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BUBBLE BY A VORTEX SHEET AKD SOURCE SHEET 

by 

Larry W. Beil 

ABSTRACT: The equations for the velocity potential, partial time 

derivative of the velocity potential, tangential velocity, and normal 

velocity for a source sheet and vortex sheet representation of the 

nonspherical underwater explosion bubble have been derived and progranmed 

for the IBM 7090 computer. These equations were tested for the known 

case of a spherical underwater explosion bubble and tne resurts were 

sufficiently accurate for practical application. The conclusion is 

that the nonspherical underwater explosion bubble can be represented 

by a source sheet and vortex sheet. This representation will not inter- 

fere with the Jet rising into the interior of the bubble, as is the case 

of the earlier models consisting of a single point source and a single 

dipole located on the axis of symnetry. 
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This report Is part of a continuing study of the underwater explosion 

bubble which, it is hoped, will eventually give a complete quantitative 

description of the nuclear explosion bubble. This paper is an important 

step forward in that it is the first adequate mathematical description 

of the migrating explosion bubble and lays the groundwork for further 

theoretical development. 
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REPRESEWPATIOM OF A NONSPHERICAL UNDERWATER EXPLOSION 

BUBBLE BY A VORTEX SHEET AND SOURCE SHEET 

IlfPRODUCTION 

After the detonation of an explosive charge under water and the emis- 

sion of the shock wave, the gaseous products of the explosion, which have 

f .«nned a gas bubble, continue to expand outward at a gradually decreasing 

rate. The result of this expansion is a radial displacement of water. 

When the radial velocity becomes zero, the bubble has reached its first 

maximum radius and the pressure in the bubble is far below the hydrostatic 

pressure. Subsequently, the bubble contracts and the babble pressure 

increases. When the radial velocity again becomes zero, the bubble pres- 

sure is substantially greater them the hydrostatic pressure. The bubble 

has now reached its first minimum radius and begins another expansion 

phase. The gas bubble may pulsate in this manner severed times depending 

on the depth at Wiich the charge is detonated. 

Throughout the first expansion phase of the bubble there is very 

little vert iced motion, commonly called migration. However, near the 

minimum radius an appreciable upward displacement may occur. The migra- 

tion is a result of the buoyancy of the bubble and depends on the depth 

of explosion and the charge weight. There is little migration if small 

charges are exploded at great depths, say one pound at 200 feet. However, 

the explosion of large charges at ordinary depths, charges Of the order 

of 300 pounds detonated to 00 feet, would show a strong migration. 

The classical treatment of the underwater explosion bubble is based 

on the assumption that the bubble remains spherical at all times. The 
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explosion of small charges at great depths essentially behave In this 

manner. However, It has been observed in the explosion of large charges 

at ordinary depths, vhere strong migration Is present, that the bubble does 

not remain spherical but undergoes a very definite change in shape. 

Initially the bubble is spherical and remains spherical sorevhat beyond 

the first maximum radius. However, as the bubble contracts to its first 

minimum, the bubble is flattened; and shortly before the minimum, the 

bottom begins to move upward into the interior of the bubble, figure 1, 

and eventually impacts with the upper surface cf the bubble, figure 2. 

The tongue of water protruding into the interior of th*^ bubble is called 

the bubble Jet. 

Severed, authors have given theories of the change of shape due to 

1 2 
the effect of buoyancy, notably Penney-Prlce and Keller-Kolodner^. These 

authors represent the velocity potential cp as a series of the Legendre 

polynomials P (cos 6) in the form: 

^ = E anPn(c08 9)R'(n+l) (0.01) 
n=0 n n 

vhere R is the distance between the coordinate origin and the point at 

which the velocity potential is to be evaluated, the field point. Further, 

6 is the single between the vertical axis and R, and the a 's are coeffi- 

cients that are functions of time. The velocity potential can be inter- 

preted as the sum of a point source, a dipole and higher order poles all 

having the same origin. The coordinate origin is placed on the axis of 

symmetry in the interior of the bubble. Since the potential must be 

evaluated for points on the bubble surface, a solution is possible so 

long as the bubble surface does not come near the origin. However, the 

bubble Jet will reach every point in the Interior on the axis of symmetry 

2 
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and will cause Irremovable singularities as R goes to zero. Therefore, 

the representation of the velocity potential fails at the most Interesting 

and important part of the motion of the undervater explosion bubble. 

Initially, the bubble expansion is radial arid this motion is known 

to be irrotational, thus, vortex free. However, Snay has shown that as 

buoyancy takes effect and the bubble begins to migrate, vorticity is 

generated. 

In this paper, the velocity potential will be represented by a dis- 

tribution of point sources and vortex rings on the surface of the bubble, 

eliminating singularities from the interior of bubble  An alternate 

approach, as suggested by Kelvin's extent ion of Green's theorem, is a 

distribution of point sources and dipoles over the bubble surface, but 

the distribution of vortex rings is simpler in the analysi i if the vortex 

theorem for migrating bubbles is applied. 

The common assumptions of bubble theory will also be used in this 

study. They are: 

a) The bubble motion can be represented by a velocity potential for 

points outside of the bubble surface. 

b) The gas in the bubble expends adiabatically and the pressure is 

uniforü throughout the bubble. 

c) The water is incompressible. 

In this paper, the water is assumed to be unbounded. 

The purpose of this paper is not to solve the general case uf a 

migrating bubble which changes shape. Rather, the effort is directed 

toward deriving the equations and providing the mathematical tools for 

the treatment of the general case and the mathematical treatment of the 

singularities generated by the distribution of point sources and vortex 
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rings on the surface of the bubble. The resulting equations have been 

tested by applying them to the classical case of a migrating spherical 

bubble. 
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CHAPTER I 

BUBBLE THEORY 

It is assumed that an Incompressible, unbounded fluid contains a 

gas bubble within It, and the velocity vf of the fluid, as observed from 

a fixed frame of reference In the fluid. Is assumed to be derivable from 

a potentiell function cp. vhlch satisfies Laplace's equation so that: 

vf = - Vfcpf (1.01) 

Vf
2tpf = 0 (1.02) 

The pressure P In the water can be obtained by Bernoulli's equation: 

gj - i (vf )2 ■^■T0- f(t) (1-03) 

vhere the subscript f references the spatial and time coordinates to the 

fixed reference frame, p   is the density of water, g Is the acceleration 

due to gravity, and f(t) is the Integration constant arising from the 

integration of the classical hydrodynamlc equation at constant tine. 

The positive z axis Is assumed to point vertically upward.     It Is further 

assumed that: 

cp   -* 0   as    R    - « (1.0^) 

vhlch implies that: 

öcpf 
—■ - 0   and    Vfö - 0   as   Rf - • (1.05) 
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where R. Is the distance from the coordinate origin to any point in the 

fluid.     Statements   1,0k and 1.05 are simply the mathematical expressions 

for the assumption that the fluid is undisturbed at infinity as seen 

from the fixed frame of reference, consequentlyJ 

P - P0    as   Rf - • (1.06) 

where P is the hydrostatic pressure of the fluid for z = 0 at infinity, 

thus: 

P 
f(t) - - •£ (1.07) 

po 

The Bernoulli equation can now be written as: 

ÖCfV  ,       2        P-P 
^-|(vfcpf) .gZf.-^ = 0 (1.06) 

The pressure P is continuous across the boundary of the bubble. 

Hierefore, the pressure in the bubble must be the same sis that in the 

adjacent water.    When the Bernoulli equation is evaluated at the bubble 

interface,  an interrelationship between the pressure P in the bubble and 

the motion of the surface is obtained. 

Since the bubble surface is a free surface,  a surface that moves with 

the fluid, the normal velocity of the bubble surface must be the same as 

that of the adjacent water.    According to Lamb^,  if F = 0 is the surface 

equation of the free surface, the surface equation must satisfy the kine- 

matic condition: 

VF-v  +1^ = 0 (1.09) 
ot 
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The unit normal, e , of any surface is: 

g =Ä- (i.io) en  |^F| 

Therefore,  it is seen that if expression 1.09 is divided by  |vF|,  the 

normal velocity at the boundary of the bubble can be expressed as: 

Assume that the bubble translates in the positive z direction vith 

a velocity B(t). If a frame of reference with its coordinate origin at 

the bubble center is rigidly attached to the bubble, an observer at the 
m 

origin would see a stream of velocity - B moving past the bubble. The 

relationships between the variables in the fixed reference frame and 

those in the moving frame are: 

zf " zm + B^ ^1,12) 

tf = tm (1.13) 

Vf = vm (1.1k) 

If the velocity potential in the fixed reference ft*ame is expressed in 

terms of the variables in the moving reference frame, the Bernoulli 

equation can be written as: 

fcp "       .  dcp"      , M 2 P-P 

mm o 
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vhere the superscript m shovs that the velocity potential in the fixed 

reference system is expressed in terms of the moving coordinate variables. 

The relationship between the velocity in the fluid as seen by an observer 

in the moving frame and that seen by an observer in the fixed frame is: 

- Vjo   = - y cp„    - Bk (1.16) mm m f 

From expression l.l6 it is easy to see that: 

CD   = cpj0 + Bz^ (1.17) ml m 

vhere the subscript m refers to the moving reference system.    Upon making 

the appropriate substitutions, the Bernoulli equation expressed in terms 

of the velocity potential in the moving frame of reference and the moving 

frame of reference and the moving coordinates is: 

|^ - Bz  + I B2 - i (Vcp)2 - g(z+B) - -^ = 0 (1.10) 
o 

The Bernoulli equati^n can be written as: 

i-ä-l^-HM T
a-g(-B)-^ = o (1.19) 

vhere v_ and v    are the tangential and normal velocities as seen by an 
T n 

observer in the moving frame. 

In order to solve the Bernoulli equation,  an expression for the 

velocity potential must be found. 

According to Lamb  ,  if ro and cp'  are any two single valued functions 

which satisfy Laplaces's equation throughout a given region,  then using 

Kelvin's extension of Green's theorem: 
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JjC 1*1 as = ]],' U as (1.2o) 
c?  dn      -y

K dn 

where s is the surface of a boundary cncl sing a regi n J' the fluid and 

n is the coordinate normal to S.  Let » be the velocity putential and 

co' = 1/R, the reciprocal of the distance of any point of the fluid to a 

fixed point P in the space occupied by the fluid. It is necessary to 

exclude P from the surface of integration since cp' can become infinite if 

P is included In the region of integration. This may be done by describing 

a small sphere about P, vhere the fixed point P is the center. If E refers 

to the surface of the small sphere and S to the remaining boundary, expres- 

sion 1.20 gives: 

i5*U¥^h$*--lk>*Jhf- dS     (1.21) 
With ö(l/R)/dn = - l/R at the surface Z and dr = R dv, expression 1.21 

can be written as: 

- /» dv + JJ, y$s JR * *v Jfe as     a.22) 

As R -• 0 the first integral on the right hand side of expression 1.2^ 

varnishes, vhile the first integral on the left hand side is - ^ncpp, vhere 

cp^ is the value of cp at the fixed point P. Upon rearranging terms, the 

velocity potential at the fixed point P is: 
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Expression 1.23 gives the value of cp at any point In the fluid in terms 

of cp and dcp/dn at the boundary.    Since the velocity v is defined as: 

v = -Vcp (l.2i+) 

the normal velocity at the boundary is; 

\*-U ^) 
and expression 1.23 can be written as: 

f iffv+h ii" hfy* ^v 

The first integral represents a distribution of sources and the second 

integral, a distribution of dipoles on the boundary S. If S is finite, 

both integrals vanish as R -• », as required by statements 1.01+ and 1.05 

for the potential in the fixed system. However, an observer in the moving 

.A 
frame of reference will see a stream with velocity - Bk flow past the bub- 

.A 
ble.    Therefore, the fluid has a velocity of - Bk at Infinity relative to 

the moving frame of reference, and the velocity potential of the stream is: 

Vrea. = *z (l-27' 

The velocity potential of the bubble, with a distribution of sources 

and dipoles on the bubble surface, as seen by an observer in the moving 

frame is: 

10 
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Maxwell   has shown that any magnetic dipole distribution over a closed 

surface, with dipole axes directed along the normals of the surface, may 

be replaced by a system of c\jrrent-carrying rings distributed over the 

surface.    In the analogous case of hydrodynamics,  the distribution of 

dipoles can be replaced by a system of vortex rings lying in the surface. 

The rings have a common axis of symmetry.    Such a representation of cp 

simplifies the analysis when the vortex theorem for migrating bubbles is 

applied. 

It is well known that for such surface distributions, the potential 

internal to the boundary of the surface is zero.    Therefore, the gradient 

of the potential is also zero.    In the case of the velocity potential, 

the velocity internal to the boundary is zero, in the same way as the 

electric field internal to a charged sphere. 

The velocity potential for a single vortex ring can be shown to be, 

6 
see Milne-Thomson : 

*,-$ (1.29) 

where F is the circulation and 0 is the solid angle subtended at the 

field point by the diaphragm which is enclosed by the vortex ring.    If 

■y(s) is the circulation density for a distribution of vortex rings on the 

boundary of the bubble, then: 

^=fe/Y(s)ftis (1.30) 

where the integration is taken over the external boundary of the bubble. 

The circulation is: 

11 
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= J yiB)ds (1.31) r 
"5 

but: 

=yvT(8)d£ (1.32) 

where v (s) is the tangential velocity. 

During the Initial expansion of the bubble, expressions 1.31 and 

1.32 are zero for any closed curve since only radial flow takes place. 

However, as vortlclty Is being generated by the action of gravity, the 

bubble surface becomes a surface of tangential discontinuity since there 

is a translation of the bubble in addition to the radial expansion.    If 

the closed path is totally outside the bubble,  expression 1.32 is zero 

at all times since the fluid motion is assumed to be irrotational at all 

times.     Let the path of integration be on the external and internal 

boundary,  thus; 

T = /     vT(s)d6 +   /     vT(s)ds (1.33) 
•'s »"'S.    . ext int 

The second integral oust be zero at all times since there is no fluid 

motion Internal to the bubble boundary, as was previously assumed. Uoon 

setting expression 1.29 equal to 1.31, it is seen that: 

Y(S) = vT(s) h.SU) 

since the path of integration may be taken as small as desired. Therefore, 

the potential of a vortex sheet in terms of the tangential velocity at 

the boundary of the bubble is: 

12 
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ctv s ^ /vT(s)nds (1.35) 

The total reloclty potential due to the source sheet, vortex sheet and 

-treaa is: 

The time derivative of expression I.36 at the boundary is needed for 

the Bernoulli equation. 

Let the velocity potential of the source sheet be defined as: 

<%'ssii(r)ds (1-37) 

thus: 

= im at ^AR / ^^-JJl^ldS (1.38) 

Describe a small sphere about the point P on the boundary, -where P is the 

center. If £ refers to the surface of the small sphere and S to the ori- 

ginal boundary, expression 1.3Ö gives: 

2 
If c£, = R dw. Expression 1.39 can be written as: 

öt   Un r, öt      im •: n dt    kn  at '''  \R /       v   ' 

13 
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The factor dR/dt in the second Integral can be expressed In terms of the 

normal velocity as: 

— = vn sec Y (l-^l) 

where y Is the angle between the normal to the surface S at the point P 

and the radius vector R.    Expression 1.40 can now be written as: 

w-'hjw M*+ h /v> y**hh jl Or)*3      ^ 

The term sec Ydw i8 *&* solid angle of the disk subtended at a point on 

the axis of symmetry coinciding with the normal to the surface.    If R - 0 

and the normal is the outward drawn normal to the surface, the first inte- 

X gral vanishes and   J sec yöM -* 2n and one obtains: 
E 

**-^.2*hikM* ^ dt        2    n 

The time derivative of the velocity potential due to the vortex dis- 

tribution will be treated in a similar manner as that of the source sheet. 

Describe a small circle in the surface about the point P, where P is the 

center of the circle.    If o refers to this circle while s refers to the 

original boundary, the time derivative of the velocity potential for the 

vortex distribution can be written as: 

— = ^1—-nda+^-Jv^do+^~     fvftis (l.kk) dt       5n •/ dt    u    a      UTT /   T dt ^      ^n at    J    T* KJ..**) 
s-a 

The factor öü/dt can be written as: 

Ik 
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öt      ÖR dt U,4>; 

and dR/dt can be expressed In terms of the normal velocity. Expression 

l.hk  can now be written as: 

*r = fe/lr^ + fcivn*« vi*,^|j J vTnäB     UM) 
a o s-a 

where sec y öO/öR is the projection of öfi/dR onto the normal, thus: 

sec Y - = - (1A7) 

where n is the coordinate in the direction of the normal.    Expression 1.U6 

can now be written as: 

öt       4n •/ öt w ^   T n ftn dn 4n öt   J     T 
a a s-a 

where ds/dn is the inverse of the slope at the point P.    If do = rd9 and 

r -♦ 0, the first integral vanishes and the time derivative of the velocity 

potential for the vortex distribution is: 

>        , i    A      f 
2nT 4n^t^T \      ^ / 

s 
W       2 'n'T 

where the angle ft is the angle between the normal of the surface and the 

vertical axis.    The time derivative of the total velocity potential at 

the boundary can now be written as: 

15 
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Expression 1.50 refers to a coordinate system moving with the bubble 

and having Its origin at the bubble center.    Some Important considerations 

concerning the coordinate system to be used In solving the problem are: 

a) The problem Is to be solved In terms of cylindrical coordinates. 

b) The coordinates of any point on the surface of the bubble are r, 

9, and z. 

c) The field point Is to be held fixed In the r-z plane and Its 

coordinates are r    and z . o o 

d) The bubble Is assumed to be a body of revolution with Its axis 

of symmetry being the z axis.    This condition implies that r 

and z are independent of Q. 

16 
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CHAPTER II 

VORTEX THE0RO4 FOR MIGRATING BUBBLES 

The Vortex-Theorem for migrating hubbies as proposed by Snay is so 

vital to this paper that it will be derived before the velocity potential 

of the source sheet and vortex sheet. 

The first classical hydrodynamlc equation is defined as: 

|f* (v-v)* =a   -ivP (2.01) St e      P 

vhere v Is the velocity vector in the fluid, a is the acceleration due 

to any external forces acting on the bubble, p is the density of the 

fluid, and P is the pressure in the fluid. To an observer in a fixed 

coordinate system where there is no stream present, the only external 

force acting on the bubble would be the acceleration due to gravity. 

However, the observer in a moving frame observes a stream. Therefore, 

the acceleiation seen by an observer in the moving frame is that due to 

the stream and the effect of gravity. Expression 2.01 may now be written 

as: A 

U * (vxvV = (g+B)k - i Vii'v)  - i VP       {2.02 ) 
ot d p 

vhere (v«v)v has been expressed in  terms   of the grad v    and the curl v. 

If expression 2.01 is integrated about a closed path, then: 

$\*£ + fr^)*4ds = j)(g+B)k-d£ -jl[| viv-v) * i VPJ.dS (2.03) 

17 
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Since the fluid Is Incompressible, the last Integral on the r. h.  s. can 

be transformed into a surface Integral which va.il shes: 

JJ[| Vxv(v-v) + - VXVPJ.dS  = 0 {2.0k) 

Exprespion 2.03 becomes: 

j> [i + (W)^]'^ =/(g+B)k.dJ (2.05) 

If the flow is Irrotatlonal everywhere, as In the case of radial 

flow only, expression 2.05 Is zero no matter what path Is chosen.    However, 

If there exists a discontinuity In the tangential velocity and If the path 

of integration crosses the boundary of this discontinuity, expression 2.05 

is different from zero.    As was discussed in Chapter I,  the velocity of 

the fluid internal to the boundjoy is zero.    Therefore,  B is zero internal 

to the boundary.    Uniformity of the pressure within the bubble requires 

gravity not to act on the internal fluid.    Thus: 

t .. A      A f5^        ..  A   A 
•p(g*-B)k-dE -    j   c;(g+B)k.e ds (2.06) 

where   Lht;  inL^ralion  is  over  the external bounaarv,   s     and  a,   are the 

coord.iii-iU'.. wh-.n.   Luc boundary   is  crossed,   and  e     is the  unit  tangential 

vector  at  the boundary. 

Ax   A 
The vector  (vxvjxv  is   zero ever/where except  for the infinitely thin 

interior of the vortex sheet.     It  lies in the plane of the line integral 

and  is  normal to the boundary.    Hence: 

18 
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i (Vxvjxyds = I AT 
(vxv)xve dT (2.07) 

I AT 
(vxv)xve dT w n 

vhere e is the unit normal to the vortex sheet, AT is the thickness of 
n 

the sheet, and subscripts 1, 2 refer to the points of crossing on the 

boundary. Since |(yxy)xv| is finite, the integrals vanish as AT -♦ 0. 

The integral over öv/öt for the path interior to the bubble is zero 

since the velocity is everyvhere zero internal to the boundary. The 

integral of öv/öt over the paths of integration interior to the vortex 

sheet can be written as: 

lim 
AT-*0 

AT A 
ÖV A , 
~ • e dT 
dt  n 

lim 
AT-»0 I AT 

A 

^dT 
öt  n 

= 0 (2.0Ö) 

vhere the subscripts have been previously defined. Expression 2.05 

becomes: 

J d. A 
ÖV  A 
TT * e ds ^t  T / 

.. A A 
(g+B)k-eTdI (2.09) 

'1 

Since the path of  integration can be made as  small as desired,  the inte- 

grands in expression 2.09 are equal,   thus: 

_T _      g  + B 
öt 

^iHrT 
(2.10) 

where; 

19 
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^A    A        dvm 

^em = (2.12) 

■ ■ (s) (2.13) 

7 
To illustrate expression 2.10, the Herring-Zoller equation for B will 

be derived at this point. The time rate of change of the tangential 

velocity, for a spherical, bubble, at the boundary is: 

^T _ 3    B    , 3    te (CM4) 
at    2 ,    2  y p 

VWr'T    a/l+(r'r 

vhere a is the normal velocity at the boundary of the sphere and a is the 

radius of the sphere. Expression 2.10 for a spherical bubble can be 

written as: 

B + 3 ^ = 2g (2.15) 

3 
Upon multiplying both sides by a    and rearranging terms, expression 2.12 

can be put into the form: 

(Ba3)*  = 2ga3 (2.l6) 

Integrating both sides of expression 2.16 over time where B = 0 at t = 0 

gives: 

-=^   fVdt (2.17) B 
a' wo 
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a 

Expression 2.17 is the Herring-Zoller    equation. 

The relationship between the tangential velocity and the circulation 

density of the vortex rings, established in Chapter I, leads to the result; 

21 
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CHAPTER III 

VELOCITY POTENTIAL OF THE SOURCE 

SHEET AND ITS TIME DERIVATIVE 

The contribution to total velocity potential by the source sheet, 

expressed in cylindrical coordinates,  can be written as: 

i     /•b/-Tr     v (r,z,t)ryi+(r^ dBdz 

^vv^WV T^TKt   V, —T      (3,01) 
•'a^o   Vr +r    +(z -z) -2rr    cos 9 T o    v  o    ' o 

vhere a and b are functions o time and are the value of z at the top 

and bottom (poles) of the bubble -where r = 0. Expression 3*01 can be 

written in the form: 

c^(ro,zo,t) = —J   vn(r,z,t)K(r,z,ro,zo)yrK7
;)^ dz     (3.02) 

a 

where the kernel is defined as: 

K(r,z,vzo)=/o
nya./gg89 (3.03) 

a = r2 + r 2 + (z -zf (3-01+) 

ß = 2rro (3.05) 

According to Byrd^ ,  the solution to an elliptic integral of the type in 

expression 3-03 is: 

22 
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X(r,z,ro,zo) = rpKCk) (3.O6) 

where K(k) is the complete elliptic integral of the first kind.    The 

modulus k and the variable |i are defined as: 

*? = fh» (3-OT) 

^^T (3.08) 

The kernel can be expressed in terms of k: 

K(r,z,ro,zo) = K(k)lc^- (3.09) 
o 

The variable r is defined as: 

r = r(z,q1,q2,...,qn) (3-10) 

where the q's are parameters of the surface and are functions of time 

only. An example of a surface parameter would be the radius in the case 

of a sphere or the serai-major and semi-minor axis in the case of an 

ellipse, etc. 

The partial time derivative of expression 3•02, where the field 

points are fixed, is: 

It *.(VV*' - hi   It vn(r,2,t)K(r,z)Vzo)/l+(r')
2 dZ   (3.11) 

hi  vrl(r,=,,t)|IK(r,z,ro,Zo)/I7(7
7? d: 

a 
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^/bvn(r,Z,t)K(r,z,V2o>L(/I^F)dz 

l~k vn(r,z,t)K(r,z,ro,Zo)/n-(r')
2| 

z = b 

- 4 vn(r,Z,t)K(r,2,ro,zo)/l+(r')
2 z = J 

where; 

-K(r,2,ro)zo) ^*4+i(¥)©TH^ (3.12) 

(k')2 = 1 - k2 (3.13) 

b = 
db 
dt 

(3.1^) 

a = 
da 
dt 

(3.15) 

and k1 Is called the complementary modulus. If k and k1 are evaluated 

using expressions 3.07 and 3.13, the positive square root is alvays used. 

Expression 3.11 is the partial time derivative of the velocity potential 

for the source sheet at any point in the fluid excluding points on the 

boundary of the bubble. As was shown in Chapter I, the evaluation of 

the partial time derivative of the velocity potential at the boundary 

includes a l/2 v (r ,z ,t). Therefore, this extra term must be added to 
n  o o 

the r. h. s. of expiession 3.11 when the partial time derivative of the 

velocity potential is to be evaluated at the boundary. From this point 

on, the velocity potential of the source sheet and its time derivative 

are to be evaluated at the boundary. 
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Recall that the normal velocity is derived from the surface equation 

P(r,z,t).   The partial operator 9/dt operates only on the surface para- 

meters.    Therefore, the normal velocity expressed in terms of the time 

derivative of the surface parameters is: 

vn = ^ (3.16) 

vhere; 

l-F-b.z.t) 
fi = " \rt{T,z,t)\ (3-17) 

The partial operator 6/ät operating on r and v (r,z,t) can be expressed 

as? 

Ir = sllr- (3.1Ö) öt  pi üq.^ 

|Fvn(r,z,t) =Z 
., of 4 _ "I 

^i  + -h   ^\ (3.19) 

It must be remembered that ö/öCL operating on f will operate on r keeping 

z fixed, but the partial derivative operates on F(r,z,t) vhile both r and 

z are fixed. 

The velocity potential of the source sheet and its time derivative 

can now be expressed as: 

^rotzQft)  = B^ (3.20) 

It ^VV*) = l(fifi)2 + $h\ + h^l^kj * VJ (^ 

25 
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i "a 
(3.22) 

X ct X 

1 a 

dz 

aS    =y^K(z,20)Vl+(r')2|      - af.K(z,Z  )/l+(r')2 

K.(z,z   ;  = r- r— V  ' o'      2r aq. E(k)h + 

(3.23) 

(3-24) 

(3.25) 

(3.26) 

(3.27) 

The nev notation for the argument of the kernels shows that the potential 

and its time derivative are to be evaluated on the boundary where: 

ro ^ ^vw---'^ (3.28) 

The kernels K(z;z ) and K  {z,z  ) have singularities at z = z . As 

z - z ,  k - 1 and K(k) - » vhile E(k) -  1. If k ~ 1, the complete 

elliptic intecrals K(k) and E(k) can be represented by a series in terms 

of ln(^/k'), ByrcT . If only the first term of the series is used In 

each case, the complete elliptic integrals behave as: 

K(k) ~ - Inl V (3.29) 
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E(k) « 1 (3.30) 

Expand r in terms of z about z    such that: 

r=r0-(r')0(v»)+|(r")o2(Vz) (3.31) 

vhere terms higher than second order have been ignored and; 

(r )o \dzA=s 

"■■'•■(A. 

(3.32) 

(3.33) 
z=z 

It is easily shown that for z ~ z ,  k' behaves ac 

k' ä1-2 
Iz-zh/l-Kr')^ 

2r (3.3U) 

Upon substituting the; r.  h.  s.  of expression S-S^ for k'   in expression 

3.29, the complete elliptic integral K(k),  for z » z ,  can be wri\ten as: 

K(k) « - In 
: -z|/l+(r') 2 

o     " 'o 
Or (3.35) 

If the kernels K(z,z   )  and K.fz.z   ) are e:cpanded  in terns of z about  z v   '   o' 1        o o 

and terns higher than the  zero orde1" term are ignored, these kernels 

behave as: 

K(z,zo)  = In 
lzo-z|^l+(r')0

2 

 5?  (3o6) 

27 
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^(rr')o 

(zo-z)[l+(r')o
2] 

- In 
U-z|/l+(r') 

2 

(3.37) 

where K(z;2 ) and K (z,z ) are the approximate kernels that represent the 

behavior of the original kernels about the singularity and: 

(y0
=(vz=5 

(3.3Ö) 

(rr ■)o=(^) 
\       /z=z. 

(3.39) 

If the other factors in the integrals of expressions 3.22 - 3.25 are 

evaluated at z = z    and are multiplied by the appropriate approximate 

kernel, the integration of the approximate integrand over z is: 

^   =h; f t< K(z'z  Vl^r') 2 d5 o.      t^rry      i    v  ' o ' o a     o 
(3^0) 

o 

r') 2 dz o (3.^1) 

>  =h; f ?< K
T(^

Z
 Vi+Cr') 2 a-. J.      2n /      i   lv      o o i a      o 

a,     = -; /    f, K(z,z ; 
^i      ?nJa    xo 0 ^ ^n ** 

(3.42) 

(3.43) 

where a    , 0, • CJ0 ,  and ai     are approximate coefficients that repres 
0i      2i      3i ^i 

the behavior of the original coefficients about the singularity and: 

ent 

fi = rij 
O \   / Z = 2 

(3-44) 
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Wo = WiL (3.^5) 

ul Jo ^-i Jz=z 
(3.46) 

If the approximate coefficients are added to and subtracted from the ori- 

nal coefficients, the singularity is removed and the original coefficient? 

can now be written as: 

dz + oo     (3-27) 

L a        i \ ^i/o 

2. dz + ä     (3.Mi) 

i •'a   L o -1 
dz + a.    (3-^9) 

■^i 

2n J a 
f.K(z,Zrt)  r^- 
i   v   '   o    ^q. 

i 

(/l+(r')2). f.  KU>OkMvi+(r') 
o '      1 (^ 

.\2 dz  (3-50) 

+ a,, 

where a > a ^ > a-, > and rr,  are defined as: 
0i  2i  3i      Ui 

o,    2n i '     o 
i        o 

|(b-Z Vl+(r') 
2 

!    o        O 
(b_zo)Ln—^ (3.51) 

+ (z -a)ln v o 

(z -a)/lHr'L2 o "    'o 
 B7 (b-a) 

29 



Nonro 66-211 

•Xi Hr')' (b-z  )ln 
(b-z^)nHrT^ 

"^ (3.52) 

|(Z -a)/n-(r')^ 
+ (z    a)^ _o_ 

or -   (b-a) 

=    1      f. /1+(r.^(|^) 2(b-a) + 
Mr')* 

In 
z -a o 
b-z (3.53) 

-  (b-z )ln 
(b-z j/l^r7)? 

O"        '       'O 
"5?  (z -a)ln v o    ' 

(z -a)\/n-(r') 2 

Ör 

2n i^ l+(r'r 
oi    i 

(b-z  )ln o 

(b-z j/l+(r')^ 

OF (3.5M 

+■ (z -a)ln v o    ' 

(z -a)/l+(r'L
2 1 

 a 
Or -   (b-a) 

The a      coefficient has been reGerved for the B term that will be a 
i 

result of the partial time derivative of the potential due to the distri- 

bution of the vortex rings on the surface of the bubble.    The reason for 

this type of notation will become clearer in the chapter on the Bernoulli 

equation. 
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CHAPTER IV 

vELocrry POTENTIAL OF THE VORTEX SHEET 

AND TTS TIME DERIVATIVE 

The contribution to the total velocity potenticLL by the vortex sheet, 

expressed in cylindrical coordinates,  can be written as: 

Si 

vhere v_(r,z,t) is the tangential velocity at the boundary in the Moving 

frane of reference, n(r,2,r .z ) is the solid angle of the vortex ring 

subtended at the field point, and the limits a and b are defined in the 

same manner as in Chapter III. 

•Hie partial time derivative of expression k.01 is: 

ft VW^  = hj   h vT(r>Z,t)n(r,z,ro,zo)/l+(r')2 dz       {k.02) 

^ 

+ hi v^r'z^ ft n(r,z,ro,zoVl+(r')2 dz 

^/bvT(r,z,t)n(r,z,ro,zo) |^ (/l+(r')a)az 
a 

b vT(r,z,t)n(r,z,ro,zo)|z=b - a vT(r,z,t)n(r,z,ro,zo) |       I 

As vas shown in Chapter I, the evaluation of the partial timet derivative 

of the velocity potential at the boundary includes an additive term of 
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l/2 v (r ,z ,t)v_(r ,z ,t) cot 9.    Iherefore, this extra term must be 

added to the r. h.  s. of expression k.02 when the partial time derivative 

of the velocity potential is to be evaluated at the boundary.    From this 

point' on, the velocity potential of the vortex sheet and its time deriva- 

tive are to be evaluated at the boundary. 

Recall that the result of the vortex theorem for migrating bubbles 

is: 

^Vr^t^-X^- (..03) 
yi-Kr'r 

where g is the acceleration due to gravity.    If the variable r is defined 

in the same manner as in Chapter III, expression 4.02 can be written as: 

It VW0 = ai + ^i{\ +ai. +2 WW) cot 0)     (^0if) 
i 1 

where it will be seen later in the chapter that Q(r,2,r ,z  ) = 0 for r = 0 

and this makes the last term of expression k.02 zero and: 

., =^/D5VvT(r'z't)n(l'zo)di 
(1..Ü5) 

iSj'vT(r)z,t)|^|;n(z,Zo)/w^7.:Z ('(.06) 
'6. 

1 'a 

1 i "^a i 

The solid angle n(z,z ) is the same as in expression k.02,  but the new 

notation for its arguement shows that the coefficients are to be evalu- 

ated on the boundary where: 
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The solid angle of a vortex rixig subtended at any field point in the 

fluid is: 

-It*) dS* (4.09) 

\*xere R* is the distance from the field point to any point in the plane 

enclosed by the vortex ring and S* is the area of the plane enclosed by 

the vortex ring. The outvard drawn normal of the plane is the unit vector 
A 
k in the positive z direction.    It is easily shown that: 

= vs1" + r      + (z -z)    - ^r e cos 9 (U.10) R*      . . . 
O O 0 

(4.11) 
A**)      p + r 2 M* -O2 - * e cos el372 

L o        N o    ' o J 

lAere e is the variable of integration.    The expression for the solid 

angle is seen to be; 

n( r, z, r  ,2   ) v   '   '   o    o 

• n -r (z -z)edei10 ^•TT -r ^z -zyciioao 

= 2 / /    n^ 2 2—i TT7?    (!K12) 

^o^o      e    + r       + (z ~zr - 2er    cos  9      _ 

L o v o    ' o J 

\Aiere r is the radius of the vortex ring enclosing the plane.    Since the 

integration over e can le done in closed form, the solid angle can be 

expressed as: 
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Q(r,z,ro,zo)  - 2{ZQ-Z)J 

n vv c' + iz ~zY do T   o        v o     /  
~~ 1 ~ .) 

o   r      + (z -zj    - r      cos ? 
o o o 

('1-12) 

tr      -»-  (z -z)1- - r r COG 9 d( 
oo o J 

[ro
2 + (2o.Z)2 -  ro

2 cos^e]^ + r '■ +  (z  -z)"" -  2IT    cos  9 
o v   O      ' 0 

The first integral can be integrated over 6 in closed form for a body of 

revolution.    Therefore, the solid angle can be written as: 

U -0 
n(r,z,r ,zo) = ^-[T-riT" 2(Vz)7 (ii.U) 

[ r   ' + (z -z)" - r r cos 0 d9 o o o ' BJC 

r      -t-(z-z)    - r " cos"9|vr ^  + r^ + (z -z)" - 2rr    cos  9 oo o J'  o o o 

After using the method of partial fractions and rearranging terms, the 

solid angle can be put into the convient form: 

n(r,2,ro,zo) =   2TT 

X + r 

1 
(Vz) 

2n    •'o 
rizzz 

X - r 
cos 9 X - r    cos  0 o 

To" 
de 

g cos  6 
(^.15) 

vhere a and ß axe the same BA in expressions 3.0^ and 3.03 and X is 

defined as: 

X = /r '-  +  (z -zf (4.16) 

The integral in expression U.16 can be broken up into tvo integretls of the 

type: 

3^ 
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f"     R(cos 9)   ,de (^.17) 
7a - 8 cos 8 

\diere R(cos 9) is a rational function of cos 6*    According to Byra  , 

the Integrals can be reduced to Jacoblan elliptic functions of the form: 

•K(k) 
R -r (0 - ok sn u)nQ uj du (h.lü) 

vhere yx and k are defined in expressions 3*07 and 3*06. If the substitu- 

tion for cos 6 in expression h.lH  is made in the two Integrals resulting 

from the Integral in 4.15 and the Indent it les: 

nd u = — 
dn u 

(4.19) 

■2 ,   ,2    2 dn u = 1 - K sn u (4.20) 

are used,  the solid angle can be written as: 

n(r,z,ro,zo) = 2n ± 1 
(z  -z)k(/w    \   /.K(k)     ,  2   , o J/X+r   \  / dn udu 

.PTT./rr (\     o/^ o l-cu   s^ u 

/x-r \  r^k)    dnfudu 
\x-r

0/y0 i-a,.'"sndu 

(4.21) 

where: 

^ 
_ [(x^)kT 

2r(X+r  ) 
(4.22) 

a2 2r X-r   ) 
(4.23) 
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The integrals in expression k.22  are complete elliptic integrals of the 

third kind and have five possible solutions depending on the value of 

2      2 
o^ and Q^, . The condition for the five possible solutions are; 

0 < - 
^ 

<   00 

II k2 < ou^ < 1 

III 0 < CL^ < k2 

IV 1 < o^2 < « 

V complex parameter 

2 2 
If o^    is replaced by ou * the same five cases exist for the second 

2 2 
integral.    Case V is excluded since ou    and dp   are alvays positive by 

2 ' 
definition.    It is easily shovn that cu   alvays satisfies case I and a/ 

will satisfy either case II, III, or IV.    Therefore, the three possible 

solutions for the solid angle are: 

2 2 0   <   r^       <   k 

n(r,z, r ,z 
o    o 

)    =   2TT 1   - 
(Vz)k»A 
2TT, 7rr o/ 

K(k) ih.2h) 

(a1
2-k2)K(k)z(6?k). 

te) 

n(k"-a,  )Ao(0,i0 

^a,2(l-a,£ )(a.r-^) 

= sin'V/ (4.25) 

0 = Gin 

a,   -lc 
(4.26) 
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k   < t,   < i 
\ 

n(r;z,ro,zo)  - 2n 1 - 
(z -z)k 

o ife|)» ) {h,2l) 

TT(aI
fi-k")Ao(?,k) 

2fll
1-,(n1

J-kJ)(l-a1'-) 

'X-r  \     ^(k -a, )A0(*,k) 

^Ya^ (l~a^'')(a,u-k ) 

= sin -1/ \^ (U.28) 

1< XL    < - 

n(r,z,ro,zo)  = 2TT 
(z -z)kk/, , 

linJr r 
V o o' ÖKW (^.29) 

a.1(k -c^ )K(k)z(Ti,k) 

/(a1
:-l)(a1'--k

J) o/ ^a^(l-a/)(a/-^) 

■n = sin    I — (üoO) 

If the partial operator d/ör operates on the solid angle in expression 

U.14,  the derivative of the solid angle is easily shown to be: 

— 0( r . z, r   , z   )  = ^r '   o'   o' ■^ 

o 

rdB 

fc-ß cos  OJ w ^.31) 

The solution to the integral of the type in expression 4.32 has been 

Q 
shown by Byrd^ to be: 
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T ^   13/2 "^e £(k) (^3^) o    Ta-ß cos el^       a 0 

Upon rearranging terms, expression if.32 can be written as; 

iL n(r  2 r     ,  )  = 1 iälSL JiljV^ (!,  33) 
^T    (U') 

Tbe solid angle does not have a singularity, but the derivative of 

the solid angle has a singularity at z = z .    Ibe derivative of the solid o 

angle can be shown to behave as: 

~ " (MM 3r    o  (v^K'^o] 

where the same method was employed here as in Chapter III in evaluating 

the behavior of the kernel for z » z . The approximate coefficient for 

\ 
is: 

% - hl Vw^fr) IF ^J^X' ^       ^-35) 
i     a \ i/o 

If the approximate coefficient is added to and subtracted from the origi- 

nal coefficient, the singularity is removed and the coefficient can be^ 

written as: 

i     a \ 1/ 

-1 
" VT 

{T^A)9do'~ **'*M*')oJ*+ \ 
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vhere: 

v„(r ,z  ,t)   /^    \       i z  -a 

1     2nVl+(r')^ V 'l/o    '      0 

(^•37) 
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CHAPTER V 

TANGENTIAL VELOCITY ON-THE BOUNDARY OF A 

NONRIGID BODY OF REVOLUTION EXPANDING AND 

MIGRATING IN A LIQUID MEDIUM 

The tangential velocity at the boundary of a migrating and oscil- 

lating body of revolution will be derived in the moving coordinate 

system. 

Assume a body of revolution is immersed in a liquid medium and the 

SMi.Care S of the body divides the vjhole space into two regions and that 

both regions are occupied by the fluid.     If the fluid external to the body 

muves past the body vith a velocity B in the positive z direction and the 

fluid internal to the   body is at rest, the  surface H can be regarded as 

a  surface of "discontinuity of the velocity.    The tangential component of 

the velocity can be produced by a layer of vorte;c rings on the surface 

of the body. 

If a velocity of -  B is  superposeJ  onto the whole flow,  so that the 

fluid e;±ernal to the body is at rest at infinity,  ther? will be a uniform 

parallel flow of velocity - B internal to the body,   where the fluid \;as at 

rest before.    This   flow is produced by the vortex layer on G.    The probler.- 

is to determine a distribution of vortc:: rings on the surface 3 of the 

body which produces a uniform parallel flow internal to the body such 

that the tangential velocity at the field point P^r^z^) on the boundary 

is  - B/ i/Vl+Cr') ^   where: 

)o     Wr=r 
(r')    = m (5.01) 

1*0 



ROI/PR 66-211 

It has been shcKm, by Prandtl  , that the contribution to the tangen- 

tial velocity by the vortex on vhich the field point is located is 

- 1/2 v_(r ,z ,t). T    o    o 

The induced tangential velocity at P(r ,z  ) due to all the vortex 

rings,  except the one located at the field point,  can be derived through 

the use of the Biot-Survart Lav: 

A    XR 

v,, (r^z^t) =hX/\{r'z't)JZ7r 'e2ds2dsl (5'02) 
T,x o'   o' 

where; 

R = i (ro-r cos e) - J r sin 6 + k (zo-z) (5.03) 

e.  = - i sin 9 + J cos fl (5-0U) 

e2=   

/l+(r')0
2 

(5.05) 

ds1 = Yl+Cr1)2 dz (5.06) 

dG^ = rde (5.07) 

Upon substituting expressions 5«03 -  5'07 into expression 5«02 and rear- 

ranging terms, the induced tangential velocity is found to be: 

.b 
VT  (ro'Zo't) = " 1 / vT(r,z,t))^(r,z,ro,zo)y]T(7^dz    (5.0Ö) 

1 ' TT/l+(r')rt
2      a 

vhere a and b ■ire defined in the same way as in Chapter III and; 
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Km(r,z.r ,z   ) To    o = 1/ n r - r    cos 9 
o 

z -z 
l--^-(r'). 

o     r^+r    +(z -z) -irr    cos 61 
I       oo o J 

- rde (5-09) 

Expression 5-09 can be put into the form: 

yr,z,ro,2o) =| 7." de 

o  (c-B cos  9) w - Vf - ^ ^o}/>. 10) 

cos  9 

(a-9 cos  9) 7N* de 

where: 

a-r    +r      +12 -z) o o (5.11) 

and; 

8 = 2rr (5.12) 

According to Byrü   , the solution to elliptic integrals of the type in 

expression 5*10 leads to the solution: 

2 z -z 
K (r,z,r ,z ) = i^E(k) + r r^l - -2— (r')   I (5.13) Tx  '   '   o7  o7      2 CL-B o   ( r      v     'of w    ->/ 

{- ^ E(K) + M K(k) . H E(k)} 

where: 

U = 

• u + 6 
(5.1^) 

Upon expressing a, 0, and |j in terms of r, z, r , and z , expression 5.13 

can be expressed as: 

k2 
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i 

^(r +r)2+(z-2)2    . 

K(k){l.!s2(r')o I (5.15) 

E(k) 1 
2r(r -r) x o    ' 

(r -r) +(z -z) o o o 

z -z ^rr 

01        (r -rf+{z ~zf o o 

where the l/2 factor is now taken outside of the integral sißn. Expression 

5.15 can be simplified further to give: 

Vr,z,ro,zo)  -yf* K(k) 

)  1 + t-m 2      z -2 o 

(5.16) 

The induced tangential velocity is; 

VT (ro,Zo,t) a        1 / vT(r,z,t)^(r,z,ro,2o)/]T(7^üz (5.17) 
^yi+tr-T ^  •'a 

whex^e the kernel  ^(r^r ,z  )  is that of expression 'j.'lG. 

If the tangential velocity at P(r   ,z  ) due to the fluid  flow internal 

to the. boundary is set equal to the surn of - l/2 v (r  >z »t)  and the induced 

tangential velocity, the tangential velocity v (r ,z  ,t) is  found to be: 

v f r    z , t)  = 
T    o    o'   ' 

^B - i / vT(r,z,t))^(r,z,ro,zo)VrKrT7 dz 

Jl+{r'), 
(5.1«) 

2 

^3 
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Tbe kernel In the integral of expression 5 «18 has a singular point 

at z = z . If the same method Is used here, as vas employed in Chapter 

III, to remore the singularity, the approximate kernel is found to be: 

Kp(r,z,ro,zo) = - ^- 
o -1 K~*\kHr')n

2  ) ro(r")o 
"55 + 1 - 

l+Cr') 
(5.19) 

vhere: 

r=r. 
(5.20) 

The tangential velocity at the boundary with the singularity removed is: 

vm(r ,z ,t) = T    o' o 2*'~J   |vT(r,z,t)K(r,z,ro,zo)Vl+(r^        (5-21) 

- v. 
▼m(r ,2 t) 

tro.zo,t)^{r,*,rotzQ)JlHr')0
2 dzl —h=r+ ^ 

JVl^(r')ft
2 

|z.a|^(r')2 

i*o-*H—      8r        "   \+ ^o^ 

r (r") 
- (b-a){l - SLJO 

|b-z JVlHr') p-zJVl 

( ^ 

.\ 2 

kk 
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CHAPTER VI 

THE BERNOULLI -EQUATION 

Recall that the Bernoulli equation In the moving coordinate system 

was written as: 

|j<p(VVt)-BzotiB2-| v    (r ,z ,t) + v_ (r ,z ,t) n v o' o'  '       T x o* o*   ' (6.01) 

■gt g U^   + B(t) 
p-p 

o _ = 0 

If the time derivative of the velocity potentials for the source sheet 

and the vortex sheet are added together to give the time rate of change 

of the total velocity potential and v (r ,2 t) is expressed as a function 
n o o 

of the q , the Bernoulli equation can be written as: 

I fl Vro'Vt)c0t »o'l 

(6.02) 

+ | B2 - | yjir^z^t) + a1 - s^0 * B(t)j - 
P-P 

2   T v o* o' 
= 0 

The Bernoulli equation must be evaluated for i field points on the surface 

of the bubble since a solution must be found for each q.. The system of 

equations can be put into the form: 

^'"J + ^ Q4 = 0 (6.03) 

^5 
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«here; 

5Ji 6Ji     TJi 
(6.0)) 

2 VoV^^Oj'*^ ^ ,. • i ^ 

■ i v'-o/V''1 • 'i. - «k * ««»I - (x)'" 1      2, 

J      J 

and the subscript J Is for the evaluation of the equation at the J'th 

field point. Let X be the variable matrix, C the coefficient matrix and 

Q the matrix whose elements are the Q., the system of equations can now 

be written as: 

CX + Q = 0 (6.05) 

where: 

C = 

Cll C12  *'• 
• •           • •  • 
• •           • •  • 
• •           • • • 
• •           •  •  • 

cll 
• 
• 

CJi = "o„ 

(6.06) 

(6.0?) 

h 
x = (6.08) 

Q = 

k6 

(6.09) 
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If the inverse of the coefficient operates on expression 6.08, the equation 

is transformed into: 

X = - c"1^ (6.10) 

Since: 

c"1c = I (6.11) 

and: 

IX = X (6.12) 

■where I is the unitary matrix. The resulting matrix on the r. h. s. of 

expression 6.14 is the solution matrix where each element in the matrix 

is the solution to the corresponding element in the X matrix. Expression 

6.1k  can now be written as: 

X = S (6.13) 

^daere: 

= .0^ (6,110 

s = (6.15) 

and: 

i|qi! 
3il| 

ll * *      ll 
il • = *      11 
il *   i •        1 
l** 1 8ill llqll 

(6.16) 

ki: 
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Therefore, the solution for the q's can be arrived at in the same manner 

as solving a set of linear algebraic equations. Once the solution of the 

•• • . 
q s is knovn, the q. s and q1 s can be solved for by integrating the 

variables over time. 

Now that the q's and q's are known, the shape of the bubble, the 

normal velocity, and the tangential velocity at the boundary can be deter- 

mined. Therefore, the velocity potential, the time derivative of the 

velocity potential, and the spatial derivatives of the velocity potential 

can be found at any point in the fluid. The Bernoulli equation can now 

be solved for the pressure at any point in the fluid. 

W 
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CHAPTER VII 

THE MIGRATING SPHERICAL BUBBLE 

The surface equation for a sphere in the moving reference frame is: 

F(r,z,t) = r2 + z2 - a2 = 0 (7.0l) 

where a = a(t) is the radius of the sphere.    Since there is only one 

surface parameter q1  = a (compare with expression 3.10)»the normal velo- 

city at the boundary of the sphere is: 

v    = k (7.02) n \ >       / 

and the function f.  defined by expression 3.17 becomes: 

f1 = 1 (7.03) 

The velocity potential for a migrating spherical bubble in cylindrical 

12 
coordinates is     : 

2 a z 

-P(V Vt) ' * 7=- ^ | B 2   % 3/, * K       (T.CA) 
Vr    +z ^ o      o ' o     o 

where r   and z    are the field point coordinates and B = B(t) is the velo- 
o o 

city of migration.    The tangential velocity at the boundary of a moving 

sphere is: 

VT=|B(|) (7.05) 

1.9 
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The time derivative of the velocity potential due to the source and 

vortex sheets is obtained from expressions 3.21 and k.Qk: 

,aaco + Bac1 + a
2c + Bac + Bz (7.06) 

Vierer* 

C2 

(7.07) 

^ = Oj^ + a7 (7.08) 

= n3 * % + a5 * 2 (7,09) 

C3 = a6 ^ (f) (7.10) 

The Oi's are given by the expressions 3.22 through 3.25 and ^.05 through 

h.Cyj.    The  l/2 term in c comes from the additive term included in the 

time derivative of the velocity potential of the source sheet and the 

3A(z /a) term is from the additive term included in the time derivative 

of the velocity potential of the vortex sheet. The normal and tangential 

velocities have been substituted into the o. coefficients and the a, B, 

and B variables have been factored out to give c , c , c , and c . If 

the integrands of a, and a7  are combined as well as those of a^ and a, , 

the coefficients in expression 7.07 can be written as: 

_    1 
co ~ 2TTa J   (V°o)d2 +J (^-O02 +I 

-a 'zo 

(7.11) 

*   The c    coefficients correspond to the a   and BQ coefficients resulting 
from the partial time derivative of expression 0.01 as follows:    c    = a , . • 00 c1 = a:L, c2 = a0, and c3 » a^ 

50 
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ci = 5m 

z 

J     n(zo,z)dz +  j    Q(z ,z)lz (7.12) 

c^  = 2n 
t 0      - t 

J     (G2-G2)dz +j   (G2-G2)dz + I2 (7.13) 

2 
Vr 2+(z -a)2       Vr    Hz +») 

O      '   O O O 

2 

C-,   = 
3 
5^ I 1 - fa - 

(G3-G3)dz + J    (G3-G3)dz + I3 •i &) 
(7.14) 

vhere G , G , and G    are the original Integrands vlth singularities at 

z = z : G , G,, and G^ are the approximate Integrands for z » z ;  I , I„, 
o     o      2 3 0      0     2 

and I. are the analytic integrals and Q(z ,z) is the solid angle of a 
3 o 

vortex ring at z subtended at the field point z . The difference o 
between the original integrand and the approximate integrand is called 

the compensated integrand.    The original integrands,  approximate integrands, 

and the analytic integrals for a spherical migrating bubble are: 

Go=K^yr f (7.15) 

G    = o m or 
(7.16) 

I   = o -fe) 

z -zia1 

(a-zo)ln^   S   -  J + (2o^)ln| 
8r 

z +a a^ o 

br 
- 2a (7.17) 

51 
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■folHÄ + K(k) ■(SH^*7-181 

02
 = ^o3 

1 - 
2z r 2 

o o 
a(zo-z) - In 

z -2|a o 

Or •'üK-tr'"1" 

^•(s?) 
2z r 

Ua - -2°   in 
z +a o 
a-z - (a-zo)ln| 

a-z    al  o' 

Or 
(7.20) 

z +a|ai 

(v*M-t-2 
a-z    a o1 

(a-Zo)ln     u    . Or 

z +a|a 

o3 = (^Htf(¥)^ (7.21) 

'3 :r a(zo-z) (7.22) 

(^ 

z +a o 
a-z (7.23) 

If expression 7.0^ is: differentiated with respect to time,  keeping 

the field point variables fixed, and evaluated on the boundary,  the 

coefficients c  ,  c.,   c ,  and c   become: 

c    = 1 o (7.24) 
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. ■ i &) (7.25) 

c2 = 2 (7.26) 

■i© (7.27) 

The tangential velocity at the boundary of a spherical migrating 

bubble is: 

vT = BcT 
(7.28) 

vhere the tangential velocity in expression 7.05 has been substituted 

into expression 5.21 and B has been factored out.    The coefficient c-, is 

written as: 

where: 

CT = '4 - C (G.j.-Öjjdz + J%T-GT)aZj + IT (7.29) 

■© K(k){l + m\-™H-0$- (7.30) 

(¥Mi-*)2|^ 
^■fc) 

z -z|a 
Inl    0    .   I + 2 

Or 
2 (7.31) 

vfe) 
la-z la 

(a-z )ln,        0 

8r 
v      o 

2     + (zo^)ln| 
z +ala) o    ! 

Or 2 
+ 2a (7-32) 
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The tangential velocity obtained from the velocity potential in expression 

7.04 evaluated at the boundary shows the coefficient to be: 

■i&i (7.33) 

The coefficients in expressions 7.11 through 7.15 and expression 

7.29 vere prograamed by this writter for the IBM 7090 computer and evalu- 

ated for several field points on the boundary of a unit sphere. Since 

all (G - G) Integrands are continuous functions of z such that they are 

zero or finite at z = z , the integral can be obtained by a numerical 

quadrature; e.g.,, Gauss' formula. The Gaussian formula has em advantage 

in that the integrand is not evaluated at the limits of integration. Using 

z for one of the limits, the integrand is computed for values of z ^ z , 

thus eliminating the need of determining the integrand for z = z . If 

the integrand is evaluated at n points, Gauss' formula integrates a 

(2n - l^th polynomial exactly. 

Table la is a list of computed values for c and c , vhere an ö-point 

Gaussian quadrature was used for each integration range. The accuracy of 

the computed coefficients c and c decreases somevhat as the field point 

moves away from the equator of the sphere where z = 0. The reason for this 

loss of accuracy can be qualitatively seen in figures 3 and k.    These are 

plots of the original integrand G , approximate integrand G , and compen- 

sated integrand (G - G ) as a function of the integration variable z. 

The curve of tht compensated integrand in figure 4 (z =0) appears to 

have a parabolic shape vhich the Gaussian formula would integrate exactly. 

However, the curve of the compensated integrand in figure 3 (z =0.5) 

appears to have higher inclinations in the region of z than are commen- 

surate with a polynomial and a lower accuracy of integration is to be 

expected. 

5U 



mum 66-211 

Table lb is a list of the computed values of c and c as compared 

vlth the true values calculated using expressions 7.25 and 1,27.    Figures 

5 and 6 are plots of the Integrands G-, G-,, and (G <- G_). Judging from 

the shape of the curves for the compensated Integrands, the accuracy of 

c_ would be expected to be Itss for z =0.5 than for 2=0. The numerl- 
3 o o 

cal results for c,, c , an^ c^, show the sane trend of accuracy. 

Although the accuracy of the coefficients Is sufficient for practical 

purposes, it could be improved as ftllow: Figures 3-6 suggest employment 

of four regions of integration, thus: 

ci =ai 

z +c 

-Z -€        *Z 

J   0^2+J  (Gi-Gi)dz (7.3^0 
-a        z -e o 

z "z+e 1 z    ~ zrt
+e o o 

+ ei 

vhere an e Is chosen such that the region of high inclination is covered 

by the two inner Integrals.    The compensated Integrand is not necessary 

for the two outer regions of Integration since there are no singular points, 

This method has not been tried yet. 

Tlie c    coefficient, like the c_ coefficient,  includes an additive 

term when evaluated on the boundary of the bubble (1.^3).    However, if 

the coefficient is evaluated at points off the boundary, the additive 

term is not needed.    Also, the method of compensating Integrands xs not 

needed since there eure no singularities for field points off the boundary. 

Figure 7 is a plot of the integrand G   as a function of the integration 

variable z,  for z    = 0.   The distance of the field point from the boundary 

is r   - 1.    Since Gp is symmetrical about the G? axis, only values for 
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z i 0 are shovn.    The value of G0 is  finite for z = 0 and r   > 1.    The 

integral of G   yields the value of c    shovn in figure 8.    The value of 

c   is extrapolated to 2 at r   = 1 \diich is the correct value of c   at the 

boundary.    As r   -* 1, the G   curve becomes more and more pointed and the 

integral of G« increases so that:        ° c„ -• 2 for r    = 1 + c.    However, c e-o   ^ o 
for r = 1, the G2 curve lies very close to the axes in figure 7 and the 

integral of Gp decreases in value such that c = 3/2. The additive term 

of l/2 gives the correct value of 2. 

CONCLUSIONS 

The above numerical analysis pertaining to a spherical bubble demon- 

strates that an underwater explosion bubble can be represented by a dis- 

tribution of sources and vortex rings on the surface.    Since the equations 

were derived vlthout regard to the shape of the bubble, they should be 

applicable to the case of a nonspherical bubble.    This method would not 

encounter the problems of the model consisting of a single point source 

and a single dipole located on the axis of symmetry vhich interferes with 

the Jet rising into the interior of the bubble. 

It is planned in the near future to apply the theory and mathematical 

tools developed in this paper to the case of a nonspherical bubble with 

a Jet.    The differential equations for the q's eure to be solved using the 

Adams-Moulton predictor-corrector method or that of Runge-Kutta .    A 

generalized program using these two methods has been developed at the 

Naval Ordnance Laboratory and has been used successfully in the past. 

me model of a Jet-forming bubble would allow for a detailed and 

complete study of bubble phenomena associated with underwater explosions. 

A study of this type would greatly enhance the present knowledge. 
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TABLE la 

COMPUTED VALUES OP co AND c    OHTAINED FROM EXHffiSSIONS 7-11 

AND 7.13 EVALUATED ON THE BOUNIARY OF A UNIT SPHERE 

These coefficients are needed for the time derivative of the velocity 

potential of a migrating spherical bubble and axe associated vlth the 

potential due to a source sheet.    The true values of c    and c- are 1 and 
c    2 

2 as obtained from expressions 7,2k  and 7.26. 

Field Point 
Coordinate z 

Computed Values Of; 

0.9 

0.Ö 

0.7 

0.6 

0.5 

0.1+ 

0.3 

0.2 

0.1 

0.0 

-0.1 

-0.2 

-O.3 

-0.4 

-O.5 

-0.6 

-0.7 

-0.8 

-0.9 

0.99980 

0.99995 

0.9999Ö 

0.99999 

0.99999 

0.99999 

0.99999 

0.99999 

0.99999 

1.00000 

0.99999 

0.99999 

0.99999 

0.99999 

0.99999 

0.99999 

0.9999Ö 

0.99995 

0.999BO 

2.00251 

2.00058 

2.00036 

2.00010 

2.00001 

1.99998 

2.00COO 

2.00000 

2.00000 

2.00000 

2.00000 

2.00000 

2.00000 

1.99993 

2.00001 

2.00010 

2.00036 

2.00058 

2.00251 
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TABLE lb 

COMPUTED VALUES OF (^ AND c    OBTAINED FROM EXPRESSIONS 7.12 

AND T.lU EVALUATED ON THE BCUNIARY OF A UNIT SPHERE 

These coefficients are needed for the time derivative of the velocity 

potential of a migrating spherical bubble and are associated with the 

velocity potential due to the vortex sheet.   The true values of c. and 

c   are obtained from expressions 7.25 and 7.27» 

Field Point 
Coordinate z o 

Computed Value 
of c. 

True Value 
of c1 

Computed Value 
of c3 

True Value 
Of  C- 

0.9 OM&Q 0.45 1.35006 1.35 

0.Ö 0.39382 0.40 1.19985 1.20 

0.7 0.34142 0.35 1.04972 1.05 

0.6 0.29hk0 0.30 0.89989 0.90 

0.5 0.24353 0.25 0.75000 0.75 
O.h 0.19555 0.20 0.60009 0.60 

0.3 0.14701 0.15 0.44997 0.45 

0.2 0.09941 0.10 0.29995 0.30 

0.1 0.0500Ö 0.05 0.14998 0.15 

0.0 0.0 0.0 0.0 0.0 

-0.1 -0.050Cd -O.O5 -0.14998 -0.15 

-0.2 -O.O9941 -0.10 -0.29995 -O.3O 

-0.3 -0.14701 -0.15 -O.44997 -O.45 

-0.4 -0.19555 -0.20 -O.60009 -O.6O 

-0.5 -0.24353 "0.25 -O.75OOO -0.75 

-0.6 -O.29440 -O.3O -O.89989 -O.9O 

-0.7 -0.34142 -0.35 -1.04972 -I.05 

-0.8 -O.39382 -0.40 -I.I9985 -1.20 

-0.9 -0.44648 -O.45 -I.35OO6 -1.35 
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TABLE 2 

COMFUPED VALUES OF c^, OBTAINED FROM EXPRESSION 7.29 

EVALUATED ON THE BOUNDARY OF A UNIT SPHERE 

This coefficient Is needed for the tangential velocity of a migrating 

spherical bubble.    The true values of c., are obtained frcxn expression 7«33« 

Field Point 
Coordinate z. 

Computed Value 
of cm 

True Value 

0.9 

0.8 

0.7 

0.6 

0.5 

O.k 

0.3 

0.2 

0.1 

0.0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

-0.6 

-0.7 

-0.Ö 

-0.9 

0.65373 

0.Ö9996 

1.07119 

1.19999 

1.29903 

1.37m 
1.43091 

I.U6969 

l.k92k& 

1.50000 

1.49248 

I.46969 

I.43091 

1.37477 

1.29903 

1.19999 

1.07119 

0.89996 

0.65373 

0.65383 

0.90000 

1.07121 

1.20000 

1.29904 

1.37477 

1.43091 

1.46969 

1.49248 

1.50000 

1.49248 

1.46969 

1.43091 

1.37477 

1.29904 

1.20000 

1.07121 

0.90000 

0.65383 
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Figure 3    THE HfTEGRANDG G  , Go, AND (Go - Go) IN EXPRESSION 

7.11 PLOTTED AS A FUNCTION OF THE INTEGRATION VARIABLE 2 

The integrands are evaluated at the boundary of unit sphere for 
z    = 0.5. o 
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0 X COMPENSATED 
INTEGRAND 
(G. - G J 

Figure k 

Same as figure 3 for z    = 0. 
o 
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Figure 5    THE HWEGRANDS G , G , AND (G    - G  ) IN EXPRESSION 

7.14 PLOTTED AS A FUNCTION OF THE INTEGRATION VARIABLE z 

z    = 
The Integrands are evaluated at the boundary of a unit sphere for 
0. 

6k 
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10 

10 X COMPENSATED 
L        INTEGRAND          ^8 
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-10 18 

Figure 6 

Same as figure 5 for 2    =0.5 o 
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