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Several variational principles are derived for the initial- 

boundary-value problem of fully coupled linear thermoelasticity for 

an inhomogeneous, anisotropic continuum. A consistent set of field 

variables is employed and a method based on the Laplace transform 

is used to incorporate the initial conditions explicitly into the form- 

ulation. These principles lend themselves readily to numerical 

solutions based on an extended Ritz method. 



1.      Introduction 

The application of variational methods for both the unified 

development of the theory and for the approximate solution of fully 

coupled initial-boundary-value problems in linear thermoelasticity is 

not new.    As a starting point,   the work of Biot [l] introduced a varia- 

tional principle in terms of a pair of vector-valued primary variables, 

the displacement of a material point and a variable which he termed 

the entropy displacement.     The Euler equations of the principle are 

the thermoelastic equations of motion and the corrected heat con- 

duction equation.    A generalization of Biot's principle [2] incorporated 

the additional primary variables of the stress tensor and a thermal 

dis-equilibrium force conjugate to the entropy displacement.     Euler 

equations representing the linear thermoelastic stress-strain rela- 

tionship,   the Fourier heat conduction law,   and a relationship 

between the temperature and the thermal gradient,   as well as the 

aforementioned field equations,   are products of that variational 

principle. 

The most general variational statement of the coupled 

thermoelastic problem was made by Bao-Lian! Fu [3] and later by 

Ben-Amoz [4],   both of whom obtain essentially the same Euler 

equations and natural boundary conditions.     Both prescribe a bound- 

ary condition on the entropy displacement vector rather than on the 

heat flux vector,   and Ben-Amoz obtains a sixth Euler equation, 

representing a relationship between the temperature and the thermal 

gradient. 

Impetus for further development of variational principles for 

the coupled thermoelastic problem is  suggested by recent work of 

Gurtin [5],   [6],    In these treatments of linear elastodynamics and 

transient heat conduction Gurtin,   utilizing the operational methods 



of Mikusinski [7],   explicitly introduces the initial conditions appro- 

priate to the problem into the field equations and governing functionals, 

and derives alternate characterizations of the problems.     The follow- 

ing work represents an extension of these concepts to the field theory 

of linear coupled thermoelasticity,   and an attempt to remove a lack 

of consistency (present in the existing variational formulations) in 

the choice of the field variables and boundary conditions. 



2.      Notation:      Mat^hen^tj.ca^preliminarj.es1 

The notation and format used by Gurtin [5] will largely be 

employed here.     Therefore the  standard indicial system,  with Greek 

and Latin subscripts ranging over the integral values (1,2) and 

(1,2, 3) respectively,   is used throughout.     The reference frame is 

Cartesian,   repeated subscripts imply summation,   and Kronecker's 

delta is denoted by 6...     Parenthetical superscripts,   as well as 
ij 

superposed dots,   indicate the order of time differentiation,   and sub- 

scripts preceded by a comma denote  space differentiation with 

respect to the Cartesian coordinates.     Parentheses about a pair of 

free subscripts will signify the  symmetric part of the tensor with 

respect to those  subscripts. 

A region V shall denote the closure of an open,   bounded, 

connected set contained in the three-dimensional Euclidean space    E. 

The boundary of V we denote by   S,   being the union of a finite number 

of non-intersecting closed regular surfaces.     The term regular 

surface is used in the sense of Kellogg [8].     The interior of V is V, 

and   n   is the outward unit normal vector to   S.    S      and   J     are a ~ a a 
dual system of complementary regular subsets of   S,    where   S     and 

$    denote the closures of   S      and   Jj  ,   respectively. 

The domain of definition for all functions of the position 

vector   x   and the time   t   is the set which is the Cartesian product 

of the region of space    V   and the interval of time   [O,00) denoted by 

V X   [0,oo). 

The values of a function   f(x, t)   and its derivatives are 

defined on the boundary of the domain of definition   V x [O,00)   by 

f,(.n) (x  ,t  )   =     lim f!n)       ,(x,t), (2. 1) 
ij. . . . k ~o    o ij. . . k ~ 

(x, t) -+   (x   ,t   ) 
~ ~o    o 



where   x  eV,    t    =  0   or   x eS,   t  e[0, <=).    We say that the function   f 
~o o TwF°Tvr       ° 

is in the function class C if and only if it is defined on   V x [0,°°), 

and all of the functions 

(m = 0, 1,2,. ,M;   n = 0, 1,2,. ... ,N) 

m indices 

exist and are continuous on V x [ 0, oo), 

A point   xeS,    or a point   (x, t)eSx[ 0,»))   such that   n   is con- 

tinuous at   x,    will be termed a regular point.    A function   f   will be 

said to be pjecewjseRegular on   S    x [ 0, °°)    if and only if   f   is piece - 

wise continuous on   S    x [0;°°),     and every regular point of that region 

is a point of continuity of   f.     Two piecewise regular functions defined 

on   S    x [ 0, oo)    are said to be equal if and only if they are equal at 

every regular point   (x, t) e S    x [ 0, oo). 

Let   f   and   g   be functions of space and time defined on 

V x [0,oo)    such that both are continuous on [ 0, oo)   for each   x e V. 

The convolution of   f   and   g   is given by 

[f*g] (x, t) = fnx,   t-T) g(x, T)dT,   (x,t)eVx[0,»), (2.3) 
o 

having the well-known properties: 

(2.2) 

(a) g*f   =  f*g 

(b) g*(f*h) - (g*f)*h = g*f*h 

(c) g*(f+h) = g*f+g*h 

(2.4a) 

(2.4b) 

(2.4c) 

A corollary of Titchmarsh's theorem [9] will prove useful in later 

work and is introduced in the form 



f*g = 0   implies either   f=0   or   g = 0. (2. 5) 

The term functional will be used to identify a real-valued 

function whose domain is a subset of a linear space.    If   L   is a 

linear space,    K   a subset of   L,     and   Q  ['}    a functional defined on 

K,    then for 

R,   R e  L, 

R + X R e K    for every real   X, (2. 6) 

formally define the notation 

6     n{R]   =4~
Q

(R +XR}   I   k = 0. (2.7) 
R dX 

The variation of   Cl{ ' }    is zero at   R    over   K    and is -written 

6Q{R}   = 0   over   K, (2. 8) 

if and only if   6^_Q{R]    exists and equals zero for every choice of   R 

consistent with (2. 6). 

Three lemmas which are analogous to the fundamental lemma 

of the calculus of variations,   and which have been proved by Gurtin 

[5],   are now stated.     Based on these lemmas we also state a 

corollary     which will be needed in the subsequent development. 

2.1.     Lemma.       Let   f   be a continuous function on   V x [0,<=), 

and suppose 

J   [f*g] (x, t) dV = 0     (05t<») (2. 9) 
V 



for every   g £  C which,   together with its space derivatives, 

vanishes on S x [0,<»).     Then 

f   =   0   on   V x [0,oo). (2. 10) 

2.2.     Lemma.      Let   f   be a piecewise regular function on 

S    x [0,<»),   and suppose 

J   [f*g] (x.t)dS = 0       (0* t< ») (2. 11) 

00 oo r 

for every   g e   C that vanishes on   S    x l0,<»).     Then 

f   =   0     on     S    x [0,»). (2, 12) 

2.3.     Lemma.       Let   f     be continuous on   S    x[0,°°),     and 
l 1 

suppose 

[f.*(g..n.)] (x, t)dS = 0     (0*t<») (2.13) 
s      1       iJ   J 

00  00 

for every   g.. e  C which,   together with all its space derivatives, 

vanishes on   S    x [0,<=)   and which has the property 

•„ • «jr <2-14» 

Then 

f.   =   0     on     S    x [0,»). (2. 15) 
1 1 

A corollary of Lemma 2. 3 is: 



-^iJ§*    ^SSSD^SX:      -^et   ^   ^e continuous on    A   x[0,»),    and 

suppose 

[f*(g.n.)] (x,t) dS       (0* t<  ») (2. 16) 

for every   g. e  C which,   together with its space derivatives, 

vanishes on   /0    x[0,°°).     Then 

f =  0 on 2   x [0,»). (2. 17) 



3.  .    The initial-boundary-value problem with mixed boundary 

conditions. 

The fundamental system of field equations for linear coupled 

thermoelasticity,   characterizing inhomogeneous and anisotropic 

solids,   is now stated for reference.     Let   V   be the region of space 

occupied by the solid and let   V x [0, »)   denote the domain of defini- 

tion for all functions of position and time. 

Let   u(x,t),   e..(x,t),   T..(x,t),   F.(x.t),   q.(x, t),   and £.(x, t), 
i~ ij~ ij — l ~ i~ l ~ 

in this order,   represent the  Cartesian components of the displace- 

ment vector    u(x, t),     the infinitesimal strain tensor    e(x, t),     the 

stress tensor    T(X, t),     the body force vector    F(x, t),     the heat flux 

vector c[(x, t),     and the thermal gradient vector   «?(x, t).     Also let 

9(x, t)    denote the temperature above a quiescent reference  state    T 

(a constant absolute temperature),   and let   T](x, t)   and   H(x, t), 

respectively,   be the  specific entropy per unit mass and the rate of 

internal heat generation per unit volume within the solid. 

Then the  strain^dispiacernent and thejrmal^gradient-temperature 

relations are 

e..   = 7 (u.   . +u.   .)   =  u (3. la) 

and 

tf.   =  0, .     on     V   x [0,»). (3. lb) 
I I 

The eajmUons__ofjT^tion and of energy are,   respectively, 

T..   . + F.  = p u.,      T..=T.., (3. 2a) 
iJ.J i i iJ        J1 



10 

and 

q.   .  + p  T    f| = H     on     Vx[0,«), (3.2b) 
1,1 o 

where    p(x)   is the mass density of the solid.     Then introduce 

c.., ,(x),  k..(x),  a  .(x),   C   (x),   and C   (x)    as,   respectively,   the com- 
ljkl ~ IJ ~        ij~ e~ T~ 

ponents of the isothermal elasticity tensor cjx),   the thermal conduc- 

tivity tensor   k(x),     the thermal expansion tensor   cc(x),     and the 

scalar specific heats for zero deformation and for zero stress.     The 

three  sets of tensor components,  Y.-. -(x),   X    (x),   and |3..(x),    will be 
ljkl ~ ij ~ ij ~ 

termed the components of the isothermal compliance tensor   X(x), 

the thermal resistivity tensor   X/x),     and the thermoelasticity tensor 

j3(x).     These quantities are related through 

c.,. X,, = 6.      6.   . (3.3a) ljkl    klmn        lm    jn 

k.      X     . = 6.., (3. 3b) 
lm    mj        ij 

ij ljkl    kl 

C    = C    - a.. P.. T   /p        on       V, (3. 3d) 
e T        ij    ij     o 

and satisfy the  symmetry conditions 

c =   c =   c        , (3, 4a) 
ljkl jikl klij 

k.. = k... (3. 4c) 
y     J1 

X.. = X.., (3.4d) 
y     J1 



1i 

a.. = a.., (3. 4e) 
ij        J1 

p.. = p.. on V. (3. 4f) 
ij       J1 

The c on s t itutiy e r el at ions and the equation of state are then 

T.. =  c.        e__  - -P.. 8, (3.5a) 
ij ljkl    kl        ij 

q. = -k.. *., (3. 5b) 
1 iJ    J 

and 
pT    ri=pC    9+3.T    e.     on     Vx [0,»), (3, 5c) 

o e ij     o    ij 

or,   alternatively, 

e.. =x.... T      +a.. 8, (3.6a) 
ij        ljkl    kl        ij 

*.  = -X..  q., (3. 6b) 

and 
pT    ri = pC    9+a.T    T.    on   Vx[0,«). (3.6c) 

o T ij      o     lj 

Associated with this system  of field equations are the initial 

conditions 

u.(x,0) = d.(x), (3. 7a) 
I ~ I ~ 

u.(x, 0) = v.(x), (3.7b) 
I ~ l ~ 

and 
9 (x.0) = 8   (x)     on     V, (3. 7c) 

~ o ~ 

the displacement boundary ^PJ^ditigns 

u.  = u.     on     S,  x [0,»), (3„ 8a) 
li 1 
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the t r a ction bqundary conditions 

T.   =  T.. n.   =  T. on S„ x [(),»), (3. 8b) 
i 1J    J 1 2 

the teniperature boundary condition 

9=9 on J   x [o,«), (3. 8c) 

and the heat flux boundary^ condition 

Q   =  q. n,   =   Q on J   x[0,»). (3. 8d) 
I    I 2 

Here    d,    v,   and 9       are the prescribed initial displacements,   initial 
~    ~ o 

velocities,   and initial temperature distribution,   while u,   TT,  9,   and Q 

are the given surface displacements,   tractions,   temperature,   and 

normal heat flow. 

It should be noted that the boundary conditions prescribed 

above may be generalized to include mixed-mixed conditions for 

tractions and displacements,   as well as the more general "radiation" 

type boundary conditions,   such as the elastically supported surface 

and the thermal convection boundary layer. 

Analogous to the work of Gurtin [5],   the smoothness require- 

ments and other  regularity assumptions on the ascribable functions 

are introduced as hypotheses on the data; 

(i)      p > 0    is continuously differentiable on V; 

(ii)       c    and   X    are continuously differentiable on V and 

satisfy (3„ 3a),   (3,4a),   and (3. 4b); 

(iii)      C    >   0   and    C    > 0    are continuously differentiable on 
e T 

V   and satisfy (3, 3d); 
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(iv)      k,  a,   X^,   and £   are continuously differentiable on   V 

and satisfy (3. 3b),   (3.3c),   (3.4c),   (3. 4d),   (3. 4e), 

and (3„4f); 

(v)      d   is continuously differentiable on   V; 

(vi)       v   and   8      are continuous on   V; 
~ o 

(vii)      F and H   are continuously differentiable on   V x [O,00); 

(viii)      u and 9    are continuous on   S    x [0,°°) and X  x [O,00), 

respectively; 

(ix)      T and Q  are piecewise continuous on   S    x [0,°°) and 

X, x [0,<=°),   respectively. 

With the  specifications on the data cited above the mixed 

problem consists of finding a set of functions [u,   e, _£,   8,  r\, jg,  &] 

on V x [0,oo) which satisfies the field equations (3. 1),   (3. 2),   (3„ 5), 

the initial conditions (3.7),   and the boundary conditions (3.8). 

The ultimate goal is to transform the foregoing  statement of 

the mixed initial-boundary-value problem into an equivalent varia- 

tional formulation.     To accomplish this,   it is convenient to define an 

admissible state,   and then,   in teims of admissible states,   a solution 

of^thg^rnixedjirob1 em.    An admissible  state,   denoted as   R = [u,   e_,   T_, 

8,  r\, _£,  #],    is an ordered array of functions   u, _e, jr,   Q,r\, JJ,  ?? 

defined on   V x [03<») with the properties: 

^-1.2                   0, 0 „1,0     „ 1,0 
(a)       u   e  C       , e„. e C       , T.. e C       ,   8 e  C       , 

0,1                   1,0 0   0 
r\e  C   '    , q. e  C   '    , &. e  C   '      ; 

(3.9) 

(b)       e,.=e.„,    T.. = T.. on Vx[0,»). 
ij        J1        iJ        J1 

Addition of states and multiplication of a state by a scalar are defined 

by 
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R + R  = [u+Tt,   e+e,   T+T,   8+1T,  T|+TT,  3+3,  £+£] 

and (3. 10) 

XR   = [\u,  \e,  XT,  X9,  \r\,  Xc[,  W], 

In this way the set of all admissible states is a linear space, 

A solution of the mixed problem is now defined as an admis- 

sible state   R = [u,   e,   T,   9,  T|,  _£,  #] which satisfies the field equa- 

tions (3. 1),   (3. 2),   (3. 5),   the initial conditions (3. 7) and the boundary 

conditions (3. 8). 
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4.      Alter native formulations. 

Since a major motive for the recasting of the initial-boundary- 

value problem of coupled thermoelasticity is to incorporate the initial 

conditions explicitly into the field equations and into the functionals 

which arise in the variational formulations,   it is convenient to con- 

sider the Laplace transformation of equations (3. 2).     Using (3. 5c) 

and (3.7) 

2- 
T  .   . + F    + psd   + pv,  = ps   u (4. la) 

ij, J i i i i 

and 

q.   ,-pC  8     - P..  T    d.    , + pT   sr\   = H, (4. lb) 
1,1 eo       IJOI.J o 

where a superimposed bar denotes the transformed function and    s    is 

the transformation parameter.     Solving (4. 1) for u. and X],    then 

applying the inverse transformation,   yields 

Du.  = g*T..   . + f. (4. 2a) 

and 

pT  n = h - g'*q.   ., (4. 2b) 
o 1,1 

where the functions    g,   g',   f.,   and h   are defined to be 

g(t) = t,    g'(t) =1     (0* t< •), (4.3a) 

f.(x, t) = [g*F.J (x, t) + p(x) [t v.(x) + d.(x)], (4, 3b) 
i~ i~ "~ i~ i~ 

and 
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h(x,t) = [g'*Hj  (x,t) + p(x) C  (x) 9   (x) 

(4. 3c) 
+ T    p..(x) d.    (x),   (x,t) e V x[0,»). 

o    ij ~     1,3- 

The functions   f.    and   h   are completely described by information 

relevant to the mixed problem, 

With these results in mind alternative formulations of the 

problem can easily be made. 

T.. = T...     Then   u.,   T..    satisfy the equations of motion (3, 2a) as well 

as the initial conditions (3. 7a) and (3. 7b) if and only if 

g*T..   . +f   = pu„ on Vx[0,«). (4.4) 
K    ij.j       i i 

The proof of this theorem has been given by Gurtin [5], 

4. 2.     Theorem.       Let r\ c  C        ,   q. e   C        ,   and suppose the 

equation of state (3. 5c) holds for    t =  0,     Then   T\    and   q.    satisfy 

the energy equation (3. 2b) as well as the initial conditions (3. 7c) if 

and only if 

h - g'*q        =pT    r\       on    Vx[0,o). (4.5) 
1,1 o 

Proof.      Suppose (3. 2b),   (3.7c),   and (3. 5c) (for t=0) hold. 

Then (4. 3a) implies 

[g'*(H-q.   .)] (x,t)   =   p(x) T    J1^ (x, T) dT 
^1, 1        - ~ o J

0 ~ 

p(x) T  Ti (x,t) - p(x) T  n(x, 0) 
—       o     — —       o     — 

p(x) T r\ (x, t) - p(x) C  (x) 9   (x) 
~o~" ~e~o~ 

-  T    p..(x) d.   .(x). (4. 6; 
o     ij ~       l,j~ 
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Thus,   and by (4. 3c),   equation (4. 5) is met.     Conversely,   suppose 

(4. 5) holds.     Then,   by reversing the argument,   and utilizing the 

definitions (4. 3a) and (4. 3c),   it is directly verified that r\,   q. meet 

(3.2b).    Since (3. 5c) (for t=0),   (4.3a),   (4.3c),   (4. 5) imply (3. 7c), 

the proof is complete. 

4^3.     Theorem.      Let   R = [u,   e_,   T,   8,  T\, JQ,  #] be an admis- 

sible state.     Then   R    is a solution to the mixed problem of coupled 

thermoelasticity if and only if it meets the field equations (3. 1), 

(3.5),   (4.4),   (4.5),   and the boundary conditions (3. 8). 

This result is a trivial consequence of Theorems 4, 1 and 4. 2. 

As a result of this theorem,   an alternative characterization 

of the solution to the mixed problem of coupled thermoelasticity has 

been developed such that the initial conditions are explicitly incor- 

porated into two of the field equations. 

By a displacement an^_tjejnpgrature_Jield_.correspondingto_a 

so1 utign_ ofthjgrnixed p r o b 1 em i s meant an ordered pair [u, 8] made 

up of a vector-valued function   u  and a scalar-valued function   8   such 

that there exist functions e,   T,  r\,   c[,  &   with the property that 

[u,  _e,   T,   8,   r\,  _afc,  *?]    is a solution to the mixed problem. 

A._A.     Theorem,      Let   u. e   C   '       and   9 e  C   '    ,     Then   u,    8 

is a displacement and temperature field corresponding to a solution 

of the mixed problem of coupled thermoelasticity if and only if 

g*(c u_    .  - P..8), .    +f.  = pu. (4.7a) 
ijkl    k, 1        IJ      j I I 

and 

g'*(k. . 8..), .    + h = pC  8  + T  p.. u.   .       on       Vx [0,«),       (4.7b) 
ij    ij    i e o  IJ    l, j 

u.   =  u„ on S    x[0,°°), (4,7c) 
li 1 
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(C....U.  .  - p..9)n. = T.     on     S, x[0,»), (4. 7d) 

9=9 on    J.  x [03»), (4. 7e) 

and 

-k,    9, , n.   = Q    on    /, x[0,«»). (4. 7f) 

Proof.       First suppose    u   and   9    meet equations (4. 7),     Define 

_e   and   ??   through (3„ 1) and   _T, _£,  r| through (3. 5).     Then,   and because 

of (3„ 4),   the boundary conditions (3„ 8) are met.     Further (4. 7a), 

(4.7b),   (3.1),   (3.4),   (3. 5) imply (4. 4),   (4.5).     Thus,   and by Theorem 

4. 3,   [u,  _e, JT,   9,   V\,  _£,  #] is a solution to the mixed problem. 

Conversely,   (3.1),   (3.4),   (3.5),   (3.8),   (4.4),   (4. 5) imply (4. 7) and 

the proof is therefore complete. 

By a _stress and jie^t flux field corresponding to a_ s.olution^of 

the mixed problem is meant an ordered pair [jr,.aj made up of a sym- 

metric second-order tensor-valued function   _T    and a vector-valued 

function   q    such that there exist functions    u,   e,   9,   r\,  d  with the 

property that [u,   e,   T,   9,  r\, Q,  #] is a solution of the mixed problem. 
~"   ~"   ~" "~      2,0 2,0 

4_.J5.     Thepi^em.      Let   T, .e  C and   q. e  C   '       with   T.. = 

T...     Then   T,  _£   is a stress and heat flux field corresponding to the 

solution of the mixed problem of coupled thermoelasticity if and 

only if 

a!. 
\~( g*T,- + f/.TI   ~v   - -^ (h - g'*q ) Lp\s     (lm, m       (i/J,j)        T g    Mm,m' 

Xijkl \l (4. 8a) 
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and 

where 

fa'     T       -   (h - g'#q )1       = X     q 
L  kl    kl      pC     ( S    4m,m'J;i        ij Mj 

on V x [ 0, «) ? 

(h - g'*q ) - a!. T., 
PCT m, m ij    ij 

on   J,  x [0, «o)) 

(4.8b) 

~(g*T..   . + f.) = u. onS.  x[0,»), (4.8c) 
P ij, J       l i i 

T    n. = T   = T on   S    x[0,»), (4. 8d) 
ij    J i i 2 

(4.8e) 

and q. n.  = Q = Q on    x£x[o,»), (4. 8f) 
li 2 

T   a . (x) 
a!.(x)  =    ,° , V  ~- 

ij K~'        p(x) C   (x) 

X!.,,(x)   = X..,,(x)   - a..(x)a'   (x). (4,9) 
ljkl ~ ljkl — ij ~      kl ~ 

Proof.      First suppose    T    and   c[   meet equations (4.8)„ 

Define   u   from (4. 4),    r\   from (4. 5),    9    from (3„ 6c),    _e   from 

(3.6a),   and   £   from (3. 6b).     Then (4. 8a),   (4.8b),   (4,8c),   (4„8e), 

(4.9),   (3.6),   (4.4),   (4. 5) imply (3. 1),   (3,8a),   (3.8c).     Finally (3. 5) 

hold by virtue of (3. 3),   (3. 6).     Thus,   and by Theorem 4. 3, 

[u,   e, 2.*   8,  T\,   a, j?J is a solution of the mixed problem. 

Conversely,   (3.1),   (3.3),   (3.5),   (4.4),   (4.5),   (3. 8) imply (4. 8) and 

the proof is complete. 
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The fact that the behavior of the  stresses in linear elastody- 

namics can be characterized by a single tensorial field equation, 

similar in form to (4. 8a),   is due to Ignaczak [l0].    Here,   by (4. 8a), 

(4. 8b),   this has been extended to the linear theory of dynamic, 

coupled thermoelasticity. 
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5.     ^Variational^grinci^es characterizing coupled 

the rmoelasti city. 

The most general variational principle to be considered here 

will be one in which the admissible  states (which constitute a linear 

space) are not required to meet any of the field equations,   initial 

conditions,   or boundary conditions.    A number of less general prin- 

ciples can also be derived,   depending on the extent to which certain 

of the requirements are taken to be identically satisfied by the 

admissible states.     Three principles will be formulated here,   corre- 

sponding roughly to the elasto-static variational principles of 

Hu-Washizu [ll],   [12],   Hellinger-Reissner [13],   [14],   and minimum 

potential energy [l5j. 

For consequent use,   recall from equations (4. 3) that 

g(t)   =  t,      g'(t)   =   1 (0* t< »), (5. la) 

f.(x, t) = [g*F.] (x, t) + p(x) [tv.(x)  + d.(x)], (5. lb) 
l *•* l     ~ ~ I ~ l ~ 

h(x,t) = [g'*H] (x,t) + p(x) C  (x) 9   (x) 

and 

(5.1c) 

+  T    p..(x) d.   .(x),   (x, t) e V x [0,»). 
o    lj ~      i,j~       ~ 

Also    T   and   T   shall be written for the traction vectors with 

components 

T.   =  T.. n.,      T.   = ?.. n., (5. Id) 
i ij    J i iJ    J 

and   Q   and   Q   for the normal heat   fluxes given by 

Q   =   q. n.,        Q   =   q. n.. (5. le) 
li li 
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5._L     Theorem.      Let   K   be the set of all admissible states. 

Let   R = [u, _e, _T,   9,  r\, _Q,  d] e K,     and for each   t e[0,»)   define the 

functional   Q { ' }    on   K   by 

nt(R} 
i 
2 

V 

V 
c'    ,(x) [g*e..*e    ] (x,t) dV 
ljkl ~ IJ     kl    ~ 

p(x) p!.(x) [g*TT*e..] (x,t) dV 

1    P   To P(~'; + IJ "cT^T tg*n*n] (x,t) dv 
V       e~ 

+    1 
p(x) [u.*u.] (x, t) dV 

V 

r kii(^) 

^ [g*g'**.** ] (x,t) dV 

V 

V        o 

[g*T..*e..] (x,t) dV 
ij     ij     ~ 

P(x) [g*ri*e] (x,t) dv 
V 

'  rr-[g*g'*q.**.] (x.t) dV 
J       X. 11 
V     o 

V 
[(g*T..   . +f.)*u.] (x,t) dV 

1 
~[g*(g**qi   .  - h)*9] (x,t) dV 

V     o 

[g*T.*u.] (x, t) dS 
I     I    ~ 

(5.2) 

[g*(T. - T.)*u.] (x,t) dS 
I I      I    ~ 

+ J   ^-[g*g'*Q*e] (x,t) 
•&Y     o 

1 

J?     o 
+ 

dS 

[g*g'*(Q- Q)*e] (x,t) as, 
v 0        1 
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where 

0!.(x)   =  ~   .    " .   . P..(x) 
lj - p(x)  C   <x)    ij - 

(5.3a) 

and 

c!      (x)   =    c.      (x)   +  P..(x) 3'   (x). 
ljkl — ljkl - ij —      kl ~ 

(5.3b) 

Then 

60 {R}   = 0 over   K (0 * t< (5.4) 

if and only if   R    is a solution of the mixed problem. 

Proof.      Let   R = [u, £, "T, "9",  rf, jq, 7] e K,    from which it 

follows that   R+\ReK   for every scalar   \.     Then,   by (5. 2),   (2.7), 

(3.4),   (5. Id),   (5. le),   property (b) of admissible  states,   the proper- 

ties of the convolution,   and the divergence theorem, 

kgCUR}   =    f  [g*( c!       e,    - p p|. r\ - T. )**..] (x, t) dV 
R   t J likl    kl ii ii       li     — 

T  TI 

+   J  P(x)[g*(-^--P!   e     -6 
V e J      J 

(x, t) dV 

—   [g*g'*(k     *.  + q.)*£j  (x,t) dV 
V     o 1J    J 

f   [(g*T..   . + f.   - pu.)*u.] (x,t) dV 

^~ [g*(g'*q.   .  - h + p  T    n)*9] (x,t) dV 
1 1,1 o ~ 

V     o 

V 

[g*(u,.   ..  - e..)*T..] (x,t) dV 
(i,j)        ij       ij    ~ 

(5.5) 

+    J  Y~ [g*g'*(9, .  - *.)*q.] (x, t) dV 
V     ° 

[g*(u. - u.)*T.] (x,t) dS 
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+    f     [g*(T.  - T.)*tt.] (x,t) 
J 111"- 

dS 
S2 

+   J    ^-[g*g'*(e - 8)*Q] (x,t) dS 
J\   ° 

+ 
T 

'2 

— [g*g'*(Q - Q)*9] (x, t) dS     (0 5 t < »). 

Jo 

First suppose    R    is a  solution to the mixed problem.     Then,   by virtue 

of Theorem 4. 3,   (5. 5) yields 

b-Sl {R}   =0      (OS t < »)       for every   R e K, (5. 6) 

which implies (5. 4). 

Now examine the "only if" portion.    It must be shown that 

R e K    is a solution to the mixed problem whenever (5. 6) holds. 

Choose   R  = [u,   0,   0,   0,   0,   0,   0],     and let   'n,    together with all of 

its space derivatives,   vanish on   S x [0,<=),     Then,   from (5. 1),   (5. 5), 

(5. 6),   follows 

J   [(g*T..   . + f.  - pu.)*u.] (x, t) dV = 0     (0St<«),     (5,7) 
V        XJ»J     1       ii~ 

_ 1,2 
and (5. 7) must hold for every   u e   C with the foregoing proper- 

ties.    But this fact,   together with Lemma 2. 1 implies the validity of 

(4.4).     Next let   R  = [u,   0,   0,   0,   0,   03   0],   but this time require only 

that   u   vanish on   S    x[0,»).     Then (5. 5),   (5.6),   (4.4),   and Lemma 

2. 2 yield 

5*(T.  - T.) = 0 on S    x [0,-), (5.8) 
11 Ct 

and this result,   because of (2. 5),   (5. la),   implies (3. 8b).    Now let 
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R   =  [ 0, 0, 0, 8 , 0, 0, 0],    and let   0,   together with all of its space 

derivatives,   vanish on   Sx[0,<=).     Then,   from (5.1),   (5.5),   (5.6) 

follows 

'  ~[g*(g»*q.   „ - h + p  T    n)*9] (x,t) dV = 0 
J     1 1.1 o 
V     ° (5.9) 

(0St<»), 

and (5. 9) must hold for every   8 e  C with the aforementioned 

properties.     This,   together with Lemma 2. 1,   implies (4. 5).     Then 

let   R = [O, 0, 0, 8, 0, 0, 0],   but require only that   8   vanish on 

J   x [0,oo).     Then (5. 5),   (5. 6),   (4. 5),   and Lemma 2. 2 imply 

J_g*g.*(Q _ Q) = 0 on <£x[0,«), (5.10) 
1 

o 

and this result,  with (2. 5),   (5. la),   yields (3. 8d).    Now let 

R = [0, 0, 0, 0,rf, 0, 0],   and suppose   T)   and all its space derivatives 

vanish on   S x [0,°°).     By (5. 5),   (5. 6),   and Lemma 2. 1 

T n 
g*l -=—  - B.1. e.. - 8 )  =  0       on       Vx[0,«). (5.11) 

\   C IJ    ij        J 

This,   together with (2. 5),   (5. la),   (5. 3a), implies (3. 5c).    Now let 

R - [0>!L? 0. 0> 0i 0; 0]>    and suppose   ^   and all of its space derivatives 

vanish on   S x [ 0,»).     Since   R    and   R   are admissible,    _T    and   ^e 

are symmetric.     Thus (3. 4a),   (3. 4f),   (5. 5),   (5. 6),   and Lemma 2. 1 

yield 

g*(o'     e.. - P B|. n - T..) = 0       on       Vx[0,»),        (5.12) 
ijkl  kl ij ij 
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and this fact,   in view of (2. 5),   (5. la),   (3. 5c),   (5. 3),   implies (3. 5a). 

Then let   H = [0, 0, 0, 0, 0, 0,j?],   and suppose ~&   and all of its space 

derivatives vanish on   S x [0,a>).     Using (5„ 5),   (5. 6),   and Lemma 2. 1 

yields 

~-g*g'*(k..*. +q)   =  0        on       Vx[0,=°), (5.13) 
o 1J    J 

and this result,  with (2. 5),   (5. la),   implies (3. 5b).    Next select 

R = [0, 0,T, 0, 0, 0, 0],  where   jf   and all of its space derivatives 

vanish on   S x [0,»),    and using (5. 5),   (5.6),   the symmetry of  T and 

1;,     Lemma 2. 1,   (2. 5),   and (5. la),   verify that (3. la) holds.     Then let 

"S- = [0» 0,JT, 0, 0, 0, 0],    but now assume only that  jf   and its space 

derivatives vanish on   S    x[0,eo).     Then (5. 5),   (5.6),   (5. Id),   (3.1a), 

Lemma 2. 3,   (5. la),   and (2. 5) imply (3. 8a).     Then let 

T< = [0, 0, 0, 0, 0,2> 0]>  where   7J   and all its space derivatives are 

assumed to vanish on   S x [O,00).     Use (5. 5),   (5. 6),   Lemma 2. 1,   (2. 5), 

and (5. la) to show that (3. lb) holds.     Finally,   let R = [0, 0, 0, 0, O.TL 0], 

but insist only that  2   and its space derivatives vanish on   X   x [0,°°). 

Then (5. 5),   (5.6),   (5. le),   (3.1b),   Corollary 2. 4,   (5.1a),   and (2. 5) 

imply (3. 8c).     Therefore   R    satisfies (3. 1),   (3.5),   (4.4),   (4,5), 

(3. 8),   and hence from Theorem 4. 2   R    is seen to be a solution of 

the mixed problem,  which completes the proof. 

5^2.     TheprejrXj     Let   K   be the set of all admissible states 

that meet the strain-displacement and thermal gradient-temperature 

relations (3. 1).     Let   R = [u.^e, T, 8, T|, q, i?] e K   and for each te [0,<») 

define the functional   ® {' }    on   K   by 

®JR3     =    J   [g*T..*e..] (x,t) 
t i.        i.i    i.i   ~ 

dV 
V 1J     1J 

-    J   p(x) [g*Tl*0] (x,t) dV 
V 
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"    7 I  X.1., .(x) [g*T..*T    ] (x,t) dV 
2 J

v   ijkl - ij    kl    ~ 

-    J"  P(x)a|.(x) [g*Ti*T..] (x,t) dV 

1       ToP(~) 

+   \ J   P(x) [u.*u.] (x,t) dV 
2V     ~       x     *    "~ 

+    jj  ~   [g*g'*q**.] (x,t) dV 
V o x     * 

,       X..(x) 
+    7J  -^ [g*g'*q.*q.] (x, t) dV (5. 14) 

V o *     J 

-  J [f.*u.] (x,t) dv + J ~[g*h*e] (x,t) dv 
V     1     1 V     o 

+   J     [g*(u. - u.)*T.] (x,t) dS 
S 111^ 

J     [g*f.*u.] (x,t) dS 
S2 

+   J     7f-[g*g'*(e  - 0)*Q] (x, t) dS 

J   ^[g*g'*Q*e] (x.t)ds, 

4   ° 

where   cc|.(x)   and   X!.,,(x)   are given by (4.9).     Then 
ij ~~ ijkl ~~ 

6® {R}   = 0       over   K       (05t<») (5.15) 

if and only if   R   is a solution of the mixed problem. 
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Proof.       Let   R = [u,l;,T,'9', Tl,2»2-1    ^e an admissible  state, 

and suppose in addition that   R + X H e K   for every scalar   X.     This 

latter condition is equivalent to the requirement that R e K.     Then, 

from (5. 14),   (2. 7),   (3. 1),   (3. 4),   the properties of the convolution, 

and the divergence theorem,   follows 

6T5®fU}   =    J   [g*(e..  -X'        T       - pa|.Tl)*T..] (x,t)dV 
R  t ^ ij ljkl    kl IJ IJ     - 

T  ri 
+   J  p(x) [g*(-^~ - a»   T     - e)*Tf] (x, t) dV 

v T J     J 

+    J   ~[g*g'*(*.   + X.. q.)*q ]  (x,t) dV 
V     o J    J 

-  J [(g*T.. . +f. - P u.)*a.] (x,t) dv 

-    J*  7p-[g*(g'*q.   .  - h   + p  T    T1)*BT] (x,t) dV        (5. 16) 
VTo 

+   J     [g*(u. - u.)*T.] (x,t) dS 

Sl 

+ [g*(T.  - f.)*tt.] (x, t) dS 
°c I I       l    ~ 
S2 

+   J     ^[g*g'*(9  - 9)*Q] (x,t) dS 

+   I    f [g*g'*(Q - Q)*9] (x, t) dS,    0 =1 t < 

h ° 

If   R   is a solution of the mixed problem,   then (5„ 16),   because of 

Theorem 4. 3,   yields 
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6~© {R}   =0,       0^t<oo;    for every   ReK, (5.17) 
R   t 

which implies (5. 15).     On the other hand (5. 16),   (5. 17),   Lemma 2. 1, 

Lemma 2. 2,   Lemma 2. 3,   Corollary 2. 4,   (2. 5),   (3. 1),   and Theorem 

4. 3 imply that   R   is a solution to the mixed problem,   and the theorem 

is proved. 

Another form of variational principle can be developed by 

requiring more stringent conditions on the admissible states. 

Analogous to the notion of a kinematically admissible state as used 

by Gurtin [5],   a king ma tic ally and theirmally^ aimi s s ibl eestate i s 

introduced as a state that meets the strain-displacement and thermal 

gradient-temperature relations (3. 1),   the constitutive relations and 

equation of state (3. 5),   and the displacement and temperature bound- 

ary conditions (3. 8a),   (3. 8c).     The variational principle based upon 

such states represents an extension of the theorem of minimum 

potential energy. 

5^3.     Theorem.      Let   K   be the  set of all kinematically and 

thermally admissible states.     Let   R = [u,_e,_T, Q,T\, Q,&] e K,     and for 

each te [ 0, <=°) define the functional   I {'}    on   K   by 

VR}   =   2-I" [g*T*e
r

] &'*) dv 
v       1J XJ 

}j   p(x) [g*Tl*9] (x,t) dV 
V 

+    ^J   P(x) [u.*u.] (x,t) dV 
2V ii~ 

+    - J  — [g*g'*q.*^.] (x,t) dV (5. 18) 
V     o l     X 
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J   [f.*u.] (x,t) dV 
o 11      — 
V 

+   J  =^[g*h*9] (x,t) dV 
V     o 

J    [g*f.*u.] (x,t) dS 
d     °     1    1   ~ 

J  ~-[g*g'*6*e] (x,t) ds. 
J2     o 

Then 

6$ {R}   = 0      over   K,        0 * t < » (5. 19) 

if and only if   R    is a solution to the mixed problem. 

Pr_oof.      Let   R = [u.^e.T.'S', rf,^,7]   be an admissible state and 

suppose that 

R + \ R e K    for every scalar   \. (5.20) 

This latter condition is equivalent to the requirement that   R    meets 

(3. 1),   (3. 5),  with 

u.   =   0 on S    x [0,») (5. 21a) 

and 9=0 on        J   x [0,oo). (5. 21b) 

Next use (5. 18),   (2.7),   (3.1),   (3.4),   (3.5),   (5.21),   the properties of 

the convolution,   and the divergence theorem to verify that 
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6~${R}   =     -J[(g*T..   . +f.  - pu.)*TX.] (x,t)dV 
R t J

v ij,j      i ii~ 

J  rMg*(g'*q.   .  - h + p  T    n)*9] (x,t) dV 
\     1 1,1 o ~ 
V     o 

+ J    [g*(T. - f.)*U.] (x, t) dS (5.22) 

+ J  ~-[g*g'*(Q - fi)*"&] (x,t) ds, 

4 • 
o^ t<», 

~ 1,2 ,- 1,0 
for every   u. e  C and   a e  C which meet (5. 21).     First suppose 

R   is a solution to the mixed problem.     Then (5. 22),   by virtue of 

Theorem 4. 3,   implies (5. 19).     On the other hand (5. 19),   (5. 22), 

Lemma 2. 1,   Lemma 2. 2,   (2.5),   (3.1),   (3.5),   and Theorem 4. 3 

imply that   R    is a solution of the mixed problem.     This completes 

the proof. 
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meant an ordered pair [u, 8] such that the vector-valued function 

u e C and the scalar-valued function   9 e C The linear 

space of interest here will be the set of all admissible displacement 

and temperature fields.     By a kinematically and thermally admissible 

_dj.splacern^ent^and temperature field is meant an admissible displace- 

ment and temperature field satisfying the boundary conditions (3. 8a) 

and (3. 8c) on the displacement and temperature.    It follows that,   if 

[u._e,_T, 9 , T\,q, ??] is a kinematically and thermally admissible  state, 

then [u, 9] is a kinematically and thermally admissible displacement 

and temperature field.     Conversely,   the latter assertion implies the 

former when   e_,&,T,T\,   and ^   are defined through (3. 1) and (3. 5). 

Thus the following corollary to Theorem 5. 3 may be  stated. 

6. 1.     Corollary.      Let   K   be the  set of all kinematically and 

thermally admissible displacement and temperature fields.     Let 

[u, 9] e K   and for eachte [0,») define the functional   cp { ' }    on   K 

through 

^•e} = i(cijki(~)[g*ui,/!:V1(~'t)dv 

+    \ J   p(x) [u.*u.] (x, t) dV 
2V     ~       ii~ 

-    J*   B..(x) [g*u.   .*9] (x, t) dV (6. 1) 

P(x) C   (x) 

7J ——[g*e*e] (x,t) dv 
2 v T 

V o 



33 

Then 

1       k--W 
TJ  -% [g*g'*e,   *0, .] (x, t) dV 

V        o 

J   [f.*u„] (x,t) dV + J  ~[g*h*9] (x,t) dV 
V V     o 

{    [g*f.*u.] (x,t) dS 
S„ 1     1    ~ 

J  ~-[g*g'*Q*e] (x,t) ds. 
J2   o 

6cp{u, 9}    =   0 over   K (0^t<°°) (6.2) 

if and only if   u   and   9    are displacement and temperature fields 

corresponding to a solution of the mixed problem of coupled thermo- 

elasticity. 
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Variational characterization of stress and heat flux. 

By an ^dmjjjiblestressandh^a^fluxfieM is meant an 

ordered pair [T,C[] such that the symmetric second-order tensor- 

valued function  JT e  C   '      and the vector-valued function^ e  C   '    . 

The linear space basic to the development here is the set of all 

admissible stress and heat flux fields.     By a dynamically and 

energetically admissible st r e s sand heat _flux field is meant an 

admissible stress and heat flux field satisfying the boundary condi- 

tions (3. 8b) and (3. 8d) on the traction vector and normal heat flux. 

-LLA-     Theorem.      Let   K   be the set of all dynamically and 

energetically admissible stress and heat flux fields.     Let 

R  = [
T

»P] e K   and for each t e [0,<»)   define the functional   A {'} 

on   K    through 

AfR}     -   TJ X!.vl(x) [T..*T    ] (x,t) dV 
t I J

v    ljkl ~       ij     ki    ~ 

a!.(x) 
+    J   -%  [T. *(h - g'*q )] (x,t) dV 

V    To 1J m,m 

-    -J  -%  [g'*q.*q.] (x,t) dV 
V        o 

2 J    P(x) ij, J      im> m 

I 1 _L r re'*el*a     *q 1 (x, t) dV 
zJ    p(x)C(x)T    Lg    g    qi,i   qm,mJ (~'   ' 

V    v~'     Tv~'     o 

+ J -7-r[f.*T..   .] (x,t) dV 
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+    I  • /   J i   v?    [g'*h*q.   J (x, t) dV <{    p(x)C   (x)T 1, 1     ~ 
V   '-"-'     T

v~'     O 

[u.*T.] (x,t) dS 

J   ^-[g'*e*Q] (x.t) dS, 

4 ° 

where   Ct|.(x)    and   X!.,,(x)    are given by (4.9).     Then 

6A {R} = 0 over   K (Olt< (7.2) 

if and only if   T    and   Q   are  stress and heat flux fields corresponding 

to a solution of the mixed problem of coupled thermoelasticity. 

Proof.      Let   R e K    so that 

T. =?.. n. = 0 on S„ x [0,») 

and Q   = "q. n.   =   0 on /   x [0,°°). 
li 2 

(7.3a) 

(7.3b) 

It follows that   R  + X. R e K    for every scalar   \.     Then,   by (7. 1), 

(3.4b),   (3.4d),   (3.4e),   (2.7),   (7.3),   the properties of the convolution, 

the symmetry of   T,    and the divergence theorem, 

6~A {R}   = f Tx'     ,T, n   +7^ (h  -  g'*q ) 
R   t J    LL   ljkl  kl      T    v s    Mm, rri 

o T,. +f 
(im, m       (i •0  iil*'r--}(5't) dv 

i /, j)J   IJJ  - 
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+ _!_ „•*  f r/"ai   T       _ _JL [h-ff'*q ]) 
T8      \L\klkl      pCL     S    VmV.i 

V     o 

-    \.. q.]*qj(x,t) dV 

+  J   {[F(«*Tyj+£i,-fiJ*Ti}(5't,dS 

(7.4) 

+        — g1* { [-zr- (h-g»*q.    ) -a! T 
J„    T L LpC 1,1 11  I 1J   1J 

-el *Q} (x, t) ds,   o ?it< », 

for every   R e K,    If   R    corresponds to a solution of the mixed 

problem then (7. 4) and Theorem 4. 5 yield (7„ 2).     On the other hand 

(7. 2),   (7. 3),   (7. 4),   (3. 4),   the symmetry of   T,     Lemma 2. 1,   Lemma 

2. 3,   Corollary 2. 4,   (2. 5),   (5. 1),   and Theorem 4. 5 imply that   R    is 

a solution to the mixed problem.     This completes the proof. 

In closing we note that extensions of these theorems to a 

theory of time-invariant thermoviscoelasticity,   in which the mech- 

anical properties are independent of temperature,   are easily obtained. 

Because of the  strong thermal dependence of the relaxation moduli of 

a real viscoelastic material,   such a theory is felt to be of little 

significance. 
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