrix function, connected with R(t, -0) y an

intefra.L equation analogous to (12 .3.411)

In order not to encumber our account, we shall not give the expanded circuit

of e.;:- optimum meter of functionals, constructed on the basis of relationshipLI_

(12.3,47), an' we only give its description. It contains thc complete block.-

ding.raxo, of the two-loop variant of an ootimum meter of X(t) (see Fig. 12,4) . From

adders of internal coupling in smoothing circuits there are madc I taps to a

u.-'iare matrix of (1 x q) special smoothing filtca,; with pulse responses

b \(t, "-) (a i, ., q; P = i, , .) Output signals are -ombined in q

qr.C~upf according to the number of measured functiunals, after whicih they are ad(;('

LCo fun)tions V (F''lQ, :)10 1(t)di whion are results ot processing. a priori m.-,
pal ,i s

valuts of puramct':r. 1(t) by matrix fuwction F(t, -). As a result ther c f. i.:("

opt m'db (otimat~es of functional . As we see, as compared t,, the case of ,ea..r' :

o.nly of ,-)( tner,: are- rFquir6 c . "ji .ai.at .. •ly few c.......w' ot"

,i;nt~ntu rr, od f1.cati.ori of the optimum circuit is ch tained by eans of tlrr'ii:it :o.,

to o., inr..uS observatiAt in relatLonsihp (12.49):
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h (, s z s)ds F Ts) X s) ds.(1.4q

it, is converii.ib!y combLivi with the single-loop va ri-ant of an optimlm meter

of parametu-rs X(t) (Fig. 1e.5). Output voltages (.)f discrtminators are fe, to a

matrix (I x q) of smoothing circuits with pulse response h(T, s), satisfying a

Srelationship analogous to (12.3.46):

h(r, t)-b(r, b)+ jb(T, s)K(s)g(s, r)ds, (12.•,-0)

where g(t, c) is determined by the correlation function of the parameter according

to equation (12.15.32).

For accuracy of measurement of the set of linear functionals we can obtain

the following formulas:

. (r) =b (T, s) F+ (T, s) ds.
I.

Thus, for optimum measurement of linear funrciuia.ls of parameters it is

necessary to introduce in the optimum meter directly coded parameters of two

matrices of linear filters: one, the basic one, for smoothing of data, the other

for trar.sformation of a priori mean valuft'*.. Matrices:- have I inputs (from the number

of' -aameters) and q outputs (f roc tht: number of functionals) . Aadlng output

quantities of tnese tw.-. matrices, we have olptimrum, estimates of the functionais.

Finding the first of these matrices- from the concrete correlation matrix of

;a.;aometers and accuracy properties of discriminator is a separate problem,

12.5.6. Optimum Meter of Markovian Parameters

During construction of a meter of several Markovian parameters we use the

mu:thods offered in S 6.9. We start from the case of discrete observation (a pulse

signal), when it is possible to use the relationship for final a posteriori

probabilities

PO'n+÷)J=CO1 P(Y,,4L)3) (n)W(LniIv)d)n, (12.•5.2)

generalizing ( 6 .. 24) to the vector case. Here Xk = 4 l), . . . )) -colurn

vector of' the measured parameters in the k-th moment of' time; P(X,)- its a 'tl,ciori.
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probability; P(Yn+i In+i) - the likelihood function of the input mixture at the

(n 4. 1)-th moment (period) of observation; W(Xn+iXn) -- multi-dimensiona]

probability density of transition.

Assuming small a posteriori inaccuracy, we introduce the Gaussian app) )ximation

of ) in the form

P (h) (2%)-" [det Z.,. l-'l' X.

where ZB~x k - matrix of second moments of output errors in the k-th moment; - -

i- its inverse matrix;

X - column vector of estimates of parameters.

Approximation of the likelihood function we take in one of two forms
P(Yl.hj), , P(yjI).jex~p " ( -- ÷Kg-•), (12.3•,i:

P (yhI•A) t P (y~le (ij_,)) exp {z (X,- e (h._ )) -
S-- $1•.,, -~~~~~- • (•..))÷ K,, (•,, - e (*,,_)).}1• .'

In the first case the expansion of in P(ykiX) is conduxcted near the maximum

likelihood estimate ýk' and in the second it. is at point e (k-i), determined by"

extrapolation of the estimate vector from the preceding moment (e(>) - column

vector which de-pends on column vector X with the same number of components).

It is necessary to further definitize the form of the multi-dimensiona].

transition function. For a diffusion vector process on small intervals of time

this Ga,..sgian approximation 15 permissible:

W (I. +1L.) -(2n)-'2 Idetn)

where Z(k)) = B (X)()Lih matrix of correlation moments of rardom varia¶.tc.i• ,

paramnete.rs for interval L,, in the first approximation of proportional miull,-

oimensional coefficients of diffusion B(0)(t); Ek1 (, ) - its inverse matri>,

•The result of' extrapolation to the following -;oment -ii the contlit, ,.,' 1, a.
Zý can be expressed through multi-dimfensional coefficients ol' drlift A(O)(Xh11, .:airi

f.I-'1i-c S e,-• 1, f-7 f .Firfs lirnear in time

• - + a( )-{A(')( )A, M A(k)A}. .(i'.t:Ky[

;!'
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We expand &(X) at the estimate point A#

a(l)= a0(4 +)U() -- X) A, (12.3.•5)II Q)II
whore)lt)- square matrix depending on A. )

We substitute (12.3.53). (I2.3.51J) and (12.5.56) taking into account (i2.3._

and (12.3.58) in (12.3.52). Then after integration anJd equating of logarithrms of

)ct h parts of the resulting expression we obtain matrix formuAri.

wher. Q(.) = I + U(A)& - extrapolation m trxx of partial derivatives of the new

(i, + 1)-stj with respect to the old (n-th) values of parameters, ana-logous to te! .

scalar factor Q in (6.9.6) and (6.9.7).

Relationships (12.3.59) and (12.3.C) are completely similar to (6.9.6) and

(&.".y) . Thus by (12.3.59) the vector of the (n + I)-st estimates will be formed

by weighted addition of the column of ri-th est.imates, anticipated a step, and the

olumn vector of the new Mreasurements The matrix weight of the first term
n.0_

is determined by the sum of the extrapolated . of output errors in the

prueceding moment and the matrix of variancrs oof expected variatior,ns of the parameters.

The weight of the second term is equal. to rmatrix Kn, the physicai meaning of which

wan explained in detail above. "Informaý.ion" matrix 0 (the inverse of correlation

mati'Ix , n ) according to (12.5.6o) Yr: .', step chages due to t- action of

th ruu t'artorn' -- xtrapc)Ja L .n , random ehm s q of tir': paramecter and n,;.w incoming,

information ab) u, ihe paraer.,ters,

Wren approximation of the likelinood function is conducted according to

Srelatijonship (12,3.59) is replaced by

.a+,=n+ ata n)+tsUzn+0Zn+,, (12.3.,1)

where B n) 1ii is calculated again by (12.3.60). Relationship (12.3.61)BHX(n4.i) n+
is th,. vwctor generali zatioron of formulas of Chapter VI and is Inrterpre Led the same

way

1It io comparatively simple to obtain From (12,5.)-(12,3.6i) differential

equations for continuous observation. They have matrix form:

Ft I (t) A (X (0)) + E M) K ([) [ --k (1),l (12P. 7.(;-,')

I
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d Zn, (t)=B (E (1))-- Mux() K (t) I.:mz (0 +
i .. :+ U k (I)) E.a , (t) !am., (t) U÷ (0),M (12.3.6 3)

Q) ) A ((t))+••,Zau (t) Z(Y), (12.3.64t) Ii
but shysical interpretation of them practically does not differ from the scalar

case. Here z(t), K(t) - set of output quantities of an optimum mu21i-dimensional

S discriminator and an estimator unit.

Above we nowhere said that all I measured parameters have to be coded in tlhe

received signal (signals); there should only be sufficient coordinates of the set 4

of measured quantities. Parameters X(i)(t), ... , X(')(t) can, for instance, be

broken up into p groups, each of which characterizes one parafl.t,'r actually coded

in the signal 4(i)(t) (i = i, ... , p). In a particular case all X(')(t)

X(O)(t) may be sufficient coordinates of one parameter. Thus, if distance of the

target is a Markovian process of the third order, as sufficient (and necessary in

the process of smoothing) coordinates of it X(l)(t), X(2)(t) and X(3)(t) there can

serve distance, speed and acceleration at a certain moment of the value of

distance in three different moments of time (for instance, the current signal

period, the preceding period, and the one preceding it). In such cases column

Zn (or Xn) and matrix Kn are divided into p blocks, inside which only one element

is different from zero, corresponding practically to the quantity coded in the

slgnal, and all others are equal to zero. This does not lead to any theoretical

or technical difficulties during realization of the meter.

We also note that when it is permissible to replace K(t) by K, and matriceu

B(X) and U(X) do not depend on parameters, behavior of the output correlation

matrix ID~(tJ ceases to depend on the realization, and equation (12.3.615) can b.

solved beforehand in principle. As a result the operations of smoothing reduce t

(12.3.(;2) or (i2.3.64), where ZBUX(t) - a certain known matrix function. Thli,

naturally, greatly simplifies the technical problem of construction of the e.

The structure of the closed variant of a multi-dimensional meter in mn•i..a-

tios K(t) -K is shown in Fig. 12.9. The meter consists of a mui.i-dimnsie..i

ý isc:iminator i, controlled amplifIers 2 coefficients of which 2 (t) are issued

* by the uwit. of determination of errors j, adder.s; 4, 1wrt6.L&Atof- 5 and a unit 1 n1un-

linear converters G introducing the mean value of dri.ft depending iijon thý irieasured

parameter.. As we see, non]linearity in smoothing -ircults remalns even in t)

simple sa.;e.
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Thus, for Markovian parameto~rs

SmocotnI~ng Circuits of t~he meter becotriei.

in general nionlinear. At: the same

time elements of' the fi~rst processing

- rultl-d~imerisional 6libC.TTL!LaLO1 &an.i

accuracy uixit, - remra-in the iwri( aL;

for Gaussian parametors.

The statistical synthesis con-

duc(.ec above showr.i that a meýter- (X

s5everal parameters (or line(.ar fUne--!

tionals of' then) is riot a simple sI-.

of independent met~ers of' separate

parameters (functionalB). Ever, If

... ~it 'Is possible to detect in the loinit

discriminator and smoothing, circuits

separate elements relating to inea-

Flj,1-`(9. ptir~ti muti-irrinsimalsuremernt of only one parameter therce

mte!.,' of Markovian, Iarameters: 1) multi- u-.uaLly remain a whole serie:s of
dinen!ISional discr-iminator.; 2) control led
amrpli.fiers3; 3) units ulf determiination of elemirertso riecesfsary I or ',he me(t-er as
resoi~Ltant. errur:; 4l) adders; 5) inte-
grcator s; 6) nioiillnaear :oniverter's a whole. Internal causes of time

appcearing culasare the de~pendoiice, o." input. signrals inmmediately on severalA

perame te r-, rte ,n iom i'ca" trtf pR;' ~ ararne tLrs in s igrial.- arid

* reai i/ed, tir t he multi-dirnenrislonal d iscrliminator (In Idle form of common

11e,17rflIIimO i, 1g.rout)jng cf ou~p it. quariti Les if' thle Tlrrametur 'ddi

vacilm usi.Enal;s differently, aridt feed of' the measured values -)I' paLairametero

immedic6ately to all partial discriminatorL) and, secondly, in ormoothing circizli.;;

(Iii the form of' -common Input and output. quantities) . Cone re tiiation of tiie: appearring

gais gi ver± iii subsequenrt, paragraphs, where there 1Is conidut-Led- particular

oyr-O.Ih-si~s of'd cm riii r and smnoothingj circulto far sigrnals arid paramete-rs wPth

various propertDies

I' ip. 1 Synthesis of' Multi-DImenisional Disc rimiiietors

*As It. was,- s;hojwn i 1 i3 2.1, ai; one of theim' basict elements mulL 1-dlne-ns 1 onal.

metersotanamlI- .:injil (Aerit.) dl 5(:Y'lI r~ilator1 I-low I ., Is i:(2 0'' i

de t~e is; 1c en rrcral fm' or f'iridi n l r fl'~' o' IIisdi, rlitrlitim tor 7 (d
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its characteristics K( for different forms of input signals. As also for one- V

dimensional meters, in general consideration of discriminators at the base of our

r - classification we place statistical properties of the signal; examples of measure- I
ment of contrete parameters will be studied later.

12.4.1. Regular Signals in White Noises

Let us assume we have m input mixtures

consisting of useful signals (i)v(t), whose form for fixed X(t) completely is

assigned, and noises -i)n(t). Signals depend on I parameters (X( )(t), -. .

Properties of noises are assigned by the correlation matrix

Rim ('C) = 1M(t (1) 0)11 Vt +'9)11. .. i

Following the method of § 12.3, it is necessary to separate from the

iogarithm of the likelihood function, during Gaussian noises equal to

(Y, 0). X (t) - [Y,_(ti I••'' Y1,m+ X W,. w ,(1,, , (j-V(.•, (t,.ml ,di,. '
IIA/2

1W• 1(t 4 , t2 ) -- function, the inverse of R,(t 1 , t 2 )], the integrand

(y,, ,+; (t) V-,, (t- , .,+. W ,, (t x,y t)XY-t)Vj X(,, •+mdt. (12.4.2) +
f-A12

After differe-ntiation of (12.4.2) with respect to X(a) we obtain two statistically

equivalent notations of the a-th operation of the discriminator:

l+A/2

- z"-(tyQ)--v(t.£(1))~+a. ,IW(t 3) Wy (t) -~- (. (O d~, (- .'
zi'•t)- +''OV (,t, ).(I))

'WhJr!Ih Can bi Innterpreted in thF; form of the block diagramo of FI4Es, 12.1(; and ++ i

A~c,-ording *o (i2I .3) ano VJp. 12,10 from the i.+put mixtures there are subt-ract.eu

known forms of signal:', with the value of parameters equal to tho measurad ones;

Oien I I'f1,-. renc,;san:' ps Ised through a matrix of linear f1lt crs, ]:o .... l

ri,',c t~or propertiu p with reserpect to inte rference. Finally, gjýt',.uped outp,. of the

m,,ti' .: uA.' fill tr ar'. .nilAltiilLed b.] thl ( d erivatives of e.xpectcd r ,:orms of tU,... i
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0io (v rTern c tori±~ I) linea filers A,

Pig.g I 2.il. Second variant of a discri~minat~or with
reguliar signalsi: 1) oubtractor; 2) unit~ of forma-
tion of' reference signals;; 3)~na nult t ers; 4. 6)

aade r -; 5-) linear fiilt,c.r-,

F with) re.-pec t to Ithe mreasured parae~e tr ,and tlfim are added,* For any

of' the parwnetersý common are elemvnonts up to thcý output of the. matrix of reljeetor

filters; d;Lfferkcnt only gre derl vatlivns, with topeXt uo and thereby the f inal

sums Th oter ooi'lrF~on(V~;. 2.1) I ] iffers from the first Lrn thlat,

rejeo't. Ioii of intecfri-ci me is carriedl out In c lrc~ultc. of feeding of derivatives,1 -'702-



which is absolutely equivalent in the final result.

Elements of the matrix reflecting accuracy properties of the discriminator

are expressed through second derivatives of (12.4.2):

Ii' n Ft .w=tt.) Lv (t.,, .) dt,dt, (...)l.

an6 are determined by properties of the interference and the signals. Due to

possible crosscorrelatedness of interferences in various mixtures, expressed 1

in the nondiagonalness of matrices %(t 1, tY) and W,(t., tY), for diagonalness of -

matrix K it is still insufficient that each signal depends on only one parameter.

Only if the signals are broken up into I groups (1, 'v(t), ... ,v(t),

( 't .,( v(t) (where mi + m2 + ... + m, = m), depYIing. each on its

own parameter, and noises between channels are not correlated, do we have

__) - x~

K I _2im -I 0 (•• ,,.)W•)(t1,,)jA U (,, )dtd,, (12. 6)

where ( ")V(t) =[a'i)v(t) ..... v(t)) -- signals of the a-th group.

With a pulse signal with period Tr only the form of operation of the discrim-

inator changes:

0V+(,,)- -(-) , ,, f,,y(4t)-v(I,,.( th)] dl,, (12.4.7)

which includes additionally accumulation inside the k-th period. Accuracy

characteristic (12.4.5) remains the same (for T = Tr)' Ii
In the case of stationary interferences, by introducing their spectral matcbx i

3S~(w) it is easy to obtain
~+.D•k "='5••,v(C; i)s-' (U)) [ (m)- v (M; ^X)l dw (1i2.4+
-0

where V(w), Y(0) - columns of spectra of signals v(t) and input realizatiois y(t)

in the k-th period.

Formula (12.4.8) graphically illustrates rejector properties of the matrix ot

f!.lters.

*J12.4.2. Gaussian Coherent Signals

As also in § 6.7, for generality we consider the case when each of the inpu,,it

voitagus has thýe form
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Illy(t~ ('),aahQ; k (t))( 1)Ek (1) COS [t I-('t f VI) +F

-P-,,+st(i;.oml.-P-I)4(t) a=::-•- ) (1-2.4.9) !

i.e., consists of a whole set of pj differently modulated components with variious -I

correlation properties, depending in this case on several parameters X(t)

i[(1)(t),..., X(4)(t)), and white noises (J)n(t). The whole set of functions-

(i2.P4.9) can be presented in the form

(, I) == Re (U + (t; A, (1)) 0 (t) e'} + n 1.(:.4 ,

:wlhere U(t) - complex nearly diagonal matrix of coefficients of modulation u(t),

whose j-th diagonal element is column

where (J)uk(t) -- (J)U (t) exp i('i),Pk(t)); 0(t) - complex column vector whose

j-th subcolumn element is set

"e0 (I) '((l)E, (1) e (..., ) (1) e

reflecting random modulations; y(t), n(t) - simp,: coltumin vectors of order (in x 1),

composed of input realizations (i)y(t) and noises (0)n(t)& Te-, cor'elat"Lon matrix

ot' the whole set of mixtures (12.4.9) is equal to

R(t,, ) Y(t y) Y+ ( 1) -Re {U' (fg,.) r (I .. ) X U* (1, X)) e''6( t'- -NS(t, -- t), (12.4.11)

v*lwhure r(t 1  t 2  lo ( )d 2 -- oorrqnlx matrix louc i(t.on of order (Epixy ,

w]=.'i .ubmatrix elements (ii r( j- "2) - )iij ~rpq(tI - t 2 ) Ii., wt- t2r)

is the function of crossoorrelation of random processes ( t1 ) sin c' ( a.

( j)q( ) os ( 1) wqt2) considered stationary. Matrix N in (i2,4.ii) is tAa

matrix of spectral densities of white noises, as also in Paragraph i2.. .1, and is

not necessarily diagonal.

Matrix W.(t 1, t-)2)' the reciprocal of (12'4..i), which is necessary for con-

struc tion of the ) •_hoo-1 func tional., as also in § 0.7 is sought in the form

W(1, Is) -R (e{N -U+(t,) w(ti1,) U(t,)N.Ue * (isl)-N ,'( 4W+,), (i . 4 .- ;)

from which for auxiliary matrix function w(ti, t 2 ), structurally .;Imllar tI)

r(t, " t. , we have integral equationr
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• r (t -s) B. (S) W (S. t4) ds + w (t., to) =r (t, - Is), (1 2.4•.13)

where Bo(s) U*(s)N-U+1(s) -matrix, determined by the form of regular modulations

and power properties of the signals.

Aýsuming modulation of all separate components of mixtures to be rapidly

c.'.nging, it is possible to average B0 (s) over the time under the sign of the

integral, introducing constant matrix

! -IUSO U*(s)N"1U+(s) ds. (12.4 .1'1 )

Then the Fourier transform from w(t., t.) = w(ti - t 2 ) will be expressed in the _

form

S, +- Se (0) , SO),(2.).15)

where S ('i) spectral matrix of fluctations of the whole set of useful signals

ei.e., the Fourier transfor'a from r(t)]. Thus,

I(y,16,1)==const , (i 0

(o 'ih) ( -. ) cos ,p (t - T) d, -gl,

X if Jh•(t,.) COS W,,p (t -- ,) dv,, (12.4.1G)

where A

M X) • (It, I) ( ')P (t)l',u.k (t, X) COS |( M+ p) t + (4 kV(, X (Y))

ir the result of correlation processing of the i-th mixture for the .urpob' of

s.,IrlinT out f.'r'. it the k-th component of the signal and with slimuiltaneou.

tranr,fier of oscillat, ons Lo intermediate frequency w,,,. Pulse re:spo.,Oi~een•-:e:

h,'(t) a 'Jh(2)(t)" are selected physically realizable-. and such that this.

,.-quality is -ýatisfi-eri:

u,,t,•() e7 'dt, e I,:()'dt, =1;•() l;.,.'
-- ____ I'

wi' ye ( ki (w) eLemnt "f comrrplox maby tLet
(iP, .i L,).

Opor.'ctIon of! the d I7i.riml.nator wh,:.n g••neralized iaJ.ato-nctue ratJiuc uc.l nell

dkp ,cn ,on oil (t) is expreusi;-.d by a. formula. obta ined by dlI.f'fer-r-I, la'. lou (A' (1',,,1'

with rCC-p(.ct to A.0)
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Ij IV wl
,.ju. h, i= -I ,.

X< Cos ,olp (t-- %) dt M(.(1ci; (-.I()h•(',( -- tj Xm
SA

X CM eup (t - )d--. .'.i+

Examples of Optimum processing of several input signals already were given

in the oreceding chapters; tnerefore in view of the excessive -_-.merality of case

(12. .1.8) the circult of- the; discriminators is best. given only! in tne ntudy ov

concrete examples.

For matrix element • = K J.ni the most Igetieral case of a 3eL of no.rmal

processes with correlation matrix R(t 1 , t,; X) and its reciprocal W(t., t 2 ; X) we

have a formula, analogous to (n.' .(5):
TT

+' e" -- ==-ji~m r. rjo4 -L •wyt, t,; ). X •ýR÷,(t,. I.; k) dtldt,=.

a00

=-i T~J spr (12.4.19). ==_ lira k •ospur {j()W (,,ti, I . ) •-ý,R+,, (,,, t. ) di.

a00

In the considered case this gives

Tr=

K(-p)-= I11m Re -- spur {B.,)(t,) w (t, .- f,)lfr (t, - -+
0 0

+- B'(Q,) w (t, - Q) B,'`(t.) r (t,4- 4)) tt,,

whie re

SB('))tt• -- 0 (t, ). )N-, _ UV(t x),
)~~Bg d 11-@~s' .'-"3 1)
i )(t) ='U (t, X) N- ̀ .. (tk

are matrices ctructu'ally ;31nilar t1o matrix O10.

If there exist constant limits

) u,¶1 B di -F3")

2 2
0

In- B'(`i(t di _ )(12. 4. 22)

0

taking, tLto accunt (12,14 .1) we can simplify relationslhip (12.4.2t0)
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J((P)- - spur [i+ S~. S0 (WAB ,SC Xw> IWs(w + ()S.+((DWy~.I} w.(1 ..

For the simple example when pi = , N N0 , and power of the i-th signal is P1.

so tha. M~~) :E ý (cnw) (S0(0) 1), we have I
0

where-

Ok=I
li aj(hU M d1 (ý2(1),25;

bO)~ t=n1 I Al'a")uQ ()4Q t

mi 
m

alk =JEh> P1; h,=E Pjl2N.t4 0..

A suzfficient (but not necessary) condition of diagonalness of' matrix K here,

is theý presence in each signal of' only amplitude or only phase modulation, depuiJIL,ýk

on no more than one parameter. But this diagonalriess can also be observed onI

averacv- in a number of other cases.

Absolutely in that samne plan we can consider the case of weakly correlateo

ýilndings of a coherent pulse signal (see § 6.7). Subsequently we shall only cn.

thie limiting case of incoherent independently fluctuating Gaussian sendings.

12.~4.3. Gaussian Uncorrelated Sendings

Let us cons~ider again the case of many input mixtures (i)y(t) (i 1, ...

oach of which can contain a whole series of u~seful components, possibly, wi*; h

dilT rcrv.ni forms of modulation. In distinction from Paragraph 12.4 .2 we assunte'.o a

fluctuations of useful components are independent from period to period, but Icd

thE perlod are completely correlated. Interferences In all mixtures we shall

uorisldc-, whi~te noises. Sucti a mnodel is valid t.:, equaL- risae-urý. for coherent, aiid

lncohorknt. signals, cincc- additionIal phase shifI.f rum incoheren(ce already'
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nothing in the case of absence of correlation of' fLuctuations of stgnals in

ntitghboririg periodG. With these assumptions it is possib'e to conduct synthesis

oi' circuits, considering separate periods of repetition. Construction of the - I

likelihood function in this case is conducted analogously to Paeagraph 12,.,2.

The column of the set of mixcures in a separate period will take fornt

y (M Re {U,+(t) e"') + n (1),(- .•, )o

where UO(t) - nearly diagonal matrix of coefficients of regular modulation in one
period;

0- complex column-vector of their random anplitudes and phosec:

,..,ElE e "4P} (in distinction from Paragraph 12.'.2 it
Pk

is constant inside the period);

n(t) - column vector of white noises.

The correlation matrix of mixtures and its reciprocal can be recorded

RV(t, f.) =Re lU '(,) rU* (Q)e'''' + N8 (t,--t,
W(it,,to) -ReIN"U (i I+ r , r(t.)X

X N -"ei-wi "- 11) N "a' (1,-.,, .. 7) :i

whlere r -- matrix { PiXX Pl of correlation between all components of mixtures;

In the correlation var ant. the 0.,'ration of the Ji.crrminator according to

(1'".4.27) has fori,,

M T, Tr T, T,

zC'-const (i )W I ()Sk(I, ,) dI X StYX) -- MC,(t, ,t dt,
l~.J=lh=l J~l 0

;whrt e-
iO)$.(i, M.= ,y (i)()m u,, (, X) sin [w,t, Iu' (t, k.)1,

(t) i)ilk (I Cos [W,t + ('%p (,

are results of correlation processing.

An clement of matrix X by the formula (1 2 .4 .1c9) can easily be reduced to a

form analogous to (12.4.23):

K )-spur -B0 tr -1BrBPB("r ), (12.4-.29)

where

-70b-
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a) 1 SOU. (s) N1U*+(s)ds,_ .s (12.4. 3C)
-, T, joX-) 0 BN7, da O

are matrices, reflecting the coding of measured quantities in regular modulation I
of components of mixtures.

I, t.at particular case when the mixtures contain only one useful component

. ah:i, where these components are completely correlated, and wi'L e noises are

independent, KOý3) again is expressed by formula (12.4.24), where J2 is replaced by2q

(1(12.4T3i)
. & =-(I +,,z)r T,

and q- 21. is the ratio of total energy of the useful signal in all channels I

to the intens.ity of white noise in one of them. 1
12A.4. . Methods of Approximation for Construction or' Discriminators

and the Methiod of Comparison of Performance of Circuits

As also in, the one-dimensional case, in engineering applications permiszible I
and inevitaule are certain deviations from optimum processing during realization

of discriminators, hopefully close to optimum. In particular, a natural method of

forming a discriminator is replacement of the exact expression for the cerivative of

1'(YIX) with respect to X/a) by a finite difference I
A

Y, + (12 '.32.)

where detuning is implied performed only with respect to the a-th parameter by a

-antity smaller than he width of the peak of autocorrelation of the signal with

YO1i.jEct to c. If it is technically difficult to have two chann(;Is at once, in

a number of cases it is permissible to use one, alternately detuning it in difSt:r,-r' .

IIol-r,.•t, ons from the measured value of some parameter. In principie during-

realization of a mulcl-dimensional. discri.minator of I parameters it is posslblc Ut.

u: j *}ust one charn•il if we select a switching function, which as it were ".x>.amines,"

pwI.,t of the likelihood function removed small magnitudes of ±() (CX =. 1 ... , 1,

from , (t) cnseecitively for all parameters.

1I1,ýtr;'.Ia! in thie multi-dimensiona1 cas 1 flp ik•oqtiron of c'ompariqonn oi'

,li.te el, .. '-: jits of di.scrimirnators, close to optimum or far from thcm, by tr..

acura,:y ,niaracterlst, cs. Ac was shtown in Paragraph 12.2,., th-e ,'aracten L' ce

;t. descr',.D Dy the matrix of' equivalent sprctral densities K in the optiirurn
A,]
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case and matrix 8SB K oKý1+ in the general case. Thu geometric interpretatior

of these matrices can be, as it i.r known, an ellipsoid of uispersion in the naraen-

eter space with the same second r- on all axes. The first rough method of'

comparison of geometric dimensin. ir.e ellipsoid Is comparison of morne.,':, on the

axes X(>) (aX i, .. , 1) without taKing into account mixed moments. Thi. is J-

sequential comparison of diagonal elements of two macrics. If we need more

precise comparison it is possible to compare volumes of the ellipsoids, expressed

* through determinants of the matrices. If both these methods indicate approximate

* coirioidene So 8B with K- 1, further attempts to improve Iro.esoing, naturahiy, arc

unnecessary.

12.5. Synthesis of Smcoth4in Circuits and
Resultant Accuracy of Measurement

As also in the one-dimensional case, synthesis of smoothing circuits is anaLogous J
(fo- r the two-loop variant of the meter) to synthesis of multi-dimensional Wiener

' Lit,,e. However the equivalent Wiene.' problem is very complicated, inasmuch as i 1 it,

it, is necessary to consider the interconnection not only of measured parameters,

out aiso of interferences superimpusUee on Ijicii. Such questions have beei,1

insufficiently studied in the literature. There'ore, tlie material below is

arranged in separate parts so that it will be useful to those who are' interested

in the purely Wiener problem. Different classes of correlation matrices studied I

)elow are fully analogous to different correlation funrct]orns of the measured

parameters considered for the one-l.mo ,lonal case in § C.8.
dI

12. .1. Parameters - Random Processes with Stationary Increments

We start our consideration with the case of stationary random processes,

'n,-;ud,1,d as a subclass in random processes with stationary increments. Equation

(12.3,19) for R' = here has the form

CR

and 1im;; an integral matrix rquation (or system of integral equations) witn, a nucleus

r1',qperid1rig on the difference of arguments. Methods of solution> of such equations

were studied, for instance, in [55]. Exact solution for an arbitrary time of

observation in principle can be obtained by a method analogous to that described in

S§ 6.s, i.e., by transition to the proper system of' differential equations. However

to solve these equations is complicated even in the case of two paramete.rsý.

fherefore, it is useful to immediately jasfs to a study of limiting, o)perators,,
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corresponding to a time of observation large as compared to the interval of

correlation C parameters, when equation (12.5.1) passes into the matrix generai-

ization of the Wiener-Hopf equation:

C It) + c-c 1)KR (t -- ) d----R (1 (1 >0), (12-5.2•) ,

inasm-.ch as c(t) is sought as a function of the difference of its own arguments.

irect application of Fourier transformation to (12.5.2) leads to a solution iii

the class of physically unrealizable filters, for which c(t) / 0 wien t < C.*

To find a physically realizable solution in the literature there have been

offered several methods. Below we give them names, not to any extent conventlonal.

a. The method of factoring a matrix [55, 56], having the most general

significance, is based on presentation I + KS(w), where S(w)== R(d)e-"tdI is the

spectral matrix of parameters, in the form of the product

I + KS (® F+,()w ,.,

where. T-(w), '+(¾) - matrix functions with analytic elements and determinants

differing from zero correspondingly in the upper and lower half-planes of the

complex variable w.

The fundamental potential of factoring is proved with very wide assumptions

about matrix I + KS(n). The physically realizable solution of (12.5.2) has Fourier

transformi

06)= I (0 W:(W . - w) C'"'dt elutduS(u)WY'(U)WQ-(w), (12.5.4)

wihere [ + signifies the operation of taking that part of the expression in

parcntheses which has poles only in the upper half-plane of CD. Analytically,

forming of 0(iw) from the factored matrix is presented in (12.5'.4) by two tnuerra>.ý

Practically, however, factoring of (12.5.3) is a difficult problen. WILUt

rational spectral matrices, the most important for applications,a series of otir

me'hods turn out to be more convenient.

1b. The method of factoring the determinant [57] is based on th, zxpa:mion

det[11I+KS((o)J]p(w (4w), (12..)

we ere V* 4-. U )4'(WŽ) -- scaler factors; with the same properties, as V ((in), ; -(u) i

*In principle operations of "physically unrealizable" J'ilters can be exucuted
by means of recording the input realization and subsequent processing, but we are'
interest-] in filtration with direct delivery of the result.



(l~ i.3) The solution has the form

whorre 00' P13) - matrix with-. olenientL in t~he form

yi- tht! pole of' matrix [I + KS (uc)3, c.> c) in the upper half-plane
of co;

A( undetermined .i'actors, selected from conditioný7

IC (is) [1+ J(S ('0)I+ I S ('01~. (12 ..

c. The method of undetermined coefficients ['A] c~nsist~s of scelinn t. Is:

in tile formi of rational functions of ______ where -y. all zeroes of ths-

zIn Ie~'
F1=

iiu,!erator of P+(aw) from (12.1).5). Undetermined factors B will be selected

!'rcm the ccid~i tion of turning into zero after reduction to common denominators of

all numerators of ele-merats of' matrix C(iu,) [I + KB(-~)) - 8(w) at points ji ^tancl

= 0, where 6, - pole of' eleinenuto ci~ !k the uppoerhafpae

Formulas (i?.5.3)-(iP.5.7) are applic-abie a]~.to the gerieral case of param-

etorr with stationary increments of the k-th order if we introduce their spe-.-tral

dentsities according to [59] and during factorine, expand factors, c,2 in denominatorz.

of Ktu.ý-ments and the determinant of I -F-K as wu2 k~()~~ tsmtmsI

jore; c;onvenienit to consider 2rco'~ tic td'ion~ary increment.3 as limits from

certain stationary processes with thle. same o-rders of denominators of the spectra'l

mat~rix and '.u pasi, to the Il~rct after obta siing thle solution of (i2.1-.4I) ror

au-. I iarly p-oce!nscs.

A3 a. first example we shall consider a joint meter or I parameters in lh-.h

Jor o 17 f Wtationary processes of very simple form with complete correlation, wh ce

;I ) %~i*i '~ Seeking our solution in the form C(iw) t'(iw)II~o G II

;it is e-asy to obtali.

U+4)(4+IAT) +4

(12.K)
G (is) a== I 2T a

"3moothing circuits (FPig. 12.12) conjsist nuire cof I inertialeom;s input ampl.i tiers,

an dd c acommon fir st-ordpr In( Ciru)wIt t-mte ronstaint T', met In the
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spectral matrix, and I inertialess A
output amplifiers. As compared to

S1 " A NIN separate measurement of the a-th

parameter in the shown circuit we can

obtain gain in variaree of a factor

considerable when • I('o*@ •.
Fig. i2.12. Smoothing circuits for sta-
tionary parameters with total correlation:
i, 4) Inertialess amplifiers; 2) adder; > K'ual >1, i.e., when the cy-th
3) inertial link of the first. order. a

parameter has smaller '#riance, and

its coding in the signal is more strongly suppressed by interfev-rces than for

other parameters.

A second example pertains to the analogous case of I parameters in the: iorr Jr

Wiener processes with total correlation, when S(•)(m) = . --Bf 2 . The same methct

we ubtair

I; B0I1 .J =B'

~ KX47')EYB7+Li

Change of structure of the smoothing circuits as compared to Fig. 12.12 cornIst.:

only in replacement of the common. RC-circuit by an ideal integrator. Great gain in1

accuracy as compared to separate measurement of the a-th parameter is observed when

A third example pertains to simultaneous measurement of a parameter in the forI

of a Wicnrer process and the integral of it, when the correlation matrix haf the form

(W) Bj(i *:S () . ' B/,c'

By tric mrethod of undete rimIned coeffiqients with diagonalne.3 of matri.x V we ial.

oh ta in

-ii
,jl

- - ----- ---



C (ib)=

(g. +___ go gg,

B1 11 V9g 4292

(i)K g, + ag (l)', + ga

whe re g BK,, (13K,)1/

According to (12.5. 13) '31Tootl;.Uigf 11'( LA t-it rf th(! L ri~ir lt.,:, ala,.0

mieter nave the form of Fig. 12,13. The ectimate or the Wien~er pr'occl'c w11 I jý

formedl b~y irite grraticru (vi li VO1

the dtcrliiria.aor and additloi, of' thl"

ro;sullts; 'otLa i rnE, of' the cottrnate, ofU'

of la .)Ine flrr;L.1 Ipari~,I I'; anli', ~
"tr4,llI a: c-! ' 'out 1 iut. -'.,.lIaun u; cAnte

F hr. 12. 13, Sm~oothinfý. clrcuItcý fo Lrratunc throjugh addi tional 'i'or;ii

mrcýev .r i positliri and speed: 1) Iner-
tialess amplifie-rs; 2) iln 4.egrrators; ortigF-cy'twthtIi.tc'etr'8
i, ,ý) qr!r!-rf7; )1 ) lr teLralorz with ., ~ '

by ricilsf!.' of thro cod! rig -41 rit of (A,4'T

tI rults : 1) inci'tlaiuss amplASPiire;
zI~gr.:,r;3)Integr'ator with only whenK r ~ Ud ll C'?? K' d o

co r.re c ti on .
1110EtGSYlO lr'Trnr.l rerijair Pi' I to:; IY. .1l p C L

a;;,~ (K1  , K. (,) 'inl. to riy i.5 e rror of' rriaji'm ol, j1 i l I'llc I . A;" ''

.w,, ci uv o of d(e to rrrilrat (,rio rjj 'A in*,o 4,1l o Ji t, vo iu , I.nf.nl c , It , :Im' . TtI

crrnnd to a plroienoflio known Ji toe hrIl Id '0?1 1", j1")4'Y- It. the. IV1, 'lla

j'icr~acnof' vri-or

In the(. greri 'al (.:anu4 (K1 I , K,, / j hef,5r i i:l n;.'orripul-etd 1 ,0 44 (j',

-up'a ) -luni rig of 21J1 t'II 1rg -ut , o ; v ''Io-



2g

Depu.nding upon retAio g iis -9

ooserved f'or the first or second parameters, f

and when rmax h )t. I it Is very irarkcod

We she.l also c~onsiaer paramet~er,, .rL

the form of' correlatoci Wiener proc~egss--.

wi1th rspectral matrix

a,

~R B,

with abtryintercoiatection of cidings-

JIfVPFig,12,1. Gan Invaitncr)du715ic



x)

4 X-

Fig. 12.16. Smoothing circuits for two cor-
related Wiener processes: 1, 4) inertialess
amplifiers; 2, 5) adders; 3) integrators.

A
where C/Lz.. •i KiBi (1 1, 2), and -a, b are roots of equation

m o t(n, + g , + 2p ' ) i x+g ,( Is a)(1 - 0,)=o.

Smoothing circuits of the single-loop variant according to (12.5.18) consist

of two integrals [sic], to each of which there are fed through inertialess amplifiers

output voltages of the discriminator z(')(t)

"(Id and d )(t) (Fig. 12.16).

According to (12.5.17) the gain provided

b, allowance foc Interconnection of parameters

and the,-ir codings with resuct to mean

squaivc urror of measuremeint ot' the first

parameter comprises

2o [I + v+(-))(1-1

w,- where it is considered that !g /4v

If the influence of the interconnection

_of coding here is nonessential. when p < 0.1, .
strong corre-laton of parameters (- > 0.5)

Fig. 12.17. Gain in mean square
error during Joint measurement, ensures noticeable gains (Fig. 12.17),

especially with great strength of the second parameter (v i). This alro proves )
the advantage of joint measurement,

I • ... . .. . .. ... . ...- 7 1 6 -



12.5.2. Parameters - Linear Combinations of Known

Functions with Random Factors

In a number of cases, especially during measurement of coordinates of bodies

travelling by determined laws, presentation of mea.ured parameters in the form of

quasiregular (degenerate) random processes is permissible:

where fka)(t), k(a)(t) -- known functions;

- random normally distributed quantities (4(0) 0, )

MW ) a = _1 ... , 1;k -- $, '" qO,; j ly q,.. q") _:

The correlation matrix for such parameters in general can be expressed in

the form

R (t, F= + () MF(i) (±2.5.2)

where F(t) - complex nearly diagonal matrix with elements in the form of columns

?(p()= iac)b 1, (a)(t) - f~a) (t), . ." f(a) (t)1,,

N cmplx mtri (q. Xq) with submatrices M~a iIM"ýf

Then from (12.3.19), (12.3.20) and. (12.5.20) we can obtain

c(t, V0- F` (1 [M-+ U ()) 'F (s),
~t(, = (F+(t) M-'+U (,t)I"'F(.), (12.5.21)

Z.. () = F+ (1) [M-' +U (t)-1F (1),

t

where "J(t) j F'(s)KF+(s~ds -block matrix ( q* q.).
to

If between coefficients 4a), pertaining to different parameters, there exi:ts I
-i

complete correlational coupling, matrix M turns out to be singular, - does not

exist, and to find e(t 7 '), Z~ Hx(t) and g(t, i) another method ii more convc.nier..

it is based on presentation of the column vector of parameters in the form

where 0(t) -- matrix (I x q);

q total numbusr uf coef•- 1c••nt. , IL, tir-gh which all parameters arc
expressed.

This leads to the correlation matrix of parameters

R(0, -0)-0M (MA 0 + (9), Ma T-),
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F~ig. 12.18. Smoothing circutits for quasiregular
processes depending on one coefficient:-- 1, 4I
variab le -gain amplifiers; 2) adder; 3)) Intefsrators;
5) adders.

and trio solution of the problem is sought by a method analogou!3 to tlie presented

one, and gives instead of (12.5~.21):

9 ( 1,)t ) 0()IM,, +j-V Q,)]'i M (0), (2~*4

0 (1 IM_ V

Lot us consider the particular vase when all q~ 1, arid cocfTIc~eiet;iL anr..

jqual to one another (ý (a) =Ij, 7. G2~ IJ3ing, D1:.)Ij. i; C-ai, to bt~ai.r,

gO7 r(5 ,) ( j 0

I + K(T&) [0() (S) fil (j) ds

¶ mothngci'rois(Fig. 12.18) consl,.;t of I m~ultiplietrs of output vol Ia,ýu.; .)1

twc~li;crirniriator bylirictlon~)()[ ±2 + P"S'(s) ds al j'!'al~

an iritetrator. At, Win ootput1 of the i r :iatv h ' wil. Libf formed Ot(!ef 11 ii a I.'

ot' the. urnknOWnIce1 i en After ,~l 1 ~ ir f this esI mtbY InIownI mrVE
of var ia I..1on of' pacfi f-r'wr, t; fV(") (t ft nd ad ~ lWI. Ih n,''an ValuuoF thine an: LIo Cr'lned

1 1a tjiter, ki') (t * a"C rdi$ Wm t (I 2.1,. . ) tro, n n(:aoureIlle(rIt, ")I aii. 1,11,r-111i';t., r:;

aljproac h 50 Co wi th of' ea'0' tlW Lt,~f Cim f Ort':IV.tAr~~ IitejI' IA ;f



i

smoothing circuits contain q .* input and as many output multipliers, After

multiplications of input voltages by known functions there is produced summation

in groups equal to the nt- ' of coefficients i), from the formed voltages the

integ~rators form estimates of these coefficients, and from the estimates by

forn,..as (12.5).19) and (12.5.22) there are formed the measured parameters.

§ 12.6. Examples of Multi-Dimensional Meters

12.6.1. Ieasurement of Range and Speed by Coherernt Radar

Let us consider joint measurement o1' range d(t) and speed d'(t) by rx coherc:,t

radar, working on carrier frequency f. = w412rr (wavelength x = el/f,) with square

width of the• spectruxm of modulation

,- -+0-

Alms 1061 As 2 Z=~ "I'()Id(i..
S-,a

$1 •-to-neL~c ratio 1 and the width of the peCLIctx'V'I c' fluctuation:: Af are

due I.rnl~ec a!ccording to Chapt.ý.r VII, IX and X. l'iioted targe t;; ma1neuver', Whoerc-,

rsdinl sweed ran he descr.lbed by a Wiener procrss with parameter B, express.ed in
i/iecz3. lange, naturral of the Wiener proeesS (second inter'a),

of, white noise) with "he same parameter 13. The influence of angular coordlnates

of th,- target. on measurement. of' d(t) an(d d (t) we shall disregard.

A(w(,ording to ruOUltui oF C0apters VII arnd IX during approximation of the

1;1 trwmi o1' fl.ue tuatin:ý: of Iuhe signal by furic tIon

S.()==11 +(-/21O)'1" (12, .()

w,: hav,. the t 'ollownl.rig Formlila:; for chad-,i'ae ,..,le -:• i's u tiro idls."rlm1 .natm.r;-; of';,

:'p:,•d r,.te' alnd a. range 1'.in|o C

•2As. if -"--h (I + V .I--FFh)'
"^,= 26,,a T •• + +V'• W

%h'hl C"' ;otisJ C II pts .x anidl '- ir'I SLaFl t.t|.r. pararne of' ther .t|q-1a l are r'oi:; 'l.J,;i ,

('1 "'u ar') !airri(,r t'r,:,l nny ,, ard time delay 'i. Approximat, io ( * ( . j ti.') ,: ti

111.i111111 vOJ..',e of' KU) fr largo h (wth fixed bard (W ; ); with rt.poct to K th,.

form (,j' 1.1,, Ppprox iiralon ti' 0 0( w) mlakle- pract ica ly no dif er; rene0,

A:" I1. W ns ho t lhO' /O, I. fli t ,.( l.-d tini:iao l me t,.'s it;n re '::ary to

eCt, e' t. I , ' ' . u al. '11:/ "A' a ,Jo ..h '1 cL' . frui.I r tor als;o by1) th- 10! x.'d Cler I .van, v 'I,
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the logarithm of the likelihood function with respect to dI and d . This derivative

fe ohprent signal, as one can prove by formula (12.14.20), is cl.ose to zero i

many periods of' repctition are correlated and the signal-to-noise ratio is not too

great. Therefore, matrix K is completely determined by its diagonal ele0ments

(12.r,.3), and the circuit of the optimum joint, diZeriminator of range and speed

consists of circuits of discriminators of parameters -c amid cu simultaneously tuned

to0 r(t) arid W(t) (Fig. 12.19).

Henceforth it. Is convenient to consider as parameters d an~d d' direct-ly.

lxzsnuehAIC as

t-2d ,w= w C I
elufmen:Yto of' (diagonal.) matrix K iin new parameters will have the-- form

(2o)2 2 w.2 2 ____h2 _

) C r! +-h (I + Vi h)

Let. us turn to smoothing circuits and resultant accuracy of joir" measurement,

Inacimuch as the matrix of spectral denzitics of d(t) and d'I (t) has the form

(12'.i),and matrix K is

diagonal, i.t is possible to di-

rectly use the solution of Para-

graph 12.),.I, substituting in

I and

4 7gd ý!2 cmultipliers () t l

orlu ti- f^r-

squae- hefriequrncy. vaue tof t peed of a

Joii ~ ~ bot outputinto volng n crutags of the Joint diecerim ao

'wition~i hadf obviouse snutli 3t i-as amlfir

withmur mea"nig lquar earorifies ) qae h measuremen oalu of peeIed.

The measured value! of' range will be formed by separate transmisslun oC output.

voltamirie! of' the, two menitioned integrators through additilonal 1.intgraturt;, equltpped
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with different correcting RC-circuits, and addition of results.

The influence of one or another of the output voltages of the joint discrim-

inator is determined by the relationship between coefficients g and g ,. If
d

g 1 > 9d' the basic role is played by the speed discriminator, and, conversely, when
d

gd > j.r the basic role is played by the range discriminator.

In particular cases when gd << g ,' or g t << gd' smoothing circuits could
d d

h.ave been simplified (Fig. 12.14). However, with inaccurate measurcments of the

range finder such simplification is technically and theoretically unjustified,

inasmuch as resultant error for range grows without limit in time. A mulLi-

dimensional meter, losing selection for range, also loses it for speed, as a result

of which all measurement ceases. In other words, inaccurate measurement of range

is better than failure of this measurement.

Otherwise, with very rough primary measurements of speed (wideý. spectrum of

fluctuations, large wavelength, and so forth) tracking by both cooidinates ca . bI

performed from readings of the range finder with finite quantities of errors of

selection, if the- signal-to-noise ratio h is sufficiently great. 1I
Variances of errors for speed and range in steady-state operating conditions

according to (12.5.12) are equal to

2 ,1-B IT + 2/x
o_=ir ___''• + :1•.• •)
"" Va

t• (K VrF2 (+2.,C)

where 7t g d d/gdx

Comparison of (12.6.6) with results of Chapter VI shows that as compared to

s;eparate closing of loops of range and speed tracking there is observed gain ii.

mean square error of speed and range by factors of (I + 2/x)i/k(I + i/%)i/2 arid

(i + m12) / 4 (i + W)i/2, respectively. To find conditions of increase of accurac:,

for d or d we investigate quantity x as a function of tactical and technical pr,-

eters ofthe radar. Using (12.6.5) 't, is easy to prove that

A. A lmaf,( •.(.•

whore Ah= = V p(1 )

is root nean square magnitude of drift of Doppler frequency due tn maneuver of the

tasgst during the interval of correlation of fluctuations of tie, :UTIal;

-721-
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h

(I .1 A)'14 (o + • - -i ;

is a function of the signal-to-noise ratio h, asymptotically changing with growth

and decrease of h, as

?(h) - 2-"2h,'
A-40

p(h) --b h

and reaching a maximum equal to ).146 when h - 6.2 (Fig. 12.20), Th<' inf.Luence ,t

measurements of speed is seen to the maximua degree for mean values (i Jh' siU eau-

to-noise (h = 0.1 to 103), which usually are operating valuýýs. ThLs ini',.te-v-e 1:'

stronger, the fast,.:r the target is piluteu, the morlc it monrn:eL.=, ,hC s;ortr th,

effe-c.tlve wavelength X and the naxrower the width of the spect'ra of fluctuations

f.Cf and of re-ulac modulation A!fB. Concrete val-lues of Pt/qj(h) we shall estimate

for two examples.

10 .2Thus, when k " 3 cm (f 0  cps) , f -= 0 cps, B = 30 m /sec Lf

10b cO ps we have v,/q(h) = 4.9.10".

In the other case, when X 10 cm, LfA 1i. ' = iTr m.sec, fB

- . ,it0 O.ps, it/q,(h) 2 2.2-1:;3.

Poig. 12.20. Depezidence of 9(h) on the signal-
ora to-noise ratio.

k For radars or' various types and in various cond~iti.ons ol' app3 'jcatjoio /p)

.•varle.; from 103 ahd 10r). Therefore, with h =( - ) when q.(h' ' i.,l c~o(-.''fi, !eit'
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ix is not less than lo -10 , which gives a gain in mean square error od of mea-

surement of range of (2K):/4 = (4-12) times. In these conditions instead of

(12.0.6) one should use formulas

2,. V= &1_. (I + h)1 I+o++1),
2 1 Xc I (I+h)l2 (1+rI +h)' (12.6..)
d YK_4 (w' 4nr A

When h >> 1, as long as condition in >> i Is preserved, these approximate

formuias are valid

2

G2 • I I (iVo,:r.
ad =4•4 tf,'-

;aradoxically, error for range does not depend In the focrmulated conditions onr

rv'-raru maneuverability, determined by parameter B. The fact is that with groxwtb,

of ;!taneuvlrability (i.e. of' the magnitude of bursts of speed) the speol discrir- -_

ina tr, ,basically de terurAnr'g aescuracy of measurement, works ever more efficiently,

We at•to .noti.ce that change of' Ohe width of the spectrumi of fluutuaciouns L'S lead-t

Le, -.-•'octrt of noises aL the output of the speed discriminator and decrease of the-m

. at ff,, output of the range discriminator, so that in a joint meter there occurs-

cwrmjom;nsntIon of two factors, and oA turns out to depend on CfO only implicitly,

th:',uorI macnitte h, Consideiring for- ex:ample X 3 cm, Lf K 'p , h = lot,

w,; 'a/( a. mnute noise component of error for range

wito:: •1-.; hundredths of the interval of range resolution. I', huwover, we s-ee

!',. :same quality of measurement of range with separate construction of the raniple

,li'd !r' and speed meter, it is necessary to expand by many times the spectrum or

rtop or fl'O]Utlat .Lon,

]'. iIduring ,i•ul1. measuremen~t of range and speed of a maneuvering target by

a o.;tnrent r."rnal J1t turns out to be possibl<e to sharply lnvrease accurc.uy (i' ci.a-

, '' ',m,-t ,,f r'atnirr uQe L ,i t ie hlgh accuracy of primary re, w' ,t. o, '• .

12.0 .G 1Accur':mI I. of Hango and Speed t'y Incohere~nt Radar,

i,*,:,z.'•.i•-,, ii ,i, t of the same paramnctor c ." , t,.t, r, ' , 14\ ,r,

09' 'n rIithr,',' rt *; i;;r"-,e'hYeiirii cedlar. We keen, the former de;;inrncions for
I. r
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wavelength, carrier frequency and lcnsquare width of tVft; speSctrum of modula~tilon.

Tha pulse signal of the radar we shall consider f-Luctaating- independfently of' the

-cj od to a period of' duration Tr. In distinction i-vorcL Paragýraph 12,.1J we shail

consider a norimaneuverinff target, flying at the radar with constanrt, but unknown _0

pedand undetermino-d position at the iinitial moment. Influence oc) asret

of anigular coordinates, as also in Paragraph 12.6.i, we -.hall dIsrectard.

In examaining p~roperties of an optimum joint discriminator in. acc,_ordance with

Uthe character of the ý,;.gnal it is permissible to consider one period of repe tition.

By f'ormuia (12.)1.29;) In conditions of a symmierri~c form ol' t~n- ;end.¶ricg we have me1atri.x

X (tvith parameters w., 'v) in thei form

2q)

hreu(t) ua(t)ei~(~ ,cr.rular modulation';

q -signal- to-noibe rat~io;

-me~ar square auration of the sending,

+ a (1)0(i) ildl

- ( 111 iS~O11e 5 ((' Pi~ c ~eltof ill UC rculi(,( to tion. of cod ings of the two paraiwur tel o

Adu L ation

It. alsto is possible t~o ex~prross matrix K very graphically through thie derivat.ive,

,)1'i anU!,correiation func tion of the. pulse sci-idinig (see Chapter 1),

C 0, ()=~-' u( U- ~~(t) ei'OId (C (0,0)- 1), (1..2)

-00
talkai for, zero argurnente I(C aCOO

K, q Re aw ¶AA(1. CC15
T,(I+q) 02 C(O,O)) O'C(OO)(± .)

In ether words, with an accuracy of a coe ffic ient rnionotonicaiiy dependngO

the gna-torioi rat 0 qmatrx ~ consists of quantities charact'- r12-irmg
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°~I!
sharpness of the peak of the autocorrelation functio:. 'n various sections. If line.;

of constant level C(', w) for small arguments are ellipses whose axes are oriented

along axes w, T, the mixed derivative turns into zero, which bears witness to the

absence of interconnection of codings of range and speed in the signal, Such a

situation occurs, for Instance, for simple pulse modulation, intrapulse triangular

frequency modulation and phase-code manipulation, when integral jU'(1)u'(1)i1d1 turns

out to be a pure imaginary quantity or zero. In the general case the interconnec-

tion of two parameters exists, which is easy to prove by the examplt of linear

intrapulse frequency modulation (FM)
ivts

where V - rate of rise (decrease) of the frequency of the filling.

Here coefficient K is proportional to t1 3 steepness of FM

We shall study resultant errors for d and d for fixed duration of the zund i.rr-i

I and width of its spectrum .T,* Transition in matrix K to parameters d, alid

d, in accordance with (12.6a.4) and (12.6.10), gives

""d 14'

R d'(t)=d: ~ d• Ia.'. I'

krKdKd Kd

where K1 (t(, dt a 2q' 2avu n - Jwh-ý re, (. I+ T ) +Kri o rom and the value of k its kept eqtu L t-

Let us turn to synthesis of smoothing circuits. 'Here it is -Convrenien1. to:.0

tho neihod described by relationships (12.0.22)-(12.5.24). Actually,

d (1) ==do + d'a (I -4t) + dl,
A

whlere 6 (t), d(t) are a priori mean values of range and radlial speudA, ano d',1

ar. uinkr,:)vri deviatiluric of thtý initial. (i *e.*, Momrent t, o pc.w anid poe i ti-,n ci ti!

;eumean values anid thle nat~rix of' momeit~s

S0o

Tt.. s-jss b le t, present X(J) = [6 (t), d(. i. ) in the fri'm (I,-'... i'j , -,,r.
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d I

and, dlrectly USing (12+5.2h), to record the solution

K (t _ t(, to) ,- ,.IK, (t - to) .- g4 -to• ' 'k VK-4V'• IY, -t,)+ T

e t .2 2 6

t- . --kVKIKd, (t - t)(- t,) +

2 •s'Vtt°K+,(t-7,+ I,

*00

Kd, to).; -L2,( -t.0 
+ 2

g ( ) K• K ( -to) (i to)- is)* K_ Y - -t ,t -- to)' Kd (0 - to) 8
dKt (, 2 2 6

-- hV (4K8' -- __) _ : --0

det (t) K 2 G to -K+ , KL(l -- ') / -- T,)'- t( o
+ 

(t 
--- 

0 to)

S~~~The algorithmn of ,Joint processing of data from the output of' the di:el:;.ri~mnato]' •-
m+ thec single-loojp variant of' meter is presented in Fig. 12,2i, where; the nieaning of"oi~eratiouns is intoii1gibie i.r light of' the descriptions of' § 12.5.

From the matrix of resultant. error:-; Z.B~(t) we extrac:t e.iument.e on the ,ma~rn

elagona2, .again o-,htaied at'ter transition to continuous time:

4 +,, 1. -- 3kbQ) + 3 ,(t) +- 3 ,b () +I 3b,• (1):

y 
-726-
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12 .1

21
X I+!2bQ() (t-kl)+4(1+3kb (t)+3b'(Q) ý(t)+12b2(t)+I2b -b~t (12 .6 .20)

whe rc.-'

bb (I) b, (f)26.

CA (t - ) VK -(I- t)

are coefficients depending on the time of *observation and approaching zecr wqith I

Increase of it. The first of tmem b(t) is actually proportional to the ratic. ol'

unit (i.e *, in a period) ero fternedsrmnator IT/K t~o th advanceý '.1

er! )r in range during the time of observation~ t - t~ due to unit arr-,r fiur sper_ u
IT7~ wi

r wih independent codings 01' d' (t) and d(t) in thti signal:
r~S t

an rdalsee:1)itertor-fi 2, 5, -)Aribe

ga~namplf~es; 5 inetiaeec inplfiee; 1,do

and radiately sped havtgatr.e, ) )vaibe

gan unliies;3)ilE.ru~lso-(27-irs 4adder:-



As relationLhlps (12).6.23) Show, for. 1',UL&( e'rrt, InlvIffer'~rLt oft h

ab:;:,utp- value arnd sign ofr 1.ich coeff Icierit. k ofi inter-cLnnect.Icr, of codJir,"gz of

parame ters in the signral . Let us rlisclr;.- th;c dcpcndtrr:uc 01 rutrij~. j(,( 'or3 -t) 'I

i(rthc t~wo elxt i'uýrrle arnd the lnterri-edlateure k -;C I ch~

2 4

*2 4 1t+ 361(f)

I ., iith Inriýrrasrp of k from, -1 to 41. T1 ie;j do' 14 (1huta o -tirji''u

of ratio 4-=k fr or;VriVi'it 1bI hnI 1.2.

b-4

h4JJ

Ili I. IP, u. t p- r r u r Of raj ' CVr,01 011

of iIL of raw,J3 air, Gp'ud

F~or tpra val ues of' wid f,h Af' Otrt.re rulr tri dulatli o arid Jurarsc Y. i ti 4



Howev ',with lricreare of the time: of observati1on in any C.ase error of ran(t 4
a;ýymtr+totb-:all,/ ,;cekfý 4/K% (t . to), i.e., iz- determirvd only bly Iprimary measurefli(nto

Yrarigu findcr. InVe 22 ~the family of curve;o (0 - ~ r

':i a fh xcd u-jaram ': rw r, K ic -
'Thr~ oailte~i~c ha.ut dc-pendenc-o of' err'§r o01 tno&a1remrfLt of rarge On

e'x*111~i ntK appearr. only w Ltl, a ceorrnparat vr.1y small± tirriot o!' nrboothidng.{

j ~~ 2'X22. ~~~ 7i~~2?5. -l~iipoiibhavloror rang~e eri-or.amr.:C V

2~, y%;jO12
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us hig the time base of the extended interval of measurement. The speed discrnim-

itcator after expiration of the period of rough measurement of frequency duo to

n,-ises ceases to feel the small remainder of the unmeasured difference of the

Doppler frequency and practically does not participate In the process of further

dc:finitizing of data.

A similar effect of gradual decrease of the influence of measurements of

speed is also observed with coherent radiation, for which the above mentioned

results preserve their force, if in (12.6.5) as b(t) we substitute

With growth of h and t function b(t) decreases, although for average tinTef. o

observation (Lft t = 2-30 and h - 100) . may reach i5-25. This, according to the-

jimidule formula of (1.2.6.23) gives a gai" in mean square error of range of a factor

01 approximately 2, inasmuch as

2 1

Formula (12.6.27) is intelligible inasmnuch as the range finder must definitize

only the initial position of the target, and its ',ueed. in the first moments turns

out to be known with sufficient accuracy.

Rketurning to the case of an incoherent pulse signal, we shall discuss in :ore-:

what. g5reater detail the case of deep irn,-:ar frequency modulation ( kj i) . Here
K-i .

maI. , becomes singular, az:d eleze:nt, Of ;natr.,''s .Inurct..ase infinlitely.
d d

The Latter, at first sight,, osS.[h!55 to h-uge unit errors (In recalculation oJf

paranoters to t.c discriminator input". In fact the case of deep FM does not givc

* ary io , tJ,:aL iriconveniences. It is possible not always to recalculate tht: output

* vui .go of the discriminator of range and speed to the input, i.e., to reduce theo rj_

to q(,uant tiles of the dimensionality of d and d in such a manner that in orle

quar.itFly there is not contained range, and in other there is not contained spucd-

H'-, ,e:ciiiiter thlisi case with deep FM. With increase of V outputs aart tie.-- of the

cI dd7.inator and zd become all the more similar. Tlie fact is that here speed
is coded in frequency, shift, ard range is coded in frequency shift and delay of-

anp]i mde rlmodulation of the sending:

"IV (1-)'0;~ ~ ( t,9 MA-) U1 0, -- %) e+
IVIG IV;,

u& .c
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With increase of the gain factor V the channel of the range discriminator,

separating mismatch in amplitude modulation, takes an ever smaller weight, so that

already with a width of the FM spectrum exceeding the width of the spectrum of the

sending envelope by 5-i0 times the additional channel can be disregarded. Theai

zd and zd turn out to be identical accurate to a p:ropo-,tionality factortJ/V, and

fL.r further processing it is sufficient to take only one output quantity, as a reosult

of which the smoothing circuits are simplified somewhat.

Transition to a smaller number of output voltages of the discriminator is also

useful in all cases when matrix K turns out to be singular, inasmuch as singuliar'ity-.

ap.t.aar., duo to the presence of linear I-ttercornn(uCtion between output voltages of thFe

discriminator. The number of output quantities not accounted for is equal. to th::-

number of linear couplings superimposed on the measured quantities. haru there

remain in force all the above mentioned formulas; it is necessary only Lo manieu-'.

caution during inversion of' matrix K. Inasmuch as this inversion is neverthei,-s-L

nece.ssary during comparison of optimum circuits with real ones, it is necessary to

pass to a snaller numaber of unknown parameters. In particular, in the considered4

exami-,]i a, X(t) it is possible to consider

A (t)d (t) + d'(t)

A () d' d(t),.

which formally reduces the problem to a one-dimensional one, .

From the practical side investigation of accuracy of measurement of range ,nd

speed in incoherent radars showed the necessity of allowance for trtcrconneci :.n of

these parameteir in trajectory and in coding in the c'.)mmon signal, Dn•rtn; aet i..A ':. II

by . defin-ite (linear) law the role of primary measurements cf sipoeed wLt-h resp-:t

rusultant accuracy decreases in time. Acceracy for range and speed is basic.a;loaI

d9themmned by Lhe range finder, where in speed there is observed .rat aiiA. Cs

ciompared to the case of its indejpe:nlent measurement on the basis1: of V-IrS ... ,'*

effect , For s-maii times of observationL (i-2u sec) measuremiiLtf.. uI. rs. it;P(r,.>.

acc :i-racy, waee re: Li�,�i concrete gain depends on the form of modulation, ;.It i•it Ir

wVi t.i a c--,eftIc iit of' interconnection of' errors k- -ii (Cfor insctane.•, J.IaLoar Fl,

intreas tof hraequency) mis Lee best quai.Jiies; modulationL wLtn. k-- -1 (

i." d rease of frequency) has t e eorns qual iei . ALii eml,•.iottIa o wi.t• 1'. i"

In 1 i,- n•ice modA ulation, triangular FM a11 nd phase-c ode intrar ,,J .2 ,; ;,il.I/li, ,r) t i -_

V-
15
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inb;prtdjat~remitult. Linear FM4 wI Li varilable. *Iop!e j71V05 huijtnx'O <iatS.tl. i uL.

§12.7, Concelusion±

fDuring Ghe ana1.ysix of track ttg itwt.!-I *dmr~nenc loriaj I: .i in~t ir, ra-'''. '.u, D.:

I.n the one-dimensionial case, it, is coriv'::lfrm i~to t dlvI.'l(; li rt~ id.L'l m1rtr

aridl :mootibing, circuits. Dizýc rilit tfat iort and f*IuctL1.tcionci '2e1~1so nIt

d ~mertsiorial discrirniriatorL;, which f'or L Tricca;ured quaribitleit I ~e~tertdic~cj It, th':

wvnIi) r I. a.nd I ( I + 1 )/2, re ~tpC-C LINv1ýY, tu~rf OUt to h ;.':tik va t± .tt~ )z in ri 1 1 1 . , Li

11.11, . Wi th UriCOIJtoC teacd Irg of' paramc ber_ atnd r.bLIvz~u of, Li )Up 1-Iit, 1.11 :,fw-)( kut±ijiý

_i cult; furine. the~ a~nray:J:- ols wi aurac.-y fiAL1y hoi VIe u 'd* no th ,

cult " Chap tor~s VII-XI. 71 thU f: ~0t.p~lcran: wth iluifnon uliara: I.-i c. trA .' ot' th(.

of : I..". e111 InF toy, aria wt, a L3Cl 1led u c ' e Of Osmootriliifý (' I jru. I tc r- rw V. turir I, ý) i* v,,t Ei,

c~ ::~I)Ittaraniter;X andl ;a tatonary rrnuacw'-- :i~&, ur- alculat ion (if crr,,r:-I

--omparatively t3Irrjf Arii.14 Jlincludeýs a.~brI~ojperati oir. on matric-er, ot- oiqul va.1c:±t.

1, al dern itiez of0't the mu Lt-lt'.Ilt', i'r'.m o of : t i-w:11

W., paarijeterir. J3-(0,)), thu rautri./. of vain oA oy:'. FIclt a'J ind1 tic:

In ontatz-A.. of' smoothing iru t

iti also in 01± -dilmens loral theory, ilittc- MOI uitahi*b a:oVzt i:.. '

)I 1.~u IillItIl -drc ti1K r-I met 1 1I i 3Y ic; C tal I l; vi] :4 .' I J,.. lofoyit I .;

n i,(i 1. ti oa;:. 1 an (I t/, ± VI 0- 3. t i z a c I i10 1i r, (- itt1, t 1,; i a IIC I1,1i 1,Z 1, t a, i j OI Oi I~k u 1i

Pa,, kIfit iTg V/9. f La. T 1 , 1 prar t 1 'a 1 y btT m :t i 'nnif , o r ,v rriI ot 11, toritLa inr a i 1) af oc A

I. r±:tclceIrioni. 1.1 mar urIA S - d iso r' ImrirteIiorrs aril atccuracy tint ,:: -- anmd it

1a1tII o w ia~ i e, , rto h n%( r u t; h (if() a r,.a

ttu:'c2 '±mt~t itt, It:



______-_-__________`_______-____-_--_____r______._`_____ r- ' "-•-"•' -w. -• .... .. - -• ... .

int.'reonnectlon of errors. In a numuer oa cases, however, the unit of accuracy

and control of smoothing circuits from the realizatilon of the signal may bo rej,--*,ted, A

whichi leads to circuit simplifications. B
WIthi-ut concretization of the nature of the parameters It is possible to

note a cIr tee of laws governing synthesis of discriminators for different statistical

.,.•'rtl~e aof input signals and synthesis of smoothing circuits fur different

corr-rlation properties of the parameters. A

The given examples of synthesis of joint meters show large gains in accuracy oa"

meas;urement of one or another of the measured interconnected quantltles. In par"- J-

ti.l[,'ar, during joint measurement uf speed and range of a body with determined -

character of motion there is noted considerable gain in spied, growing in time; 1
dou Lap, measurement of the speed and range of a maneuvering tnr:irer wcity1 a ,ov,(ca.

,i rat tAer'• is the possibility of obtaining great gain in range.

1[owtver thu theory clVaeloped above cannot in any measure be called exhaustive. .F

I.It ,arti..ular, analysiJ.s of multi-dimensional meters is conducted ot the assump'l,!.,n t

ol' ti, bsence of a. number of Important components of error.s, Absoluitel.y ignor:- arc

qu';;;tiorz of' breakoff or' tracaing in multi-tiinea•sional circuits, aithough lo 1

i.r'-lIc-4.e toe device of investigation of nonlinear random phenomena in sirilair

-,ystems can be offered (Fokker-Planck equations).

If we pass to questions of synthesis, then it is immediately necessary to
*L, ip 1late that the tneory given in Chapter XII with full success can be used duril au

ynthesis of' meters of coordinates of single signals, and also signals against a

backgroind of interferences of arbitrary (including, similar) structure with know!,

p.;arameters.

Ii', however, we are interested in the proe.ler of muitipurpose radar ('rc,-•rt.,

ii r,d identification of similar signals in the course of measurement), the aboy..-ta,
,at';,:ifioned device, strictly speaking, can be used On-i.Ly partially. As bft-'ore

Lndis:ýputable is the nccessity of application of the theory of statisticab vo],itW:

('l.ttration); however, during synthesis it is, necessary to consider the ai vcu-,

true ture of the I ikelinood func tiaon. The latter appears, ia vi,:w of Mt st-t arc

of ýirnas, so that transposition of like parametera; of' tlam le:ads to a F1.tuatiŽa,

". It�a -,..•s t. to the -rsrme dngrr-. -9 the true on . Pal'rercnt peaks corl'e spoad

I <a P .I i;,i:f.ilble transpositions of parameters. As; the s ignaIS draw . . -rs-

app firs-', th, ttrobi.em of renfolutiora, scparate peaks •arc; r , -a tl.t sa GcalssiaiS :iaa !, 5 x-

it 1tirn e,!' the likelihood function tunas out to be IrialpAiicable in riac .f,]-
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Froms the point of view of broadening the theory deveLope~d abcve it Is

necessary to contirnue consideration of functionais of pararieters (incl.udrng, non- A

2_i.near), Lo construct other different. forms of smoothing circuits for cases of

intercst for practice, and so fort.h.

In conclusion we indicate that results of analys.i.s and synthtisis of matiL- . A
dimensional radar meters, as also results of Chapter VI, can be used with iuccess In -M

diverse fields of technology: optics, infrared and ultrasonic technology, cominunica- - 7

tions, broadcasting, tel.evision; everywhere where they use sign-lals carrying

A
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C HAP T ER XIII

RESOLVING POWER

§ 13.1. Introductory Remarks

In connection with the expansion of the area of use of radar and the inci'eartng

complexity of problems solveri by it in recent years there has arisen interest. in

problems connected with simultaneous separate observation (resnlulion) of on'

I.Il rets. Inasmuch as development of a theory for this problem is far from comiplete,

there naturally exists quite a lot of' different approaches to the problem of

resolution of targets, in part concerning quantitative appraisal of resolving

power of various instruments, and also in part concerning formulation of the

protoresj of synthesis of systems optimum with respect to resolving power.

Ac it is known, the concept of' resolving power was first used by Rayleigh

in the theory of optical instruments. There, by resolving power there was under-

stood the ability of an instrument to a sufficient degree to separat.ely reproduce

at its exit images of observed sources of light. As the quantitative clhfraucer•z• i

of resolving power of an instrument Rayleigh proposed using the minimum, distance

A M between identical point sources starting from which the totajl response (T l1ife

instrwument, considered as a function of a given coordinate, has 1wo maxima.

otviousty, A coincides with the width of tne instrument response, prooper;;. -ein-d.

The characterist.c 1of resolving power of" optical insIruments intrc--,.cded by

iayleigh found apolicati on in other areas, too, including radar. Tnltiully hlis

charaicter~ sir.i was used for appraisal of the performance ci sys1.e2!S, pri-cIpleb ,'

Whose reost.w tion were selected, basically, emplrically. AI'ler i.'. Wioodward and

J, T)Dav]is developed the theory of optimiur receptIan c!' radar SiFn'pAts In i;e, 1here

Were onide ted more general investigaticons of the resol'•ving p• t' to ri irejei'er.

-7355-lv -- *-



In*i-,uch as in :t receiver which is optimum with respect tx noises there is 3.roudtce'-

I.I'plication of the received signal by the expected and integratiýr, the inleusft*y

o tie response to the useful signal is proportional to the square of the modulus

or the autoaorrelation functLon of modulation IC(-r, Q) 2 (funic win ol" unoer air,.

considered in Chapter I, Vol.. 1): In accordance with hils Rayleiui characteristice

of resolving power of such a receiver with respect to delay and Doppler frequency A

* coincide with the width of the principal maximum of the funot ion of uncertainty

with respect. to - and n, respectively.

Investigation of properties of the function of uncertainty (see Cp',-o.er I,

Vol. I) showed that the width of the maximum on the v-axis is inversely propertier..- - --

to thl- width of the spectrum of modulation, and on the Z-axis it is inversely

proportional to the duration of the signal. From this there arose the corurion iAoda

that range resolving power is determined by the width of the spectrumb and speed

resLt,:ing power is determined by the duration of the sounding signal.

The Hayielgri characteristic of resolving power is introduced very condili.ionatliy

and has meaning only in reference to resolved signals identicai in strength. DurIng-

defef:tton of a weak signal against the backgrc:nci a' a strong signal thie letiaviu,r

of' the response of the instrument (of the function of uncertain' In '.1:e cise cf

correlation reception) for all values of mistuning between signals, and not onLy Ll

within the limits of the principal m-xi,." ::: of the response, becomes cf Interes.

Innsmuch as t.he response nay not wcitrese 1:,us t..nicai.] ',s t1 inc reon- tf detunint, ,t

an may have spurious marulmia, lor the casc, of LarL;'eL.S li ar,.titx.ry, dIffering sil'en,'.li

i'. is nol. uossible .o introduce in general the idea of an interval of resC.utioL. ,

A, : ,i tower is character.lzed by the megnitude of respunse as a functi on of

rjŽ ,-: 010'{.

I., connec'.ion with the problem of resolution of targets of dif'eren :-. renih.i 1

,.oe function of uncertainty over the whole plane -c, n was subjected t-c, th(orough

irvestigation [4, 361, and there were formulated requirements on nodulation fromr.

the poin;. of view of resolving power. These requirements, naturallj, reduc-ed to

decrease of the values of Qc(j, • 2 outssitd, ihe principal maximum ( 0 .. ,2 ti)

and narrowing of this maximum. Increase of resolving pow, r by selec:tion (t"

,,,whbila!.lon during correlation reception is limited by integral properties of' the

funct.ion of uncertainty (see Chapter I), Nonethele-s In this dlrectton there were

*ioutaloed a series of r -sults very useful ior pract'ice (tor instance, the craua iolo -

i=



of l:!ed manipulation).

LIkedice It is possible to oonsidtr the problem of' resolulion of angular

cfccr-Jino f-p. Increase of ang.ie resolving power is provided by decrease of the level

of' uide '1c-be-s of directional patterns on reception and transmission -and increase

or' ;7W;iensions of antennas During coýnsiderat~ion of' th~ese queot ions it is

&*¾U~be~by virtue ol' the known theorea.ý of muctuaflty:Z [673, to limit oneself to

c~n~is~natonof' the receiving pattern. Hiere there becomres cle-r the analogy

betweeni problems of resolut;io:n for ang~les, cringe andl speed.

Ltexpoctcod signal in the problem of processing the field in the a~perture

ccn.n;ituLeS a plane wave E.0 0
1 ttikr, "ueK-wave vector; r - rarc Las vector of.'

_hr potial ca c'b.zervation. As -1 result, af multiplication of t-he ftel-d In the ap)e rtur

y,: (ri. b h expec let sts-vi1 a,.d Intetvration over the. ape~rtore t,, we obtain

2prir& (k iri lk r

n rj~n1 For' b i'(r'tvf1, djl U'ns ainl, of the apetur ajnd5 , 14-v ]rt.1yr.-nc.'I

k½ 1'' _ iiv wli ireq~~-,t .i n c rriual <1iclaeso wi.1i,. li-.c,,er Funo ion sjn o

j~la ; Ithe nc dii u Ccm, dtfespcnu diref ,z JuOns wireI idephitiit]hlf' on rjn-j , n in Di erIf

ICe (krt:,!a,4tt .rAI ., d_ -d-w ) r ISeird ý or~j1  (.'thIFLr 1. 'Aca

1?: vi 1.1 Ld. Irlrvdt1( Ip'''ii t L i f;''a4  i~rci. vil r'c~'L 2 mi IA

'4.t.ol ii~i f triý ( '& vo p' riiii III r4 riprter will Eiir-11 4ri(n r
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lorss in power 0!2 the rece ived signal and, consequently, in the sinlt-os

ral .to. Making fon analogy between space and time proce's.s ["fig ol' a signal, it is -

)c si;bi e Lo say that this method of increasing resolving power corresponds to

seltection of' proc)-essing of the time signalt in tlit receiver, ondl to sa iee:.¾-r.i of Th

form. of the time, signial týhere corresponds, although; not ex.ac tl, S2 e~l. etilon of the

sha.,pe and dimens;Ions of the aperture. ,_

lit theoretical consideration of the questionI of' possibleý zLans and limi~i.s 03 -

in-rease of resa fLig p~ower it is natural toc us 9 1 'ethofetIo c.!' the iseob.W r

prossnarid aýJlso Selection oif the form c4 the s;Ignal. Comfpletýe slton hi;al

proi.-lon should Include synthesis of the sys-tem otL oroccessing- týhe rer'eived signal I
op): :i.LUwh ±nrslvnt )lr, and finding, the i'omrn o;I' 2sign!al which un-rder the i iposee,

1 ~ritf.iosduring- optimum processing proivides the. hoc:,, performance indices; )if 1 !e,

sys2 ten. 01' lgreat. interest. also) Is investigation c,!' the criticallity, of' cpt;i-:tua,

u~oC-.zsIng nd oci the1 Porn of' the signal. 'Iwo a~pp.roaý'chesý to sclj t'onoritor: '

at harid ar,.ý n.ibe diffCering in the cr4 tot ia of optiiriality utiliz._d:

j . The cr1 tenon oU o 7 ro i: can I-cfro Q o directIly for tlhe aepne

be las rumerint h cennec I rg ,:di:, 2 ;i:t lbitifo )ic 215 the radar(Icc'o,

1>033 remntof ._!oordinates and Sc. forf,li.h) c xo tO 1eci fe' odi

I,.. *s 1A Ical seFnseo as the abdil11ty ofl an ! tfr1Unrin', toL treparatoc s i-Lznals fari' or '

0 .u,s3eqtvcntly we sloil I cal I sy'c ,'ms;- i'l -I i pi''c y ). t5

I, rri1 I121 S('&5 , l c th M sgnalsý..

1 (110(,f'~.a:1' I'ot'~i'- 2: si utions1, ITIc) d i lt 10qi I t

ii lfttII' ci '' lii 'to cr:,bios.. imwin'r 1)ra low.''' W'' rt I on ur tly -i(iiij

Cot' I- J Iii-,t'.eor (-r, '''ltr sort, oiler fuanc IA (,) In J i''Ci';' tKn' 2I ''

d- '' ' tr'i': ',A t'I::I~derv'1 optirruin In if '- U*' jvt.t T(W'' :Jt I n ''(: f

('tO'), (."! ,11 ,l''I I p r a is 1'r I ft! upiY'n ' v;'' 1,i d'- -11 ''.I 9

r 'it'') Ift pI-*J''I- 1 ' 'I 1pp rL:,jý; I~tL It,; mi or :1-' ~ -

11,~~ ~ ~ ~ 14.n ',jt 'ý [)( 't 2I''C P ;

V - / (A,
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diff'icul~ty of correct selection of a criterion of optimality having meaning for a

brovd class of inultitarget problems.

The second approach is more rigorous; howevmr, consIstent use of it requires

assignn;ent of a priori information about the number znd position of targets. Such

an ~.ahm~ay be preferable, e.g., in the case of simultaneous measurement of

c 4 *rdinates of all detected targets. It has also greatL value for)r finding the limit

o~f Increase of quality of mul-titarget systems.

below we shall1 give examples of use of both tpproach!-es and show casesý when they

lea,] t.- cloc:e results.

§ 132. Sntheis o a Sysi em of optiia.md.
Se'paryati-jon of Sig~nals

:5.2.. . olving thet Pi'uclern In aI'ari eM

Tn it''rao i; h s elo ntroduced~ t.-- ov: dir' nEi sohsaOf' a

.fl1:Lm C' olmem pau'at loni of :ý iLgnctls tlic cr1 teri: w m::li'un .

LI, or ,hIe response of' the sysi emr, whiAch ,:hould lbwL; 1iu.I for si~gnals

in '~'. r n:wi!rh respect, to aq irien channrel and lilrget -for 'fie ueoL(e'ee-d

Inl The opt1imumi i.., obtained as a ressdlt of a comprolmlie bet~ween these two

rep;t'o*"ns .As e'XrfifpleM,; of cr1lteria of optisoti 'IA1y ofzul' 5t. 'artIC

51 110 it possible 1 o In Aciale the criterion of a maximumlILw ratioC c-f thfe: (,.C p)i. L

o"I~ 10l- C'th uet'ul sin l)t the tota 1l power ofi int~erferenc-e and t.he inter ler-In

I ;n''CH: th en tilr Ol 0' Cin;n :ctfI. ti responre for I el iI ~')'I2w thrt,

Alo' !viOue of x'esponr~e toc thIe separated sLin'!] 1. the ciciafaw t1

.rcIulSiifl:0Of v/i:lt'k 113 ttcsrimed post i h] e , t

'a~i irs ;.-twhesize, an opt~timumi syt;tclm In 'i: I 'inti''0 A4) ! h(-, "

2.': ; .'~oro.ed nt ci a. A bsh :dvajniage.C Pf ths111 rh .I :1,'prd~c

7,1c. (I oe 1)L 1'! ion ic, n -l' 3 -ce iv ed si-nal I 1ron c' u'I isi tC

1- e 1:eu 1 oid lnI,cin't'cxn,, ''in'' VilQ,'I

W11 , ( , a Ii ykJ: oti urIju'.''T

..!I"lg ,) Vt 'i 'S '"/' lt ci]' i I' ri;ilI; f Sa'i'i2 I L I 1 s :

j "I
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very large overlaps of the resolved signals, where for receiving any reliable solu-

tiois for separate targets from tine observed set there is required such an increase

of power of the useful signal as compared to the case of absence of interfering

signals that for many typical radar problems this is equivalent to the impossibility

of resolution with the given signal prrarneters (w.dth of the spectrum of modulation..

dimensions of the aperture, time of observation).

During soluution of the problem of synthesis we shall consider the system of

separation of signals linear (which is very natural, inasmuch as we want to suppress

the oum of interfering signals with unknown coefficients), and we shall limit our

consideration to such times or separation of signals in which fluctuating changes

or' these signals are negligible,

This limitation is not essential, inasmuch as separation of signals by

partame:,ers of modulation depending on range, and angular coordinates is best realized

in e.',a period o.' modulation, which is usually small as compared to the time of

correlution of' fLuctuations,

Let us turn to soluti!on -' the problem at hand with the imposed limitations.

1ia,.heinaticaliy this problem --an be formulated in t-hE following way. Let us assume

that in multi-dimensional* domain SO there is assigred a system of random signals

o0' t'orm Re Ax)(o, X), where . - parameter taking values in domain A0 , A> -

2. ;random complex coefficients not dep,2nding on s. For each of the signals we

i2:,roduce a correiition function

,R% 1*,, so) = ARep•(, !1• (so. 1).( 3. ,.)

':,,iu;'l dS (,;(X, are atrsumed complex and such that

,jY(S~Z) y(s41) ds;-- 0

1'o- al..1 X11 X Let. r, separate from the introduced signals useful signaL q(s, X0)

ano t-',ln'• q(u, ), .... 3, p(a, X) ., to be suppressed (Interfering slgnY•-),.

be' ir: auu:nime tt,1 .t Itin tiJat eane domain 0 there is assigned interference with
002 'ri, :g;, n, ion flrnc lox "i' s? ) , Ic. is necessary to find .uch a itreference' sigma

S(a;,', , 1 ,ht t t.he oignal -to-jnterterence rat ,IJ

*Cou1 ldel 'tt n r.1 1.,I' the rl] ti-dI mensi untal cl'ie is no-. conne- led with ,any
diT'tl ul, J1Jv and at the 3afe time per;rif.,, us I,' cover the probhem of' ngile resulutljor,
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] (SMv (Sx. X) as -

2 T (s,,X,)R(st,s,)y* (s. Xe)ds, dsa ( '3"2.2)

is min;--nurn ou the condition j
( , )• (s, 2) ds = 7- 0 ,, Vh •.EA,, (13 .2,3 ) -A

where A1 - domain of variation of parameters of interfering targets, signals of A
which It is necessary to suppress.

C! viously, without disturbing generality it is possible to consider

A A

(,) s, I s 1. ( 2..4)

Fulf'illment of this condition is ensured by selection of' a constant factor for

P(O. H. Here the problem is reduced to minitmizetion o0' the q- ýtic functional

(S"~s, (Sit 'S.s)' (S., I.,) ds~ds. 1..~

under conditions (13.2 .tnd (13,2,4). In order to solve this problem without

p. 1,tng to corsideratioi. , real and im.gain._ry parts of ?P(s, O, one should add

to (1.3.2.3) and (13.2,1l) complex conjugate conditiois,

L,,', us 'orisider the cace when A1 consi ;t3 of' discre. ,, points X. , n' It'

• •.-,.urdae wIth ,.he known l]tuxrange ,nelhod the problem of ffinimization of the

f'iv~fIo,].1 with !he considered udditionrl.l conditions io eqiuiv.t]eo" to the prollern

of lni~ndin the 0usolute minimum, of the functional
111• (Sit X,)R(s,, s,),ý* (sq,, A..ds,d.%--

I,

wihro Wrok arid w;. ar, deIt.rrmd A'ruom cofidi, ].o; (13.,,i) d (1 15.2,14) aind thc I z

:Ohjujt (,er , re lp eC i, vely,

i(-'fl ' iii;, uo ).',;. t-,. ml-f' v'Lr a, !l, ,' (1.5.;',,,) w, re1p ,: u I , , ') n-

vie J, ie VA p W , W(" ',rl

14(st, Is" R (.9,$S.ýds, 11osAT (s.51 , (i .)',

-(41



Multiplying both parts. of (135.2.7) by furiction W(-,,, s), determined by equalljon

WeW (ss sg) ds' S (a1  80)

and integrating over awe obtain

SubntitutirI4 thi~s expression in (135.2.3) and (1.3.2.4), Its1 eusy to see IjiaL

coeti~fcients wk are elements of the fir.,tt line (with zero index) of a niy'ttrlx, the

reciprocal of matrix IIC(XP Xk kI ( =t 0, 1,, n) , where

C (3i, 1)S ET (S., 1j~) W (s1, s.),p* (s,, 1A) ds~ds,.(:21)

Obviously C(xj, A6k) colnstitu'tes the k--,neralized analog of the autoeorrelalilon

l'urction of the sounling signal. SbsttAl'.tiniT (1:5.2.9) In (.2),vie obt-ain 0,e

signal-to-interference rallo wit~h optimiuir separation of' signals:j

q@ L 4S( .?.1

D1enI' the useful and 1rfter;'ering signý,]-diffe so) Itugyta.CA

churacterizese the loss in the ~1n~.t~ne~rneratio which 1.3 he coost of

~ I.S uiHble iilP prnlocID] to separate -,Agnali; Pts C!1,Sse at; yuli WIVIUOc,

11 ornly 1therp Is a. o1ttjti cln res~er~e oV power of1 ti~e uor-1'AI. At~n

It, 1 ý e U By tu prove Qha1;0.U r Increnoe. with Increase of' the nutrber (:1

U itrialc which it is njececsary to ,suppresr. L~et. us iigsuie 1hal. to 1,he u-ol-ir lloed

selthere Ise addea one a ifgna] . In ,viccordance wit~h ItIC prT~jer1.y o' c~emerreno (,)I.'

Inoveio muatric.-i, WI readly utied In Cliapter JV Vol. T I roef vi 920] e

W ( P 411+ I . . 5
I + 111+1 k

'l rr l (1.:.11)ic. derlve 1 i~ lie( 14111.gwy I Ai I;.vlng Ill' 1,L-1,1 ) T-iX ()



where the! upper Index signifies the order of the m~atrix.

Wre (1.2.3)we obtain

~$n2)w~f+I S +2) W (n+2)
td+) (~) On+2 l+lO O+

==. - , 55+1 0 (13.2.14)

:.ibite 11W j I, as IC; (Xii Y11I, la a Hermitiaii nmatrix. From (1>,ý2.14) it fol lows that

rF(II + 1) k TF(n), since W~n~i? > 0 by virt~e of the poritive definitiveness of

funo liAonsC(X X

Aitcve we did not touch on the quezioi~on of selection of parameters of the

nuppressed sign'fts, In those cas:oes vwhen parameters of' the available targets are

known exactl-y, or there isz as3signed an a priori distribution for these parameters,

we rec'Lt.U l]y equate K1, In., to par.iameters of the int~erfering, targets or us1e

1dhe principle of' least riLk lin ;SoSLC form. In tne absence of a priori data,

ell-,c., n;ured 1102 u IreolaerV-. ly. we na.rlyuse the rtrmininx principle, giving to

pnar:s'je'.er;: of the suppresced Lii~grvtlz !ijoze v,,4Iue at wiltstl t-hese sign~als presentl the

it lr0ead les1darier I-or execution by the radar of Its i'unctions.

Inpriular it Is pos-sible to combine suppress3ed s9ignals with coordinates

Vspuriou 015maxima 2 ,K 2  .. of the t'unction of uncertainty X , 2 He,

duoý to t~he In~ci that inthe ref'erenc2e signal V(s, >K0 ) there are present igal

wi*)i Irrauziete(rs ?, > there appear additional spurious maxima near each

po-,A.IlThese rraxibca t.i' the resu2,ornse will have a magnitude_ of the order of the 1A
rsquaire of' the in] icti1, maximat. If' the resulting aj"tt.enuati. on of' spurious maxima is.

rpecegnilsod as IinsuiTicien',, it Is possýi~ble to repeat the whole pro'2,edure, conbiits 1_r.e

777ONOE 7 j 7 7  Iis FROM~ PPikj,;;iqT14Jr PAGE]
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X, both with the principal and with audi :A1onal maxima, etc.

il• certain cases the described procedure leads to complete elimination of

spurious maxima of the response. Thus are matters, in particular, for phase-code

manipulation [see Paragraph 13.2,2].,

For a number of problems more justified is conU.iŽ'[ratlon of the continuuem of

parameters of suppressed signals, i.e., the case wnen domain A1 , introduced in

connection with formula (13,2.5), is not assumied to consist of discrete points.

This case is obtai.ned from the considered one by passatge to the linmit with distances

beuween points approaching zero, and týhe number :;f points approaching infirnity. As

a result relationship (i3.2.9) is replaced by

(Sa'zf wW (s' ,f s,'(s, A.)ts, +

+5 w(lo A.) dlA, ~W (s s)q (s,1, A1) ds1, 013-2-15)

whor'e w0 and w(W, X,) are determined by -ou:-'.i on

I*. Is possible to slmplify these 'orml ,ouewh:,I. betermining w0 'roin (13.2.1") fcr

A AO, we obtain

I w- kw(,") C (A, .,) 4,,

(A3.2.17)

2ubs 1Ituting this expression Ii (1i6.2,,',) when AEA,, we have

I( ,) C (1,, 2.) C (A,, C (A,, A, C (As. A)] A,

tC (1, A.

honf, In the ;irl. !.-to-inte'-erer,' ra .1o, ,..'; bef'ore, I Oc, ermrrt•U Ly ton.mul,ni

1.2 where instend of" W00 tne flhiu bs uitutc N,, dshtermoined from (13.2-17)

A; 't result we 1i'L/e

~~~~~~~ lA=!- m,(,,,.) C ( 1. ) !o dl,,.(a•.:.•9

A,

'Ibu t vo J ut.ltot) tl' ft.lii p r-WI j c I: 1''i : f,p'fi•, o Io()n ( Vl rI nt],, I 'sr t- Uit. CO ilidrI efred Case

Slu"t A U.c tolutLor, oi a l.e(tii? ]I:. In' 11 I , ' (1iI.' -1i, ,Il' , fi '' t  kind (1 '. i'. , )
| i

. _,
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In certain cases loss in the signal-to-interference ratio, connected with J
total suppression of the selected Interfering signals, can he impermissibly large

and even infinite. In these cases it is expedient to use partial suppression of

signals. Corresponding operations are most simply found from the condition of a

max!l: tv of the ratio of the power of the useful signal to the surr, of the powers I
(ot interference and the selected Interfering signals with assigned strengths of

interfering signals at the input of the system.P

We will give here only the result of solution of the problem, in this formulation,

inasmuch as the method of solution does not differ from the considered one. The

relference signal in this case, as before, is recorded in the form (13.2.9), but

matrixe 1 jkheis replaced by jlv. 11, the reciprocal of llC(Xj, Xk) + -2t.F. where 1-

energy of' the k-th signal.

The formula for the signal-to-interference ratio taking Into account all

interfering signals has the form

q -- a ( 3 . 2 . 20 )

A

In L3.-3. it will be shown that optimum processing of a. signal when using such

.- rj terion coincides with optimum processing in the problem of detect toll of a

separated signal against a background of interference and interfering signals.

It. irs easy to see that for large values of the signal-to-interf erence rat..o

for all the considered signals at the input of the system operations of partial

and .ottl. sunpression of signals, ind also output signal-tc-ln1trference r.ti,;, I
Ocol nc. , As a confirming example qe shall consider the very simple Case of one

Inserfleriug tUarget. In this case from formula (13,2.11) and (15.12,20) we obtain:

wJvh total. suppression of the interfering signal.

q*=q.( 0'l (13.2.1

vith p;'-,rti't. supprescion of the interfe-ring signal

" 1 er,-te o' e . ratqi.s 'or t h.t Use ;Irid I oterte .ring

!, 'li ' nupp I nfl O Y g= :A I, A@)

:11



In Fig. 131.1 there is given the ciep 1:den;_- ol t.,,p -,tt-Lo of quanLities

(13.2.22) and (113. 2.21) on -j icor d:1,Jterexio. q1 , c2.:.r~aLterizing loss in Lhe

a~tnalto~ ierereceratio due to use of

-~~1 - - - - o-L ant u insteaid of parti.al. A._-ssigned

a perml.;3-±E))e .-'Lue ot' los.- 1, we cran find

3 - - -T11tV(J'I-_1Jin[ the denn.-j.F.y of st~renjg!h r

* ixi.~r~eln ignals Find pagsir)g to the

2~. r, - an uytd with the l~ir,tevrva between

Inasapproac-hinL zero, we can obtain

414 ~proper i'orfrral.ass foi- 1.he conti.nuuni of

freinfig t.arget~s. Here the problem coin-
F1 I~ I . Depndence cd. lr i. n - t1 11 thatt* wh ich vias c onsid ered in

wilb replac~ement of par.,i't.l o3-paivi- ~ x ~ cneto
tivrL Vci' I l: onrn'Js with selection

ý;i ',1u* agrainlst, a oac!'!,rolin't cf p~ssl ye

Jn r'-t,j-efces.

As a par1ticul-ar c-ase wie *: I3 t ~i'('! 051 of sepaT'at~iun of jignals by

r'aUre in thuo pre:,erice (J.) lnterfcfn- In~ iori <. (i0 white nol so-. jiure , iI' ths I
I ~;p.Iior in coio 1de. C~111thO rx-rkcl CIL Thinol~a*ion:

C. Oh %j) Y %J' di Co (,CA CA*'" ~r



in the usual circuit of heterodyne processing, shown in Fig. 13.2. Under certain

conditionn the same result can be obtained in principle in a circuit with filtration.

Let us consider first the case when there is applied a filter designed to

process the whole period of modulation. This is inevitable in the case of continuous

radiation and can be considered one of the4. variants of processing periodic pulse
#",modulation. We consider V,(t, TO) a function

3- 9... Block diagram of' hetero- of difference -0 - t

dyne proeessing: i - mixer; 2 -i-f
filter; 3 - detector.

ani consider hit(r 0 - t) equal to zero outside

interval 10 - Tr' I0 Then hY(t) it can be considered the pulse response of a.

phy.•Acally realizable filter. It is easy to see that passage of a signal through

suc~h a t'Niter ensures separation of signals optimum in the considered meaning, where

hVln separated uign,.l is, obtained at the output at a moment. equal to the value oC' -•

delay of the separat~ed signal. Really. if to the filter input there proceeds signal

A - T , the output signal at ti!ie t is recorded in the form

Q ( h(t- x) t* (x - -)c- dx=.

No. Z VwU ('t -- 'C •- + X) "4* (x - )dx- wah•o'°ce (,t -- 'sh --O

1-T, A=O 'O eI0'N 6

-Lnd al 1I me t -c , .n the form

Q. (¶)=~-~ WokC. (,to 'Ah)

h.=O

A'. thj, same momen till signals for which -i - I = To - -v (v = , '. ,, n), ;rc

Ic ,le]e y suppresscd:

q®, 09:= f WyAC. (% -- *A) -=0.
k:=O

".' ;, we• (.'al.'•, t' "i,:" w ,c.:e uul_ p .:t a 'ci v in o'u'h i;sm enl. t :' t .1e t

ti' I h!, OC '.tut. signr'tsi, -IHl11,ed this: t otf.e, of 'n opf Is.r m - r'11 ..I wit'.h l o,.l

I -i1t u' t, cc 'r i r - ( ' = , . , ' i*-



2omewhat more complicated is Ilte !,;t ,er vt Liz use of flitration for processing

separate pulses. ,or physiscal realizabili.ty o•' the filter it is necesoary that

VI(ti, I0) turn into zero for L larger than some vwlue to,. Inasmuch as u(t) has

limited duration, it is possible t.o set .i(, ) ,,, when t > 0. Then by virtue of'

(1.5.2.24) 0 max Tk. and it is possible to consider P(t, 1-0) = h(max k - t)C

the pulse response of a physically realizable filter. If max A the result of•k
optlmwum processing of a- signal wit.). -. r 0 is vb, aimed with delay with respect to

the moment of termination of this sijnal Ly time fl ax -L -

k
In principle it is possible to e] irin-l:.e the delay, in delivery of results of

processing separate pulses if we befurvh;.nd require equality V(t, y6) = 0 when

t > T'o Here it is possible to preserve týhe whole described approach if 4e consider

u(- - 0 when t > T0 for all thpe cons,.2dered ignJvials. Such "truncationr" of

signals should, of course, be taken Jin" L',acotun'. djrlng calculation of elements of

matrices C(Tj, zh) and wJk. Wnen uslno fjl'.. 'on with "truncation" of signals

at the output of the filter at. every ro',unt o, ;.Ime there is separated a signal with

T = t, and all. signals with c - - + / ,' . g at the sane moment of time,

are suppressed. From qualitative con-i-'-t)1-3 i - i .;i ,. clear -t1hat "truncation"

of i-ignals can le-Ad to increase of rfnorre-;pd:) ' v.,.'ues of C i., -KL) and tLat. t"his

increase should cause worsenl.ng of ',jhe W' 'I -noise ratio as compared to the

"unlrunauted" case, Hiowever there Ir "d where there exist signals

for which "truncation" does ijut I .'rp a)j j s,' Flurher investigallions

in this direction %re of consider,",' t' ini'is

L,,. Žii consider 1,tw oxic:p , ow .i sii i, Ir;'se--couc ianipulta.torz (:Cee

* Cig ",p I, Vol, I). In this coae, Qoin Ini :iz d.' -''yscf 'he suppressed signals with

*p!-rtious maxima ol' the f.insction c l' ox-eŽ'rl'-'y, i : 1 possible to ahevl ccc ohomj,!et.

eliirrlmJt Ion of tlue fpurloit; maxima. I:, IS ;;.mp :I a.r :o,;w thm!. tne respuns, of a.

I I no. r Instrumntm- with a phase-:uanipu,-t',o~d rct'.'e;o -d n"m] . ou to pV.t sa-ranipulated t

zlgnr-tt wilih hlie sare code Int er,'. A, tm 0: "',, '.me i, is ueterr:ined by a

f'orrriul' analogou.ý t o (1 ,7.22):

whe're -v the In'.egr'aLL par'. ut ,' I(W ' .' ý-

1't i: r~ '" '1 P' ~.~ .FUh L~n r' n a,"' '- , -. '--
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Seeking absences of response for T, which are multiples of A, we also provide

suppression of signals with intermediate values of T.

Example 1. Let us consider as an example a continuous signal, manipulated in

phase by the code of Hoffman [?]. As it is known, for such a code C0(iA) -when

p. / 0. Let us find a reference signal (pulse response of the filter) at '.,hich

r-'sponse of the instrument to signals T -co = JA(L 0) is equal to zero. Here

it is sufficient to consider values I•I < where n is the number of elements of

the code, since for larger IwI the whole picture is repeat.ed periodically. It is

easy to show that n A )

W Nfei ft n +

# (t, 0) = T (1 -- 0) +
(13. .So

+ lu 1u totc 6) + uQy-so+A)} (13.2.27)

In different code intervals u(t) takes value I/-/E or -i//n (phase is equal to

"Cur 1). In the reference signal -()., at. certaiin code intervals there apn,.',r

zero v',lues (signal gaps). Thus, the reference sir.nal turns ott to be nodulated

in ttnpllt.ude. For instance, when n = 23 - 1 7 the sequence of values of u(t - )

has the form 1, -1, -1, -1, +1, +i1, -1, fnd for g(t, r 0 ) 0, -1, -1, -1, 0, ,-

[jor brevity of recording we rejected in the expressions for u(t) 2nd .,t, T0) I-,

,u.'ializlng tactors ].

B/ the formula (13.2.12) it Is eas.y to calculate thtz ltss In the signal-',..-n*. I

ratio due to separation. Substltuting (13.2.23) and (tt.2.,C) in (13.2.12), we

r 2n
S+I

'oXr large n loss is approxl°t'eL' I double.

Fx i le . 1,e: ui as , we have a pulse.s i.Gna1l, in.Iu- i-,tad i ,i "'- r

c'uu Psarker wil.h ti T .1WIir o,20 has -1w tors I•, I , - I,

I.e r 'C• tr e ;pe1':,r'i , . n : , o : , ,. 'U. * * "' .c

s1:t0 , .ln' riler for liIPJ 1 1. / 'J,-' p 'i,leIi, c4,' t•-pal>. i -7 " '0 uTI l J II *] , il.' :l

a' ' :'5 . 1 1) " 4 n -tt r ; T ) t ' l r~ . i x I:( ,,, , di itn', . to m £ p r ".i. ' ." y , ": x 1V

-'I'.) '-"



N.Ccosvltdk
ft 2 - -.- -

I 3cos2 ± 16,d+s2-

JO, 3--- % 3 -- --

Coefficients w. rapidly decrease with gr-owth ,.,f' v. Therefore in practice A

"it is possible to limit the duration of the reference Fignal. Quantity w-.± in

accordance with (13.2.12) determines icss in the stgnal-~to-inter'erer,,e ratio during

separation of signals: 17 4. 2. The consider',:d method can be used for tindilig

processing of codes with a larger nulber of' elements, )I'ticultiec arising here are

of a purely calculating character.

13.2.3. Separation of S ignals in the Direction of Arrival

The described approach can be vsed 1',tr syithie.is of processing of' the t'ield

in tht: antenna 4perture, providing izcre',.•,, angi.e resolving power. Here lomau.n

0 is the surface of the aperture of' the all.excaa, and sigial %(s, X) is a plane

wave e , where r - racius vu'ct-Ar c :, -nt , n the aperture, which we consider

flat; k - wave vector (parameter of the ý,i• -,) P'ie 6ependence of the si.gnatl on

tine may be ignored Ji' we are not ':onceryed wtth joint separation wi.hl .epct 1.0)

an6gee and range.*

Interference in i.he proLlem of" seoln,,.' it,,. I o r,.- --an be considered to consll.a

of .wo '- oinponen'tsu backgrolixd '!-vi' n :i).d I' ,' no! ses oP- the rece iJo;r. We

sh-ll csnsIder these component-, ,.a, "', y.

isack..rcrmd ra.iation we ci'iniL U;:':
2 

dr;, ''t!sP iv . p lone waves arrIving

1'£I. , 1 if't'erent directions wis.h r'',.nao :ind Jlilcor, a -oU.plit udes arnd phases. Here

Aln Uc l'ui(Lt On tA :. Lion for i' r-kgroid In ti! ai,'I , 'e h:c '.ie ';. (,1.;

- r N J ýe s in cos 0&0

2J r ,or

=,No
-T-Ir"- r, I

*'fl~o ;robl1 ,;' (if ; ln,iui I.tiLne xi .. e):tc Ii "Oh W' ' ii !'.:!.:f',c to 'try1' 1 .f;'Lnd r.ng'tl~( war

coyjsldered b1 'Li. V, .i'sit ri•u- .'U' t'or' '.hr, ,c :;, ' ' .n"pertr;x''.: Ii t1,r, |loin i'' ;tii
(X IoIni.el, V1",itt Irtd s .

(,~j ld re h.y,(,.
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where J 1 (x) - Bessel function of the first kind;

Nf - spectral current density of power of the background through the h
aperture at the considered frequency;

= k0 - projection of the wave vector on the surface of the aperture, [

t•e t'osula for R • (r 1 , r2) is derived in the following way. Let us consider
I'

t, e.i.ementary plane wave striking the aperture at an angle of & to the normal and 1
angle q with respect to an arbitrarily selected direction x in the aperture plane. A

We ;onsider that the phase and amplitude of the wave L • 'aindom, where all values

of phase in interval (0, 2v) are equiprobable. Then, obviously, the correlation

fu:- ::;ion of the field of this plane wave for any two points Ct' the aperture is

A e (r,-,r-)k = (R r - r,),

where k - wave vector,

A - average densiity of the flux of power, corresponding to the given plane
wave.

Inasmuch as orn the receiver of radiation there usually acts part of the power

flux p'.ssing through the aperture, we must multiply A by cos ý. If waves arŽ'lwi.,_

"riom dt.fferent directions are not correlated, the correlation j'unction for tit:eý

sumr is obtained by summation of correlation functions of the components. .',r': -¶.!,

the angular density of the strength of' `-N in accordance with formula

£ sin OdYd&,

we obtain as a result of integration the abuve-mentionee expres;s.ion for R 6. (r2 . r.,i,

To .orrelation functions R , (r,, r2) there corresponds orspict.c'al density

-•- ,0.', IPI< ''
s4, (p)=

P1'.tri Wivves in the aperture of ;a.n antenna• constitute space h,,trjroilcs, of form
T- iprf, a va k,. o p inter' .:tl

e l wi p'e p i , a., obvicuc ly, IkJ < c. Thus, f'o• aA] ,.)'.• , 02 P intf.,.:t11,,

bh.is 'ground r'idialaion hFs uni[ourm ,7[iC' rc] densAity and i. can be considered equiv.o.ieo:

in sp-'cC whli t e noise with correl.ttion funiction N ,• (r. - rX). I'tre strict,

:,n .',.in ' [1 ,1, ,'"] :shoVs that thisf Cqrruiva•ence occur:; only 1.'or (lminiensions.; of

the aper',Lure, lar un v; compared 1,o wv(e Irsnr'th , with dc-.nIr'cgax , fboundary Lt'i''Žct :



In examining natural noises one should distinguish noises added to the sign.al

in the course of space processing (out-put power of these noises depends on the

character of processing) (noises of the first kind), and noises added to the sienai

after space processing (noises of the second kind). Noises of the first kind play

a large role in systems with a phased antennai arral, in which every element of the

array is connected to a noisy receiver. Space processing of a signal in this case

consists in weighted summnation of output voltages of these receivers. With a large

number of closely located elements stummaticn can be replhaced by integration, consid-

ering noises 6-correlated. Allow:ance for the influence of noises of the first kind A

and of' background and synthesis of a sys.tLem r seyparation of' signals are prodcic'-d

in full conformity with the general Iethod described in 1.2.i..

Noises of the second kind, added to -. signal. -after space processing, T)ay a,

basic role in those cases when space processing is produced without preliminary

a.-,piificatton of signals received from separate elements of the antenna. The power

of these noises does not depend on the nature of space processing; therefore such a

case requires special] consid enr'-, ,lon.

Taking into account the presence ol . L-corr-<¶ti'ed background with spectral

dni x , natural noises of the fir Mrt kIni, al-o assumed t.-correlated, anddensity TT

noises of the second kind, we write the ýLij::..-t;o-interference ratio., which is

required to be maximized, in the form

(r k 
-rI~ dr

L .

In thisý formula T area of the apervture, N2 - spectral density of' nci.: U"

the- second kind, I.0- 3 + •rNM

th scod in,14% L _3 sxun ol' sp-ctLral. densities- of oriolse of' the

first kind (N,) and the background [w:e consider factor:; with (r.1 - r) in expression:;

for correlation functions]. In (13.2. 2¼) by meaMns of' introduction of factor

-- with *(r, kO), it is considered tha,.t in the absen, ce Lf' Am•plific'ationr the energy

received from the aperture cannot be greater than the incident energy (there occurs

:;isrimtion of Ine field with respect to powe•r, ,id riot to vultage).

With maximization of expression (0I.. 28Ž) on l'unction 7 there should be imposed

'I
I 

- 5 2.-



an additional condition, limiting ampilfication of the signal to addition of

noises of the second kind. If this condition is absent, the result is trivial:

the constant factor in I7P(r, k )I should be so large that component N. in the

denominator of (13.2.28) can be ignored.

if' we write the shown condition in the form

(Ik.) j'dr==1,
a

i.e., assume that amilification at separate points of the aperture is possiblb, but

on the average over the aperture it is absent, then, as it is easy to see, the

expression for 4(r, ko) with accuracy of a constant factor coincides with that

obtained for N2 = 0: 2a

(r, k,) - A w wjeikjr,
1=0 (il.1. 29

where kj , . ... -- wave vectors of 6uppressed signals: [maxifi.ization of

(13.2.28) is performed with the additional conditions (13.2-.3)],

Coefficient A is determined from condition

AL _ w .jw .I*.ie,-j( I-- 'rdr=

,I .I'

so that

q, E./[2w. (N. + N,)J.

In these formulas w•k elements of a matrix, the recipro-:a of c(j k Ii,

and

C (ki, k I) e-(ki1)rdr, ik I

TV amplifticaticeL arnd a~t enlilt" r-.rn of the signal a•re ab~eii. :t ,:-.iery point Vt 'I

the r•.ptrturq, IV(r, ko) 1 3, :unu ý;eparaLion is carried out only by phase proc!eci,,t.

Vuli'oct-tri P(r, k.) in this; case can be recorded in Lhe form

IS(,k,) ==ei•rk

7 5,' -; •



where e(r, ko) -real function,

Substituting (13.2.30) in (13.2.8) and (13.2.3), we obtain

q-- 2(Na±+N) ~ ~ cos 4 (r, kQ) +- k.rl dr' +

+( sin [f)(r, K.)+ K.rlr drfV

The problem reduces to maximrsit;n 1z1t;1o.2.31) under co"--dition

Cos 14(r, k.) + k~rj dr fsin [f) (r, k.. )+ kj r dr =--t0.(on

Using the method of undetermined Lagrange factors, we obtain

Eaje--1kjr

Oaje-Ilkj- kq)r
a k _ e , k .. dr,

a aijer

where~~~~~~ coffcint aj ar eemnd ---- kr

/ ' - dr=0, , (u.2.34)

Thus, the optimum weighting f'unetlon 1/,(r, k.) in the considered case is a

liJ.neur corm.uiination of all hoh considered sign',,ls, multiplied by a certain fun'n tion

of the fadius vector, ensuring constancy of l.'(r, ko) . The slgnal-to-intcrlcrunve

ratio with such a reference signal, as it i:; easy to prove by substitution of'

(15..2.33) and (13.2.34) In (i3.2.2B), has the fornt

2. (N,+-N 1 o~ =- q'o1ao I', (15.2., '.)
q a.

* where q,, - signal-to-interference ratio in a system without suppression of inter-

fering signals.

-754-



The obtained formulas show that calculation of optimum processing of a signal

Li this case is considerably more complicated than in that considered earlier. We

find the gain in the signal-to-noise ratio to which replacement of processing found

without taking into account absence of amplification of power in the antenna by

trer,.Yment of the form just now considered leads.

In the first case there is produced multiplication of the received signal by

a reference signal of form (13.2.29), normalized, however, in such a way that

q/(r, ko)I = i. Energy of the signal and the spectral density of n6ise at the

output of such a system will be recorded in the form

--E, (rk.)eik'rdr ,
E'iii-XT I (r, k*) ii

I, __ _ __ _NL=NsI-N. • max (r.k,) 'dr

where E0 and N0 C energy of the signal and spectral density of the background radl-

ation in the absence of separation. .

Substitutig these expressions in (13.2.28), for the signal-to-interference

ratio we obtain

Eo, E, !
q.=2N,- 2•

N2N max W.JeJ1ill + N.w,*(3..'.
I

The sought gain is characterized by the ratio of (13.2.35) and (i3.2.36):

a s 12 max w. woje- ik jr + N w• .)

Considering the problem of separation of signals in the direction of their

arrival, we considered that the field in the antenna aperture is directly sub~hcted

to procew;sing. In antennas of the image type accessible for processing usu.a3ly i7

the ui! itc:ted field in the focus at' the mirror, equivalent, -3s WE know [C1], to

the dj." cted field at great distances from the aperture in the absence of a

focus-_itrg mirror. For large diimer..:,ions of the aperture this diffracted field ('an

be calculated by a simplified Kirchhoff formula½
1k"r k'dr,•i

yj (k') y (r ) ,( +•.,,

y7(5') -iyr
S755- /
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where k= p, and p - a unit vector characterizinCi the direction for which the

diffracted wave J.s considered.

In accordance with this formula the plane wave e- ikr will be transformed with

accuracy of a factor into function C(k - k), which in connection with this can be

called the response of the aperture to the plane wave.

"Let us establish conformity between processing of the field in the aperture

of an antenna and the diffracted field. As can be seen from (13.2.38) as a result

of multiplication of the field in the aperture by a plane wave and integration

there is obtained a diffracted wave for a certain direction. Thus, multiplication

by reference signal (i3.2.29), which is a linear combination of plane waves, and

integration over the aperture can be replaced, in principle, by formation of the

same linear combination composed of values of the diffracted field for the

corresponding directions. However, by virtue of the inevitable presence of noises

of the second kind, such an operation is unprofitable in terms of power. The fact

is that jy4(k)12 is proportional to tho density of the power flux of the diffracted I
field, In order to obtain a signal proportional to yl(k) it is necessý.ry• to take, i
in general, an i,-finitesimal eLemerLary solid a•%n.le near the given direction k.

The energy of such a signal, and consequently also the ratio of this energy to I

the spectral density N2 of noise of second kind, will be infinitesimal.

It is possible to construct another cperation, equivalent to the considered

one from the point of view of separalion ci' -.ignals and allowing us to completely -3

use the energy reaching the aperuure. Let us consider expression

"krZ ( (k')C(k'--k)dk'--k y(r)dre ( :

Ik'l<("X 3C(ki- k)ei' ~dkl.

For dimensions of the aperture, large as compared with the wavelength, C(k) rapidly

decreases with growth of Jkj. Therefore, it is possible to replace the limits of

integration in the integral over k by infinite limits and to consider this

integral the two-dimensional reverse Fourier transform. Inasmuch as the response

of the aperture C(k) is the Fourier transform of a function equal to 1 in the

aperture and to zero outside the aperture, the considered integral for all points

of the aperture has a constant value. Thus, )
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A-

Z(k)- Y (r) eardr

and multiplication of the field in the aperture by plane wave e ikr and integration

over r is equivalent to multiplication of the diffracted field y,(k') by response 41

of the aperture C(kl + k) and integr&tion in all directions (over the whole focal

plane in the case of an image antenna).

-ik r
To reference signal Za ie Jin the aperture there corresponds, obviously,

reference signal Za C(k + kj) for the diffracted field or Ma C(- + k) for the jA
focal plane (d !, - focal length; r -- rsadius vector in the focal. plane). The !J

obtained results determine the structure of the irradiator of an image (or lens)

antenna, ensuring the requirod separation of signals with a maximum signal-to-

interference ratio.

Example. Let us consider a line-r aperture (an aperture with infinitesimal

width) , for which
"d d

$in (sin 1- sin 0,) sln-r (, -- 0,)
S! ~ ~~~~~~C (k, k,)-- ,. ,-,., (- .

ad ad

S-- C (01 -- 51).

where 0 - angle between the wave vector and the line of the aperture:

d - length of the aperture;

X - wavelength.

We demand suppressions of first spurious maxima, occurring for 0 =45-L

where-

C (Om) ,- 0,217, C (20,)j- y, 0,046.

With n = 2 and a, symmetric location of interfering signals matrices IIC(>.1 , , 1 )i.

and Wjk have form [

1 Y1" T, fa

YAMS 1*t I

ItWJ ~ ~ IT, . 1 *..y 12 1 -ITi! 1 Ti Ta

T1 I TIT 1-Y, II--Y,
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where ==1 -- y, '--iY, l'+2ReyI

From this it is easy to find loss in the signal-to-int.erference ratio and opti-

mum processing for the case when there is allowed amriification during processing

of the field from separate sections of the aperture. Substituting woo and C(X, 0')L '

(elements on the intersection of diagonals in the above matrices) in (:-5.2.i2), we

find P =W (w - 1Y2 12 )/A - 1.1. Loss comprises in all 10%. Optimnuin processing

uf the field in the aperture for the case when th-1 selected target is on the axis

of the antenna (0 =-O) is recorded in the for',I

- n 2Xz

220,
w coodinate I + 0 c ,

of the point in the aperture.

The field at. every 1foint of tne arper.-ure shouild be m'ultiplied by ý(x, kfý),

which corresponds to a certain amplificationý or :ttenuauion, inasmauch as phase

"shit is 6qual. to zerc, and Is integrated

w-t o te pover the aperture.

,- �-Lt. us consider the directional

SJI.,. terf. Cor p,:wer, obtained during

- - suppressiun of first sidc lobesby the

shownl iethod:

- - ~(h~j-.g M '(X, kj)e O dxf1
-dII

40 C - )-I c(+0, o207 [C (, -,,) + C (,, + (in,)] 3.

Relationship g(9) is shown in

!/Fig. 13.3. In the same place for

'It- comparison there is plotted the direc-

! , I I I I tional pattern with an incompensated side

I"lobe. From comparison of patterns it

is clear that suppression of' thp first

Fig. 13.3. Directional pattern of a
linear antenna: -'with suppression side lobe is accompanied by certain
of the first side lobe; - - - without
suppression of the lobe. expansion of the principal lobe and .



increase of the second side lobe by 2 db. As aiready noted, by the shown processing

it is possible to synthesize a system with suppression of any nunber of side lobes.

§ 13.3. Statistical Synthesis of Optimum Systems of Resolution

We shall now consider the second (of those enumerated in the introduction)

z'-p)Loach to the problem of optimum resolution of targets, in which optimum from

the point of view of resolving power is considered that sysbtern shiu best executes i
some function of the radar in the presence of many rather closely located targets.

Let us find general properties of optimum processing of the received signal

in multitarget systems without specifying the solutions, taken for the set of

targets. This can be done by using the concept of minimum sufi'tcient statistics I
and a sufficient receiver (see § 3.7, Vol. I). I

IIf' there is no a priori information abbut the numbe;r and pusitiu.n of tlhe, tar~gets,

minimum sufficient statistics for any solutions taken for a set of targets is the'.

set of values of likelihood ratios for 'All possible situations A. (y; !, (y; I

An(y; I, . where n (number of targets) has values iron 1 to

0:., and parameters of targets X., ... , Ik pass through all possible a priori v;alues.

In accordance with this, sufficient is a receiver at whose output there will be I

formed the shown set. Having output signals of a sufficient receiver, it is possible'Ii

to optimally find any solutions about the set of targets. The form of further

transformations of these signals and what part of them is used depend on the

presence of a priori information, the character cf the sou;Tht sollution and th' -q

rules utilized for solution. JA

Each of the likelihood ratios AnI.
Eachof he lkelhoodratos n is the ratio of the probability of'rc~to

of realization y in the presence of n signals with parameters , ... n to the

probability of reception of the same realization without the signals. Instead 1. f

the likelihood ratios it is possible to consider the likelihood function; howevexr 1
in this case there arise certain formal difficulties connected with transitiCn. L

from discrete realizations to continuous.

Let us consider operations connected with forning of the likelihood ratio 1.r',:

rapid and slow fluctaations of the reflected signal, considering. signals andri

interference statistically independent Gaussian random processes. Here, in order

to have the possibiLity of comparing results of sFynthesis with resufrs of o;.ti,,w>

sepaDraLtion of' signa.ls, we will generalize expressions for likelihood ratios t-, tAinrud

in Cllptcis I and IV Vol. I to the muiti-dimensional case.
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Consideration of the multi-dimensionail case iA, produced exactly as othe

one-dimensional. We assume that in .mulLi-d:imenalonal domain S0 there are assigned

interference with correlation f'unction iR(s., 02) and a sign~al with correlation

function R 0 (sI, s2)' where both the signal and inttrl'erence are Gaussian random t

processes. We consider the set of points sl, ... , O. The likelihood ratio for

values y= y(s 1 ) is equal. to Ni
-exp (Wit, -W~nJ j

=NI

where Rk = R(sj s and W; and IVCf E elements of'kk ; 'C j '0 ý'J J-k 1 '- t of

matrices, the reciprocals of correlation matrices of the interference and the signal

with interference, respectively.

Passing to processing as N - m and bringi:ng to zero the distances between

points, it is possible to replece: the stuji by interr.als and, using multi-dimensional

analogs of formulas (1.4.1), (1.4.2), (1.4.2), (..13), (4.2.4) and (4.2.5), write

the 'likelihood ratio for the realization in the form

A (y) =exp V(,s)y( 1  s)d~s

where V(Gi, s.) and B(si, s2 a) are determined by equations

"[,[•i• '• • V (&, s) JR (s, s.) + R. (s, s,)Ids =-- W, (s,,. s,) 01 • 3

!•s. !( ,, , )+ • a B (s,, s; a) W, (s,, s,)ds = W j (s,. So). (13.3.4)

S

* (s2, 1 ,)R- W(s,,)s) = (ss,)s, (1.3.6)

.W (s,, s) R (s, s,) ds =(s, --- s,).

Variables s in these formulas are muILi-dinmensluiui v.-ctors.

We concretize the obtained relationships Vor the case when the signal is the
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sum or n statistically independent signals with correlation functions of form

(i3.2.1). The radius of correlation of fluctuations of signals is considered La rge

as compared to dimensions of domain S0 (case of slow flucLuations). When

R, (si. sX) =• Ej Re P (s, ;-) p* (s., 1j).

sulution6 of equations (a3..3) and (1.3.34) are presented, as :t is simple tc

prove, in the form

V (s, s,) 2  Re V vOhX*j (s) Xh (s,), (0 ".'W.

B wa;) 2 Re k (sa , j) X (S), (13.

Xj (s,)-- W (s.. s) •(9. j) as.

(1..

and matrices 11v 1 1 and jlb .(a) II are reciprocals of matrices

respectively, where C(Xkj, Xk01 as before, is determined by formula (13.2.10).

A.n (Y; an..., ).) =exp { jA VQ* Qh-

Q== y (s)x (s) ds. (; 5.

In 1 i.4 Vol. I it was shown that fo.^ an arLitrary maurix wc have reinric-no.iiL)

1AA

U.3ng this formula and considering properties of matrix llb II, it is possiblc.

tc rewrite (13,.10) in the form.
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An Y;-4t .. 9Ar) =-eXP {Evi&Q*,Qk--
J.

Let us consider operations connected with forminl" ?,he logarithm of the

likelihood ratio. The first component In A.(y; Xi,.... ,\ can, taking into uukccounU

(15.3.9) and (15.3.1i), be transformed .>: tn- foa owV111 woy."

J. A 
(113.3. ' I

A , A

The function of s in parenthosj..s under the intcgr,-rl coincides [see Paragraph

13.2.1] with the opt;imum reference signal ý(s, .j), ensuring a maxim um ratio of the

power of the considered signal to the si.u, of powers of interference and all other

signals, considered as disturbing. As noted in § 1j.2, for large signal-to-

interference ratios for all tari-cts thi; refe oineesigna.L coincides with that which

ensures total suppression of interfering signils.

Thus, transformations connected with obtaining the likelihood ratio include

operations providing partial, and with higL energies, practically total separation

X•,S)of s1 L: s, the hypothesis of whose

1ru _tnce is being proved.* Further-

more, Lhec transformations include

multiplication by reference signals

L b X"(s), optimum for separation ol a

signal, from interference, anc,

integration. 1,esults of bottc fo::5,

of correlation processing with

identical indices are mu].tiplied and

Fig. 1.3 .4. Block diagran of opt.inium process- totaled. The corresponding block-

ing a signal with slow fluctuations: 1 -

multiplier; 2 - integrator over domain So; diagram is shown in Fig. 13.4.

3 - adder.

*This is the difference from the ease considered in §13.2, where there was
ensured suppression of signals, the presence of which was not necesserily assumed,

but was considered possible.
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Let us consider analogously the case of rapid fluctuations, where we consider

that fluctuation are fast with respect to one variable - time. In order to

separate this coordinate, in our examination we everywhere shall write instead oi'

one variabla s two variables s and t. The correlation function of the signal. we

s-h,. write in this case in the form

Re t,1, s.,it,) 1 Re (s,, 1,; 1j) (s., I.; pi (,-t,.

We assume also that the spectrum of fluctuations off interference is consic.crabL.Y

wider than the spectrum of fluctuations of the signal, and we replace interi.-r'!rce

by white noise, i.e., we assume

R (s,, t,, s2, R,--- , (S,, S.) •(, - ,,,

and that T(s, t; Xj) is a periodic function of time for all J, where we shall con-

sider the magnitude of the period Tr, common for all X,, small as compared to thE

time. of correlation of fluctuations of the signal. Solutions of equations (1-3.'.3)

and (13.3).4), as bei.Dre, we shall seek in the form of (13.3.7) and (13.,3.•3), hut

V and bik we shal•i consider to depend on t., t 2 . Al]. these assumptions and the

subsequent derivation are completely analogous to those used in Chapter IVVol. T

in examining signals dependir.g only on time.

Substituting (1..3.7) in (13.3.3) and leveling term by term components in tthe

right and left parts of the eýquation, with the given assumpti:ons we obtain

r

VJA(t, + Lk Y. vi ~ jg (1,(1) C(1, Q' ph Q dt

S-p ( tV, ta),
where

di.- ; 1 (s, 1, ;2).W(s,, s,),(s,, t, A)dsds,.

Ii;nu:iWch as :t is considered that Al: jT >> I (Af f - efi'ecti;ip widi ,.' t,,

spý,ctrtur of t'iuctu.tion-.) fcr ali. j, it is possible, disre,:garding fringe TKVf.,cts,

.0 ao~ve equ',tion (½,:51 4) by Fourier transformation. The matf,-: ,ý o:.;` c
2At - 5

I.E ) i h reciprueal.o ic i trix iT , C ' .ý , *,)Ii wher-r' 1) C 1, I. a



density, corres.ponding, to pk(t), normalized sc that. max Sk(wo) .I Likewise we find

B jk(-,')

Substituting results of reverse Fourier transformation from VJk() and bK(U, w,)

in (13.3.7), (13.3.8), and (13.3.2), we obt.in

A(y, A,, A..)-=exp c $ (Vj (,U) Q*j Q H)-

T In (oCj, +A]dw} c.

where

Q, (H)== dt ,(s, ) Xj (s, )e 'ds.

As can be seen from the obtaini.ed t'ormulas, in the case of rapid fluctuations

separate spectral components of the signal obtained as a result of correlation

pro'iessing must be subjected to operaticn:3 rf the saiie form as for slow

fluctuations. Opti•num proce;ssing is mor(e complicated here than in the case of one

target, because V jk(w) cannot, in general, he presented in the form of the product

of certain frequency responses of filters: a-i(i.) and lf(id).

With a large signal-to-interference ratio we have equality Iiv 1k(iO)lIVlwii

in frequency band Af, where the ratio, of ;peutral densities of the signal and

interference is great.

This frequency band is br 'e.,- Jl.t 4,:r.'etoe of the rigna, -to-Interference

ratio. By analogy with results: *bt.taintd or )rno oinrnaL (Chaptý,.rs IV, VII, IX, X), ;t

is possible to expect that expansi.on rC brand At" with growth of the signal-to-

intr$rference ratio, after this hand exO '-n the width of the spectruL:m of ' j , -

uf the signal, and thu form ot" the fr'requency resrponses do nut substantially a•'.'ctc

the performance churacteristic;l of the system. Therefore we replace V h() by

,jKI H(iw) where H(im) -- frequency response of a filter with a passbar.n.:, not

considerabLy exceeding the width.c.f the. ý,-P.ctrini of ft uctuations max Af c j. Ifere

it is possible, b, transforming the .,xpr,,'3Msc~r fur 1n(y) Just a! we did in examing

one signal, to present a block diagram for prof!.essing in the form shown in Fig..1.[..

Above we considered optimuri tr'nsI'otions of' a signaL in a sufficient

receiver, connected with forming the 1iY.elihood ratio or aWly :L_-Onud set of

targets. If on the number andu p(-n itiori (S tartgets heeare ilmpQ..ed lirdtl ttiufl5,

optim-ui, processing is subs tant iLl.y strpLI fled, 1.': simppLest e!am)ple of this kind

' i,



Fig. i3.5. Block diagram of quasi-optimrnu processing
of a signal with fast fluctuations: 1 - multiplier;
2 - integrator over domain SO; 3 - filter with fre-
quency response H(iw); 4 - adder; 5 - integrator dur-
ing the time of observati./n.

is the case when parameters of n - A. targets are known, and a so].ution is found

only for the n-th target. The likelihood rati for this problem equalis ratio

A n%(Y, X j, . ... . ,-i, I..)/A ,,- ,(Y, It,', .. , -) A (y).

Using the property (13.2.13) of inverse matriceb, transformations of the signal

connected with forming In A(y) can be written in, the form (with slow fiuctuatici's)

AA

In this case transformations of the signal ensure singling out of the useful

signal with partial (and for large signal-to-interference ratios - total) suppreýssion

of interfering signals, Solution of the problem of detection of the n-th target

against a background of' n - I targets and interferences was conducted in [43] for

finding potential possibilities of increasing resolving power.

Besides the mentioned work [43] there are a number of works in which there is.

posed and solved the problem of statistical. synthesis of optimum resolution sys!(:!is,

In [4)4] by opuimum resolution there is understood detection of a s;t of torge:.,

producible by means of comparison of results of estimation for maximlum i '.,

of amplitudes of signals from these targets with a threshold. We consider the '2Is-

of rr.gular signrils and white noisc,. Operations connected with estimating ampli[tudcs

coincide with OLhsu,! obtalned in the probIem of conplete sepaisi-,,n e-f' Signals.

IT [01 ] there ic ,ft'ererl another 'otnul]ation o," the prob.l i, leading, huwev.r,

under cert.airi cond:ltlons '.o the oan'ý results. Considered be.. 1i- resolvi.ng, nowpr

II I•(' 5 -
•f



is the system providing the best ..•sti.-vate of tho- rct'lecting surface (level of

reflected signal) as a function of the coordinates. As the loss function there

is used*

Jr,, ?)=5Irs)-(s)ids.(3.1)

where T(s) - signal, corresponding to the true relief of reflecting surface;

9(s) - signal, corresponding to the. estimated relief.

Minimization of mean risk is provided b3y selection of w(s) at which I(9, cp)

is minimum, where the dash here signifies averaging wich the he'ip of the a

posteriori distribution of p(Tvy). It is assumed that tl-e signal o(s) is the s.!-,

position of signals from n point targets

I

where A -- amplitude factors (signal iv(s) is considered regular).

Here the problem reduces to finding A., j(J - 1, ... , n). Substituting

(13.3.19) with A4 = Aj, 14 = 14 in Ahem t!on.nula for I(qv, T), differentiating with

respect to Aj and equating the derivative to zero, we havean

wA5=2 Bi't, (13.3.20)

where B - element of a matrix, the -,ev-rs. ' 23 . fl:

+iBi IC=lq+S, Ad+p)ds, (13. 3..2:)So

Substituting (13.3.20) in the original formula for I(i, 0), we find that (4 =

1 :, ... , n) must be selected from condition

max I' 3.

If there is no a priori informnation about the position of the targets, (s) =

= y(s). Here the considered method of estimating the relief of the reflecting

*Here we do not hold to the designations adopted in the mentioned article.
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surface coincides with the classical method of least squares. It is easy to see

that transformation of (13.3.20) ensures total suppression of all signals, with the

exception of that one whose amplitude is being estimated. It is not difficult to

prove that this processing coincides with that considered in § 13.2, when R(s 2 , s =

N(s. - 2), i.e., when interference constitutes "white noise" with respect to

,•[•measurements.

Thus, the conducted consideration of transformations of the signal. in rulti-

taiget systems which are optimum from different points of view showed that these

transfuormations always include total or partial separation of signals from targets

whose presence is assumed. In certain variants of formulation of the problem Cross-

processing of signals is exhausted by these operations of separation r;d fu'ther

transtfortr.ations of the separated signals are such as if each (,f tha, Zigjnals vMaS:

unique (see Chapter IV Vol. 2). However in many cases this is not so, and for the 1

It is interesting to compare characteristics of performance of an optimum, system,

and a system in which separated signals aru processed independently.

The vact is that practical use of optimuum systems, in the which signal is

processed in accordance with formulas (13.3.10) and (13.3.16), is possible,

apparently, only with rather severe limitations (assigned in the fonTr of a priori

distribution) on the number of targets and their position. Thus are matter,-, e.7.,

during, simultaneous tracking of several targets, the numzber and initial positions

of which are sufficiently accurately known, or during detection of a group of a

known number of targets, located at assigned points. In the a.bsenceý of a priori

information the optimum system is extraordinarily complicated, and it is advisabl-

to use in this case a system with total suppression of assigned interfsrix,, sI z;,

and subsequent processing of the same form as for one signal.

In accordance with what has been said it is useful to take the following or
5 ,

uf further consideration. In § 13.4 and § 1-3,5 we shall consider The problem of

optimum detection and measurement of coordinates of an assigned set of tarr.zel u.

In §• 13.6 we shall consider and compare with optimum ones simplified systens.

dete Jion and measurement, using the principle of total separation ,,f

S13.4. Ž_timum Detection of an Assigned Sot of Targets

TI.' pos~ible positions of targets are fixed and it Is requireod to de!termlnf welci-

oC these targets exist in fact, the optimum procedure of solution consist; (:ee

Chapter ITI, Vol. I) of ,-omparing 1ike Lihood ratios corresponding, t I, I posslo..e
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situations with thresholds and among themselves. [f losses connected with all I
possible errors in determination of the number and position of targets are identical, j
we should take such a solution in which the likelihood ratio has a maximum magnitude,

exceeding the noise threshold. FPr instance, if the number of targets is not

greater than two, it is necessary to compare with the threshold and among themseives

A s@ ( Y ; 2 1,) ; A .A a( y , a , - 2 ) .

In order to completely characterize the procedur of finding a solution in

this case it is necessary to calculate the probabilities of all possible errors,

the number of which, obviously, equals I where n ij the number of possible2V'

solutions. For calculation of these probabilities it is ueceseary to find the

Joint distribution of probabilities for likelihood ratios. All ise calculations

turn out to be very cumbersome. Therefore we here will limit our consideration to

the case of two targets. 'Lot us calculate first the characteristics of detection

of one of the targets, when the preseuce of the second target is exactly established.

It is clear that this characteristic has the greatest bearing on the problem of

resolution of closely located targets in conditions of detection. Absence of I
resolution will lead to detection of one target instead of two; therefore the quality

of resolution can be estimated primarily by this.characteristic.

Furthermore, we shall be intercested in characteristics of detection of both

targets when they are either present or .r.ent sii.,ultaneously. Here we shall

consider fluctuation of the 5it•.. -.

In the first case the solution is found on the basis of comparision of quantity

(, JQJ and, inasmuch as Q is distributed by normal law, the equation of

characteristics of detection has the form (see Chapter IV Vol. I)

where q. the signal-to-interference ratio at the output of the system forming

This ratio already was considered in § 1..2 in connection with the problem of

separation of signals. Remember that the optimum systemr, of detection in this case

is a system of partial separation of signals, supplemented with a device comparing

the square of the modulus of the output signal with the threshold.
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LeL us consider the case of a pair of simultaneously appearing targets. The

solution Is found on the basis of comparing with a threshold the likelihood ratio

A2 (y; xi, 12) or quantity
2

L:!r•end by the block diagram of Fig. 13.2. Writing the distrlbution for quantities

Q-1 Q2 in the form (see [19], and also formula (4.11.2) in Volume I)

2

"p(Q" QS)= 71 ,- I exp Wi

where IWikil- matrix, the inverse of Rk, and

2

Rji.= QjQ*k C (;j, C -j-LA 11~) C (It.h) (13.14.1)
1=1

it is easy to calculate the characteristic function of quantity Ly(y).

, -'
I

Expanding the characteristic function to simple fractions, it is easy Lu find

the corresponding density of distribution. Assuming for simplicity that the

strengths of the signals are identical, we obtain for the probabilities of correct

detection and false alarm the fc.lowing expressions:

C C

D (c) +-e- e- (..,

F(C)= +Y+q'.(- Y')xr (+ q'.)' - '' 1
9+10exp I + M q',(I--') C]

2y-1 r- -1+ q. (Ir' -yxp j!

where c - is the magnitude of the threshold, divided by qO; with which we cc'ip::re
L2, "c= I C (A, AX I 1/1/ (,, ;L,) R1 c K•., );

q, - the signal-to-interference ratio in the absence of separation.

In order to simplify calculations connected with determination of threshold

ratio q,, corresponding to the selected probabilities F and D, it is possible to us•

thc J.'a.zt that, a- onc may see from (13.11 .3) and (13.4

P (c, y, q'.= D (Cs, 1',), ( .' -,

wnere
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Y, T (I-1) 1 ---C •' 0 3.Z )" 1',:+q'. (I--g') * -j-q'*(It--y") • 3,-L

If F << i and D > 0.5, the threshold values of q turn out to be so large

that •y• 0 when 72 < 0.8. One can prove this by r-erformring the necessary inmerioal

calculations. This circumstance

essentially simplifies calculation of
-0 dependence qo(F, D, y), which can be

produced by the followin,, scheme. First

2,1• we graphicaJly find dependence c(D, 0),

where D's are given very small values,

typical for Lhe probability of false

alarm. Incidentally, with thesc vaiues

we can disregard the second component

in (13.4.3), if -2 > 0.2. The q is

_ 412 determined from the second relationship

of (!3.4.6)

Fig. 13.6. Dependence of the threshold = I c+(r, 1+
signal-to-interference ratio on the I ' 2cD, y)
degree of nonorthogonality of the

detected signals during optimum process- c(F, 0) (I - ia1
ing., • + 2c(D, yy 0 li+ (13.4.7)

Relationship qo(D, ) . . is snhown in Fig. 13,6. A.; Can be seen from

the figure, for D's not very close to unity q. weakly depends on parameter j, slowly

increacsing with increase of the ltter. When I - D << I this growth is more

merk.d. In § 13.6 the obtained result will be used for comparison of' the optjimui

system and a system with total separation of signals.

§ I.-5. S•ynthesis of Systems of Resolution In Conditions of'
Measurement of Coordinates

13.5.i. Formulation of the Problem

During measurement ty radar oif coordinates of closely Tocateed unresUoveu

targets it turns out that due to interaction of signals reflected from these targets

the mean values of the measured quantities do not coincide with their tr.tue valuips.

With total absence of resolution the radar measures the coordinate of every target,

At the same time if for an assigned sounding signal we introduce resolution of
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targets with the help of the proper processing of signals in the receiver, in

- - general, the ratio of the signal to noise decreases and fluctuating error increases.

In connection with the shown circumstances it is useful to consider as the
critt-r 4 un of optimality of a resolution system during measurement of coordinates of

targets absence of systematic errors of measurement of these coordinates and a minimum

of fluctuating errors. The latter, as also earlier, can be estimrýateed by their I
variances at each given moment of time. A

If we apply this criterion for synthesis of the system of measurement of'

TAcoordinates as a whole, then, as also in the cage of one target, with observance

of certain not too limiting conditions the system can ba divided Anto two . art, .

The first of' them is the discriminator in the tracking variant or t•iic estimator

unit in the nontracking variant of the meter, i.e., a system fur processing the

r-f' signal, producing the current estimate of the measured patrameter (set of p -ara-

meters) X. The second part of the system are the :,moothing cirut...# i

In the case of fast fluctuations of the signals -the smoothing circuits have lessOz

bearing on questions of resolution. A,. the same time their synthesis in the prcse.ncts

of many targets and many parameters varying randomly in time, subject to measurement.,

constitutes a very complicated problem, In the present book we will not eial with

this problem; we shall limit our.selves to synthesis of the device in which there

is concentrated the radio part of the system. Not making any distinctions betwef..I

tracking njnd nontracking variants of the system, w .3hall call this device a

discriiinator. General properties of optimum discriminrators, correr.pondintg to

mulitarg• t problems, will be fonrulatcd below.

Preliminarily let us note that in accordance with the formnul.rstvd criterion ,,:C

dptlmum discriminator should Pxcaute suchi operations on the received signfL whl.:h

corre:'pond to formation of the current efficient estimrate of the measured AireniA',J

.;in:-e the concept of effici(-ncy includes the ab-ence of bia:s an, m ininimuri, vvw , lr,':e

of the estimate,. Practically, considering the approximate natture of' Plf',i']•,,• of

op I. trir ocrte .ntier:, it i ;.sufficient to require 'J,..;aptot1 C' eoAti(:-. ' f hiI,' "',

J-rre it iin; poL'*sibie to pose two protP]Ejns. The fir:st, "Ind 1lje si.i '.r of I -:.

'f , e.z when to mrearuremcr•t withouit :'ys3 cmartic error with minlimmr i'_uctu'.itog, error

* 1 ' rhoil.ri_ be Io !.'e Uhut c.-onditioni; under W ,ir':' h an optfiau.. ' r Lea 'd ''e 'ii

uiv.Jel d Into the shown prirt;:i !'or ml )ttitr.rge. 1. robl.emr i.: ffar .'oi' J, e-'.

-'(Ti- !
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w1e 3ubJect one parameter K1, the carrier of which is siAgual y 1 (t, XI) but here there

e--xist ot6her signals y (t, X, ), (p = 2, ... , nt), nou- orthogonial to y 1 (t), parame:ters
P p

of which X are known. For solution of this problemT, it is neccessary to find the,
p

etfficient (at least asymptotically) estimate of a, ee X~ for known )'.Propertiesl

of an optimum discriminator are det~rmined by the known f'orm~ula- for spectral den.Aity.

corresponding to variance of the efficient estimate

Where T - time during whichv pý,arameter A1 can be cons,,idereýd coinstant;

L(X 1 ) - logarithmi of the, lit",e1ihood function,

A second, miore complicateo pro~bllemr -or-responds, t;o the case when n sign;als y~ (0

t~,(p n ,, ) edepe,-nd on n unknuosi peýrameters K0  The prob.' emt ores rot eeg

whether it is requi'red to mea:-sure with 7--r.: sys,-ntematic and mininarnm t tuetuat 1mg ecrroy no

all mn pa rameters or one of hn(o.isaceK Inth latcsitsncear

al te! same to meas~ure all n inerameters frOti:J.n ZtOlO opnain:o

extraneous signals.

i,(or solution of this problem Isik n. wecssary to seek an as-ymiptotIcally Jointluy-

efficient esiaeof parar.wter., teL o roete fteotimum system., obtain(ed-1

I 'r eSui~t ot' the solution of' t srt- :wr.(r i:;ieIb aine and cross-

correlation moments J o'. i eiat'c im-a t;'s

wlheru AJ\A , . , -logarithm of' the likelihood function of the parameturs.

An ellips3oid with mouments of inerti-a J i~q is- the( minimu= among possib)-e erie'-s

duc-iais measurement. of parajnietersý A',,... of ellipiocids of' dispersicri [8, PC'].
etues';ions; connected) with this problem wi 1.1 be. considered in greter ealltr

There exist no direct methods,, o,' lnigefficirent or jointly-efficient etmts

At,' the Same timfe we know that during, ;ieasuh'weIit,et (T one-dimiensional patrameters the

coumpaýr'i 4 ively easily found maxýAimum likeiihood ~'~mtshave the property of

a~symptotic efficienicy with snal-A timeýs of' cozrre1ltion of the observed signal P9, I31

There is every b.asis to assume that tse staesin the case of mieasureimeýnts of

mnulti -u~iiensionai paraai~eters, too, wiui pos1e;,IL property of' joint asýymptotic



e f fic iency.

This assumption we shall use as the basis for our further considerations. Here

we shall find the maximum likelihood estimates of coordinates of many arbitrarily

(freq !.-ly closely) located targets and demonstrate their joint asymptotic efficiency

- rapidly fluctuating normal signal.* The practical importance and applicability

of this case was repeatedly proven earlier. It should be noted that solution

of the first problem (only parameter X1 is unknowh) will follov, ab a particýular

case Iron solution of the second problem.

For clarification of general properties of optimum discriminators we shall turn

first of all to maximum likelihood estimates of multi-dtJsensional parameters. Tlhan

on this base we shall consider particular cases which it is possible to investigate

comypl]tely and obtain in explicit form circuits and properties of optimnin resotution

systems. These are cases of n targets with a very large signal.-to-noise ratio h

and of two tar'gets (n - 2) for any h. 4
!-.5.2. Maximi-um Likelihood Estimates of Multi-Dimensional .

Parami.2ters and Their Asymptotic Efficiency.
General. Properties of an Optimum

Discriminator

L(o:t us assune that in field of sight of the radar there are n targets. Then

the signal, received by the radar can be recorded in the form 1

p:. I 10 )

where n(t) -- normal white noise with spectral density N0 ;

y (t, Xp) -- normal random process with a correlation function depending on the
p unknown parameter X

P

R1 (f, t.) = Re Pm,, (t, A,)u01, (t,, p4), (t, -- 1,) X (i:,.Q.2)

Here Pp - mean power;

f(t) - coefficient of correlation of fluctuations;

u P(t, P) compier< law of modulation of the p-th signal:

#Unf'ortuntitely, with a slowly fluctuating signal tsaynpto tic efficiency of joAnt
r:.t.xiTrr. likelihood eIstimates utilized by us does not tayýK pla-e. As a result.
• .though the structure of the multitarget measuring system itstl:' is found withouit
spipcizl!. difficulties, the question of its optimality rpmr;ains openi. Therefore hwr:: we II
cnsid,'r only the case of rapid fluctuations of signals refle-t 'd froi;: the tar1 !§ts, I 4

I



Index p in these expressions allows for the posoi.b.le deper- )

ýAd Up(t, Xp) on other parameters beside; p. We sh:.l consid ) r•e
P pp P/

periodic (with period Tr) functions and that the interval of coi of fluctua-

lions Tpk [effective width of fvnction pp(t)] is much larger than period T,,. Al.

the same time we shall'.consider this interval much smaller titan time T, during

which paramxeter A is constant:

Additionally we assume that different reflected signals are statistically

independent; therefore functions of their cross-correlation are:

where p - Kronecker delta.

The formulated assumptions are normal and natural. A new element here is the

condition of independence of fluctuatioýns of diflarent ta•rgets, which is practically

always realized.

We introduce designation

T77P,), ) )q I= I)
where Cpq(Xpi ) q -correlation functi,°)ns of modulatuions of signals reflected from

dif'ferent targets. Tlhese functions with certain small modifications, determined by

"he essence of' the question in con-nection with which they are introduced into con-

a;ideration, appeared earlier. Thus, for instance, in Chapter I Vol. I we introauce0

f'unctions aO(i, &f, which are a partice.lar case of functions (13.5.6) when signalsr

jIrom different targets differ in delays and Doppler frequency shifts. Correlation

functions of signals were introduced already in § 13.2 of the present chapter [see-
(1.2..10) ]. But for our further purposes most suitable is definition (1-.5.6).

Let us note that, as a rule, G dots not depend on the index p and X . We :;htL.L
pp p

coý.,nsider functions %(t, Xp) normaalized so that Cpp = 1.

Let us turn to calculation of maximum likelihood estbimates of parameters A andp1
study of their properties. More in the first place we must obtain an expression for

the likelihood functional of' parameters X , which for a more general case wns found
p
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in § 1 .. We shall repeat briefly calculations of this paragraph in reference to

the considered case.

The correlation function of signal y(t) (13.5.3) is equal to

M (tV)J' (t1 = R ( t, ) = Re e "' -' t.) ) 
I

X • up (tat AVs) U*,(I., Ad,)PjePv(tt- t + N,a(t, - I,). ( 3 5?)::

We seek function W(t1 , t 2 ) in the form -A

Y II

W~t I, )= Re e' U"-" . V•, 2.0 x:)

where v (ti, t are unknown functions which we consider to vary slowly as comp',~dPq C1 2)

to u )
p
i b tituting expressions (13.5.7) and (13.5.8) in the !ntegral equ-ation for

func lion W(t]., t 2 )

S W Yt, 12) R (V ,, ts) dt,2 (1, --10 •? .•-."

0

and considering the rapidly-varying nature of functions u p(t, xp) as compared to
p(s) and Vpq(ti, t2), it is possible for functions vpq(t 1 , t 2 ) to obtain the system

of integral equations

Pq (t, -ta) + N: 2 Up (1,, t,) + S- PVP Y.sv ,-
0&=IIIt) cps, (I, M) ,,q (12. 1,) dt, = 0.

In the case of a rapidly fluctuating signal, when the effective duration of'

teaks of functions p (;) is considerably less than time T, we may asstu... that

.'q( 1 t( Vq(tL - t.), and for the Fourier transforms of functions v (ý.) we

can obtain system of equa-.tions

PpSP (OD) 8,q + No V2p (®) +

whet p(.7 ) and Vrpq(a)) !re Piourier transforr.• of funcicns p n) and v

Sr spective7 .,

I •.-775-



This sys tem, of equations io easily sclved. C cis(Ide r in

w.e rewrite Systeln (13.5.10) in the foirm

S (0) + IV: v + N S (W) CV (W) 0=,

fiv~c which

Thus, basi31cally, we finld funcreioll W(t. t,). TrUe, mnatrix inversý,ion in

exnresin(J.-1 is a verydifcl problem in i~elf.

estiirates of parani;trs X The syst.cin ci.' miax,'Iium likelihood equations h:LS 1thle

J~u0.

Let us designate by X() , oti-: Set Of ' (alis j.' the paramUleLers whi'.iih

weImcw are- c lose to -the true valu.-es c> it',ýoc~je--% lyl particular, these may

te true V~alues of the pav~irte ters. 'o r. s id r1.i t ha'"ji it I a 0 1 trt , l Ia rgL;e t ilm

of observation -voiations of equaicrlors (X:l)will bE. sufficiently close to

Ti

OLQ~~ ... ,) ?A( OoL(P.~V

fýor study cl* properties of' solutions of these ecIIIuat.1 es of parxmnount irotre

We shall consideru () .,x()~ vlu~ fterrm e~ efn h

:it.,n '' luc' and variance of this Tf,)a'riX (vs idc~rst in~ltim ty me;ari v!,. Iuc u' I.If2X0

Ti -r xcolfposed of mepaj va ueIS of' theC To mns i j er-nr f)ct 'xamtrix *
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(ý04npo00-- oi: variances of elements). We note here that tnatrix

A==J-1,(1;.5.115) ý

where .3is the matrix of variances and cross -cox'relatiuns of jointly-etficient

Gureralizing slightly the. results of Chapter I (Vol. 1 of thiz booK), we can

write the following expression

T T

U01 R (it It
-::-- OFQ -') - W (0) dIdft

000

FP~or this, after el.ementary trans format ions, we obtain 1

OL (K(). K())T ri
n' IX'. &W .,K,) _0 JR YA,, t,) dtd1A

2 dig dOAp ds(J .4

.ýuhstituting in (13.5.ill') expressions for R,(tip 2) and W(t1 V Y anu introducinU. ii
10) P ' (0

PQ Tr da ,( .6o )) Li , 1 X0 ))

it is easy to obtain the Loiwig

d' A Ref "' PMCp, - qj- CCp) * t 'i -) 
0 iq (11 - 4) d~l, +d .4

NI-0 00

T- Tre C~Cm

,,.rn = U)P X . vI.')d l t R C )

a, 9

ur~d ir~ ,t.1- -r-I!id y-va ynlnjr nature n-"urcic~ uD U "I2 ar.



uc~ 2and vp 1 ) , whch prmiti;Hd 1.:' uriIder'zgi 1 neA to alveragr. E'xpr0'-

:v.: wt uj -~ilon U (t, x S) ; eOlrl, Wtl USed tlfPc:'9 1uric t'ionc1 V. -

pru:.L-tically imme'iiato.Ly turn into 0 when L bA Ueycnc the- 'irliitC Of icwzLý!va1 (L C)L

vh.1ch permitted usw trj replace integrals over int<.rvf.: (u LT ron funetotin- 'i ,

-* w) by integrals ovto.c interval (-.., n.). Very :,i[gni~fican1, i.; i~zyn.ptotic idepancir.-r~ce

i~'L (X~k.. A IL Atnte T, havinL 'r

(Ic finding of dispersion D[ vr& ~]e use relationschip

0 0

(: x~l~'.osipT thl~s typo we deriv(.d firici ar,-1 in Chapter Y, of this book) . ý'Xfc t

- nut 1!.t- ion this i!Lt(.T-d, I IL.- r!,.th J~~cxo' -_ le r our probltrn exact. P~icwlede.c_

r M5L (X(1), )(no))
1, 1.t L _Ih!-ar.e i gi t iud e. i Ii: not -ri. -rqj Vc3 ne :1 isary o,.Ly to k.now

the1. U:;ymrptc'tic dependencuf- l th13i r~itd on) T, It i., eazy to s(co that- thr.

:tdintkif!ral ic' ru wit Jir'!tj.'L:ln: of of ~as 1 typo

~ ~ S O~Ohl (11 _') tIs) (1,11) pU , -f --- d4)did, d

UIAtit 'ICdetivalJI'. iv'u 1J) IQ irc NpxtbIrd l ip tL, and inc 1Uiidimr the cec rui cr.
q I

ii, 2! , r:4n WI'lo iloll' 11 L' xt I) . :u1In~f1r2 it lif: Ji(2 3 b I to nlo'. th t we hftqf'

X< ddl~disdild4 7' Via VIj() U-1. (1,) P'. (1, to is -) x

X- pl i)dlid.



r r r •

*~~~h I.s (- )v.. (t, -. ) p,. (t. -~4 dtjdt~dt,dis

TE S v•, (, )c,,(t,)) . .Q (t,4- -4) dt ,d t,.r r

SVgI (14 V~ ... t - Q~ dtad4 T S Ci, V.(t) , jdi

-m•

From this it follows that

]J
D1

"O ")-I i-
ID , nO, •T

OIL (A1...0•) X(0))
Thi-. lust relition;zhip shows that for large T quantity .3'L O .

probability seeks Its own mean value and may bg replaced by it. Thus, for .are '- 1Id

m;trix. A :. Now we can solve equation (.-3.5.124). Using (13.5.13'), we obta"inr

f=11
wh',c I_ r -- elements of matrix (13.5.2).

H~ence

?rmthe~e,:qu!,1itie,-. there! enrues, by definition, joint effilc1,ncv 1:,.' ,f .i•.;

l~k: )lho~l,,,•t~,, t ak ;•irI( i)JA.CC,, wi.th rA rapidly f.']uetuatio,j sigrrn ], and a• uY'•-e t /i

•1,tv,;, ito.e th, • Ir l itheý oV 01G;;CL-vntAit T at whiceh w,- aJlre'ujj },ivtý upprox].-C,,...
, i I'll'",n,:/ of' the .'.•; ,Y ,- L l la .0 if; greaxt'ir, thre ].r!FCS t)t 'L (,! d tl','C of.

L .I"; to mc cJ[[£.F
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1.4 ii&te now that all the results presented are easily generalized in the case

wheiL we obs~erve, not a scalar, but a vector signal. We meet such a case wheni the

radi'rl has a. multiunit antenna. In this caoe we observe *ýeveral signals at the

cutput of different elements of' the antenna, We shall. erinnerate briefly Leobvious

modifications which the above-stated results will obtain in examining thic ~,lore _

g7eneral case, Signals received by different elements of the aintenna will be recorded

in1 the form

10herei Y(Z)(t, X)- signal Crom t~he p-tb target at the output of the t-th element

uf the antenna.

The correlation function. of signals y(")(t, X) will be recorded in the form
pp

Where 110)(t, >') complex modulation of th io na reflected from, the p-tb target

'urid received by the i -th element of the antenna. The correlation firnetion of the

whole sign~al (13.5.18) will have form

Y1, tJ Y1" 0.) Re e" OP Y 1(

(~~A;drnoises n,(t) independ'rntý). Function W(t 1, t 2 ) now will1 b.Žý equal to

W1,4 (4I.1to) Re eltt (1 V" q Y. 1. (4,

'/11hcre function vpq(t,~ t) will be precisely the same as in the case of a scalar

Agn.Al only by C~ (x ~ Xq it is niecessary now to understand

F'r~e~ eltonhps(C".i1 artd (13.5 14() are q relcdi byP P
0 (80-



S2
111'= 10 0 OW,,,, (t,. is),7

( 11 (, 1;) di1d1, - X~ra,,(,4

X ji. (til yl, (is) dilt2t. ,

Ne, Xr

Sdt~dis (13 .5 20)

(by X(O) we again mean the true values of parameters X Expressions (i3.5.19),and

(13.5.20) are obtained by generalization of results of Chapter X. Those change.,

which the vector character of the received signal will entail are limited actually

to these.

We proved the asymptotic efficirncy of the maximum likelihood estimates. On this

basi3 it is possible to find a system of optimum resolution in the case of parameters

of targets which do not vary in time. In the case .of slowly varying parameters X

when intervals of approximate constancy of these parameters are great as compared

to times of correlation of fluctuations of the signals, the obtained results permit

us to find the operations of an optimum discriminator. Actually, let us a:3sume th-.t

the output of the p-th channel of a certain meter is X (t). If this quantity is close
p

to the true value of the measured parameter in every given moment or time, then,
, A

considering in (13.5.17) p.X) p we obtain

et

where X.D is the rmaximun likelihood estimate obtained during time T.

Considering the tbia-sed nature of estimate Xp proved above, ae note th, i£

mean AX is equal. to mismatch between the true value of the parameter and t,-, outp't

quantity of the meter. If we nuow prec.ent AXp in the form

r

(t)(d. 5.22)

Zp(i.) is a quantity which i;-, cn the average, equal to the curre,-t mismatch beýt, weer'

thie true ard '%easured of': cu par-'.vieter Xp(t), Corsid.-,ring thc very greaL, 1I . .
p

j r, ýý I 7-961NM5F 4a -q



th-" -c.itoothing circuit-s, for zp(t) we can write the ztatistically equivalent

expression

z, ( = ,&AP (t) +1 EP (1). ", 5. ',%z )

whore AX (t) - true mismatch with respect to the measured c0!.!dir'ate;

•p(t) -- white noise. The circumstance that variance of quantity AX is

minimum testifies to minimim spectral density of noise p (Uj.

Thus, under the above conditions for any smothilng circuits of a meter optimum

processing of the r-f signal is carried out by a discriminator form.Aing the set of

quantities zp(t) (p = 1, 2, ... , n). The quality of its operation is characteriz•

by the matrix of spectral densities 0T = T where

So,,, T-TJ. (13.5.2)4)

In order to relate S3 (pq) with the equivalent presentation of (1_-3.5.23) we note

that noises 4p(t) are correlated, in general, among themselves. Their functions of
cross-correlatson have 'Oa"

S(9 ae( - s). 035.5.25)

The problem of synthesis of smoothing circuits of meters of coordinates of

closely located targets should be solved :;f-,parately. In the case of rapid fluctuations

it ha-s less bearing on questions of r-t olutlor., W- note -that difficulties connected

with matrix inversion in ex.pre.sion ( .- 1i) permit, us to obtain discernible results

on.'y for the castý: of two targets. 13ut measuring conditions, of radar devices usualW

'D.i> ijLh a large signal-to-noise ratio. Therefore in examining meters of coordi-

nates of many targets it is completely natural and justified to assume a ýarge

A ?.gnal-Lu-noise ratio, This assumption, as we shail see below, .permits us to obtal,,

.utfiiently simple and physically intelligible results without limi-tation on the

,ummer of observed targets. The case of an arbitrary signal-to-noise ratio we will

o.u,,.sider with the example of a two-target problem.

513-.5.3. Optimum Discriminator in the Case of' Many
Targets with a Large Signal.-To-Noise Ratio

The above results [see (1i3.'-. ), (13.5. 17).] in principle permit us to determine

hte general structure of an optimius multitarget discrininator with an arbitrary

signal-to-noise ratio. However inversion of the corresponding matrices of hig•h and

artitr!a'y order in this case runs into considerable difficulties, so that the

' -- 782-



structure of the optimum discriminator turns out not to be completely discovered. At

the same time for measuring problems of special interest is the case of a large

signal-to-noise ratio, for which these difficulties can be surmounted.

IWii.h a large signal-to-noise ratio elements of matrix nrS(w) with a sufficiently
0

w are large, and it is possible tc expand (13.5.11) for V(w) in a series of

negative powers of this matrix. Limiting ourselves to the first two terms of this

expansion, we have

N, (13.3. '>r5)

From this for V (w) we obtain the following expression:
pq

vpcr (m) - C + 4 p S()57)

r=1

where by C we denote elements of matrix C-. Subsequently, we use the first term
pq

of expansion (13.5.27). Obviously, the condition whore it is possible to use such

an approximation has the form

~~~ I;c- = ;--5,
W e r q ( 5.2C =I C I E I e

where S)t(rn) = AfcrSr(w) - normalized spectrum of fluctuations of the signal.
reflected from r-th target;

Afr - effective width of the spectrum of fluctuations of thissignal;

hr P r/.2N Afer - ratio of power of the signal reflected from the r-thtarget to the power of noise in the band of fluct.uAt~iori,

of the signal.

With a sufficiently large signal-to-noise ratio ccndition (13.5.26) WiLl. b1' I
carried out. It is necessary, however, to consider that condition (15.5.2.) shoo],

be roalized in an interval of frequencies sufficiently exceeding the width of the

spectrum of fluctuations of the signal.

Thus, subsequently we use the first tenr of expari'ion (13.5.27). Je s.i I j..
calcitlate iriatrix i (13.5.13). Differentiating (t3.5.7) and (13.5.8) with respect

to pL'aam,,iter; ), and A q respectively, and substituting the obtained relationships

In ( J3.9 . L4), we can obtain the following very important result:
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OI'L QX'O...., A)4)) r ,
Al N, q p (;j q

where we use des;ignations (13.5-15).

IThus, matrix I is diagonal., and the jointly-efficient estimates are uncurrelated.

IThtrix Inversion of I causes no difficulties;, and t'or variance. tlIvc eýtficiontL A

estimate of' paraxeeter X we obtainp

2 - I A_ _

This is a very important formula, characterizing potential accuracy of'

m~.u'eetof rcoordinates of several tarirfets with a4 large signal.-to-nioist; ratio.

Ai2equivalzenL w;;-)-ctral density (for thi.;' pareymeter X )is. determrined from ( t.). .30) -p
Iby multiplication by T.

Soul

It, is important to note that aceur'., LA.'a rimn,~ cr)ordinater, o±' theý p-ti

3' does not dupend on the if/o Cj Iin ulce 0~i l1rtrJ2

711;L tl!tifie to good compenuation of' the interferingr irias lun o.ptiimum-.T TfiC-I.Fer

ci oociil.:LIec 0' )iiany targets.

ptacc to finding the optimum proo-e:izing of a signal in aj metner (if' ccoor'Jlila.(.oý

I-, trgetb. ;ubstitutinC exp-ressions (13.5.7) and in (~ 5 1I)j i

'v pi-ove that the component not containirig reulizationir of)I signals will. lj:- l

i;o z',r1. 1 A-, a result we have

T T

11' the. sigrwl.-to-noise ratio iii g!roa-!!t, t~hen w~itin a frequency range(- :'uI'ficif-nt y

' ecdiri the wildthl of the 6pectrwm of'i' f]uctuatticiu (f th- ,Aoxnal viwe havel. V r,;-

1.C . , ~ uctio '0 rs ( t t 2 ) ,-an lie considjered -sa~JWithi 1,91rlpct, Lo
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flucLuao..ions of the signal. On the other hand, as we know, function Vrs(t) is very

slow in relation to functions u p(t, p). Now V p(ti - t 2 ) can be presented thus:

0 j'q (Y' - 10) V ~(tit - tsIr

C1 h (I - Ihs-- h(t--t,)dt,

where h(t) -- pulse response of the filter integrating modulation of the receiving -

signal, but passing without change fluctuations of the signal.

Here the derivative of the logarithm of the likelihood functional is rewritt•,n

in the form

T rr

I3LQt.... d.) - (I dt) XtA
2 o .

xht --.t) els"s -'•(t,)yUs) _ u, Yl,, 1) x

X C- U%. (to, 4') dtzdI,. :5..2)

The circuit realization o± operation (13.5.ý2) can be carried out by variou3

::;u.hudJ, U,:.re it is important to obtain the simplest circuit. For this vcv Cal ia,

expressioni

U,. (11, 1r)U*. (to, 10 c,-,19
f. owl

in (1ý,.5. 2). It, obviously, is equal to

uaQ,' ~8  u(tills)C ' 1 u0(t,,o) .+---- T/--

) T (. o, ,, +tI

On th;: r.h.r hind, we have

ac-' C-'.aCC- E, C + C • 0.O

1 (



.,uustitutirig this expressioni in (135-.5.3) urld then in ()512.for the

dcri vfttive of the~ logarithm of' the likelihood functional we finally obt.Ain

d r
:= -Tdi Re j h(t

ft f0 0

k~ki~tJIing the proportionality factor and. 1Lhr; integral over t in expreSsion

(155.~I),we have. an analytic expressior f'or the operation of tUhe optimj.iix disorlir-

z )Re~4- h u (IU-, ,

'ihr ~o dira:~of an optimum rdiscýrIimina&Lor execuuing oeain(1..3)i

r.d in Figr. 1.3.7. It coincides in .2 cructure with circuit,3 of cliscrimrinators c"

'.t C. OoxalnaiLe5J of one target; only the hieterodyne signals by which we rA J p.

JN.: r thLe charkykej.lx were changed. The physicu'l meaning of introduction c). namely

uh i-:terodyriC signals, is rather easily perceived and is very curious.

i.~ea --tocsublish by meajnr of direct u Iculat Icon, i2 orthogona- to the

I k n Leri- ; S ig~nals.

1.gx7 66



V[

oJUt to be orthogonal to all signals without exception. Thb special form of

reference signals at the output of the circuit ensures the existence of a signal

only in the presence of mismatch between the input and hetarodyne signals with respect

to the measured parameter. The output
9-- 11"r(5 ;k) signal is proportional to this mismatch. -

The presence of a channel with heterodynie

2 signal (13.5.37) is cauued by the essence

of the measuring problem:. we must tune away

from interfering signals, even if pararreters

corresponding to these signals are ,io;

Re.fu ( , known by us exactly.

Fig. 13.7. Optimum discriminator of a The meaning of operations of the
meter of coordinates of many targets:
J) mixer; 2) filter; 3) multiplier, synthesized circuit can be grasped more

clearly if we analyze this circuit, i.e.,

directly calculate its characteristics. We shall calculate these characteristics;

here we shall not be limited only to the case of a large signal-te noise ratio, since

this calculation is slightly complicated if we consider the signal-to-noise ratio

arbitrary.

Furthermore, we consider that filters in the analyzed cirouit have a frequency

barid comparable with the band of fluctuations of the signal. This also does not-

complicate calculation, but the obtained results will be more valuable from the

practical point of view. The fact is that for practical realization of the can-

sidered circuit besides knowledge of its optimality for a large signai-to-nojsx ,i_ i

i,L is very desirable also to know its behavior in the whole range of sig,; ... c-noise

ratios; it is also clear that for small signal-to-noisc ratios aaciracy o9i, Jle

mly:zed circuit will essentially depend on the width of the filter passbands, uai, ,

conpar.0"tivu: aalysis or all possible situa, io1* i:!rt is uf extra...i..ary int.r..t.

Aus,w• shI consiIer the circuit depicted in Pit. -. 7. We conside:r that B
filter:. nn this circuit have frequency response l(io). Using expression (. . i.K')

1 The cjij,,t. signal oi the considered circuit and Introducing 6•}sirnationo u(') txnd

t,,l-76'; -7.



of (I3.5.3Ž) and (13.5.37) L'or modulations of the haterodyne signal, we ,an

ulStairi the following results:

Z~) Re bka~'~ 2x H (i)-S u oR ~ (i A. &)
hml-

where

u= ()0j, (1, X.) adt;

0*

" 

5.

bk=:-(0 dt;
C t V W At (1

f - effectivo width of the filter passbalud.

ConsiderinfI true values of pararmetero X* to coincide with parameters of the

iLnals of the heterodyiie oscillator u(L) (.m.'>.3u) rid v(t) (13.5.37), it is easy to

flina. that1,,k = 0 arnd systematic error

logoT ý-0. .I

With detuning AlX between the shown -:lue- of the po.:rameters from.] (i3.5.53') and

(i3.5,39) we obtain

C(1)-. C(,O)C-IC401)•

X •- S IH (i-)l' S. (w) dw, ( ,

*,i;,, the mean value of the signal at the output of the circuit is propc2'tional only

:.o mismiatch with respect to the measured parameter and does not depend on inter'fering

* ;s~g~hfti even in the preserhce of mistuning (of course, small) between true values of

their paraineter, and the values introduced in the heterodyne signals, Herein lies the

mieeating of the special and complicated torn of' these signals. From expression

(].s5..40) wu find the slope of the discrimir' ition characteristic of the analyzeid

c Irut i:

K,= ) -L", S o''c',°, " (iw;)II S,, ( d.,. 1 .4. -1
2 va-IV 7 2
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Spectra". density at zero frequency of signal z(t) in the absence of mistuning for

all parazeters is also easily calculated and turns out to be equal to

Iv(t)l'dt X

S ~r
X IH (iw)I' SP•(•) +-L dt) dw.

i s (t

From this we obtain the following final expression for equivalent spectral density

with respect to parameter X

p

H-3 (io ( ,)I'. (w) + C d.a

p 00

wheire hp = P/2N 0 Af^ - ratio of power of t'Vie signal reflected from the p-th tar.'c-t

to the power of noise in the band of fluctuations of this signal, and

Sep, (W) = Ate SP (W)

is the normalized spectruir, of fluctuations of the signal from this target. It i.

easy to see that for a large signal-to-noise ratio and widening of the passbasnd of

the filter expression (!3.5.42) coincides, with (13.5.31), i.e.. accuracy of thE J
analyzed circuit in these conditions, naturally, coincides with the pctential. accura.--_y,.

.'rom t3.5.42) it is easy to establish the conditions in which this takes place:

'610 :. Atop.

Practically, it is sufficient to have

To produce calculation of accuracies by foimua.as (,5.5.31) and (13.5.42) is fair.5y

dif 'i,2ult in view of the complexity of calculation of elements CX matrix 0 rip Lnp.

Iorrt.las are obtained i'or two targets. Here

1I 7- 7,- -8 9 -- -%. . .: . . .= ,.• . . . . . . . . . . . . .. . . .. . . .. . . .. .. . . . . . . . ... .. -_ • . .. -- .. . .• • - • • " • ''
, ,. r, , . - - , . . . • , ,, . .. . .. . -, . ..- • • . - : - ., V••. . .•:.•. --.--,- . . .,.. ........



I CT,

AiE.~ uircuit Of zie optim-,um discriminao 2c 0o'Lrsn tp tlC f.A t&

the f'ormu depi Aceu in Pig. 13.8. Modulation of' hezeroyri siAl nti ie
-tii be presented in the form ~ 1 ~( ,,

-u 3 (t, A,)

nt e-pectral dunsity can be -,--enteu nta - ai

2P iCVI11
0)I' + IC(T0)' -- 2Re_(OCW'St

'ieopuilmui discrIminator for the of0 i two b f. 50xi .ia I ill1(i

;1beL ciri L .1,c *ouext paragraph. In 2onuluion wve 'fijail brieft-.j consider tUhu e ,xIelic

thie ci qm, hs ;:. vec~tor ch;-Ait.: t ii' *r

rio fi ) ~A I¶-th)ert Ti- tli; t',c we hajve seen,

4 -L a density of the observed :Aignais, .

expressed by the tanner forumii 4

1 2 (3.5J-11) only matrix C it! coo 1-

its elements are detevniz.'ýd noW

Re ud(tA tL.~ by formiula (1..1) onsecjueritly,

with a 1 'wg, i tl-onos ral'ic.

I Optiim~un di~scriminator of' a muiter V( u s befo re is I'ouiid in tit'
f rdin'tl)A,ýý _1,two targets 1 'I tixur;
f) 4e Ve; 3)mutj.t i-plie r. Yro 13 ,il)o 1..

theL u'-c expression (1 5. -. 1.81 for correl ijLiun Puntok tufl (ýI the l-elo

us iand eýxverssi101 (1I51' fOr functions W * t ( 2 ) in toziTo~lui 2..)

TI re IL- 1.; oaey to t'iii' t-hat



has the -ron,,er form (13.5.16), only functions Cjj are expressed by formulas (13.5.19)

-, I " t . ( j) (,, --4"Tr(1 (13.-.44')

o'" ' r., .° "(I. X,) dg(I•, 7,J)

Consequently, ( and S will also be expressed by the former formnuila-
C3P p OUT p

(i3.:.30) .and (J3.5.31). Then, formula (13.5.20), we can obtain tor zhe opt-ima,

operbtion in the considered case USLng tlvr foliowvnv r,.p;.eSon:

z( R e h (t -- (

(Z3,5.4.) I.s depicted in.

, . Fig. 13.5. This circuit

" .• ~coincides iin structuire ,'

_ analogou• circuits ol Thet( r,

of coordlnate'; of one I:,t:,,

- (see, for instae~i:e, 3j<,' r'2

_10,3, i5,; j, ) hoW,,e(2Y =.•

t•"•. t,,.• • f~orn ol th et he~e'o-dynes.:nt'

.ug . (-; O!tirrum di;.'.ruit -
j , , , ih, ~irr'•ter c '~ , p ': terI (:I anf.l ul i

coor i~n' t er ii ma', ,,ia [l,•'•" I

' . ~filter.;; f) ru].tip tiier.
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!-knLuged. Their structure, ao it if- poIStibie to U-" U aareutOf anL~ryL;i\ yl

~2ain(13.5.45-), obeys again thie saite principle: to in, iricialiy, wt!unawa iroil

Itt erfering, signals, oven if' their na~rameters arc:- not. rnc.wj, e:Act):, by us.

13.54. Optimum DiscriiminatL in the 2Leof Dec 'arg-.rý

- Let us consýider the case of two targets (r, 2 locate-d zo close: to on-

antul.I.er that their signals are niot orthogonal. The siennAJ-to-noa 3e r-Atio h w, shrill.

ccnsider arbitrary. Let us asLAwne that parwameter v2 Joce carrier is, .;igna,LI

,),is to be ineasurel. i'ignail y t 'plays here the anVlltrn.

WNe !lirst considezr that the coordinate: of inl rfereticco Xý, is knýIown (is. measured(

viiLi: ri-oeat aLccuracy). "ubsequently we shall, reject this assumpt~ion. Considering

co~iic~sof corre-lation. oV tin use-=ful and inte-rfering Bignalýs identical.

(v1
0) itL) ~t))ind expres:ing function W(t., C1), the inverse of' the rrrltior,

fls'un ini the fornt

then, s~ubst'ituating (13.57.46) in equation (1fý U..,w rrijve, at tIli;5.,w

o'iinfor v(t, 1):

Sa,(') S (I s) ul,(s) v(s, ds +

+s..1 .)iU; (t) U, (g):+.2N~v (t, %i) =-0, ('

'ye P0  P1 P, = P2  -imean. powers of' the useful and interfering sAinals.ii

:;lunof equation (13.5.47) is souight in the form

2
vQ -I):=- VUj (V -1) U/t U*j s%. (13. 5. 46)

*½btittin (1.5.8)in (357)and producingf approximate calculation:; allowing

tor nobse-rvance ot' condition r Tk << T, for the- Fourier transform., oi' junctions

VV (Pý T), wie obtain

-' 92-



I

2. + PS (co) • *1
V12 (W) W + Pe S (a) F 1), ( 5IV.~ ~~O (,)= 0 I,)

V 12 (-.) -Ce-"F (w),

VS, (0) - e"F (w). J
where

- S'• ((- J.5.) ,]o
JV) - - 41Vg"[2,V. (P. -t .)S$(w) ]-PcPS$2((a) ( t -111)

and -y and q, are deterained by function C2 1 (13.5.6): '1

We substitute (13.5.46) and (113.5.48) in the likelihood equations (13.5.12), (13.5.4JI)

Here, considering that this equality is valid,

T r

7r I

"- ahj dIII h (t - s) a, (s,) ds, X
I

XI h (t -s,) u* (s,)e-10"".(s,•ds,,(•.: 5•

thE tterm of the likelihood equation containing the received signal can be reduced

tuhe form

T T

ILdt h,, (I el'%' ( -)c~' ) dt

+- 2 aRe s h, (t -c ,) u, (t,) e•loy (C,) dc, X

2Reh,.(t - C U)a , (C) e (h¶aY t(,) X

X h,,(-. c,)u*.(-.,)e- ', i
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wVLere h (1,) -- pulse responses of filters, squares of moduli of frequency responses o'

wi.ich are defined as

Ifl _.(iu)
3-'- - V,,(o); If.. (•o)r' - V..(W).

N( V, (0) N, V,(.) (V. IHe-2 ye 2 e1"

The term of the likelihood equation riot containing y(t) after subslitution of

'the value of' W(t, T) and necessary transformations takes the form

QO~ ~ ~ P PUPS, M= Q •;. .. 5

4NO2 + We• (P C + P C) .S M• + PCPU$2 (w)1 0- TT

,'.'ith small signal-to-noise ratios

.---- . - S'(m)d.-

where h PC/2Af0 N0 - the signal-to-noise ratio;

G • e - the signal-T-:,.•r' cc ratio;

Af - effect;ive w.idth of the spectrun of fluctu:..ions of thec signal;

S SAf3( w) -- noxualized spectral density of fluctuations,

j.'ur Larige Ih, considering S('.:) a square function, we obtain

,;IXIL; the preceding equalities, we can write the likelihood equation in the form

d -- h

- 2 y Rehi. (• -• ) a, (,.)oe."y (,) d. < 5 ., (,- e,.)). U*,.(¶ -e (%.a.+,)9 d•(.)d.} + =o.

I



It' wo approximately repiace the operation of differentiation by calculation of -

a finite difference, 'the optimumn circuit, corresponding to (13.5.55), takes the form.

of Fig. 13.10.* With small. detuning of channels Aand not too large -y character-

istics of filters depend

little on det~uning. flisre-

garding this: dependence, the

12 acircuit can be simplified nd I
1 reduced to the form of Fig.

13.11. The circuit contains

two discriminator channelF,

intended for workinLg out.

mismatch with respect to '- j.A

U ~These channels of an optimujf

I 2 discriminator when there isI

Fig. 131. Optimum discriminator for measure- no interfering signial y,. t
racnt of parameter X I when n = 2: 1) mixer; 2) ol ycaatrciso h

amplifier withi gain varying according to the law
of amplitude modulation; ~,4 ,6,, 8) filters fles ohfrso hr

wu'Uli pulse responses h 11 (t) Cos ccOnpt,
hL (t) Z at, h~t co a ~ )Cos in t, acteristios of filters coin-t n~~p' 22-(t o ~pt' h22+t rip

re-!petivly 11squre-awdetector; 12) phase
dttctr; .3 11ý mpiferswifýgain -2-y_ and

cot ~ ~ ~ ~ ~ ~ ~ o compt)cs~, epcivl;wensation.Farthe inter-

fering signal, and in it tiher-

1 provided insertion of correotion I for compensation of systematic error.

Is - pcssible to imtagine other circuits corresponding to opcrations .t.,

pri.duced on signal y(t). In particular, it is possible to create u discriminator

with only two channels, occurring in the absence of interfering 6ignasý ha>

wlireference signals properly modified. The circuit of Fig. .3.11 is expeýdieril3t

tiacking rajdar meters of coordinates of two targets. In this cAse as the: fAana

compenvation we can -use the channel of measurement of parameter X 2 . Thoi~rcrI. trmc-Ii-

1orn 1, te output. of this channel, we realize tlie required compensat-Uion. i 1.

s imapIex- thron change of the complicate-d reference signals necessaury upon change 01'

dLstt-n(ýe.,. between ltargets. in the other variant of opý-ImWii di~scrficnirator c:'ad

r2i p t.r"-t in the fig-ure corresponds to channels delturi d -A),; 'md ca2!il,

'±" .rrc.pndsto dletunining 4Aý. relatxive to the measýured V .~~ ~

-Y)--95-



1:

i....i pi.i -At a n t

.n.or )a

i t h

iA

Fi• •}l•.Sinplified c-ircuit of an optimum discrim-
inator: 1) rixer; P) amplifier with gain varying accord-
ing to the law of' ampiitud•; modu-zalion; -), 4) filters
with pulse responses 1 1 (t) cos .,. t and h ,•(t) cos Cnpt,

respectively; 5, 6) phase shifters with phase shift
cp and q+, respectively; 7, 8) amplifiers with gain 2-,
and 2y+, respectively; 9) square-law detector; 10) phase

detector.

Ih connection with the fact. '½,.et 7 asru<i ,y"s..eAs ire quei-,1y work with a very

,lr•&c signal-to-noise ratio, it is interesting to discuss further simJiplifical ions

t'.-hthe considered Aircuit for large h.

CoN (13.5.19), (13.5.5O), and ( ic follows that. for large h the squares

•' ::.odcll of frequency responses of all filters become identical and equal in i.

m:nd o.'i i'uctuations of the signal:

H,, (lw)j' •- Il (iw)j - IH (ij)j" == (2 3. 56)

AU. ch same time, in accordance with tne hypotheses made in deriving the basic

rr-:,.tionships, these filters are integrating fur Aie period of modulation of' the

--,.in]-i T It is easy to see that equation (I"5. . , here takes the forn

fS -{*i I Q11, + iQ,I' - 2y Re Q,Q*,e-"Y} dt +1=., (..57)

-'196-
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where

't

$ u. t--r3

Equation (1_'.5.57) will be transformed to

r
a .M yelQ*I2 dtI---O. 51.559"

With replacement of differentiation by calculation of a finite difference

operations of týhe discriminator are executed by the circuit of Fig. 13.12. Cir1ii.ts

of comrapensatlon in this Al

scheme correspond to

f 2 7 total. sup-)ression of the
"I+ I N* interfering signall (see

§ 3.2) . This circuiM •I

dif fers from the circuit_

Aft-). , 2optimum in the absence of

y()and, with h 1, t
which there are added ]
only channels of ortho-

?

1 gonalization (total j
Fig. 13.1..2. Optimum discriminator for a large signal- suppression) of interj',r-
to-noise ratio. 1) mixer; 2) amplifier with gain vary-
ing according to the law of amplitude modulation; 3, enfc:e, by the presenue L!"
4) amplifiers with gain y_ and y+, respectively; 5, 6)

amplifiers with Caln
phase shifters with phase shift -AT and +A+, respe1-
uively; j) filter, integrating for period Tr, 8) square- factors - and i;

1 22law detector; 9, 10) amplifiers with gain (I -. y) and +.-'amlfir wit ga -an
- ± respectively. introduction. of corret.ion

INo
I0 ---. For small -j, very large h and small detunings AXi the shown diti.'(tr"'ICes of

circuits are absent,

The optimum circuit ensures absence of systematic error, and the equiva.Jent..

ý.pectral den-Ity of fluctua~tin error of mcazurcmcnt of paramcter X is defined as,.c
S2 o2

0 t. 2 T, where c.2 - variance of' the efficient ectimate.

It' y't) is a normal random process, 3 G II is found in accordance wii.h ( 3.5.14'

.. .i (" 5.. 24) by the formula
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ont If q' -R (4-)OW (, di dc. (3~.3

Substituting, in (13.5.6o) values fi 1ý and W and producing apprcxi.ma4t'.
y

cpa.v,ýiiaticfls, valid under the assumptions made above (j << < )Ke i~-

euS 2[ - o + B]C + 2y% 'PAD~
ady 08OB _2(ye A~ 8) M.;

whi! Yrc

SF(.)S (w dw;J

D CidoIL..I du (); J,~j.)I

"Fo~r 1.ari''e st;,rnal-1:o-clsc 1& t ¾ l'A' ( .-. i;mpli'i.eo, 1.a~.rl'nC r

ON [0i K,

Tr L~ie, v i, 1n' hiie Coxmula we ausumnred thri-,(i -y )h >> 1. II, in easy to n~e'f lo

Il-s ~rnu~1 r3 obtained fromn (15.5. ý1 when rn 2.

'Pur Sm~all 1 h

S 2=h1 (C D'). 3 (w) dw. 1 h~

;,c th~it the L'ourni optimum '-ir'-iit Un ' wu''y1,i.Lu~t~tC ~ 'ti..

CL i'o;-,poricing to foririu (i.l (135.,~ ( .5 ~wrn~r e xac T tuning~ ot UflIi.' jf hrra~'2 i.(1.**, unorrrirng Irnowiedge ca' quantity ~.] rttI'~I2'lw crh ~r112I',j

p n i g to te --.o(jr1'di~iat of r'tex'i'o inera. -u (I ri-1-01r ' .i , In Jr



res~i)s of Paragraph 13.5.2 it follows that the best case is when there are systems

of the considered form for measurement of parameters XI and X2 , acting Jointly.

Toning of compensation channels in each of these systems is produced in accordance

with 'h.v output quantity of the other system. To find fluctuating errors of such

s.n:mP it is necessary to compose matrix of spectral densities (13.5. 2 4). Calcu-

i.ating the element of it which corresponds to error of measurement of' parameter Xk,

for the equivalent spectral dentity we obtain expression

where spectral density of fJtuctuating error of measuremen2 of parameter "Pe nT2 for known X which is found from g if we change the pl.acec her,

of PC and P and. also of X, and X2;

312 -- mulual spectral density, determined according to (I3.';.14') as

I'J 2T Ir r=_ _ ! R O , (1.,I) 9W (t."[) did%,. (13.17,.b

ealculating integral (13.5.66), we have

S- = f (2ý ... (r1

From (115.15.5) it is easy to see that when 0. C equality S if;

wi./iul, one slnoul1 have expected, since here there are no compensaticn c'hrnnMel, .*Jnd

1.-'), p:4r'Jmieber is measured independently one from rhe other. As h - -), b1, calcu'L,, In-

`-, we. prove that this quantity approaches a finite limit, while S 1,2 "

S- ;,IIl •, ).nd t'luctuating errors for larjge sigrtl -to-noioe ratios are dele:!,IL

?or srmall h, using (13,5.64I) arnd calculatI.ng r. we obtain

'-"

Oki-

,, nl elror of.' mir,: rerw , . parrvr,n,,r ,-r

{ : '•. ':l''|.l'i •,l lf]•ll3l]['f~ilr~ll , O )r'llVI(0t.l..X'l .



i 3.6. Analysis of Systems of Detection and Measurement
wtith Suppression 01' Distu,;.irg Sig~nls

1 1u~, Sy~stem of Detection

Out:put. siguals of the separation sysuesi synthe.sized in §715.2 can be used fur

ftivaing, a decision about the presence of Lcargets and for meusurement of their

Rup (wooe' coordinates exactly as output Sij7;naiS

$of Systems for stIingling (.UL a Ln

against a backtground of noises a.,ia

int~erferences, considered in prece';.i,

. .... ........ . . . ** O cliaplers . -3uch a de~tector or- mel_'-4

Re~(~rw~~n6e~t~~Ptwith sat prossion of disturbing

signals differs froxn the correspf.nYd-

Ue,(t-~gjv)Ing devices calcula-ted for the

j & presence of only one 'target only

U pt in the form of' reference signalli orh repneoI'te hrinn.

- -- -- -- - - fi Lta:r (in the -asc o1frng) As

4 ~examples, in Fig. 13.13 ihere areP

b ) gi"-n t~wr, variantls of a bloCK

*/I / ¾icc k di lagr.arnt of a ;ystem *'1t~m iasstr fdtct n0
I u ~itl sup r ss o!. ofnterferlii

2 1wi1.hao iip 1 at ' j '' cr tre~.sIi a~E of distainces,

vJx-r. 2) filt-er: 3) Jete~ctor, 4) rela/(wt flrtinan ih nltpi
I CWer 'ýj'hd'Jith !-he law uf modu 1!tt ion; (wtfiraonndihmuip -

cation by reference si. ,Als Shi~fted

In time).

h".considter characterltsics of detection for such a system and ,omlptre

t.~. q1 Ithe optimurn. First of' all one shudnote that the c~tb1ta f ffalsze

I"It 'tiji Jruc (L ectian oft one t~arget with fixed parameters for a systemr with

1"r 01o' ,t~l are det~errW ned by the very same formula,; as "'or a ssysteii wi thoul-

"I1.",' 'r',. Ion ol, S.yigrl s. The difference consists only in the powers of' the signal.

IIISE ebt.riedai'ter mrultipli cation of the rec~eived sigmal, by th ref'erence

~ ai itr~railon(:Ccc Chapter IV, V"ol. I) .

'hu, c'p'trisi sof characteristi~cs of detect.] on of' one target. in systeji;.s with

s'tJittslrland Without suppression of' interf'ering signaILIS reduces to com-p-rison o1'

:i dig i-fl -to-noise ra,,tios;,. Such -omp.Arison already was c~ondli-l' ed In1fill00



1,2. The same remark is also valid for an optimtum system of detection of a given ,

target against a background of disturbing targets, inasmuch as such a system differs

from a system with complete suppression of interfering signals and subsequent pro-

cessi-, of the same form as in the absence of interfering signals also basically

,.:,..y in the form of the reference signal. Comparison of the corresponding signal-to-

interference ratios for the case of one interfering target was already conducted in

i3.2. 1. ,

T.ie difference between characteristics of detection in systems with suppression

and without suppression of interfering signals turns out to be more considerable for

detection of one or several targets in a certain range of values of parameters 'i

we use a multichannel system of detection. This difference is caused by the f'tct that

noises in detuned .zhinnels turn out to be correlated due to the presence iii the

reerence signals of the same components.

Let us consider characteristics of detection for a system of channels in each o.I

which, there is produced complete suppression of the signals separated by uie rem.inying

channels. Fluctua'4tions of all signals we shall consider slow.

Output voltage of each channel is recorded in the form (see §i3.2)

r=IzJI'=JJY(S)4i.(s, ;ai)dsr a== Wi.Qej. (..)

If the received signal y(s) is a normal random process, the real and imaginari

part of :omplex quantities z 1 (j I, ... , n) are distributed by normal law. ThIoeYe'orr

Join,, distribution of these quantities can be recorded in the form

p(z 1,.,., zn)l- exp{-- W kzjz; k (13,.

where 1VJk 1- matrix, the inverse of IHRjkfl, and

Ri ZJZ~ ~WjW Q'Q*. = ;

+ I, 0

where v-energy of the .;lgnl to which the v-th channel is tuned. If 1
i,er,2 n

;-h -leiia -



T'~IS d 'nJoint dilrtrr bution for quantities rt Fhor this it is necessary,

pass to polar coordinates, in which Zj-re and 2t0 integrate the obtained

dis 'citAution over all qp1 . Introduc-ing fcr Žovnrceinst~end of'JR1 the mai~trcix

o.L' oorrelat~ton coeti'icients

(2's r r, 3r(,

kj

:;m minabout the quaesi-iaonlnaueo i '

out1t;i hesyter ferseparationa for? all target are 'ýe great. ~ rtin

4ebstitmuti thkeistexprals(1ion5 in (25.5),expandin thr e exponsutrentihal fuciona

I wheet)o~ ove i.we. obtain Jx.Iiar~ra

-JO2



+ Pk is f rrk
! o

:.irJ.. this distribution it is possible to calculate the probability of any combi-

nationsO o exceedings of thresholds in the channels.

In the case n = 2 integration of (13.6,5) is easily conducted for any p = i2.

During calculations it is convenient to use the expansion of this distributior in

powers of p, which has the form

p,_ firs-r)l

x (-!Lxe-Z) ("
)yke-) (13.Y. )

In order to have the possibility of comparing a system of detection of the

considered form with an optimum system of detection of a group of targets, we

shall consider the case of two targets appearing simultaneously (see § 13.4). Here,

we consider that in the system with separation the simultaneity of appearance ol'

targets is used either by means of summation of the output signals of the correspondl •n

two channels, or by means of making a decision about the presence of both targets

when in at least one of these channels we exceed the threshold.

In the first case with the threshold we compare quantity

2, .jQQ~

where VA, W, '+1 wI W, I' + IW I';
,,, = v = wit .W, (,,+ Wi).

callen culating prc.rbabi.Uitiec 0' corre"t-" dee ... ion it ýS is e 1efu

S general formu.La (1.6.5!) However, It. is simpler to st~art. from the exporcslcs.n for

-:hara-teris'.ic function (1 j.4.p), tak:ing into account (p..9). performp!in.-ij.. -

! on!;"ni. .... cjs to those which we irade in deriving (13.. -mCI () . L.4) and ;iss"In.:

-803.-



q. q(1) (see 1 '5.4), we obtain

~~*I ~' I - ~ q'(I-~).-.~13

who - ilethrshol quntiy, nuliplied y ( 4 v)/ - -- ) ~l .h hIc

2Ql~ii. re r, in

Calulaio ofreatinshp , ') n tis as ii cndutedalostt~~ :an

thsieri~ that~hl quntty rr-'K I hn yK lieu by 4oell aa.iaeqb o

-umpIiV [, and~ U

if i}&u;-a a on of o rltiosi F, ine~PlR'o'trT t iq 7-asekin whenduate almst 1.. , _7l< h

a the threumshotd m i~ne r a3i.i3.y Not thatin uhndcso srcretP

a-a.ont.( ~~t1,8 , i thefor

'-Pa P1 Luing i this <oru< t hen corroci., is lue ofG p and F' i~t qs 1ear

t.!1:~e tha resold n bability o o:'s alrm,.in :aut~ a1 dorecisoni recorded, tFor 11

-6e
-ori- - -v. b: 1 03 t ~ 1 mgc't.lar dx-- o 'ee rthdsa'prasCi



V

From comparison of curves of this

figure one may see that loss due to use

of a system with separation instead of

an optimum one grow-. with increase of

"y and with decrease of the probability

of correct detection. Vor small y and 'l

f3 =-I - D separation of signals does

inot lead to essential lcsses. T.I, for

0. ~instance, we consider doulble loss -in

O .the signal -to -interfe2'ence rY-.ti•"-

4yo ~missible, it is attainl~a fo(r (s~ :- . ýt

S0.37; for f = 0.9 at Ij t or
*, • 4, Pelationship q OD, Y) for 0 o

' 10- for delectioli of' a v'air of r = 0.999 at " " J9. fhe dif'ercclk:e
' '. .f equ l intensi !Ly:

opti!:.i5i:, pro sing (11 .4.7), (13. 4.4) between system:. wit un..rion and
-summa. ion of signals at the

iutpiu. o,- ch-annels in a sy'3tem with independent comparison with a tbr,:.shuld
In a .rt - won ith separa. ..n
indqp40n0ezil, comparison with the threshold of the ouuput o3'na,. in the -ase of
in t• ly ;er, withi sep q, ratt(,n (13.6.15). two targets is immaterial,

1I.P, ;ystem of' Measurement with Complete 3uppres•slon
of Selected Interfering Signals

LeT us consider the discrimlnator of a tracking meter with tolr. suppression of

:selert-ed interferinc signeils, Here, as too in § 13,5, we shall nonsider f)'etit.on::

(X the cLKfna, l to be fast, ,rnd noise to be white, and we shal] limit, ourseI%(,,, f'rr
z ipl':t• 'tconi~sdera,•ion of signals depending only on teSuch consicier.,t"ion.I

"twat' •2 embraces problems cf ne,%;ureirnit of r-An.;

and measurement of' angles with schi•m,

Generalization of' resul '.s to the , aI e •

"space processing is achievu.d rLy : mp i

replacement of matrix elemenr

(for designations see §,. j 1 .) c,:, .airI-id ,

integration over tince by cAIO 5.n:,mei eire..

................. ... . (.............-.rI t,,'m. . i' the obtained by integratlon over t e1 .1iw -f over
!"1 '('d d l[I} , 'r witth suppre:sslon

'r. 'erI r'],:r zi'L ','J:: 1) m~i er; ') sp-ce.
* ', ; '• d,'• eco:'; I() stuhtr;. -for,

A block diagram ,i ho an 1:;:-: i u.i;-

5 criminator I.,s :,;hown in -, 1.,
-|0



1oýrer1'ne ;i•gnal.s 4(t, > and ';;(t, % - AX) are determied by formuloa

.2.9). In order to simpilly ,.aIcuulations we consider detuning AX very small,

".so thatt

-- •n (t At -- ) (T, -- (c) A
Go

2A • hI d-

We can hope that the dependence of equivalent spectral density on defnning wI .i

in !11he given case, as for systems without suppression of Interfering signals (Ch',paeit.

SVK -Xl) , ho ýut'iý'icnt]y weak so that the :liven asoumption iioiateeriai.hy ]imit•; .

appliJ':al 'liuy of the results.

Let us consider the gain .actor Kj• the equivalent spectral density S and

esic , . e r r or 60 , f o r a s y s t e m of' Lh e c o rns i deo r o d f o r m . H e r e w e c o n s i d e r t h a t

iln'erfelntlL signals, If there are any, are completel.y suppresse.], and we -onstlder

oril../ %he Inifluence of noises. In Aenera.l, complete suppression of' interfering

igi.io." is obtained only for preselected ,dues of' their pJaraeters. In certain

"",rtIcular c•ases (for inst-ance, during Arh.se- ode wnAnpu.i,•tlon) suppr's ion of

: o'is at. selec .ed npi -,,s enoures thf.jr ,-.ippreOsCo,5 for all.- i. . ,: parameters

r,...pond the ti'J~ of the basic maximum of the function of' uncert-ainty, After very

S.... raa tranti'onrlatlons, analogous to thuse used in § 1,.5, we obtain

X- H (h) S. d, (. -2a),( .)

S-- H (io 1/ 1 1' + (6)1) dco

S7 -. . J•., (• 8,06 .

S2a 2b, 1o 1 H (W iI' S. d-• ,

i['t
' !I I I 1 I 1"1 I I I: '1 I] i I' l' I I I I I l l l40



2a i)I4u+aa
-4-

Sa2h'-2' e - 2a4)'x •

+ -I- So (b• + 4a',).+ S-2 (w) a2 drj

X if (100)-1-so (a) dan)jIH 1m)1' S, (u) d.) (i3.619) •

PC

where h =N 0 Af H(iw) - frequency response of the filter;

J,h=

an l--.-- Re WoO x

1=0
in general a discriminator of the considered form gives systematic error which

does not approach zero with unlimited increase of tle signal-to-interference ratio,

which it is necessary to speciallj'r compensate. This error disappears with symmetric

location of parameters of interfering. signals relative to the measured p'arameter.

In order to prove this we shall consider the case when Cjk(,j, Xk) depend3 on._/

on difference X. - xk(Cjk(J'X kk) = C(X - k) ), and values X ... , ,

X of the parameters of the interfering signals are such that X., - 0, - _, k <

S.I H 7.). ter'-, as it is easy to show, Wjk = w < j, k < z) and an

:.ystematic error a turns into zero, aid the expression for equiv:lent spectrJl
O, CT

densit, takes the following form:CO
N" I H (vo I- (I.+ , so (0)) do,

s on s -- P IA') N" ( ,) 9

2 j I l ) , S) -N-

The last equality in (13.6.22) is valid for a large signal-to-noise ra.tio ,c.

.he output of the sjstem of separation of signals (V >> 1) and for Af, >» 1W
000

- width of the pass:,,jnc or he filiter)

The oLn,,ained expression coincides for large rat:I.cs h with the equivi•ent

Soectral density of' the optlmtu discriminator and for arbitraLry h to the .q,)Jh 1'II•

.:pw:cia.a ocnsity ot' the discimirinator analyzed in 5. , ( V J, 13.7). I.l is

- b07 - -



,"oY.pLe.y natural, since with syrmetric location o' interfering signals -= C, a:.d
C))

wt- have equality [see (13.2.13)]

[' A )QJ .~x W".1 Q*.

.4+1 QiT VWiJQj I
J1h=O

so Lhat. l'or large signal-to-noise ratios processing of a signal in the considef-,d

discriminator coincides with the optiaun. I
It follows from this that a discriminator of the given fornm can be used with

.auc:ess in systems of measurement if parameters of the suppressed signal. are loý.ut'd

s Tr.ai.e:.rically relative to the measured parameter of' the targel and vary togetherii

SC r.eer and jk k) = C( -X This occurs, for instance, if slEir 15

corresponding to spurious maxima of the function of uncertainty are suppressed.

Loss in accuracy connecteo with suppr(;ssic'n of interfering signals is determined -

!'or large signal-to-noise ratios by formuli I
be Co'o' o ,.) -- IC , O ,) ' (A..A.)1

r

X.) -, ).,JW k, O k (x.. ,.)
hk.O

)Tlirh :,r ;arbi•.r,.ri signal-to-noise :atio the loss in separation of signals canr

Le iccoiinl..ed Cor by increasing the spectre..]. density for the system without separali(,i

J . ; •1.'1.1,la t.Iy a .'ctor of' F/w 00 and repluiZrng the signal-to-noise ratio h by h/w,.,, .

luic tLhat, quantity F is equal to one if C(X) = const outside 1he prinl-.jw d;•

rn (00, 0 O) = 0. This takes place, for instance, for measurement ('f

ru.'in!,e wLth -t signal manipulated in phase by Hoffman's code fsee l3. .21.

-. c same result is always obtained when values of parameters of suppressed

s fgfals coincide with maxima of' the function of uncertainty IC(, - O0 )1 2 , and

r - -0) Is a i'eal function. Here C (XO, C( -0 D at all the

-onsidered puints, For the shown cases the loss cI accuracy for large signal-to- -

iJoiae r'•,. us is Jsent.
-4

-•08- 1
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13.6.3. System of Measurement of Parameters of

Motion of Two Targets

In the preceding paragraph we considered the case when we exactly know parameters

of the interfering signals. Such a case occurs, for instance, during suppression of

* si,-•ls corresponding to maxima of the function of uncertainty. We turn now to the

-ise of measurement of coordinates of several targets by tracking r-adar meters.

Such systems have a number of outputs equal to the number of measured quantities.-

Voltages from the outputs and also from intermediate points of the measuring channels i -1
-can be used for compensation of interfering signals in other channels or for tuning

of compensation channels.

Let us consider a tracking meter of coordinates of two targets. --.Ang interes'_ed

in the Pieter of coordinate ) of one of them, we assume that in the channel of

measurement of quantity I
there is realized compensatlion

of the signal reflected from

the second target, ;dhere for II
construction of the compen-

sation channel to maximtum ,ex.•uron.

- there is used the channel cf

coordinate X of the second
2

target. If we apply here a

form of compensation which will7

exact tuning corresponds .o

Fig. 13,16. Circuit of a discriminator with total suppression of the
suppression of an interfering signal. i) mixer;

!) ,arlplLfier with gain varying according to the interfering signal, the
law of .mplitude modulation; 3) amplifier with
gain -; 4) filter; 5) square-law detector, functional circuit of' the

discriminator is reprresnsv-d

by Fig. 13.i6,

The discriminator contains two channels mutually detuned with respect tv p rame' ",

>X (4A:.) intlended for measurement of X in the absence of an interVeering •'ignil,

tnd also a channel for compensation of the latter. With proper selection of Vilters

L.f the basic ch-anniels the discriminator is optimum in the absence of an interferin,1

signal or when -y 0. For total suppression of' the interfering signal, stria-t].,'

:3speaking, we would need to select par.etere of the compensation c,•anne.i - ,.nd

.• -809-



divicrenx'.y for the two detuned channels. However, if we are interested in trackin. _-

meters of both parameters, the channel of compensation is tuned with errors determinedcl

by the accuracy of measurement of the parameter X2.*

For small AX errors of measurement of X2 (juaintities AX.) turn out to be uom-

pUrable with AX Here separate tuning of compensation channels loses meaning and

the simplest construction of the compensation channel, corresponding to the con-

. 1.dvred circuit, is desirable. Let us find systematic error and equialeni spectr:1 -

density of fluctuating error of the circuit of Fig. i3.16 first on the assumrption

o)f 6,isence of error of measurement of u= ), and then taking Lhis error intco

The signal at the discriminator output can be recorded in the forn"

AilsW h(t S,)h (t -S.) {U1. (sj) a_ (So_-

-- U., (s,)u*,+ (S,) - Y [(U_ (s,) - u, + (s,)) .* (s,) e-4 +

+ (u, (j,) - a*, + (so)) tz, (s) el'I} x
X e"("-' ) y (s,)y (s,) dslds., (13-.6.2•4)

where h(t) -- pulse response o` the low-frequency equivalent of the filter;

u,(_.) and ui+(t) - reference laý, L.f n!,u11.t] on in the twvo deLuned channels.

-ith the same simplifying •tSStU p. an• . In thre prereding paragraph and with

coijn-.idence of the true value of X, with the average value of X among points of tun-

S '.ie :~nneic for small detunings ,AA we cbtain

ANA (1f~. 0 8NoBjY -A,(yt>2

!ic V

II B. hs(s) ds. (13.6. 2G)2

, The gain factor of the discriminator K• can be ,'ound as

dh1 (& (1. Y)2
A I, '

U . -810-



Al'ier calculations we have I

w[ -)here D

As = A . (s) h($,) (s, - O s .sd d.-d,, °,

Systematic error . is now found as ratio

YUA (616),,-0 or...
A Ch c (I-y') + T' , D--DI

Thus, when y , 0 due to compensation there appears -3ystematic error, inverely

proportional io the signal-to-noise ratio h. The presence of such error should have

been expected, since in an optimum circuit for compensation of such error there is

intiroduced the corresponding correction, whereas in the given circuit such a mu•a.su.re

Is nol. provided. For large h systematic error can be disregarded.

lFor allowance for error AX of t-uing of the compensatiori channel it is necec;saty
in expression (13.6,24) to replace u(t) by a certain u10(1), Accordingly -/ r•.nd q)

should be replaced by y0 and p.. Considering AX2 small and lirrAting ourselve•s to

the !irst two terms of the expansion ol u 2 0(t) in a Taylor series

Su., (t) = u. (t) + AZ 'i"'.,

1i is easy to find

4A,Pa % .•,
K ---- ) DC(I D--D'] AA,

"" -+O[lC,() J d'" ~ ~ ~ ~ ~ ~ ~ ~ ( Y*, 2""=- t -. o1+ ?fv°' o

o' + -g iTD- D



T~e di ft'trence ciA arid Iý rom -y and qp, repijectivr(2:,, 1wo snl:&i t 2 c

ii,;ually be disregarded. However, the presence of ,. se.;und ',fm in thu. numreyatOr c;'

* (1~.(.33)can b1e aiccourmed for ';ince ai and 11 m'iay Cywly li 7 -rc . r ver,/ o14cii q

(LI rh power ofI ini~erfe.Ll~g signals) this i.ermr :naxy ca.uze subr: 'ant ial.adt~~

(erro(-r. 1'or suff'iciently large q it can be disregaroed.

V- is necessu'ry to note that for rnorentrs it, vtry rparui1, '~ rc~m the e1klf t

I~eprces quanti~ties A, andi in (13.( 33) do not depfr.d . .adaed'nI~f~

B~-~- S H(iw)l'dm,

Wh i ( IiL) -. Iýr~jequeny response of' a i wlcepu]':e rsoeiiL(.

Thie equivalen'. spect~rua deririlty of 12Iotcuatior1 er'ror 1r, fourld at,

RA'. (9) = Au (W AU; (I Alij (1) AIgA +I~'9)3 :~

io dIn ri8.'a/-t~~cOpe rtijnC corirj lt I no (i1 T.g mno, h/lrr,'d '~IMAM~pII~ iQ1:

t~iilIs fui ±. t on doý.- not,. uopo;ien un t, und a'~urd Ine)I. I.: . 1 u c J4ft.,

I'( ,'J I~ ) (v9 .Y)ugtuing srmsll A) anI A0 we, ob Obl i,I

+2 [.D!-( 2~ )D
+27 Dj}y

+21'(D+Q~i)-VJ~Y e )
t'



JjH(le) 14 d'o;

M=C+E;
T

u,()ds.

Vi~e expt' 3IuJ.UrI for L'3 ciýrtuiziri thrue ccrnpcjreni,8, Tric firs'. of thiem cdoelS jicO:,

d un'' it. at nd if caused by ~~ lnlvrsr-' t 0  of randomn COrapOULMt.0 of' the uceful ,in~i 1 1. eT'-

let in.: t~jit'i~ he nef(,ord '-.omnpuflent1  wi'oprtiortti.. to beal, 01, "' 'zt~~ f he

.. o'.Iarid tweir'vreront2e wil i, ois~e * Vii ni.Lily, the thi~rd c':mpon'Žrit, propor t . 1cm'].- tIV ,~~. 'Tppearp~d due lto rtonl.1near t rrj~nc formrat tons Of~ noise.

Thu-it3 , In 6 ýI,iz-ntlot, f'r'cmn the 'ptl~rrumn (Arcuit, In the giv'en~ case Ili L'ilf

LX'J'tv iý. dil'1'ctrr~nI, front zero even wit~h Iniieylarge rfignr 1-Lu-nolse raf~loi it,

Al 1(.W ~Vu.! I error i~n turibil~ 01' the comrpensat1 on c:haninel(A, P)1ee,

eajl to B iJ/10[ee, to -iptrluV ofi,~ rrecto to i'ormrtl ' ( . :T)pi'prc

tu (tJ. it' wre cunci rIcr 6), ,4 icrrvt'Ll. qtianity, correction ut' thl! orrl(.r of' (',,

In rt'oi. i lime~t !aj be d irfreg,'tz'd clud, tt ctu~ o& tn~ ~ ~' ,o[

1,t 4 . 14''t-tr ut' ~trq!tp,t wilth Two 'RrLrt-,eto Ilor Wi, tt'i! ui.
Fornm of' M rtiIotiulalior,

;~tn xtmp of appi icalW.1o ofort h"o

It



t

- ra.te of' change of frequency,

.. -- et'fective duration of a pulse, equal to

We consider that the correlation function of' fluctuations of the reflected signal

-- *.ponenLI, i.e.,

i 
el() = e- "" ,

S ) (13. 4 U)

-u;t ui 'onsiier accuracy of measurement of range when using discrimiriat;•rs

€,ui. bt tie u)[i-iiuL 5cheue (Figs. 13.l0 a.nd 15.1.1), and also by schemes of Fig.

Ij, cand PIg. 13.1h, whi-. •, :'+n conditloni, stated above, should give resul]ts

,io:u tUo !,he best ones, peculiar Lo the op tirT.,:. u I.' '

.v:z the b:,.sic characteristic we shall uie equL'..%a.le , spectral denzit.y gsWB In

%tio a/,.e cases, when there are systematic errors, we shall also estimate therm,.

Pruoperti.es of the optim•m discriminalor are 2oymiplef-ely ii:araeterized by .orn

lice':,iried bt Cexpre2Is.oU (i.•,5. (l )

, in .h,- qu'r.i I it.e• in rills "ori;,u1'a, w. -

D=zO

2m (1 6. 4. ~1)
-i- Ip --

A --•'•N~ (at -- as

21N

8 =! I _ _ _vi ""cF i4 -

• 
...
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T'V T2 - delays of modu' tion of signals reflected from the two targets,

- (P. + P")

2P, P•*.

a,=

With intrapulse frequency modulation deviation of frequency Is usually selected

large, so that » >> 1. Fulfillment of this condition permits results of calculations

(both for the optimum and also for other circuits) to approximately coincide for

cases of the presence and absence of frequency modulation if only we introduce in

formulas quantity x, determined as x = without frequency modulation arid x = V

with it. 
FI

Designati relative difference of delays of signals reflected

froir two 1argets,* we have

-ey-Z' =e ~,

and formula (13.5.61) takes form

Sfi2N =PN
rit--l Si9N C+-"UN""'B'--y"A}, (13.6.42)

7 s), A +- - B] C + P" I T V,

where the stroke signifies differentiation with respect to T•.
P

Results of calculations of S for case q I• i (identical powers of the '-
nI

t'ul and interfering signals) ar,! presented In Fig. 13.17.

In this same figure there is depicted the asymptotic dependence of ' in- y
Oil (i

takig p1:"e !or very large h(i - e-Y

1 jr iatro possible to call this quantity the relative distance between :'jg,.t, ,•

A I

II I I I I I I I II --- I l . . .. . .. .. ... i .. ..



F i. 13. 17. D~ependence of equivalent spectral densityI

of an optimum discriminat or on the relative distance

between targets y: - - -by, the formula (1-3.6. 55).

,'Ith decrease of quantity y, propo~ý(rV'ial to the distance between toargut~s,I

sn~ect~raL density of fluctuating error growis, vwinvih is, explained by two famtlors.

1-irs:., !tiere t.ake place power loss-es conritocted with onpnst.r of Z.ite Ifer--rin,

3iga. econý,, comipensation of the in !terle ring signal ic. muacaerate due t-o errors

of meas',remlen'. This inaccuracýy lead.,.;~ ~iu ervrcre In thie region of the greaftesi..

21 ooe ci.1e "unctioni o! ncr' int' ch ex - n~i.i '-114h;:ra ný.ýTe: ;fr 01c'. t~hi

.a.i ~ Sthe 6i stance Lter i.cor rrspollds to it'Lte tpal" tol' ti!- 'curve CI' thc-

L'nf ion otfl* 3r:.i t,, dac 1 o which equivaleni. spectral density, clue to The. sec36
..~.hon acorde.,:rcaces. VWiiti amall signal-to-noise ratio.; L quajntity

I

,eadslittle on the dislanc,: between targets, which was clear fromr Eený-r 1

4J

irjuivalen-,t :!po Lrzal density t'or a range discriminator built by the, -cheme of Fig .

ko detern~iini& ty, tforimula (i.L4),which for the considered case takes the

.\.

sona aI1

sil

bewe agt :---b hc±j forla..d.ta3)

It A 1  i de' rirjied by expresso ion (1 n o uh di stand b t en . i vs 3 s cm

I .e -dniyo futain ro'dr:;,wich6"epaie ytof-:os •



and E -- by expressions (13.6.38) We consider that the frequency response of the

filters in these expressions has the form ,__

IH~i)I' I hS(, M1..k3

i.e., filters are optimum in conditions of resolved targets.

Producing calculations, we obtain

Ghs

4 (1 + h)'(1

4 (1+ h) I (I + )lI+-h)a

Us

For large h formula (13.6.4.4) after substitution of values of coefficientus tlaecý

the simple form

2 2(1-+
(13. L.7.~)

?rori comparison of (13.6.43) and (13.6.47) we see that for large h and not too

small y the considered circuit possesses the same properties as the optimum. The

difference between this circuit and the optimum appears at small h and small y.

For the discriminator of Fig. 13.16 equivalent spectral. density is determincJ

by 1'orrula (13.6.37). Finding from (13.6.38) coefficients S and M in this forc:.u,

we cbtain

h'4(I + I( I)' + h),,

In Fig. i.i1P are curves of the dependences of S, on the relative ditar,:

bet.ween targeLt y for different values of the signal-to-noise ratio h for '0 .Ll thyeee
C <ohsLdered 1r1s, -. For large h and rel-tive1yl small y, st which acolication of -

i rculAts of compensation of signals still has meaning, the circ'il of Fit.-. 13.:-

o"u,"; be close to optimum. For small h its properties differ from proper' i r Cf c ,

~p is.•: r:[c,.uiL in " -err~ain range of values of y more than properties of' the .i r::i

I -817-
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CENOT ICRKOI a+ BONcT at
where

and1-"(.(.)

*ORO?,

,!I'l.2 -error of' measurement of' delay of the signal reflected from1 the, second4

Tihe, cuirve of' the dependence of ecll 1 on y is depicted in FiFS. 13.19.

The rutiu of the two components oCi systematic error is definecd as

0 MOT t 2xs I +'VfF'7iz= -CRT -- I h .- Ia (1.- 0

?lrc~tn Lnii we can finrd the limiting value of error A-t at which error Ec.-.c.,

tu edisreg.ardedl mt cornp:Lreci to EC14CT in the range of 5 inllere,;ting -us.

hl, h eedneo y1ant~_ ro
ot .edc;iiao F- .,6 nteritv
dA!?ir ewer aEesy

WAIL



I';'.~~~~~~~_ S ;: ; iynA(25C,'op I rpjl~usi mIe hods 'proec TN ign . Ti>syL:h:

~ ~(-,l4rI ijf Wo ways. Th rtc'te osists, In tindin: cverm.lIon:,;

"hu Yc too ci'. a.' rau':vedt on 'he a'-f sign-a ft r whileh iLKCei prtc-n sad 1,:t 19$ La

10 'i tcnsrnips be',-ween t.he separated signal, inte-ri'e-rerv't: and pc-oini ioeiIe''lo

Joi-i'J. at% the- ojutput" of herc lever, Thesie opex'abions !-,n e iorn"d wit na

aa',IIte~rra:! :ond ideas, connected with the spec ifia na~ture t., resoiu.o io. Ini

i .r t.1i- '-10 !,re ;'utud oil the coU:itlo. Io of' Lot!, tissil Iio'511 i, il-C t f.-

'11 o seconid rre thud consi aus in c",' It 1 a y ie5. 0 .i(41:11 ia'

* cc ~tilj h rq. atner various f~eLosinr the presence ci) ,sever,,U 2] (se lv c

o H' ..-.I', 'sa m~tl. ci : r.: it wojuld hýe possible, fii. general, nl. 'o

ill l';',11 -u2B ei T&SOl-,itt r), Sin(,'_ -It is; nld. liece'53111' _L m t(1 2 L S 1''

.'i IOU -- l~u;A ul' iil iC orreýsecrid hg problem:;.--. llvtv,, - ns. uerh' I, on 1,e in'' -

' '.x' ax jo , -n 1.1;r -idea- ot' rvrsolving power, 'tad on t~he other h~and, interest, ini-o

ISO.-Li 1-1 thoseO rretlhOds o i' -sythes is, we reated a series of solved s';, i i'-:tta

or_, [K' 01., a~s pr'orh cr:s of op Linos, resula' It I !L'.u-. 1'p: 011 Cen 1,' i'esl tI c t'i ned 1_1

:2 : eth 1s -is cleaur that, in1 11ost !-I'es Vz.tni, j1:0 *oc Cj)$ 1  
Q~i'li'o ' t413

2~~~~~~~~~~ r-L .iJ rn a uctresad w/ith not too =nail asigno--c- -1t" I"

* 1 f--'5 i le- p-rr!ti ens optimum for ve.:. 2-if ion of,'rLet i;:ira.IV

.- :-0.'U ft.In ( m rom Intern§- -- J>12i

in; in-!-n;:.o in '' -nc L< -! .W_ j i 12 1ý '''Id' G .I ,c h

pp 1 LLJol t !; cýL;ýeU1,Poer' CA,' sysCtess, cpi:ov1il hut lin' :ri

2 -'io.iS 11.2,

' ,;/; 14 ,'' iur, in, conid i tions of detec Lion and mreaac'1jei;ent, ul' ooo1

c" . or, -' ''. 1 nly procg-suing ol r-f signals inrec~civ1/ens, Ist115 twU't2i

'.11:1 It .": ri .E The round -oiutions, I,esides cc niiti'ip ' 11
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Multi-target problems are often complicated and diverse. The given solutions

are, obviously, only an insignificant part of the solutions of practical interest

in this area. We shall show several problems whose solution, in the opinion of the

aWuthor;;, are necessary in connection with the problem of resolution of targets.

!or meters of coordinates it would be of interest to find optimum (in the sense

of absence of systematic and a minimum of fluctuating errors) systems in the case of

slow fluctuations of the signal, %.hen the maximum likelihood estimates cease to be .

efficiei. ., and then it is necessary to look for other methods of construction of

efficient estimates.

Both for problems of measurement and also for problems of detection it is

expedient to find optimum systems for non-Gaussian fluctuating -guij.a

If the form of discriminators of systems of optimum resolution is found in a
number of interesting cases, the form of smoothing circuits was not discussed inI

general. This problem deserves serious attention.

In examing questions of detection of targets we assumed that their number and M

possible louation are known to some extent. Very important is solution of the

problems of detection with an unknown number and position of targets. Vurthermore, I
one should solve the problem of optimum search in the presence of many

unresolved targets with finding of the optimum law of change of resolving power in
the course of searching. A

In connection with these problems there is also the question of suppression c;' t

interfering signals, not at assigned points, but in a certain range of volues of(i

P % ra.. e rs -1

.Jimila•r problems were solved for aefinite forms of sounding signals. The obtain

solutions give us the possibiiity of carrying out selection of' sounding signx'.is VP , -•
,ýný_.ure the best characteristics with an optin,',mu method of their processing.

selecILon of signals and also solution on the basis of the obtained genera] rit l.,41

of different particular problems are practically very important.

-821- 4
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