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FOREWORD

This report covers a portion of the notes prepared for a seminar, ‘‘Mechanics of Composite
Materials,’”” presented at the Air Force Materials Laboratory in April and May 1966, The
work was initiated under Project No. 7340, ‘‘Nonmetallic and Composite Materials,’
Task 734003, ‘‘Structural Plastics and Composites.'’ The seminar consisted of Part I -
Intreuction, and Part II - Mathematical Theory.

The manuscript of this report was released by the author 5 May 1966 for publication as an
RTD Technical Report.

This technical report has been reviewed and is approved.

R7 SelonorT

R. T. SCHWARTZ, Chief
Nonmetallic Materials Divigion
Air Force Materials Laboratory
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ABSTRACT

The principles of mechanice are utilized for the description of the behavior of fiber-
reinforced composites. Principal components of elastic moduli and strength for an orthotropic
material are established as the intrinsic macromechanical prcperties. Micromechanics
analyses provide a rational design basis of these properties from the material and geometric
properties of the constituent materials. A bridge between the properties of the constituent
materials and the structural behavior of a laminated arisotropic composite car then be
established. Combined matcrials and structural design becomes feasible. Finally, test methods
of composite materials are evaluated. The principles of mechanics can be used to select the
material preperties to be tested and the appropriate test procedures to be followed.
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SECTION |
MACRO AND MICRO MECHANICS OF COMPOSITES

THEORY OF THE MECHANICS APPROACH

The purpose of this report is to introduce the basic principles of mechanics and their
relevance to composite materials. The work is planned for workers in the field of composite
materials who are not interested in the rigorous mathematic derivation of the principles of
classical mechanics. A basic understanding of the mechanics approach to composite materials
is indispensible because most composite materials are designed for structural applications.

Mechanics of materials is concerned with the distributions of stress and strain in a body
when external loads are applied to it. From the knowledge of the stress and strain, the strength
and deflection of a structural member may be determined. The cases of uniaxial tension or
compression of a bar and pure bending of a beam are very easy to understand. For these
simple cases, the meanings of stress, strain, displacement, and strength are unambiguous.
These terms, however, have more general and precise definitions for cases other than simple
loading, but their generalization involves come conceptual difficulty. In the cases of composite
materials, these basic terms in a generalized context have sometimes been improperly used.
It is the intent of these notes to illustrate the application and usefulness of the mechanics
appreach to solve the problems of design and utilization of composite materiels,

Materials can be viewed with different levels of magnification. Although, the common

composite materials and metals appear homogeneous, with lozto 1()3 magnifications. individual

fibers and crystals become visible. With greater magnifications, molecular and lattice struc-

tures may be revealed. These facts are of particular importance in the mechanics analysis,

which in general requires a mathematical model. The model is intended to depict a behavior of

an actual material. Since the mathematical representation of the actual material depends on

:1}? level of visual magnification, the mathematical modsl deduced from it will be directly
ected,

A material may be represented by a model consisting of a continuous medium, or discrete
bodies interconnected by various means. For a oontinuous medium, a spring or dashpot is
often used to represent elastic or viscous materials, respectively.

TYPES OF MATHEMATICAL MODELS

For composite materials, it is convenient touse two different but interrelated maihematical
models,

The first model is constructed on the macrosocopic scale; this corresponds to the case with
no magnification. On this scale, a composite material is treatod as a homogeneous material.
The actual fibers, their orientation and packing arrangement, the lamination, and the binding
matrix are all indistinguishable by the unaided eyes. The stiffness and strength of this material
can be characterized by making a number of tests from which gross or macroscopic properties
are determined. Once these property data are known, macromechanics analysis will supply
answers as to the load-carrying capacity and stiffness of a structure consisting of this
material,

Macromechanical analysis is nothing more than the classical structural analysis, except in
the case of composite materials, where the material properties are controllable and are
presumably designed with a purpose. The stiffness and strength can be varied not only in
magnitudes but in directions as well.
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The other mathematical model frequently used in composite materials is the m:
mechanical model. This model requires magnification sufficient to cause its individual i
to be visible. The actual material with this level of magnification can no longer be
homogeneous; both the existence cf fibers and the matrix must be included in the niathem
model. In fact, the cross-sectional shapes and the packing arrangement of the fibers, a1
relative volumes of the constituent materials must all be properly represented.

As an approximate distinction, macrurnechanics deals with composite materials on the

of 10° inch; micromechanics, 10'3 inch. The usual mathematical model for macromech

is an in-plane homogeneous, transversely heterogeneous {(due to lamination), and anisct
(due to fiber orientation) medium; for micromechanics, a heterogeneous, isotropic me
(The problem of interface is considered sub-microscopic, where molecular interact
visible. In thn present mechanics analysis, sub~micromechanics is not treated.)

The basis for the separation of macro and micromechanics is a matter of choice.
this separation, existing knowledge of macromechanics, e.g., the theory of plates and s
can be directly utilized. The selection of a proper combination of constituent materials .
concern of micromechanics. With this framework of macro and micromechanics, ¢ i
relation between the two approaches can be linked by a mathematical equation. This
connecting equation, which will be explored later, provides a logical perspective f
mechanics analysis of composite materials.

In the remeaining part of this section, the definitions of a number of basic terms and

relevance to composite materials will be described, since composites are our p1i
interest.

STRESS

Stress is a measure of internal foroes in a continuous medium. Stress is difficult to w
stand because it is a tensor which is a mathematical entity one step beyond a vector. T!
parallel to the case of a vector which can be treuted as an entity one step beyond a scal
we start from the most basic entity, the soalar, it possesses magnitude only. Mass,
perature, length, and speed are examples of scalars. Each one is described completely
numerical value in some physical unit; e.g., 3grams, 10°F, 2 inches and 35 mph, respecti
A vector is more complioated than a scalar hecause an additional characterization ie requ
An orientation (or direction) is required in addition to the magnitude. Weight, temper:
gradient, displacement, and velocity are examples of vectors. Each one is described
magnitude (3 lbs, 10°F/in., 8 inches, and 35 mph) and a direction,

The direction of a wvector can best be described in a coordinate system as In Fig.
y-oxis

Figure 1. A Vector in a Coordinate System
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A vector F can be resolved into two components F X and F_, along the x and y coordinate axes.
From simple trigonometry: y
Fx F cos¢ )

Fy F sing¢ (2)

So far, there is no conceptual difficulty. The rcsolution of a vector into two or more vectors
may be performed without hesitation. The next conceptual exercise deals with coordinate trans-
formations, which is required for the understanding of vectors and tensors of higher ranks.

It should be recognized that the choice of a reference ocoordinate system is perfectly

arbitrary. For vector F in Figure 1, other equally valid coordinate systems can be used. This
is shown in Figure 2,

{o)

Figure 2. Coordinate Transformation of a Vector

Figure 2(a) is identical to Figure 1. In Figure 2(b), a new reference coordinate system 1-2 ic
used. The angle between the 1-axis and the original x-axis is 8. The components of F in the
new (or transformed) coordinate rystem are l"l and l"2 with the following relations:

F, s Fcos (-6 ) (3
Fe =F sinip=~-8) (4)
But,
cos (p- 8 ) scosp cosf + sing sinf (5)
and sin(¢p-6) =sing cos8 - cosdp sinb (6)

Substitute (5) and (6) into (3) and (4), respectively, and then use relations of (1) and (2) to obtain:
F, F, cos@ + Fy sind = mF, + nF, (7

Fp F, cos8 — F sinf = -nF, +mF (8)
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where m =cos 8, n =sin 8. Equations (7) and (8) are known as the trsusformation equa

of a vector., They give the new components Fl and l-'2 as functions of the original Fx an

and the angle of rotation 8. The reference coordinate system is transformed from x-y &
by a rotation of §.

i ¢ = 8 from (3) and (4) we obtain:

F, =F Fnp =0

This is shown in Figure 2(c). Now the transformed coordinate system is I - II, instead o:
The same result can be obtained from (7) and (8) by letting
Fy /Fy = sing /cosep = sinB /cos8 =n/m

Substituting this into (7) and (8), we obtain:

Fy = mF, +nF’ =[m+(n'/m)] F, =F,/m=F

Fp =-nF, + mF, z(~n+n) F =0

The last step in (11) required (1) and ¢ = 6. In the I-II coordinate system, the compone:
and Fn reach maximum and minimum values, respectively. The orientation of this syst«
called the principal direct.on, which is characteristic of vectors and other tensors.

As a simple example of reference coordinate systems, Figure 3 shows that we are t1 -

toward Columbus at 100 mph, as shown by a vector F in coordinate system x-y, +
FX=F=100. ryso.

1 —— O ‘ 0 ——
indionapolis Dayton Columbus

Figure 3. A Practical Example of Coordinate Transformation
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I we transform to system 1-2, we may obtain it by putting 8 = 7 in (7) and (8); the results are:

F' = --Fx (13)
= —F 3 =100 mph (14)
F, =0 (1S)

2
which states that for the same vector Fx (going toward Columbus), the vector becomes -F1 in

the 1-2 system, which means that we are going away from Indianapolis at the same speed. A
coordinate transformation can be regarded as a change in reference system, in this case,
from Columbus to Indianapolis.

What is stress? It is incorrect to say that stress is P/A. Stress, by definition, is a tensor.
A tensor is defined by its peculiar transformation equations. They are different from those
for a vector, shown in (7) and (8). In two dimensions, a stress tensor has four components,
of which two shear stresses are assumed to be squal (a symmetric tensor); thus, a stress

tensor has three independent components, i.e., L ay. and g. Avector, as illustrated previ-

ously, has two components in a two-dimensional space, i.e., Fx and F_. Only in a special case,
such as a uniaxial tension, is the normal co- 1ponent of stress, Oy equal to P/A.

We can easily develop the transformation equation for stress, similar to (7) and (8) for a
vector. The resulting equations are:

o, = mz o, + n:c, + 2mno, (16)
I ]
g, = n a" + m cy +2 mna'. (g}
] 2
Og = -Mmno, +mncy +{m =-n )a', (18)

The relation between coordinates x-y, 1-2, and I-II is the same as that shown in Figure 2 and is
repeated in Figure 4.

%
Ry

1

(o) (b) (c)
Figure 4. Stress Components and Coordinate Transformation
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Eﬁuations (16). (17), and (18) show the relations among the stress components of refere
coordinate systems x-y and 1-2, By letting % =0 in (18), we can solve for an angle of or:
tation ¢ from

This is called the principal direction, for which G = o, o, =0op and %, = Op when 9
% reach maximum and minimum values.

As the reference system changes, the stress components will change accordingly. Thu:
describing a state of stress in a body, we must refer to a particular reference coord-
system. For vectors, a reference syster: must also be specified. But for scalars, the . -
by definition, independent of the reference system, and they are invariant.

Instead of being P/ A, stress is defined by (16), (17), and (18). This is similar to the cas
a vec*or defined by (7) and (8). The physical significance of stress can be illustrated by
normal components S and a;, and shear component % The normal components ar. o

that tend to extend or compress a body. Positive normal stress is usually assigned to e::
sional forces; negative stress, compressive forces. Shear stress is associated with

tortional forces. Normal stresses may also be related to forces that tend to change the vol:
of a body; while the shear stress, the shape.

A uniaxial or simple state of stress can be defined as a state of stress of having only
nonzero stress component. A state of simple tensionor compression, as represented by Oy

or o)} # 0, and pure shear a's # 0 are examples of simple stresses. A multiaxial, comb.

or complex state of stress exists when two or more stress components are not zero. For
two-dimensional case, all three indepandent stress components may be present. Homogene
stress is a uniform state of stress throughout the entire body. The stress is independen
location, Several examples of the siate of stress will now be cited. The uniaxial tension
bar will produce a state of stress both homogeneous and uniaxial (simple). The hydrost.
pressure applied to a body of arbitrary shape will produce a homogeneous but multiaxial s
of stress. The pure bending of a beam will produce a unjaxial (tension or compression)
nonhomogeneous state of stress. The nonhomogereity is caused by the change in stress al
a transverse plane of a beam, A cantilever beam supporting a transverse load will prod
both an inhomogeneous and a complex state of stress. The transverse load will produc
shear stress across the beam. The state of stress will have both normal and shear compone
thus making it complex,

The state of stress as being simple or complex, homogeneous or nonhomogeneous i
fundamental importance to the determination of material properties. For composite materi:
methods for property determination or quality control are in general more complicated t
for homogeneous materials, At the same time, an understanding of the difference betw
macro and micromechanics must also be clear. A state of stress on the macroscopic sc
may be both simple and homogeneous; this can be achieved by imposing a uniaxial load ¢
unidirectional composite. The same loading will, in general, induce a state of stress &
complex and nonhomogeneous on the microscopic scale. In fact a complex state of stres:
always present on the microscopic scale because of the complicated interaction between
constituent materials.
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STRAIN

Strain is a measure of the dimensional change in a body. It is also a tensor, which, by def-
inition, transforms according to (16), (17), and (18), except for one minor modification of a
factor of 1/2 in the shear strain component.

o, =m?e, +n%e, +(mney /2) (20)
e, = nzex-l-mzey -(‘mncs/2) (21)
o /2= -mne, + mney -i-[(mz - nz)es /2] {22)

The physical significance of the normal components of strain, e, and ey, can be illustrated as

a measure of unit extension or contraction along the x and y axes, respectively. The sheaa
strain e_ is a measure of distortion which is the change of an original right angle to an oblique
angle,

Similar to the case of stress (a symmetric tensor), strain at each point within a continuous
medium is completely specified by three independent strain components, What the magnitudes
of these strain components are depends on the reference coordinate system, As the reference
ccordinates change, the strain components change according to (20), (21), and (22).

The strain at a particular point may be simple, complex, or in its principal direction, for
which the shear strain is zero, The strain, like stress, may be homogeneous, i.e., constant
throughout a body, or nonhomogeneous. As a simple and useful exercise, the strain at a point
can be determined by three independent measurements. This is often done by using a three-
element strain rosette with either 0° -45° -90° or 0° -60° -120° orientations for the individual
strain gages. The problem is the reduction of these strain gage readings to a state of strain
relative to some coordinate systems. Let the x-axis iun parallel to the 0° gage, as shown in
Figure 5,

y y

%o ®120
x e SIS x
%

(a) . (b)

Figure 5. Strain Rosettes
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For the first rosette, as shown in Figure 5(a), we can obtain the following results from (20
1) For8=0° m

=0, hence ¢ =e,

2) For 8=90° m=0,n=1, hence e = &,

e
3) For 8 = 45, m = n =I/J2_; hence eq =20‘5 -8, —844
For the rosette in Figure 5(b), we again obtain from (20):
1) For 8 =0°, m=1, n=0,
hence e, = e,
2) For @ = 60°, m=v/3/2, n= /2, e
hence e, =(3e, +e, + /3e;)/a
3) For8=120°, m=.3/2,n=-1/2,
hence e, = (3¢, +e, —/30,)/4
From these simuitaneous equations, we obtain:
ey =€
e, = 2(egy +)50) — 3¢, {e

Once the state of strain as expressed in (23) or (25) is known, strain for other reference oo
dinates can be obtained directly from (20), (21) and (22).

e r———— g, it~ e —r e — ——-
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SECTION li
MACROSCOPIC EL_ASTIC MODULI

STRESS-STRAIN RELATION

The stress-strain relation is an equation that describes the mechanical constitution of a
materiai. For this reason, the stress-strain relation is one form of a general constitutive
equation. On the macroscopic scale, the governing constitutive equation for a unidirectional
composite can be described as follows:

g, = (e| +V2| ez,E“ /( l-Vlz Vz')

0'2 =(V|2 e'+82)E22 /(l‘Vlz V2|, (26)
Oy = Geg

The same equeztions can be expressed in an inverted form:

e, =gy - v, 0, VE,
e, = (=vy, T, +0,)/E,, (27)
g = Gy /G

These stress-strain relations represent a macroscopically homogeneous and orthotropic
material which can be applied to plate-form unidirectional composites.

The definitions of the elastic moduli are as follows:
E11 = axial stiffness (in the direction of fibers)
E22 = transverse stiffness (transverse to fibers)

Vi3 = major Poisson’s ratio (transverse contraction due
to an axial extension)

Vo = minor Poisson’s ratio (axial contraction due to
a transverse extension)

G = shear modulus
The major and minor Poisson’s ratio are related by a reciprocal relation:
Vie/ E, =v 'E, (z28)
There are four independent elastic constants. For isotropic material, on the other hand, there

are only two independent constants. The isotropic material can be seen as a special case of
the orthotropic material if:

v s VZI =V (29)

6 =Es2(l+v)

B R R Ly A e e ANERER Y e e Aner— S — e
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Substituting these relations into (27), the stress-strain relations for an isotropic ma
become:

= (0, ~vo, )/E

e = (-vao, +0,)/E
2(1+v ) o, /E

For isotropic materials, we have only to determine two elastic moduli, say, Y«
modulus E and Poisson’s ratio v. The shear modulus G can be computed from L.
using (29). The bulk modulus K can also be computed from the relation K = E/3(1

For orthotropic materials, there are four independent elastic moduli., For properf:,
more tests are required than for the isotropic material; e.g., shear modulus must be 1.:: :
independently and it cannot be computed from knowing Ell' Vig0 and E22.

TRANSFORMATION PROPERTY

Isotropy of a material property (for the present case we are concerned with the st.rtn”
a material) implies that the stiffness is independent of the orientation of the material,
it more precisely, isotropy of a property implies that this property is invariant unde.
dinate transformation. This condition is satisfied if the material constants in a consti
equation are scalars. Equation (30) satisfies the condition of isotropy; E and v are sc»

Orthotropic material is asimple type of anisotropic material that possesses three orthc
planes of material symmetry. A unidirectional cc mposite can be represented, on the m
scopic scale, by an orthotropic material because planes rarallel and perpendicular °
fibers are planes of symmetry.

As stated before, the number of independent elastic constants is four for a plate-
orthotropic material. The material constants in equations (26) through (27) are ro Kk
scalars. They are not invariant. Thus, when the reference coordinate system changes, sc
the elastic moduli. In fact, the elastic moduli of an orthotropic or anisotropic mater
general can be defined by a tensor of the fourth rank, which is two steps beyond the s
tensor (of the second rank). As we have scen earlier, for each rank of tensor there
appropriate set of equations that governs its transformation property. For vectors (v
belong to a tensor of the first rank) the transformation is governed by (7) and (8). For s
tensors {(of the second rank) the transformation is described by (16), (17), and (18)., For f:
rank tensors, the following set of equations will govern the transformation:

L :—"f—*.(.l. - _2.:'3.) mtn? + !
E’" E" G E" E22
| ( L4y I+ v (
—6-7‘ =--G— +4(—1‘. .r._—x-'—-_ mznz
€ €2 G
P . S RA Itver 1y 22
e ®Ey En ( B ¥ Eepe G ymn ]

2mn  2mn | 2v
s - —_— - g 2 2
" E, [ g 522+( G E, )(m n )mnl

10

o —— et e R - - .- e - - e -
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where primes indicate the transformed axial stiffness (En), shear modulus (G' )» major

Poisson’s ratio (v'lz), and major shear coupling factor (n'lz).

,.
These equations indicate that all the elastic moduli ¢€ an orthotropic material change w:.h
the orientation of the reference coordinate axes 1-2, or the material symmetry axes x-y. This
is illustrated in Figure 6.

Reference Axes 1-2, Fixed;
Material Axes x-y, Rotated

6=30°
X 1
1
8=130°
6= 90°
X —1
(a)

Material Axes x-y, Fixed;
Reference Axes 1-2, Rotated 6 = 90°

Figure 6. Equivalent Transformations

Figure 6(a) represents positive rotations of the reference coordinate system, designated by
axes 1-2, Figure 6(b) represents negative rotations of the material symmetry axes x-y, of
which the x-axis corresponds to the fiber axis, These two transformations are equivalent and
the resulting transformed properties, as shown in Equation (31), are applicable to both
transformations. In short, for a coordinate transformation, we can either rotate the reference
system (1-2) in one direction or the material system (x-y) in the opposite direction.

Equation (29) shows the relationships between the orthotropic and the isotropic moduli. By
substituting those relationships into (31), we obtain, respectively, values as given in
Equation 32, Thus, for isotropic materials, E, v, and G are independent of the angle of rotation,
or they are invariant. The shear coupling factor n is identically zero which must be the case
for isotropic materials.

11
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BORON AND GLASS COMFOSITES

Numerical examples of the transformation property of boron-epoxy (solid lines) and ¢
epoxy (dashed lines) are shown in Figure 7, The basic input data to (31) are as given in it

TABLE I
PRINCIPAL ELASTIC MODULI
Moduli Boron Composite Glass Composite
E,, 40.0 x 10° pst 8.00 x 10 psi
Eyy 4.0 x 10 psi 2.70 x 10° psi
Vg 0.25 0.25
G 1.5 x 10° psi 1.25 x 10° psi

These unidirectional composites have an approximate fiber volume of 65 percent. All th.
are the results of actual experiinental measurements, They are not predicted from the n.

mechanics analysis, although excellent agreement between the theoretical predictions a;
data in the table does in fact exist,

The predicted transformation property of the elastic moduli for both composites
reasonably well with actual experimental data. These properties can be determined e>
mentally as shown in the following discussion,

Take a unidirectional composite and cut a tensile coupon with 30° fiber orientatio
example. The specimen will look like the one shown in Figure 6 for 8 = 30°, Bond a t
element strain rosette, like that shown in Figure 5(a) with the elements oriented 0°-45
to the tensile coupon with the 0° element parallel to the direction of the uniaxial load
along the 1-axis in Figure 6. Under uniaxial tensile lor i, the state of strain relative

12
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Figure 7, Boron and Glass Composites
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1-axis will be complex, meaning that all three strain components will not be zero. Byt
the relation in (23), strain components s ey and g which correspondtoe_, e

x 7y’
respectively, in (23), can be computed dlrectly from €y’ €45° and eq) for a given lev
uniaxial stress a‘ (for this case q = = 0). The following elastic moduli can now te

termined directly

E" = 0, \/el
Ve T € /¢
Ny ° eg /6,

The determination of G for a fiber orientation of 30° can be achieved by twisting a 37
plate which is made of the same composite material and has the same fiber orientation a
tensile coupons.

Figure 7 shows that for orthotropic materials all elastic moduli vary drastically as a fur
of fiber orientation. For isotropic materials, all the elastic moduli E, v, or G will be hori:.
lines across the graph. This means that the moduli are invariant. The condition tha
Poissons’s ratio canno! be greater than 1/2 applies only to isotropic materials, It is not aj
cable to orthotropic materials, In fact, for & = 30°, the major Poisson’s ratio for boron ¢
posite is more than 1/2. This is predicted theoretically from the transformation equation ir
and has been experimentally verified as well,

The importance of the experimental verification of the curves shown in Figure 7 is twc
First, the boron and glass composites are shown to be orthotropic; secondly, the el
moduli are showu to be a tensor of the fourth rank., Both conclusions are important i
pendently becauze a material property can be ortlotropic but not a fourth rank tensor.
thermal expansion ocoefficlents of unidirectional compositee, e.g., are orthotropic and a se
rank tensor, like stress, Then the governing transformation equation will be (16), (17), and
instead of (31).

The elastic moduli of a laminated composite consisting of layers of orthotropic rmate.
can be theoretically derived. The number of independent elastic moduli increases from
for the unidirectional composite to 18 for the laminated composite. But the concept of o1
tropy and the governing transformation equation remains the same.

14



AFML-TR-66-149
Part 1

SECTION 1l
MACROSCOPIC STRENGTH

STRENGTH CRITERIA

Macroscopic strength, like macroecopic elastic moduli, is based on a pheaomenological
approach. Measurements of stiffness and strength are experimentally determined and no
reference is made to the actual mechanisms of deformation and failure on the microscopic
scale. This approach may sound unsophisticated but it is normal procedure for the property
determination of most materials. Gross properties of metals are usually measured rather
than predicted from a model of lattice distortion or the propagation of dislocations. Until a
reliable model for the microscopic mechanism i3 develcped, the phenomenological approach
will remain in use.

The strength of a unidirectional composite is considerably more complicated than the
elastic moduli. A satisfactory strength theory must take into account the anisotropy of the
composite materials and the behavior of the material under complex states of stress and
strain. If we restrict the strength theory to a plate-form material, a state of two-dimensional
stress (plane stress) is reasonably accurate. There are three components each for the stress
and strain tensors. For simple loadinj, we can establish three strength properties, two
normal strengths and one shear streagih, corresponding to the components of stress, s

a}, aad a's , or strains, ex. e v’ and es. 1t is convenient to refer the normal and shear

strengths to the material symmetry axes., This means that the normal strengths are the axial
and transverse strengiths, X and Y, in the case of a unidirectional composite. The shear
strength, S, is associated with the in-plane shear stress or strain, gore.. These principal

strengths may be experimentally determined irom the stress-strain relations. In Figure 8 we
show typical experimental results of glass-epoxy composites.

The crucial question is the existence of a strength criterion that can describe the strer.gth
of a unidirectional composite wnder combined or complex loading or straining, as llustrated
in the upper right-band corner of Figure 8. This strength criterion, hopefully, can be related
to tne three principal strengths X, Y, and S, If a strength criterion can be found, the strength
of both unidirectional and laminated composiies for an arbitrary orientation of the material
axes can be readily deduced from the transformation property of stress or strain components.

A few of the most common strength criteria for homogeneous materials will now be
discussed. We hope that generalizations of these criteria will produce suitable ones for com-
posite materials., The most common strength criteria are based on some maximum levels of
stress, strain, or distortional work, A generalized strength criterion that automatically takes
into account the anisotropy of strength can be obtained by the use of dimensionless stress or
strain components as the variables, Typical dimensionless components are: c;‘/x, a-y/Y,

q, /S, Euex/x. E,qe y/Y, Ges/S. where the x-y coordinates coincide with the material
symmetry axes,

Based oulimited experimental evidence obtained from glass and boron composites, a strength
criterion based on a generalization of the maximum distortional work appears reasonable. The

resulting equation is: o? 2 ? 2
[ f O
Sl - % ERER S ) e

15



AFML-TR-66-149
Partl

STRESS (KS}1)

l
T

Cp (EPOXY)

L

O'Y or .y

% or .'

I-—‘olor ¢

fibers

Unidirectionol

0.25 0.50 0.78 T 2.0

STRAIN (PERCENT)
Figure 8. Determination of Principal Strengths

16

TS S e e e p— = W o fni— —- © -



AFML-TR-66~149
Part ]

This equation states that if the stress components satisfy this equation, the strength of a
unidi~ectional composite, with principal strengths X, Y, and S, would have been reached. If
the numerical value of the right-hand side of this equation is less than 1, the material has
not been stressed to its strengti. Combining (34) with the transformaiion equations for
stress components (16), (17), and (18), we can readily derive the uniaxial tensile strength ~f
a unidirectional composite with an arbitrary fiber orientation. The final equation becomes:

! . _m4 [ ; 2 2 n4_ ‘
(_0-7‘_){- z —-—xz + (—si— 7 ) m n +_Y2 (35)

where 01' is the uniaxial tensile strength of a unidirectional composite with a fiber oriente¢
6 degrees from the loading direction, m = cos 6 , and n = sin 6.

The principal strengths for both glass and boron composites with epoxy resin are very clo: °
to one another. Their numerical values are:

X = axial strength =150 ksi
Y = transverse strength = 4 ksi (36}
S = shear strength = 8 ksi

Substituting these values into (35), the uniaxial strength for any fiber orientation can be
computed. The theoretical result is shown in Figure 9 as a solid line. Experimental data for
glass and boron composites are shown as circular dots and squares, respectively.

A stremth criterion based on maximum stress can also be derived. The strength for 2
given fiber orientation is governed by the following three equations, whichever gives ti.e
lowest strength: '

o = X/m'

or o/ = Y/nt (37)

or ‘

9

= S/mn

Again using the principal strengths in (36), the resulting theoretical prediction is shown as a
dashed line in Figure 9. Note that the prediction of the maximum stress theory does not agree
with the data as well as the distortional work theory. The former theory predicts a higher
strength than the latter.

A strength criterion based on maximum strain can be simtilarly derived. The strength for
a fiber orientation is governed by the following three equations, whichever gives the lowest

strength: o = Xx/(mt -y, nt)

or 3

d"' = Y/(nt -V 0 ) (38)

or

4

o, 28/ mn

Again using the principal strengths in (36) and = major Puisson’s ratio of 0.25, the uniaxial
strength is shown as a dash-dot line in Figure 9. Between 0° to approximately 30°, the
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Figure 9. Uniaxial Strength Criteria

predictions of (37) and (38) coincide witheachother. Above 30°, the predictions of the maximu
strain i{s even higher than the maximum stress theory.

The maximum stress and strain criteria imply different modes of failure depending on tt
fiber orientation. Up to a fiber orientation of approximately 5°, the primary mode is an axi:
failure; from approximately 5° to 30°, a shear failure; and from 30° up to 90°, a transvers
failure. The three modes of failure are assumed to operate independently of one another. Tk
distortional work criterion takes into account an interaction among the principal strengths ar
thus results in a continuous curve in Figure 9, instead of segmented curves for the othe
criteria. Based on available data, the distortional work criterion gives the best predictio:

MECHANICS APPROACH

The study of the stiffness and strength of unidirectional composites for various fiber orier.
tations may appear unrelated to the actual use of trese materials in common structures. It i
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obvious that the greatest stiffness and strength of a unidirectional composite are obtained
along the direction of the fibers, i.e, E11 and X. Why should we be bothered with all the other
properties, e.g., E22. G, Y, and S?

First of all, a mechanics analysis requires a mathematical model. The vaiidity of the mode!
must be checked experimentally. Both stiffness and strength are anisotropic and require a
more complicated mathematical model than an isotropic material. Experimental results shown
in Figures 7 and 9 have demonstrated the fact that the theoretical predictions cf the uniaxial
stiffness and strength thus far have passed their tests. The macroscopic property data can be
used subsequently in structural design. One would like to be certain that those material proper-
ties are reasonably accurate, Netting analysis, on the other hand, would not have passed th.
test on either the stiffness or strength prediction.

Secondly, both homogeneous and composite materials in actual structures are usually su’-
jected to complex states of stress and strain. Thus, a complete characterization of the matexri..
properties is necessary. For composite materials, the siiffness requires four principai
components; and the strength, three components. There is no reason to emphasize the axial
stiffness and strength over the other stiffness and strength components. Each component
deserves equal respect regardless of its numerical value,

Thirdly, the results of mechanics analysis will provide information for materials and struc-
tural optimization. For upgrading current composite materials, we can either concentrat.
on improving the axial properties E11 and X, or the possibly more effective plan of remedying

current weaknesses intransverse and shear properties. Mechanics analysis will produce quali-
tative and quantitative information to guide both materials development and structura’
applications.

The emphasis thus far on the validity of the mathematical models is justified by the impor-
tance of the models to the mechanics analysis. The description of the macroscopic stiffness
and strength of unidirectional composites is reasonably accurate. Laminated composites can
also be adequately described from the behavior of their constituent layers.
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SECTION IV
MICROMECHANICS

A GENERAL DEFINITION

Micromechanics is a study of the mechanical interaction between the constituent mate
of a composite. Anunderstanding of this interactior can be used to establish the bridge bet
the constituent and composite properties. The components of the composite or macros
stiffness and strength, i.e., Ell' E22, Vigs G, X, Y, and S, represent the intrinsic nx

scopic material properties of a unidirectional composite. The elastic moduli are the
ficients of the generalized Hooke’s law which is the governing constitutive equation. The
cipal strengths may be regarded as the limits of applicability imposed on the conc-it
equation, Thus, macromechanics analysis has delineated the intrinsic properties that g
the stiffness and strength of unidirectional composites. An important role of the i’
mechsanics is to establish how these macroscopic properties can be controlled deliberate
the geometric and material properties of the constituents.

MATHEMATICAL FORMULATION

The problems of solid mechanics can be divided into two basic areas: strength-of-mate
and theory of elasticity. The former includes the theory of beams, plates, and shells; the 14
the theory of viscoelasticity and plasticity. In general, the strength-of-materials is a :
elementary theory than the theory of elasticity. It deals with the behavior of thin-v
structures and is based on an assumption that the normals to the middle surface -e
undeformed. This assumption has been found experimentally to be reasonable if the deflec
of the plate or shell are small relative to the thickness. In fact, for laminated anisot;
plates and shells, the assumption of the nondeforming normals still remains reasonable
thus an entire body of existing knowledge and techniques of the theory of plates and shells
be fully utilized for the composite materials. Most macromechanics problems of filamer.
structures can be solved using the elementary approach.

In problems of micromechanics, however, the theory of elasticity must be used. The eler.
tary approach often gives questionable results because rather subjective assumptions -
cerning the distribution of stress and strain are often required. Yet, a surprising numbx
problems of microraechanics is still being solved by the strength-of-materials appro
Unlike the theory of elasticity, the elementary approach in micromechanics involves no |
erning partial differential equations but relies on sometimes arbitrary selections of m
ematical models, examples of which include: the dissecting technique (removal of a seg!
of a composite for examination); the rearrangement technique (reshaping of the constit
materials to a form solvable by elementary analysis); the isolation technique (reduction
many-fiber problem to a single-fiber problem, thereby bypassing the problem of interac
fibers), etc. Some of these techniques are difficult to justify and often lead to erronc
answers.

The theory of elasticity also requires assumptions. But they can usually be specified ex;
itly and with mathematical preciston. Subjective interpretation is considerably less than
required for the elementary approach. It is considered essential to use the theory of e
ticity for micromechanics problems because of the complexity of the problem. It is aln
impossible to visualize the exact distribution of stressor strain before the problem is sol’
Thus, the results of micromechanics analysis based on the elementary approach must no
accepted withou! some critical examination; e.g., many of the micromechanical relation:
not satisfy a necessary condition that they remain valid in the limiting cases, such as w

20




AFML-TR-66-149
Part I

the fiber volume goes to 0 or 100, or fiber stiffness goes to zero or infinity. The fact that the
relations produce good numerical results for glass and boron composites ie necessary but
's not always sufficient to guarantee their validity in general.

AXJAL PROPERTIES

The axial properties of a unidirectional composite include the axial stiffness E11 and axial

strength X. The relations between these macroscopic properties and the micromechanical
parameters is commonly described by the rule-of-mixtures equation, as follows:

E“ s Vf Ef + Vm Em (39)
X Ve F¢ + Vo P (40)
where Vf = fiber volume, V

m = matrix volume, Ef = fiber stiffness, Em = matrix stiffness,
Ff = fiber strength, and F m- matrix strength,

Equations (39) and (40) are derived using the following assumptions:

1) Fibers and the matrix are strained by the same amount (homogeneous strain) up to
the ultimate failure. Fibers have uniform strength, i.e., there is no scatter in the strength
measurement.

2) The constituent materials can be rearranged and reshaped as homogeneous materials
connected in parallel. The axial properties are not affected by the cross-sectional shapes of
the fibers, since they will be reshaped and rearranged in the development of the mathematical
model. The interfacial bond strength is also of no significance as long as homogeneous strain
is assumed.

3) The differences in the Poisson’s ratio and the thermal contraction between the con-
stituent materials are small, and the stresses induced by these differences are considered
secondary.

These assumptions are reasonable within certain limits, and are not in violation of the
elasticity theory. Based on available data, homogeneous strain is apparently valid up to a
certain point depending on the constituent materials. The predictions of Ell by (29) will at

least correspond to the initial elastic modulus. For some metal-metal composites, e.g.,
steel-silver and tungsten-copper systems, the rule-of-mixtures relation apparently remains
valid even in the nonlinear range. The implication is that the steel and tungsten fiberseach
have nearly uniform strength. The state of homogeneous strain can be m intained up to the
ultimate failure.

Where fibers have a large scatter in their strength, a number of complications arise. There
is a difference between the monofilament strength Fo and the bundle strength Fb’ As a bundle

of filaments is loaded, the weaker ones will fail first. The remaining fibers must assume the
load released by the fibers that have failed. For this reason, the bundle strength Fb will be

lower than the monofilament strength F o The reduction in strength of Fb can be related
directly to the scatter in the F o’ which may be represented by the standard deviation (8) or
the coefficient of variation (s/F o). Some numerical values of this strength reduction based
on two statistical distributions of the monofilament strength are show.. in Table II.
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TABLE II
BUNDLE STRENGTH
Coefficient of Dimensionless Bundle Strength Fb/ F,
Vt;x;i;tion Normal Distribution Weibull Distribution
0
0 1.00 1.00
0.1 .78 .76
0.2 .67 .65
0.4 .56 .52
0.8 .50 .40

Table II can be used as follows., Assuming that for boron filaments, we car nht
experimentally:

Fo = 400 ksi
s = 80 ksi
Then:
s/F_ = 80/400 = 0,2

o
From Table II, for s/F 0" 0.2, we find Fb/Fo = 0,67 or 0.65, depending on the assumed stat:
tical distribution. Then we can compute immediately:

F, = .67 x 400 = 268 ksi

b
or

.65 x 400 = 260 kst

The question now is what governs the axial strength. The monofilament and bundle strengt
are interesting, particularly when they behave in accordance with the predicted results lis!
in Table II, but it is the axial strength X that i{s needed for structural applications. What va!
of Ff should be used in (40): F o’ Fb. or something in between? For perfect fibers, there

zero standard deviation; then Ff = Fo = Fb. In fact, for metal composites mentioned earlie

fibers are fairly uniform. This may explain the fact that the rule-of-mixtures equation is re
sonably good. But for imperfect fibers, like glass and boron, we may be able to use Fo a

Fb to derive the upper and lower boun.sfor X using (40). The implication is that F_< Ff <F

b

In a bundle, the load released by a broken fiber is distributed evenly among the fibers st
intact. In a composite, the matrix can somehow localize the load distribution around u fib
break. Away from the break, all fibers can continue to carry the same load. Thus, the presen
of matrix contributes more than its share, asindicated by the second term in (40). In fact, ti
direct contribution of the matrix according to (40) is negligible in composites with high filx
loadirg,
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It is the ability of the matrix, together with neighboring fibers, to isolate the effect of local
fibe: failures that makes the matrix appear to contribute more than its share. This {s some-
times referred to as a synergistic effect or a composite efficiency higher than 100 percent.
The definition of efficiency is questionable in this instance. A theoretical prediction of the
role of the matrix in a composite is apparently not available at this time. This problem i=
complicated because we can no longer assume a state of homogeneous strain.

The total effect of the matrix, however, can be readily measured by applying strand tests to
specimens with and without matrix, i.e.,to a composite and a bundle. Rewriting (40) by ignoring
the direct contribution of the matrix (the VmF‘m term, because Vf > Vm and Ff >F m)‘

In terms of the maximum load of the composite P o
X = Py /A, ($2}

where Ac = cross-sectional area of the composite. For the bundle test, the bundle strength

in terms of the total load Pb is:

l-'b = Pb /A {a>

where A isthe original cross-sectional area of the fibers, when A = VfA c Combining (41), (42).
and (43), we obtain:

!-'f =X/V' =Pc,vac= Pc/A (44
=(Pg /Pp)Fyp (45
* B Fy (46)

where 8= P o/ Pp = matrix effectiveness in a composite. This is the ratio of the maximum
loads and also the apparent maximum stresses in strands with and without matrix,

If the matrix contributes nothing, the beta factor would be unity. Thus, beta is alway s equal
to or greater than 1. An upper limit of beta may be conceived when F‘ = Fo. {i.e., the average

fiber stress in a composite reaches moncfilament strength. The reciprocal of the Fb/ F o listed

in Table II may be used as the upper limit of beta. Thus, the range of beta is related to the
scatter in the strength of the fibers. Other parameters that would influence the beta factor
would certainly include the elastic and strength properties of the constituents, and the inter-
facial bond strength. Volume ratio of the constitueat materials is apparently not important.
80 long as the composite is a dense composite, which {s assumed in (41). The numerical value
of beta is very easy to determine experimentally; it is merely P c/ P, ., the ratio of the ultimate

load of strands with and without matrix. Typical va'ues of tests performed on glass, boron,
and carbon composites with epoxy resins ylelds beta factors from 1.2 to a maximum of 2.1.
The boron composites covered the lowest range, say from 1.2 to 1.4; carbon composites,
about 1.5; and glass composites, 1.5 to 2.1. Glass-polyurethane and glass-rubber composites
yielded lower beta values than glass-epoxy composites.

If the beta factor can in fact be predicted from the constituent properties, the axial strength
can then be derived from combining (41) and (46):

X =BV, Fo (47!
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Although an educated guess is still required at this time, the numerical values of beta w
range from 1 to 2 for most composite materials.

Based on the prcpesed theory, the beta factor can be used to compare the effectiveness
different matrix systems for a given fiber. Presumably, the higher beta factor would indi.&
a higher matrix effectiveness in a composite.

The axial compressive strength is likely to be entirely different from the tensile streng:
In compression, local buckling may occur. The scatter in the fiber strength is probably le
critical for compression than for tension. The role of the matrix is to hold the fiber.
position, so that axial load can be supported by the fibers. This mechanism is different frc
the role of the matrix in the tensiie case, where the matrix is an agent that transfers the lc
released by a broken fiber to adjacent fibers, and thereby localizes the break.

To understand the axial properties more exactly than as generally reflected by the stoic
the art, a few considerations may be helipful. First of all, an elasticity solution of a many-iib.
problem will be very enlightening. Many current investigations are concerned with the lo
transfer by the matrix to a single fiber that has broken. It appears that in 2 dense composi
(high fiber loading) the fibers adjacent to the fiber that has the break may carry mosu . 1
load released by the broken fiber. Some of the current photoelastic investigations of the Jc.
transfers mechanism of the matrix in a dense composite may yield important qualitat:
results. A second important consideration in obtaining a better understanding of the axi
properties involves a more exact mathematical characterization of the interface than th
which is currently available. Finally, the mechanics of fracture and crack propagation ir
dense composite must also be investigated.

TRANSVERSE PROPERTIES

Transverse properties that have direct bearing on the macroscopic behavior of a unidire:
tional composite are the transverse stiffness E22 andtransverse strength Y, Other transver:

properties, e.g., the Poisson’s ratio and shear modulus in the transverse plane, have secor
dary influence on the macromechanical behavior and will not be discussed in this repox

Until recently, the transverse stiffness and strength were believed to be approximate.
those of the matrix. This conclusion was based upon an argunent that the matrix would har
to assume all of the deformation since the glass fibers, for example, are 20 times higher
stiffness and strength than the resin and can therefore be considered rigid.

The argument is correct, but the conclusion is not. The key technical point is the existenc
of a complex and nonhomogeneous state of stress in the matrix of a composite. The behavic
of a pure matrix (without fiber) under a simple and homogeneous state of stress would i
entirely different. With the inclusion of fibers, the gross stifiness E22 {s higher than that «

the pure matrix, Butthe macroscopic strength Y will probably be lower than that of the matri:
The reason for this decrease in strength may be traced to a week interfacial bond, and/or th
effect of fibers as inclusions that cause stressconcentrations in a brittle matrix or resistanc
to flow in a ductile matrix. Figure 8 shows the stress-strain relations of a unidirectional glass
epoxy composite, E-glass and pure epoxy resin, The stress-strain relation in the transvers
direction is significantly different from that of the pure resin. The test data are indicated i
Table III.
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TABLE III
| MATRIX AND TRANSVERSE PROPERTIES
STIFFNESS STRENGTH
Resin E_ = 0.5x 10° psi F_ =15 kst
Composite . E,,=2.7x10°psi Y = 4ksi

In what follows, we will attempt to outline a procedure for predicting the macroscopi
transverse properties from the constituent properties. A number of simplifying assumptior
must be made at this time to formulate an elasticity problem that can be solved:

1) Both constituents are linearly elastic up to their failure stresses.
2) Interfacial bond is perfect (infinite bond strength).
3) Fibers are arranged in a regular array.
With these assumptions, a reasonably simple mathematical model can be constructed. Th

fibers are arranged in a square array shown in Figure 10, so as to take advantage of th
symmetry properties, i.e., square elements are deformed into rectangular elements unae

|
|
(
l=— ELEMENTAL SQUARE

PR SRS —

Figure 10. Idealized Fiber Packing
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the influence of a transverse load. The fiber cross section may be any shape as long as it re-
mains symmetrical with respect to the x and y axes. The governing differential equations
of this idealized transverse plane of a unidirectional composite are, using a two-dimensional
formulation (plane strain):

2 + 2 2z U +— Ll V=0 (48)
(ax= 2(1-v) dyz) 2(1-v) dxdy

| ? U+ 1-2v & . 9% )
2(1-v) dx 0y (Z(I—v) ox2 ayz)V-O

(49}

where U and V are the components of the displacement vector along the x and y axes,
respectively. Solution of these simultaneous equations subject to appropriate boundary con-
ditions (uniform stress at infinity p_, and perfect interfacial bond) will give information
concerning the transverse stiffness E22 and the distribution of stress and strain throught the

composite material. From the stressdistribution, the transverse strength Y may be estimated.

Although the mathematical detail is beyond the scope of the present report, it will be helpful
to describe explicitly what is actually done to obtain a solution. It is also hoped that the fol-
lowing description will show some of the limitations of the strength-of-materials approach.

The use of a square packing of the fibers, as shown in Figure 10, permits a significari
simplification that can be derived from the symmetry consideration. It is not too difficult
to conclude that under a load acting along the x-axis at infinity, p_ , the elemental squares,
each of which contains a fiber, will be deformed to a rectangle. The deformed shape must
be rectangular; ctherwise, the deformed elemental areas will not be compatible, i.e., cracks
will develop between the boundaries of the elemental areas. If we use a mathematical model
that has a hexagonal packing arrangement, the symmetry properties of the elementsl hexagon
will be quite different from the square packing. If we assume no regular packing arrangement,
there will be no symmetry at all. The problem of transverse loading becomes intractable.

Returning to the square packing, if we know that the undeformed square can go into a rectan-
gle under a transverse load, then, from symmetry considerations, the state of stress and
strain must be identical ineachelemental square, within which the stress and strain must also
be symmetrical with respectto the xandy axes. Thus, there remains only to solve the problem
of one quarter of each elemental square, shown as the shaded area in Figure 10. The state of
stress and strain is repeated everywhere throughou! the entire composite.

The undeformed elementa! square and the deformed rectangle are shown in Figure 11, in
solid and dotted lines, respectively. Displacements Uo and Vo imposed at the boundaries

x = a and y = a, respectively, must satisfy the loading conditions, i.e., the average normal
stress along the x~-axis must be equal to p,, , and the average normal stress along the y-axis
must be zero. The normal stress distribution is shown qualitatively in Figure 11. With these
boundary conditions imposed on the elemental area, (48) and (49) can be solved to provide
the distribution of stress and strain throughout the entire area, including the condition at the
fiber-matrix interface.
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Figure 11. Deformation of the Elemental Square

The transverse stiffness E22 of the composite canbe derived from the solution just obtained.

The transverse stiffness is approximately the ratio between the average transverse load p,,
and the transverse strain. For the present case, the transverse strain e, is:

e, =u,/a (50)
Thus: E! P/
= e
d * (51)
=ap, / Yy

The Poisson’s ratio in the transverse plane, Vo is approximately:
Ve = Vo / U (52)

The numerical results of the solution of (48) and (49), in conjunction with the boundary con-
ditions shown in Figure 11, are shown in Figure 12, This diagram shows a dimensionless
transverse stiffness, Ezz/Em' as a function of the stiffness ratio of the constituents, for

selected “‘ber volumes. The Poisson’s ratio for both constituents is 0.3. The spacing between
fibers for various fiber volumes is drawn to scale on the right-hand margin. This gives a
visual indication of the packing density.

Figure 12 can be used to estimate the transverse stiffness for various composites as
follows. Assume that for:
1) Boron-epoxy composites
Eq =60.0 x 10° psi

Eqm = 0.5 X 10% psi

Then:
E¢ /E, =120
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Follow the stiffness ratio in Figure 12 to the desired fiber volume, say, Vf = 70%; the rein-
forcing factor E,,/E,_ is 8.

Thus: c

Epp= 8X 0.5 X 10° =4.C x 10° psi

This predicted value agrees well with available data.

2) Glass-epoxy composites
E¢ /E, =10/05 =20

From Figure 12, for Vf = 70%;
Ezo/E, = 6

Thus: 6 (]
Ezp2 6 X0.5X 107 =30XI10 psi

This predicted value also agrees well with available data.

3) Boron-aluminum composites

E¢ /Em=60/10 =6

From Figure 12, for Vf = 40% (for metal-matrix composites, Vf is likely to be lower than that

of organic-matrix composites):
(3 22 / E m : 2

Thus:
E,, = 2% 10x 10° = 20 x 10° psi

This prediction, although not verified experimentally, points out an important potential of
metal-matrix composites, that the transverse stiffness is very close to the axial stiffnces

(30 x 106 psi for V‘ = 40%).

Equations (48) and (49) can be solved for a hydrostatic pressure imposed at infinity. Three
fiber spacings, corresponding to three fiber volumes, of rigid ci«lar fibers are solved. The
dimensionless normal stress Q/p along one side of an elemental square, say, x = a, is

shown in Figure 13, In a dilute composite with a fiber volume of 20 percent, the normal stress
is nearly equal to the pressure at infinity, The fibers for this volume ratio are spaced ap-
proximately 2 diameters apart. At this spacing, the interaction among fiters is small. It may
be concluded that the stress distribution around each fiber is very close to that of a single
fiber in an infinite matrix. In fact, the packing arrangement of the fibers, in a dilute com-
posite, whether it is square, rectangular, hexagonal, or random, will not have significant
effect on the transverse stiffness or possibly the transverse strength.

As the fit~r spacing is reduced, say to 1.14 or 1,06 diameter, which corresponds to fiver
volumes of 60 to 70 percent, respectively, the normal stress along x = a deviates drastically
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Figure 13. Microscopic Stress Induced by Hydrostatic Pressure
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from the uniform pressure at infinity, For the latter case (Vf = 70), a stress concentration

of 2.5 is introduced as a result of interacting fibers. The effect of a complex stress on the
microscopic scale induced by a simple stress on the macroscopic scale (hydrostatic pressure)
is clearly demonstrated in Figure 13.

Figure 13 can also be used to illustrate the limitation of the strength-of-materials approach
in solving the micrcmechanics problem. The diesecting technique is valid if we can duplicate
the load acting on the segment after its removal from the composite. The reshaping or
rearrangement of the constituents will in gene:*al change the distribution of stress, Finally,
the isolation technique is only permissible for a dilute composite. Only from an elasticity
solution can we be certain of the magnitude of the error introduced by ignoring the fiber
interaction. Subjective interpretation of the stress distribution which is often required in the
strength-of-materials approach should be avoided whenever possible.

The elasticity solutions of (48) and (49) for different fiber packing arrangements, e.g., hex-
agonal and diamond, and noncircular fibers, can also be solved. These predictions of the
transverse stiffness E22 are similar to the results shown in Figure 12, The problem of

random packing has not been solved.

Being considerably more difficult than the transverse stiffness, the theoretical prediction
of the transverse strength is not reliable at this time, The use of a stress or strain con-
certration factor, which for the dense glass-epoxy composites is approximately 2 to 3, has
not been successful in predicting the transverse strength,

Additional information derived from imelastic analysis, imperfect interfacial bond, and
fracture mechanics will be very useful in deriving a procedure for the prediction of the
transverse strength. The random fiber packing, although not particularly important in the
transverse stiffness, may also be an important factor affecting the transverse strength.

SHEAR PROPERTIES

Shear properties of importance to macromechanics analysis are the shear modulus G and

shear strength S, These properties are the longitudinal shear ai't or g, associated with a

unidirectional composite. The shear stress and strain are in the plane of the fibers. The
longitudinal shear is different from the transverse shear, which acts in the plane transversc
to the fibers, and the interlaminar shear, which acts between the layers of a laminated
composite. Various possible shearing actions are illustrated in Figure 14. The shear prop-
erties of immediate importance are the longitudinal shears, modulus G and strength S. The
transverse shear is apparently of secondary importance. The interlaminar shear may be
related to the interlaminar failures in laminated composites. This will be discussed again
later in this section,

Returning; to the longitudinal shear properties, an elasticity problem can be formulated
with the same assumptions as those employed for the transverse properties. The stress at
infinity for the shear problem will be %e which is the same as LA Again, a square packing

arrangement of the fibers is used. The symmetry properties of an elemental square will
simplify the elasticity problem. By assuming that W, the displaccment along the z-axis,
which cuincides with the fiber direction, depends only on the x and y coordinates, and the dis-
placements U and V along the xandy axes are zero, each elemental square will remain square
after the shear loading is applied. Each point, however, will move in or out of the transverse
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Figure 14. Shear Stresses

plane by an amount described by W. The shear loading causes a warping of the transverse
plane. The partial differential equation that governs the displacement W is:
2
Fw . tw
+ =0 (53)
ot dyt

This is one of the simplest partial differential equations, and is called the Laplace’s equation.
Its solution, subject to appropriate boundary conditions, is relatively simple to obtain, as
follows: Lei W, be the displacement at x = a; the shear etraine s is:

The composite shear modulus G is: G = 0 /e,
(55)

The numerical results of the solution of (53) for various shear modulus ratios and fiber
volumes are shown in Figure 15, The results are very similar to the transverse stiffness
curves in Figure 12, This diagram can be used as follows, For:

1) Boron-epoxy composites <
G¢ = 24.0x 10" psi

. ¢ .
Gy = 0.2 X 107 psi

Hence:
Gf- /Gm =224/70.2 =120
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From Figure 15, for Vf = 70%
G/6,=7
Therefore:
6 = 7x02x10% = 1.4 x 10% psi
This agrees well with experimental data.

2) Glass-epoxy composites

4.0 x 10°%psi
m = 0.2 x 10%psi

@
1]

Hence:
Gf /Gm = 4.0/70.2 =20

From Figure 15, for Ve = 70%:

6/ Gp=5.5

Therefore:
G =55x0.2 x10° = 1.1 x10° psi

This also agrees well with the experimental data.

3) Boron-aluminum composites
Gy = 24 x10° psi

G. = 4x10%psi

Hence:
G'.IGM s 24/4= 6

From Figure 15, for Vf = 40% (a dilute composite):
G /6,=2

Therefore: . ¢
G= 2X4X 10 =8X10 psi

The prediction of shear strength S from this micromechanics analysis has not been
successful, A stress or strain concentration factor of approximately 2.5 exists for a dense
glass-epoxy composite., The shear strength of the matrix is approximately 8 ksi, i we use
the stress concentration factor of 2.5, a shear strength of 8/2.5 = 3.2 ksi is predicted. The
measured shear strength S is at least twice the predicted value. An inelastic model for the
constituent materials may shed some light on the inaccuracy of the strength prediction.
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INVERLAMINAR PROPERTIES

A discussion on the interlaminar properties may be pertinent at this point. Delamination is
known as one mode of failure in composite materials. It is usually atiributed to poor inter-
laminar shear strength of the composite when delamination occurs. Interlaminar shear is an
eluesive term and ite relaticn to delamination is cqually vague. Therefore, the experimental
determination of the interlaminar shear and its relevance to the structural behavior of com-~
posite materials remain uncertain,

By treating delamination as a macromechanical behavior, certainly permissible from the
phenomenological standpoint, the stress components that may induce delamination are either
shear stress o, or normal stress O’y, shown in Figure 16.

y

LAYER |

INTERLAMINAR ZONE
LAYER 2

Figure 16, Interlaminar Stresses

Normal stress o, is not likely to contribute much to delamination. Without knowing pre-

cisely what strees component or components are responsible for a failure by delamination,
it may be more appropriate to refer to the property responsible for the prevention of delam-
ination, the interlaminar strength, without specific reference to shear as such. In cantilever
beams, and plates with transverse loading, delamination may be attributed to a transverse
shear failure. In pure bending of curved beams and plates, delamination may be due to z
tensile stress in the radial direction (a.;, in Figure 186),

The mechanics approach can provide important information as to the state of stress that
exists at the interlaminar zone for a given structural configuration and loading condition.
Following the notations of Figure 14, where the z-axis runs along the fibers of a unidirec-
tional composite, the longitudina! shear is governed by Q. OT o)',z. and the transverse

shear, by axy' If this unidirectional beam is bent by a terminal load P as a cantilever beam,

with the beam axis running parallel to the fiber axis, as shown in Figure 17, the shear stress
induced by the transverse load P is %z. The only other nonzero stress component is g,

If a shear failure is induced in this beam, the shear strength should be the same as the
longitudinal shear strength S, the value for which is approximately 6 to 8 ksi in the case of
glass-epoxy composites. This shear strength can be obtained by twisting a thin-walled tube
with circumferential windings only. The shear strength here is not the interlaminar shear
since the beam is a unidirectional composite which can be treated as a homogeneous maierial.
For the same reason, the failure in the segmented NOL (Navy Ordnance Laboratory) ring test
should not be referred to as interlaminar. As stated previously, the interlaminar strength in
this report refers to a property of a laminated composite,
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Figure 17, Cantilever 3eam

In a laminated beam, the interlaminar shear, following the notations of Figure 17, will be
cry 2z The distribution of this shear stress across the beam will depend on the properties o1

the constituent layers, e.g., the thickness and stiffness of each layer. We cannot use the simple
formula derived for isotropic homogeneous materials (where, at y = 0):

o,, = 3P/2A (56)

where P = lateral load and A= cross-sectional area; this formula is intended for a rectangular
shape and the maximum shear occurs at the neutral axis of the beam. A more complicated
formula than (56) must be used for a laminated beam. K some of the constituent layers of a
laminated beam are anisotropic, an in-plane shear is induced by the shear coupling term n,
This shear is different from both the longitudinal and interlaminar shears. The point which
must be emphasized again is that formulas intended for homogeneous isotropic materials
carnot be applied to composite materials indiscriminantly, The intrinsic properties of
anisotropy and heterogeneity usually require fundamentally different formulas for stress and
strain determination. In composite materials, a distinction between the micro and macro
behavior must also be recognized. Interlaminar strength is treated as a macroscopic property.
Little can be stated concerning the micromechanical behavior, i.e., what the fibers and the
matrix are contributing to the interlaminar strength, because micromechanics analysis of
this problem has not been solved,

In the case of the elastic moduli and deformation, a reasonably complete knowledge exists
on both the micro and macroscopic scales. Design optimization and test methods for the
elastic properties can be derived in a straightforward manner, The lack of understanding in
the interlaminar properties and the predictions of the strength components X, Y, and S is
partially responsible for the uncertainties and disagreements that exist in the design meth-
odology and test methods of composite materials. In the next section, test methods will be
discussed from the viewpoint of mechanics., The lack of knowledge in the theoretical pre-
dictions of strengths, however, does not in any way permit arbitrary selections of test
methods, particularly if they are in conflict with the basic principies of mechanics.
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SECTION V
TEST METHODS

As a class of structural materials, composite materials require a number of tests for var-
ious purposes; among them are design data generation, product assurance, manufacturing
controi, and sub~ and full-scale structural performance check. An understanding of the prin-
ciples of mechanics will be helpful in the evaluation of test methods. In particular, mechanics
will provide guidelines as to what properties should be tested and how the tests should be
carried out. A few of the fundamental principles of mechanics that are relevent to test
methods of composite materials will now be discussed.

INTRINSIC AND INTENSIVE PROPERTIES

Intrinsic properties are properties that reflect the constitution of the materials. They are
presumably independent of surrounding states. For example, mass is an intrinsic property,
- and weight is not, because the latter is dependent on the gravitational acceleration of the
location where the weight is measured,

Intensive properties are properties that are independent of the dimensions of the material.,
The density of a body is intensive, and the mass is not, because the latter depends on the size
of the hody.

It is very important to know the intrinsic and intensive properties of a structural material.
These properties are presumably independent of the size and shape of the structure. They
will also be independent of the loeding conditions. Once these properties are known, the analysis
and design of complex structures subjected to combined loadings csn, in theory, he carried out.
Scaling of structures from one size to another will not present any problem so long as the
mechanics are concerned. Process variations, manufacturing tolerances, and deviations from
idealized loading conditions all will affect the accuracy of .the scaling process. They are impour-
tant but separate problems and may be dealt witheffectively aa factors that cause perturbations or
modifications of the basic intrinsic and intensive properties. It should be realized that the
problems associated with the design and manufacturing of structures cannot be solved without
the benefit of the principles of mechanics.

In composite materials, only in recent years has thd mechanics principle been widely ac-
cepted as a useful approach. From this principle, which includes both the micro and macro-
mechanics, basic guidelines can be established for the design and manufacturing of both the
materials and the finished structures. In particular, what the intrinsic and intensive properties
are for composite materials must be established first. From the preceding sections of this
report, macromechanics can be utilized for the establishment of what these properties are.
Based on the current knowledge, these properties must include the four independent elastic
moduli, En, Ezz. Vi2° and G, and the three strengths, X, Y, and S. Other important prop-

erties which have not been accurately assessed from the mechanics standpoint but are being
actively investigated include the interlaminar strength, creep, fatigue, and fracture toughness.

Workers in the composite materials field should at least be aware of the elastic moduli and
strengths which have already been established as intrinsic and intensive properties. Despite
what netting analysis implies, axial stiffness and strength alone will not be adequate. Any
standardization of test methods prior to a reasonable understanding of what the properties
to be ~valuated are may be considered premature. Since the stiffness and strength components
of unidirectional and laminated composites are reasonably well understood, their experimental
determination can be properly standardized.
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SAINT VENANT’S PRINCIPLE

Saint Venant’s principle is one of the most important principles in the field of mechanics.
This principle is invoked explicitly or implicitly iu every problem of macro and micro-
mechanics. It has a particular relevance to test methods.

This principle states that if the forces acting on a small portion of the surface of a body are
replaced by statically equivalent forces and moments, this replacement will change the stress
distribution locully but has a negligible effect on the stresses away from this local region.
This principle permits the idealization of forces acting on a body. The actual forces can bc
replaced by sta*ically equivalent forces which can be more easily described mathematically,
In other words, the actual forces may be {00 coraplicated to he described, but Saint-Venant's
principle states that the detailed distribution of the forces only have influence in a localiz' d
region. For example, the actual forces exerted by the grip of a testing machine to a uniaxis.’
tensile specimen is impossible to ascertain, except that the net effect of all the forces is
equal to the axial load. For this reason, it is a common practice to have a specimen designed
such that the test section is far removec from the loading points or the grips.

Another aspect of the Saint Venant’s principle can be applied to short specimens. A shor”.
specimen may be defined as one having a length that is no more than twice its width. Fo:
short specimens, the actual forces that exert on the specimens cannot be replaced by stati-
cally equivalent forces because the actual stress distribution will most likely permeate
throughout the entire specimen. Since the actual forces are either unknown or too complicate.i
for the determination of stresses in the specimen, the analysis and reduction of test resul*s
obtained from short specimens are very difficult, f we choose to ignore Saint Venant'c
principle, we may find: (1) a large scatter in his test results; (2) that he is not measuring
intrinsic and intensive properties; and (3) data anzlyses of stress from load, and strain
from displacement become very difficult.

NONHOMOGENEOUS STRESSES

A nonhomogoneous stress is a nonuniform stress distribution throughout a body. Stress
varies from point to point. A change in shape, cross-sectional area, or materials will in
general induce nonhomogeneous stress. Test methods of composite materials should be
based on homogeneous stress on the macrascopic scale whenever possible. As stated earlier
in these notes, the state of stress on the micros~opic scale for practically 21! types of
macroscopic loadings (simple or complex) will be complex and nonhomogeneous. Any delib-
erate introduction of complex and nonhomogeneous stress on the macroscopic scale will be
difficult to justify.

The objection to the nonhomogeneous state of stress consists of two parts: (1) the inability
in a mechanics analysis to determine the exact state of stress and strain, which makes the
data reduction of the test results impossible; and (2) that several intrinsic and intensive
properties of the material are tested simultaneously. A test of this type may be classified
a structural test as opposed to one for property determination,

EXISTING TEST METHODS

It appears that an understanding of the principles of mechanics will be helpful in the eval-
uation of existing test methods. We must first understand what macroscopic properties need
testing befcre test methods can be selected, designed, and standardized. Violations and
deviations from ideal specimen configuration and loading conditions are often unavoidable,
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but we should at least be fully aware of the inherent limitations and the lack of generality of
these tests. The principles of mcchanics may be used to derive the following guidelines
on tcst methods:

1) Intrinsic and intensive properties sshould be established first, whenever possible. Test
methads should be designed go that only one of those properties is being evaluated at a time,
One way of achieving this will be the use of a simple and homogeneous state of stress or
strain. The determination of the independent elastic moduli and strengths can be carried out
using tabs, plates, o' tubes subjected to simple loading.

2) Short specimens should be avoided whenever possible, because end conditions and
constraints cannot be specified for the purpose of data reduction (from load to stress, and
displacement to strain) nor can they be disregarded as local irregularities with no effect on
the rest of the specimen,

3) The use of the theory of beams, plates, and shells has definite limitations. A beam is
a one-dimensional body. A short beam (with length no more than twice the width) is a two-
dimensional body and is not a beam anymore. By the same token, a thick plate is not a plate
as defined in the strength-of-materials approach. The deflection of beams and plates must b
kept small to stay within the realm of the theory of b2ams and plates.

4) Formulas developed for isotropic homogeneous materials cannot, in general, be used
for anisotropic heterogeneous materials,

5) Introduction of notches, holes, or other geometric irregularities will induce complex
and nonhomogeneous stress (stress concentrations). They make the test data reduction
considerably more complicated, and the intrinsic and intensive properties are no longer
separable.

6) A distinction between the macro and microscopic stress and strain must be maintained
at all times, Intuitive description of the stress distribution on the microscopic scale should
be avoided. The state of stress in the fibers and t}.» matrix is not clearly understood at this
time, and any oversimplified description, particularly derived from netting analysis, may
be very misleading.

An evaluution of individual test methods is beyond the scope of this report. The difficultics
associated with the test methods on ordinary materials are multiplied in composite materials
for two primary reasons: (1) composite materials cre anisotropic and heterogereous; and
(2) there is a distinction that exists between the macro and microscopic viewpoints, A con-
siderable amount of scientific research on test methods of composite materials remains to
be done. The mechanics principle can and shouldplay a major role in the selection and design
of test methods. Composite materials cannot be accepted as engineering materials unless
test methods are adequately understood and properly executed.
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