
•tt

a

SP-2687

EXPLORATORY EXPERIMENTAL STUDIES COMPARIN

ONLINE AND OFFLINE PROGRAMING PERFORMANC

F31 H. Sackman W. J. Erikson E. E. Graf

: .•:• ,:,*•3 1967

,jU L 20 December 1966

* SP-2687

8 P a pro fessional paper

SYSTEM
3DLORATORY ERVIINTAL STUIES COWARIN S
OR= M OPILFU PNgRaNNG! pnUN AWSR DEVELOPMENT

Ht. Sackman CORPORATION
V. J. BrIkeon
2. 3. Grant 2500 COLORADO AVE.

SANTA MONICA
20 December 1966

CALIFORNIA
_ _ _ + i~ ii_ _ 1 • I r .. .IIII IIi

20 December 1966 1 SP-2M7

ABSTRACT

Two exploratory experiments conducted at System Development Corporation

compared debugging performance of programers working under conditions

of online and offline access to a computer. These are the first known

studies measuring the performance of programers under controlled con-

ditions for standard tasks. In the first study, two groups of six

subjects each, comprising a total sample of 12 experienced programers,

iebugged two types of programs under online and off line conditions in

accordance with a Latin-Square experimental design. The online con-

dition was the normal mode of operation for the SDC Time-Sharing System;

the offline condition was a simulated closed-shop with a two-hour turn-

around time. In the second study, following a similar experimental

design, two groups of protrausr trainees-four end five in each group

for a total of nine subjects--debugged two standard problems under

Interactive and noninteractive conditions. The interactive mode was

the normal SDC Time-Sharing System; the noninteractive mode was a

simulated uultiple-console, open-shop system.

Statistically significant results indicated substantially faster de-

bugging under online conditions in both studies. The results were

smiluous for central procusor time--one study showed loss computer

time for debuSging, and the other shoved more time in the online mode.

Perhaps the most important practical findins, overshadowing online/offline

difference, involves the laree and striking individual differences

20 December 1966 2 SP-2667

in programer performance. Attempts were made to relate observed

individual differences to objective measures of programer experience

and proficiency through factorial techniques. In Me with the

exploratory objectives of these studies, methodological problems

encountered in designing and conducting these types of experiments

are described, limitations of the findings are pointed out, hypotheses

are presented to account for results, and suggestions are made for

further research.

The research reported in this paper was sponsored by
the AdvanceJ Research Projects Agency Information
-rocessing Techniques Office and was monitored by the
Electronic Systea Division, Air Force Systems Command
under contract F 1962667C0004, Information Processing
Techaiques. with the System Developm t Corporatiod.

20 December 1966 3 SP-2687

CONTENTS

Page

ABSTRACT. 1

INTRODUCTIOi..... 5

1. EXPERIENCED PROGRAMER STUDY 9

1.1 Experimental Design 9

1.2 Method 10

1.2.1 Online and Offline Conditions 10
1.2.2 Experimental Problems. 11
1.2.3 Performance Measures 12

1.3 Results 13

1.3.1 Criterion Performance 13
1.3.2 Individual Differences. 16

2. PROGRAMERTRAINEE STUDY. 18

2.1 Experimental Design 18

2.2 Method. 18

2.2.1 Interactive and Noninteractive Conditions 19
2.2.2 Experimental Problem. 19
2.2.3 Performance Measures 20

2.3 Results 20

2.3.1 Criterion Performance 20
2.3.2 Individual Differences. 21

3. INTERPRETATION..... 23

3.1 Online Versus Offline Programing Performance 24

3.2 Individual Differences 27

3.3 Future Research. .* . . . 4 . . 29

20 December 1966 4 8$-2687

3FhZR•I•CS, , . . • . , , , . . . 32

FIGURES

1. Experimental Design for the Experienced Programer Study 9

2. Epertmeutal Design for the Programer Trainee Study 18

TABLES

1. Experienced Programer Performance * . .%. . . .* . . .e 14

2. Comparative Result. of Three Analyses of Variance . . & . .e. 14

3. Range of Individual Differences In Programing Performance . . . 16

4. ?Pogrowlr Trtmee Petormee. 21

20 December 1966 5 SP-2687

EXPLORATORY EXPERIMENTAL STUDIES COMPARING ONLINE

AND OFFLINE PROGRAMING PERFORMANCE

Computer programing, today, is a multi-billion d-llar industry. Major resourcez

are being expended on the development of new pro'raming languages, new software

techniques, and improved means for man-computer communications. As computer

power grows, and as computer hardware costs go down with advancing computer tech

nology, the human costs of computer programing continue to rise and will prcl r"l

greatly exceed the cost of hardware in the scheme of things to come. Amid all

these portents and signs of the growing importance and the dominating role of

computer programing in the emerging computer scene, one would expect that com-

puter programing would be the object of intensive applied scientific study. TbZ

is not the case. There is, in fact, an applied scientific lag in the study of

computer programers and computer programing, a widening and critical lag that

threatens the industry and the profession with the great waste that inevitably

accompanies the absence of systematic and established methods and findings, and

its substitutipn by anecdotal opinion, vested interests and provincialism.

The problem of the applied scientific lag in computer programing is strikingly

highlighted in the field of online versus offline programing. The spectacular

rise of time-shared computing systems over the last few years has raised a crit!

cal issue for many, if not most managers of computing facilities. Should they

or should they not convert from a batch-processing operation, or from some othei

form of noninteractive information processing, to time-shared operations? Spir:

controversy has been generated at professional meetings, in the literature and

20 December 1966 6SP-2687

grass-roots levels, but virtually no experimental comparisons have been made

to objectively test and evaluate these competing alternatives under controlled

conditions. Except for a related study by Gold (1966) which is in progress,

the two experimental studies reported in this article are the first, to our

knowledge, that Lave appeared on this central issue. They illustrate the prob-

lems and the pitfalls in doing applied experimental work in computer programing.

They spell out some of the key dimensions of the scientific lag in computer pro-

graming and they provide some useful guidelines for future work.

Time-sharing systems, because of requirements for expanded hardware and more

extensive software, are generally more expensive than closed-shop systems using

the same central computer. Time-sharing advocates feel that such systems more

than pay for themselves in convenience to the user, in more rapid program develop-

ment, and in manpower savings. It appears that most programers who have worked

with both time-ebarla" ed closed-sop ysetm anre enthusiastic about the online

way of life.

Time-sharirug, however, has its critics. Their arguments are often directed at

the efficiency of time-sharing; that is, at how much of the computational power

of the machine is actually used for productive data processing as opposed to how

much is devoted to relatively non-productive functions (program swapping, idle

time, etc.). These critics (see Patrick 1963, Emerson 1965, and McDonald 1965)

claim that the efficiency of time-sharing systems is questionable when compared

to modern closed-shop methods, or with economical small computers. Since online

systems are presumably more expensive than offline systems, there is'little

20 December 1966 S7 P-2687

Justification for their use except in ti'ose situations where online access is

mandatory for system'operations (for example, in realtime command and control

systems). Time-sharing advocates respond to these charges by saying that, even

if time-sharing is more costly with regard to hardware and operating efficiency,

savings in programer man-hours and in the time required to produce working pro-

grams more than offset such increased costs. The critics, however, do not

concede this point either. Many believe that programers grow lazy and adopt

careless and inefficient work habits under time-sharing. In fact, they claim

that instead of improving, programer performance is likely to deteriorate.

The two exploratory studies summarized here are found in Grant and Sackman (1966)

and in Erikson (1966). The original studies should be consulted for technical

details that are beyond the scope of this article. They were performed by the

System Development Corporation for the Advanced Research Projects Agency of the

rDietment of Defense. The first study is concerned with online ve..us offline

debugging performance for a group of 12 experienced programers (average of seven

years experience). The second investigation involved 9 programer trainees in a

comparison of Interactive versus noninteractive program debugging. The high-

lights of each study are discussed in turn and the composite results are inter-

preted in the concluding action. For easier reference, the first experiment

is described "s the "Izpe:.leced Prosrmer" study, and the second as the "Pro-

gtrmer Trainee" study.

The two experiments were conducted using the SDC Time-Sharing System (TSS) under

the normal online condition and simulated offlins or noninteractive conditions.

TSS is a general-purpose systm (see Schwsrta, Coffman and Weissman, 1964)

IS !IP.

'Nils

20 December 1966 8 SP-2687

similar in rcuny respects to the Project MAC system -e Scherr, 1966) at the

Massachusetts Institute of Technology. Schwartz (1965) has characterized this

class of time-sharing system as providing four important properties to the

user: "instantaneous" response, independent operation for each user, essentially

simultaneous operation for several users, and general-purpose capability.

TSS utilizes an IBM &N/FSQ-32 computer. The following is a genieral description

of its operation. User programs are stored on magnetic tape or in disc :ile

memory. When a user wishes to operate his program, he goes to one of several

teletype consoles; these consoles are direct input/output devices to the Q-32.

He instructs the computer, through the teletype, to load and activate his pro-

gram. The system then loads the program either from the disc file or from

magnetic tape into active storage (drum memory). All currently operating pro-

grams are stored on drum memory and are transferred, one at a time, in turn,

into core memory for processing. Under TSS scheduling control, each program is

processed for a short amount of time (usually a fraction of a second) and is

then replaced in active storage to await its next turn. A program is trans-

ferred to core only if it requires processing; otherwise it is passed up for

that turn. Thus, a user may spend as much time as he needs thinking about what

to do ne=:t without wasting the computational time of the machine. Although a

time-sharing system processes programs sequentially and discontinuously, it

gives users the illusion of simultaneity and continuity because of its hsgh

speed.

20 December 1966 q SP-2667

1. EXPERIENCED PROGRAMER STUDY

1.1 EXPERIMENTAL DESIGN

The design used in this experiment is illustrated in Figure 1.

ONLINE OFFLINE

GROUP I Algebra (6) Maze (6)

GROUP II Maze (6) Algebra (6)

TOTALS (12) (12)

Figure 1. Experimental Design for the Experienced
Programer Study

The 2 by 2 Latin-Square design with repeated measures for this experiment should

be interpreted as follows. Two experimental groups were employed with six sub-

jects in each; the two experimental treatments were online and offline program

debugging; and the Algebra and Maze problems were the two types of programs that

were coded and debugged. Repeated measures were employed in that each subject

solved one problem task under online conditions and the other under offline con-

ditions, serving as his own control. Note in Figure 1 that each of the two pro-

gram problems appears once and only once in each row and column to meet the require-

ments of the 2 by 2 Latin-Square. Subjects were assigned to the two groups at

random, and problem order and online/offline order were counterbalanced.

The statistical treatment for this design involves an analysis of variance to test

for the sipnificance of mean differences between the online and offline conditions

20 December 1966 10 SP-2687

and between the Algebra and Maze problems. There are two analyses of variance,

corresponding to the two criterion measures, one for programer man-hours spent

in debugging and the other for central processor time. A leading advantage of

the Latin-Square design for this experiment is that each analysis of variance

incorporates a total of 24 measurements. This configuration permits maximum

pooled sample size and high statistical efficiency in the analysis of the results-

especially desirable features In view of the small subject samples that were used.

1.2 METHOD

A number of problems were encountered in the design and conduct of this experi-

ment. Many are illustrative of problems in experimenting with operational com-

puter systems, and many stemed from lack of ezperiaental precedent in this area.

Key problems are described below.

1.2.1 Online and Offline Conditions. Defining the online condition posed no

problems. Programers debugging online were simply instructed to use TSS in the

normal fashion. All the standard features of the system were available to them

for debugging. Defining the offline condition proved more difficult. It was

desired to provide a controlled and uniform turnaround time for the offline con-

dition. It was further desired that this turnaround time be short enough so that

subjects could be released to their regular jobs and the experiment completed in

a reasonable amount of time; on the other hand, the turnaround time had to be

long enough to constitute a signifi-iant delay. The compromise reached was two

hours--considerably shorter than most offline systems and yet long enough so that

most of the programer-subjects complained about the delay.

20 December 1966 11 SP-2687

It was decided to simulate an offline system using TSS and the Q-32 by requiring

the programer to submit a work request to a member of the experimental staff to

have his program operated. The work request contained specific instructions

from the programer on the procedures to be followed in running the program--

essentially the same approach used in closed-shop computer facilities. Strictly

speaking, then, this experiment was a comparison between online and simulated

offline operations.

Each programer was required to code his own program, using his own logic, and

to rely on the specificity of the problem requirements for comparable programs.

Program coding procedures were independent of debugging conditions, i.e.,

regardless of the condition imposed for checkout--online or offline--all pro-

gramers coded offline. Programers primarily wrote their programs in JTS (JOVIAL

Time-Sharing--a procedure-oriented lauguage for time-sharing).

1.2.2 Experimental Problems. Two program problem statements were designed

for the exper•.•wnt. One problem required the subjects to write a program to

interpret teletype-inserted, algebraic equations. Each equation involved a single

dependent variable. The program was required to compute the value of the dependent

variable, given teletype-inserted values for the independent variables, and to

check for specific kinds of errors in teletype input. All programers were referred

to a published source (Samelson and Bauer, 1960) for a suggested workable logic to

solve the problem. Programs vritten to solve this problem were referred to as

Algebra programs.

20 December 1966 12 SP-2687

The other problem called for writing a program to find the one and only path

through a 20 by 20 cell maze. The programs were required to print out the

designators of the cells constituting the path. Each cell was represented as

an entry in a 400-item table, and each entry contained information on the

directions in which movement was possible from the cell. These programs were

referred to as Maze programs.

1.2.3 Performance Measures. Debugging time was considered to begin when

the programer had coded and compiled a program with no serious format errors

detected by the compiler. Debugging was considered finished when the subject's

program was able to process, without errors, a standard set of test inputs. Two

basic criterion measures were collected for comparing online and offline

debugging--programer man-hours and central processor (CPU) time.

Man-hours for debugging were actual hours spent on the problem by the programer

(including turnaround time). Hours were carefully recorded by close personal

observation of each programer by the experimental staff in conjunction with a

daily time log kept by the subjects. Discrepancies between observed time and

reported time were resolved by tactful interviewing. TSS keeps its own accounting

records on user activity; these records provided accurate measures of the central

processor time used by each subject. The recorded CPU time included program

execute time, some system overhead.timae and times for dumping the contents of

program or system registers.

A variety of additional measures were obtained in the course of the experiment

to provide control data, and to obtain additional Indice of programer performance.

20 December 1966 13 SP-2687

Control measures included: TSS experience, general programing experience

(excluding TSS experience), type of programing language used (JTS or machine

language), and the number of computer runs submitted by each subject in the

offline condition. Additional programer performance measures included: man-

hours spent on each program until a successful pass was made through the com-

piler (called coding time), program size in machine instructions, program

running time for a successful pass through the test data, and scores on the

Basic Programing Knowledge Test (BPKT)--a paper-and-pencil test developed by

Berger, et al., (1966), at the University of Southern California.

1.3 RESULTS .

1.3.1 Criterion Performance. Table 1 shows the means and standard deviations

for the two criterion variables, debug man-hours and CPU time. These raw-score

values show a consistent and substantial superiority for online debug man-hours,

from 50 percent to 300 percent faster than the offline condition. CPU time shows

a reverse trend; the offline condition consistently required about 30 percent less

CPU time than the online mode. The standard deviations are comparatively large

in all cases, reflecting extensive indiv4dual differences. Are these results

statistically significant with such small sgmples?

Table 2 shows three types of analysis of variance applied to the Latin-Square

experimental design. The first is a straightforward analyris of raw scores. The

second is an analysis of square-root transformed scores to obtain more normal

distributions. The third is also an analysis of variance on the square-root

scores, but with the covariance associated with programer coding skill partialled

20 December 1966 14 SP-2687

out statistically; that is, individuals were effectively equated on coding

skill so that ouline/offline differences could be tested more directly.

Table 1. Experienced Programer Performance

Debug Man-Hours

Alnebra Mate

Online Offline Online Offline

Mean 34.5 50.2 4.0 12.3

SD 30.5 58.9 4.3 8.7

CPU Time (sec.)

Online Offline Online Offline

Mean 1266 907 229 191

SD 473 1067 175 136

Table 2. Comparative Results of Three Analyses of Variance

Significance Levels
Performance Raw Square Square Root
Measures Scores Root With Covariance

1. Debug Man-Hours
Online vs. Offline None .10 .025

Algebra vs. Mae .023 .001 .10

2. CPU Time

Online vs. Offline None None None

Algebra vs. Maze None .001 .05

20 December 1966 15 SP.-2687

These applications resulted in six analyses of variance (three for each criterion

measure) as shown in Table 2. The columns in Table 2 represent the three kinds

of analysis of variance; thE rows show the two criterion measures. For each

analysis of variance, tests for mean differences compared online versus offline

performance, and Algebra versus Maze differences. The entries in the cells show

the level of statistical significance found for these two main effects for each

of the six analyses of variance.

The results in Table 2 reveal key findings for this experiment. The first row

shows results for online versus offline performance as measured by debug man-

hours. The raw-score analysis of variance shows no significant differences.

The analysis on square-root transformed scores shows a 10-percent level of sig-

nificance in favor of online performance. The last analysis of variance, with

covariance, on square-root scores, shows statistically significant differences

in favor of the online condition at the .025 level. This progressive trend

toward more clearcut mean differences for shorter debug man-hours with online

performance reflects the increasing statistical control over individual dif-

ferences in the three types of analyses. In contrast to debug man-hours, no

significant trend is indicated for online versus offline conditions for CPU time.

If real differences do exist, along the lines indicated in Table 1 for more CPU

time in the online mode, these differences were not strong enough to show statis-

tical significance with these small samples and with the large individual dif-

ferences between programers, even with the square-root and covariance transfor-

mations.

20 December 1966 16 SP-2687

The results for Algebra versus Maze differences were not surprising. The Algebra

task was obviously a longer and harder problem than the Maze task, as indicated

by all the performance measures. The fairly consistent significant differences

between Algebra and Maze scores shown in Table 2 reflect the differential effects

of the three tests of analysis of variance, and, in particular, point up the

greater sensitivity of the square-root transformations over the original raw

scores in demonstrating significant problem differences.

1.3.2 Individual Differences. The observed ranges of individual differences

are listed in Table 3 for the 10 performance variables measured in this study.

The ratio between highest and lowest values is also shown.

Table 3. Range of Individual Differences in Programing Performautce

Performance Measure Poorest Score Best Score Ratio

1. Debug Hours Algebra 170 6 28:1

2. Debug Hours Maze 26 1 26:1

3. CPU Time Algebra (sec.) 3075 370 8:1

4. CPU Time Maze (sec.) 541 50 11:1

5. Code Hours Algebra 111 7 16:1

6. Code Hours Maze 50 2 25:1

7. Program Size Algebra 6137 1050 6:1

8. Program Size Maze 3287 651 5:1

9. Run Time Algebra (sec.) 7.9 1.6 5:1

10. Run Time Maze (sec.) 8.0 .6 13:1

20 Decemer 1966 17 Sr-2687

Table 3 points up the very large individual differences, typically by an order

of magnitude, for most performance variables. To paraphrase a nursery rhyme:

When a programer is good,

He is very, very good,

But when he is bad,

He is horrid.

The "horrid" portion of the performance frequency distribution is the long tail

at the high end, the positively skewed part in which one poor performer can

consume as much time or cost as 5, 10, or 20 good ones. Validated techniques

to detect and weed out these poor performers could result in vast savings of

time, effort, and cost.

To obtain further information on these striking individual differences, an

exploratory factor analysis was conducted on the intercorrelations of 15 per-

formance and control variables in the experimental data. Coupled with visual

inspection of the empirical correlation matrix, the main results were:

a. A substantial performance factor designated as "programing

speed," associated with faster coding and debugging,

less CPU time, and the use of a higher-order language.

b. A well-defined "program economy" factor marked by shorter

and faster running programs associated to some extent with

greater programing experience and with the use of machine

language rather than higher-order language.

This concludes the description of the method and results of the first study.

The second study on programer trainees follows.

20 Decmber 1966 18 SP-2687

2. FROGRAMER TRAINEE STUDY

2.1 EXPERIMENTAL DESIGN

A 2 by 2 Latin-Square design was also used in this experiment. With this

design, as shown in Figure 2, the Sort Routine problem was solved by Group I

(consisting of four subjects) in the noninteractive mode and by Group II (con-

sisting of the othcr five subjects) in the interactive mode. Similarly, the

second problem, a Cube Puzzle, was worked by Group I in the interactive mode

and by Group II in the noninteractive mode.

INTERACTIVE NONINTERACTIVE

GROUP I (4) Cube Puzzle Sort Routine

GROUP II (5) Sort Routine Cube Puzzle

TOTAL 9 Subjects

Figure 2. Ixperimental Design for the Programer
Trainee Study

Analysis of variance was used to test the significance of the differences between

the mean values of the two test conditions (Interactive and Noninteractive) and

the two problems. The first (test conditions) was the central experimental

inquiry, and the other v" of Interest from the point of view of control.

2.2 METHOD

Nine programer trainees were randomly divided into two groups of four and five

each. One group coded and debugged the first problem Interactively while the

other group did the same problem In a noninteractivs mode. The two groups

20 December 1966 19 SP-2667

switched computer system type for the second problem. All subjects used TINT

(Kennedy, 1965) for both problems. (TINT is a dialect of JOVIAL that is used

interpretively with TSS.)

2.2.1 Interactive and Noninteractive Conditions. "Interactive," for this

experiment, meant the use of TSS and the TINT language with all of its associated

aids. No restrictions in the use of this language were placed upon the subjects.

The noninteractive condition was the same as the interactive except that the

subjects were required to quit after every attempted execution. The subjects ran

their own programs under close supervision to assure that they were not inadver-

tently running their jobs in an interactive manner. If a member of the noninter-

active group immediately saw his error and if there were no other members of the

noninteractive group waiting for a teletype, then, after he quit, he was allowed

to log in again without any waiting period. Waiting time for an available con-

sole in the noninteractive mode fluctuated greatly, Wut typically involved minutes

rather than hours.

2.2.2 Experimental Problems. The two experimental tasks were relatively

simple problems that were normally given to students by the training staff. The

first involved writing a numerical sort routine, and the second required finding

the arrangement of four specially marked cubes that met a given condition. The

second problem was more difficult than the first, but neither required more than

five days of elapsed time for a solution by any subject. The subjects worked at

each problem until they were able to produce a correct solution with a run of

their program.

20 December 1966 20 S1-2687

2.2.3 Performance Measures. CPU time, automatically recorded for each

trainee, and programer man-hours spent debugging the problem, recorded by indi-

vidual work logs, were the two major measures of performance. Debugging was

assumed to begin when a subject logged in for the first time, that is, after he

had finisher coding his program at his desk and was ready for initial runs to

check and test his program.

2.3 RESULTS

2.3.1 Criterion Performance. A summary of the results of this experiment

is shown in Table 4. Analysis of variance showed the difference between the

raw-score mean values of debug hours for the interactive and the noninteractive

conditions to be significant at the .13 level. The difference bet- - the two

experimental conditions for mean values of CPU seconds was significant at the

.08 level. In both cases, better perform tc* (faster solutions) was obtainec

under the interactive mode. In the previour experiment, the use of square-root

transformed scores and the use of coding houre as a covariate allowed better

statistical control over the differences betwem Individual subjects. No such

result was found in this experiment.

If each of the subjects could be directly compared to himself as he worked with

each of the systems, the problem of matching subjects or subject groups and the

need for extensive statistical analysis could be eliminated. Unfortunately, it

is not meaningful to have the same subject code and debug the same problem twice;

and it is extremely difficult to develop different problems that are at the same

level of difficulty. One possible solution to this problem would be to use some

measure of problem difficulty as a normalizing factor. It should be recognized

20 December 1966 21 SP-2687

that the use Gf any normalizing factor can introduce problems in analysis and

interpretation. It was decided to use one of the more popular of such measures,

namely, the number of instructions in the program. CPU time per instruction and

debug man-hcurs per instruction were compared on the two problems for each sub-

ject for the interactive and r~ninteractive conditions. The results showed that

the interactive subjects had significantiy lower values on both compute seconds

per instruction (.01 level) and debug hours per instruction (.06 level).

Table 4. Programer Trainee Performance

Debug Man-Hours

Sort Routine Cube Puzzle

Inti'active WAninteractive Interactive Noninteractive

Mean 0.71 4.7 9.2 13.6

SD 0.66 3.5 4.2 7.0

CPU Time (see.)
Sort Routine Cubs Puzzle

Isteractive Noninteractive Interactive Noninteractive

Mean 11.1 109.1 290.2 875.3

SD 9.9 65.6 213.0 392.6

2.3.2 Individual Differences. One of the key findings of the previous study

was that there were large individual differences between programers. Because of

differences in sampling and scale factors, coefficients of variation were computed

20 Deember 1966 22 SP-2687

to compare individual differences in both studies. (The coefficient of varia-

tion ts expressed as a percentage; it is equal to the standard deviation divided

by the mean, multiplied by 100.) The overall results showed that coefficients

of variation for debug man-hours .nd CPU time in this experiment were only 16

percent smaller than coefficients of variation in the experienced programer

study (median values of 66 percent and 82 percent, respectively). These observed

differences may be attributable, in part, to the greater difficulty level of the

problems in the experienced programer study, and to the much greater range of

programing experience between subjects which tended to magnify individual pro-

gr,"er differences.

In an attempt to determine if there are measures of skill that can be used as a

preliminary screening tool to equalize groups, data were gathered on the subject's

grades in the SDC programer training class, and, as mentioned earlier, they were

also given the Basic Programing Knowledge Test (BPKT). Correlations between all

experimental measures, adjusted scores, grades, and the BPKT results were deter-

mined. Except for some spurious part-whole correlations, the results showed no

consistent correlation between performance measures and the various grades and

test scores. The most interesting result of this exploratory analysis, however,

was that class grades and BPKT scores showed substantial itercorrelations.

This is especially notable when only the first of the two BPKT scores is con-

sidered. These correlations ranged between .64 and .83 for Part I of the BPKT;

two out of these four correlations are at the 5 percent level and one exceeds

the 1 percent level of significance even for these small samples. This Implies

Aw.

20 December 1966 23 SP-2687

that the BPKT is measuring the same kinds of skills that are measured in trainee

class performance. It should also be noted that neither class grades nor BPKT

scores would have provided useful predictions of trainee performance in the test

situation that was used in this experiment. This observation may be interpreted

three basic ways: first, that the BPKT and class grades are valid and that the

problems do not represent general programing tasks; second, that the problems

are valid, but that the BPKT and class grades are not indicative of working pro--

gramer performance; or third, that interrelations between the BPKT and class

grades do in fact exist with respect to programing performance, but that the

intercorrelations are only low to moderate, which cannot be detected by the very

small samples used in these experiments. The results of these studies are

ambiguous with respect to these three hypotheses; further investigation is re-

quired to determine whether os or mW ees miaf m of them will hold.

3. INTERPRATATION

Before drawing any conclusions from the results, consider the scope of the two

studies, Each dealt with a small number of subjects--performance measures were

marked by large error variance and wide-ranging individual differences, which

made statistical inference difficult and risky. The subject skill range was

considerable, from programer trainees in one stuly to highly experienced research

and development programers in the other. The programing languages included one

machine language ano two subsets of JOVIAL, a higher-order language. In both

experiments TSS served as the online or interactive condition whereas the off-

line or noninteractive mode had to be simulated on TSS according to specJfied

rules. Only one faciity vat used for both experiments-TeS. The problems

20 Deceer 1966 24 SP-2687

ranged from the conceptually simple tasks administered to the programer trainees

to the much more difficult problems given to the experienced programers. The

representativeness of these problems for programing tasks is unknown. The point

of this thumbnail sketch of the two studier is simply to emphasize their tenta-

tive, exploratory nature--at best they cove- a highly circumscribed set of on-

line and offline programing behaviors.

The interpretation of the results is discussed under three broad areas, cor-

responding to three leading objectives of these two studies: compirisor, of on-

line and offline programing performance, analysis of individual differences in

programing proficiency, and implications of the methodology and findings for

future research.

3.1 ONLINE VERSUS OFFLINE PROGRAMING PERFORMANCE

On the basis of the concrete results of these experiments, the online conditions

resulted in substantially and, by and large, significantly better performance

for debug man-hours than the offline conditions. The crucial question is: to

what extent may these results be generalized to other computing facilities, to

other programers, to varying levels of turnaround time, and to other types of

programing problems? Provisional answers to those four questions highlight

problem areas requiring further research.

The online/offline comparisons were made in a time-shared computing facility in

which the online condition was the natural operational mode, whereas offline

conditions had to be simulated. It might be argued that in analogous experi-

ments, conducted with a batch-processing facility, with real offline conditions

20, December 1966 25 SP-2687

and simulated online conditions, the results might be reversed. One way to sur-

mount this simulation bias is to conduct an experiment in a hybrid facility that

uses both time-sharing and batch-processing procedures on the same computer so

that neither has to be simulated. Another approach is to coripare facilities

matched on type of computer, programing languages, compilers and other tools for

coding and debugging, but differing in online and offline operations. It might

also be argued that the use of new and different programing languages, methods

and tools might lead to entirely different results.

The generalization of these results to other programers essentially boils down

to the representativeness of the experimental samples with regard to an objective

and well-defined criterion population. A universally accepted classification

scheme for programers does not exist, nor are there accepted norms with regard

to biographical, educational and job-experience data.

In certain respects, the differences between online and offline performance

hinge on the length and variability of turnaround time. The critical experimental

question is not whether one mode is superior to the other mode, because, all other

things equal, offline facilities with long turnaround times consume more elapsed

programing time than either online facilities or offline facilities with short

turnaround times. The critical cowiparison is with online versus offline opera-

tions that have short response times. The data from the r :perienced programer

study suggests the possibility that, " ofafline turnaround time approaches zero,

the performance differential between the two modes with regard to debug man-hours

tends to di4appear. The programer train"e study, however, tends to refute this

20 December 1966 26 SP-2687

hypothesis since the mean performance advantage of the interactive mode was con-

siderably larger than waiting time for computer availability. Other experimental

studies need to be conducted to determine whether online systems offer a man-

hour performance advantage above and beyond the elimination of turnaround time

in converting from offline to online operations.

The last of the four considerations crucial to any generalization of the experi-

mental findings--type of programing problem--presents a baffling obstacle. How

does an investigator select a "typical" programing problem or set of problems?

No suitable classification of computing systems exists, let alone a classifica-

tion of types of programs. Scientific vs. business, ooline vs. offline, auto-

mated vs. semiautomated, realtime vs. nonrealtime--these and many other tags for

computer systems and computer program are much too gross to provide systematic

classification. In the absence of a systematic classification of computer pro-

grams with respect to underlying skills, programing techniques and applications,

all that can be done is to extend the selection of experimental problems to

cover a broader spectrum of programing activity.

The preceding discussion has been primarily concerned with consistent findings

on debug man-hours for both experiments. The opposite findings in both studies

with regard to CPU time require some comment. The results of the programer

trainee study seem to indicate that online programing permits the programer to

solve his problem in a direct, uninterrupted manner which rasulLt aot only in

less human time but also less CPU time. The programer does not have to "warm

up" and remember his problem in all Its details If he ha. access to the uputer

20 December 1966 27 SP-2687

whenever he needs it. In contrast, the apparent reduction of CPU time in the

experienced programer study under the offline condition suggests an opposing

hypothesis; that is, perhaps there is a deliberate tradeoff, on the part of the

programer, to use more machine time, in an exploratory trial-and-error manner,

to reduce his own time and effort in solving his problem. The results of these

two studies are ambiguous with respect to these opposing hypotheses. One or

both of them may be true, to different degrees under different conditions. Then

again, perhaps these explanations are too crude to account for complex problem-

solving in programing tasks. More definitive research is needed.

3.2 INDIVIDUAL DIFFERENCES

These studies revealed large individual differences between high and low per-

formers, often by an order of magnicude. It is apparent from the spread of the

data that very substantial savings can be effected by successfully detecting

low performers. Techniques measuring individual programing skills should be

vigorously pursued, tested and evaluated, MW d•veloped on a broad front for the

growing variety of programing jobs.

These two studies suggest that such paper-and-pencil tests may work best in pre-

dicting the performance of programer trainees and relatively inexperienced pro-

gramers. The observed pattern was one of substantive correlations of BPKT test

scores with programer trainee class grades, but no detectable correlation with

experienced programer performance. These tentative findings on our small samples

are consistent with internal validation data for the BPKT. The test discriminates

best between low experience levels and fails to discriminate significantly among

20 December 1966 28 SP-2687

highest experience levels. This situation suggests that general programing

skill may dominate early training and initial on-the-job experience, but that

such skill is progressively transformed and displaced by more specialized skills

with increasing experience.

If programers show such large performance differences, even larger and more

striking differences may be expected in general user performance levels with the

advent of information utilities (such as large networks of time-shared computing

facilities with a broad range of information services available to the general

public). The computer science community has not recognized (let alone faced up

to) the problem of anticipating and dealing with very large individual differ-

ences in tasks involving man-computer communications for the general public.

In an attempt to explain the results of both studies in regard to individual

differences and to offer a framework for future analyses of individual differences

in programer skills, a differentiation hypothesis is offered, as follows: when

programers art first exposed to and indoctrinated in the use of computers, and

during their early experience with computers, a general factor of programer pro-

ficiency is held to account for a large proportion of observed individual dif-

ferences. However, with the advent of diversified and extended experience, the

general programing skill factor differentiates into separate and relatively

independent factors related to specialized experience.

From a broader and longer-range perspective, the trend in computer science and

technology is toward more diversified computers, programing languages and com-

puter applications. This general trend toward increasing variety is likely to

20 December 1966 29 SP-2687

require an equivalent diversification of human skills to program such systems.

A pluralistic hypothesis, such as the suggested differentiation hypothesis,

seems more appropriate to anticipate and deal with this type of technological

evolution, not only for programers, but for the general user of computing

facilities.

3.3 FUTURE RESEARCH

These studies began with a rather straightforward objective--the comparison c'

online and offline programer debugging performance under controlled conditions.

But in order to deal with the online/offline comparison, it became necessary

to consider many other factors related to man-machine performance. For example,

* it was necessary to look into the characteristics and correlates of individual

differences. We had to recognize that there was no objective way to assess the

representativeness of the various experimental problems for data processing in

general. The results were constrained to a single computing facility normally

using online operations. The debugging criterion measures showed relationships

with other performance, experience and control variables that demanded at least

preliminary explanations. Programing languages had to be accounted for in the

interpretation of the results. The original conception of a direct statistical

comparison between online and offline performance had to give way to multivariat,

statistical analysis to interpret the results in a more meaningful context.

In short, our efforts to measure online/offline programing differences in an

objective manner were severely constrained by the lack of substanti%, scientific

information on computer programing performance--constrained by the applied

20 Detember 1966 30 SP-2687

scientific lag in computer programing, which brings us back to the opening

theme. This lag is not localized to computer programing; it stems from a more

fundamental experimental lag in the general study of man-computer communications.

The case for this assertion involves a critical analysis of the status and

direction of computer science which is beyond the scope of this article; this

analysis is presented elsewhere (Sackman, 1967). In view of these various con-

siderations, it is recommended that future experimental comparisons of online

and offline programing performance be conducted within the broad framework of pro-

gramer performance, and not as a simple dichotomy existing in a separate data-

processing world of its own. It is far more difficult and laborious to construct

a scientific scaffold for the man-machine components and characteristics of pro-

gramer performance than it is to try to concentrate exclusively on a rigorous

comparison of online and offline programing.

Eight broad areas for further research are indicated:

a. Development of empirical, normative e-'- on computing system per-

formance with respect to type of aýI..c•.ion, man-machine environ-

ment, and types of computer programs in relation to leading tasks

in object systems.

b. Comparative experimental studies of computer facility performance,

such as online, offline, and hybrid installations, systematically
permuted against broad classes of program languages (machine-

oriented, procedure-oriented and problem-oriented languages), and

representative classes of programing tasks.

c. Development of cost-effectiveness models for computing facilities,

incorporating man and machine elements, with greater empha3is on

empirically validated measures of effectiveness, and less emphasis

on abstract models than has been the case in the past.

20 December 1966 31 SP-2687

d. Programer job and task analysis based on representative sampling

of programer activities, leading toward the development of

empirically validated and updated job-classification procedures.

e. Systematic collection, analysis and evaluation of the empirical

characteristics, correlates, and variation associated with

individual performance differences for programers, including

analysis of team effectiveness and team dieferences.

f. Development of a variety of paper-and-pencil tests, such as the

Basic Programing Knowledge Test, for assessment of general and

spe(ific programer skills in relation to representative, normative

populations.

g. Detailed case histories on the genesis and course of programer

problem-solving, the frequency and nature of human and machine

errors in the problem-solving process, the role of machine feed-
.back and reinforcement in programer behavior, and the delineation

of critical programer decision points in the life-cycle of the

design, development and inatallation of computer programs.

h. And finally, integration of the above findings into the broader

arena of man-computer comunication for the genera]. user.

More powerful applied research on programer performance, including experimental

comparisons of online and offline programing, will require the development in

depth of basic concepts and procedures for the field as a whole--a development

that can only be achieved by a concerted effort to bridge the scientific gap

between knowledge atid application.

20 December 1966 32 SP-2687

REFERENCES

1. Berger, Raymond M. et al. "Computer Personnel Selection and Criterion
Development: III. The Basic Programing Knowledge Test," University of
Southern California, Los Angeles, California, June 1966.

2. Emerson, Marvin "The 'Siall' Computer Versus Time-Shared Systems,"
Computers and Automation, September 1965.

3. Erikson, Warren J. "A Pilot Study of Interactive Versus Noninteractive
Debugging," TM-3296, System Development Corporation, Santa Monica,
California, 13 December 1966.

4. Gold, M. M. "Evaluating Time-Shared Computer Usage," Working Paper
198-66, Alfred P. Sloan School of Management, Massachusetts Institute
of Technology, May 1966.

5. Grant, E. E., H. Sackman "An Exploratory Investigation of Programer
Performance Under On-Line and Off-Line Conditions, SP-2581, System
Development Corporation, Santa Monica, California, 2 September 1966.

6. Kennedy, Phyllis R. "The TINT Users' Guide," TM-1933/000103, System
Development Corporation, Santa Monica, California, 30 July 1965.

7. Macdonald, Neil "A Time-Shared Computer System--The Disadvantages,"
Computers and Automation, September 1965.

8. Patrick, R. L. "So You Want to Go On-Line?" Datamation, Vol. 9, No. 10,
October 1963, pp. 25-27.

9. Sackmans H. Man-Machine Digital Systems, John Wiley & Sons, New York,
(in press) 1967.

10. Samelson, K., F. Bauer "Sequential Formula Translation," Communications
of the ACM, Vol. 3, 1960, pp. 76-83.

11. Scherr, A. L. "Time-Sharing Measuremet," Datamation, Vol. 12, No. 4,
April 1966, pp. 22-26.

12. Schwartz, J. I., E. G. Coffman and C. Weisaman "A General-Purpose Time-
Sharing System," AFIPS Conference Proceedinzs, Vol. 25, 1964 Spring
Joint Computer Conference, pp. 397-411.

13. Schwartz, J. I. "Observations on Time-Share4i Systems," Proceedinas of the
20th National Conference of the sae-ati f-tCon-eas Machinery,

1965, pp. 525-542.

Unclassified
Secuzity Classification-

DOCUMENT CONTROL DATA -R&D
__(S.OSUIIY e8"411166*86 of titia, &>& of soteiont ami lMd&wM ammommei who 60 aienton ohms Us. gtvl "tPoet is oboew.iiE

I. ORIGINATINIG ACTIVITY (Coo, tome. ar)~ go RUOP SWCURITV C LASUIPIICATON

System Development Corporation Unclassifiled
Santa Monica, California so. GROUP

3. REPO*t TITLE
Exploratory Experimental Studies Comparing Online and Of fline Programing
Performance

4. DESCRIPTIVE NOTES fTrp. of r.poet MWd Amoisalv. do#")

S. AUTHOR(S (Los! name, hote unsm. bNlat)
Sackman, H.
Erikson, W. J.
Grant, E. E.

S. REPORT DATIE 7@, TOTAL NO OF PAS1 76. No. or Agra
20 December 1966 32 13

go. CONTRACT ORt GOANT 040. $41- @RIGINATORSO RSPORT wumeaws)

F 1962867 ARPA Command Control
b. pmojscv.... Research Programs SP-2687

C. 9~~S 6.EI U HE001MMRPO? O w(Amy Urns' .uMWMh dt soy be aosas

10. A VA IL ABILITY/LIMITATION NOTICE&
Distribution of this document is unlimited.

I I SUPSL SUTANY MOM~ j:1 $101601111W UTAPY AC? M~TV

12. ASNTNACT 'Two exploratory experiments conducted at System Development Corporation
ompared debugging performance of programers working under conditions of online and
ffline access to a computer. These are the first known studies measuring the per-
ormance of programers under controlled conditions for standard tasks.

Statistically significant results Indicated substantially faster debugging under
nline conditions in both studies. The results were ambiguous for central processor
line--one study showed loes computer time for debugging, and the other showed more
ime in the online mode. Perhaps the most important practical finding, overs'ladowin
nline/offline differences, involves the large and striking individual differences
n progrAmer performance. Attempts were made to relate observed individual differ-
nces to objective measures of programer experience and proficiency through factoria
echniques. In line with the exploratory objectives of these studies, methodological
roblems encountered in designing and conducting these types of experiments are
oscribed, limitations of the findings are pointed out, hypotheses are presented to
ccount for results, and suggestions are made for further research.

Jas" 473 _ _ _ _ _ _ _ _

Unclassified

Security Cleusiftcation _____ _____ _____

LINK A LINK 9 LINK C
Ka S0 OLM INY ROLF WT ROL, WT

Computer progra me~r performance
Online access
Of fia. access

INSTRUCTIONS
1. ORIGINATI7NG ACTIVITY. Enter the nome and address mo..d by security classification. using standard statements
of the contractor, subcontractor, pant.., Department of De- sc am
fense activity or other organismtlor (corporate author) IssuSing (1) "Qualified requesters way obtain copies of this
the report. ~~ D.
2o. REPORT SECUNTY CLASSIFICATION, Rotor the ovw 1 (2) "Foreign announcement and dissemination of this
all security classification of the report. Indicate whether rpr yDCi o uhrxd
"Restricted Datal' Is Included. Marking is to be in wcool*eotb DJ sro atoie.
ance with appropriate s~curity regulations. (3) 41U. L Government agencies may obtain copies of
2b. GROUP: Automatic downprading is specified in DoD Di- thsrepor dillrecuety thrornuCgthrqaife
redly.e 5200. 10 and Armed Forces Industrial Manuel. Enter usr hllrqet hog
the groiup umber. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4'as author- (41 111. S. milliary agencies may obtain copies of this
ixed. report directly froom DDC. Other qualified users
3. REPORT TITLE: Enter the comeplete report title ia all sall request thwub
capital leter.. Titles in all cases should be unclassified. i

If a meaningful title cannot be seletmed without classifies-
tion, show title classification in all capital* in parenthesis (5) "4All distribution of this report is contuollad. Qual-
immediately following the title. Ified DDC users shall request through
4. DESCRIPTIVE MO=hS If appropriate, enter the twpe of b________to_______

report, e.g., interim, preeosa, summary, annual, or final. It the tepoot has bean fwurished to the Office of Technical
Give the Inclusive datea when a specific reporting period it Services, Department of Commerce, for sale to the pubilic, Lodi-
covered. cat* this fact and enter the price, If knowal
5. AUTHDR(S): Enter the name(s) of mathem(s) as shown on I L SUPPLEMNTARY NOTEL' Use for additional emplana.
or In the report. atrus last name, first aqu, middle initiall toory Motge.
It military, show rank amid brmeah of serviee, The "ame of
the principal itithor Is an absolute minimum requirement 12. IP014UOINO MILITARY ACTIVITY. Enter the nome of

the departmentall project *ffice or laboratory sponsoring (per'
$. REPORT DATL, Eaer the date of the repert as day, ing for) the research ana doeletp -at. Include ad*ese
month, year, or urenth. year. If ;more than one date appears 13ASRCT Earanbeat vgabifadfctl
on the report, use date of publication.13ABTATRoo abtctgvSabreanfcma

summary of the documeet Indicative of the report, even though
is. TOTAL NUMBER OF PAGES: The total page count It may also appear elsewhereo in the body of the technical re-
should follow normnal pagination procedures, Le., eater the port. If additional apace is required, a continuation &boet ehall
number of pages containing Information, be attached.

I76. NUMBER OF REFERENCE& Enter the total number of It Is hiAbly desirable that the abstract of classified raeprts
references cited in the report, be unclassified. Bech paragraph of the abstract shall and with
lla. CONTRACT Olt GRANT NUMBER:- If appropriate, enter an indication of the military' security classification of the in-
the applicable number of the contract or grent under which formation in the paragraph, represented as (I78), (5), (C), or (U)
the report was written. There Is no sleitatios on the length of the ahetroct. Now-
Sb, act & Id. PROJECT NUMBER: Enter the appropriate ever, the suggested length is proo 150 to 225 words,
military depaiment identification, such mi. project number, 14. KEY WORDM: Key words are technically meaningful terms

subpojet nuber sysem umbes, ask umbr, se- r short phrases that cheractenlee a repert and may be used as
9a. ORIGINATOR'S REPORT NUMBER(3)* Enter the offi- indez eutrie. for cataloging the report. Key words spot be
cial report number by which the document will be identified selected so that no security classification is required, Identi-
and controlled by the originatir4 activity. This nutmber must fiers. such as equipment model degienation. traeedsoam, military
be unique to this report. project code name, geographic location, may be iseed as hey
96. OTHER REPORT NUMBER(S): If the recart has been words but will be followed by' as indication of techniale earn-.
'assigned any ot.ier report numbers (either by the aornstor tet 7he aseignmeat of 11*s, rules. sad weighs is Optimnal,
or by the aponeor). also enter this numberm() I
10. AVAILAMU=LT/LIMTATION NOTICES Ea0r aW Iim.

wallen so further dissemination so e0 Ispedi, 00ff-la ii t55O

