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various models of Markov-renewal programming were presented in [11], 

g»ferrad to tharaaffr as MWH I and MM H; related models, were presented Independ- 

ently by de Canl [2Y»  Howard [10], and Schweitzer [15]. Since that time, new 

results have been obtained which clarify certain questions raised in these papers. 

Since these results are either "in the folklore»" or are available only in scattered 

unpublished reports, it seemed worthwhile to gather them together in one article. 
•+ 

Vm shall^ consider only the finite-state, finite alternative space, infinite-horizon, 
r .[ 

undiscounted and discounted models discussed i» [ü].- 

■'/ 

LINEAR PROGRAMMING FORMULATION AND RESULTS 

It is well-known that Markov programs [9] can be represented as linear programs. 

The first such formulations are apparently due to Oliver [14], Manne [13], D'Epenoux 

[3], de Ghellinck [7], Wolfe and Dantzig [17], and Derman [4]. The extension of 

these formulations to Markov-renewal programs is straightforward, and the resulting 

primal and dual programs for both the undiscounted and discounted infinite-horizon 

cases are given in matrix form by Howard [10]. Because some of the details in the 

interpretation of the dual programs are not given, we consider these formulations, 

using the notation of [11]. 

In the case of undiscounted rewards, the primal problem is: 

Minimize    x0 

(1) Subject to:  ^(6^ - p^Xj + vjx0 > p*    /i - 1,2, ..., N\ 

x. unrestricted        (j »= 0,1, ..., N) 



where z - z(±) varies over all alternatives available in that state. (Usually we 

set x^ «= 0 .) At optimality, x0 equals the maximal value of the gain rate, g , 

and the x  equals the corresponding relative value 

Subject to: I y* - I J yjp^     (j " 1,2. .... N) 
z J  z i   J 

1   ±      * 

y! io /i - 1,2. .... N\ 
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Directly from the constraints, we see that the y  have the interpretation of 

"mixing coefficients" for the various alternatives in state 1 times the probability 

of being in that state; that is. if a pure policy were used, y, ■ TT. for some 

z B z*(i) . and equals zero for all other alternatives available in that state. 

Then, since  (PJ/^J ) is the rate at which the reward is earned when in state i . 

following alternative z , the maximand is just the average rate at which reward is 

earned, at an arbitrary transition of the process—as it should be. 

s 

. 
(2) xi " vi ^ wi " WN      (i * 1.2 N) 

in the limiting form of the total reward over  [O.t] : 

(3) lim vi(t) - gt •= wi + 0(1) 

(We assume an ergodic underlying Markov chain.    See (2) (B.6) (B.7) (12)  in MRP II and 

and (100)(10A) of  [10].) 

2 
The dual to (1).  after dividing by    v.   ,   is: 

Maximize I I y*(~ 
1   2 IV. 

(4) " ' '■   '   ' v   -fe       v  ^    S-Z 

• 



In the case of discounted reward, the optimal policy simultaneously maximizes 

the total discounted reward, starting in state 1 , v.(a) , for all states 1 . 

Thus, one can take any arbitrary set of initial starting probabilities, 

a. (1 «= 1,2, ..., N) , and formulate the primal as: 

Minimize    I a4x4 

(5) Subject to: J^ - p^f^CcOW > p^     /l « 1,2 N\ 

x. unrestricted (j ■ 1,2 N) 

with the optimal values of x. being the maximal values of the v. (a) .  (This is 

a slight generalization of (111) of [10].) Directly, the dual of (5) Is: 

Maximize    [ J y*p* 
1 z 

(6) Subject to: I y* * *^ + H V^l^i^ Ü c I»2. •••» N) 
Z Z 1 

yj > 0 

To see the correct Interpretation of (6), define 

/i « 1»2 N\ 

M. .(t;a) ■ mean discounted number of entries Into state j 

v ' in [0,t] , starting in state 1 . 

From first principles, or the undiscounted result (C.6) of MRP II (where 

M. (t) did not Include the event at the origin): 

(8) M^Ct;«*) " «^ + I ye"axMkj(t-x;a)dQik(x) 
k o 

In the limit, clearly 

M^ d«f limMij(t;a) < » , (a > 0) 



and 

(9)        M^ - 6^ + I P^i^C«)^ = 6^ + I M«kpkjikj(a) 
k 

The transposition follows from the well-known commutativity of the transforms of 

the matrices Qi1(t) and M (t)  (undiscounted) [12].  If (9) were multiplied by 

the a.  and summed, an expression for the mean discounted number of visits to state 

j , under the starting conditions of (5), would be obtained.  Comparing this with 

z 
(6), we see that the dual variables y  are just the appropriate alternative mixing 

probabilities times the discounted number of visits to state i ; from this, it 

follows that the dual maximand in (6) is the correct value of total discounted 

return. For recent work on programming models, see [5], rS], and [8]. 

By straightforward use of the theory of linear progiamming, and the special 

structure of the constraint matrix in [A] and [9], it follows that pure strategies 

are optimal for both problems, a result first noted by Wagner [16] for Markov 

programs. In fact, the "policy improvement routine" is nothing more than a special 

version of the (dual) simplex method, in which simultaneous changes of several basis 

vectors (a basis is a selection of pure alternatives) are possible at each iteration, 

a fact noted by Oliver [14] and de Ghellinck [7]; no Phase I Is needed, since any 

pure strategy is (dual) feasible. Schweitzer [15] has shown that it is the con- 

vention: 

"If there is no improvement in the test quantity from the last cycle, 
retain the same alternative" 

in the policy-improvement algorithm which avoids cycling in the simplex method when 

there is degeneracy (tie among pure policies). Thus the algorithm is always finite. 

In our discussion about alternative test criteria for the undiscounted case 

(Appendix D, MRP II), both Schweitzer and the author missed the "pricing-in" 

criterion which arises naturally from the linear programming models.  It follows 

directly from (1) and (5) above that policy improvement will always occur if the 



following rules are adopted for the algorithms of Figure 1, MRP I, and Figure 2, 

MRP II: 

1.  (Discounted» Infinite-Horizon Case): For at least one state i , 

select a new alternative z(i)  for which 

do) -  z . *  z :z 
^Pi^PijV^j   ' 

using the current values of the discounted returns,  v. . 

2. (Undiscounted, Infinite-Horizon Case): For at least one state 

i , select an alternative z(i)  for which 

(11) v± + gv* < p][ + j; p^j Vj  , 

using the current value* of the gain,    g , and the relative values,    v.   . 

Thus, both criteria (D.l) and (D.2) of MRP II are merely different ways of ranking 

prospective candidates to enter the basis at the next iteration, and the question of 

relative efficiency becomes undecidable without analysis of  the computational labor 

required and experimental tests.    Similar remarks apply to the question of rate of 

convergence if several candidates are placed in the basis simultaneously. 

To summarize,   the policy improvement algorithm of Markov and Markov-renewal 

programming is simultaneously a dynamic programming algorithm and a simplex 

algorithm. 

TIES AND ABSOLUTE VALUES OF THE BIAS TERMS 

Blackwell  [1]  remarked that the relative values in Markov programming were 

insufficient to break ties among policies with the same gains and produced an 

explicit formula for the absolute values  of the RHS of  (3),   in terms of the 

"fundamental matrix" of Markov chains.     The formula established  for the absolute 
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values in (B.6) of MRP II for Markov-renewal ptograms was: 

(12) wi - lim v^t) - gt - I ^pj - I  (n./y^) 

where the notation is the same as in MRP II, except for the new definition: 

(2) 
y1i    Mii 

(The above limit may be in a Ceshro sense.) 

This formula, involving the first and second moments of the first-passage distri- 

bution, is too complicated for rapid computation of the w. ; similar remarks apply 

to a reduction of (B.6) by Schweitzer to a form involving the fundamental matrix 

(Equation (5.112) of [15]), and to remarks by Fcx [5]. 

However, from basic definitions, and (C.8) of MRP II, we have: 

(14) l I ViJ Vjk ' 2 
(2) 

'kk 

(2) where    v is the second moment of an average transition interval.    Then,  from 

(12),  we have the remarkable formula: 

(2) 
(15) | ^ VijVijWj - ^V -1 VJ    * 

(This result was first obtained in [12].) 

Thus, once the stationary probabilities ir. are known, the normalizing factor to 

change the relative values v.  to the absolute values w. follows directly. If 

the inverse of the matrix used in the value-determination part of the algorithm is 

saved, then the ir  may be determined from the row of the inverse corresponding 



■?mmmm*** :    ■■.   .       ■   •     -. . - ■  f     .      -      •:.»  ■   .        ,„-,...,.-        „  .    . . .„..    ,., ^ ,„       ., ■»<     ,       ••■■ .••>-- 

to the variable    x0   . 

Although the above remarks do not make tie-breaking a trivial procedure, they 

do indicate that at most one need only carry out the value-determination procedure 

for every tying policy. 
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