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ABSTRACT: The equations for the velocity potentisl, partial time
derivative of the velocity potential, tangential velocity, and normal
velocity for a source sheet and vortex sheet representation of the
nonspherical underwater explosion bubble have been derived and programmed
for the IBM 7090 computer. These equations were tested for the known
case of a spherical underwater explosion bubble anu the resuLts were
sufficiently accurate for practical applicetion. The conclusion is

that the nonspherical underwater explosion bubble can be represented

by a source sheet and vortex sheet. This representation will not inter-~
fere with the Jet rising into the interior of the bubble, as is the case
of the earlier models consisting of a single point source and a single

dipole located on the axis of symmetry.
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This report is part of a ccontimuing study of the underwater explosion
bubble which, it is hoped, will eventually give a complete quantitative
description of the muclear explosion bubble. This paper 1s an important
step forward in that it is the first adequate mathematical description
of the migrating explosion bubble and lays the groundwork for further

theoretical development.
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REPRESENTATION OF A NONSPHERICAL UNDERWATER EXPLOSION

BUBBLE BY A VORTEX SHEET AND SOURCE SHEET

INTRODUCTION

After the detonation ¢f an explosive charge under water and the emis-~
sion of the shock wave, the gaseovs products of the explosion, which have
f rmed a gas bubble, continue to expand outward at a gradually decreasing
rate. The result of this expansion is a radial displacement of water.
When the radial velocity becomes zero, the bubble has reached its first
maximum' radius and the pressure in the bubble is far below the hydrostatic
pressure. Subsequently, the bubble contracts and the tubble pressure
increases. When the radial velocity again becomes zero, the bubble pres-
sure is substantially greater than the hydrostatic pressure. The bubtble
has nov reached its first minimum radius and begins another expansion
phase. The gas bubble may pulsate in this manner several times depending
on the depth at wiich the charge is detonated.

Throughout the first expansion phase of the bubble there is very
little vertical motion, commonly called migration. Hovever, near the
minimun radius an appreciable upward displacement wmay occur. The migra-
tion is a result of the buoyancy of the bubble and depends on the depth
of explosion and the charge weight.. There is little migration if small
charges are exploded at great depths, say one pound at 200 feet. However,
the explosion of large charges at ordinary depths, charges of the order
of 300 pounds detonated to 8O feet, would show a strong migration.

The classical treatment of the underwater explosion bubble is based

on the assumption that the bubble remains spherical at all times. The
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explosion of small charges at great depths essentially behave in this
manner. However, it has been observed in the explosion of large charges
at ordinary depths, where strong migration is present, that the bubble does
not remain spherical but undergoes a very definite change in shape.
Initialiy the bubble is spherical and remains spherical sorawhat beyond
the first maximum radius. However, as the bubble contracts to its first
minimum, the bubble is flattened; and shortly before the minimum, the
bottom begins to move upward into the interior of the bubble, figur:z 1,
and eventually impacts with the upper surtace cf the bubble, figure 2.
The tongue of water protruding into the interior of the bubble Iis called
the bubble jet.

Several authors have given theories of the change of shape due to
the effect of buoyancy, notably Penney-Pricél and Keller-xblodnefz. These
authors represent the velocity potential ¢ as a series of the Legerdre

polynomials P (cos 8) in the form:

® = nioanPn(COS G)R-(n+l) (0.01)
where R is the distance between the coordinate origin and the point at
vhich the velocity potentisl is to be evaluated, the field point. PFurther,
§ is the angle between the vertical axis and R, and the an's are coeffi-
cients that are functions of time. The velocity potential can be inter-
preted as the sum of a point source, a dipole and higher order poles all
having the same origin. The coordinate origin is placed on the axis of
symmetry in the interior of the bubble. Since the potential must be
evaluated for points on the bubble surface, a solution is possible so

long as the bubble surface does not come near the origin. However, the

bubble jet will reach every point in the interior on the axis of symmetry

ro
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and will cause irremovable singularities as R goes to zero. Therefore,
the representation of the velocity potential fails at the most interesting
and important part of the motion of the underwater explosion bubble.

Initially, the bubble expansion is radial and this motion is known
to be irrotational, thus, vortex free. However, Snay has shown that as
buoyancy takes effect and the bubble begins to migrate, voriicity is
generated.

In this paper, the velocity potential will be represented hy a dis-
tribution of point sources and vortex rings on the surface of the bubble,
eliminating singularities from the interior of bubbhle. An alternate
approach, as suggested by Kelvin's extention of Green's theorem, is a
distribution of point sources and dipoles over the bubble surface, but
the distribution of vortex rings is simpler in the analysi; if the vortex
theorem for migrating bubbles is applied.

The common assumptions of bubble theory will also be used in this
study. They are:

a) The bubble motion can be represented by & velocity potential for

points outside of the bubble surface.

b) The gas in the bubble expends adiabatically and the pressure is

unifora throughout the bubble.

c) The water is incompressible.

In this paper, the water is assumed to be unbounded.

The purpose of this paper is not to solve the general case vi a
migrating bubble which changes shape. Rather, the effort is dirccted
toward deriving the equations and providing the mathematical tools for
the treatment of the general case and the mathematical treatment of the

singularities generated by the distribution of point sources and vortex
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rings on the surface of the bubble. The resulting equations have been
tested by applying them tc the classicul case of a migrating spherical

bubble.
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CHAPTER 1
BUBBLE THEORY

It is assumed that an incompressible, unbounded fluid contains a

gas bubble within it, and the velocity 0 of the fluid, as observed from

£
a fixed frame of reference in the fluid, is assumed to be derivable from
a potential function Pp vhich satisfies lLeplace's equaf.ion so that:

A
v

g~ "V

#Pp (1.01)

2 =
Ve 0 = 0 (1.02)
The pressure P in the water can be obtained by Bernoulll's equation:

s

3t

1 2 P _
- (V,:0.)° = 82, o £(t) (1.03)

vhere the subscript f references the spatial and time coordinates to the
fixed refereace frume, Py is the density of water, g is the acceleration
due to gravity, and £(t) is the integration constant arising from the
integration of the classical hydrodynamic equation at constant time.

The positive z sxis is assumed to point vertically upward. It is furcher

assumed that:

pp =0 88 R, = (1.0u4)
vhich implies that:
aq)f

gt—;-‘o and qu)f-oo as Rf"'° (1005)

p)
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where Rr is the distance from the coordinate origin to any point in the
fluid. Statements 1.04 and 1.05 are simply the mathematical expressions
for the assumption that the fluid is undisturbed at infinity as seen

from the fixed frame of reference, consequently:

P~P, 88 R, o (1.06)

vhere Po is the hydrostatic pressure of the fluid for z = 0 at infinity,

thus:

P
£(t) = --02 (1.07)

o

The Bernoulli equation can now be written as:

o 2 P-P
f 1 o _ W
atf - 2 (qu\f) = ng Y po =0 (l'w)

The pressure P is contimuous across the boundary of the bubble.
Therefore, the pressure in the bubble must be the same as that in the
adjacent water. When the Bernoulli equation is evaluated at the bubble
interface, an interrelationship between the pressure P in the bubble and
the motion of the surface is obtained.

Since the bubble surface is a free surface, a surface that moves with
the fluid, the normal velocity of the bubble surface must be the same as
that of the adjacent water. According to Lamb3, if F = 0 is the surface
equation of the free surface, the surface equation must satisfy the kine-

matic condition:

UF-V +%¥=o (1.09)

J
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The unit normal, Qn, of any surface is:

A 1.10)
€ = ToF] (
Thersfore, it is seen that if expression 1.09 is divided by |VF|, the

normal velocity at the boundary of the bubble can be expressed as:

oF
- _ .ot
Vn = W (1.11)

Assume that the bubble translates in the positive z direction with
a velocity l.B(t). If a frame of reference with its coordinate origin at
the bubble center is rigidly attached to the bubble, an observer at the
origin would see a stream of velocity - B moving past the bubble. The
relationships between the variables in the fixed reference frame and

those in the moving frame are:

Z2p =2+ B(t) (1.12)
te =t (1.13)
Ve = Vo (1.14)

If the velocity potential in the fixed reference frame is expressed in
terms of the variables in the moving reference frame, the Bernoulli

equation can be written as:

m m
ac"f ' aq)f 1 ] 5 P"Po
—67:: - B _a'i; -5 (09 ) - &(z *B) - o 0 (1.15)
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where the superscript m shows that the velocity potential in the fixed
reference system 1s expressed in terms of the moving coordinate variables.
The relationship between the velocity in the fluid as seen by an observer

in the moving frame and that seen by an observer in the fixed frame is:
- m ‘A
-V Py =" V0, = Bk (1.16)

From expression 1.16 it is easy to see that:
m »
=] + e
Py = @ * Bz (1.17)

where the subscript m refers to the moving reference system. Upon making
the appropriate substitutions, the Bernoulli equation expressed in terms
of the velocity potential in the moving frame of reference and the moving

frame of reference and the moving coordinates is:

5l - P-P
gﬂé - Bz +§ B - % (Ve)° = g(2#B) - —2 = 0 (1.18)
po
The Bernmulli equation can be written as:
P-P
d _w L1lx2_1,2_ 1 2 _ _o.gy. 2.9 1.1
S -B+3B -3V -5 g(z+B) o (1.19)

where Vip and vn are the tangential and normal velocities as seen by an
observer in the moving frame.

In order to solve the Bernoulll equation, an expression for the
velocity potential must be found.

According to lLamb h, if o and ¢' are any two single valued functions
vhich satisfy laplaces's equation throughout a given region, then using

Kelvin's extension of Green's theorem:
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jcp 9‘2— s = J;J‘:p' -S-E ds (1.20)

viere 5 is the surface of a boundary enclosing a regi-n ..t the fluid and

n is the couordinate normal t0 S. [et p be the velocity putential and

©w' = 1/R, the reciprocal of the distance of any point of the fluid to a
I'ixed point P in the space occupied by the fluid. It is necessary to
exclude P from the swface of integration since ' can becowe infinite if
P is included in the region of integration. This may be done by describing
a small sphere about P, vhere the fixed point P is the center. If ¥ refers
to the surface of the small sphere and S to the remaining boundary, expres-

sion 1.20 gives:
oty Jose - Do ipme 0

with 3(1/R)/an = - l/R2 at the surface T and a7 = Radw, expression 1.21

can be written as:
CSAWRIY [N PO [\ ,
- jco dw + ,Uw an\R>db = / R 0 dw + % n as (1.22)

As R = O the first integral on the right hand side of expression 1.22
vanishes, while the first integral on the left hand side is =~ mepp, where
®p is the value of ¢ at the fixed point P. Upon rearranging terms, the

velocity potential at the fixed point P is:

mpﬁf_f( >_+-_ffwan(> (1.23)
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Exprgssion 1.23 gives the value of ¢ at any point in the fluid in terms

A
of ¢ and 3p/an at the boundary. Since the velocity v is Gefined as:

v = ) (1.24)

the normal velocity at the boundary is:

v = -2 (1.25)

n

ana expression 1.23 can be written as:

(("
op = %TT Jﬁa -R—n as + %‘-ﬁ {jcp %(%)ds (1.26)
The first integral represents a distribution of sources and the second
integral, a distribution of dipoles on the boundary S. If S is finite,
both integrals vanish as R - =, as required by statements 1.04 and 1.05
for the potential in the fixed system. However, an observer in the moving
frame of reference will see a stream with velocity - Bk/\ flow past the bub-
ble. Therefore, the flnid has a velocity of - Bﬁ at ifirdty relative to

the moving frame of reference, and the velocity potential of the stream is:

Pgtream Bz (1.27)

The velocity potential of the bubble, with a distribution of sources
and dipoles on the bubble surface, as seen by an observer in the moving

frame is:
Pp ~ i’ﬁ !j;ﬂ S 1% .{jcp g—;(-fl;)ds + Bz (1.28)

10
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l“la.xwell5 has shown that any magnetic dipole distribution over a closed

surface, with dipole axes directed along the normals of the surface, may
be replaced by a system of current-carrying rings distributed over the
surface. In the analogous case of hydrodynamics, the distribution of
dipoles can be replaced by a system of vortex rings lying in the surface.
The rings have s common axis of symmetry. Such a representation of o
simplifies the analysis when the vortex theorem for migrating bubbles is

applied.

It is well known that for such surface distributions, the potential
internal to the boundary of the surface is zero. Therefore, the gradient
of the potential is also zero. 1In the case of the velocity potential,
the velocity internal to the boundary is zero, in the same way as the
electric field internal to a charged sphere.

The velocity potential for a single vortex ring can be shown to be,

see Milne-Thomson6:
@ = (1.29)

vhere I is the circulation and (0 is the solid angle subtended at the
field point by the diaphragm which is enclosed by the vortex ring. If
y(s) is the circulation density for a distribution of vortex rings on the

boundary of the bubble, then:

@ = % jy(s)(ﬁs (1.30)
s

vhere the integration is taken over the external boundary of the bubble.

The circulsation is:



NOLTR 66-211

r = (s)d .
'[Y 8)ds (1.31)
but:
r =fvT(s)ds (1.32)

vhere VT(S) is the tangential velocity.

During the initial expansion of the bubble, expressions 1l.31 and
1.32 are zero for any closed curve since only radial flow takes place.
However, as vorticity is being generated by the action of gravity, the
bubble surface becomes a surface of tangential discontinuity since there
is a translation of the bubble in addition to the radial expansion. If
the closed path is totally outside the bubble, expression l1l.32 is zero
at all times since the fluid motion is assumed to be irrotational at all
times. Let the path of integration be on the external and internsl

boundary, thus:
r =j vT(s)ds +/ VT(s)ds (1.33)
Sext Simt

The second integral must be zero at all times since there is no fluid
motion internal to the bubble boundary, as was previously assumed. Upon

setting expression 1.29 equal to 1l.31, it is seen that:
v(s) = vy(s) (1.3h)

since the path of integration may be taken as small as desired. Therefore,
the potentiel of a vortex sheet in terms of the tangential velocity at

the boundary of the bubble is:
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a!
o = I vT(s)Qis (1.35)
S

‘The total velocity poteatial due to the source sheet, vortex sheet and

trean is:

®p = I];_ﬂ .{jc—n)ds + i‘—“./: vpls)ds + Bz (1.30)

The time derivative of expression l1.36 at the boundary is needed for
the Bernoulli equation.

Let the velocity potential of the source sheet be defined as:

s .U( )ds (1.37)

thus:

= kE j( ) ==

S

Describe a small sphere about the point P on the boundary, where P is the

center. If ¥ refers to the surface of the small sphere and S to the ori-

ginal boundary, expression 1.38 gives:

> v v
X_La !J(R—“>d>: Pha SJ! (38)es (1.39)

If 47 = dew, Expression 1.39 can be written as:
acps 1 v )’ )’ (v
_ n 1 4R l 3 n
= / ST RV *+ = ’ L aR Mt LAV )dS (1.40)

13
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The factor dR/dt in the second integral can be expressed in terms of the

normal velocity as:
& v secy (1.41)

vhere y is the angle between the normal to the surface S at the point P

and the radius vector R. Expression 1.40 can now be written as:
av v
I 1Ja lBJJ(n)
= = E T 0 Rav + i : v, sec yav + = % P 7/ (1.42)

The term sec ydw is the solid angle of the disk subtended at a point on
the axis of symmetry coinciding with the normal to the surface. If R - O

and the normal is the outward drawvn normal to the surface, the first inte-

gral vanishes and sec yaw — 217 and one obtains:
BQ)S jj(v)
~1,2,L3 J)nm
% 2'n ‘st \R/® Fol)

The time derivative of the velocity potential due to the vortex dis-
tribution will be treated in a similar manner as that of the source sheet.
Describe a small circle in the surface about the point P, wvhere P is the
center of the circle. If o refers to this circle vwhile s refers to the
original boundary, the time derivative of the velocity potential for the

vortex distribution can be written as:

1 2
3% E’J_’“d" H‘J'rat S ey _I"'rms (1.44)

8=0

The factor 3(/3t can be written as:

1k
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s é@é_

cvlw
D

and dR/dt can be expressed in terms of the normal velocity. Expression

1.44 can nowv be written as:

v
oy 1 J‘__T 1 J' N 1 3 J

s=g
vhere sec y 3()/3R is the projection of 3(/3R onto the normal, thus:

30 _ 20
sec Y 3¢ = 34 (1.47)

vhere n is the coordinate in the direction of the normal. Expression 1l.46

can now be written as:

an + 3 j vods  (1.48)

t
S=0

£+

8
3 Lo T dn

Q/

My 1 |9 1)’ 30 d
——ﬂdn+movv S—-

vhere ds/dn is the inverse of the slope at the point P. If dg = rdg and
r -+ O,the first integral vanishes and the time derivative of the velocity

potential for the vortex distribution is:

____lvv cotg-f-lé——Jv(Hs (l'hg)
2 nT Lo 3t Jr

where the angle A is the angle between the normal of the surface and the

vertical axis. The time derivative of the total velocity potential at

the boundary can now be written as:

3tp jj v ) j

_P_l,2,1 23 J)n 1 L o B

¥ 5 Vn + I >t é (R as + 5 van cot g + el / vTst + Bz (1.50)

15
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Expression 1.50 refers to a coordinate system moving with the bubble
and having its origin at the bubble center. Some important considerations
concerning the coordinate system to be used in solving the problem are:

a) The problem is to be solved in terms of cylindrical coordinates.

b) The coordinates of any point on the surface of the bubble are r,

8, and 2.

c) The field point is to be held fixed in the r-z plane and its

coordinates are ro and z,
d) The bubble is assumed to be a body of revolution with its axis

of symmetry being the z axls. This condition implies that r

and z are independent of 9.

16
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CHAPTER II
VORTEX THEOREM FOR MIGRATING BUBBLES

The Vortex=-Theorem for migrating bubbles as proposed by Snay is so
vital to this paper that it will be derived before the velocity potential
of the source sheet and vortex sheet.

The first classical hydrodynamic equation is defined as:

A
a_v. A- 4 = -
ot ¥ (v V)v c‘e

L op (2.01)
p

vhere (r\ is the velocity vector in the fluid, a,e is the acceleration due
to any external forces acting on the bubble, p is the density of the
fluid, and P is the pressure in the fluid. To an observer in a fixed
coordinate system where there is no stream present, the only external
force acting on the bubble would be the acceleration due to gravity.
However, the observer in a moving frame observes a stream. Therefore,
the acceleiation seen by an obtserver in the moving frame is that due to

the stream and the effect of gravity. Expression 2.0l may now be written

as:
A
, - A A,
_g_‘é. + (\"x:l\)x(r\ = (g+B)k - %V(O'v,& - %VP (2.02)

A :
vhere ((r\-v)v has been expressed in terms of the grad va and the curl ¥.

If expression 2.01 is integrated about a closed path, then:

A
J[.g% + (vx())x(r\]odg =f(8‘*§)lQ'dQ -}[% V(Q'O ¥ %VP]-GQ (2.03)

17
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Since the fluid 1s incompressible, the last integral on the r. h. s. can

be transformed into a surface integral which vaaishes:
A
,UB— vxv(C-Q) + %VXVP]'dS =0 (2.04)
S
Expression 2.03 becomes:
a/v\ A a) A ee N\ A
_&[5? + (vxv)xv]-ds =j(;;+B)k-ds (2.05)

If the flow is irrotational everywhere, as in the case of radial
flow only, expression 2.05 is zero no matter what path is chosen. However,
if there exists a discontinuity in the tangential velocity and if the path
of integration crosses the boundary of this discontinuity, expression 2.05
is different from zero. As was discussed in Chapter I, the velocity of
the fluid internal to the boundary is zero. Therefore, ﬁ.is zero internal
to the boundary. Uniformity of the pressure within the bubble requires

gravity not to act on the internal fluid. Thus:

{ PN A Sa o NOA ¢
N (g +B)k-ds (g+B)k-e_ds (2.06)
J . T
7l
where Lhe il viacion 1y over the external boundary, Sy and 5. axe the
CaC T oo whero Lhe boundary 1s crossed, and ep 15 the unit tangential

vector at the boundary.
Ay A :
The vector (Txv)xv is zero everywhere except for the infinitely thin
interior of the vortex sheet. It lies in the plane of the line integral

and is normal to the boundary. Hence:

18
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o

N
- af (vxv)xv-éndT
o} 1

vhere én is the unit normal to the vortex sheet, AT is the thickness of
the sheet, and subscripts 1, 2 refer to the points of crossing on the
boundary. Since |(vx¢)x0| is trinite, the integrals vanish as AT - O.
The integral over a@/at for the path interior to the bubble is zero
since the velocity is everywhere zero internal to the boundary. The
integral of av/at over the paths of integration interior to the vortex

sheet can be written as:

AT A AT_A
lim v . A _ lim v, -
s vfl ' end st ) en 0 (2.08)

where the subscripts have been previously defined. Expression 2.05

becones:
2 n % v A
“[ . ¢ ds = ‘{ (g+B)k'Q&ds (2.09)

Cince the path of integration can be made as small as desired, the inte-

rrands in expression 2.09 are equal, thus:

av + o
B ,
atT = & (2.10)
1+(r')°

where:
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A v
ov A - _T ,
at o7 " 3 (2.11)
A A
P - (2.12)
l+(r')2
v _ [dr .
r' = (dz> (2.13)

To illustrate expression 2.10, the Herring-Zoller7 equation for B will

be derived at this point. The time rate of change of the tangential

velocity, for a spherical bubble, at the boundary is:

=3 : Ba (2.14)
virr ) ayie(r)?

vhere a is the normal velocity at the boundary of the sphere and a is the

radius of the sphere. Expression 2.10 for a spherical bubble can be

written as:

(2.15)

B+ 3

o |P:

= 28

Upon multiplying both sides by a3 and rearranging terms, expression 2.12

can be put into the form:

(Ba’)" = 2ga’ (2.16)
Integrating both sides of expression 2.16 over time where B=0 at t =0
gives:
L4 t 3
B = —2%']. a~dt (2.17)
a~ Yo

20
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8
Expression 2.17 is the Herring-Zoller equation.
The relationship between the tangential velocity and the circulation

density of the vortex rings, established in Chapter I, leads to the result:

3y(s) = —-B—+5'l—
dt JI""(I" )a

(2.15)
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CHAPTER III

VELOCITY POTENTIAL OF THE SOURCE

SHEET AND ITS TIME DERIVATIVE

The contributicn to total velocity potential by the source sheet,

expressed in cylindrical coordinates, can be written as:

v (r,z,t)r«lw“(r')2 dedz

b M
1
(r ’2 )t) = ""'jj ; ; 5 (3°Ol)
%o % Mo r2+r02+(zo-z)'3-2rro cos 8

wvhere a and b are functions o time and are the value of z at the top
and bottom (poles) of the bubble where r = 0. Expression 3.0l can be

written in the form:
b
1 2 )
qé(ro’zo’t) ='§ﬁ,/; vn(r,z,t)x(r,z,ro,zo)vl+(r') dz (3.02)

where the kernel is defined as:

m
K(r,z,ro,zo) ='/; JE:EE%%§=S- (3.03)

2,2 2 ,
RSP S (zo z) (3.04)

B = err (3.05)

According to Byrd”?, the solution to an elliptic imtegral of the type in

expression 3.03 is:
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x‘(r:z)royzo) = ruK(k) (3.06)

vwhere K(k) is the complete elliptic integral of the first kind. The

modulus k and the variable | are defined as:

2 __2B

kK =3 +8 (3.07)
2

U = G-+B (3.%)

The kernel can be expressed in terms of k:

K(r2,7g2,) = KGR (3.09)

(o]

The variable r is defined as:
r = r(z)ql;qey'ﬂyqn) (3'10)

where the q's are parameters of the surface and are functions of time
only. An example of a surface parameter would be the radius in the case
of a sphere or the semi-major and semi-minor axis in the case of an
ellipse, etc.

The partial time derivative of expression 3.02, where the field

points are fixed, 1is:

w070

b
' 2
-g—E- o.(r ,z ,t) =-l;T-./a -a—-Vn(r,z,t))((r,z,ro,ZO)Vl+(r )< adz (3.11)

b . .
+-:—L—/ vn(r,z,t)-s;: K(r,z,ro,zowh(r')a dz
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2 %(‘J 1+(r! )2>dz

1 b
+-2—“-/; vn(r,z,t)“(r,z,ro g

15 e 2
RO O T N
- é Vn(r;Z:t)K(r’Z)ro:zo)vl+(r')212 = ;]

vhere:
L (rzr,z) = o g—i[ﬁz(k)gl - %(2’:)(%)2% - K(k)]k@g (3.12)
(k')° =1 - ¥ (3.13)
- _g% (3.14)
8 é}% (3.15)

and k' 1s called the complementary modulus. If k and k' are evaluated
using expressions 3.07 and 3.13, the positive square root is always used.
Expression 3.11 is the partial time derivative of the velocity potential
for the source sheet at any point in the fluid excluding points on the
boundary of the bubble. As was shown in Chapter I, the evaluation of
the partial time derivative of the velocity potential at the boundary
includes a 1/2 vne(ro,zo,t). Therefore, this extra term must be added to
the r. h. s. of expression 3.1l when the partial time derivative of the
velocity potential is to be evaluated at the boundary. From this point

on, the velocity potential of the source sheet and i1ts time derivative

are to be evaluated at the boundary.

2k
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Recall that the normal velocity is derived from the surface equation

F(r,z,t). The partial operator 3/3t operates only on the surface para-
meters. Therefore, the normal velocity expressed in terms of the time

derivative of the surface parameters is:

v, = f;lifi (3.16)

where:

%1-;- F(r,z,t)
fi T VF(r,z,t)| S

The partial operator a/at cverating on r and vn(r,z,t) can be expressed

as*
or * dr
— = m —— (3.18)
t M 3q
of
a o0 . 2 i
'é? Vn(r,z,t) = f[qifi + q'i -a—q-;] (3-].9)

It must be remembered that a/aqi operating on f, will operate on r keeping

i
z fixed, but the partial derivative operates on F(r,z,t) while both r and
2z are fixed.

The velocity potential of the source sheet and its time derivative
can now be expressed as:

%(ro’zo’t) E ?iiooi (3.20)

o) 1/ - oo L)
3 B (Tgr2gt) = 5(}[‘4&)2 * E[qi%i * gy (o,

1+U31+°“1) + &1051] (3.21)

25
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vhere:
el ,
0, © 15'/; £k(2,2 Wis(x)? az (3.22)
b af
%, - = A aqi}((z 2 Wis(r')? az (3.23)
b
031 = 15'4 fixl(z,zo)\/l+(r')2 dz (3.24)
b -
0, = ;n £, ¥z, zo>a—;:(»/1+(r')2>az (3.25)
051 ) %ﬁ[ 1+(r') 1+(r')2 =a] (3.26)
_1 or 1 ro-r k e kJ;— )
t(e,2) = & E-letoh + ) s G

The new notation for the argument of the kernels shows that the potential

and its time derivative are to be evaluated on the boundary where:

ro = r (20,0150, 00,0) (3.28)

o

The kernels K(z,zo) and Kl(z,zo) have singularities at z = z_. As
z -z, k~1end K(k) = » while E(k) » 1. If k =1, the complete
elliptic inteprals K(k) and F(k) can be represented by a series in terms

of ln(h/k'), Byrfl{ If only the first term of the series is used ia

each case, the complete elliptic integrals behave as:

K(k) = - m(n-'-) (3.29)
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E(k) =1 (3.30)
Expand r in terms of z about zo such that:
r=r - (r') (z-2) + 5 (r") 2z -2) (3.31)
o) o ‘o 2 o ‘“o *

vhere terms higher than second order have been ignored and:

), = (&) (3.32)
Z=Z°

2
| (-‘3-3;) (3.33)
dz
=2z

o

N
N

=

~—
1}

It is easily shown that for z = 25 k' behaves as:

I 2,2 Nl+(r' )02
~ 2r

o

k' (3.34)

Upon substituting the r. h. s. of expression 3.34 for k' in expression

3.29, the complete elliptic integral K(k), for z = 2., can be wriiten as:

] z -2 Wi+(r' )02
8r
o

K(k) ® - 1n

(3.35)

I7 the kernels H(z,zo) and h’l(z,zo) are cxpanded in terms of z about z_
and teras higher than the zero order term are ignored. these kermels

behae as:

lzo-—zwl+(r' )0'C
= 8r
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2(rr’ )o |zo-zwl+(r' )02J
TSro )

( J—(——) 1+ — - 1n
i ° 2 \%9 ) (zo-z)[1+(r')o£]

(3.37)

where -l?(z,zo) and Rl(z,zo) are the approximate kernels that represent the

behavior of the original kernels about the singularity and:

or or
Sy (& .38
(aqi)o <bqi )z=zo )

(rr') (3.39)

N
P T
Qalna
SN Lo}
(‘l\/
(]
N

O-

If the other factors in the integrals of expressions 3.22 - 3.25 are
evaluated at z = Z, and are multiplied by the appropriate approximate

kernel, the integration of the approximate integrand over z is:

b ;
ooi = ;Tj £y K(z,zo)Vlw”(r')oa dz (3.40)
a o

(o] o

b faf -
g, e (——E)R(z,z W1i+(r') ° 4z (3.41)
a
o

SNl >
031 = = fi Rl(z,zo) l+(r')o dz (3.42)
a (o]
b
o, == J t, ¥(z,2 )-—E’-<Vl+<r'>2 dz (3.43)
hi enJ iy o’[3dq,

where E F 52 J 83 , and Eh are approximate coefficients that represent
i i i i
the behavior cof the original coefficients about the singularity and:

fio = (ri> z=z (3.L4)

o
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(afi) (afj> -
—— = | c—— 3' 5
aq1 o aqi z=zo

;
Po) ' 2 _ 3 +(! 2)
5, ( 1+(r')* Nl (»/1 (r') Jz=z° (3.46)

If the approximate coefficients are added to and subtracted from the ori-
nal coefficients, the singuwlarity 1s removed and the original coefficients

can now be written as:

b . ,
= E %ﬂ.f [fi}((z’zo)ﬁ_+(r')a - £, -}Z(z,zoﬂh(r')o{'dz +30 (3.27)

i a o) i

b|ar - (3, \ _ , _
g, = l} 1 K(z,2,) 1+(r')° - (-3-) }c(z,zo)h+(r')o‘a dz + g, (3.48)

o i

T~
'—l
+
7~~~
2]
T
\_/
St
jel)
N
~~
)
\1
(&
g

_ %ﬁ_jb rK(z,2.) %; <Vl+(r')2>_ i -}Z(Z,ZO){ d

i a |1t ° o Ay o
+o
l‘1
where o 5 E 5 —5 , and ; are defined as:
o) T2y T3y by
2
., 5 | (b2 Wie(z'),
5. s == o, Y1(r') |(b-z )in T (3.51)
o] 2T L o) o] r
i ‘o) o)
2
=i 1]
(zo al1+(r'),

- (b-a)

+ (zo-a)ln

dr
0




_ 3, , (b-z W1e(r') °
Op, =" %ﬁ(ﬁ?)o\h’f(r')a (b-2, ) 1n|—= Br B l (3.52)
l(zo-a)v‘l+(r')o2 |
+ (zo-a In bro - (b-a)
5. =t ez 2(i’f—) (ea) + Lo 1’ (3.53)
3i Hﬁ;; io e} \§qi 3 l+(r')02 b-z0
(b-2, W1+(z' )02 (zo-a)s/u(r' )o2
- (b-zo)ln Bfo - (zo-a)ln BT
l(b-2 W1+(r') ©
= 1 3 R i
aui -~ fio{'a?{(l (r') )}o (b-zo)ln o 8ro & l (3.54)
(2 -a) l+(r')02

The ni coefficient has been reserved for the B term that will be a

i
result ol the partial time derivative of the potential due to the distri-

bution of the vortex rings on the surface of the bubble. The reason for
this type of notation will become clearer in the chapter on the Bernoulli

equation.
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CHAPTER IV

VELOCITY POTENTIAL OF THE VORTEX SHEET

AND ITS TIME DERIVATIVE

The contribution to the total velocity potential by the vortex sheet,

expressed in cylindrical coordinates, can be written as:

b .
cpv( ;2 ,%) =11;—n'l; vT(r,z,t)Q(r,z,ro,zo)Vh(r')2 dz (4.01)

o° 0

vhere vT(r,z,t) is the tangential velocity at the boundary in the moving
frane of reference, ((r,z ,ro,zo) is the solid angle of the vortex ring
subtended at the field point, and the limits a and b are defined in the
sane manner as in Chapter III.

The partial time derivative of expression 4.0l is:

Bt cpv(ro,zo t) = L—f T T(r z,t ) (r,z, 2HER Nl+(r')2 dz  (k.02)

hm

b ;
+ -l—-/ v.(r,z,t) gt O(r,z,ro,zo)Vl’r(r')a dz
a

+i’—n'/ v (r,z,t)r,z,r o’ %o ) = (\«l‘f(r')z)dz

1 .
+ Tfﬁ[b vT(r,z,t)('l(r,z,ro,zo)lz=b -a vT(r,z,t)Q(r,z,ro,zo)|Z=a]

As was shown in Chapter I, the evaluation of the partial time derivative

of the velocity potential at the boundary includes an additive term of
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1/2 vn(ro,zo,t)v (r )2 ,t) cot 8. Therefore, this extra term must be
added to the r. h. s. of expression 4.02 when the partial time derivative
of the velocity potential is to be evaluated at the boundary. From this
point' on, the velocity potential of the vortex sheet and its time deriva-
tive are to be evaluated at the boundary.

Recall that the result of the vortex theorem for migrating bubbles

is:

v (r,z,t) = 221B (4.03)

a_
dt T )2

1+(r'

wvhere g is the acceleration due to gravity. If the variable r is defined

in the same manner as in Chapter III, expression 4.02 can be written as:
_a_. = + . + l
at va(roizo’t)‘ ol ml(o6i O7i 2 i T(r )Z t) COt 9) ()""Oh)

where it will be seen later in the chapter that Q(r,z,ro,zo) =0 forr =0

and this makes the last term of expression 4.02 zero and:

b
,1__/ valr,z,t)0(z,2 )dz (4.05)
T
a
1 o 3r 9d T d B (1+.06)
g = VT(I‘,Z,t) _8—1-—3; Q(Z'ZO) T g i) e

[

b ’ )
6., = }—j VT(r,z,t)Q(z,zo) < ')"") Az (4.07)

}
! T
7l

)QIOI

094

The solid angle Q(z,zo) is the same as in expression 4.02, but the new
notation for its arguement shows that the coefficients are to be evalu-

uted on the boundary vhere:
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r, =t (2,959,540 (h.08)

The solid angle of a vortex rirg subtended at any field point in the

fluid is:

d [1
0 ='/s‘* SE(-R—*)dS* (4.09)

where R* is the distance from the field point to any point in the plane
enclosed by the vortex ring and S* is the area of the plane enclosed by
the vortex ring. The outward drawn normal of the plane is the unit vector

A
k in the positive z direction. It is easily shown that:

2 2 2 .
R* = o~ + r,o ot (zo—z) - 2r_e cos B (4.10)
o [1 (ZO-Z) () ll)
—f | = - : - b
an<R*) [cd mAd (2 --z.)a - 2r e cos 0]3/2
o o o

vhere e is the variable of integration. The expression for the solid

angle is seen to be:

-i Jded
(zo z)cdedd

T ar
{r,z,r ,z_) = 2]/ - , 5 (L.12)
o © ovo [e'—) + roa + (zo-z)") - Zer_ cos @ 3/2

vhere r is the radius of the vortex ring enclosing the plane. Since the
integration over e can te done in closed form, the solid angle can be

expressed as:
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> > S (h12)
. T = . N
o r =+t (zo z) ¥~ cos 2

)jn Jr = (zo-z)‘? qe

'H"
G]\

‘)
+ (zo-z)'" - r_r cos G]de

o 2 2 & e]/g 2 oo
r  + (z=-2)" - 1r " cos rT4r T+ (z -2)" - 21v cos
[r,7 + (2g2) - r,7 cos”e ¢ (zgma)” - cos g

The first integral can be integrated over § in closed form for a body of

revolution. Therefore, the solid angle can be written as:

(z -2) n
Q(I‘,Z,I‘O,ZO) = 2m TZ—O:ET = B(ZO'Z)'/ (h.lh)
0 (o]

[r =N (z ~2)" = r r cos e]da
0 o

0
' 2 2 2 2 2
[:roa L7 (ZO'Z)2 = rob cos'ﬂ]lro + r o+ (zo-z) - 2rro cos B

After using the method of partial fractions and rearranging terms, the

solid angle can be put into the convient form:

X +r 2 A -
(zo-z) usy +r_ cos B j\ - r_ cos ) ( )
r,z,r ,z ) = o1l - ap|(4.15
’0,0 2n o J’a_scose

vhere g and B are the same as in expressions 3.04 and 3.05 and A is

defined as:

Ve Ne (2 o2)f (h.16)

The integral in expression 4.16 can be broken up into two integrals of the

type:
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jn R(cos B) _ 44 (4.17)

Ja - 8 cos B

vhere R(cos §) is a rational function of cos §. According to By-rd9,

the integrals can be reduced to Jacobian elliptic functions of the form:

u/K(k)RI:lg (B - dkasneu)ndau]du (4.18)
0

vhere y and k are defined in expressions 3.07 and 3.08. If the substitu-
tion for cos 6 in expression 4.18 is made in the two integrals resulting

from the integral in 4.15 and the indentities:

2 1
ndu = —— (4.19)
dnu
0 z) .
dncw = 1 - Ken‘u (h.20)

are used, the solid angle can be written as:

(zo-z)k AT K(k) dnudu h.21)
Q(I‘,Z,I’O,ZO) =omlt 1l - ™ _——d_ﬁ_ (L.hl
3“«rro o/* o l-a, "y
(X-r )jK(k) dn°udu
Y \%er 72
To/ Vo l-q., snu
vwhere:
2
° = [Ovr ) (4.22)
2ar k+ro

2
258 “k-r?k! (h.o23)
- a - ‘
2 er X-ro
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The integrals in expression 4.22 are complete elliptic integrals of the
third kind and have five possible solutions depending on the value of

0,12 and a,za. The condition for the five possible solutions are:

I O<-012<co
11 k2<a12<l
T O<012<k2
IV l<q12<°°

\'f complex parameter

If q,la is replaced by 0.22, the same five cases exist for the second

integral. Case V is excluded since 012 and q e are always positive by

2

definition. It is easily shown that 0.22 always satisfies case I and 0,12

will satisfy either case II, III, or IV. Therefore, the three possible

solutions for the solid angle are:

2 2
O(g,l < k

(zo z )i AT - bl
Q(I',Z,I‘O,Zo) =2mfr 1 - (X*To) Ta(E) (h.2L)

anjrr
o)

+

A-r A

ylgla(l-ala)(}:a-cla) (o] ZJG,, ‘(_’( l_gﬁar_"' )(G.,L,L_"k[-)

o

(a0, 5K )K(k)2(8, k) (X_r ) m(i-0, %) (4, )

(4.25)

(4.26)
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e Y Y (4.27)
()\+r0 '&I) K(k) te 2

7}

(o “-k¥)n (€, %) <X) (k0% (4, k) }

+

2y (2 ™) (1, )

= (4.28)
2
1 < gl < o
(z -2)k 2
r,z,r ,z_ ) = omf£ 1 - = %(;:r ) <¥_> K(k) (h.29)
=L ZTT’I‘ r ro 2]
o
2 4 2 2
| ey KOz XD <X_r ) (k=07 ) (4, k) }
I S NN £ SIS
f(al"'-l)(cxl“-k’“) ° zzw/m2 (1-c," Mo, ™-K7)
) & sin-l<-§-{> (4.30)

If the partial operator a/ar operates on the solid angle in expression

4.14, the derivative of the solid angle is easily shown to be:

B o e L) )
— Ur.z,r_,z_ ) = 2z -1)/ \ — (4.31
A1 8 %0 o A A qj/a

The solution to the integral of the type in expression 4.32 has been

shown by Byrd9 to be:
ki
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j" a9

) [-B cos 9]3@ ) aJ-JB Ei )

(4.32)
Upon rearranging terms, expression 4.32 can be written as:
3 zZ =2
S i} _liex) k o) B
3T O(r)“)royzo) 2 — (]—’ )J( ro ) (*‘J3)
" 0 »

The solid angle does not have a singularity, but the derivative of
the solid angle has & singularity at 2

=2 The derivative of the solid
angle can be shown to behave as:
d e 2 I3l
= (z,z ) = - (L.34)
P ’“o (ZO-Z)[1+(I.’)O£]

vhere the same method was employed here as in Chapter III in evaluating
the behavior of the kernel for z = z .

The approximate coefficient for
o is:
61

b . -

= or \ 2 ‘/ (') ©

9%, = Wr_r_/ VT(ro’zo’t)(Ali)o 3r Q<Z’Zo) Sz )o 9z
L a

(4.35)

If the approximate coefficient is added to and subtracted from the origi-

nal coefficient, the singularity is removed and the coefficient can be
written as:

b s
1l ar \» 1\2
OGi = h—ﬁ_‘/; Vrr(r,z,t)(gqi)s; Q(Z,ZO)VI'F(I‘ )

or J e —
- VT(ro,zo,t)<-é—q—i->o 5 Q(z,zo)Vl+(r )o sz + 061

(4.36)




vhere:
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VT(ro,zo,t) /ar

1n
1 2 A'ii>o
ary1+(r")

39

Zz_=a
O

b-2

0

g——_LY,

(4.37)
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CHAPTER V

TANGENTIAL VELOCITY ON-THE BOUNDARY OF A
NONRIGID BODY OF REVOLUTION EXPANDING AND

MIGRATING IN A LIQUID MIIDIUM

The tangential velocity at the boundary of a migrating and oscil-
lating body of revolution will be derived in the moving coordinate
system.

Assume a body of revolution is immersed in a liquid medium and the
sw fe.> 5 of the body divides the whole space into two regions and that
both regions are occupied by the fluid. If the fluid external to the body
mwves past the body with a velocity B in the positive z direction and the
fluid internal to the body is at rest, the surface $ can be regarded as
a surface of discontinuity ol the velocity. The tangential component of
the velocity can be produced by a layer of vortex rings on the surflacc
o tha bhody.

If a velocity ol - é is superposed onto the whole flow, so that thce
fluid e:ternal to the body is at rest at infinity, ther: will be a uniform
parallel flow of velocity - B internal to the body, where the fiuid wvac at
rest befor~. This [low is produced by the vortex layer on 5. The prooleu
is to Jdetermine a Jdistribution of vorte:: rincs on the curface & of the
boly which produces a unifloru parallcl {low internal to the body such

that the tancential velocity at the field point P(ro,zo) on the boundary

is - é/Vl+(r')oz, vhere:

(= (&) (5.01)
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11
It has been shown, by Prandtl , that the contribution to the tangen~-
tial velocity by the vortex on which the field point is located is
-1/2 vT(ro,zo,t).
The induced tangential velocity at P(ro,zo) due to all the vortex
rings, except the one located at the field point, can be derived through

the use of the Biot-Survart Law:

-

1 @ x R
VTI(ro,zo,t) =ET-/:'4VT(r,z,t) |§|3 ‘e ds, ds; (5.02)
°1 T2
vhere:
- A A A
R=1 (ro-r cos §) - Jrsing +k (zo-z) (5.03)
" A
ey =-1ising +J cos B (5.04)
A
1 (r') +k

= (5.05)

ds, = Vi+(r')° az (5.06)
ds. = rd@ (5.07)

Upon substituting expressions 5.03 - 5.07 into expression 5.02 and rear-

ranging terms, the induced tangential velocity is found to be:

%

b .
Vo (r ,z ,t) = - L / vT(r,z,t)KT(r,z,ro,zo)Vl+(r')2 dz (5.08)

0" O ;

vhere a and b ure defined in the same way as in Chapter III and:

b1
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Z =2
Tr-r cos @8 [l S S (i) J
-1 0 To o)
o [r tr +(zo-z) -2rr | cos e]

\
Expression 5.09 can be put into the form:

e T ag BnE L
K,I‘(r,z,ro,zo) - 3IF /; )3f2 ) ror{ B : (r )o}./; (5.10)

(c-8 cos 8 o

cos B

372 8

(a=8 cos &

where:

(5.11)

and:
B = arr_ (5.12)

9

According to Byrd”, the soluticn to elliptic integrals of the type in

expression 5.10 leads to the solution:

l[ﬁu I
KT(r,z,ro,zo) sll=r t(k) + ror{l - r (r )o} (5.13)

{- ;‘% E(x) + -‘é K(k) - ‘B* E(k)}]

vhere:

§= (5.14)

VL1+8

Upon expressing a, B, and y in terms of r, z, ro, and Zo’ expression 5.13

can be expressed as:

b2
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K (r,z,r ,z2 ) = L k { - “o* : } .
p(rs2z,r 52 ) =T K(k){L . (r'), (5.15)
o (o]
( ){ 2r(ro-r) 2 -2 - err
- E(k)1 + , = = r') [1 + - ,
(rgr) (2 2)° o O\ (rr)PH(z-2)? }

where the 1/2 factor is now taken outside of the integral sign. Expression

5.15 can be simplified further to give:

Z

=L -
KT(r,z,lo,zo) = 2—r\/1:k K(k){l

r -r\/. \2 Z -2 o\ 2
A e )
o] o

The induced tangential velocity is:

o’* <r'>o} (5.16)
(o]

b
_ 1 e 2
vy (r sz %) = = RACTRNCENER ET R CR

I : 1y ¢
omy1+(r )o

where the kernel KT(r,z,rO,zo) is that of expression 5.10.
If the tangential velocity at P(ro,zo) due to the fluid flow internal
to the boundary is set equal to the sum of - 1/2 VT(ro,zdﬁ) and the induced

tangential velocity, the tangential velocity VT(rO,zo,t) is found to be:

b
. 1 2
2B - ﬁ;/; VT(r,z,t)KT(r,z,ro,zo)Vl+(r') dz
v (5,2 ,0) =
T "o o :
J1+(r')02

(5.18)

L3
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The kernel in the integral of expression 5.18 has a singular point

at z zo. If the same method is used here, as was employed in Chapter

ITI, to remove the singularity, the approximate kernel is found to be:

(5.19)

_ L[ flzgzieen 2 r (r"),
Kr(r,z,ro,zo) =Rl ln Be +1 -
o

o 1+(r' )02

where:

dzr
(r")y = \42 (5.20)

=r
rO

The tangential velocity at the boundary with the singularity removed is:

. b >
VT(ro’zo’t) =12B - %L {VT(I‘,Z,t)K(r,Z,I‘O,ZO) l*(r')a (5°2l)

—s | v.(r ,zt)
- VT(ro’zo’t)il‘(r’a’ro’zo) 1+(r')°2 dzJ f—(l—)_E ‘ Tzﬂroo -
1+(r'
o

bl
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CHAFPTER VI
THE BERNOULLI EQUATION

Recall that the Bernoulli equation in the moving coordinate system
was wri¢ten as:

-a_- n (X
3 w(ro,zo,t) Bz

1 .2 l 2 2 — v
o t3 B - 2[vn (ro,zo,t) * Vo (ro,zo,t)] (6.01)

-g[zo +B(t)] -—2=0

If the time derivative of the velocity potentials for the source sheet
and the vortex sheet are added together to give the time rate of change
of the total velocity potential and vn(ro,zot) is expressed as a function

of the q 4» the Bernoulli equation can be written as:

.0 .2 .
vl +aq,(6, *o, *o, ) +talo. tog +o, * (6.02)
1[. - e "L A

1 v (r ,z ,t)cot §)

21T o’ "o’ o

P-P
1l 2 1 2 0
D - + - -
v3 2 2 'p (ro’zo’t) v o) g[zo B(t)] Py °

The Bernoulll equation must be evaluated for i field points on the surface
of the bubble since & solution must be found for each qi The system of

equations can be put into the form:
TiTa, 0 +Q, =0 (6.03)
,j{fqi °31> J

L5
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where:

_ <l 2 ,
Q'j = Z‘:qi (02 * oy . *t o), (6.0)

) taq(o. +o0, o
iuo 3 s %5y " %6y 0Ty

1 l .2
5 fJiOVT(rOJ’ZOJ’t)COt eoJ ):| =B

P-P
l 2 o) _
-=v.(r_ ,z ,8) o, - 3[2 + B(t)] - (—‘) =0
2T °3 oJ l,j o.j P,

and the subscript J is for the evaluation of the equation at the j'th
field point. Let X be the variable watrix, C the ccefficient matrix and
Q the matrix whose elements are the Q 3 the system of equations can now

be written as:

cCX+Q=0 (6.05)
where:
1%
C IS B B o E (6.06)

c, ¢ Sk e

i I Ji

c,, =0 (6.07)

Ji °Ji
4]

X =\l (6.68)
i:l.i
!

Q= | (6.09)
<
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1f the inverse of the coefficient operates on expression 6.08, the equation

is transformed into:

X = - ¢l (6.10)
Since:
cle=1 (6.11)
and:
IX = X (6.12)

vhere I is the unitary matrix. The resulting matrix on the r. h. s. of
expression 6.14 is the solution matrix where each element in the matrix
is the solution to the corresponding element in the X matrix. Expression

6.14 can nov be written as:

X =S5 (6.13)
vhere:
S ==C (6.1k)
8
s =|l. (6.15)
;1
and:

= || (6.16)
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Therefore, the solution for the a's can be arrived at in the same manner
as solving a set of linear algebraic equations. Once the solution of the
q's 1is known, the ai's and qi's can be solved for by integrating the
variables over tiwe.

Now that the qi's and éi's are known, the shape of the bubble, the
normal velocity, and the tangential velocity at the boundary can be deter-
mined. Therefore, the velocity potential, the time derivative of the
velocity potential, and the spatial derivatives of the velocity potential
can be found at any point in the fluid. The Bernoulli equation can now

be solved for the pressure at any point in the fluid.
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CHAPTER VII
THE MIGRATING SPHERICAL BUBBLE
The surface equation for a sphere in the moving reference frame is:
2

F(r,z,t) = e B =D (7.01)

a(t) is the radius of the sphere. Since there is cnly one

where a

surface parameter q = a {compare with expression 3.10),the normal velo-

city at the boundary of the sphere is:

v =8 (7.02)

and the function fi def'ined by expression 3.1l7 becomes:

£,=1 (7.03)

The velocity potential for a migraling spherical bubble in cylindrical

12
coordinates is ¢

. a2 S a'320 .
m(ro,zo,t) = RSl 5B > 53/2 *+ Bz (7.C4)
2 (r “+z 7)
T, tz, o ‘o

vhere r_and z are the field point coordinates and B = B(t) is the velo-
o

city of migration. The tangential velocity at the boundary of a moving

sphere is:

vy = 3 é(5> (7.05)

k9
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The time derivative of the velocity potential due to the source and

vortex sheets is obtained from expressions 3.21 and L4.Ok4:

;aco + .ﬁacl + é.acz + ﬁéc3 % ﬁzo (7.06)
vhere:*

¢, =0, (7.07)
c, =0 + Oq (7.08)
c. = + + + 1 (7.09)

2 7370, 7% 73 *

3 (?

c3 = 0g + N (;2) (7.10)

The oi's are given by the expressions 3.22 through 3.25 and 4.05 through

4L.07. The 1/2 term in c, comes from the additive term included in the

time derivative of the velocity potential of the source sheet and the
3/h(zo/a) term is from the additive term included in the time derivative
of the velocity potential of the vortex sheet. The normal and tangential

velocities have been substituted into the g, coefficients and the é, 'ﬁ,

i

and B variables have been factored out to give ey © and c,. If

1’ 2 3

the integrands of oy and o are combined as well as those of 03 and Oy, »
the cnefficients in expression 7.07 can be written as:
FA
1 J‘ o _ a _
= e—tmt - + .
¢ == - (c;o Go)dz + J; (Go-Go)dz I, (7.11)
o

* The c i coefficients correspond to the L and “n coefficients resulting
from the partial time derivative of expression 0.0l as follows: Co = By
cl=al, c2=a°,a.ndc3=al.

50
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3 jzo a
= B - Q(zo,z)dz +J’z Q(zo,z)dz (7.12)
o
{a
1
c, =5 j (Ga Ga)dz +J (Ga-Ge)dz + I (7.13)
%o
a 1 1l ] 1
+ -5 + + -5

Jr°2+( z -8 )2 E 2+( z *a )

J (G 3)dz +f:(c3-'63)dz + 13J + ﬁ-(;‘i) (7.14)

are the original integrands with singularities at

g:]w

where Go, G2’ end G3

zZ = zo; 60, 62, and G

3

and 13 are the analytic integrals and Q(zo,z) is the solid angle of a

vortex ring at z subtended at the field point Z The difference

between the original integrand and the approximate integrand is called

the compensated integrand. The original integrands, approximate integrands,

and the analytic inteyrals for a spherical migrating bubble are:

_ r a
G, = K(k)k [— = (7.15)
o
G = (" )m |2,72le (7.16)
o ry 8 2 *
|z -zla |zo+a|a.
I == ( )(a.-z )in + (z +a)ln — 1 - 2a| (7.17)
(o] 2 2
o r 8r°,

51
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)(— }+x(k) -(%)x(x)} f_ (7.18)

. .
- a° 22550 |zo-z|a %o Izo-z|a
C. =f—111 - —~ - 1ln b : (7'19)
2" \5 3 a(z_-z) gr 2 r 3 gr ©
o e ° °
2 2z r z_ta la-z_|a
I~ ('a %) o 030 1o afz - (a2 )in 02 (7.20)
er ° 8r
5 o
2
|z_+a| z |a- |3
- (z_+a)ln|—— —= (a-z )ln
) o e
|z +a|a
+ (z_+a)ln|—2 5| - ca
2 8r
o
o K 2 2,°2 -
= | e—— —_——]k [— 4
G, (hr2>E(k)<F> Ak e (7.21)
= P
2 o) N
ro zo+a
1, = {22l (7.23)

If expression 7.04 ic differentiated with respect to time, keeping
the field point variables fixed, and evaluated on the boundary, the

and c_. become:

coefficients co, cl, 02’ 3

c_ =1 (7.24)

22
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S % (;2) (7.25)
c, =2 (7.26)
¢y = 2 (;‘-’) (7.27)

The tangential velocity at the boundary of a spherical migrating

bubble is:

v, = BcT (7.28)

vhere the tangential velocity in expression T7.05 has been substituted
into expression 5.21 and B has been factored out. The coefficient G is

written as:
°p ° (;{9> e gﬁ{-[:o(c'r'ar)dz +j:(GT'E'r)dz} + I, (7.29)
(o]
b GERo HNY o
R

_ 1 |z°-z|a.
G * (r_> i3] 2 (7.31)
o

wnere:

(o)

|a-z |a. lz +a|
Ip = (—::-) (a-zo)ln( 02 + (zo+a)ln o %1% +2a| (7.32)

o 8r 8r
\ o (o]

o3
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The tangential velocity obtained from the velocity potential in expression

7.04 evaluated at the boundary shows the coefficient to be:

o - 3() (7.33)

The coefficients in expressions 7.1l through 7.15 and expression
T.29 were programmed by this writter for the IEBM 7090 computer and evalu=-
ated for several field points on the boundary of a unit sphere. Since

all (G - G) integrands are continuous functions of z such that they are
Zero or finite at z = Zg the integral can be obtained by a numerical

quadrature; e.g., Gauss' formula. The Gaussian formula has an advantage
in that the integrand is not evaluated at the limits of integration. Using
z for one of the limits, the integrand is computed for values of z # Zy
thus eliminating the need of determining the integrand for z = Z, If

the integrand is evaluated at n points, Gauss' formula integrates a

(en - 1)'th polynomial exactly.

Table la is a list of computed values for <, and Css vhere an 8-point
Gaussian quadrature was used for each integration range. The accuracy of
the computed coefficients c, and <, decreases somevhat as the field point
moves away from the equator of the sphere where z = 0. The reason for this
loss of accuracy can be qualitatively seen in figures 3 and 4. These are
plots of the original integrand Go’ approximate integrand Eo’ and compen-
sated integrand (Go - _G-o) as a function of the integration variable z.

The curve of the compensated integrand in figure 4 (zo = 0) appears to
have a parabolic shape which the Gaussian formula would integrate exsctly.
However, the curve of the compensated integrand in figure 3 (zo = 0.5)
appears to have higher inclinations in the region of zo than are commen-

surate with a polynomial and a lower accuracy of integration is to be

expected.
5k
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Table 1b is a list of the computed values of ¢ and c3 as compared

wvith the true values calculated using expressions 7.25 and 7.27. Figures

5 and 6 are plots of the integrands G., G., and ((;3 ~ G,). Judging from

S 3
the shape of the curves for the :umpensated integrands, the accuracy of
c3 would be expected to be ::<: for z, = 0.5 than for 2, = O. The numeri-
cal results for Cy» c2, and qT show the same trend of accuracy.

Although the accuracy of the coefficients is sufficient for practical
purposes, it couldbe improved as follows: Figures 3-6 suggest employment

of four regions of integration, thus:

Z ~-¢ z

o o
c, =y ‘f Gidz 4-vf (Gi-Gi)dZ (7.34)

- z-
a OC

z +¢
+ (Gi-Gi)dz +J‘ Gydz + I |+B,
z, z°+e i

where an ¢ is chosen such that the region of high inclination is covered

by the two inner integrals. The compensated integrand is not necessary

for the two outer regions of integration since there are no singular points.
This method has not been tried yet.

The ¢, coefficient, like the c, coefficient, includes an additive

2 3
term when evaluated on the boundary of the bubble (1.43). However, if
the coefficient is evaluated at points off the boundary, the additive
term is not needed. Also, the method of compensating integrands is not
needed since there are no singularities for field points off the boundary.

Figure 7 is a plot 6f the integrand G, as a function of the integration

2
variable z, for z, = O. The distance of the field point from the boundary

is r, - 1. Since 62 is symmetrical about the 62 axis, only values for

25
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z 2 0 are shown. The value of G2 is finite for z = O and ro > 1. The

integral of G, yields the value of c, shown in figure 8. The value of

2

¢, is extrapolated to 2 at r, = 1 vhich is the correct value of <, at the

boundary. As r . 1, the G, curve becomes more and more pointed and the

2
lim : -
integral of (}2 increases so that: e c2 - 2 for Ty = 1 + ¢. However,

for r, = 1, the G_ curve lies very close to the axes in figure 7 and the

2

integral of G, decreases in value such that c, = 3/2. The additive term

of 1/2 gives the correct value of 2.

CONCLUSIONS

The above numerical analysis pertaining to a spherical bubble demon-
strates that an underwater explosion bubble can be represented by a dis-
tribution of sources and vortex rings on the surface. Since the equations
vere derived v thout regard to the shape of the bubble, they should be
applicable to the case of a nonspherical bubble. This method would not
encounter the problems of the model consisting of a single point source
and a single dipole located on the axis of symmetry which interferes with
the jet rising into the interior of the bubble.

It is planned in the near future to apply the theory and mathematical
tools developed in this paper to the case of a nonspherical bubble with
a jet. The differential equations for the q's are to be solved using the
Adams-Moulton predictor-corrector method or that of Runge-Kutta . A
generalized program using these two methods has been developed at the
Naval Ordnance Laboratory and has been used successfully in the past.

The model of a jet-forming bubble would allow for a detailed and
complete study of bubble phenomena associated with underwater explosions.

A study of this type would greatly enhance the present knowledge.

56
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TABLE la

COMPUTED VALUES OF LR AND ¢, OBTAINED FROM EXPRESSIONS 7.11

AND 7.13 EVALUATED ON THE BOUNDARY OF A UNIT SPHERE

These coefficients are needed for the time derivative of the velocity
potential of a migrating spherical bubble and are associated with the
potential due to a source sheet. The true values of o and c, are 1l and
2 as obtained from expressions 7.24 and 7.26.

Fleld Point Computed Values Of:
Coordinate zo c0 c2
0.9 0.99980 2.00251
0.8 0.99995 2.00058
0.7 0.99998 2.00036
0.6 0.99999 2.00010
0.5 0.99999 2.00001
0.4 0.99999 1.99998
0.3 0.99999 2.00000
0.2 0.99999 2.00000
0.1 0.99999 2.00000
0.0 1.00000 2.00000
-0.1 0.99999 2.00000
-0.2 0.99999 2.00000
-0.3 0.99999 2.00000
-0.4 0.99999 1.99993
-0.5 0.99999 2.00001
-0.6 0.99999 2.00010
-0.7 0.99998 2.00036
-0.8 0.99995 2.00058
-0.9 0.99980 2.00251

5T
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TABLE 1lb

1 AND c3 OBTAINED FROM EXPRESSIONS T.12

AND 7.14 EVALUATED ON THE BOUNDARY OF A UNIT SPHERE

COMPUTED VALUES OF c

These coefficients are needed for the time derivative of the velocity
potential of a migrating spherical bubbie and are associated with the
velocity potential due to the vortex sheet. The true values of ¢ and
c, are obtained from expressions 7.25 and T7.27.

3
Field Point Computed Value True Value Computed Value True Value
Coordinate Zq of ey of cl of c3 of c3
0.9 0.44648 0.45 1.35006 1.35
0.8 0.39382 0.40 1.19985 1.20
0.7 0.341L2 0.35 1.04972 1.05
0.6 0.29440 0.30 0.89989 0.90
0.5 0.24353 0.25 0.75000 0.75
0.b4 0.19555 0.20 0.60009 0.60
0.3 0.14701 0.15 0.44997 0.45
0.2 0.09941 0.10 0.29995 0.30
0.1 0.05008 0.05 0.14998 0.15
0.0 0.0 0.0 0.0 0.0
-0.1 -0.050C8 -0.05 -0.14998 -0.15
-0.2 -0.09941 ~-0.10 -0.29995 -0.30
-0.3 ~0.14701 -0.15 -0.44997 -0.45
-0.4 ~0.19555 -0.20 -0.60009 -0.60
-0.5 -0.24353 «0.25 -0.75000 -0.75
-0.6 -0.29440 -0.30 -0.89989 -0.90
-0.7 =0.34142 -0.35 -1.04972 -1.05
-0.8 -0.39382 -0.40 -1.19985 -1.20
-0.9 -0.446U8 -C.lL5 ~1.35006 -1.35
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TABLE 2

COMPUTED VALUES OF Gp OBTAINED FROM EXPRESSION 7.29

EVALUATED ON THE BOUNDARY OF A UNIT SPHERE

This coefficient is needed for the tangential velocity of a migrating

spherical bubble. The true values of Gy are obtained from expression T.33.

Field Point Computed Value True Value
Coordinate 2z o of Crp of p

0.9 0.65373 0.65383
0.8 0.89996 0.90000
0.7 1.07119 1.07121
0.6 1.19999 1.20000
0.5 1.29903 1.29904
0.4 1.37877 137477
0.3 1.43091 1.430901
0.2 1.46969 1.46969
0.1 1.49248 1.49248
0.0 1.50000 1.50000
-0.1 1.49248 1.492u48
-0.2 1.46969 1.46969
-0.3 1.43091 1.43091
-0.k4 1.374TT 137477
-0.5 1.29903 1.29904
-0.6 1.19999 1.20000
-0.7 1.07119 1.07121
-0.8 0.89996 0.90000
-0.9 0.65373 0.65383
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INTEGRANDS
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Figure 3 THE INTEGRANDS G, 60, AND (co - 60) IN EXPRESSION
7.11 PLOTTED AS A FUNCTION OF THE INTEGRATION VARIABLE z

'fhe integrands are evaluated at the boundary of unit sphere for

= 0.5.
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Figure 5 THE INTEGRANDS 03, -G-.%, AND (c;3 - 63) IN EXPRESSION
7.14 PLOTTED AS A FUNCTION O TEi INTEGRATION VARIAELE z

The integrands are evaluated at the boundary of a unit sphere for

zo = 0,
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