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ABSTRACT 

The critical field curve of aluminum has been measured from 
■ 

T to 0,3 K, at pressures ranging from 0 to 7200 psl. Using calorl- 

metrlcally derived values for the low-temperature superconducting 

electronic specific heat, the data have been extrapolated to T = 0, 

yielding values for H and y. These values and experimental results 

for T/ are then used to calculate the superconducting electronic 

entropy and the deviation of the critical field curve from para- 

bollclty over the entire temperature range. The results show 

excellent agreement with previous calorlmetrlc measurements of the 

thermodynamlc properties of superconducting aluminum. The shape of 

the reduced critical field curve shows no pressure dependence over 

the range of pressures used. The dependence of H , T , and y  on 
o  c 

it 
pressure are In fair agreement with previous work by Gross and Olsen. 

* 
Gross and Olsen, Cryogenics I,  91 (1960) 
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I.  INTRODUCTION 

A. Background 

Superconductivity was discovered by Kamerllngh Onnes-^ 

in 1911 during an investigation of the electrical resistivity of 

mercury at low temperatures. He found that the electrical resistance 

of his mercury sample fell abruptly to zero as its temperature fell 

below about 4 K; hence the name superconductivity. It has since 

been found that a current induced in a superconducting ring will 

persist indefinitely without apparent decay. 

Since 1911 a large number of pure metals and alloys have 

been found to be superconducting at low enough temperatures, and 

their properties have been extensively investigated. Only a few of 

the important experiments and calculations will be mentioned here. 

For a more complete review, the reader is referred elsewhere.—" 

The temperature below which a material becomes supercon- 

ducting in zero magnetic field is called its critical temperature, 

T .  If a long, needle-shaped specimen is cooled below this tempera- 

ture in zero field, and then the magnetic field is increased from 

zero, it is found that the superconducting properties disappear 

abruptly at a critical field H . The temperature dependence of H 

is given approximately by 

Hc « H0(l - T^c
2) . (1) 

where H    and T    are parameters characteristic of the material, o c r 
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Meissner and Ochsenfeld-3   discovered In 1933 Chat the 

superconducting state Is characterized by perfect dlamagnetlsm. 

That Is,  the magnetic Induction B becomes zero when a material goes 

from the normal state to  the superconducting state.    Upon reducing 

the applied field below H    for T less  than T    the magnetic flux Is 

completely expelled from the sample.    This effect Is known as  the 

Meissner effect, and establishes the thermodynamlc reversibility of 

the superconducting transition.    For a specimen with any geometry 

other  than that of a long needle the magnetic transition Is broadened 

due to the distortion of the applied field by the dlamagnetlsm of 

the sample.    Consider an ellipsoidal sample with demagnetizing factor 

n placed in a magnetic field parallel to Its major axis.    When the 

applied field reaches   (l-n)H  ,   the field at  the equator of the speci- 

men Is H  .    At  this point  the sample enters   the  transition region, 

known as the intermediate state, and flux begins  to enter the sample. 

When  the applied field reaches H  ,  the flux has completely penetrated 

the sample, and for H greater than H    the sample  is in the normal 

state.    Plots of magnetization versus applied field at constant 

temperature are shown in Figure  1.    We shall not discuss the detailed 

nature of the intermediate  state.    Suffice  it  to  say that  the  sample 

divides itself  into  superconducting and normal regions in such a way 

that  the magnetic Induction rises uniformly from zero to H    as  the 

applied field is Increased from (l-n)H    to H 1/ 



• '-J ) 

Figure 1. Magnetization curves for a long cylindrical superconductor 

and for an ellipsoidal superconductor with a demagneti- 

zation factor of 0.25. 
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In recent years It has been recognized that superconductors 

may be grouped Into two classes called Type I and Type II. The 

behavior Just described applies to Type I superconductors» a class 

which Includes most of the pure elemental soft metals such as Sn, 

In, Hg, and Ai. Type II materials are usually (but not Invariably) 

alloys whose most prominent characteristics Include the ability to 

sustain loss-less supercurrents at much larger fields than Type I 

metals. Type II superconductors also show marked differences In the 

3/ 
behavior of their magnetic transitions from that described above. 

Since the present work Is exclusively concerned with Ai, a Type I 

material, we shall not review the extensive phenomenology of Type II 

superconductors. 

Existence of the Melssner effect Implies that the super- 

conducting transition Is reversible and thus susceptible to thermo- 

dynamic analysis. In the next section we will show that 

48 ■ - Is ».©p «> 

where AS Is the entropy difference between the normal and super- 

conducting states. The existence of only minute changes In elastic 

6.7/ 
constants    In the superconducting transition Indicates that the 

lattice entropy Is virtually unaffected by the transition, and that 

the superconducting phenomenon Is due to an electronic Interaction. 



The nature of the electronic Interaction responsible for 

superconductivity was Illuminated by the discovery of the Isotope 
8i9/ 

effect"-*   In 1950.    It was shown experimentally that T    for different 

Isotopes of mercury varied as the Inverse square root of the Isotoplc 

mass,  Indicating that lattice vibrations play an Important role In 

the Interaction between electrons which leads to superconductivity. 

Since 1950 experiments have shown that the Isotoplc mass dependence 

of the critical temperature varies from material to material, and Is 
10.11/ 

non-existent In some materials, such as ruthenium. However, 
12/ 

Garland       has been able to account for these variations by a detailed 

consideration of the effects of the Coulomb interaction between 

electrons, without discarding the idea that superconductivity is due 

to an electron-phonon interaction.    Further information about the 

superconducting state was gained from measurements of thermal conduc- 
13/ 

tlvlty       and the electronic specific heat in the superconducting 

state. These measurements suggested the existence of an energy 

gap in the spectrum of allowed electronic excitations of a 

superconductor. 

15/ 
In 1957, Bardeen,  Cooper, and Schrieffer      published a 

theory of superconductivity  (hereafter referred to as the BCS  theory) 

from which properties of superconductors can be calculated.    The BCS 

theory predictions for the temperature dependence of the energy gap, 

16/ 
for Instance, are in good agreement with direct measurements. 

Such measurements are made by measuring the absorption of electro- 

magnetic radiation as a function of frequency or by measuring 

mm 



electron tunneling between a superconductor and another metal through 

an Insulating barrier.    Experimental values of the gap extrapolated 

to 0 K, however,  vary from material to material and differ from the 

BCS value by as much as 30 or 40%. 

The BCS theory, using a simplified model of the electron- 

electron Interaction via phonons,  and Ignoring the details of 

crystal structure which vary from metal to metal, predicts a law of 

corresponding states.    For instance,  the critical field curve In 

terms of the reduced quantities H /H    and T/T    Is predicted to have 

the same shape for all superconductors.    Experiments have shown that 

In fact deviations of H /H    from a law of corresponding states are 
17/ 

In general only a few percent. These deviations can be accurately 

measured, however, and are useful for comparison with theory.    The 

largest deviations from the BCS law of corresponding states have been 

observed In lead and mercury,  so-called strong-coupling supercon- 

ductors.    Recent theoretical calculations of strong-coupling effects 
18/ 

by Swihart and others       have Improved agreement between theory and 

experiment for the strong-coupling superconductors.    Critical field 

data of sufficient quality to permit such a comparison with theory 

exist for many superconductors with critical  temperatures well above 

1 K, but for most low-temperature superconductors, such as aluminum, 

such data do not exist. 

This  thesis describes a critical  field investigation of 

aluminum  (T   ^ 1.2 K)  as a function of temperature and pressure. 

In  the remaining  forr sections of this chapter, we will discuss  the 

// 
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relationships between critical field measurements and thermodynamic 

properties of superconductors, and previous measurements in aluminum 

and other superconductors. 

B.    Thermodynamic Properties of Superconductors at Constant Pressure 

In this section we shall derive some useful thermodynamic 

relations and apply them to the problem of extracting superconducting 

state parameters from critical field data.    We mentioned in the 

previous section that  the superconducting transition is reversible, 

and that the methods of reversible thermodynamics are applicable to 

it.    We shall assume,   for ease of analysis,  that the superconducting 

specimen is ellipsoidal in shape, and that  the magnetic field is 

parallel to its axis.    Hence,  the magnetization Is uniform in the 

specimen.     We shall also assume that the external field is provided 

by a solenoid.    The final results are independent of these assump- 

tions.        All quantities are expressed in cgs units.    let 

P = pressure 

H = magnetic  field at the sample due to external 
sources,  not including any effects due to  the 
magnetic properties of the sample 

T = absolute  temperature 

V = volume 

I = magnetic moment of sample 

M = magnetization = I/V 

S = entropy. 



The amount of work done by the sample to change Its magnetic moment 

by dl Is Just 

dW - -Hdl . (3) 

The law of conservation of energy for a reversible process may be 

written 

TdS = dU + PdV - Hdl . (4) 

Now define a magnetic Glbbs potential G, hereafter called the free 

energy, given by 

G = U - TS + PV - HI . (5) 

Differentiating, and substituting from (4), we get 

dG = VdP - SdT - IdH . (6) 

Hence at constant temperature and pressure for an ellipsoidal specimen, 

H 

Gd.P.H) = G(T,P,0) - VjMdH . (7) 

0 

From Figure 1 It Is evident that for an ellipsoid. 

Gs(T,P,Hc) - Gs(T,P,0) + VH^/8TT, (8) 

where the subscript s(n) denotes the superconducting (normal) state. 

At H we must have 
c 

Gn(T,P,Hc) = Gs(T,P,Hc), (9) 

/ 
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for the two phases  to be In equilibrium.    But to a very good approxi- 

mation 

G (T.P.H )  - Gn(T,P,0), (10) a en 

since the normal state magnetic susceptibility Is of the order of 

-6 10    .    Hence we find 

G -G    - VH
2
/8TT = AG . (11) 

n    s c 

Using the relation 

we find 

s--(tu.„ 
VH/ÖH   \ 

AS= -T^U^r     • (13) ATT   \öT  /p 

Since H    = 0 at T = T  , AS = 0 at T  .     By the third  law of thermo- c c c        J 

dynamics, AS must be zero at T = 0.    Hence there is a latent heat 

(TAS) associated with the superconducting transition which vanishes 

at T = 0 and T = T  .    It is Interesting  to note that the requirement 
dHc AS(T=0) = 0 implies  that — = 0 at T = 0. 

The specific heat is given by 

(14) •<«1 
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Hence,  from (13), 

"■■*'&)MH-     <- 
Equation   (15) may be evaluated at T = T    to give 

VT    /öH (T )\2 

a result known as Rutgers'   relation.    Since AS(T ) ■ 0,  the transition 

at T    is second order;   the specific heat discontinuity being given by 

(16). 

The above results are based solely on    thermodynamic 

reasoning.    We have seen that differences in thermodynamic quantities 

between the normal and superconducting states may be calculated from 

measurements of the critical  field curve,  using equations  (11)  through 

(16).    To extract thermodynamic quantities  (such as  the specific 

heat)  for either the normal or the superconducting state,  further 

assumptions not obtainable  through thermodynamic reasoning must be 

made about  the nature of these quantities.    The assumptions must be 

based upon theoretical and experimental evidence concerning the 

properties oi metals at  low temperatures.    The  following assumptions 

are commonly used in the analysis of calorimetric data as well as 

critical  field data and are generally accepted as giving an adequate 

description of most experimental evidence. 

" 
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(1) The specific heat in the normal and superconducting states 

may be resolved into independent electronic and lattice terms (i.e. 

C-C  +C,C-C  +C). n   en   gn  s   es   gs 

(ii) The lattice specific heat remains unchanged in the super- 

conducting transition (i.e. C  = C ). gs        gn' 

(iii)    The superconducting electronic specific heat becomes 

immeasurably small compared to the normal electronic specific heat 

at low temperatures  (i.e. C      « C      for T « T ). r es en c 

(iv)    The normal electronic specific heat is given by the free 

electron model (i.e. C      = yT» where y = Sommerfeld constant). 

Hence,  using assumptions   (i),   (ii),  and  (iv), 

AS=S       -S      =YT-S (17) 
en        es es 

AC = C      -C      »vT-C       . (18) en        es       T es 

And at the lowest temperatures, by assumption (iii), 

lim AS = S  = YT = C  = lim Ac . (19) en       en 
T-»0 T-0 

From equation (11), 

VH 2    T 
AG = -~- = - J AS dT + AG(T=0)     (20) 

0 

T 
- AG(T=0) - -^ YT2 + r s dT  ■•   (21) z   ' •'  es 

0 



where t ■ T/T c 
t 

and        g(t)  =  (l/YTc) J S^dt  , g(o)=0 
0 

13 

2           2      4T1YTc2      2 
Hc    = Ho

Z  --Y— [t^  -  2g(t)]       (22) 

(23) 

Using assumption (ill), we  introduce the restriction that g(t) goes 

2 
to zero much faster than t    as t goes to zero.     In the low temperature 

limit, 

Hc
2 - Ho

2 - ^ I2   . (24) 

19/ 
BCS predicts, and it has been found experimentally, that 

assumption (ill),  and thus  equation (24) are valid for t<  .25. 

Naturally this cutoff temperature is dependent upon the material 

being  studied.    For superconductors with  large energy gaps S      is 

negligible to higher  t values than for superconductors with low 

energy gaps (Ln units of kT  ). 
c 

Provided enough experimental data exist in the region where 

assumption (ill) is valid, equation (24) can be used to find H and 

2 
V by fitting the low temperature data to a straight  line in H      and 

2     19.20/ 
T  . Once H    and v are determined,   S      and C      may be deter- o ' es es      ^ 

mined  from the data by using equations  (13),   (15),   (17), and  (18). 

If insufficient low temperature data are available,  then one must 

have knowledge of the behavior of g(t) in order to obtain y and H  . 

This,  of course,  is equivalent to knowing  the  form for S    , but it es 

turns out that neither Y nor H are very sensitive to the details of 
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21/ 
g(t) In the region where g(t) Is small but not negligible. Thus 

the final form of S      calculated from the data over the entire es 

temperature range Is not too sensitive to Its assumed behavior In 

the region where It Is small. 

BCS theory predicts values for reduced thermodynamlc quanti- 

ties in terms of the reduced temperature t. The BCS equation for the 

free energy difference at 0 K In terms of the energy gap Is 

^=|N(0)^(0))2 (25) 

where     N(0) - density of states of one spin at the Fermi  level per 
unit volume 

2A(0) - energy gap at 0 K, 

Using 

Y = | nV N(0)V (26) 

and equation  (11),   this yields 

22 
Muhlschlegel      has  shown that the  thermodynamlc functions which 

result from the BCS theory may be expressed in  terms of 

a(x) = ^   flog (l + e-^^u + x(U yeJ7 - f)+ f 
•00 

(28) 

fL(0)\2fL(T) Tc\2 

where x = ' ^kT   )  ( Ä(ö) F J 
c/   X / ' (29) 

and A(0)=r7L kT   = 1,764 kT 
Y C C e 
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The BCS equations for the superconducting electronic entropy reduced 

2 
by yT   and for the free energy difference reduced by yT    are 

s   /yT es      c 1 + 3(x£    -.)-f 

'i)k-4 
(30) 

(31) 

The reduced energy gap,   A(T)/A(0) ,  can be obtained from 

- logt - da/dx   . (32) 

The results of Muhlschlegel's calculations of  the entropy and critical 

field are shown In Figures 8 and 9. 

C.    Previous Measurements of Thermodvnamlc Properties of SuperconductorJ 

For some elements,  In particular those with critical  temper- 

atures well above 1 K, excellent critical  field and calorlmetrlc data 

exist.    A summary of data  for  some superconductors  Is given In 

Table 1.    For these materials It Is clear  from the table that  there 

Is agreement within  experimental uncertainty for almost all quantities. 

That Is,   the critical  field data and calorlmetrlc data are  thermo- 

dynamlcally consistent.    A particularly detailed analysis  of  thermo- 

dyanmlc consistency has been made In  the  case of tin and Indium,   and 
19.21/ 

Is discussed elsewhere .""""^— 

li 
I 
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In  the case of superconductors with low critical tempera- 
23/ 

tures such as zinc""    and aluminum the situation Is different.    The 

case of aluminum Is particularly frustrating because Its critical 

4 
temperature Is In the range where He    vapor pressure measurements are 

still feasible,  although difficult.    A summary of previous data Is 

given In Table 4,  Chapter III,  together with results from this Inves- 

tigation.    The following remarks about the previous data are  In order 

now, however.    Of particular Interest Is a lack of agreement between 

calorlmetrlc measurements of the specific heat discontinuity at T 
^HC(TC)\ 

C 

and values calculated  from  \       _       Jp .   In the case of Hopkins 
39/ 40/ 

data        and that of Rorer, et al., the critical fxeld curve near 

T  ,  the specific heat,  and the latent heat were measured on the same 

sample during the same run.    Both experiments yielded thermodynamlcally 

consistent results.    However, both these measurements were made on 

bulky samples with large demagnetizing factors.    All the other magnetic 

measurements were made on long thin specimens with small demagnetizing 

factors, and  they give consistently higher values for AC(T )   than the 

calorlmetrlc measurements.    Hopkins and Mapother        have mentioned 

that superheating effects might be more serious for long thin 

samples,  thus causing erroneous results  for H (T).    The following 

qualifying remarks should be made about  the data of Cochran and 
41 /^HC(TC)\ 

Mapother.—    The value listed In Table 4 for I— J       Is  that given 

In the table of results In their paper.    Reanalysls using only points 

with H    less  than ten gauss gives a  lower value, as Cochran and 

Mapother pointed out  in their paper,  but there is considerable uncer- 

tainty due to a  large amount of scatter  in the low-field data.    The 
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42/ 
data of Caplan and Chanln   give a lower value, but in their data 

also there is a lot of scatter close to T .  There is also some 
c 

question about the validity of their method of measuring equilibrium 

values of H  . 
c 

Another feature of the aluminum data is the lack of agree- 

ment in measurements of T . Values range all the way from 1.16 K to 

1.2 K, although the more recent measurements seem to cluster between 

1.1750K and 1.1850K.  Some of the oVier  T values, such as that of 
c 

43/ 
Cochran and Mapother, may be due to errors in temperature measurement. 

The only low temperature magnetic data for aluminum suf- 

ficiently precise to shew the deviation of the critical field curve 

42/ 2 
from parabolicity is that of Caplan and Chanin,— but below t =0.1 

there exist large systematic uncertainties in their temperature 

2 
measurement which make extrapolation to t =0 difficult. 

Evidently there still exists a need for precise critical 

field measurements of aluminum over a wide temperature range. 

D. Effects of Pressure on the Thermodynamic Properties of 

Superconductors 

Differences in mechanical properties between the normal and 

superconducting states can be calculated in much the same fashion as 

the differences in thermal properties were calculated in Section B. 

from equation (6), 

(&]        = v 
\öP/T,H 
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Differentiating equation (11), we get 

H   /OH \        H 2 /aV   (H )\ 
LV - Vn(T.P)   - V^T^.O) - V8(Hc) ^^T + ^ ^-y TjH 

(34) 
The second term on the right hand side of  (34) is due to magneto- 

striction in the superconducting state and is small compared to  the 
44/ 

first term. Defining 

3 = w (^r )       ai thermal expansion coefficient (35) 
v \dT/p,H 

K »  - — ( rr ]        ■ isothermal compressibility, (36) 
\ ö   'T ,H 

we find upon differentiating (34),  ignoring   second-order   effects 

1  /^Hc\   f^W       Hc    ö2HC 
0n  " ßs !S 4TT \5T"//p\öP"/T

+ 4TT    öPBT (37) 

, /an \2  H /a2H\ 

Equations  (34),   (37),  and  (38) can be thought of as special cases of 

more general equations relating changes  in length, elastic constants, 

and linear expansion coefficients to derivatives of H   with respect 

to components of  the stress tensor.    Seraphim and Marcus        have 

thoroughly analyzed the problem for various crystal symmetries,  and 

we shall not comment further on the more general relations. 

Using 

'A.)     J&~) (39) 
^PdT/ H     \dTöP/ H 
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it is easily shown that 

(■ 

i (m (4i) 
Hence 

ß ' " V ^SP^T.H ' 

Evidently the assumptions made In Section B regarding the resolution 

of the specific heat Into electronic and lattice terms, etc., may be 

applied with equal validity to the thermal expansion coefficient, ß. 

Thus, for example, 

1Ü     V^dlnY  KnCen dlnV ,.-. 
Pen c " V dP ^ V  dlnV ^  V  dlnV *      ^ ; 

Similarly, If C <* ["f- 
T \3 

D/ 

K C   din©- 
fl  ,. . JSLM    2 (43) egn     V   dlnV  * ^J; 

Hence several different types of measurements can be correlated 

thermodynamlca1ly: 

(I) The volume or length change at the transition can be 

measured and compared with direct measurements of the change In 

H with pressure or stress. 

(II) Changes In the thermal expansion coefficient, compress- 

ibility, and related quantities such as elastic constants and 

sound velocities can also be compared with, or deduced from, 

measurements of the change of H with pressure or stress. 
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(ill) Measurements of the low-temperature behavior of I gp /j 

can give Information about TT and can be correlated with the 

normal electronic thermal expansion coefficient. Once fi Is 

known, ß  can be found through (31) from measurement of H (T) 

and l-Tp/m over a wide temperature range. 

20/ dY 
Swenson   has considered the problem of extracting -rt from the low 

temperature data on the pressure dependence of H In the following 

manner. Differentiating equation (24), 

^l • (ip-A - ^ (^ W" T} <**> 

Note that 

■^ . ,   .... n        -YK. 

ap (v/V))T - Ul^ + VKJ . 'La gl^ . x]. (45) 

dV 
Hence at low enough temperatures one may calculate -rr from the slope 

ÖHC 2 

of an experimental plot of 2H rr-  versus T . The deviation of 

such a plot from a straight line may be estimated by differentiating 

(21). 

OP A - \ ap h + ^ [** HT-^li^T^"-^/^^ 
oN    '      o 

(A6) 

20/ 
Swenson        has shown that for tin ß      is roughly equal to ß      at 

es en 

t ■ 0.3. Hence one would expect the integral on the right hand side 

of (46) to be appreciable at that temperature. 
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The functional dependence of \Tp~L  on temperature may be 

examined In the light of BCS theory.    First let us define a simi- 

larity principle for critical field curves.    Let 

Hc-Hof(t). (47) 

Then,  if the pressure dependence is such that 

H (P) - H  (P)f(t) (48) c o 

and f(t) is independent of pressure, then the family of critical 

field curves at different pressures is said to obey the principle of 

simple similarity. That is, in terms of the reduced variables H /H 
CO 

and T/T the critical field curve is Independent of pressure. 

Let us mention in passing a second similarity condition 

which was useful in interpreting the isotope effect, but is only of 

historical interest here. If, in addition to simple similarity we 

have 

H (P)  H (0) 

T (P)  T (0) ' K^) 

c c 

then the family of critical field curves is said to obey the principle 

45/ 
of double similarity. 

BCS theory predicts that the deviation from simple similarity 

will be immeasurably small. From equation (22), 



H 
c 

H 
o 
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ATTyT   ' 

2    Ct*  - 2g(t)3 
VH o 

1/2 
(50) 

It was  stated  in Section B  that BCS makes definite numerical pre- 
ATTYT 2 

dictions for    |    (from equations  (27) and (29)) and g(t)  (from 
VH 

equation  (30)).    Actually,   these quantities are weakly dependent 

upon the ratio T/0   , where 8_ls  the Debye temperature.     Seraphim and 
45/ 

Marcus-^   calculate from BCS that the maximum shift of f(t) is 

l£\ ~    4 ain(ic/eD) 0 
rr)    ■»  10      j-p fa 10      - 10        per atmosphere        (51) 

for typical  superconductors.    If we define a deviation function 

D(t) = H /H    -   (1  - T2/T 2) = f(t)  -  1+t2   . (52) 
CO c 

Then, 
max \        &f \   ^ ir.-10 . ,_.,. 

Tp 1    = "^p 1   =10 per atmosphere  . (53) 

Hence for a pressure of 1000 atmospheres, 

AD       ~ 10-7   , (54) max 

which for aluminum corresponds to about 10  gauss, and is thus 

immeasurably small. Experiments on various superconductors, however, 

show that the deviation function at zero pressure varies more from 

material to material than the variation in T fa     would yield through 

iaw"^ the BCS theory. Decker, Mapother, and Shaw-""^  have found empiri- 
T 
c 

cally that the maximum value of D(t) varies with "S" such that 

/ 
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max     c D 

Thus 

SD  \   T  oln(T /e^) 
,i m  ^ ä J^Q  _ l0      atmos.  (56) 
/t   ön a? /t  eD   9P 

This is still an extremely small effect,  vtery accurate measurements 

at pressures on the order of 10,000 atmospheres or greater would be 

required to measure this shift in aluminum. The situation would not 

45/ 
be quite so bad in tin.  Seraphim and Marcus"" give for tin, 

öln(Tc/eD)     _5 
_ ^  ^Q  per atmosphere. (57) 

OP 

Us in ̂  

we get 

ÖP /t 

Hence if P ^ 10,000 atmospheres. 

T /en =   .019 (58) c    u 

ÖD      \ 7 

g^l    - 2x10'     per atmosphere   . (59) 

AD        ^  .002 (60) 
max — 

In tin this corresponds to about 0.6 gauss, which with high precision 

techniques could possibly be observed. To our knowledge, all pressure 

effect experiments on superconductors published to date give results 

which are consistent with simple similarity. 
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Consider the consequences of simple similarity. From 

equation (50), we see that if simple similarity holds, 

*rr 2 YWT 

H 

C it ' 
-r— ■ constant, where Y = 77 • (61) 

Note that double similarity would not be expected to hold, since the 

density of states at the Fermi level, and hence y, are functions of 

volume and pressure.  Double similarity is obeyed in the isotope 

effect, however, since N(o) is not a function of isotopic mass. 

Differentiating (61), we find 

..  *   2 dlnH   2 dlnT 
dlnV _      o   c 
dP  s ' dP " '   dP 

(62) 

Using 

dT 
 < 

dP ÖP 

öH (T ) 
c c 
3T 

(63) 

we then get 

.L gfl     1. 
v*  dP H 

aHc(Tc>N 

ÖP 

dH /dP 
o 

H 

(öHc(Tc)/öP)T  Tc  (ÖHc(Tc)/ÖT)p 

(64) 

Hence if simple similarity holds we do not need equation (44) and an 

2 experimental plot of 2H  IrTTJ    VS. T' at very low temperatures to find 

■Tp-  .    However, we still must extrapolate  to  t = 0 to obtain the 

pressure dependence of H  .    This can be done by using  the experimental 

plot described above and equation  (44) or by simply extrapolating a 
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/9H, 

), 
c l 2 plot of väp/    versus t    to zero.    The shape of such a plot under  the 

restriction of simple similarity can be found by differentiating 

equation  (47).    Substituting  (52) and differentiating, 

vöP /T 

ÖH c 1+2 
dlnT /dP c 
dlnH /dP o 

1) t2+ D(t)  -  2t2^ 
dlnT /d?  c  

2    dlnH /dP dt o 

(65) 

where we have used the fact that 

/ht\ dlnTc (66) 

The last two terms on the right hand side are typically a few percent 

of the first two terms. Thuslrr-)  Is very nearly a straight line 
2 

In t over the entire range of t, although the slope of a best 

^M      2 
straight line fit to an experimental plot ofl -rr-j  vs. t may be 

affected by the last term in (65), and thus will not be given by the 

coefficient of the second term in (65).  The percentage error involved 
/öHc(Tc)\ 

in finding dH /dP and I—rr j      by fitting such a plot to a straight 

2 
line in t is small, on the order of 5%. 

The variation of T with pressure can be studied by means of 

the BCS relation 

T ~ 1.14 en e c —      D 
TTTOT (67) 

where A is the BCS electron-electron coupling constant. Thus 

dlnT 
 < 

dlnV 

dine D 
dlnV N(0)A 

dlnN(O)  dlnA 
dlnV "^  dlnV 

(68) 
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Solving for   .,  „,  remembering that „ « N(o), 
dinv ' V 

dlnA 
UlnV 

= N(o)A 
dlnT        dine, 

dlnV        dlnV 
+  1 

dlnV 
dlnV 

(69) 

Hence  the volume dependence of A can be calculated from experimental 

measurements of the volume dependence of T  , 9     ,  and y.    Unfortunately, 

experimental uncertainties in such measurements lead to  large uncer- 

tainties in calculated values of   .. ,   thus making comparison with 

46/ 
theoretical estimates difficult.— 

E.    Previous Pressure Effect Measurements on Aluminum 

Pressure effect measurements on superconductors have been so 

47,48,49/ 
thoroughly reviewed elsewhere— — —    that we shall confine our 

remarks  to previous  results  in aluminum.     These results  are given  in 

5^ 
Table 6, Chapter III.  The values of  ^ listed for Olsen ' and for 

dlnV 
^H 51/ , -  Ci 

Gross  and Olsen "~    were  calculated  from measurements of I TT-L    by 
öH ,öP  /T 

fitting  their data  to i:~JJ~)T = a + bt    and using equation   (64)   based 

upon simple similarity.     The discrepancy in "Tj-y of over jn order of 

magnitude between Olsen's result and  that of Gross and Olsen is  sur- 

prising.    The  two experiments were very similar.     In both experiments 

two aluminum samples were used;  one under pressure  in an  ice bomb and 

the other at zero  pressure.     Differences  in  the critical  field of  the 

two samples were directly measured as a  function of temperature down 

to  0.3 K with a  fixed  pressure in  the  ice bomb.     In  the Gross and 

Olsen experiment  two  differont  sets  of aluminum samples were measured. 
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The only difference between the two experiments was In the pressure 

calibration.    In the Olsen experiment the difference In the critical 

field of two cadmium specimens, one In the Ice bomb and one at zero 

pressure, was used to measure the pressure.    The pressure was calcu- 

lated from earlier measurements on cadmium by Alekseevskll and 
52/ 

Galdukov. Gross and Olsen used two Indium specimens Instead, and 

mentioned In their paper  that due to anlsotropy In the pressure 

effect In cadmium,  the pressure calibration at low temperatures In 

the Olsen experiment was erroneous.    It Is hard to see,  though, how 
dHo//dHc(Tc)Nl an error In pressure calibration could affect  the ratio "Tp-/ I—Tp ) 

The pressure In the bomb should not change appreciably with temperature, 

It appears that the results of Gross and Olsen are In much better 

agreement with the low temperature thermal expansion measurements of 
5^ 54/ 

Andres        and of White, 
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II.    EXPERIMENTAL APPARATUS AND PROCEDURE 

A.    Background 
29,55,56/ 

A few measurements of the effect of pressure on 

critical field curves have been reported in which solid helium was 

used t-.o transmit hydrostatic pressure to a sample.     Solid helium has 

two principle advantages as a low temperature pressure transmitter. 

It is a soft, highly compressible solid, and as a result inhomogeneous 

stresses tend to anneal out.    Also,  for pressures below 10,000 psi, 

the melting curve lies below 15 K.    Thus the high-pressure bomb can 

be pressurized while the experiment is at low temperatures, and 

measurements can be made at more than one pressure during a  low tem- 

perature run. 
56/ 

Garfinkel and Mapother        have described an apparatus using 

solid helium as a pressure transmitter with which they have measured 

the effect of pressure on the critical field curve of lead at tempera- 

tures down to  1 K.    They developed a capacitance technique for measur- 

ing the extension of their high pressure bomb under pressure,  thus 

avoiding  the use of a  specitren of another superconductor in which 
/öH(T)\ 
v—rr—)  is assumed to be known in order to measure the pressure. 

They measured the critical field curve of their lead sample at fixed 

pressure without the use of a comparison sample at zero pressure. 

This necessitates temperature measurements of high precision in order 

that accurate critical field differences can be obtained from 

critical field curves measured at different pressures. 
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We have adapted the Garflnkel and Mapother  technique for 

3 
use with a He    refrigerator capable of reaching temperatures as low 

as 0.3 K,  thus making measurements on aluminum possible over a wide 

range of reduced temperatures, at pressures ranging from zero to 

about 10,000 psl.    In the sections to follow we will discuss the 

essential points of the technique. 

B.    Sample    Preparation 

The aluminum sample was a 1.25 Inch length cut from 0.080 

Inch diameter 99.9999% pure polycrystalline aluminum wire supplied 

by Comlrco Products,  Inc.  of Spokane, Washington,    After cutting, the 

sample was cleaned and Its ends rounded in a ION solution of NaOH 

followed by a distilled water rinse. 

The sample was  then annealed for 20 hours  at 633 C in a 

CO« atmosphere, after which it was cooled to room temperature at a 

rate of 27 C per hour.    The C02 provided a reducing atmosphere which 

stabilized the oxidation of  the sample surface.     The  sample was  then 

recleaned as before and placed in the cryostat. 

C.     Low Temperature Apparatus 

In this section we will discuss  the construction of the 

3 
high pressure bomb,  the He    refrigerator, and the resistance and 

magnetic  thermometers, and the method for obtaining  thermal contact 

between various parts of  the cryostat.    How the apparatus is used will 

be discussed in later sections. 
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The apparatus, which Is cryogenlcally quite similar  to 

12/ that described by Finnemore and Mapother, is shown in Figure ?. 

4 
During the experiment it is immersed in a bath of liquid He  . 

4 3 Thermal isolation between the He    bath and the He    refrigerator is 

maintained by high vacuum between the outer and inner cans.    Also, 

4 
all  tubes and leads connecting    the  inner system to the He    bath are 

made fr'im long lengths of thin-wall cupronickel  tubing and poorly 

conducting manganin wire  to keep the heat leak as low as possible. 

When good thermal contact is desired between the inner and outer 

4 
cans, He    gas  is  admitted to the outer can. 

3 
The He    evaporation chamber is made from copper.    It is 

silver-soldered to  the top of the inner can and has a 2000 ohm 

manganln heater wound around it  in bifilar fashion.    The sample is 

held in place by nylon  spacers  in a brass sample holder, which in 

turn is screwed into  the  tellurium copper  thermal ground.    The 

thermal ground projects  throtgh  the beryllium copper  flange and is 

3 
screwed into  the bottom of the He    evaporation chamber with Apiezon 

N-grease on the threads   to in prove  thermal contact.    The  thermal 

ground and beryllium copper flange were  silver  soldered together 

before final machining.     The bomb itself is  the same as  that described 

by Garfinkel  and Mapother.   It was machined from beryllium copper  to 

an OD of 0.456 inches and an ID of 0.375  inches,  and heat-treatea  to 

an ultimate tensile strength of 200,000 psi.     The hardened bomb was 

calculated to have a bursting pressure of about 30,000 psi.     The high 

pressure seal  is made by compressing the Teflon gasket against  the 

f. 
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Figure 2.    Cross-section of cryostat. 

A. outer can 

3 
B. He evaporation chamber 

C. inner system heater 

D. bucking coil 

E. beryllium copper plug 

F. flange 

G. thrust washer 

H. Teflon gasket 

I. high pressure bomb 

J. copper yoke 

K. sample coil 

L. thermal ground 

M. sample 

N. inner can 

0, high pressure capillaries 

F. Speer carbon resistor 

Q. capacitor plates 

R. epibond insulator 

S. salt pill primary coil 

T. salt pill secondary coils 

U. salt pill 

V. nylon spacer 
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beryllium copper  flange and the wall of the bomb.    The gasket Is 

compressed by a beryllium copper  thrust washer, clamped in position 

by a beryllium copper plug which is bolted to the bomb    with five 

#8-32 beryllium copper bolts.    All beryllium copper pieces were heat- 

treated in the same manner as  the bomb.    The seal design makes use of 

the "unsupported areas" principle of Bridgman.-"'     It is character- 

istic of this  type of seal  that the internal pressure in  the gasket 

is always greater  than the internal pressure In the bomb by a  fixed 

ratio,  thus creating a positive seal which should improve as  the 

pressure is increased.    Due to  the  large  thermal contraction in the 

Teflon gasket,   it is necessary to preload the gasket before cooling 

t    helium temperatures.    The bolts are  tightened such that the gasket 

i       )aded with about 3000 pounds force at room temperature, which 

corit-jponds   to about 3000 atmospheres  pressure in  the gasket. 
58/ 

According to  Swenson,        this should be enough to prevent unloading 

of the gasket at  low  temperatures.     The  seal was  found  to be  satis- 

factory at pressures up  to  10,000 psi  at helium temperatures.     However, 

leakage occured above this pressure.    The reason for  this  is not 

known.    However,   10,000 psi was  close enough  to  the maximum working 

pressure of  the high pressure gas handling equipment  (see  Section E) 

that it was not deemed necessary to  improve the seal  for  this 

experiment. 

Helium gas is admitted to  the bomb through one of the 

cupronickel  tubes  soft-soldered into  the bomb.    The method by which 

the helium is pressurized and solidified in the bomb will be discussed 
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in Section E.   Thermal contact between  the specimen and  the  tellurium 

copper  thermal  ground is made by  the  solid helium in  the bomb.    For 

3 
measurements at zero pressure,  He    exchange gas   is admitted  to the 

bomb at a pressure of a  few psi at  liquid helium  temperature. 

Two   thermometers are used  in this apparatus;   a  470 ohm 

k watt Speer carbon resistor and a  spherical pill of paramagnetic 

salt.    The  carbon resistor  is mounted in a copper ring which is 

clamped to  the  bottom of  the bomb.    Apiezon N-grease  is used to promote 

thermal contact between the copper  ring ani    the bomb.     The salt pill 

is made up of a mixture of  fine crystals of chrome methylamine alum 

and Dow Corning silicon oil packed  into a nylon  form.     The  silicon 

oil  improves  thermal contact between salt crystals and  inhibits  the 

loss of  the water of hydration by the salt.    The mixture  is 76% salt 

by volume.    Thermal contact  to  the salt is made by 32 #20 copper 

wires which penetrate  the salt-oil mixture.    These wires emerge from 

the nylon  form and are silver  soldered into a copper  clamp, which is 

coated with N-grease and  tightly clamped to a copper  yoke.     The yoke 

3 
is  thermally grounded  to  the He    refrigerator.    All  electrical leads, 

which are 0.0031  inch diameter enamel-covered manganin wire, are also 

thermally grounded to  the copper yoke.    Also,  during a run  the inner 

3 
can is  filled with He    exchange gas  to improve thermal contact 

between bomb,  refrigerator,  and  thermometers.    We find  that at all 

temperatures with the above arrangement  the carbon resistor and the 

magnetic salt respond within a  few seconds  to pulses of heat put into 

3 
the He    refrigerator by the electrical heater.    Hence we conclude that 

the bomb,  refrigerator,  and  thermometers are in good  thermal contact. 

/ 
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D.    Critical Field Measurements 

We detect magnetic  transitions under Isothermal conditions 

using a ballistic Induction  technique.    This technique has been 

59/ 
thoroughly described elsewhere,        and will only be briefly reviewed 

here.    Two separate solenoids are used to provide a magnetic field 

at  the  sample.    One solenoid,   called the nitrogen solenoid because 

It Is  located  In the nitrogen bath which surrounds  the helium dewar, 

produces a large constant field (up to 1000 gauss)  at the sample. 

The other solenoid, called the air solenoid because It  Is situated 

outside  the dewar system,  produces a small field  (less  than 10 gauss) 

which may be made to add or subtract from the  large field.    The 

field produced by these solenoids  Is uniform to 6 parts  In 10,000 over 

the volume of  the sample,  and Is calibrated to  3 parts  In 10,000. 

Corrections  for the Inhomogenelty Introduced by the magnetic salt and 

small amounts of superconducting solder in the cryostat were calcu- 

lated  to  be negligible.     Stray magnetic fields were canceled to +  .04 

gauss with a Helmholtz pair.     Two search colls,  called the sample 

coll and the bucking coll   (see Figure 2), are used.     The  sample 

coll,  having  11,900 turns of #44 copper magnet wire wound with an 

average radius of 0.655",   surrounds  the sample.    The bucking coil has 

1958 turns of #44 copper magnet wire wound with an average radius of 

1.563",  and Is  located well away from the sample.     The area-turns 

products for  these two colls are equal.    The two colls are connected 

in series opposition through a  ballistic galvanometer.     The galvano- 

meter used in  this experiment  is a Kipp model A-54 double coil 
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galvanometer, made by P.  J.  Kipp and Zonen of Delft, Holland.     This 

galvanometer ha^ magnetic  shunts which make  it possible to vary the 

CDRX  (external resistance which gives critical damping) of either 

galvanometer coil over a wide range.    With the 50 ohm galvanometer 

coil  it  is possible to vary CDRX from 1 ohm to  1500 ohms.    With the 

450 ohm galvanometer coil,   the magnetic  shunts allow CDRX to be 

varied  from 4000  to  100,000 ohms.    Since  the galvanometer is used as 

a  fluxmeter,  it is desirable  to have the CDRX considerably larger 

than  the combined resistance of the  two  search coils and their  leads, 

which  in  this case  is about  700 ohms at  liquid helium temperatures. 

We found that the best combination of flux sensitivity and fluxmeter 

behavior was obtained by using the 450 ohm coil at minimum CDRX.    The 

flux sensitivity under  the above conditions,  and with a 140 cm path 

between  the galvanometer mirror and the galvanometer scale,  is about 

2 
0.015 mm/gauss cm  . 

The following procedure is used to measure H .    At a  tempera- 

ture below T    the nitrogen solenoid field is set at a value close  to 

H   ,  and  the magnetic  field at the specimen is  increased by small, 

mcnotonic,  stepwise increments  through H    using  the air solenoid. 
c 

The effective permeability of the specimen as  it makes a superconducting- 

to-normal transition is determined from the galvanometer deflections 

accompanying each step,  since each is proportional  to the flux which 

enters  the sample during  that step.    The two search coils are perfectly 

balanced when the sample  is  normal,  and only a  slight imbalance exists 

when  the sample is  superconducting.    This imbalance  leads  to deflections 
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which are much smaller  than those which occur In the Intermediate state, 

and are neglected.    The effective permeability of the sample at the 

m      step is then defined as 

1=1     /all steps 

where 6,   is the deflection corresponding  to the 1      step.    H    is  then 

determined by extrapolating an experimental plot of p, versus the 

applied field to ^ = 1.     The details of the magnetic  transitions and 

the resulting critical field values will be discussed in the next 

chapter. 

E.    High Pressure Generation and Measurement 

In this section we will describe the high pressure apparatus 

external  to  the cryostat,   the pressure lines   into  the cryostat,   the 

pressure  measuring    system,     and   the experimental  procedure.    The 

apparatus and techniques are very similar  to  those of Garflnkel and 

Mapother. 

Helium gas  is compressed by an SC model  10-500-16 air- 

operated hydraulic pump capable of a maximum pressure of 25,000 psi. 

The compressed gas  then passes  through a coil of 1/16" ID x 1/8" CD 

high pressure tubing suspended in a bath of liquid nitrogen,  to 

freeze out impurities  in the gaseous helium.    All  lines and fittings 

external  to  the cryostat are High Pressure Equipment Co. midget series 
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valves,  fittings, and tubing with a maximum working pressure of 15,000 

psl.    After passing through the cold trap the gas  Is admitted to t'.'C 

high pressure bomb through a capillary.    A second capillary goes from 

the bomb to a Heise high precision Bourdon gauge at room temperature. 

The use of separate inlet and return lines allows one to know whether 

or not the lines are blocked.    The capillaries are half-hard  .018" CD x 

.008" ID cupronlckel tube with a tensile strength of 60,000 psi.    The 

advantages of cupronlckel are that it is easily soft-soldered and is 

non-magnetic.    The two capillaries are wound with a 200 ohm manganin 

non-inductive heater and enclosed in a vacuum Jacket which extends 

from the top of the outer can to well above the helium level.     The 

heater-wound capillaries emerge from the vacuum jacket and enter the 

inner can through epoxy  seals. 

A capacitance  technique is used to measure the extension of 

the bomb under pressure.    One capacitor plate  is attached to  the 

lower end of the bomb,  and the other is  fixed with respect  to  the 

upper end of the bomb.     These plates have an area of about  .63 

square inches and are adjusted at room temperature and zero pressure 

to have a separation of about 0.010 Inches.     The change in length of 

the bomb is about 0.002  inches per 10,000 psi, which results in a 

-4 capacitance change of about 2 x 10     picofarads per psi.    The capaci- 

tance is measured by comparison with an external General Radio  type 

1422-ME high precision variable capacitor using a Robertshaw-Fulton 

capacitance bridge as a null detector.     Capacitance changes of about 

.002 pf, corresponding  to about 10 psi,  can be measured in this way. 
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The effects of variable lead capacitance are avoided through the use 

of a  trlaxial cable between the capacitance bridge and the bomb 

capacitor.    A schematic diagram of the capacitance measuring system 

Is shown In Figure 3.    The Inner shield divides  the stray capaci- 

tance, which Is about 20 pf,  Into two parts.    One part,  C . ,  is a 

across  the output of the bridge and thus has no effect on the bridge 

balance conditions.    The other part, C.   ,  is effectively in parallel 

with C.   which is 1000 pf.     Thus variations  in bridge output due to 

variations in stray capacitance are reduced by a factor of about 

•z—r—r—; _ , where  (C   + C-+ C ) is about 50 picofarads. C   + C- + C v x 3        stray r 

x        3        stray J 

The construction of the trlaxial cable which extends down the cryostat 

to the bomb capacitor is  shown in Figure 4. 

The experimental procedure is as follows.    The capillary 

vacuum jacket and the outer can are evacuated, and both the capillary 

heater and the inner system leater are turned on.    The inner system 

is warmed up to a temperature greater than the solidification temp- 

erature of helium at the pressure desired.    Approximate temperature 

values above 4.2 K are obtained from the resistance of the  Speer 

resistor clamped to the bomb,  but no accurate  temperature measurements 

were attempted.    Helium gas  is  then admitted slowly to  the bomb, 

and  the capacitor is calibrated against the external Bourdon gauge. 

The calibration and pressurizatlon procedure takes about % hour. 

When the pressure reaches the desired level the capillary heater is 

turned off and helium exchange gas is admitted  to  the capillary vacuum 

jacket  to bring it into  thermal contact with the helium bath,  thus 
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Figure 3.    Schematic diagram of capacitance measuring system, 
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Figure 4. Cross-section of low-temperature portion of triaxial 

cu^ie. 
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freezing the helium In the capillaries.    The Inner system heater Is 

then turned off,  and the outer can exchange pressure adjusted so that 

the bomb cools  to 4.2 K over a period of several hours,  during which 

time the capacitance Is monitored.    The result Is a curve of capaci- 

tance versus  Speer resistance such as  that shown In Figure 5.    Below 

4.2 K the  thermal expansion of the solid helium Is small and  the 

capacitance versus  temperature curve Is essentially flat.    The final 

pressure of the solid helium on the specimen is taken from the cali- 

bration of the bomb capacitor. 

The accuracy of the pressure measurement Is  limited by the 

stability of the capacitance.    We find that the bomb capacitance, 

after solidification and cooling is complete,  is stable to within 

about +  .02 pf, or about + 100 psi, over a period of several days. 

The interpolation uncertainty in  the bomb calibration is also about 

+ 100 psi, and as a result we estimate that our pressure measurements 

are good  to within about + 200 psi. 

We performed three condensations of the type described 

here.    The final pressures were 3100, 5400, and 7200 psi.    The 

condensations and runs at 3100 and 5400 psi were quite normal; 

however,  the run at 7200 psi showed some unusual features. 
4 

(1) There was evidence of some leakage of He    from the bomb. 

(2) The bomb calibration prior to condensation was done 

extremely quickly, with all points  taken while the pressure was 

rising rapidly.    As a result,  It was considered suspect and a new 

bomb calibration was made after  the run, which differed from the 
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Figure 5. Constant volume condensation of solid helium at 5400 psi 
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initial one by about 12%. The capacitance of the bomb was monitored 

throughout the run and remained wlthlr the limits mentioned earlier 

in this section. We thus concluded that any leakage which occurred 

during the data-taking portion of the run was negligibly small. The 

second bomb calibration was made much more carefully than the first, 

and was used to calculate the pressure. The data for this run, which 

will be discussed in the next chapter, show no anomalies which can 

be attributed to incorrect pressure calibration, non-constant pressure, 

or inhomogeneous pressure. Our conclusion is that the data from the 

7200 psi run are reliable. 

F. Temperature Measurement and Control 

The following will be discussed in this section:  the proce- 

dure and apparatus for making magnetic salt measurements, the cali- 

bration of the magnetic salt, and the control and measurement of 

temperatures below T of aluminum. 

We determine temperatures below 1.2 K from the mutual 

inductance of a set of coils containing the salt pill described in 

Section C. These coils and the apparatus used to measure their 

19/ 
mutual inductance are identical to the system described by Finnemore.""" 

The coils, shown in Figure 2, are wound on a bakellte form and 

attached to the outer can. The secondary coil which surrounds the 

salt pill is connected in series opposition to the secondaries on 

either side of it, thus subtracting out most of the temperature- 

independent mutual inductance. The mutual inductance is given by 



49 

M = A + B/T* (71) 

where T* is a magnetic temperature differing slightly from the 

absolute temperature, and B is proportional to the Curie constant 

of the salt (chrome methylamine alum). The constants A and B vary 

from run to run, but are typically 

A = 100 microhenries 
(72) 

B = 1000 microhenry  K 

The mutual inductance is measured by comparing it to a variable 

mutual inductance with a ballistic Hartshorn bridge to a precision 

of 1 microhenry. The variable mutual inductance was calibrated with 

a General Radio type 1632 inductance bridge to a precision of 0.3 

microhenry.  The calibration procedure has been described previously 
34/ 

by Wilkes.    To calculate absolute temperatures, magnetic tempera- 

tures must be corrected for the difference between applied field and 

+++ 
local field, and for the splitting of the energy levels of the Cr 

ions by the crystalline electric field. The local magnetic field 

60/ 
correction has been calculated by Onsager   and is given by 

(** - für+ If) T*  = ± ;3V ' V  , 3V - (73) 

where C/V is the Curie constant per unit volume of the salt. The 
61/ 

Hebb and Purcell   relation for the electric field splitting 
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i   • correction is 

T   —   T1^ 
ons 

(3 ± 4T/6) + (3 -  4T/6)e"6/T 

5(l+e-6/T) 
(74) 

where 6  -  .275 K for chrome methylamine alum.     The resulting T - T* 

relation has been verified by experimental determinations of the 

entropy and specific heat of a powered sample as a function of 
62,63/ 0 0 

susceptibility.   " At 1 K,   the correction is about  .003 K;  at 

0.3OK it is about   ,010OK. 

The magnetic salt thermometer is calibrated above 1.2 K 

4 4 against the vapor pressure of He      using the 1958 He    vapor pressure 

64/ 4 
scale.   "      In this range  the He    bath temperature is  controlled by 

an automatic pressure regulator and an electrical heater. The auto- 

matic pressure regulator serves as the coarse control, and the elec- 

tric heater as the fine control. The power to the heater comes from 

a Leeds and Northrop series  60 C.A.T.  controller which is driven by 

the error signal  from a DC wheatstone bridge monitoring a carbon 

4 
resistor  in the He    bath.    Temperatures  can be  controlled automat- 

-4 o 4 ically to better  than  10        K using  this method.    The He    vapor 

pressure  Is measured with mercury and oil manometers using a Wild 

4 
Cathetomcter.    A vacuum jacketed probe senses   the He    vapor pressure 

a few centimeters over  the bath.    No points are  taken above the X 

4 
point of  liquid He    to avoid uncertainties due  to  the pressure head 

of  the bath.    We  typically  took  twelve salt pill calibration points 
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between 1.20K and 2.170K. The RMS deviation of the calibration points 

from a best straight line fit in l/T* was roughly 0.8 microhenry. The 

constants A and B in equation (71) were determined to about + 1 and 

+ 1.7, respectively. The effect of the aluminum sample on the mutual 

Inductance was calculated to be about .03 p,h, which is negligible. 

Below 1.2 K the inner system is isolated from the bath and 

3        3 
the temperature is controlled by pumping on liquid He in the He 

refrigerator and by controlling the power to the 2000 ohm manganln 

3 
heater wrapped around the He evaporation chamber. The power to the 

heater is supplied by the L&N C.A.T. controller which is driven by 

the error signal from an AC wheats tone bridge monitoring the Speer 

resistor clamped to the bottom of the bomb. The AC bridge operates 

at 33cps; its output is amplified using the circuit of Blake, Chase, 

65/ 
and Maxwell,   and detected using the phase sensitive detector 

66/ 
designed by Anderson.    The power to the thermometer from the bridge 

is of the order of .01 ergs per second. This compares with a heat 

leak from all other sources of about 100 ergs per second. The lowest 

temperatures attainable were about 0.3 K. Over the range from 0.3 K 

to 1.2 K the temperature could be controlled to 10   K or better. 

Temperatures were measured with the magnetic salt thermo- 

meter. Two low temperature runs were made. On the first run, 

critical field curves at zero pressure and 3100 psi were measured. 

During the second run, critical field curves were measured at 5400 

pit, 7200 psi, and zero pressure. The temperature measurement proce- 

dure was different for the two runs, and the procedure for each run 

will be described. 
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Run 1. Magnetic temperatures were measured at roughly half of the 

critical field points. These were used (after making the T - T* 

correction) to calibrate the Speer resistor.  The resistor was 

calibrated by determining the expansion coefficients In 

i   +3 

~ '    r  an(lnR)
n (75) 

T  n-1 n 

In least squares fashion,  using computer programs described by 
67/ 

R.  E. Harris. The RMS deviation of the data  from the fitted 

curve was 0.0007oK and 0.0005OK for the zero pressure and 3100 psi 

calibrations, respectively.    Above 0.8 K there appeared to be no 

systematic deviation outside of the data scatter.    Hence temperatures 

between 0.8 K and 1.2 K were calculated from  the R vs T formula. 

Below 0.8 K,  systematic deviations were  larger   than the scatter,  so 

temperatures were calculated using the formula plus a small temperature- 

dependent correction which was always  less  than 0.0003 K.    There also 

appeared to be a systematic shift of the calibration between the zero 

pressure and 3100 psi calibration of about 0.002 K at 0.3 K,  but 

smaller at higher temperatures.    We  thus calculated temperatures  for 

the zero pressure and  3100 psi critical field points from the zero 

pressure and 3100 psi calibrations,  respectively. 

Run 2.    On  the second run magnetic temperatures were measured at all 

critical field points,  and  the resulting R vs T calibrations   (one for 

each pressure)  showed no  systematic changes between calibrations. 

However,   there was   more   scatter     in  the data above 0.8 K than in 
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the first run, the RMS deviation from the fitted R vs. T curves 

being less than 0.0009 K for each of the three calibrations. Hence, 

possible shifts in resistor calibration In the region above 0.8 K 

were obscured by the scatter. Temperatures below 0.8 K were calcu- 

lated from the raw mutual Inductance data without making use of the 

resistor calibrations. Above 0.8 K, temperatures were calculated 

from an R vs. T function obtained by fitting the data from all 

three calibrations to equation (75). 
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III. RESULTS AND DISCUSSION 

A. Details of Magnttlc Transitions 

A transition which Is typical of all transitions taken 

2 
below t - 0.6 is shown In Figure 6. The dashed line shows the 

transition shape corresponding to the demagnetizing factor calcu- 

lated from the length to diameter ratio of the sample. All the 

transitions were somewhat narrower than would be predicted from the 

demagnetizing factor. This behavior has been observed before In 

41/ 
aluminum by Cochran and Mapother,   and attributed to a large 

2 
positive Interphase surface free energy. Above t - 0.6, super- 

heating effects were observed. The transitions were very sharp and 

Irregular In shape. However, the smoothness of the resulting critical 

field curves (see Figure 13) over the entire temperature range and 

the thermodynamic consistency of our data with calorimetric measure- 

ments of AC(T ) (see Table 4) indicates that the critical field 
c 

values obtained in the high temperature range must be very close 

(within about 0.1 gauss) to the equilibrium values. 

Detailed measurements of supercooling were not made. 

During the first zero pressure run, the supercooled normal-to- 

superconducting transitions were about 16% lower than the correr- 

sponding superconducting-to-normal transitions. For all high 

pressure runs, and for the second zero pressure run, the supercooling 

was about 5% of H . It should be noted that the second zero pressure 

run was performed immediately after the 5400 and 7200 psi runs, 

without warming the sample above 15 K.  The first zero pressure run 
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Figure 6.    Typical superconducting transition.    This  transition was 

measured at T - 0.3259OK during the May 1966 3100 psl run. 
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was mad« immediately after cooling down from room temperature. 

Although there was no broadening of the superconductlng-to-normal 

transitions, it is possible that the pressure induced some permanent 

strain in the sample which reduced the supercooling.    Any strains 

induced by application of high pressure prior to the first zero 

pressure run could possibly have annealed out at room temperature. 

The critical field data are listed in Appendix B.    The zero 

pressure listing Includes the data from both zero pressure runs. 

B.    Analysis of Critical Field Curves 

In Chapter I,  Section C   we showed that H    and Y can be 

extracted directly from critical field data if a sufficient amount 

of data exist below t ■ 0.25.    For aluminum, T   ^ 1.18 K; hence 

t " 0.25 corresponds  to about T >  .295, which is roughly the lowest 
3 

temperature attainable with the He    refrigerator described here. 

Thus,   to find H    and Y,  the critical field data must be fit to 

equation  (22), using an assumed form for g(t), where 

8(t)-J(Ses/YTc)dt-J{Jf^Wdt (23) 
o o  ox   c/ 

as discussed in Chapter I.  Phillips        found that In the range 

0.3 < t <    0.5,  the superconducting electronic specific heat can be 

adequately represented by 

f; 
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(C/YT ) - 7.1 .■1-34/t . (76) 
08   C 

Phillips' result In this temperature range Is In good agreement with 

69/ TO/ 
earlier specific heat measurements by Goodman   and by Zavarltskll. 

Using this form for C lyl ,  we have fit the experimental data to 

equation (22) for t < 0.5, thus yielding values for H and Y at each 

pressure. We have assumed that g(t) is Independent of pressure, which 

Is one of the assumptions used In the definition of simple similarity 

given In Section D of Chapter I. Values of T and I—>_ J     were 
2 

obtained by extrapolating the data for t > 0.9 to H -0 using a 

straight-line fit In T . The energy gap at 0 K was calculated from 

equation (27). The results are presented In Table 2. The error 

limits In Table 2 Include the effects of absolute error estimates 

(see Appendix A) on the low-temperature and high-temperature extra- 

polations of the data and the uncertainty In the results due to data 

scatter. The effects of absolute error were found by performing 

the high-temperature and low-temperature extrapolations over again 

after adding the absolute error estimates of Appendix A to the 

measured H and T values. The uncertainty due to data scatter was 

(*W\ 
estimated by observing the variation of H , Y. T , and V—TZ L with 

the number of points used in the extrapolations. The error limits 

do not include the effects of possible errors In Phillips' specific 

heat results (equation (76)) or in the molar volume of aluminum. Let 

us now define a fiducial function 
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2 
In Figur« 7, we have plotted the deviation of H     from this fiducial 

c 
2 

function In units of H    , using values of H  ,  T  , and Y from Table IV. o o      c 

From equation (22),  this deviation is given by 

H 2 - H 2      8TTYT 2 

-2 T2 f- »CO   • (78> 
H VH o o 

This plot shows the quality of the fit to g(t) as calculated from 

Phillips1 measurements of the low-temperature superconducting elec- 

tronic specific heat.    Also shown Is the curve calculated from BCS. 

If the BCS result for g(t) had been used to calculate H    and Y.  the 

resulting value of H   would be about 0.1 gauss  lower than that given 

In Table 2, and Y would be about 17. lower.    Hence a 15% change In the 

assumed g(t) results In a 0.17. change In H    and a 17. change In Y. 

Thus,  the relaxation of the simple similarity restriction on g(t) 

to allow a mild pressure dependence would yield negligibly small 

changes In H  . o 

The critical field curves are presented In Figure 8, In 

terms of their deviation from a fiducial parabola 

ii 

D(t) "f -   (1 - T2/Tc
2), (52) 

o 

using the values of H    and T    from Table 2.    There is no significant o c 

pressure dependence of the shape of the deviation function,  thus 
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Figure 7. Deviation of the critical field from Hc
2 - H 2 - (^)T2. 

Values for H , Y, and T used are those given in Table 2. 
o        c 

Also plotted are the theoretical BCS curve and the curve 

calculated from Phillips' specific heat results, using 

equations (23) and (76). 
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Figure 8. Experimental results for the deviation function 

2  2 
D(t) » H /H - 1 + T /T  plotted versus the square of 

the reduced temperature, using H and T values from 

Table 2. The solid curve represents the theoretical BCS 

result. The dashed curve represents Phillips' specific 

2 
heat results. Above t > .25 the dashed curve was scaled 

2 
from Figure 10 of Phillips' paper. Below t « .25 It was 

calculated from Phillips' specific heat results using 

equations (22), (23), and (76). 
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verifying the principle of simple similarity for these critical field 

curves.    Note  that If the BCS g(t) had been used to find H ,  the 

deviation functions would have been shifted up by only 0.0005 at 
2 

t    »0.5.    They still would be In much better agreement with Phillips' 

results  than with the deviation function calculated from BCS. 

AS was calculated from equation (13), where the derivative 

dH /dT was evaluated at each point by fitting a few points In the 

2 
neighborhood of a given point to H    = a + bT  .    In most cases, three 

points on either side of the point In question were used.     S     was 

then obtained from equation (17), and In Figure 9 S    lyT    Is dls- 
Co C 

played for all the data.    The S    /YT    curves are nearly Identical for 
CS c 

all pressures,  and He slightly above the BCS curve. 

C.    Effect of Pressure on Critical Field Curves 

In the previous section, we found H  , T  ,  and Y as a 

function of pressure (see Table 2) by low-temperature and high- 

temperature extrapolations of the data, and the critical  field curves 

were shown to obey simple similarity.    In this section,  starting from 
/ÖHC(T)\ 

simple similarity, we will find dHo/dP,^     ap      /r'  and  <dl«Y/dlnV) 

by using equations  (64) and  (65) developed in Chapter I,   Section C. 

2 2 We will fit  AH (P,t ) to a smooth curve in t   over the entire tempera- 

ture range by assuming a form for  (dH /dP)T.    This method should 

reduce scatter in the pressure variation of H  , T  ,  and Y»  since 

these quantities will not depend upon extrapolations which use only 

a small fraction of the data. 
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Figure 9.  Superconducting electronic entropy calculated from the 

experimental data (see text), using values of Y and T 

from Table 2. Each point plotted below t ■ .38 represents 

the average of 4 entropy points calculated from the data. 

In the Inset, the portion of the graph below t ■ .38 Is 

enlarged, showing all the entropy points. Also plotted 

Is the theoretical BCS curve. 

•   • 
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Figure 10 displays the zero pressure data and a curve which 

was fit to the data In least squares fashion. This function Is 

(using T - 1.1793 0K) 

6    2 i 
H - Z a (O 
c  1-0 i 

where        a0 - 105.19795 

a1 - -121.47833 

a2 - -1.4105433 

a3 - 57.608482 (79) 

a, = -63.221601 
4 

a5 - 25.785877 

a, « -2.5004711 
b 

2 
for 0.06 < t < 1.0. 

In Figure 11, the difference AH = H (P,T) - H (0,T), 

where H (0,T) is calculated from equation (79), is plotted versus 

2 
(T/T (P)) . According to simple similarity, via equation (65), 

AH  (P,t2)  = AH (?) 
c o 

/    dlnT /dP       N d        dl"Tc/dP 
1 +(2 dhHT^P -  f   + D(t)   -  2t    ^2    dhS> 

(80) 

2 
The last two terms introduce some curvature into AH (P,t ). The exact 

2 
shape of (80) depends upon the end points at t »0 and 1, through 
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Figure  10.    Zero pressure results for the deviation function.    The 

error bars are estimates of the limit of relative error 

(see Appendix A).    The solid curve is a polynomial function 

(equation  (79)) which is a best least-squares fit to  the 

data. 
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Figure 11.    The pressure shift of the critical  field defined by 

AH  (P,T)  = H  (P,T)  - H  (0,T), where H (0,T)  is given by 
C* C w w 

equation  (79),  is plotted versus  the square of the 

reduced  temperature.    The values of T   at each pressure 

are taken from Table 2.    The error bars are estimates of 

the  limit of relative error   (see Appendix A).     The solid 

curves represent the best least-squares fit to  the data 

assuming simple similarity  (see  text). 

/ 
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the factor (dlnT /dP)/(dlnH /dP).    The end points of (8,0) are given 

by 

AH  (P,0) , 

AHo(P)      " 2 dlnHo/dP ( 1 " ^ J   |  t2 = 1 

)• 
(81) 

The procedure used to find the best simple similarity fit to the AH 

data was as follows.    Let us define a  function given by 

u(t ) - 1 + <2 dlnHo/dP (        UV 
I- I) f (82) 

This function is a straight line in t    passing through the end points 

of (80).    Thus we may define a parameter t* such that 

1 + 
f     dlnTc/dP  /        ,      v 

2 dhFTdF [l ' (   2)T 

(83) 

1 + 
dlnT /dP 

2  - 1 dlnH /d? o 

, , ,„     dlnT /dP 
t2 + D(0 - 2t2 22j II-5£7_ . 

at o 

Thus the simple similarity function (80), which is curved in t , is a 

0 9     9 
straight line in t* . The dependence of t* on t depends upon the 

dlnTc/d? 
shape of D(t) and the value of  ..   ..- .  The functional form of 

0 2       2 
D(t) can be determined from (79). We then evaluate t* versus t by 
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dlnT /dP 
by estimating     .. „   .._ on the basis of a straight-line fit of 

2 2 
AH (F,t ) versus t  .    The AH   data were then fit in least-squares c c 

*2 fashion to a straight line in t    ,  yielding a new set of end points. 

These new end points could be used to make a better estimate of 
dlnTc/üP 2 

dl H /dP    ^or ^n<^n8 t*  •    We found that carrying this procedure 
o 

beyond one iteration produced negligible changes in the end points. 

The solid curves in Figure 11 are the best simple similarity fits  to 

the data.    The results may be expressed as follows: 

AHc(3100 psl) - - [(0.589 +  .016) +  (.261 +  .027)t*2] 

AHc(5400 psl)  = - r(0.979 +  .018) + (.401 + .034)t*2]   V .   (84) 

AHc(7200 psi) = - [(1.335 + .018) + (.672 +  .029)t*2] 

The errors in the coefficients are standard deviations computed from 
72/ 

least-squares analysis formulae. In Table 3 the values of AH    and 

AH (F,T ) computed from  (84) for each pressure are listed.    Note chat 

AH  (F,T ) and AT    are related by equation (63). c c c 

AHc(F,Tc) = - ATc(F) [      ^ "   J_ (85) 

Also tabulated in Table  3 are values  taken from Table 2,  Section B. 

The values for  the end points calculated from simple similarity are 

in good agreement with the calculations of Section 6 for the 5400 

and 7200 psl data;   the agreement for the 3100 psi data is not as good. 



75 

Table 3 

PRESSURE SHIFT OF THE END POINTS OF THE 

CRITICAL FIELD CURVE 

Pressure(psl) 

Results from simple 
similarity analysis* 

AHc(P,Tc) 
(gauss) 

ATC 

(0K) 

Results  from direct 
analysis of Individual 
critical field curves^ 

AHo 
(gauss) 

AHC(P,TC) 
(gauss) 

ATC 

(OK) 

3100 

5400 

7200 

-.5894.016 

-.979+.018 

-1.335+.018 

-.850+.043 

-1.380+.052 

-2.007+.047 

-.0055 

.0090 

.0130 

-.68 

-.98 

-1.35 

-.94 

1.42 

-2.07 

.0061 

-.0092 

-.0134 

* dH (T ) 
Calculated from (83), using  (84) to  find AT  , with —*L C    - -154. 

c di 

t dH (T ) 
Calculated from Table 2, using  (84)   to find AHC(P,TC) with      ^ C    - -154. 
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The end points calculated from simple similarity are plotted 
dHo    AHC(T)\ 

In Figure 12, from which values for -jr- and V—rr L have been 

extracted by fitting the points to straight lines In least-squares 

fashion. We find 

dH 
-jr- - - (2.70 + .06) x 10  gauss/atm. 

^dH 

dp A 

(86) 

_3 
- (4.01 + .2) x 10  gauss/atm. 

Again, the error bars denote standard deviations computed from least- 

22/      dlnv 
squares analysis formulae. 

using the values of H , T , and 
o  c 

,. * may be calculated from (64) 
uinv 

\     vT  '" ttom  our zero pressure 

results. Rewriting (64), we find 

iM. i . 2 
dlnV     z 

(dH0/dP) 

K H 
n o 

(dHc(Tc)/i)P)T 
KnTc(öHc(Tc)/ÖT)P 

(87) 

Using for the isothermal compressibility 
49/ 

Ä-„--"-06 --1- (88) 

this gives 

dim 
dlnV 

= 6.45 + 3 (89) 

The uncertainty given in (89) does not reflect any possible errors in 

the compressibility value, but contains the uncertainties In H ,T , 
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Figure 12. The pressure shifts at T=0 and T = T (P) are plotted 

versus pressure. These pressure shifts are the end 

points of the solid curves In Figure 11, and are tabu- 

lated In Table 3. The fact that each AH (T ) Is 
c c 

evaluated at T (P) Instead of T (0), for Instance, makes 
c c 

negligible difference (less than .01 gauss) In each 

case. The solid lines represent the best least-squares 

fit straight lines. 

/ 
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te4 u. dH 
and \—■= i8  /      listed in Table 2 and the uncertainties  in   ^~   and 
föHc(Tc)\ 

ap    /T given in (86). 

We may also calculate the volume dependence of the BCS 

coupling constant from (69): 

dlnA 
dlnV 

N(o)A 
dlnT   dine. 

dlnV   dlnV 
+ 1 - 

dlnv 
dlnV 

(69) 

dine. dlnT    dlnT 
c       c 

First we must find N(o)A, ^v" * and dlnV  *  dTnV~ ls ^iven by 

dlnT      (aHc(Tc)/öP) 

dlnV " KnTc(aHc(Tc)/ÖT)p 
16.5 + 1.1  . (90) 

54/ 
White   has measured the thermal expansion of aluminum at low temp- 

eratures. From his results, using equation (43), 

dlnej 

dlnV 
= - 2.25 + .2 (91) 

o M/ 
where we have used 6 = 427.7 K.    N(o)A may be calculated from (67). 

Using Tc = 1.1793
0K and eD = 427.7

0K, this yields 

N(o)A = 0.167 (92) 

Substituting into (69), 

dlnA 
dlnV 

= .167 
dlnT 

c 
.dlnV 

+ 2.25 + .2 + 1 
dlnV (93) 

/' 



80 

For our results, we find 

^^ --23+3 (94) dlnV ^ X J ^^ 

D.    Comparison with Other Results 

The agreement of our zero pressure measurements with previous 

results can be seen by comparing our parameters listed In Table 4 

68/ 40/ 39/ 
with the data of Phillips,        Rorer et al.,        and Hopkln^^    listed 

there also.    The results of our magnetic measurements are thermo- 

dynamlcally consistent with calorimetric results.    The degree of 

consistency can be seen by observing  (Figure 7)  that our deviation 

function, D(t),  is practically identical  to that calculated from 

Phillips'   data using the equations of Chapter I.    The only discre- 

pancies between our data and that of Phillips are in the values of 

H   and T  .    His results for these quantities differ from ours by 

about 1  to    2%.    Although our values of H    and T    agree with  those of o c 
42/ 

Caplan and Chanin,        our results  for D(t) differ markedly from 

theirs at low temperatures.    Our data are displayed with theirs in 

Figure  13.    They attribute  the large scatter in their  low temperature 

3 
data  to  their temperature measurements using He    vapor pressure 

thermometry.    Below 0.5 K precise He    vapor pressure measurements are 

very difficult  to make,  due  to  the smallness of the pressure and the 

large thermomolecular corrections which must be made.    Also,  as they 

state in their paper,  there is question as to whether their method 
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Figure 13. The deviation function D(t) = H /H - 1 + T2/T 2 is 
CO c 

plotted using values  for H    and T    at zero pressure from o     c 

Table 2. Values for H and T at non-zero pressure were 
o     c r 

calculated using the zero pressure values In Table 2 

and the pressure shifts In Table 3 calculated from simple 

similarity. Points at all pressures are plotted with 

the same symbol. Also plotted are the data of Caplan 

and Chanln using our zero pressure H and T . The theo- 0        r       o     c 
2 

retlcal calculation of Clem assuming (a ) = .01 is 

represented by the solid curve. 
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of measuring H gives thermodynamlc equilibrium values. Their method 

Involves superimposing a field gradient upon a DC field of about H , 

thus creating a normal-superconducting phase boundary In the sample. 

The position of the boundary Is monitored as the DC field Is changed 

by monitoring In a set of pickup colls the signal Induced by a small 

10 cps modulation field.  The value of the applied DC field for which 

the phase boundary reaches a position in the sample such that the 

gradient field is zero Is taken to be H . Caplan and Chanin mention 

that if the phase boundary is not free to move in the sample, perhaps 

due to pinning by dislocations, the H values obtained might not 

correspond to thermodynamlc equilibrium. 

In Figure 14, our high temperature zero pressure data are 

plotted on the same graph with the data of Hopkins, which were taken 

on a large spherical single crystal. The agreement of our data with 

Hopkins' data is excellent. 

It is also of interest to compare experimental results for 

the energy gap at 0 K in aluminum with values calculated from our 

results using theoretical equations.  Such a comparison is made in 

Table 5. The pertinent BCS equation is 

^2-- --1- fiMc^, (95) 

2T,VT 2  4n2 \ kI 
c 

The BCS result for the energy gap at 0 K is 

^ = 3.528 . (96) 
c 
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Figure 14. Our zero pressure data near T and the data of Hopkins 

2 
are plotted versus T .  The solid line has a slope of 

-154 gauss/0K at T = 1.17930K. 
c 



86 

10 

8 

s 6 
o 

1 

i r 

i 

i r 

O   PRESENT  WORK-MAY  1966 0 PSI RUN 

A M " JUNE     

•   HOPKINS 

  H^SlH^)2) gauss 

I 
1.22    1.24       1.26       1.28 1.30       1.32 

T2(0K)2 
1.40 



87 

i-i 
rO 

CO 
H 

/-s 
l-< 

«0 
4J /^\ 
CO 1-1 

1-4 >s CO 
o h 4J i-4 

• u (0 
>> § O 

• 
II u o 

•H 
4J N 

—. 00 >> 
CM c 1-1 d •^ 

CO •1-1 o c o N 
N^ (0 o 

•I-I 4J 
CO 

JC *J CO 
■u a» 4) CO X ja 
•H u U 3 CO 4J 
» c c d 1-1 •H 

•o CO CO 0) 9) > o A 4J 4-» 4J U 
jd /^ /^\ 1» CO 4J /<-\ /-S 
S m t^ -H •H CO d so 00 
« o> o\ (0 CO •H ON ax 
S s^ v-' V 0) u a ^z ^^ 

V) M •M 00 
$ 

60 2 CO 
C ö 0 d C C d 
0 o V 0) O •I-I •rl •i-l •i-l u 0 0 

•H •l-l u u CO i-i i-l i-l i-l CO •H i-i 
4J u CO CO CO « 4) « 4) 4) 4J 4J 
(0 (0 M-l «4-1 u d d c d i-i CO CO 
3 3 M u 4J c d d d O 3 3 
O* O* 3 3 i-l 3 3 3 3 3 cr O* 
M Cd OT w Ö H H H H S3 u H 

»n 
o • 

+1 
/-> o 
o Ü CM CM IT» 

v_> H O O • i-H i-i »* vO 
< ^S • • cn • en • • • cn 
CM • cn o • 

+ 1 + 1 ' + 1 +| +1 • +1 +1 00 
oo m «* m r>. CM o? •* •* o CM !>• cn i-i CM m CM u-i ** 

en en CO CO cn cn cn •d-' CM cn cn cn 

so) 
M 

C 
o 
CO 
a ^^ 
e 

1 
o 
00 

a» 
iH 
00 ^l 

i-i a si 
> 41 

i-i 
u 

§1 
•2 

a» 
«4-1 

'co 
•i-i 

CO 
60 

M-l 
»3 

a u i-i ^^ s 41 • 4) 
•iH CO 3 ONI X i-i 00 

M ^ M-l O O M •3 CO 
u U M h ••-I C •3 •3 
0 o CO •o •H CO d 4-* d 
? 3 Ü c 

CO C CO 
CO 4) CO 

4J 4J M CO 4J m M O -^ 
ß d •i-l •H •i-l CO 4) I-i CO ^^ cn] 
4) « •o •o •3 u I-l > •rl •3 irt f^L 
(0 CO c c •^ CO 60 V a 3 -•l § 0) 0) o o > > 3 CO CO CO Vi 

a. 
•1-1 •1-) S a a •r-l 

O 1 S i-i 
u 

// 



88 

The BCS relations are based on the assumption that the electron- 

phonon Interaction responsible for superconductivity Is Isotropie In 
73/ 

momentum space.    Clem        has calculated the effects of anlsotropy on 

the superconducting energy gap and the thermodynamlc properties of 

superconductors.    His calculation of anlsotropy effects  leads  to  the 

following modifications In  (95) and  (96). 

VH2 

o 

2TfYT 2 

c 
4TT   \      c / 

^M =  3.528 (1 - | (a2)) (98) 
c 

2 
where (a ) if. the mean-squared anlsotropy;  It Is  the Ferml-surface 

average of the square of the deviation of the energy gap parameter 

from Its average value.    Masuda and Redfleld""-^ found that their 

nuclefir spin relaxation measurements  In aluminum were consistent with 

an energy gap of 3.2kT    smeared by about  10%.     The data of Blondl, 
76/ 

Garfunkel, and Thompson        Indicate that there may be two distinct 

gaps  in aluminum,   separated by about 0.4kT   ,   possibly due  to anlso- 
89/ C        2 

tropy.    Markowitz and Kadanoff   estimate  that (a  )  =   .01  for aluminum, 

on the basis of measurements of the critical   temperature versus 
90/ 

impurity doping by Chanin et al.   .    For  this  reason, we have  Included 

2 
in Table 5 calculations using Clem's  formulae,   assuming (a )  = 0.01. 

Also  Included in Figure  13  is Clem's result for D(t), assuming 

(a2)  = 0.01. 
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m The variations between the various results for 
\    KJ. 

C 

listed in Table 5 may be partially due to the methods of interpre- 

tation of experimental data.    The values from surface resistance 

(microwave absorption) experiments were found by measuring  the photon 

energy corresponding  to the onset of absorption, which is charac- 

terized by a change in slope of a plot of surface resistance versus 

frequency.    The change  in slope takes place over a range of  fre- 

quencies; hence the observer must select a criterion for deciding 

what frequency corresponds  to  the energy gap.    Values found from 

nuclear spin relaxation and ultrasonic attenuation experiments 

depend upon the validity of theoretical equations used in the data 

analysis, and our results are subject to  the same limitation.    Variations 

in the results  from tunneling experiments, on the other hand, may be 

due to problems  in making good thin-film samples.    Douglass and 

Meservy found variations of about  10% in f —r~M from sample  to 

sample which  they tentatively attributed to  sample imperfections  such 

as strains or impurities. 

Our pressure effect results are listed with those of other 
dHo             f^c&cA 

workers in Table 6.    The values  for -rz—    and   (    ' -.  )       listed for 

50/ 51/ 
Olsen        and Gross and Olsen—    were extracted by them from their 

experimental data on the basis of simple similarity,  ignoring  the 

deviation of the critical  field curve  from a parabola.    That is, 

2 
they fit  their data to AH    = a + bt  .     Such an analysis  leads  to 

dHo /^Hc(fc)\ 
values of -rr-    and   I      ■     —)      which are perhaps 5 percent higher 

than one would obtain by including the deviation from parabolicity 
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of H (T) as determined in this experiment, as we did In our simple 

similarity analysis.    The value of the ratio (dHo/dp/(^!c))i _ 

which enters the calculation of TT"™ (see equation (64)) Is probably 

affected by 1 or 2 percent. The value of TTTT listed for Gross and 

Olsen Is not the value given In their paper. It Is a value calcu- 
dH0   /aHc(Tc) \ 

lated from their values of -rr-    and I ..-  /- and our values of 
(mcac)\ 

dp        v   ap   /T 
H

rt» 
T »\—^ /o . and K , via equation (87).  Considering the o  c*o*  '*      n 

experimental uncertainties and differences in the methods of analysis, 
dHo  /SHC(TC)\      ■ dlrw 

our values of "rr-  , I —rr )  , and  .. ' are In reasonable agree- 
/BHC(TC)\ 

ment with the results of Gross and Olsen, and, except for I—rr L , 

in disagreement with the earlier work of Olsen.  Both our value of 

j- „ and that calculated from Gross and Olsen1 s work disagree with dinv 

the values calculated from thermal expansion data listed in Table 6. 

It should be mentioned that thermal expansion measurements give 

dim 
dlnV directly via equation (42), while in the absence of sufficient 

critical field data below t = .25  ,. VV must be inferred from dlnV 

simple similarity analysis of the critical field data   (equation  (87)). 

The two terms in brackets  in  (87)  are of nearly the same magnitude 

and opposite sign;  hence  the resulting value of   Tj-TT    is quite 

susceptible to error.    A better determination of j|nV    from critical 

field data must await the extension of precise measurements   to higher 

pressures and much lower  temperatures where the data can be analyzed 

to give   ..   ^    directly,  using equation   (44). 
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j 1 nY 
It is interesting to  compare our result for     ..        with 

the result predicted by the free electron model.    The free electron 
85/ 

mof'el predicts 

2 
Y = ^ R/Ef (99) 

where 

z = no.  of electrons/atom 

R = gas  constant 

z,2/3 
Ef = Fermi Energy   « ( — 

V = molar volume 

Hence 

Y oc V /J (100) 

and 

dlnv _ 2 
dlnV " 3 (101) 

All values  listed in Table 6,   including our result,  are considerably 

larger  than this.    This  is not  surprising in light of Melz s 

DeHass-van Alphen effect measurements of the effect of pressure on 

the Fermi  surface of aluminum.    Melz found changes  in  the Fermi 

surface with pressure which were much larger  than predicted by the 

nearly free electron model. 
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In the nearly free electron model,   the electronic band 

structure is estimated by drawing the free-electron  Fermi sphere 

corresponding to 2 electrons  per atom about a reciprocal lattice 

point,   and translating pieces of the Fermi sphere  in higher Brillouin 

zones  back into  the first zone with reciprocal  lattice vectors.    The 

model   thus represents  a metal  in the  limit in which  the lattice 

potential approaches zero,   serving only to cause Bragg reflection. 

According to  the nearly free electron model, an Isotropie 

compression of the  lattice should not change  the size or shape of  the 

87/ Fermi  surface relative  to  the zone boundaries. That is, as  the 

lattice  is compressed,   the Fermi surface and Brillouin zones will 

expand such that all relative dimensions remain unchanged.    However, 

the nearly free electron model does not  take  into  account changes 

in band structure which accompany changes  in interatomic spacing.     Such 

band structure effects have  little effect on   the shape of the Fermi 

surface or on the density of  states at the Fermi  surface if the 

Fermi  surface is well away from zone boundaries.    However,   if  the 

Fermi  surface  is close  to zone boundaries,   the electron states near 

the Fermi level are no   longer  free-electron-like,  due to Bragg 

reflection, and the  lattice  potential has a  large effect on the 

spacing of the energy  levels  and on the  shape of  the Fermi  surface. 

Aluminum has  three electrons per atom,  and the Fermi surface 

87,88/ 
is complicated and very close  to zone boundaries. It is 

reasonable to expect,   then,   that the density of states at the Fermi 

surface would be more  sensitive  to volume changes   than is  predicted 

by the  free electron model. 
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Appendix A 

DISCUSSION OF EXPERIMENTAL UNCERTAINTIES 

1.    Uncertainties In Temperature Measurement 

Estimates of the uncertainty  In the temperature measurements 

are given In Table 7.    Of Interest for calculation of  the pressure 

dependence of the critical field data are the relative uncertainties 

between temperature measurements made at different pressures and 

during the two different runs.     Such uncertainties might arise from 

the following sources: 

(I) Uncertainties and shifts In the resistor calibrations 

(II) Scatter In the raw mutual  Inductance data of run 2 for 

T < 0.8OK 

(III) Inconsistencies  In temperature measurement between runs 

1 and 2 due to errors  in salt pill calibration. 

The uncertainty due to  (111)  can be estimated by comparing  the zero 

pressure critical field data from runs  1 and 2.    Making this comparison, 

we find  (see Figure 10, Chapter  III)  agreement within experimental 

error  ignoring any possible uncertainty due to  (ill).     Thus,  in 

estimating relative uncertainties in  the temperature measurements 

we consider only the contributions from (1) and  (11). 
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Table 7 

UNCERTAINTIES IN TEMPERATURE MEASUREMENTS 

AT REPRESENTATIVE TEMPERATURES 

Source of Error Uncertainty (0K) 

T=10K T=.70K T=.30K 1 

1 Salt Pill Calibration +.0007 +.0007 +.0004 

j T - T* Relations + .001 + .002 +.002  I 

Relative uncertainty due 
to errors in resistor 

1 calibration or salt pill 
| measurement +.0006 +.0005 +.0001 

Limit of Error(Absolute) +.0023 +.0032 +.0025 

Limit of Error(Relative) +.0006 +.0005 +.0001 

2. Uncertainties in Critical Field Measurement 

Estimates of the absolute and relative uncertainties in the 

critical field measurements are summarized in Table 8, 
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Table 8 

UNCERTAINTIES IN CRITICAL FIELD MEASUREMENT 

Source Absolute Uncertainty 
(gauss) 

Relative Uncertainty 
(gauss) 

■ Solenoid calibration +.0002 H 
—      c 

} Field inhomogeneity +.0003 H 

j Incomplete cancellation 
of stray fields +.04 gauss +.01 gauss 

j Graphical determination 
| of H from permeability 

plotC +.02 gauss +.0004 H +.02 gauss +.0004 H 

Uncertainty in 
positioning sample in 
solenoids +.0001 H 

—      c 

: Limits of Error + .06 gau.is +.001 H +.03 gauss +.0004 H —    •     —      c 

// 
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CRITICAL FIELD DATA 

Table 9 

ZERO PRESSURE CRITICAL FIELD DATA 
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Hc (gauss) T(0K) Hc (gauss) T(0K) 

96.95 .3082 61.88 .7175 
96.58 .3142 61.95 .7179 
96.25 .3207 54.58 .7810 
95.80 .3276 44.85 .8600 
95.28 .3372 44.76 .8603 
95.85 .3430 40.87 .8914 
94.66 .347 7 36.37 .9259 
94.00 .3593 36.09 .9264 
93.49 .3654 31.09 .9656 
93.11 .3724 28.52 .9845 
92.17 .3870 28.17 .9852 
92.21 .3871 25.48 1.0062 
91.09 .4038 23.50 1.0183 
91.01 .4038 22.23 1.0291 
89.69 .4226 18.78 1.0533 
88.87 .4339 18.49 1.0543 
88.06 .4445 16.60 1.0685 
85.95 .4711 14.74 1.0801 
85.88 .4717 14.32 1.0843 
83.43 .5028 11.89 1.1006 
83.29 .5028 10.69 1.1074 
80.13 .5408 9.36 1.1176 
79.86 .5415 6.66 1.1352 
75.41 .5890 6.48 1.1366 
75.37 .5910 3.95 1.1535 
71.92 .6256 1.76 1.1676 
67.46 .6669 1.01 1.1726 
67.42 .6672 



Table 10 

3100  psi  CRITICAL FIELD DATA 
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H (gauss) T(0K) H (gauss) 
c 

T(0K) 

96.37 .3056 66.79 .6671 
96.07 .3120 61.18 .7181 
95.67 .3188 53.85 .7814 
95.24 .3259 44.08 .8602 
94.76 .3354 40.00 .8916 
94.12 .3459 35.46 .9262 
93.40 .3577 30.04 .9659 
92.59 .3707 27.69 .9848 
91.63 .3855 24.62 1.0065 
90.50 .4022 21.34 1.0295 
89.12 .4214 17.83 1.0537 
87.50 .4438 15.65 1.0687 
86.73 .4537 13.53 1.0847 
85.48 .4700 10.92 1.1011 
82.81 .5014 8.46 1.1181 
79.36 .5409 5.73 1.1357 
74.72 .5893 2.91 1.1540 
71.20 .6248 1.01 1.1666 



Table  11 

5400 psi CRITICAL FIELD DATA 

104 

H (gauss) 
1  c T(0K) |  H (gauss) T(0K) 

96.81 .2905 j   74.12 .5903   1 
96.30 . 3000 66.20 .6671 

|   95.87 .3087 60.65 .7176 
95.33 .3181   | 53.33 .7811   | 

1   94.87 .3268 43.52 .8603 
94.30 .3365 34.93 .9264 
93.69 .3471 27.08 .9854 
92,52 .3653 22.49 1.0183 
91.16 .3869 17.27 1.0543 
89.99 .4036 13.51 1.0801 
87.82 .4334 9.45 1.1074 
84.94 .4715 5.09 1.1366 

|   82.19 .5026 1.36 1.1613   i 
i   78.88 .5415 



Table 12 

7200 psi  CRITICAL FIELD DATA 
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i H (gauss) T(0K) Hc (gauss) T(0K) 

95.06 .3166  j 1    65.79 .6671   1 
94.46 .3257 60.19 .7180 

\        93,92 .3358 52.90 .7810 
1   93.26 .3471 1    43,01 .8603  j 

92.14 .3654 1    34.40 .9264 
j   90.69 .3870 26.30 .9852 

89.54 .4037 j    21.78 1.0183 
|   87.35 .4337  1 16.74 1.0543 

84.41 .4717 12.94 1.0801   | 

i   81'85 .5025 1     8-82 1.1074   | 
|   78.41 .5417  | 4.51 1.1366   1 

73.76 .5901  | 1.66 1.1550   1 
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