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1. Introduction 

The term "exponential smoothing" seems to have been coined for 

the first time by R. G. Brown [l] in 1959 for a particular time series 

forecasting technique (or a statistical estimation technique, depending 

on one's paint of view.) Basically, the technique involves weighting 

each bit of past history with geometrically decreasing weights, less 

and less weight being given to the older part of the history. Certainly 

such a procedure has a great deal of intuitive appeal and, moreover, it 

has been shown that exponential smoothing entails less computer storage 

than some of the classical techniques such as forecasting by a moving 

average. These and other advantages are well documented In the book 

r4i on smoothing by Brown, a book almost entirely devoted to the 

exponential smoothing technique. Since an inventory system, particularly 

under a periodic review model, so often entails basing decisions for the 

future on past demand history, forecasting techniques are of considerable 

Interest to the inventory manager. 

It is quite evident that exponential smoothing has been widely 

adopted by Naval Supply Systems Command as a basic forecasting technique. 

A review of almost any document, such as various ALRAND reports and 

PAR documents which involve forecasting or estimation makes It quite 

clear that this is the case. And, since the book [4] by Erown Is 

practically a sole source of Information on the subject, it is not 

surprising to find said book extensively referenced throughout such 

documents. The writer has not been; uble to find any other text materials 

In which anything beyond a cursory treatment of exponential r nothing is 



given. And yet this textbook by Brown, Chapter 9 in particular, is 

replete with errors of both a typographical and a conceptual nature. 

Some added difficulty is created by the use of notation which is not 

consistent with the meaning usually given such symbols in related 

scientific literature. For example, the notation a, S, c, does not 

always denote estimates of the corresponding parameters a, b, c as they 

are  normally is used.  In other cases, the same symbol has been used 

ambiguously for two different quantities which certainly leads to 

confusion. 

One of the biggest indictments of the material presented in 

Chapter 9 of Brown's book is the fact that his so-called Fundamental 

Theorem, which hardly qualifies a theorem to begin with, is only an 

asymptotic (with time) result but is presented, used and discussed in 

such a way as to lead the reader to believe otherwise. Indeed, since 

the entire book rests basically on this Fundamental Theorem, it is 

not surprising that nearly every result in the book is an asymptotic 

result. This includes claims for statistical unbiasedness which is 

weak enough in itself without holding only asymptotically. Yet, except 

for an occasional and casual use of the phrase, 'after the initial 

transient becomes negligible,' the reader is never made aware of this 

fact. 

Another fundamental criticism from a statistical point of view is 

Brown's constant use of mean absolute deviation (MAD) to estimate 

statistical variütion. For the futility of using MAD to account for 

variability has been well documented in the statistical literature for 



years.  Its use by Brown seems to be justified mainly, and not 

surprisingly, because of its amenability to the exponential smoothing 

technique. Out of curiosity, the writer did a quick survey of the 

recent literature on the subject of variability and has been unable 

to find any significant result that would change one's attitude 

toward MAD. And yet, the disadvantages associated with this measure 

of variability is not mentioned once in Brown's book. But there is no 

hesitation in mentioning (p. 282) the computational disadvantage in 

using the standard deviation as a measure of varijbility. And 0f 

course computational convenience is but one of a list of criteria to 

be considered in selecting a model and it is a real disservice to ignore 

other, perhaps even more important, criteria. 

The purpose of this report, then, is to clarify some of the 

results given in Brown's book and to emphasize, much more strongly 

than does the author himself, the assumptions, tacit and otherwise, 

that yield these results. In this way, it is hoped that the reader 

will be more aware of the restrictive nature of some of the formulas 

derived in Brown's book and will thereby exercise some caution in their 

application. For a special case where Brown's formulas are only 

asymptotically (in time) valid, alternative forms are presented which 

are valid for finite values of time parameters. 

2.  Initial Conditions 

The first matter to be discussed in this report concerns the very 

definition of exponential smoothing. In the first place, Brown seems 

to be inconsistent in the definition employed in his early papers 



[I] and [2], and the one adopted later in his textbook [4]. In the 

former, single exponential smoothing of the sequence x ,x ^ , ...,x 

is defined by, 

t-1     j t 
x » a \   (1 - oe)J x + a (I - a)  x 

t-J 0 w   j-0 

which may as well be written 

t       j 
x ■ nr 2. (1 • fv) x 
t t-i 

j«0        J 

since it  is identically the same.    (The parameter cr is a number in the 

Interval [0,   ll, called the smoothing constant.)    This  is equation (3) 

page 675 of [2].    Yet,  on page 101 of [4] we find the symbol St(x)   used 

to denote the same quantity and this time is defined to be, 

tml j t 
S (x)"(vT   (l-nflx       + (1 - or) x    . 

t t-j 0 
j-0 

The difference,  of course,  is in the coefficient of (1 - or)     in 

both expressions or,  viewed another way,  the difference lies in the 

weight to be given the observation x .    In any case, both formulas are 

claimed to be derived from the basic recursion relation. 

St(x)  « > xt + (1 - a)  St_i(x), 

presumably valid for t » 1,2,3,...« But successive substitution in 

this recursion relation only yields 



t-1        j t 
S (x) - a S  (1 - a)Jx   + (1 - ») S (x) . 

Clearly, then, the question of compatibility of these two forms of the 

definition of the exponential smoothing operator depends upon how one 

defines the initial condition S (x) . If the first formula is to be valid 

Chen we must have S (x) s or x^ while if the textbook form is used then 
0       0 

it must be the case that S (x) = x . Since Brown is not explicit on 

this point we can only postulate what was intended. In either case, 

the resulting definition depends somewhat on how x is treated since in 

one case x is given weight or initially and unit weight in the other 

case. In the first case, given in Brown's paper, in viewing exponential 

smoothing as a variation of averaging so that the result is a weighted 

sum of the observations, then the sum of the weights is not unity which 

is awkward statistically speaking. 

Of course, how one defines the initial condition is of little 

consequence when only asymptotic results are considered since the effect 

of the initial condition eventually becomes negligible in either of the 

above cases. And, for this reason, the inconsistency In defining SQ(X) 

(actually the utter lack of any explicit mention of same) never appears 

to be a problem because, as we have said. Brown's results are.by and 

large.only asymptotically valid hence applicable only to a steady state 

condition. Yet, the point Is more than merely academic. The formula 

is a result of a recursion relation and, to apply such a relation in a 

model requires an initial condition as does any application of a 

mathematical recursion. Moreover, statistical properties» notably 

. 
j 



unbiasedness, definitely depend upon how one treats the Initial 

condition. Finally, there are many realistic situations in which there 

is simply not enough past history to justify the application of an 

asymptotic result in which case the initial condition becomes a very 

important factor and can considerably influence the consequences. 

Several points of view regarding the meaning to be attached to 

x in the sequence x , t = 0, 1, 2, ...;can be Justified. If x. 

represents the demand occurring in the tth time period of an inventory 

model, then it is quite natural to define x = 0 since initially, 

that la before we begin operating the system, there is no demand. In 

that case, it does not matter which of the above forms we use for SQ(X) 

since, in either case we obtain SQ(x) 3 o also. But then we may as 

well write 

^      j S (x) = cv -  (1 - cy)Jx  , 

in which case, writing p  for 1 - 'v,  the sum of the weights is 

a i   H    « 1 - b , 
j-o 

which is not unity. One of the consequences of this result is that if 

we are observing a process with constant mean then the smoothing operator 

S (x) is not unbiased as is often claimed in such circumstances. This 

is precisely one of the problems encountered by Bessler and the writer 

6 



is] in attempting to apply exponential smoothing to a dynamic Inventory 

model originally developed by Vasslan In 1955. This led them to define 

a modified version of smoothing which they call finite exponential 

smoothing. Denoting this modification by St(x), it is defined In [8] 

by 

t  j 
S (x) » or  L ß x 
t     t  .„o  t-j 

where 

a    ■ —— 

With the coefficients thus normalized, the sun of the corresponding 

weights is unity as desired.    Further properties of this modified version 

of smoothing and some of  its applications may be found in [8]. 

Another point of view that might be taken regarding the Initial 

condition applies when the assumption in the model Is that 

x    ■ i   + e    where 'i.   is a deterministic function of t and e    Is a t        t        t t t 
2 

random variable with mean zero and constant variance o . In that case» 

it is natural to suppose that x " ^ + e to be consistent with the 

rest of the model. Whether or not such an assumption Is suitable 

depends upon further considerations in the model. For example, suppose it 

is assumed that 'i   = a, where a /• 0. In that case, S (x) Is unbiased 

if we use the version S (x) » x but Is not unbiased If we use 

S (x) * ry x instead. 

< 



In many of the applications which Brown discusses in his book 

L4], he speaks of x us representing some initial — any initial -- 

estimate of, say demand, up to the time the process is to be observed. 

In some cases, such an estimate may be sheer judgment, or rather 

guess, as to what the, say constant mean demand will be. In other 

cases, it may be obtained from the manner in which it is hoped that 

the process will behave. In still other cases, x. nay be a number 

which depends upon some related process whose behavior has been 

previously observed. In any case we are then considering x as being 

an estimate from a separate distribution, one not necessarily related 

to the assumption x^. " C + e . Then S(>0   is or is not unbiased 
t   t   t       t 

depending upon both the distribution that does represent x as well 

as which form of S0(x) we use. For example, it i    m a  for t » 1,2,... 

Chen 

B[ St(x) ] = a - a ti' + P E^ xo ^ 

if we take S (x) = x while 
0     0 

E[ S (x) ] « a - a ß + a ß E[ x ] 

if we take S (x) B o x . In either case, whether or not E[ S (x) ] = a 

depends upon E[ x ] and certainly in general it will be the case that 

Er. St(x) ] # a. 

8 



3.    Fundamental Theorem 

As Indicated earlier, most of the mathematics of exponential 

smoothing is summarized  in what Brown calls his Fundamental Theorem of 

Exponential Smoothing,   the statement and   'proof" of which is given on 

page 133 of [4].    Using the model x   ■ *i   + e    where,  in general, 

a« a 

2      2 n   n 
I    • a. + a.t +  t    + ... + -r*t   and   [el 
t0l2 nl tt"0 

represent Independent random variables.  Identically distributed with 
2 

zero means and constant variance a , Brown asserts that his fundamental 

theorem   'proves that  It  is possible to estimate the n + 1 coefficients 

in an nth order polynomial model by linear combinations of the first 

(n + 1)  orders of exponential smoothing.1'    The general k'  -order 

smoothing operator is defined inductively by 

Lkl [k-il [k] 
S        (x)  » fv s (x) + (1 - o) s (x)  for t - 1,2,3,... 

In the first place,   the fundamental theorem is not really a  theorem 

at all but simply an observation that the ptll-order smoothing operator 

can be written explicitly in terms of the coefficients of the model. 

But worse, what Is stated as the fundamental theorem is simply not 

true.    Thus,  even for p a 1 it is Just not true that 

n k   x (k> «     k   j 
S (x)  - 1   (-1)    —1   c £   j    Ö 

1 k-0 kf j-0 



as asserted by the theorem. Later In this section, we will derive 

the correct expression for S (x) and show that what is given here is 

an approximation. 

Secondly, even if one were to call the result a theorem in a 

broad sense, the proof that is given is not a proof of the statement 

of the theorem at all.  Indeed, the opening line of the proof on 

page 133 asks the reader to "Think of the infinite sequence of 

observations,...,x for t ■ -»,... ,-1,0,1,,.. ,<"." But one is not 

given an infinite sequence of observations.  In fact, all that is given 

for any application are the observations x ,x ,x ,...,x . Giving the 
0 1 2    t 

author the benefit of the doubt, however, let us suppose that the 

extra variables,' are simply being used as surplus variables to generate 

a proof. Certainly the observations x , ,x  .... turn out to be 
t+1 t+2 

redundant for we find, reading further, that a new sequence is introduced 

by the definition 

,0   if t < 0 

» i s -1   t 
W      if t > 0 

whereupon it is asserted that 

S (x) ■ s x   S 
t    _« t-j j 

j-0 

» 

found by the convolution of  [ xj     and { S }. 
j j« -co k k» -» 

Thus,  the effect of defining S    ,S    ,...  to be zero is to cancel out  the 
-1    -2 

10 



observations x  ,x  ....in writing the convolution product given 
t+1 t+2 

in the text. But what remains is, after correcting a misprint on 

page 133, given by 

»  j 
S (x) - a X ß x 

and this is not the definition of S (x) although the author certainly 
t 

uses the same symbol and refers to this as the single exponential 

smoothing operator. 

What possible points of view can be taken to resolve this 

apparent inconsistency? One approach would be to assume the author 

intended to define S by means of 

, o' pJ if 0 ^ j < t 

Vt 
0 otherwise 

Or, we might assume that the extra variables are all zero, that is, 

x £ 0 if n < 0.  In either case, convolution would then yield the 
n 

formula 

t  j 
S (x) ■ or \ fc> x 
t      i»0  t-J 

which is consistent with the fact that we will be estimating with 

observations x ,x ,...,x . Unfortunately, this formula is still not 
0 1     t 

quite the same as that given previously in the text on page 101 where 

S (x) is defined. There, the coefficient of x is given as ß whereas 

U 



t 
here In the fundamental theorem, the coefficient of x is fv p  under 

0 

jny of  the above versions. 

A third criticism is that the theorem does not prove (even if  it 

were valid)   that the coefficients in the model can be estimated by 

linear combinations of S      ^(x),  S '-2^(x),...,  S    n+    (x)   as quoted 

above.    There is still the question of solving the system of equations 

given by the theorem for the coefficients.    The author proceeds to do 

this for two special cases in the remainder of the chapter.    But even 

so, we are compelled to remark that, of course it is possible to 

estimate the coefficients this way.    Indeed one can use any function 

of the observations to estimate them.    But for any estimates to be 

meaningful they should satisfy some criteria, at least from a statistical 

point of view.    Are the estimates presented by the author unbiased?    We 

have seen that  in general they are not.    For the special case 

'•a    "a    +    at,  the estimates given are certainly not least squares 

nor,  if normality is assumed, maximum likelihood since these estimates 

are well known and are not the same.    One of the few criteria claimed to be 

satisfied and shown by D'Esopo [3]  is that the estimates,  not surprisingly, 

minimize "exponentially discounted least squares," i.e., minimizes  the 

quantity 

y .-   P    (x        - p     ) 
j-0 t-j        t-j 

at least among polynomial fits.  Such a ground rule for deriving estimates 

is not conventional, however, and is tantamount to selecting an estimate 

by fiat. 

12 



It might be instructive to see, in contrast to what appears 

in Brown's fundamental theorem, what the precise results are at least 

for the special case of a  linear model. In order to maintain the 

same notation as Brown we will assume a deterministic model at first 

so that we suppose x " a + bt, t ■ 0,1,2,..•« Brown is not explicit 

on this point, continually confounding the original random model with 

the deterministic version whenever it suits his purpose. We will be 

careful to always make this distinction, however, so that estimation 

can be discussed in its proper contexts while analytic operations are 

only performed on deterministic quantities to which they should be 

(0) restricted.    We then have,  in Brown s notation, x ■ a + bt and 
(1) 

xb   ■ b. Since two versions of S (x) exist even in the same context 
t t 

for finite t, we will have to make a choice of definitions. Here we 

will assume that the definition SQ(X) m x is to be preferred since, 

then, the sum of the weights will be unity in the version 

t-1 k     t 

S (x) » > 0 x  + & x . 
t    ^.o   t-k    o 

Also, double smoothing can then be written 

[2] t-1    k t 
S        (x)   • » I     US      (x)  + ß S (x). 
t k-0      t-11 o 

Here we have made the natural assumption that 

[21 
so    (x> ' so(x)' 

13 



In order to derive the finite analogues of Brown's fundamental 

theorem,  It Is only necessary to substitute In these formulas and 

simplify the resulting algebra.    The simplification is assisted by 

a knowledge of finite expansions functions of the basic geometric 
t     k 

progression      L   fci .   For the record, the first three of these 
k-0 

expansions are given below.    They, and others, can easily be derived 

by successively differentiating with respect to the continuous 

variable 3 (0 < 0 < 1)  and simplifying the resulting algebra • 

t + 1 
I   ^ m LlJ  
k-0 a 

t+1 t+2 

k-0 a
2 

t      , R
k      ß + ß2-(t+l)2ßt+1

+(2t2 + 2t.l)ßt+2-t2ßt+3 

i,   k    p    ■ ■ 
k-0 3 a 

From the above definition and assumptions we then have 

t"1   k t t"1   k S  (x)  - a '"     ß    (a + b (t-k))  + a ß    - a (a + bt)  S     ßK 

1 k-0 k-0 

t-1       k 
a ß I     k ß   + s ß'. 

k-0 

14 



After some simplification, we obtain, 

(0)    ß    b  t+l 
(3-2)    S (x) - x    - b  +-L. ß 

Likewise,   substituting in the formula for double smoothing yields, 

[2] (0> ß b      t+l t+l (3-3) S        (x)  - x        - 2b —. + 2 — (s        + bt \iz L 

t t » a 

[2] 
These are  the exact formulas for S (x)  and    S        (x) ,  valid for all 

t t 

finite t,  and of course they differ from those given by Brown. 

It is now apparent how one can derive Brown's results as asymptotic 
t+l 

versions of the exact cases.    Since 0 < ß < 1, we have ß      - ->0 and 

t+l 
t P —^O^as t-^03.    Then we may say that,for sufficiently large 

[2] 
values of  t we may approximate S  (x)   and S        (x)   by, 

/ t t 

(3-4) 

(0)    a (1) 
S  (x)  '    x        " — ^ 

t tat 

[2]     .   (o)     e     (i) 
S        (x)  - x      - 2 — x 
t tat 

These are the  formulas one would obtain from substituting into the 

Fundamental Theorem of page 133. 

To actually apply these results and evaluate them statistically, we 

would want to consider the model x    " §   + e    where §t ■ a + bt and. 

15 



2 
as before, e has mean zero and variance a . Brown would have us use 

as estimates based on the data x ,x »•••»x ,  the quantities, 
0 1    t 

Ä (0) [2] 
x.. - 2S (x) - S^  (x) 

(3-5)     '      t     t 

- (1>   ^    / x    [2]/ x 
\ "— [ st<

X) " St  
(X)] 

These are easily obtained by solving (3-4) as though they were equations 

and then replacing x   and x   by the symbols x   and x    since 

they involve or are themselves unknown parameters. Whatever means 

they are arrived at, certainly they are properly called estimates since 

they are functions of the data x ,x ,•••■x . They are not, however, 
0 1    t 

unbiased as Brown claims If one uses, as one should, the precise formulas 

[2] 
for S (x) and S   (x). 

To see that the estimates are biased, we notice first that 

£[ x (0)1 - 2E[ S (x) ] - E[ S [21(X) ]. 
t t «■ 

But, 
t-1 k      t 

S (x) " 'Y "  P x   + 3 xÄ 
t      k,o   t-k     0 

and, since E[ x   ] " a + b(t-k), we have, 
t"K 

t"1  k 
E[ S (x) ] » a .:  ß (a + b(t-k)) + a ^ 

t        k-0 

16 



which is the same expression we dealt with in the deterministic model 

(the S  (x)  of that model).    From that result, we have 
t 

ri K      t+1 

E[  S (x)  ] » a -l- bt - b fL + -2    0      . 
t a a 

Similarly, 

[2] ß h      t+1 t+1 
Ef  S        (x)   ] - o + bt - 2b —   + 2 -£    0        + bt ß t a ot 

Putting these facts together we thus obtain, 

r   * (0)-, ,t+l 
El  x      ']  - J + bt - bt 0 

(3-6) t 

C1) t t 
E[x       ]=b-be    - a bt ß 

t 

In both cases,  the estimates are biased downward^with a bias that is 

a  function of the   'trend" b.    Since b is unknown,  the bias may be 

serious depending ol course on the magnitude of b.    The bias factors 

do converge to zero as time increases beyond bounds however, and we 

may say that the estimators Brown gives are thereby asymptotically 

unbiased. 

For the case n = 2,   that is for a quadratic model 

a-)      2 
i.    s a    + a t + —=- t  ,     similar conclusions can be reached.    The 
t        0        1 2 

algebra  involved is somewhat burdensome, however,  and will not be 

repeated here.    Suffice it to say that the exact formulas for 

17 



[2] [3] 
S (x), S        (x)  and S,.      (x)  are such that for t sufficiently large, 
t t c 

Brown's versions of these expressions hold.    Again,  if these 

approximations are treated as equations, one can solve the resulting 

system for the derivatives    x        , x and x to obtain Brown's 
t    t       t 

results. When treated as estimates they are not, of course, unbiased 

any more than the linejr case. Also, the unsuspecting reader should 

be warned that the results, published on pages 140 through 144 should 

be read and interpreted with caution even after correcting some obvious 

misprints. Thus, on page 140 for example, a (t) and a (t) are not, 

as one might presume from the model, estimates of a and a but rather 

(0) a2 2    (1)        1 

estimates of x  (t) - a + a t + -= t and x ' (t) ■ a + a t 5 

respectively. Happily, of course, a (t) does happen to be an estimate 
2 

(2) 
of a since, for this case, x  (t) " a . 

2 2 

No attempt was made to examine the results for higher order 

polynomials. Based on the quadratic model, it is clear that the algebra 

involved would be too unwieldy to make the task practical. Perhaps this 

is as good a justification for resorting to asymptotic results as any. 

And it should be stated that there is no serious objection to deriving 

asymptotic results and considering estimators with only asymptotic 

properties. The objection is to the inordinate use of the same notation 

for the finite case and the asymptotic case in formula after formula. 

Together with a complete lack of any discussion of the difference, it 

leads the unsuspecting reader to believe that the results are stronger 

than they really are. 

18 



4.    Mean Absolute Deviation 

In Inventory applications of random demand models» safety levels 

are often determined in terms of some measure of variability,  usually 

the common standard deviation of the demand distribation.    As was 

mentioned in the introduction, Brown prefers to use mean absolute 

deviation, or MAD for short.    This in spite of the statistical grounds 

for not using this particular measure.    As he points out (page 275) 

the mean absolute deviation is proportional to the standard deviation 

in any probability distribution.    Both are, after all,  functions of the 

parameters of the distribution.    But finding an appropriate estimate 

for MAD and deriving the corresponding distribution theory to guarantee 

the required probability for safety levels is quite another matter. 

Brown has not done this and, to make matters worse, never distinguishes 

between a population or true MAD and an estimate thereof,  even to the 

point of using the same symbol and name for them. 

In the first place,  the definition adopted by Brown for MAD, denoted 

u,  reduces to a • EL   |  X - IJI  |l where x is any random variable having 

nean ^.    As he himself points out on page 283 it would be better to 

define u as £[   I  x-m  |] where m is any median of the distribution of x. 

This is because    fi[   |  x-c  |] is minimized by choosing c ■ m.    Yet he 

ignores this criterion and uses M- instead of m.  Justifying his choice 

on tue basis that  forecasts estimate means rather than medians.    But 

if one can justify computing A instead of a because A is proportional 

to a,  surely the same argument can be used to estimate m instead of p.. 

19 



This is hardly a convincing reason but we will pass this point and 

use Brown's definition. Of course, in a symmetric distribution~ • m 

as he brings out. But it is precisely in the applications to random 

demand that skewed distributions such as the Poisson and Negative 

Binomial families arise in practice. This is especially pertinent 

to standard assumptions in Naval supply systems. 

Brown quite aptly shows that the ratio of a to a is approximately 

0.8 for the Normal, Exponential, Uniform and Triangular families of 

probability distributions. Yet, except for the normal family, the 

interest must be primarily academic so far as inventory applications 

are concerned. It would be far more interesting, and quite instructive, 

to see what the situation is for other distributions. In particular, 

an examination of the Poisson family reveals that 0.8 can be a very 

poor approximation. In the ~oisson mass function 

•A X 
p(x; A) • e L 

x! • 

x • 0,1,2, ••• with 0 <A< 1, 

we hdve 
CD 

o • ~ l x - A I p(x; A) 
x-o 

·A 
• Ae + 

·A 
>.) e 

Ax -· x! 

·A 
Ae + 

-A "-. ·A 
• Ae +A - A (1 -e-) • 2 Ae • 
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,--. -- -A 
Since a • ·;.' A, we have &.... • 2·/ A e • V<Jlues of this ratio are shown 

0 

for 3 variety of values of A in Table 1. 

I I ! A 0.01 0.05 0 . 10 I 0.25 0.50 o. 75 0.90 0.99 

fl 0.198 0.425 0.572 i o. 779 ; 0.858 . 0.818 o. 771 0.739 -a ; 

TABLE 1. Ratio ~ for Poisson family 
0 

As is evident from the table, the approximation 0.8 is extremely poor for 

slow moving items where the Poisson with small mean A is a typical 

assumption. For values of A > 1 in the Poisson family and the geometric 

distribution with mean greater than unity, a similar analysis shows 

that the ap[>roximation 0.8 is not bad, however. 

This may appear to be a minor academic point until one finds that 
/"2-

the same ratio o! /- is used in the applications of Chapter 20 quite . 
~ n 

independent of any assumption as to the underlying probability 

distribution of demand. Also we might point out that even though fl is 

proportional to a in the population, it does not follow that the 

- -estimates o and a enjoy the same sort of relationship. This would 

imply a type of invariance principle such as that enjoyed by maximum 

J i.kelihood estimates, and is, in general, not true when the estimates 

are not maximum likelihood. 

This brings up another matter concerning HAD estimates. Brown 

uses error forecasts to estimate fl. In fact, for the particular data 

21 



x .x ,...,x , the error forecast. e(t) is defined by e(t) ■ x -x . 
0  1     t »  x ^ t   t"l 

where x . is taken to be the forecast at time t-1 of the demand at 
t-l 

tine t. Now in our basic model with constant mean, § "a, and 

exponential smoothing used to estimate the mean, we have 

f.^.k       t-l 
X»(V..   Px      +P   X 
t-l    k.0   t-l-k      0 

and if E[ xrt 1 « a, EL x   ] ■ a.  It then follows that E[ e(t) ] - 0 
0 t-l 

2 
and,   from independence,   the variance a    (t)  of the error forecast 

e 
becomes 

2 2 2t-2 2t-2 , 
a   (t) - a   +—9L>(i.f,       )a   + ß       a*. 

e I + a 

as can be easily verified.    Letting t—>« we observe that the limiting 

2 
variance a      is given by 

o 2 - (1 + QL )  a ?    a2 

e 1 + 0 2 - a 

a formula which is used throughout the text by Brown as though it were 

valid  for all t.    Incidentally,  if there is a possibility of trend 

present so that the assumption of constant mean is suspect,  not even 

tills asymptotic formula should be  used to describe the variance of 

forecast error. 
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Granted that t is sufficiently  large so that the above asymptotic 

variance applies,   it would follow that the true MAO for e  , say A  , 
t     e  • 

uld be defined by E[ I e |] since E[ e ] - 0. Then if  it were 

true that A ■-/-£- a .as for a normal distribution, it would then 
e :      e} 

follow that Ae 
m'\Jz- 2  o as Brown claims. Then of course 

^ 2-0- 

a.,   IL-V/_2^L   A 
v     2   .        , e 

and if we can estimate A , we could then estimate a by invoking an 

(unproved)   invariance principle obtaining 

//'■■....     2-a' r 

'     2^2 e 

In other words,   if a is the usual maximum likelihood estimate of 

o fur the present assumption,   it follows from the invariance principle 

that 

e      t  Jt      I    2-a 

is the maximum likelihood estimate of A .    We are on safe grounds, 

statistically speaking.    Now, a reasonable estimate of A    based on 
e 

the sample e,,en.....e    and the fact that E[   e    ] ■ 0 would be the 
1    2 t t 

sample analogue of E[   |  e    |], namely, -   £    |  e.|.    Brown,  however, 
t t i-i  i 

guided by exponential smoothing, uses instead the estimate 
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t-1  k t 
A    -   «I'     '9    I  e.   J +0    A (0). 

e kmo t-k 

Thus, apart from the  Initial condition, A    is an exponentially weighted 
e 

average of the same variables lej, jej  |e |, which makes it about 

twice removed from any known distribution theory. If A  is used in 
e 

the above formula for a , what can be said about the resulting estimate? 

It is definitely not maximum likelihood. Neither is it unbiased nor 

likely to be minimum variance.  In truth, without some knowledge of 

the distribution of a , even under normality assumptions, very little 

can be said about a. 

In summary, then, there is a definite need for more distribution 

theory before a strong case can be made for exponentially smoothed 

estimates of MAD. Brown claims on page 286 that, "If one can estimate 

the mean absolute deviation of the forecast errors, it is quite simple 

to infer the probability that any given multiple of the estimated value 

will be exceeded. ' Quite the contrary, however, it is not only difficult 

hut practically impossible to infer such probability statements without 

a knowledge of the distributions involved. For example, even if x it 

normal with mean u. and variance aA so that for any 0 < y < 1 we can 

compute the value of K such that 

Y-P [ x > ^ + K <J] 
r 

it does not follow that when we estimate M- by exponential smoothing, say 
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ü, and o by Y"?" A ? that Pr [x ^ H + K V "^- A ] is still y. 

Yet this seems to be tacitly implied at several points of the book. At 

the very least, one should have some simulation results for the 

distribution of ü + K i ~ A to make the result more plausible, as 
'  2 

recommended by Asher and Wallace [6]. As they point out, if the usual 

Gauss-Markov assumptions are made, MAO or any estimator other than least 

squares will come off second best. The results of their study show that 

MAD is about 207. efficient compared to minimum variance estimators and 

also displayed greater bias. 

5. Conclusions and Recommendations 

Lest this report be taken as a total indictment of exponential 

smoothing as a forecasting technique, let it be said that it is freely 

admitted that this idea of weighting the past with ever-decreasing 

weights has a great deal of intuitive appeal. And it is granted that the 

technique has a computational advantage in requiring lusa computer 

storage than more standard techniques* Carried to its extreme, however, 

one could equally well justify using only the current observation for 

estimation purposes and ignore the past completely. AC least such an estimator 

would possess some well known statistical properties. 

And this is one of the points we wish to stress. An estimator, to 

be valuable, must satisfy various criteria that have been used to judge 

such estimators. Exponential smoothing, regardless of its intuitive 

appeal, must be able to stand the test alongside other alternatives. 

Invariably, this involves some knowledge of the probability distribution 

of estimators. Without such a knowledge, it is difficult to approve 
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or disapprove heartily of exponential smoothing. Certainly Brown has 

not developed such theory and neither» apparently, has anyone else to 

any extent. Lacking such a theory, a recent study by Astrachan and 

Sherbrooke [?] involved an  empirical test of exponential smoothing. 

The results showed that exponential smoothing was not significantly 

better than techniques currently being used. 

But even if these statistical points were resolved we would have 

to object to the way in which the results are presented in Brown's 

book for reasons clearly detailed in this report. To this end we 

are inclined to agree with the review of the book done for Operations 

Research (Vol. 13, No. 2) by Fishman who says, "In assessing the over-all 

contribution of this book to the forecasting literature, I would argue 

that it confuses rather than enlightens the well-informed as well as 

the mathematically unsophisticated reader." The writer would add that 

even the mathematically sophisticated reader may have considerable 

difficulty unravelling some of the ambiguity present in various formulae 

as well as justifying several claims to mathematical rigor.  In any case, 

the user of this book should be aware of the asymptotic nature of the 

results and apply them with this restriction in mind. 

Finally, we have seen that the indiscriminate use of mean absolute 

deviation as a measure of statistical variation creates the same 

theoretical problems that have caused it to be abandoned by statisticians 

these many years. As Asher and Wallace [6] put it, "... one should be 

prepared to give up considerable efficiency.' The difficulties of 

obtaining probability distributions for MAD estimators Introduced by 
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Brown appear to be extremely difficult at best. We re-emphasize the 

fact that such estimators, as well as any exponential smoothing 

estimators, must be more than a means of arriving at a number, ease 

of computation notwithstanding. Perhaps the variance estimation 

techniques we have criticized in this report are fruitful. But without 

some knowledge of the theory, and their probability distributions in 

particular, there simply is no way to pass judgment on them. 

As for further research, the areas we have been discussing offer 

rich opportunities indeed. Since this report has essentially been 

devoted to a critique of Brown's book, it is perforce, negative in its 

spirit and conclusions. A more positive approach would be to define 

alternative procedures which would be as appealing as smoothing for 

computing purposes and would admit a statistical theory at the same 

time. This is especially needed for statistical variation to replace 

MAD as a means of determining safety levels. It is strongly recommended 

that further research in this specific direction be undertaken. It may 

very well turn out that the smoothing procedures are actually close to 

optimal in some sense. But it needs to be established that they are. 

It does not appear feasible to develop formulas for exponential 

smoothing beyond the quadratic model. The algebra involved is simply 

too unwieldy. Perhaps it might be wise to reiterate at this point that 

we have no objection to asymptotic results as long as they are clearly 

labeled such. Indeed, for higher order polynomials it appears necessary 

to resort to such limiting results. Another possible area of research 

would thus be to investigate further the statistical properties of 

Brown's asymptotic formulae. 
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