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ABSTRACT

-
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‘Let F and G be defined by F(t) = H(yt) and
G(t) = H(et) where H is unknown and H(0) = 0 .
For testing the equality of the means of F

and G in the two-sample problem; it is shown
that the Savage (The Annals of Mathematical Statistics
(1956) pp 590-615) statistic maximizes the
minimum power over -IFRA{or1FR) distributions
asymptotically. Asymptotic uniqueness holds

only in a class of rank tests. The results are
extended to censored samples, the problem of
estimating the ratio of the means, and the
k-sample problem.



1. INTRODUCTION AND SUMMARY. Birnbaum, Esary and Marshall (1966) have

shown that the class iyvof distributions with increasing failure rate averages
(IFRA) characterizes the concept of wear-out in the sense that ZF’ is the
smallest class that contains the exponential distributions and is closed

under the formation of coherent systems.

In this note, statistical inference for models in which the distributions

are unknown and IFRA will be considered. Let F and G be defined by
(1.1) F(t) = H(t/8) and G(t) = H(t/Y)

where H is an unknown [FRA distribution with H(0) = 0 . Then, for the
two-sample problem where one tests the equality of the means of F and G ,

it is shown that the Savage (1956) statistic maximizes the minimum power over
IFRA distributions asymptotically. This asymptotic minimax solution is
extended to censored samples and it turns out that the Gastwirth (1965) modified
version of the Savage statistic is asymptotically minimax for this case.
Asymptotic uniqueness of these minimax solutions holds only in a class of

rank tests. The results are extended to obtain an estimate of the ratio of

the means that minimizes the maximum asymptotic variance over IFRA distributions.

Finally, the results are shown to hold also for distributions with increasing

failure rates (IFR), and extensions to the k - sample problem are given.

2. THE TWO-SAMPLE LIFE-TESTING PROBLEM. :Xl 5 0sle y Xﬁ and Y] pessy Yn

are independent random samples from populations with life distributions F and

G.N=m+n, F(t) = H(t/eN) , G(t) = H(t/YN) , H has the density h and

is IFRA , i.e., H(0) = 0 and for each t >0 ,
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Py osees T denote the ranks of the x's



in the combined sample. The level « Savage (1956) test gN of Ho: AN = (eN/YN) =

against AN > 1 rejects for large values of the.statistic

m
1 T
(2.2) Sy = = X - I (1 - )
i=1
lt is assumed throughout that
(2.3) » 0<lim (m/N) =X<1
N

Llet 0<c <™ and consider sequences of alternatives {AN} satisfying
. 3 .
(2.4) Vim o o N (AN -1) = ¢

Then the asymptotic power function B (c;9,H) of a test ¢N is defined as the

limit of the power for such alternatives, i.e.

(2.5) S B (cio,H) = 1im inf py (9,|H)
. Nwo

where BN( ¢N|H) = E(wNIFN,GN) denotes the power of @, when FN(t) = H(t/eN),

GN(t) = H(t/YN) and by = eN/YN satisfies (2.4).

Let & be the standard normal distribution function. Then the results of

Chernoff and Savage (1958), Fatou's Lemma, and a few computations yieid

Lenma 2.1. Suppose H has a density h and that H(o) = 0, then the

asymptotic power function of the level « Savage test WN is given by

(2.6) pleit i) =8 (1) + e DOT [ $hGel  ne))
o

The next result shows that ¥ and the exponential distribution
Kc(x) =1 - exp (- x/a) is a saddle point for the asymptotic power function
8(c;?,H). In other words, ¥ is worst for the exponential distribtuion,

but is better than all other tests for this distribution.



Theorem 2.1. For all o<c <« and all o>o0,

(2.7) sup,, Blcip,K ) = Ble;#,K ) = inf, B(c;V,H)

where H ranges over the class of IFRA distribtuions with a density, and

Py [ranges over the class of all level o tests.

Proof. The left hand equality was proved by Capon (1961) by essentially

comparing ¢N with the Neyman - Pearson test for Ko . To prove the right

equality, note that (2.1) vyields

(2.8) f-’_‘{l-a-) > - Tn [I-H(E)]

h © e '
e [ fEth d H(t) > [ - Tn [1-H(t)) d H(t) =
o o

The equality signs hold if and only if H has a constant failure rate

average, i.e., if and only if H 1is exponential, thus

Corollary 2.1. If H jis IFRA , has a density, and is _not exponent 3l, then

(2.9) Blci¥,Kk ) <Blc;¥,H)

The minimax property of the Savage statistic now follows at once from

Theorem 2.1.

is asymptotically minimax

Theorem 2.2. The level ¢« Savage test *N

over the class 0 of all IFRA distributions with a density, i.e. if H

ranges over {1 , then

(2.10) ian B(c;V,H) Z»ian 8(c;®,H)

for all level o tests wN



Remarks .
(i) H is said to have increasing failure rate (IFR) [1] if H(0)=0

and h(t)/[1-H(t)] is nondecreasing in t > 0 . The class of IFR

distributions contains the class of exponential distributions and is contained

in the class of IFRA distributions. It follows that Theorem 2.1, Corollary

2.1 and Theorem 2.2 holds also for this class.

(ii) The results of this section are stronge} than the minimax results
of [6] in the sense that no conditions such as bounds on the Kolmogorov

distances or variances of the distributions are needed.

(iii) The lim inf in (2.5) can be replaced by a limit if one assumes
conditions as in Lemma 3 of Hodges and Lehmann (1963). The results hold if

lim inf is replaced by 1im sup or partially replaced by lim sup as in [6].

(iv) An asymptotically equivalent form of the Savage statistic is

(see [9,p. 1127]), m
| ‘z] J'b(ri) , where
|=
(2.11) N
" ! 1
J (k) = 2 3

JoN-k+1

(v) The results in this section hold if one,instead of considering level

o tests,considers wN with asymptot%c level o , i.e. tests for which

E(@Nle =Y) o as N- o,

(vi) The one-sided alternative A > 1 can be replaced by the two-sided

alternative A # 1 .



(vii) For the k-sample prcblem with model Fi(x) = H(x/[l+9ci]);i=l "

k; the Puri (196h) extention of the Savage statistic is asymptotically minimax

for testing Hz : 06 =0 against 6 >0 (or 6 # 0).

3. EFFICIENCY OF THE BEST TEST FOR EXPONENTIAL MODELS. When H equals

an exponential distribution Ko(t) = 1- exp (-t/c) , then the uniformly most

powerful level ¢« test [7] ¢f of ©=7Y against o> Y rejects when
n

25 X: / %' E: 2m 2n (o)

(3.1)

Bl—'

where F2m 2n(or) is obtained from the tables of the F distribution. In this

section the performance of T s investigated when the assumption of exponentiality

is violated and H 1is an |IFRA distribution.

Upon writing

(3.2) N T ) =NE-/Y

it is clear that /N (T - A) has an asymptotic normal distribution with mean

zero and variance
oz(T) = Az oZ(H) / A1) uz(H) where
(3.3)
w(H) = [ edi(t) and o?(H) = [ tZan(t) - w2(n) .
o o

When H is exponential, then oZ(H) = p“(H) . It follows that when H s

such that cz(H) # uZ(H) , then ¢: does not have level o asymptotically, in

fact

(3.4) E(v;'j | 8 =¥)- 3 (37 (@) p(H)/o(H) as N = o

Thus when o <% and pu(H) > o(H) , then the asymptotic level of wﬁ is less



than o . Barlow, Marshall and Proschan (1963) have essentially shown that

for IFRA distributions, p(H) > o(H) . The asymptotic power function of (PN is

(3.5) B(c;o® , H) = 2({8” (@) + cIA(1-\) T} p(H) /o (H))

*

tPN can easily be modified to have asymptotic level « by dividing

/N (T-1) by a consistent estimate of

r(H) = o(H)/u(H); e.q.

t(H) = 5(H)/G(H) with
a(H) = -]N- (z x; + pX yi) and
sn) = § & +zyh) -t .

For this test, cﬁN , one has
(3.6) B(c;®.H) = (27 (o) + <A (1-A T2 (H) /o (H))

Since p(H) >o(H) [1] when .H is IFRA, u.(ko) = o(kc) , and since B(c;w,ko) =

B(c,@,ko), then (2.7) and remark (i) of Section 2 yields

Theorem 3.1. For all o<c<® and all o>o0,

(3.7) sup,, Blciv,k ) = Blc;8,k) = inf, Blc,p,H)

where H ranges over the class of IFRA distributions and (PN ranges over

the class of all tests with asymptotic level o .

Thus <°N is asymptotically minimax in the sense of Theorem 2.2 for the class
of IFRA distributions and the class of tests with asypmtotic level o . To see
that this is not true for cp;l , let H be an IFRA distribution with p(H) > o(H) ,
tlen for each a <%, |

(3.8) B(c;0™ H) < S(C;é,ko) for 0 < c <o(H)/u(H) .



Let Pitman asymptotic efficiency be as defined in [10] . It follows from

(2.6) and (3.6) that the Pitman efficiency of the Savage test ¥y to the

A

modified classical test @N is

o 2
cZ(H)[',; xq(x)dH (x) ]
w2 ()

(3.9) . ely,9) =

where q(x) = h(x)/[1-H(x)] is the failure rate of H .

The Weibull distribution is defined by

b
(3.10) - B(x) = 1-e™@* . a,b>0; x >0

If uk denotes the kth moment about zero, then

k
(3.11) iy = @ b 1 (E + 1), q(x) = ab xb'] ,

[
and {xq(x)di?i(x) =abu =b

Thus for the Weibull distribution

oo (o) . elie )
1"2(%“)

For b =1, the Weibull distribution coinsides with exponential distribution

(3.12) e, (4,9) = 2

and e‘(w,¢) =1 . For b=2, one has the linear failure rate gq(x) = 2ax and

(3.12) becomes

A 16 .
(3.13) ez(dy,cp) =— -h=1.093



Using L' Hospitals rule, one finds that

(3.14) 1im eb(¢,$) =

p—

When b <1, the failure rate is decreasing. Stirling's approximation shows
2k+: k-2 e-k -2

that if - k = (1/b) is large, then (3.12) is approximately 2 - k5,
E and that |
i -
1 (3.15) Tim eb(¢,<P) = ®

b-0
If k is an integer, then
a ]
(3.16) ey (1:9) = L8 . L
| (k)2 ok

For k=2 and ‘3 (3.16) becomes 1.25 and (19/9) = 2.11 respectively.

It is easy to show ( [15] and [9] ) that ¢y s asymptotically most

powerful and locally most powerful for the Weibull distribution. Thus

(3.17) eb(W.¢) >1 forall b>0

and for all test ¢N for which this efficiency is computable. |In particular
(3.17) holds for éN . Thus the Savage test ,wN is uniformly more efficient
than the adjusted classical test éN for the Weibull distribution. Moreover,
the Savage test is much better when the failure rate parameter b s large or
close to zero. It is conjectured that the Savage statistic is uniformly more

A

efficient than ¢N for all distributions witl. monotone failure rates.



L, CENSORED SAMPLES. Fix M < N and wait until a total of M X's and Y's

have failed. Let m' <m be the number of X's observed, then the ranks

r can be computed from the data. The Gastwirth (1965) modified Savage

‘,...,rm|

statistic is

(4.1) Sy = - -H: Z 1n(1- L)+ mt o+ (mont) o (1 - Wf—,)]

It is assumed that

(4.2) o <lim (M/N) = p <
Noo

The asymptotic power function of the level o test ¢M that rejects for large

values of S, can be computed using [9] and [8] . One gets

M
L Hp)
43 et ) = s(s7 ) + et [ thie) g (e)

From (2.8), it follcws that when H ranges over the class of IFRA distributions,
then
inf, B(c;WP,H) = Blciv k)

(4.4) 1
= @(@'](a) + c[A(1-0)/p])? [p+ln(l-p)(l-p)])

Since ngek (1962) and Gastwirth (1965) has shown that
(4.5) . B(c;Wp.Kc) > B(c;?K )

for all level ¢ tests @N , then the results of Section 2 holds for ¢M :

5. ASYMPTOTIC UNIQUENESS. Stein (1956) and Hajek (1962) has shown that

one can obtain asymptotically optimal statistics by estimating the underlying
distribution. Although these statistics are impractical, they show that one
can not hope for asymptotic uniqueness in the class of all tests with asymptotic

level ¢ .
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Consider the class of one-sided level ¢ rank tests Zf [5] based on

statistics of the form

(5.1) Ty = Tyl = }]n' ? JN(N;Ii)

i=1

where there exist a function J which is continuous (xcept for possibly a finite

number of jump discontinuities and which satisfies

(;.2) f J (u)du <wand lim f Ly (u) J(u)]zdu =0

'
and the conditions of Comment 3.8 of Héjek (1962). Let & be the class of
IFRA distributions H with a density h which has the Radon - Nykodim

derivative h' with respect to Lebesque measure and satisfies

(-~}

(5.3) J)‘ [x2h' (x)/h(x) 2 dH(x) <«

For these classes one has

Theorem 5.2. The Savage - Gastwirth test Wp is asymptotically uniquely

\
minimax for Zr and SF', i.e., if ¢o = @o(JN)ezry if H ranges over SF ,
and if

(5.4) inf, Blc;o_,H) > inf, B(c;9,H)

for all @ ¢ Zr, then there exists constants an and bN such that
(5.5) NSy, = (aTy(0y) + by =0

in probability as N - « provided (2.3),(4.2) and (2.4) hold with ¢ <

Proof. (2.7) and (5.4) show that 5(c;¢o,Kc) = B(c;¢p,Ko). Thus @
is asymptotically optimal for K0 . From Héjek (1962), it follows that the

correlation coefficient satisfies

(5.6) pN(SM’TM l Kc;A =1)=1 as N-o .



R

This implies that for regression coefficients ay and bN R

2 O ,
(5.7) - E(NIS,-(ayTyby )17 | K sa=1) = 0

Since Sy and T, are distribution free, (5.7) holds not only for ks but
for general H . The result now follows from the contiquity arguments of

LeCam and Hajek (e.g., [9]).

6. ESTIMATION. Barlow and Prochan (1966) have shown that the estimates

of the mean that are optimal for exponential models are not robust for IFR
distributions. Here an asymptotically robust estimate of the ratio u]/uz of
the mecans of X and Y s constructed using the methods of Hodges and
Lehmann (1963). Write x = (x],...,xm),y = (y]f...,yn) , ax = (axl,...,axn)

etc., and let

(6.1) : s(x,y) =S,

be the Savage - Gastwirth statistic (4.1). u]/uz = Ou(H)/yp(H) = 6/y = 5o, so

one estimates A .

Note that /N s (X , AY) asymptotically tends to be normally distributed

aboit the point 0 [9] . Let

A% = sup {4: s(x,Ay) > 0} and
(6.2)
A% = inf {A: s(xAy) < 0}

and define the estimate 8 of A by
(6.3) A = A(x,y) = F(a% + a%)
Since s(ax,ay) = s(x,y) by the invariance properties of ranks, then

(6.4) A (ax,ay) = A (x,y) for all a >0, i.e., A is scale

invariant.
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Moreover, using this, the definition (6.2), and noting that s(x,Ay) is

decreasing in A , one gets

(6.5) & (ax,by) = (a/b) & (x,y)
(6.6) P, (8/a<t) =P (Act)
(6.7) a% < apwx

(6.8) P(a* <t) = P(s(x,ty) <0) ,
(6.9) P(a** <t) = P(s(x,ty) < 0) ,

(6.10) P(s(x,ty) <0) < P(8 <t) <P(s(x,ty) <0) , and

Lemma_ 6.1. If H satisfies (5.3) and H(O0) = 0, then

Vim P /N [(278)- 1] < t)

-1
(p)

o)

Proof. (6.6) shows that one can let A = 1. From (6.10) it follows that

lim (N%(A -1) <t) =1lim (8 <1+ tNJi)

Nl 1 Neso! |

= Timg P (s(X, (1 + tN'%)Y) < 0)

= Vimy P, (s(X,Y) < 0)

im
N0 N

i
where by = 1/(1 + tN"2) . Since N'}(AN -1)=t as N - o, the result

follows from (4.3).

Lemma 6.1 shows that the asymptotic variance of /N [(A/a) - 1] is

1 H(p)
(6.11) V@ = 00T [ B e
(o]

Moreover, (L.lt) shows that the maximum asymptotic variance over IFRA distributions

is
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(6.12) sup,V(&,H) = V(4,K ) = l/[k(l-k)A)J%[p + In(1-p) (1-p) ]

\
Let 3" be as in Section 5, tiien the results of the previous sections

yield

|
Theorem 6.1. A is asymptot ifcally minimax over § and the class €

of scale invariant estimates that are asymptotically normal; i.e., if

~

V(A,H) denotes the asymptotic variance of the estimate Z e & , then

[} ~ !
(6.13) sup,, {V(R,H): H ¢ &) < sup,, [V(A,H):sre H}
V(8,H) also satisfies the saddle-point inequality
(6.14) supHv(A,H) = V(A,Ko) = infy V(A,Ko)

|
where H ranges over 3: and A over €.

A different approach to the problem of obtaining asymptotic minimax

estimates is given by Huber (1963).
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