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SUMMARY 

In reference to any solution of a conservative 

dynamical system with two degrees of freedom, Hill's equation 

is generalized to encompass non-necessarily isoenergetic 

displacements as well as the Isoenergetic displacements 

caused by a variation of a parameter. 

This new varlational equation is made the foundation 

of a methodical procedure for continuing numerically natural 

families of periodic orbits.  The method consists of two steps- 

an isoenergetic corrector and a tangential predictor. 

Although the algorithm makes no assumption of symmetry 

on the periodic orbits to be continued, special attention is 

paid to the symmetric orbits, but only to show how in these 

cases the method can be simplified substantially. 



The subject matter of this paper Is nothing else but the 

elementary problem of continuing numerically analytic manifolds of 

periodic orbits for a conservative dynamical system with two degrees 

of freedom.    Apparently for the first  time, a methodical answer is 

given here.    Our procedure, which throughout adheres strictly 

to the analytical foundations of the question, aims at keeping as 

close as possible to the basic technique of Poincar^, namely the method 

of analytic continuation based on Cauchy's local existence theorem. 

In the classical contributions to this problem (Darwin,  Stromgren, 

Lemaltre),  the main issue is immediately obscured by the accidental 

fact that,  for some families,  the periodicity conditions can be replaced 

by symmetry conditions, and therefore the problem of correcting initial 

conditions is replaced by that of adjusting boundary conditions. 

Evenmore,  in recent years,  in spite of the many capabilities offered 

by electronic computers,  the numerical continuation of a manifold of 

periodic orbits tended to degenerate into disreputable tricks based on 

optical illusions rather than on analytical certainties.    The result has 

been an overabundance ol' numerical material whose subjective interpretation 

leads to conclusions at variance with propositions firmly established by 

analysis.    The classical Instance of such unfortunate accidents is the 

still open controversy concerning a genealogy of periodic orbits 

established numerically by Darwin  (1897)  and questioned by Polncard (1899) 

on analytical grounds. 

:■ 



Of course,  one can only expect to find here the most elementary 

part of the very extensive theory of periodic orbits.    A natural family 

of periodic orbits is defined by the local existence of power series in 

Palnleve^s constant of integration to represent the manifold  (§1).    The 

fundamental result about a periodic orbit is an extension to non- 

necessarily isoenergetic normal displacements of Hill's equation which 

is valid only for isoenergetic variations  (§2).    Therefrom is derived 

the vital possibility of converging to a periodic orbit without leaving 

the energy manifold on which It lies  (§4)  as well a tangential predictor 

(§3) which expresses the "solidarity" between the phase states of a 

natural family on different periodic orbits of the manifold where it is 

deprived of singularities.    Symmetric periodic orbits are given here a 

special treatment  only because it  is possible to obtain them by Integration 

over only half an estimate of their period  (§7). 

After the two fundamental steps of our numerical continuation have 

been derived,  the other sections of this paper concern what  is probably 

the most useful concept in the theory of conservative systems, namely the 

Isoenergetic rate of variation of the state variables with respect to a 

parameter.    We show how such rates can be computed intrinsically here again 

from an extension of Hill's equation  (§8).    It enables us to transpose 

our procedure of numerical continuation to the cases when new time variables 

are introduced for any fixed value of the energy constant  (§9). 



1.  NUMERICAL CONTINUATION OF A NATURAL FAMILY 

Given a conservative dynamical system with two degrees of freedom 

£ - i(g11q;
2 + 2g12qiq' + g^q'

2) + f^ + f2q' + U 

one can always choose an Isothermal set of coordinates  (:c,y) and 

redefine the Independent variable so that the equations of motion take 

on the simple form 

x « 2Ay + Wx,     y - -2Ai + Wy (1) 

where A and W are functions of the coordinates x and y 

(Blrkhoff 1915). 

The equations (1) admit the Integral 

C - 2W - (i2 + y2) (2) 

which it will be convenient to refer to as the energy integral',    C    is 

an arbitrary constant of integration, to be called the oonatant of energy 

or also Painlevi's  constant of integration (Chazy 1953). 

Let us assume that, for the initial conditions (xn*yo»*n*yo) At 

time t <■ 0,  the equations (1) possess a solution 

x(t,x0,y0,x0,y0),     y(t,x0,yolxofy0) (3) 
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whlch Is periodic.  We denote by T- the period of this solution, 

and by C0 the value of the energy Integral along It. 

We ask ourselves for what corrections Ax., Ay0, Ax., AyQ on the 

Initial conditions a displacement of the orbit (3) will be a periodic 

orbit with about the same period.  Let us denote by T0 + AT. the period 

of this varied orbit, and by C-. + ACQ Its constant of energy.  On 

expanding the periodicity conditions 

x(T0+AT0,x0+Ax0,y0+Ay0.x0+Ax0,y0+Ay0) - XQ + AXQ. 

y(T0+AT0,x0+Ax0.y0+Ay0.x0+Ax0,y0+Ay0) - y0 + Ay0. 

VTo+AVxo+AVyo+Ayo»V ^0+^0) ' ^0 + Ai0' 

yo(To+ATo'xo+Axo'VAyo'V^o'VAyo) " ^0 + Ayo> 

in power series of the corrections and on retaining only the first order 

terms, we come to the linear system 

to which we add the equation 

(A) 
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dC  .   .  dC  A   .  dC , •  .  dC  , •     . _ 
-— Axn + -— Ayn + rr- Ax. + -rr- Ayn ■ ACn 9x0  0  3y0 ■'O  ax-  0  3y0 'O    0 (5) 

expressing that the corrections on the Initial conditions result in 

a first order correction AC0 on the constant of energy. 

Let us assume that the rank of the matrix 

^-X(l0)..l     ^-x(I0) w0 "'V W0 "'V      i(Io> 

3^ ^"o' 

■t0 i^O» 

■i-Q "V 

l^^V-1 ^^V    4y<To)    '(V 

t i(Io) 

^ ^V 

if^^V"1   i|;Ä<To>     «V 

it0 ^v ^^v-1 ^v 

(6) 

8C 
3x„ 3y„ 

3C 
3x„ 

3C 

is equal to A. Then on applying Poincard's method of continuity 

(Siegel 1956), one can show that the corrections on the initial conditions 

and the period are analytic functions of ACQ in the neighborhood of the 

initial energy constant C-.  In other words, there exist an interval SI 

around CQ    and 5 analytic functions 
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xo " ''o + 2  *o.Sc-cJ] 
k>l 

Yo - ^o + S yo.k(c-co)k' 
k>l 

(7) 

k>l 

^o " ^o + X yo.k(cV> 
k>l 

T - To+ 2 v«^«/ (8) 
k>l 

on that interval ^ such that the solutions of (1) having the Initial 

conditions (7) are periodic with the period T as given by (8). 

Such a one-parameter manifold of orbits Is what Wlntner (1931) calls 

a natural  family; a periodic orbit which belongs to a natural family Is 

called singular by Whlttaker (1916). 

Since the dynamical system Is conservative, the conditions (7) 

imply that there exist two sequences x^U), yi-(t)  of functions which 

are periodic with period T such that the series 

X(t) - x(t) + £ xk(t)(C-C0)
k, 

k>l 

Y(t) - y(t) + I   yk(t)(C-C0)
k 

k>l 

(9) 

represent the natural family 0(0)    in the neighborhood of its element 

0(CO) given by (3). 

i   ■■nnaarM*^' 
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A natural family of periodic orbits defines In the phase space a 

two dimensional torus upon which, given a convenient definition of the 

Initial point on each orbit, the time t and the Palnlev^ constant C 

constitute a system of analytic coordinates. 

Solving the problem of continuing analytiaally  the torus (7(C) 

from the Initial orbit ö(Cn) means determining the series  (8)  and the 

time dependent coefficients x.  and y.  In the series (9).  In a few 

simple cases, these functions can be determined.  But In general the 

solution. In this most complete sense, Is not feasible. To start with, 

the generating solution 0(0.) Is usually obtained by Integrating 

numerically the equations of motion (1),  so that the very first coefficients 

x(t) and y(t) are obtained only In the form of tables where only a finite 

number of points along 0(Cn) are entered. And even when the initial orbit 

is expressed in a somewhat more explicit way as a function of the time, it 

is most often not possible to find in the same explicit way even the time 

functions x.(t) and y,(t) in the expansions (9). 

Since the analytic continuation of a natural family is generally 

intractable, it is quite Important to settle upon methods of numerical 

continuation,    The difference between analytical continuation and numerical 

continuation can be sensed most distinctly in geometric terms. 

We think of the equations (9) as defining the continuous deformation 

of a periodic orbit on the torus 0(C).  Starting from the location 

{x(t;C0),y(t;C0),x(t;C0),y(t;C0): 0 <_ t < TQ) 

in the phase space, the orbit will stretch and twist under the deformation 

so as to occupy, when the constant of energy reaches the value C,  the 

^UL »■■■" _   . V"1-. »•"''  **'        * • ' 

/ 



re- 

location 

{X(t,C),Y(t,C),X(t,C),Y(t,C): 0 < t < T} 

defined by the analytic expansions (8) and (9) In the phase space. 

Continuing analytically the natural family 0(C) means following this 

continuous deformation of the periodic orbit ö(Cn) taken as a whole. 

In the course of the deformation, each point of the Initial orbit 

(?(Cn)  follows a certain path on the torus 0(C).  It is defined in the 

phase space by the numerical series (7). Once this path Is known, the 

periodic orbits can be determined unambiguously. The methods of 

numerical continuation propose to follow the displacement on the torus 

of only one point of the generating orbit.  Thus they can be regarded as 

procedures by which the initial conditions and period of the periodic 

orbit ö(Cn) are corrected to yield the Initial conditions and period 

for the neighboring orbits in the family. 

Figure 1.  The two steps of a numerical continuation. 
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As for the methods of analytical continuation. In general It Is 

not possible to compute all the numerical coefficients In the series 

(7) and (8).  The methods of numerical continuation aim rather at 

determining, or even less at estimating approximately, only their first 

few coefficients, hereby determining only approximately the deformation 

path of the Initial conditions on the torus {7(C). For this reason they 

provide basically two schemes, one for predicting  Initial conditions and 

a period ahead of a known periodic orbit, and the second for aorreating 

the extrapolation,  in regard to a natural family, both predictor and 

corrector should have specific properties. 

Extrapolated values for the initial conditions  (x, »y. ,x:1 »y.) 

and the period T.  at the energy level C0 + AC should be at least 

such that, to the first order, 

Xl " X0 + AC,8C W« 

yi-yo + AC,"ilyo(co)' 

*1 " ^ AC,3C W* 

*i-yo + AC-ic W' 

Ti-To + AC,d^To(co)- 

It means that the predictor should request as a minimum a tangent to the 

natural family (7(C) at the initial position on the original orbit 0(CQ) 

in the direction of increasing energy constants, as well as the tangent at 

the point C0  to the period curve T(C) belonging to the family. 
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Evldently we could compromise and replace the tangents by the secants 

going through two previously evaluated sets of Initial conditions on the 

torus.  But what Is gained from simplifying the predictor in this way 

often results in poor convergence during the corrector part of the scheme. 

Moreover, In approaching an element of the family which is a branching 

orbit on the analytic manifold 0(C) or an extremum on the Inverse C(T) 

of the period curve, extrapolation along the secants Is apt to derail 

without notice the representative initial conditions from their deformation 

course on the family 0(C) onto another natural family in the neighborhood, 

Besides as we shall show, there is no essential difficulty in extracting 

the tangential elements needed for an efficient predictor from a numerical 

integration of the variational equations. 

The phase state obtained by shifting the initial conditions along a 

tangent to the torus 0(C) by an amount equal to AC does not generally 

lie on the natural family. At any rate, it lies on the integral manifold 

^(C0+AC) defined by the energy integral (2), and if AC is small enough, 

it lies close to the periodic orbit which is the intersection of the torus 

0(C) and the integral manifold if(C0+AC). Therefore, the corrector stage 

of a numerical continuation should aim at bringing this estimate of the 

initial conditions closer to the periodic orbit, without causing it to 

leave the integral manifold &    to which it should belong. On the other 

hand, when only first order corrections are retained, several iterations 

might be necessary to correct the predicted values; therefore they should 

be made to converge in quadratic convergence. At last, a first order 

displacement of the initial conditions tangentially to the orbit  (F) 

that they define is not generally going to bring the phase state closer 
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to the periodic orbit 0(Cn+AC) since It amounts only to an advance 

of the time on the orbit r. Therefore, one should use exclusively 

corrections by which the phase state Is displaced normally to the orbit 

F to which It belongs. We show here how corrections having these three 

properties (of being isoenergetlc, quadratlcally convergent and normal) 

can be computed by Integrating numerically the homogeneous Hill's equation 

for Isoenergetlc normal displacements as well as the accompanying 

quadrature for Isoenergetlc tangential displacements. 

2.  INTRINSIC DISPLACEMENTS OF AN ORBIT 

Let 

x - x(t),   y - y(t) (10) 

be a given solution of (1) defined over the time Interval I.  It Is 

assumed to have the following properties: 

a) It Is not an equilibrium position; 

b) The trace of the orbit over Its curve of zero velocity Is 

empty. 

Under these assumptions, the norm of the velocity along the orbit 

V - (x^y2)4 (11) 

Is nowhere zero for as long as t    Is In the Interval I, and the 

Inclination $ of the velocity vector on the x-axls Is defined 

unambiguously by the formulae 

x - V cos ^,    y - V sin (j). (12) 
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A displacement (or variation) of the solution (10) is a pair of 

numerical functions 

u = u(t),   v = v(t) 

that is a solution of the linear differential system 

Ü - 2Av + (W +2A y)u + (W +2A y)v, v xx  x-'     xy  y 

V - -2Au + (W -2A x)u + (W -2A x)v; 
xy  x      yy  y 

it is understood that the function A, its partial derivatives as well 

as those of W are to be expressed in (13) by means of (10) as functions 

of the time along the orbit. 

The variational system (13) admits the integral 

Y «Wu+Wv-xü -yv. (1A) 
'   x    y       J 

The normal and tangential components (n,p) of the displacement 

(u,v) are defined respectively by the identities 

n « -u sin (^ + v cos (}), 
(15) 

p ■ u cos (|) + v sin (J). 

THEOREM.    A numerical function   n - n(t)    is a normal displacement of 

(10) belonging to the integration constant    y    in  (14) if and only if it 

satisfies the linear differential equation 

ri + 0n - 2Y(A+^)/V (16) 

where 
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0 - V/V + 2(A+^)2 + 2A2 - W  - W  - 2V(A sin (j)-A cos (j>). (17) xx   yy      x      y 

In which aase, a numerical function   p « p(t) is the corresponding 

tangential displacement of (10) for the same integration constant    y 

if and only if it is given by the quadrature 

~ (p/V) - 2(A+(J)n/V - Y/V2. (18) 

In order to prove the theorem, we begin by differentiating (1) 

with respect to the time, so as to obtain that 

xv - yu + xv - yu » 2A(xu+yv-xu-yv) 

(19) 

(20) 

+ (xv-yu)(W +W +2A y-2A x). ^   xx yy  xJ      y 

We now propose to reduce (19) to the equation (16).  To this effect we 

invert the linear transformation (15) to obtain that 

u = p cos (j) - n sin <f), 

v » p sin ()) + n cos (J). 

Then we use (12) and (20) to compute that 

xv - yu » Vn; (21) 

we differentiate (12) with respect to the time and we use (20) to obtain 

xu + yv - Vp + Vn^; (22) 

also we differentiate (20) with respect to the time and calculate that 

xü + yv - Vp - Vn(J. (23) 
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Next we differentiate (12) twice with respect to the time so as to 

produce 

"xv - yu - (V-vi2)n - (2V4>+V$)p; (24) 

also we differentiate (20) twice with respect to the time, which yields 

.2 
u ■ p cos $ - n sin <l> + U(J    - 2v(f - v<l>, 

••      .. ••                    ,2        ''        " 
v • p sin <|> + n cos <l> + V(J    + IxiQ + u<l>, 

and thus we are able to compute that 

*v - yü - V(n-ni2+2^+p*) . (25) 

Finally by substituting (21), (22), (23), (24) and (25) in (19), we 

obtain that 

«•       • 
ri + [V/V-2<K2A+^)-W -W -2A y+2A x]n xx.    yy      xJ       y 

2(A+(|))(Vp-Vp)/V. 

(26) 

There remains now to eliminate    p    and    p    from  (26).    On using  (1), 

(15)  and  (22), we check that 

W u + W v - Vp + Vn$ + 2VAn. (27) 

Hence  (23)  and  (27)  helps writing the Integral  (14)  in the form 

Vp - Vp - -Y + 2V(A+^)n. (28) 

Eventually we substitute (28) in (26), and this yields the equation (16) 

as announced in the theorem. Of course, (28) is nothing but another form 

of the quadrature (18). 
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That, from any particular solution of (16) and any resulting 

quadrature (18), one is able to construct a solution of the displacement 

equations (13) satisfying the first Integral (14) Is an elementary point 

whose proof we leave to the reader. 

Concerning the above theorem, the following comments might be 

appropriate: 

1) Jacobl's equations (13) which determine the displacements 

(u,v) constitute a Lagranglan system.  In that respect, the theorem can 

be Interpreted as providing a method by which the non-aonservative 

Integral (14) is used in order to reduce the Lagranglan system of Jacobl's 

equation (originally of order 4) to a linear differential system of order 

2,  to be followed by a quadrature.  Straightforward differentiations and 

eliminations were sufficient here to serve this purpose, mainly for the 

reason that the equations to be reduced as well as the reducing integral 

are linear. 

2) The function 0 defined by formula (17) is well known in various 

problems of Celestial Mechanics. 

For instance, when, in our expresssion, we take A as a constant 

function, then A = 0 and A = 0,  so that 
x       y 

0 = V/V + 2(A+i)2 + 2A2 - W  - W . ' V    y/ XX        yy 

This expression can be found in Plummer (1911). 

Also on using the differential equations (1) to compute that 

2   2  «2   2   «2 
W + W » V + V (2A+(t.) , 
x   y 
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we deduce that 

X2 + y
2 - vW) 

Then, since 

W + V «xx + yy + x +y, 

we arrive at the Identity 

Therefrom we obtain by substitution In (17) another form for 0, namely 

0 - (xx+yyO/V2 + 3i2 + AA^ + 4A2 - W  - W  - 2V(A sin «fr+A cos ^).     (29) xx   yy      x      y 

When A = 0,  It restitutes the expression found by Polncard (1899) while, 

for A being a constant function, It Is the form originally given by Hill 

for his Lunar Theory and by Message (1959) for the planar Restricted Problem 

of Three Bodies. 

Again on observing that 

W2 - W2 + 2A(W y-xW ) - V2 + V2^2 + 2VA$, 

we conclude that 0 can also be defined by the formula 

V20 - VV - 2V2 + 2(W2-W2) + 4A(W y-W x) + 4A2 (30) v x y      x' y 

-W  - W  - 2(A y-A x). 
xx   yy     x'  y 
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the problems they are concerned with (namely the mean motion of the 

lunar perigree or the stability of a periodic orbit) refer exclusively 

to the case when G is a periodic function of the time, and the only 

quantities they are interested in are the characteristic exponents for 

the monodromy matrix, which is the matrizant of precisely the homogeneous 

equation (31) at the end of the period. Poincar£ and Birkhoff make an 

exception in that respect, as both adopted the Maupertuisian form of the 

Principle of Least Action as the premiss from which one ought to derive 

Hill's homogeneous equation (31). Thereby they were necessarily confined 

to Isoenergetic displacements, and from our theorem, it results quite 

clearly that the Principle of Least Action can lead only to Hill's 

homogeneous equation. As for the nonhomogeneous equation (16), it can 

only be derived from Hamilton's general Principle of Variation wherein the 

varied motion is not subject to the restriction that on it C remains 

constant. 

In Poincar^'s derivation of Hill's homogeneous equation, several 

unsatisfactory points were amended by Wintner (1930). By this expedient, 

Wintner came to recognize that a direct approach could be substituted to 

Polncare's oblique treatment. However, because he still adheres to an 

algebraic identity established by Poincard, Wintner (1931a) makes his 

construction unnecessarily clumsy. We like to acknowledge that our 

theorem is the offshoot of an effort aiming at simplifying Wintner's 

argumentation. 

A straightforward deduction of the homogeneous equation (31) has 

been proposed by Darwin (1897), using the arc length along the orbit as 
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A similar evaluation of 0 by Polncare In the case when A Is not 

uniformly zero was proved to be wrong by Wlntner (1930). On correcting 

Polncar§ on this point, Wlntner produced the formula (30) first for the 

constant function A, and then generalized it to any function A which 

is sufficiently dlfferentlable (Wlntner 1931a). 

3.  ISOENERGETIC DISPLACEMENTS 

Since it is linear, equation (16) has to be solved in two steps. 

In the first step, one has to find the matrizant of the homogeneous 

equation 

n + 0n - 0 (31) 

obtained from (16) by omitting the right-hand member. In point of fact 

this amounts also to putting y ~ 0 in the right-hand member of (16). 

Therefore, the solutions of (31) with the functions determined from the 
o 

resulting quadrature (18) are the normal and tangential components of 

displacements which belong to the particular value y = 0 In the Integral. 

For this reason, they are called isoenergetio  by Wlntner (1931a). 

Conversely, of course, the normal component of an isoenergetic displacement 

is a solution of the homogeneous equation (31). 

This exceptional character of the isoenergetic normal displacements 

has not been recognized quite distinctly by Hill in his Lunar Theory. As 

a consequence later authors lost it out of sight, and several of them 

resorted to unconvincing arguments in order to justify the selection of 

isoenergetic displacements. Actually, in relation to the equation (16), 
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the Independent variable. Darwin's treatment has been simplified by 

Plummer (1918). Professor Danby has Informed us that he has extended 

Plummer's argumentation to encompass the nonhomogeneous equation (16). 

As we know, the general solution of (31) Is a linear combination 

n(t) « on^t) + ßn11^) (32) 

of two particular solutions satisfying respectively the Initial 

conditions 

n^O) - 1,   n1«)) - 0, (33) 

nII(0) - 0,  nII(0) - 1. (34) 

The real numbers a and ß are the two arbltary constants of 

Integration.  Besides, since the Wronsklan of any pair of solutions for 

(31) is a constant, we have that 

nI(t)nII(t) - nI(t)nII(t) - 1. (35) 

Therefore, the matrlzant of (31) which is the matrix 

/n^t)  nII(t) 

N(t) - | 1 (36) 

WOO  nII(t) 

is unlmodular, so that its inverse is simply the matrix 

N'V) »I 

,.11.,.   II^x 'n (t) -n  (t) 

.-n^t) n^t) 
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Consequently from the expression of the general solution of (16), 

namely 

0 
(    V^M) + 2YN(t) [ N^Cs)/ 
\n(t)/     \n0/        •'O     \[A(s)+4 

ds, 
4.(s)]/V(s)/ 

we conclude that the function 

n(t) - nI(t)n0 + n
II(t)n0 + 2Y[n

I(t)a(t)+nII(t)b(t)] (37) 

where 

t 

0 
(t) » - J nII(s)[A(s)+i(s)]/V(s)d£ 

f*  I 
b(t) = j    n (s)[A(s)+<|,(s)]/V(s)d! 

(38) 

0 

Is, among all normal displacements defined by the initial conditions 

n. and n-, the one which gives the value y    to the integral (14). 

In most instances, neither 0 nor the right-hand member of (16) 

can be produced in literal form, hence the basic isoenergetic normal 

displacements n  and n   can be obtained only by numerical integration. 

As a result, one should look for a better way of obtaining the general 

normal displacement (32) than by performing the quadratures (38). Let 

us consider the equation 

n + 0n - 2(A+^)/V (39) 

and denote by n    its solution determined by the initial conditions 

nIII(0) - nIII(0) - 0. 
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Then yn is the particular solution of (31) which satisfies the 

initial conditions n(0) « n(0) - 0, and, in view of (37), the 

general solution of (16) can also be given the form 

1   .     n    ll II1 //AN n « an + ßn  + Yn (^0) 

where a and 8 are two arbitrary constants of integration. 

4.  ISOENERGETIC CORRECTOR 

Let us assume that xn, yn, x«, y« are approximately the initial 

conditions for a periodic orbit belonging to the energy constant C»; 

let T denote an approximate estimate of its period. We represent by 

x(t), y(t) the solution of the equations (1) which satisfies the initial 

conditions XQ, y0, x0 and y0. 

The problem is to determine the first order corrections u(t), v(t) 

such that 

X(t) = x(t) + u(t),   Y(t) = y(t) + v(t) 

be, for the same Painleve constant C , a closer approximation to the 

periodic orbit.  The corrections to the initial orbit imply that the 

approximate period T will be modified at the first order by an amount 

AT. 

Let (J>n denote the inclination on the x-axis of the velocity at 

the initial time t = 0 along the initial orbit. By orthogonal projections 

on the initial tangent and the initial normal, we obtain the periodicity 

conditions in the following form: 
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X(T+AT)cos ^0 + Y(T+AT)sin 0O - X(0)cos ^Q + Y(0)sin ^0, 

-X(T+AT)sin tQ + Y(T+AT)cos $Q = -X(0)sin ^ + Y(0)cos ^Q, 

X(T+AT)cos  4)    + Y(T+AT)sin $Q = X(0)cos  (j)    + Y(0)sln (j)., 

-X(T+AT)sin 4Q + Y(T+AT)cos  ^ = -X(0)sin  (j). + Y(0)cos (J)  . 

In these expressions, we perform the substitutions 

X(T+AT) » x(T) + x(T)AT + u(T), 

Y(T+AT) « y(T) + y(T)AT + v(T), 

X(T+AT) - x(T) + x(T)AT + u(T), 

Y(T+AT) « y(T) + y(T)AT + v(T). 

On omitting terms of order higher than one, we arrive at the correction 

equations 

[u(T)-u(0)]cos (j)0 + [v(T)-v(0)]sln ^ + VQAT = A1, 

[u(T)-u(0)]sin $Q - [v(T)-v(0)]cos 0O « A2, 

[u(T)-u(0)]cos <t>0 + [v(T)-v(0)]sln 4>Q +  VQAT = A3, 

[u(T)-u(0)]sln 0O - [♦(T)-^(0)]cos ^ - V^AT = A4, 

where we put 

A1 = -fx(T)-x0]cos ♦Q - [y(T)-y0]sln *0, 

A2 - -[x(T)-x0]sin 0O + [y(T)-y0]cos *0, 

A3 = -[i(T)-x0]cos *0 - [y(T)-y0]sln ^0, 

A4 " -[x(T)-x0]sln <pQ +  [y(T)-y0]cos ^Q. 

(41) 

(A2) 
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The corrections will be decomposed Into their normal and tangential 

components along the Initial orbit so that, at the first order, we have 

that 

u(T) - u(0) = ip(T)-p(0)]cos <|)0 - [n(T)-n(0)]sin ^0, 

v(T) - v(0) = [p(T)-p(0)]sln tQ  + [n(T)-n(0)]cos ^0, 

u(T) - ü(0) = [p(T)-p(0)]cos ^0 - [n(T)-A(0)]sln ^ 

- }0{[p(T)-p(0)]sln ((,0 + [n(T)-n(0)]cos <|,0}, 

v(T) - v(0) = [p(T)-p(0)]sln ^ + [n(T)-n(0)]cos ^ 

+ i0{[p(T)-p(0)]cos <|)0 - [n(T)-n(0)]sln tQ]. 

We substitute the expressions  (43)  in the correction equations  (41) 

and, after a few manipulations, we arrive at  the system 

n(T) - n(0) = -A2, 

n(T) - n(0)  = -A4 - A^Q, 

p(T) - p(0) + V0AT = A1, 

p(T) - p(0) + VQAT = A3 -  A2i0. 

We should now observe that these four correction equations are not 

Independent. Indeed from the variational Integral in the form (28), we 

deduce immediately that 

V0[p(T)-p(0)]  = V0[p(T)-p(0)] + 2V0(A0+i0)(n(T)-n(0)], 

which proves that,  at  the first order,  the fourth of the equations  (44) 

ought to be a linear combination of the first and the third one.     This 

Implies that, at the first order, we ought to have 

(43) 

(44) 
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Vl " V0(2VVA2 " V0A3 = 0- (45) 

Thus by computing this quantity at the period T along the initial 

orbit, we shall gain an estimate of the second order contributions to 

the corrections, which contributions we have decided to omit from the 

corrector scheme.  And it is one of the aims of the iteration on the 

corrections to bring these contributions down as close to zero as 

possible. 

The variational integral (28) informs us also that for the 

corrections on the initial orbit to be isoenergetic to the first order, 

it is necessary and sufficient that the displacements n and p be in 

turn isoenergetic.  As we settled down for an isoenergetic corrector, 

from now on in this paragraph, we shall restrict ourselves to 

Isoenergetic displacements. 

Thus the normal correction will present itself as the linear 

combination 

n = an + ßn . (46) 

Consequently, since the quadrature (18) is linear in p and n,  the 

tangential correction will be of the form 

I . o II m\ p = ap + ßp (A7) 

where    p      (resp.     p     )   results from    n       (resp.    n    )   in virtue of  the 

quadrature 

£(*)  =  2(A+i)f  . (48) 
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Before we fix the initial conditions p (0) and p (0)  requested 

by the quadratures, we should realize that, since the dynamical system 

is conservative, the selection of an initial value p(0)  for the 

tangential displacement amounts to nothing else than a translation of 

the time origin, which is an irrelevant operation when the problem is 

to determine the initial conditions and the period of a periodic orbit. 

Therefore, without any loss of consistency, we can impose that 

P1«)) = pII(0) = 0. (49) 

In geometrical terms, the only displacement that our corrector provides 

for the position is a shift along the normal to the original orbit at 

the initial position. 

On using the initial conditions (33), (34), (49) and on substituting 

(46) and (47) in the correction equations (44), we readily obtain that 

the corrective displacement a along the normal and the modification ß 

for the initial normal velocity are solutions of the linear system 

ci[nI(T)-l] + ßn1^!) = -A2> 

an^T) + ß[nII(T)-l] = -^  - A^Q. (50) 

In view of (35), its determinant is found to be equal to 

2 - [nV)-^11^)]. 

Thus the cases when the trace 

Tr(T) = nI(T) + nII(T) 
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of the matrlzant    N(T)    for Hill's homogeneous equation is equal to    2, 

turn out  to be singularities for our corrector scheme.    As we  rule them 

out of order here, we may assume that  the system (50)  has a unique 

solution.    Then much in the same way as we did for the system  (50), we 

extract  from the third of the equations  (44)  the first order correction 

to the period: 

AT = [A1-apI(T)-ßpII(T)]/Vc. (51) 

Once the factors    a    and   B   have been determined, we can compute 

the corrections to the initial conditions in Cartesian coordinates through 

the following sequence of formulae 

Ax0 = u(0) = -a sin (JJQ, 

Ay0 - v(0)  = a cos  <t>Qi 

Ax0 = ü(0) = a[2A(x0,y0)+$0]cos $Q- 3 sin $Q, 

Ay0 = v(0) = a[2A(x0,y0)+i0]sin (^ + ß cos  ^0. 

On inserting  the new initial positions 

xo + AV    yo + Ayo 

into Painlev^'s integral (2) where the constant C is given the value 

Cn, we compute the new norm 

V* = [2W(x0+Ax0,y0+Ay0)-C0]
lä 

of the velocity vector. But the quantities 

^0 + ^0'  ^0 + ^0 
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give the new direction of this vector.  In consequence, we compute the 

norm of this direction vector 

v0= [(v^o)2 + (VAV2]i5 

so that  for the new initial velocities we obtain the numbers 

0     V„      '       0     v„ 

5.  TANGENTIAL PREDICTOR 

Given a periodic orbit 

x(t;t0,x0,y0,x0,y0;C0),   y(t;t0,x0,y0,x0,y0;C0) 

with period    !_,    which is determined at time    tn    by the initial 

conditions    (xn,yn,x-,y )     such that Palnleve's constant takes the 

value    €„,    let us assume that,   for this orbit,  the matrix (6)  is 

of rank    4.    Thus there exists  in the neighborhood of    Cn    a natural 

family    0(C)    of periodic orbits which contains the given periodic 

orbit.     Moreover,  since the continuation    0(C)    is analytic,  the family 

is represented by expansions of the form 

X(t;C0+AC)  = x(t;C0)  + AC-~x(t;C0)  +•••, 

Y(t;C0+AC)  = y(t;C0)  + AC •-^ y(t;C0) +•••, 

and the period T along the natural family likewise takes the form of 

a series in AC: 

(53) 
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T(C0+AC) -T0 + AC.^T0+... . (54) 

The first order of the series (53) have to check to the first order the 

variational integral 

Wx(x(t;C0),y(t;C0)) ^x(t;C0) + Wy(x(t JCQ) fy(t JCQ)) ^ y(t;C0) 

-x(t;C0)^i(t;C0) .y(t;C0)^y(t;C0) =^ 

Basically we do concern ourselves here with the problem of actually 

computing as function of the time the displacement  (3x(t;C0)/8C,3y(t;C0)/3C) 

which causes the varied orbit to be periodic with the modified period (54). 

For the sake of convenience, we rather put 

Y-^C.  u.2f.  v.2|*.  AT=2§. 

In these notations, the problem can be reformulated as that of finding a 

displacement  (u,v) which satisfies the variational integral 

Wu+Wv-xü-yv=l (55) x    y        -^ 

and is such that, for y    sufficiently small, the orbit 

X(t) = x(t) + Yu(t) +•••   Y(t) = y(t) + Yv(t) +••• 

be periodic with period 

T = T0 + yAT. 

Exactly as we did when we set up the corrector scheme, we project the 

first order conditions of periodicity orth( (jonally onto the tangent and 

the normal at the initial point of the given orbit 0(C0) .  Introducing 
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the^eln the tangential and normal components of the displacement, we 

eventually arrive at the following conditions of periodicity 

n(T) - n(0) = 0, 

n(T) - n(0) « 0, 

p(T) - p(0) + V0AT - 0, 

p(T) - p(0) + V0AT - 0. 

But, in view of (55), the normal and tangential displacements satisfy 

the first integral 

Vp - Vp - 2V(A+$)n - 1. (57) 

It implies in particular that 

V0[p(T)-p(0)] = Vo[p(T)-p(0)] + 2V0(A0+^0)[n(T)-n(0)], 

so that the third condition of periodicity turns out to be a linear 

combination of the first and the second one. 

Now from (57), we also conclude that the normal displacement is a 

solution of Hill's nonhomogeneous equation 

n + 0n « 2(A+(|))/V. (58) 

Then, as we have shown above, it is a linear combination of the type 

I    II _,  III 
n * an + 3n  + n  , 

I      II 
where n  and n   are the basic solution of Hill's homogeneous 

equation, and n    is the particular solution of (58) for the initial 
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conditlons    n      (0) ■ n      (0) ■ 0.    Correspondingly the tangential 

displacement is the linear combination 

I   .   0  II ^     III p *= ap    + ßp     + p 

where p    is given by the quadrature 

-1 {£—]   = 2 ^ n111 - ^- 
dt \ V /   ' V n     v2 

for the usual initial conditon    p      (0)  - 0. 

As a result of all preceding remarks,  the conditions of periodicity 

(56)  becomes 

ctlnV)-!] + ßn11^) = -n111^), 

an^T) + ß[nII(T)-l] = -n111^). (59) 

ap^T) + ßp11^) + V0AT = -p111^). 

The determinant of the first two equations is equal to 2 - Tr(T). 

For the sake of brevity we shall not discuss here the singular case of a 

periodic orbit for which Tr(T) ■ 2, i.e. of an orbit whose characteristic 

exponent is equal to zero.  Let it be mentioned that it occurs only In 

exceptional circumstances, like a relative extremum for the period function 

T(C),  a bifurcation on the natural family 0(C)  or even an essential 

singularity beyond which no analytical continuation of the manifold is 

permissible, which is what Wintner (1931a) calls a natural temination  of 

the family.  In principle these situations have been analyzed by Poincar^ 

(1899).  Recently they have received more careful attention from Hdnon 

(1965) in relation to several natural families of synodically symmetric 

orbits in the Restricted Problem of Three Bodies. 
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Once the coefficients a and ß have been obtained, we can compute 

the derivations at C = C0 of the Initial conditions which determine 

the periodic orbit ö(Cn)» namely 

~x0(C0) -|u(0) = -^a sin ^0. 

£y0(C0) =|v(0) =|a cos *0. 

All    C0S *0    1        • 1 
± x0(C0) = ^ u(0) » - 2 -^ + 2(2A0^0)a C0S *0 - 2 ß sin *0' 

j 1 , sin «I*«  -I -I 

± y0(C0) = j v(0) = - 2 -^ + 2(2AO+i0)a Sin *0 + 2 ß COS V 

In geometric terms, we hold here a tangent to the manifold (7(C)  at 

the point CL.  Thus in order to obtain a first order approximation to 

the next orbit in the family which lies on the manifold ■^(Cn+ C) 

determined by the integral (2), we suggest moving the initial point to 

the point whose coordinates are 

xo ^ xo + AC * Ä W« yo = yo + hC"h W- 
Then we compute the norm of the velocity vector from Painleve's Integral: 

V* - [2W(x*,y*)-C0-AC]
J5. 

At last we estimate the direction of this vector by the two numbers 
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v0  ^0  y0'' ' 

the new initial velocity will have for components 

x 
0 0 x* = V* tr^     v* = V* ~ 

0    0 V 0   0 v 
0 

At this stage, then we resort to the corrector scheme to move the 

newly obtained initial conditions (point B in Fig. 1) by successive 

approximations along the manifold .^(CL+AC)  right onto those of the 

periodic orbit Ö(C0+AC)  (point A1 in Fig. 1). 

^(C+AC) 

Figure 2. Diagram of numerical continuation for a natural family of 
periodic orbits. 
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6.  CHARACTERISTIC EXPONENTS 

As a by-product of our numerical computation, we collect immediately 

the nontrivial characteristic exponents of each periodic orbit that we 

compute. 

Let co be one of these exponents.  There exists a displacement of 

the orbit which is of the form 

u(t) = e^UCt),   v(t) = e^Vit) (61) 

where U and V are periodic functions with period T. We prove that 

the displacement (61) is isoenergetic. Indeed, along the varied orbit, 

the first order variation of the energy integral is of the form 

Y = P(t)ea)t (62) 

where P is a periodic function with period T.  Since this variation 

is an integral of the variational equations, (13) implies that P is 

identically equal to zero, which means that the constant y Is equal to 

zero, and this establishes that (61) is an isoenergetic displacement. 

Now the normal component of (61) is of the form 

n(t) - ea,tN(t) (63) 

where N is a periodic function with period T.  But (63) expresses 

precisely that u is a characteristic exponent of Hill's homogeneous 

equation. 

It follows that, in order to compute the nontrlvial characteristic 

exponents of a periodic orbit, It is necessary and sufficient to 
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calculate the characteristic exponents of Hill's equation associated 

with It. 

But as we know, these quantities are such that 

UJT     ,        -a)T 
s, = e    and   s. = e 

are the eigenvalues of the matrlzant N(T) given by (36) at the end of 

the period of the function 0, which Is precisely the period of the orbit. 

Therefore s.. and s^ are the roots of the characteristic equation 

s2 - [nI(T)+nII(T)]s + [nI(T)nII(T)-nII(T)nI(T)] = 0. 

In view of the Wronsklan Integral (35), it can even be written simply as 

s2 - Tr(T)s +1=0. (6A) 

Consequently, the trace Tr(T) can be used as an index of the 

stability  of the orbit. 

a) If |Tr(T)| > 2, the characteristic exponents of the orbit 

are of the unstable type. 

b) If  |Tr(T)| < 2,  they are of the stable type. 

c) Tr(T) = +2 or -2 represents what Wintner terms the two 

cases of Indifferent stability. 

7.  SYMMETRIC ORBITS 

Let us assume that the functions W and A which characterize the 

dynamical system have the following symmetry property: 

W(x,-y) - W(x,y),   A(x,-y) - A(x,y) 
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identically in the configuration plane. 

Then the substitutions 

t -► -t,       y -^ -y 

leave the equations of motion unchanged.  This invariance in turn implies 

that, if the pair x(t),y(t)  is a solution of the equations of motion 

(1), then the pair C(t),n(t)  such that 

Kit)  = x(-t),  n(t) = -y(-t) 

is also a solution ("Principle of Symmetry").  In particular, a solution 

defined by the initial conditions  ^n'^n'^n'^n^ such that 

y0 = x0 = 0 (65) 

is Symmetrie  with respect to the x-axis.  Indeed, in view of Cauchy's 

theorem of uniqueness, the Principle of Symmetry results here in the 

identities 

x(-t) = x(t),   y(-t) = -y(t). (66) 

It is easily checked that the conditions (66) which define an orbit 

symmetric with respect to the x-axis imply the following identities 

V(-t) - V(t),   cos (K-t) - -cos (Kt), 

li-t)  ■ i(t),   sin (K-t) - sin (j)(t). 

As a result, along such a symmetric orbit, the coefficient 0 in Hill's 

equation is an even function of the time. 
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Now we propose to show that, along the symmetric orbit defined 

by the initial conditions   (65),  the isoenergetic normal displacement 

I II n       (reap,    n    )  is an even function  (resp.  an odd function) of the 

time. 

Indeed the resolvent N(t;0) of Hill's equation is characterized 

as the solution, defined by the initial condition 

N(0;0) = I2, 

to the differential matrix equation 

N(t;0) = H(t)N(t;0) (67) 

where 

'0    1> 
H(t) =(       | . (60) 

■0(0  0/ 

Since    0(-t) = 0(t),     the matrix function    H(t)     is an even function of 

the time.    Therefore,  the substitution    t -*■ -t    in  (67) provides the 

identity 

N(-t;0) = -H(t)N(-t;0). (69) 

If we put 

\0    -1, 

and observe that 

,2 S' - I2, SH(t)S = -H(t), 
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we see that (69) can also be written in the form 

■£■  [SN(-t;0)] = H(t)[SN(-t;0)]. 

Hence, on using the fact that N(t;0)  is the resolvent of (67), we 

come at last to the identity 

SN(-t;0) = N(t;0)S. (70) 

But the matrix identity (70) is equivalent to the scalar identities 

nVt) - n^t),   nII(-t) - -n^t). (71) 

This concludes the proof of the proposition. 

From (71) together with (18), it results that 

pVt) - -p^t),   p^-t) » pII(t). (72) 

Now that we have reviewed the symmetry properties of the displacements 

of a symmetric orbit, we impose the condition that the symmetric orbit be 

also periodic.  Let T be its period. 
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Because the matrix function H(t)  is periodic with the same 

period T, on substituting t + T for t in (67), we obtain that 

N(t+T;0) = H(t)N(t+T;0) 

and deduce therefrom that 

N(T+t;0) = N(t;0)N(T;O) 

at any time t.  In particular, for t = -T/2, 

N(T;0) = N~1(-T/2;0)N(T/2;0) 

This matrix formula gives rise to the scalar expressions 

nV) = n11^) = nI(T/2)nII(T/2) + nII(T/2)nI(T/2), (73) 

n^T)  = 2nI(T/2)nI(T/2), (74) 

n11^) - 2nII(T/2)nII(T/2). (75) 

Note that the Wronskian Integral taken at half the period. 

nI(T/2)nII(T/2)  - nI(T/2)nII(T/2) = 1, 
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gives for (73) an expression 

nV) = nII(T) = 1 - 2nI(T/2)II(T/2) (76) 

that will be useful later on. 

Formula (73) is especially interesting for the computation of the 

characteristic exponent of a symmetric periodic orbit.  Indeed, as we 

have seen before, 

2 cosh wT = Tr(T) = nI(T) + n1^!). 

so that, in view of (73), 

cosh^T = nI(T/2)nII(T/2) + nI(T/2)nII(T/2). (77) 

Thus integrating the orbital equations and Hill's homogeneous 

equation for only half a period  is sufficient to compute the 

characteristic exponent u of a symmetric periodic orbit. 

This proposition which was known to Darwin (1897) has been 

rediscovered by Moulton (191A) and applied extensively by Lemaitre in 

his explorations of the symmetric periodic solutions to Störmer's 

problem.  We plan to show that, like for the computation of the 

characteristic exponent, the numerical continuation of a natural family 

consisting of symmetric orbits requires the orbit and its intrinsic 

variations to be calculated over only half the period. 

In order to do so, we need to back up and consider the problem of 

converging iteratively toward the initial conditions determining a 
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non-necessarily symmetric periodic orbit. Here we shall start from 

the periodicity conditions 

X(T/2+AT/2) = X(-T/2-AT/2), 

Y(T/2+AT/2) = Y(-T/2-AT/2), 

X(T/2+AT/2) = X(-T/2-AT/2), 

Y(T/2+AT/2) = Y(-T/2-AT/2). 

To the first order in the variations, they generate the correction 

equations: 

u(T/2) - u(-T/2) + [x(T/2)-hc(-T/2)]AT/2 = -[x(T/2)-x(-T/2) ], 

v(T/2) - v(-T/2) + [y(T/2)+y(-T/2)]AT/2 = -[y(T/2)-y(-T/2)], 

ü(T/2) - ü(-T/2) + [K(T/2)-Hc(-T/2)]AT/2 = -[x(T/2)-x(-T/2) ], 

v(T/2) - v(-T/2) + [y(T/2)+y(-T/2)]AT/2 = -[y(T/2)-y(-T/2)]. 

By orthogonal projection onto  the tangent and the normal to the 

orbit at the  time    T/2,    we obtain from them that 

p(T/2)  - p(-T/2) + V(T/2)AT = A^ 

n(T/2)  - n(-T/2) « -A^,. 

p(T/2)  - p(-T/2) + V(T/2)AT - A3 - A2^(T/2), 

n(T/2)  - n(-T/2) = -A^,   - A1i(T/2), 

where we have put 

(79) 
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A1 = -[x(T/2)-x(-T/2)]cos (|.(T/2) -  [y(T/2)-y(-T/2)]sin ())(T/2), 

A2 = -[x(T/2)-x(-T/2)]sin ^(T/2) + [y(T/2)-y(-T/2)]cos (|)(T/2), 

A3 = -[x(T/2)-x(-T/2)]cos (^(T/2) -  [y(T/2)-y(-T/2)]sin (j.(T/2), 

A4 = -[x(T/2)-x(-T/2)]sin 4>(T/2) + [y(T/2)-y(-T/2)]cos 4.(T/2). 

If we use the correction equations  (79)  to set up an Isoenergetic 

corrector, we have to assume that 

I   .   0 II        , I      0  II a =  an    + ßn        and    p = ap    + 3p     > 

in which case the formulae (79) become 

a[nI(T/2)-nI(-T/2)] + 6[nII(T/2)-nII(-T/2)] - -A2, 

cx[nI(T/2)-nI(-T/2)] + ß[nII(T/2)-nII(-T/2)] = -A4 - A1(J(T/2), 

a[pI(T/2)-pI(-T/2)] + ß[pII(T/2)-pII(-T/2)] + V(T/2)AT - A1, 

a[pI(T/2)-pI(-T/2)] + ß[pII(T/2)-pII(-T/2)] + V(T/2)AT - A3 - A2i(T/2) 

Let us now assume that the generating orbit    x(t),y(t)     is 

symmetric with respect  to the axis    Ox,    its initial conditions 

satisfying the relations   (65).    Then,  in view of  the symmetry identities 

(66), we obtain that,  to the first order in the displacements, 

cos (j)(T/2)  - 0 

which implies that 

(80) 

(81) 

A1 - -2y(T/2)sin $072), A2 - 0, 

A4 » -2x(T/2)sin ♦(T/2), A-j - 0. 
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Taking also into account the symmetry identities (71) and (72), we 

are thus able to reduce the correction equations (81) to the simpler 

system 

ßnII(T/2) = 0, 

an
I(T/2) = [x(T/2)+y(T/2)<kT/2)]sin (t>(T/2), 

ap
I(T/2) + j V(T/2)AT = -y(T/2)sin 0(T/2), 

ßpII(T/2) = 0. 

This system needs to be discussed.  If n  (T/2) = 0, then ß 

is left undetermined by the first equation. However, in view of (75) 

and (76), we have in this case that n  (T) = 0 and n (T) = 1, so 

that we find ourselves here in the critical case where Tr(T) - 2. 

Moreover, from the variational integral (28) along an isoenergetic 

displacement  (y = 0). we also have that p  (T/2) ■ 0, since, to the 

first order, V(T/2) = 0.  Thus the fourth equation in (82) is 

compatible.  Conversely, if  p  (T/2) - 0,  then we can show in the same 

way that n  (T/2) = 0.  Hence, if we exclude the critical case when 

Tr(T) =2, we must have that  ß = 0. 

The second of the equations (82) has a unique solution if and only 

if nI(T/2) i  0.  But, in view of (74) and (76) nI(T/2) = 0 implies 

that n (T) ■ 0 and consequently that Tr(T) = 2.  Therefore, excluding 

once more the critical case, we can extract from the second of the 

equations (82) the correction displacement a and thereafter from the 

third equation the correction on the period.  It is then obvious that 

the corrections on the initial conditions are 

(82) 
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Ax0 » -a sin $Q, 

Ay0 = 0, 

Ax0 = 0, 

Ay0 = a[2A(x0,0)+i0]sin tQ. 

Actually the last relation is there only to determine the sign of the 

correction to be brought to the initial velocity yn.  Indeed, the new 

velocity orthogonal to the axis of symmetry should be computed in norm 

rather from the energy integral to make sure that the corrector absorbs 

even the second order variation of the energy constant. 

Concerning the above isoenergetic corrector for symmetric periodic 

orbits, the following remarks are of relevance. 

a) The fact that  ß is equal to zero whenever Tr(T) j  2, 

implies that the improved orbit generated by the corrector 

from a symmetric orbit is also a symmetric orbit. 

b) Here no use is made of the fact that, at half the period, 

the orbit ought to cross orthogonally the axis of symmetry.  We 

know from experience that, unless the orbit is of a simple shape, 

such a condition makes an uneasy criterion of periodicity.  For 

instance, if the second crossing occurs in the neighborhood of 

a singularity or close to a curve of zero velocity, the periodic 

orbit will show intrincate loops, which cross several Limes the 

axis of symmetry at points which are close to each other and 

with inclinations that cannot be discriminated distinctly.  In 

these circumstances, it is altogether too tempting to make 

subjective decisions, thereby running the risk of jumping into 

(83) 
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a natural family different from the one to be continued.  In 

our corrector, we converge to the symmetric periodic orbit 

nimply by shifting conveniently the initial position along 

the axis of symmetry, and by adjusting the period to this 

translation.  The fact that, ultimately when the procedure has 

converged, the periodic orbit crosses orthogonally the axis of 

symmetry is not a boundary condition that we impose to decide 

the time at which we stop the integration, but a consequence 

of an iteratively convergent adjustment of the initial 

conditions. 

When we use the correction equations (79) for a tangential predictor, 

we have to assume that 

I    II ,  III I  n II   III n = an + ßn  + n  ,   p = ap + ßp  + p 

and that 

A, = A« = A- = A, = 0. 
12   3   4 

Thus we arrive at the formulae 

a[nI(T/2)-nI(-r/2)J + ß[nII(T/2)-nII(-T/2)] = -[nIII(T/2)-nIII(-T/2)], 

a[n
I(T/2)-nI(-T/2)] + ß[nII(T/2)-nII(-T/2)] = -[nIII(T/2)-nIII(-T/2)],    (84) 

ci[pI(T/2)-pI(-T/2)] + ßfpII(T/2)-pII(-T/2)] + V(T/2)AT « -[pIII(T/2)-pIII(-T/2) ] , 

a[p
I(T/2)-pI(-T/2)] + ß[pII(T/2)-pII(-T/2)] + V(T/2)AT = -[pIII(T/2)-pIII(-T/2)]. 

At this stage,  we should notice that,  along a symmetric orbit,  the normal 

displacement    a ij^ an even function of the time while the resulting 

tangential displacement    p is an odd function of the time.    Therefore, 



-43- 

the predictor formulae (84) become 

ßnII(T/2) = 0, 

anI(T/2) = -n111^^). 

ap^T/Z) + j V(T/2)AT = -pIII(T/2), 

ßpl(T/2)  = 0. 

As we have seen above, if we exclude the critical case when Tr(T) - 2, 

we must take 3=0.  In which case, the second of equations (85) yields 

a unique determination for a while the third equation provides the 

tangential  coefficient AT = 2dT /dC.  Thus in reference to a symmetric 

t« „iodic orbit. 

dC W = - 2 a Sin ^O' 

i ^V  = 0' 

dC i0(C0) = 0' 

(85) 

(86) 

, .. sin <!>«  , 

dC W = " 2 ~~V^- +  2(2A0+(i0)a Sin *0- 

We should observe that, from a symmetric periodic orbit which is not 

singular (Tr(T) j  2),  the tangential predictor generates only symmetric 

orbits.  In other words, in the neighborhood of a symmetric periodic orbit, 

a natural family consists only of symmetric orbits, and it can be 

continued by a sequence of nonsymmetric ones only if it. goes through a 

symmetric orbit: whose characteristic exponent is zero. 
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8.  ISOENERGETIC VARIATIONS WITH RESPECT TO A PARAMETER 

We consider here conservative dynamical systems in which the 

characteristic functions A and W depend on a parameter e.  Let us 

assume that the right-hand members of the equations (1) verify conditions 

sufficient for the solutions of (1) to be unique and continuously 

differentiable in all their arguments for c in a certain neighborhood 

of eQ.     Suppose that x(t;e)t  y(t;e) is a particular solution of (1) 

for every e in that neighborhood of e- and reduces at e. to the 

solution 

x(t),   y(t). (87) 

Then the partial derivatives 

u(t) = ^7x(t;e0),   v(t) = ~ y(t;e0) 

are solutions of the varlational equations 

Ü « 2Av + (Wxx+2Axy)u + (Wxy+2Ayy)v + (Wxe+2Aey) , 

(88) 

v « -2Au + (W -2A x)u + (W -2A x)v + (W -2A x) , 
xy  x       yy  y       ye  e 

to  which belongs the varlational integral 

Y = W +Wu + Wv-xü-yv. (89) 

If a displacement of the solution (87) caused by a variation Ae 

of the parameter e from its value en for the solution, i.e. a 

solution of the system (88), is such that the integration constant 

defined by (89) vanishes, then it is called an isoenergetio variation 

of the solution  with respect to the parameter E. 
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Functions p(t) and n(t) are called respectively tangential 

and normal displacements of the solution (87) with respect to the 

parameter e if the equations (88) possess a solution u(t),v(t) 

by means of which p(t) and n(t) are representable in the form 

(15). In particular, if they belong to a displacement u(t),v(t) 

for which the integration constant y in (89) vanishes, then they 

are called isoenergetic. 

Proceeding exactly as in paragraph 2, one is able to prove the 

following proposition: 

THEOREM. A numerical function    n » n(t) is an isoenergetic 

normal displacement of (87) caused by a variation of the parameter    e 

if and only if it satisfies the linear differential equation 

« + On - -2W ^ -2A V + W cos 0 - W sin $. (90) 
e V    £    ye   r   xe 

In which case, a numerical function   p ■ p(t)    is the corresponding 

isoenergetic tangential displacement of (87) if and only if it is given 

by the quadrature 

W 
.i_ AEN . on ^ + — (91) 
dt   V      ^n    V   + v2  • Cyi; 

The homogeneous linear differential equation associated to  (90)  being 

Hill's equation,  the Isoenergetic normal displacements of  (87) with respect 

to the parameter are evidently of the general  form 

n ■ an   + Bn     + n  , 

/ 



-46- 

where    a    and    ß>   are constants to be determined by the initial conditions, 

and    n      is the particular solution of the nonhomogeneous Hill's equation 

(90)  satisfying the initial conditioi ? 

ne(0) = ne(0) = 0. (92) 

9.     ISOENERGETIC CHANGE OF THE TIME VARIABLE 

The practical importance of the theorem stated in the preceding 

paragraph arises from its applications to Celestial Mechanics.     In a 

number of problems there occur fixed singularities which are not 

essential, such as the binary collisions in the Restricted Problem. 

It  is usual to remove them in two steps,  by a confonnal transformation 

of  the coordinates followed by a change of the  time variable in an 

isoenergetic way.    Consequently, in the transformed system,  the 

original constant of energy turns out  to have become a parameter,  and 

the variations with respect to    C   which form the basic ingredient of 

our tangential predictor are deprived of any meaning for the original 

problem unless they are isoenergetic in reference to the new problem. 

To convince ourselves how essential this restriction is,  let us recall 

what is meant by an isoenergetic change of the time in Celestial 

Dynamics. 

Consider a conservative dynamical system described by the Hamiltonian 

function   Jö   in the phase space    (q,p).    The equations of motion 

admit the integral 
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SKq.p)  = h (9/,) 

Denote by    E(h)     the manifold defined implicitly by  (94)   in the phase 

space    (q,p).     If  only solutions lying on the integral manifold    E(h) 

for a fixed value of the integration constant    h    are considered,  one 

can produce in a direct manner a rule for the introduction of a new 

time variable. 

Let    G(q,p)    be a nonzero numerical  function defined in the phase 

space of the system.     Along any solution     (q(t),p(t))    of  the  equations 

of motion  (93),  consider the new time variable    s    defined by the 

curvilinear integral 

s^) " f    n   /?     t   ^   • (95) J     G(q(u),p(u)) 

Define a conservative Hamiltonlan function 

#(q,p;h)  =   (^-h)G. (96) 

Then denoting by a prime differentiation with respect  to    s,    write the 

canonical equations generated by     Ot, 

q' -:Kp, p'  = -Jtq. (97) 

Denote by    F(h)     the manifold defined implicitly by the invariant 

relation 

Ä(q,p;h)  = 0 (98) 

in the phase space. 

V 
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As a result of a proposition established by Painlev6, only the 

solutions of the equations (93) in the integral manifold E(h) 

correspond to solutions of the equations (97), and these lie in the 

manifold F(h).  Conversely, only the solutions of the equations (97) 

In the manifold F(h)  correspond to solutions of the equations (93), 

and these lie in the manifold E(h). 

This duality between the solutions in E(h) and those in F(h) 

is to be extended to the displacements of the orbits. 

Of a displacement  (6q,6p) of an orbit  (q(t),p(t))  solution of 

the equations (93), we say that it is ^-isoenergetic if the variation 

It causes to the Hamiltonian function is zero.  In the same way, we call 

^-isoenergetic a displacement of an orbit  (q,(s),p(s)) solution of the 

equations (97) such that 

6^= 0. 

The orbit obtained by displacing an orbit lying in the manifold    F(h) 

corresponds by Painlev^'s duality to an orbit  lying in    E(h)     if and only 

if  the displacement  is Ä-isoenergetic.     In which case,  since 

6X=GS$+ (S>-h)6G = Gö^ 

in view of  the fact  that    !£ = h    along the orbit,  to a displacement which 

is Jlf-isoenergetic corresponds by duality a displacement which is 

JÖ-isoenergetic.    Conversely,  the orbit obtained by displacing a solution 

of the equations  (93)   lying in the manifold    E(h)    corresponds by Fainlevd's 

duality to a solution of   (97)  lying in    F(h)     if and only if the 
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dlsplacement  is ^-isoenergetic;  accordingly to a displacement which is 

$?-isoenergetic corresponds by duality a displacement which is 

^-isoenerget ic. 

In consequence, when the numerical continuation of a natural 

family of periodic orbits for the system described by   £)    necessitates 

an isoenergetic change of the time,   the use of isoenergetic displacements 

is no longer optional, but it is a necessity. 

In the phase space defined by the Hamiltonian     Xt    the corrector 

part of our procedure goes without any modification at all,  since it  is 

based on isoenergetic variations.    As for the tangential predictor, we 

have to remark that,  in the phase space of  JK,    the energy constant    h 

is to be treated as a parameter.    Thus the rates of variation    n and 

III r p which we can compute in the phase space   cp    from a Hill equation 

of the type  (16)  should be computed  in the phase space   4f    in a 

^-isoenergetic way from a Hill equation of the type  (90). 
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CONCLUSIONS 

The method which we propose here for continuing numerically 

natural families of periodic orbits is valid for any conservative 

dynamical system. But to date we have applied it only to the 

planar Restricted Problem of Three Bodies, whether in barycentric 

synodical Cartesian coordinates or in regularizing parabolic 

coordinates. The program has generated with the same ease both 

symmetric and nonsymmetric orbits. The continuation of a branch 

through and beyond an ejection orbit has not caused any hardship; 

the calculation of characteristic exponents for orbits of close 

approach or for periodic collision courses did not either raise any 

difficulty.  Results in these directions will be reported soon. 

The algorithm involves only the first order variations. 

Consequently, it is unable to treat the singular cases of periodic 

orbits whose characteristic exponent is equal to zero.  These appear 

as singularities on the analytic manifold. But our procedures are 

open to the introduction of variations of a higher order, and we are 

presently engaged in exploring the possibilities offered by the second 

variations.  This way we hope to clarify some of these singular orbits, 

at least those at which the natural families present a bifurcation of 

order 2. 
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