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FOREWORD 

This report presents results of the second series of wind tunnel 
tests of an atmospheric probe model.   The project is a joint effort of 
the Air Force Cambridge Research Laboratories (AFCRL), Arnold 
Engineering Development Center (AEDC),  and Mithras, Inc., 
Cambridge, Massachusetts.   The investigation is being conducted by 
D. Golomb and F. P. DelGreco of AFCRL, R. E. Good of Mithras, 
Inc.,  andJ. A.  van der Bliek and R. A.  Cassanova of AEDC under 
Program Element 62405424,  Project 7635. 

The results of tests presented were obtained by ARO, Inc.  (a sub- 
sidiary of Sverdrup & Parcel and Associates, Inc.), contract operator 
of the AEDC, Air Force Systems Command (AFSC), Arnold Air Force 
Station,  Tennessee,  under Contract AF 40(600)-1200.    The tests were 
conducted from March 14 to April 29,   1966, under ARO Project 
No. SB0609,  and the manuscript was submitted for publication on 
November 18,   1966. 

This technical report has been reviewed and is approved. 

Frank N. Price, Jr. Leonard T. Glaser 
Lt Col,  USAF Colonel,  USAF 
AF Representative, AEF Director of Test 
Directorate of Test 
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ABSTRACT 

Low density wind tunnel tests were carried out at Mach 2 and 3 to 
simulate the release of nitric oxide in the upper atmosphere from a 
sounding rocket.   The supersonic flow contained atomic oxygen,  and 
the wall-less chemiluminescent reaction of O with NO was investigated. 
Reaction rate constants thus obtained were up to 5 orders of magnitude 
higher than previously obtained laboratory rate constants.   This is an 
extension of the work reported in AEDC-TR-66-105. 
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NOMENCLATURE 

E Exposure 

h Planck's constant 

I Intensity of transmitted light 

k Rate constant 

M Mach number 

M Mass flow rate 

n Particle density 

P Pressure 

Re Reynolds number 

T Temperature                                                                                    ' 

TR Relative transmission of film negative 

t Time 

u Velocity 

a Degree of dissociation for oxygen 

X Mean free path 

V Frequency of emitted light 

<D Photon emission rate per unit volume at stagnation point 

SUBSCRIPTS 

j Jet 

NO Nitric oxide ■ 

Stagnation conditions 

Free-stream conditions 
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Stagnation conditions behind normal shock 

Excited state 

VI 



AEDC-TR.66-254 

SECTION I 

INTRODUCTION 

A new method of determining atomic oxygen (O) profiles in the 
altitude range of from 90 to 140 km has been developed by Golomb et al,, 
Ref.  1.   Nitric oxide (NO) was released at a known rate from a rocket 
at night.   The radiation in the mixing zone, the so-called headglow, was 
analyzed using ground-based cameras.   Extremely high radiation in- 
tensity was observed, which was incompatible with the laboratory rate 
constant of the reaction NO + O—»-N02 + hj/.   Also, the aerodynamic 
model used in the data reduction was unrealistic.   Wind tunnel tests 
(reported in Ref.  2) were carried out to provide a calibration of the 
headglow,  and based on these results Golomb and Good, Ref.  3, re- 
evaluated the flight data. 

This report deals with wind tunnel tests carried out in 1966.   The 
work will be continued with wind tunnel tests in early 1967. 

The purpose of this series of tests was to obtain additional data for 
MÄ,- 3 at T0 = 290, 550, and 700°K and to extend the range of tests to 
include M„, = 2 at T0 = 290°K.    The latter condition resulted in reaction 
zone pressures closer to those of previous laboratory tests. 

SECTION II 

CURRENT STATUS AND EXTENT OF TESTS 

The results and analysis of experiments carried out at AEDC have 
been reported in Refs.  2, 4, 5,  and 6.   The early rocket flights, Ref.   1, 
and their re-evaluation, Ref, 3, are concerned with a model with two side 
orifices.   The atomic oxygen concentrations of Ref.  3, based on wind 
tunnel calibration,  are reproduced in Fig.  1.    For comparison, the total 
particle concentration from the U. S. Standard Atmosphere,  19621 and 
the measured molecular oxygen (O2) concentrations reported in Ref.  7 
are also given in this figure. 

With a model having one forward facing orifice, an effective rate 
constant for the reaction of NO and O was determined in the wind tunnel 
and reported by DelGreco et al., Ref. 4.   The photon emission rate 

^U. S. Standard Atmosphere,  1962,  U. S. Government Printing 
Office, December 1962. 
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constant as determined from photographs from the headglow in the wind 
tunnel was 

k  =    *  .   2.4 x 10" "cm* molecule "'sec-1 

[NO] [0] 

as compared to the rate constant 

k  =  6.4 x 10~" cm3 molecule"1 sec-1 

measured by Fontijn et al. in a chemical flow tube, Ref.  8. 

The rocket flights reported by Golomb et al., Ref. 1, produced a glow 
with photon emission rates in line with the wind tunnel data.   Spindler, 
Ref.  9, reported also unexpectedly high photon emission rates from NO 
released by rockets; however, no direct comparison of k for this test 
could be made because of a lack of aerodynamic data of the rocket flow 
pattern. 

The use of the supersonic wind tunnel for chemical reaction studies 
offers the unique advantage of producing wall-less reactions heretofore 
only produced by molecular beams at much lower pressures and con- 
stituent concentrations.   However, the mixing process in the present 
aerodynamic configuration needs further investigation before an explana- 
tion of the observed reaction rates can be made. 

SECTION III 

LOW DENSITY WIND TUNNEL 

The tests were conducted in the Aerospace Research Chamber 
(ARC (8V)) of the Aerospace Environmental Facility at AEDC.   The 
chamber,  operated as a low density wind tunnel,  is shown in Fig.  2. 
The chamber is 8 ft in diameter and 16 ft long.   The nozzles are mounted 
on a removable dished head. 

The pumping equipment of the chamber consists of a 6-in.  oil dif- 
fusion pump in series with a 60-liter/sec mechanical pump and cryo- 
pumping surfaces.   The major pumping action during a tunnel run is 
provided by a series of radially positioned cryopanels cooled with 
gaseous helium (GHe) at temperatures from 15 to 20°K with a total area 
of 240 ft2.   The GHe is cooled in a continuously operating 1-kw refrig- 
erator.    The cylindrical,  perforated precooler and the chamber end 
panel are cooled by liquid nitrogen (L1N2) at 77°K.   The cylindrical part 
of the chamber is provided with an LN2 liner which serves as a heat 
shield for the helium cryopump. 
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The nozzles, shown in Fig. 2, were cooled with LN2 to reduce noz- 
zle wall boundary-layer thickness. During this test, Mach 3 and 2 noz- 
zles were used. 

The nozzle gas supply system for the test was similar to the system 
used in Ref.  2.   The N2 and O2 were fed to the gas heater from standard 
bottles, via standard flowmeters.    The gas was passed through two 
separate tubular gas heaters into a heated plenum chamber.   The O2 was 
passed through a quartz manifold where three microwave cavities dis- 
sociated part of it (Fig.  2).    These cavities were powered by three 80-w 
microwave generators (2.5 kMc).    The O2 heater upstream of the 
cavities was not turned on when the power supplies were operating.   The 
plenum chamber temperature was held at the desired reservoir tempera- 
ture. 

The operating range for the tests was selected so that the anticipated 
flight trajectory could be approximately duplicated. The ranges selected 
were: 

P0  =   100 to 400 pi Hg 

T0  =  290 to 700 °K 

p     -  1 to 24 /i Hg 

TM . 85 to 230 °K 

Re^/cm  =   2.9 to 53 

MM  =   1.99 to 3.49 

A«  =  0.165 to 1.60 cm 

u^  =  500 to 1000 m/sec 

Uniform core diameter =   15 to 30 cm 

The atomic oxygen concentration in the test section was determined 
as described in Ref.  2.    The percent of oxygen dissociation in the test 
section is given as a function of settling chamber pressure in Fig.  3. 

SECTION IV 

MODELS AND PROCEDURE 

The model used to simulate the release of NO from the rocket test 
vehicle into the atmosphere is shown in Fig. 4.    The model had an 
orifice at the apex of a cone and is similar to the rocket vehicle which 
was flown after the present tests were completed.   The model was con- 
nected via a supply line to gas bottles with a mixture of NO and N2.    The 
pressure inside the model, measured with a strain-gage pressure 
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transducer, was regulated with a valve near the bottles.   Model pres- 
sures (Poi) ranged from 1 to 5 atm.   By varying the mixture of NO and 
N2 in the model the same headglow geometry (poH and p0    constant) 
could be maintained while varying the concentration of NO in the re- 
action region. 

The overall light output of the headglow was measured with photo - 
multiplier (PM) tubes mounted on two of the chamber Plexiglas® ports. 

The headglow was photographed with 35-nam Kodak   Plus-X film 
with exposure times of 1/8 to 1 sec and lens openings of from f/l. 9 to 
f/2.8. 

The film and PM were calibrated with a light box which was mounted 
at the position of the headglow.   This light box, in turn, was calibrated 
against a standard source at AFCRL.   To provide a complete calibration 
over the range of exposures in the tests, a calibrated step wedge and the 
calibrated light box were photographed on each roll of film.   A typical 
calibration curve is shown in Fig.  5.   The transmission of the film 
negative relative to the light box photo transmission was obtained from 
microdensitometer traces of the photographic negatives,  and the cor- 
responding exposure was read from the calibration curve. 

For the rate constant calculations, the volume intensity at the stag- 
nation point was determined from the projected exposures on the nega- 
tives.    The observed projected exposure (photons/cm^-sec) from the 
photographs can be related to the specific radial intensity (photons/ 
cm^-sec) for the axially symmetric geometry by an Abel integral in- 
version.   The inversion from surface brightness to radial intensity is 
described in Ref.  2.   The film response dropped sharply at a wavelength 
of 0. 68/i.   Since the spectrum of the glow obtained by Fontijn et al., 
Ref. 8, extends well beyond 0.6Bju, the measured value of.the intensity 
was multiplied by a factor of 2. 5 to account for the film response. 

SECTION V 

EXPERIMENTAL RESULTS 

A typical photograph of the headglow is shown in Fig.  6.    The sketch 
in Fig.  7 indicates the general flow characteristics.   A spherical shell- 
like area around the contact surface between the two gas streams is the 
reaction zone. 
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With this configuration, the following investigations were carried 
out: 

A. Spectrometric measurements in the visible regime of the head- 
glow. These were obtained by Dr. F. P. DelGreco of AFCRL., 
and no results are reported here. 

B. Initial infrared spectrometric measurements were carried out 
by Dr. A. T. Stair et al. of AFCRL.    These runs were of an 
exploratory nature, but demonstrated the use of the wind tunnel 
for investigations of the rotational-vibrational structure of 
gases.    Typical cases covered are: 

Wind Tunnel Flow from Reaction of 
Flow Model Interest 

02,  N2. O NT2, NO O + NO 

02,  N2,  O CO O + CO 

N2, N NO N + NO 

N2, N CO N + CO 

N2J N o2 
N + 02 

Atomic nitrogen was produced in the same manner as atomic 
oxygen. 

C.    A total of 103 runs were made to measure the radiation attrib- 
utable to the reaction of NO and O.    The major results of this 
series are" discussed here. 

The overall radiation output of the headglow is plotted versus the 
ratio of NO pressure to total pressure in the model in Figs.  8 and 9. 
These figures represent the typical behavior.   On the basis of limited 
results, it was stated in Ref.  2 that the photomultiplier reading was pro- 
portional to the NO concentration, as would be expected from the second- 
order reaction of NO + O.   Beyond a "saturation" point,  a further increase 
in PJ^Q does not produce a further net radiation increase.   Although this 
''saturation" effect is confirmed by the present experiments, the decrease 
of the PM reading with decreasing PJJQ 

was ^ar more rapid than expected. 
The low values of PNO^POI 

were obtained by pre-mixing NO and N2 in 

separate bottles.   One possible explanation of the above behavior would 
be the presence of impurities, reacting with NO,  in the nitrogen bottles, 
which would reduce the effective NO concentration.    Chemical analysis 
after the test on similar bottles indicated that the impurities were not 
sufficient to produce the observed fast decrease of radiation.   A series 
of tests with high purity NO and N2 is required to eliminate this possi- 
bility completely. 
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The right-hand sides of Figs.  B and 9 give typical photon production 
rates per unit volume as obtained from photographs versus the ratio of 
[NOJ/LOJ.   Note that for the data in these figures only [NO] was varied. 
The value of [O ] and the headglow geometry are constant. 

The rate constant,  k,  is defined by: 

k = * 
1/2 [NO] 1/2 [0] 

where * is the photon production rate per unit volume at the brightest 
point, near the stagnation point.   Half the values of the concentrations 
of O and NO on either side of the contact surface were used as a first 
approximation to the actual concentrations at the point of maximum 
light intensity. 

Lines of constant k are drawn in Figs. 8 and 9.   All values of k, 
determined from photographs,  are summarized in Fig.   10. 

In considering this figure, the following must be noted: 

A. There was no distinct trend for points obtained with constant 
value of [NO]/[O].    Therefore,  in this figure,  all photon rates 
are plotted indiscriminately. 

B. The M = 2 nozzle was installed to provide data at a higher stag- 
nation (reaction) pressure,  but this nozzle had a very poor exit 
velocity profile at the higher pressures.   Since only stagnation 
point data are plotted here, this effect is expected to be minor, 
but the data in the high pressure regime (p^ > 100 M Hg) need 
confirmation with an improved nozzle. 

Allowing for the above uncertainties,  it seems nevertheless evident 
that the production of excited NO2 molecules is highly quenched as the 
pressure in the reaction zone is increased.    For comparison, the re- 
action rates obtained in chemical flow tubes at higher pressures, 
Kaufman,  Ref.   10,  and Fontijn et al.,  Ref.  8,  are shown. 

Kistiakowski and Volpi obtained a value of k = 1. 6 x 10"11 for 
NO + O—»-N02 with a mass spectrometer in their approximation to a 
"stirred" reaction vessel,  Ref.   11.    If that value were valid over the 
complete pressure range of Fig.  10, it would constitute the maximum 
value of NO + O—-NO2*—N02 + hy; that is, the case in which all the 
formed NO2 molecules are excited and assuming that in the deactivation 
process only one photon is emitted. 
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SECTION VI 

CONCLUDING REMARKS 

The present series of tests and the tests reported in Ref.  2 have 
simulated the AFCRL high altitude rocket flights,  and correlations have 
been developed for analyses of flight data, Refs.  3 and 5.   Several differ- 
ences between rate constants observed in the wind tunnel and the rate 
constants observed in the flow tube need further exploration.   The data 
presented here indicate that there is a strong effect of pressure on the 
reaction. 
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Fig. 6   Typicol  Photograph of Hoadglow 
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