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Cross Modulation in the Scamp Signal Processoi 
S. F . GEORGE, O . I ) . SLEDGE, AND J . E . ABEL 

Radar Division 

Abstract: When two <ir more signals of different frequencies are fed simultaneously into the input of a 
.imiter, cross-modulation products exist in the output. Such a situation iK'curs in the Scamp (Single-
Channel Monopulse Processor) signal processor when the sum signal and both difference signals (azi-
muth and elevation) of a monopulse system are processed in a common liiniter. The resultant cross 
modulation can produce deleterious effects, even though the spectra of the three input signals do not 
overlap. By the use of approximation methods, formulas are develo|>ed for the limiter outputs, showing 
the dependence of the cross-modulation terms on the input amplitudes and phases of both difference 
channels. Curves are presented illustrating the amount of cross modulation for several arrangements of 
channel spacing. The largest errors occur when the difference channels arc symmetrically located on 
either side of the reference channel. T h e errors are substantially reduced by an unsymmetrical or a 
noncontiguous channel orientation. Ex|>erimental results on a simulated Scamp prcxessot agree 
favorably with the theory. 

INTRODUCTION 

A new monopulse processing technique called Scamp (Single-Channel Monopulse Pro-
cessor) was introduced by Rubin and Kamen (1) in which a difference signal is normalized by the 
sum signal simultaneously in a single channel. An extension of this technique was also suggested 
whereby the information was processed by feeding all three channels, i.e., the sum signal and 
both difference signals (azimuth and elevation), on three separate carriers, into a common 
wide-band i-f amplifier. T h e signals are next hard limited and then separated by three narrow-
band filters. T h e ampli tude normalization occurs in the limiter, an example of the well-known 
weak-signal suppression (2). It is the purpose of this present repor t to develop the theory 
governing the behavior of Scamp in its fullest embodiment using three carrier frequencies and 
to demonstrate the existence and effects of deleterious cross modulation between the three 
signals. 

ANALYSIS OF SCAMP WITH TWO DIFFERENCE SIGNALS 

T h e fundamenta l implementation of the Scamp technique required to normalize both 
difference signals simultaneously is shown in Fig. 1. I he theoretical analysis of this system 
which follows will lie develoj>ed on a constant-amplitude, continuous-wave basis as was the 
original analysis by Rubin and Kamen. In fact, the theory will proceed in a manner analogous 
to Rubin and Kamen (1), with the complication of an additional difference signal. Let us define 
the inputs (Fig. 1) as 

,, t) = A„ cos (o)„t + 4>„) 

S»(w„ t) = A, cos (o)„t + <f>,) 

Sr(a>r, t) = A,, cos (o>rt + <(>, ), (1) 

where A„ represents the ampli tude of the azimuth difference signal, a>„ the azimuth angular 
carrier frequency, <£„ an arbitrary ejMKh angle, etc. Provided the i-f amplifier and summing 

NRl. Problem R02-14; Project RF 001-02-41-4005. This is a final re|K>rt on one ph.iv of the problem; work is continuing on other 
phases. Manuscript submitted June 2, 11)66. 
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Fig.   I   — Scamp processor for simul'aneous normalisation of two difference signals 

circuit are linear, we tan consider the input to the limiter as the sum of the three expressions 
appearing at the input of the signal processor. Then the limiter input is 

S{t) = Aa COS {wat + <f>a) + A, COS (ci),f + fa) + Ae COS  (oJet + 0,). 

We can rewrite Eq. (2) as follows: 

S(t) = Aa cos [ü>Ht + (Cü,, — O),) t +</>„] + A, cos {lütt + </>,) 

+ Ae cos [w,t + (tu, — (a,) t + <(>,.], 

which can be expanded by trigonometric identities and rearranged to be of the form 

S{t) = C cos (ii,t — D sin Utt, 

where we define 

C = Aa COS [(tüa — (Hg) t "I- </)„] + A, COS 0, + Ae COS [ (tue — CD»)  t + 0e] 

and 

D = Aa sin [(a),, — ti>,) t + </>n] + A, sin fa + Ae sin [{ate — tu,) t + fa]. 

Equation (4) can also be cast in the form 

Sit) = VO + IP cos {(ü,t -I- (/»), 

where 

cos t/» = 
VC^+Z)* 

and sin t// = 
D 

VC2 + D* 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

From Eq. (7) we observe that the input signal tan be thought of as an amplitude and phase- 
modulated signal of unmodulated carrier phase to,*. 

It has been shown by Davenport antl Root (3) that the output of an ideal bandpass limiter, 
when driven by a narrow-band signal, is a signal with a phase modulation identical to that of the 
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input signal and a constant amplitude (ATln), where "7"'is the threshold of the limiter. Hence, 
for the input Eq. (7) we may write the limiter output as 

Lit) = —cos (o)llt + i/>). (9) 

Expanding cos (w^ + i/») and using Eq. (8) we have 

, . .      IT C cos w,t — D sin Wgt 
LU) = -z: /  • (10) 

Introducing the expressions for C and D from Eqs. (5) and (6) we have the limiter output as: 

— COS {biat + ^„) + COS (a»,* + ^,) + "J^ COS  («M + 0<) 

lit) W 

* fKt)1+1+(t)2]+2[ttos [{WM ~ "^+(0" ~ *o)]' 
\ 

(ID 

(12) 

+     ".^ COS  [(ü>n — <üf)t + {^a — <f>e) ] 

+ -j- cos [{at, — cjF)t + (<fr, - ^p)] 

For mathematical expedience we write Eq. (11) as 

LU)=irl(u+tO'/«j 

where 

F = -f CC)S (üio/ + C^d) + COS  (üi,t + <^,) + -J" COS ((lift + </>,.) 

v = 2 -^ cos [(ta, - <aa)t + i<f>, — <!>„)] + -jj^ cos [{<i)a — <üe)t 

+ (^a - cM] + J1 tos [(ü), - u>..)t + (0, ~ <M]l (13) 

We may expand Eq. (12) in terms of v/u provided u > i;. This is a valid expansion for small 
values of AJA» and AelAt, in the order of 0.3 or less, regardless of the relative phases of the com- 
ponents of v. If in fact these phases can be considered random, then the expansion is valid up to 
AJA, = Art At = 0.5. Expansion of Eq. (12) yields 

L(l 
'IT \      2U     8U

2
    16U

S
     I28«4     256u5     '"/ 

(14) 
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from which the frequency components are determined upon substitution of the relations in 
Eq. (13). A partial expansion of the terms in Eq. (14) is presented in the Appendix, up to and 
including fourth powers of AJA, and AelA,. It is seen from these expansions that terms con- 
taining sums and differences of almost all multiples of the three carrier input frequencies exist. 
Some of these give rise to cross modulation at the limiter output. 

EQUALLY SPACED SYMMETRICAL CHANNELS 

In order to study the cross-modulation effects in the limiter, the spacing and orientation of 
the three input channels must be established. Since in general it is difficult to obtain wide-band 
i-f amplifiers with uniform amplitude and linear phase response, one of the most expedient 
choices is to use equal spacing of the three signal frequencies and use contiguous channels 
symmetrically oriented with respect to the sum channel. Such an arrangement is shown in Fig. 
2, where a>, — Wo = (üP — a>,. It will be shown that this particular choice is not a good one, since it 
leads to a large amount of cross modulation in the limiter output. 

Let us examine the expansion in the Appendix to determine which terms contribute to the 
output at the angular frequency cu«. Note that since w, — u)„ = ov — ü>„ terms such as 2ü), — &>,■, 
2a», — a)P — 2<o„, etc., all exhibit the angular frequency w„. Collecting those terms only, from the 
Appendix, we find in Eq. (A8) that the output at &>« is given by 

, ,.,       47 rr^    A„ /. ,/M\ ,  3/f„ //f,,2, 3/f(A 

15/f 
\6u3A 7.if' + 2M COS   (üi,, + 0„) 

r A,.       3A,   (0 A,? ^AS\^   15/*,.  (A,? , . /f„2\]        .       .   .    .   . . 

15 pM,.2] 
cos (oint + 0,, + 2 fa «)}, (15) 

where u has been defined in Eq. (13) and 0o = 2 </», — <£„ — </>,'• An inspection of Eq. (15) shows 
that for Aa = 0, the output L\{t)\<ita is a function oi Ar, thus indicating the presence of cross 

1 
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Fig. 2- —  Equally «paced symmetrical channels 
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modulation. The lour bracketed terms in Eq. (15) are noted to have the same angular frequency 
with phase angles which differ by multiples of ^o, a function of random epoch angles. Thus a 
representative estimate of the output at a»„ should be the uns value of the four terms in Eq. (15). 
A plot of this mis output is presented in Fig. ?. The essentially linear curve for /ir/A, = 0 rep- 
resents the coned angle-error output, which a jproaches zero as AJA* -> 0 as it should. How- 
ever, ii is seen that for Ae/A, not equal to zero, the azimuth difference-signal output does not 
approach zero as /4„M, —» 0, but instead exhibits an error which is a function of the elevation 
difference signal. It is readily understood that this cross talk is a very undesirable situation. 

The symmetry in the arrangement of Fig. 2, plus a very quick look at the expansion in the 
Appendix, permits the use of Eq. (15) for the elevation-error output by merely interchanging 
ü>„ and (D,. Hence, Fig. 3 also can be interpreted as the cross modulation in the elevation channel 
as a function of the azimuth signal. 

NONSYMMETRIC CHANNEL SPACING 

A number of methods for substantially reducing this cross modulation could be used.  The 
requirement is that the arrangement or frequency spacing of the difference channels must be 
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Fig. 4 —  Nonsymmetric channel spacing 

such as to minimi/c the mutual interference at the output. Most methods would require more 
bandwidth than the first one presented abo^e, using equispaced symmetric channels. However, 
one very simple method* is the use of the arrangement shown in Fig. 4. Here again we have 
equal channel spacing, but both difference channels are on the same side of the sum channel. 
In this case, since the two difference channels are not symmetrically disposed about the ref- 
erence channel, the amount and effect of cross modulation is not the same in the two difference 
channels. 

Referring again to the Appendix, we find in Eq. (A9) the output at w,,: 

■5/1 n    //I n 

15.4,, 
l6u3AH 

+ 

+ 

r     A,       3Ae (Al      \      15AI (  AJ    A.?} 
[    2uAt    8uM,r/<.»      /     \tu*AA  A?    A?) 
35/<P

2 

32uM,2 

,\WAl    45/f„%*    mAMl ,..   ..Jl 

In Fig. 5 is shown the rms output from Eq. (16) lor the azimuth channel. It is noted that there is 
still a small residual cross modulation present, but it is far less than in the symmetric case and 
perhaps is sufficiently small as to be considered innocuous for most applications. 

The formula from Eq. (A 10) for the output at w,. is: 

. ... 47'  \\Ae      Af (Aa\A,   3Ar   //^ . S/^N 

15/f 
\6u3A 

+   AgAr   L oAnAr  I Ag Ar      i    i \     lT>Ai,Ar  IAe     .   An\ 

uAt*'*uW\A?    AS      )     4u3v4,« W    A,V 

, 105/f„/>,. I A,? , A*\-\        .    ,,.... 

\iiAiiAe lOAiiAr        obAaAr   I /      .   i    j. j.  \\ /i»7\ 

•Privalr communication from W. L. Rubin to NRI . 
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(Calculations using Eq. (17) show that there is essentially no cross modulation present in the 
elevation channel. 

UNEQUAL CHANNEL SPACING 

A second method for reducing cross modulation is the use of unequally spared channels. 
One example is shown in Fig. 6. Here the spacing of the difference channels is 2:1 with respect 
to the sum reference channel. From Eq. (All) in the Appendix the output at a*„ is given by: 

~. \Ä*   ~Ä/)\C(,s (Wa   *o) 16uM 

+ [Wä> - "8^7 ^+ji)+12^7 te+1:*)]cos (üJor+*"+0o) 

+ ri^(7 + ^M7J (<,S (Wal + ^ " 0o)l- (,8) 

Figure 7 shows that there is no significant cross modulation in the azimuth channel for this 
2:1 spacing. 
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The iormula from Kq. (A 12) for the output at oi,. is: 

/   ml        -    W    l\A'' A'-    M"2^lU     M'   {^\^n2\ 

l5Af  /A,? , 2A,l
2\ 

16^" fe + ITJJ "* (<"-' + ^) 

[ 3A„* _   IS/f,,2   /AS     W\      3W   W , W 
f [suM,2     löu^«2 b/l,2 + /T/ j + 32üMä

2
 U,2 + /f/ 

3W  W , ±V\ 
2üM.,2 U,2      ^,2 / cos {(a,t ^ </»n + </».) 

+ I-      ISA,Me2 

[     WA,4 + lOSAW 
(Au4Ax

4 COS  {(0,1 + </>, r ~ </>«) | (19) 

1 he results are presented in Fig. S, which shows a residual amount of cross modulation in excess 
of thai in the previous example. 
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EXPERIMENTAL SIMULATION 

In order lo verily the theoretical results, measurement of the cross-modulation effects in a 
simulated Stamp signal processor was made in the laboratory. This was done on a cw basis in 
the audio-frequency range, using commercial generators as signal sources. A counter was used 
to monitor the signal frequencies. For the equally spaced case, three input frequencies of 25(H), 
3000, and 3500 cps were selected, and the output centered on 2500 cps was read on a wave 
analyzer. The experimental results are shown on Fig. 3 for input ratios ofthe interfering channel 
of AelA,, = 0, 0.2, and 0.4. It is noted that the agreement with theory is excellent. A check was 
made to determine whether the final phase detector, which was not included in either the theory 
or simulation, would have an appreciable effect on the cross modulation. Both theory and 
ex|)eriment indicate that this final phase detector has no significant effect on the output error. 

Tests were also made using the 2:1 channel spacing with input frequencies of 2000, 3000, 
and 3500 cps. The experimental points shown in Fig. 7 provide satisfactory agreement with the 
theory for this case. 

SUMMARY 

The theory of the Scamp signal processor is developed for a complete monopulse system 
with three channels: a sum signal or reference channel, and a/imuth and elevation difference- 
signal channels. Formulas are developed giving the difference-channel outputs for three 
selected arrangements and spacings of these channels. The worst channel arrangement, from 
the standpoint of cross modulation, is that of the three equally spaced contiguous channels, 
with the sum channel in the center. In this situation the cross modulation is intolerably great 
on both difference channels. 

A second and far better arrangement for contiguous equally spaced channels is to place the 
sum channel at one end, with the two difference channels adjacent. This eliminates any inter- 
ference in that difference channel nearest the reference but leaves a small residual cross modula- 
tion in the more remote difference channel. It is not felt that this would be intolerable for some 
applications. 

A third arrangement using a 2:1 channel spacing yields similar results, but the residual cross 
modulation in the remote channel is greater than in case two. Wider and unequal separation of 
the three channels could result in less or no cross modulation if amplifier bandwidth permitted 
this mechanization. However, it would seem that such a move would tend to reduce one of the 
main advantages of the Scamp concept. 
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Appendix 

EXPANSION OF TERMS IN LIMITER OUTPUT 

INTRODUCTION 

In order to simplify the expansion of Eq. (2) the following notation will be adopted: 

a = —, e = —, n = 2a, r* = 2«e, r:t = 2e 

tti = (wx - w«) t + (</>., — </>„)    ci = cos ai 

a-i = {(D,, — (o,) t + (</»„ — </>,.)    c-i = cos a* 

as == (a)» - (a,) I 4- («/>., — </»,)     r:i = cos a;i 

F = a cos (a>„< + «/>„) + cos (wx/ + 0») + e tos (ü),t + <f},.) 

u = a2 + \ + e2 and v = riCt + r-iC-i + riCi. (A I) 

Applying the definitions in Eq. (Al) to Eq. (2) we have 

4r 47 /       tA-,/2 

L(t) = —F{u + v)-ll2 = — u-1i2Fi\+-]     . (A2) 
TT TT \ U/ 

Whenever i; < u we can expand (1 + t>/u)"2 hy the binomial theorem 

^=-^'^(1--^-- — + ^^-^,+ ...). (A.) 

The powers of v expand in terms of the r's, c's, and a's as follows: 

v = nci + r-iCt + r.tc.t = ri cos at + r-i cos a-i + r;t cos a», (A4) 

v2 = ri2ci2 + raW + r.tW + 2 r\riC\Cz + 2 nrtCiC;) + 2 r2r;tC2Cs 

= 2 ('■i2 + '"•■i2 + rt2) + 2 (r|2 los 2a, + r22 a)S 2a2 + ^ cos 2a^ 

+ rifa cos («i — 0:2) + r\ri cos a.t + rir.i cos «2 

-f- rir;i (os (ai + a,i) + rzr.i cos (a2 + a,t) + r-zr^ cos ai, (A5) 

r1 = ri3Ci3 + rjc? + rrW + 6 n^r.-) ciC2C:i + 3 ri2ci2r2C2 

+ 3riCif22C22 + 3ri2ci2r:ic.t + 3riCir.t
2c.i2 -r 3r22C22r:ic.i 

+ SraCafsW 

II 
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3 1 = T (n3 cos ai + ra3 cos ocz + r.V tos a») ■+■ - (ri3 cos 3ai 
4 4 

3 
+ r-i3 cos 3«2 + r:i3 cos 3a:i) + - rirar» (1 + cos 2ai 

3 
+ cos 2a2 + cos 2a.i) + - (ri2r2 cos at + rirf cos «i 

+ ri2/";) t<»s a» + rir.i2 cos ai + rfrn cos a.i + r2r:i2 cos a2) 

3 
+ - [ri2r2 cos (2ai — a^) + n2^ cos (ai + a.t) 

+ nr22 cos (2 a* — a,) + r\r>2 cos (a2 + a») + /"i2r:t cos (ai — a-i) 

+ ri2r:i cos (2 un + a.i) + nri2 cos (a2 + a.i) + rir.? cos (2üf.i + ai) 

+ r22r:1 cos (ai — a^) + r^r* cos (2 a2 + a.t) + r2r,i2 cos (ai + a:i) 

+ r2r;,2cos (2a, + a2)], (A6) 

t;4 = ri4ci4 4- r24C24 + r:,4c;i4 + 4riV2Ci3C2 + 4ri:V:,C|;,c.i 

+ 4rir2:,cir23 + 4rir:i:,C|C.i3 + 4r2r33C2C33 + 4r23riC2:,c:i 

+ ftrMWcz* + enWciW + 6r22r:,
2C2W 

+ Vlr^r-intc^CiC:, + Wr^fnicr/r-.i + 12rir2r32CiC2C;i2 

= ö (r|4 + r*4 + r^ + ö ^r|4 (<,s 2a, + r*4 ,os 2a2 + ^ (OS 2«:i) o 2 

I 3 
+ - (ri4 COS 4o(i + rL.

4 cos 4a2 + r.i4 cos 4a.t) + - [rrVa cos (ai — 02) 
o 2 

+ rrV2 cos a.i + ri:,r;i cos «2 + riV.-i cos (a.i + ai) 

+ rirz3 tos (a 1 — «2) + fW cos a:l + rir»3 tos 012 

+ rifii3 tt)s (a.i + tti) + r-ir/ tos ai + nzr-.f ct)s (a« + «2) 

+ r/V:) cos ai + r^r* tos (a.i + a2)] + - [ri3r2 tos (3ai — a2) 

+ riVa tos (2ai + as) + rrV.i cos (2ai — «2) + ri'V.i «os (3ai + a.i) 

+ rir-j''1 tos (3t*2 — ai) + rir-/'1 tos (2a2 + rr.i) + rirr'1 cos (3a:i — «1) 

-f rlr:l•', cos (3a.i + ai) + rjr.r'1 (os (3a;i — a-j) 4 nr/ cos (,{a;i 4 aL.) 
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3 
+ r^r.t cos (2a;j — ai) + /yV:, tos (3a. + a»)] + - (ri2r2Z 

3 
+ r,2r:i

2 + r22r:t
2) + - (r,2^2 cos 2a, + r,2^2 cos 2a2 

+ ri2r;i2 cos 2ai + ri2r:t
2 cos 2a,l + rfr} cos 2a2 + raVs2 cos 2a;)) 

+ - [riW cos 2(a2 — ai) + nW cos 2a:i + riVn2 cos 2a2 

+ nVa2 cos 2(a;, + a,) + nW cos 2a, + r22r3
2 cos 2(a;, + az)] 

+ 3 [riVar, cos a, 4- r,2r2r:i cos (a.-, -f ai) + rirfrj cos a> 

+ r\ri2r.\ cos (a.i + a,) 4 r]r>r/ cos (a^ - a,) + rir>r.i2 cos a.-, ] 

3 
+ - [r,2r2r:) cos a, + r,2^) cos 3a, + r,2r2r3 cos (2a2 — a,) 

+ r,2/-2r:t cos (2a;i + a,) + r,r22r;i cos a-z + r^fr* cos 3a2 

+ rirfr* cos (2a, — a-i) + rxrfr* cos (2a;i + a-z) + r,r2r.t2 cos (2a, + a,) 

+ r,r2ri2 cos (2a2 + a.,) + rxr-ir^2 cos a;, + r\rirj? cos 3a,t]. (A7) 

R;i(hc'i than evaluating all of the terms in Eqs. (A4) through (A7) in terms of the w's, let us 
select only those terms which (when multiplied by F) |M)ssess either a frequency Wo or (iir, for 
each arrangement of channels considered. In Table Al are listed the terms arising from Fv, 
Fv2, etc. 

1. EQUISPACED SYMMETRICAL CHANNELS (FIG. 2) 

Here tun — o)H 

(ti,, = Ü>, — 8 

(ü, = Ws + 8. 

In Table Al the terms containing frequency combinations which yield ai,, are underlined, 
and those which yiei.l w,. arc marked by an asterisk. Collecting terms on Ua, the output from Eq. 
(A3) at that angular frequency is (up to fourth degree in the amplitude coefficients, a and e) 

L^"=3*{[a-fu(]+e2)+%2(a2'3e2) 

_|i (a, + 2e2)] cos (o)at + ^ + [-^^ (4a2 -f e2) 

(2a2 + e2)] cos (u>„t + </),) + [|^ - ^^] cos (tu,,* + ^) 

«os (w0/+ «/..,) j,    • (A8) 

15c 
I6«3 

I5ae2 

I6u3 

where <f>l = 20« — if>., <t)2 = — (20, — 2(/)„ — <f>,) antl fa = 40, — <f>„ — 2c/),.. Note the phase change 
in 02 |o keep to,, positive. 
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TABLE Al 
Terms Arising from Fv, Ft?, Ft9, and Fv* 

Product Amplitudes and Frequencies Resulting from Product 

2F cos a, a[(o,], a[a», — 2a>a], 1 [2w, — ü>„],* 1 [w,,], tA e[<o, — w,, + «»,.], e[a>, - w„ - a»,] 

2F cos a« o[(iif],*OD a[(i>, - 2wn], 1[<ü, + wo - 0»,],° 1[ü>, — Cü„ + a),.], e[a»„], tA e[üi „ — 2a»,.] 

2F cos a.i a[w, + ft»a —0),],° a[ö>, — a>n — Wr], l[2w, — a»,], l[ur],*
on e[m,], e[w,- 2a», ]t 

2F cos 2a, a[2üi, - w(I],* a[2<ü, - 3«n], 1 [a>, - 26),,], 1 [3a>, - 2ü>,I] , D 

e[2a), — 2w„ — w^], e[2a>> — 2fc>„ + w,] 

2F cos 2ai a[w„ - 2a)f], a[36»n - 2W,.], 1 [w, + 2Ü»,, - 2ö»(.] .t 
l[(i>, - 2wffl + 2we], e[2<ü„ — 3WP], e[2<oa - ate] 

2F cos 203 O[2ü», — 2(Dr — ata],* a[2ftt, — 2«ür 4- &)„], 1 [a>, — 2a>(.], i 
l[3ü>,- 2wf], e[2w, - a>,], e[2ci>, - 3ö>r] 

2F cos (ai — a«) a[aj, - ci*a + (Oe], a[ö), — 3w„ + <or], 1 [2ü), — 2w« + We], 
l[2(ü„ — otf], e[(ü, - 2ata], e[io„ — 2ti>l, + 2ü)r] 

2F cos (a, + «.i) a[2(i)n — to?], a[2ü}, — 2ü>„ — to,], I[w, — ü>n — w,], 

l[3<i>, — (OB — (i>,],A e[2(i)g — to,,],* e[2(D, — w,, — 2a»p]* 

2Fcos (aj + a.i) a[(D, - 2eür],t a[2a>n + w, — 2<0p],t l[w« + 2c«>, — 2ftv], 
1[üJ,I — 2(i»,.], ^[(ü,, + ö», — a»,.],0 e[(i>„ + (»>, — 3(0,]° 

2F cos 3a i a[3(i», — 40»,,], a[30», — 2to»„] ,D 1 [4a», - Sa»«], 
l[2a», — 3a>„], elSu, — 3a»,, — a»,.],A e[3a», — Sa»,, + a»,] 

2^ (6s 3a2 a[2ö»„ — Sa»,.], a[4a»,1 — Sa»,], 1 [a», + 3a»„ — Sa»,], 
l[3a»„ — a», — 3a», ], ^[3a»,, — 4a»,.], e[3a»n — 2a»,.] 

2^ cos 3a3 a[Sa», — Sa»,. — a»„], a[Sa», — 3a»,. + a»«], 1 [2ü», — Sa»,.], 
1 [4a», - Sa»,]   c[3a», - 2a»,.], e[3a», - 4a»,.] 

2f cos (2a, -at) a[2a», - 2a»,, + a»,.], a[2to», — 4a»„ + a»,], l[3a», — Sa»,, + a»,], 
l[a», — 3a»„ + a»r], e[2a», — 3a»„ + 2ai,.], e[2a», — Sa»,,] 

2F ens (2a2- a,) a[2a»„ — a», — 2a»,], a [4a»n — a», — 2a»,.], 1 [Sa»,, — 2a», — 2a», ], 
1 [3a»„ — 2a»,.], c[3a»„ — a», — a»,], e[Sa)„ - a», - Sa»,] 

2F cos (2a, + a,,) a[S(i»( - a»„ - a»,.],A a[S(i», — 3a»n — to»P],
A 1 [4a», — 2a»„ — a», ],* 

l[2a», - 2a»„ - o»e], ^[Sa», - 2a»„ - 2a».],a e[Sa», - 2a»„]a 

2Fcos (2a.-, + a,) a[3(i», - 2a»„ - 2a»,.],D a[3a», - 2a»,], 1 [4a», - a»„ - 2a»,], 

1[2ü», — a»,, — 2a», ],* e[3a», — a»,, — a»,.J,A e[Sa», — a»,, — 3to»,] 

NOTE;  Ihr symlxils *, t, A. O, D, and llic underliniiiK are cxpl.iim'd in ihis apfiemlix. 
(Table Coniiiuics) 
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TABI.K Al (Conlinucd) 
Terms Arising from Fv, Ft?, Ftp, and Fv* 

Product Amplitudes and Frequencies Resulting from Product 

2F cos (2a2 + a,,) a[3w„ + w, — 3(ü,.], a[a),1 + w, - 3(0,.],° l[2ci>„ + 20), — 3<D,.],0 

1[2ü),( - 3ü>,.], e[2m„ + w,- 4wf], «[2W,, + w. -2ft>,.]t 

2F cos (2o3 + «2) «[2w.+ 20),, - 3«o,.],0 a[2a>« - 3w,.],0 ^[Sw, + wa - 3wP], 
1 [co, + w,, - 3w,.],0 e[2w, + ü)0 - 4w(.],t «»[20.. + a),, - 2wp] 

2F cos 4a 1 a [4w, - 3(i>,1], a [4<i>, - Seo,,], 1 [3<i>, — 4o*fl], 
1 [5<o( — 4w„], e[4w, — 4<i>,1 - w,], e[4w, - 4W,, + a>,.] 

2F cos 4a2 a[5(ü„ - 4<I>P] , a[3w,I — 4<i>,.], 1 [4W,, - 4wr - w,], 
U4Ü»,, — 4«>,. + w,], c[4«j„ - Sw,,], e[4<i;„ — 3wr] 

2f cos 4a3 a[4<«>, - 4o>,. + *)„], a[4a), — 4o>, - CD,,], 1[5<ü, — 4ti>r], 
1 [3(ü, - 4<i>,.], e[4a*,- 3a»,], e[4a>, — Sov] 

2/^ cos (3a, - aa) o[3w, — So*,, + air], a[3w, — 3a>„+cD,,], 1[4ö>,— 4a>a+ a>p]. 
1 [2a), — 4a)(, + a>P], c[3a>, — 4ü>a + 2a>,.], e[3a), — 4<Oo] 

2f cos (3a, + a;l) a[4a), - 4a>0 - a»,.], a[4a>, — 2a»„ - a>,.],* 1 [5a<, - 30»,, — a»,.], 
1 [3a<, - 3a>a - a»p] ,A e[4w, - 3(0,, - 2a),,], e[4a», - 3a>n] 

2Ftos (3a2-a,) a[5a>0-o>,—3a>p], a[3a)n— a),-3a)p], l[4ö»n—2ci>, — 3a>p], 
1 [4tü,l — 3a>p], c[4<«>,1 — w, — 4a»p], e[4a>n — a>, — 2a*p] 

2Fcos (3a.,-a,) a[2a*,- 3ajp],0 o[2at, - 3a>p + 2ü)n],
0 l[3a>, - 3a>p+ a>fl]. 

1 [a), — 3a)p + w,,] ,0 e[2a», — 4a>p + a>a],t e[2a), — 2a>p + a»a] 

2A'cos (3a:,+ a,) a[4a), — 3a>p], a[4a>, — 3ajp — 2a>o],* 1 [3a>, — 3a>p — a*a]. 
1 [5aj, - 3a>p - a>a], e[4a», — 4a>p - a»„], c[4a<, - 2fc»p — a)n] 

2F cos (3a:l - a2) a[3a», - 2a*p], a[3a», - 2a<p - 2a»a]P 1 [4a), - 2a>p - a*a], 

l[2a», — 2a>, — aja],* p[3a>, — 3w,.-a»,,], e[3aj, — Wp— a»a]
A 

2f cos (3a 3+ 02) o[3a>, — 4ö>p], a[3a>, — 4a»p + 2a»a], l[4a», — 4a»p + w„]. 
1 [2a), — 4a>p + ö>„] ,t e[3a», — 5a)p + a>0], e[3a>, — 3a», + a>0] 

2f cos (302+«,) «[4a»,, + a», - 4a»p], a[2aj,I + a», - 4a»p], 1 [3a»0 - 4a»,], 
l[3a»,1+ 2a», — 4a»,.],t e[3o»n + (i», — 5a»,], e[3a»n + a», — 3a»p] 

2f cos2(a2-a,) «[5a»,, — 2a», — 2a»p], a[3a»,l — 20», — 2a»p], 1 [4a»o — 3a», — 2a»p], 
1 [4a»n - a», - 2a»,], e[4a»n — 2ü», - 3a»p], e[4a»0 - 2a». - a»p] 

2F cos 2(a ;l+a,) a[4a», — 3a»„ — 2a»,.], a[4a», — a»„ - 2a»,], 1 [3a», — 2a»,, — 2a»p] P 

1 [5a», - 2a»n - 2a»,.J, e[4a», - 2a»,, - 3a»p] * e[4a», - 2a»a - a», ]* 

2f cos2(a3 + oj) a[3a»a + 2a», - 4a»p] ,t a[a>n + 2a», - 4a»p],t 1 [2a»0 + 3a», - 4a»,], 
l[2a»,1+ a», - 4a»,], c[2a»fI + 2a», - 5a»,],0 e[2o}„ + 2a», - 3a»,]0 
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Collecting terms on w? yields the same expression as Eq. (A8), except a -* e, e —* a, w,,—* We, 
<l>a "* 0c, and <f)r -* <t>a so that (t>i = 2 <f>, — 0„, etc. One would expert this symmelry, since the 
u>a and ate channels arc symmetrically spaced about the center sum channel, w,. If we let </»(i = 
2 0, — <(>„ — <f>,. for the <au channel, then 0i = 0,, + <^o, </>2 = + <f>„ — </»(i and fa = «/»,* + 2 0o. 

2. EQUISPACED NONSYMMETRICAL CHANNELS (FIG. 4) 

Here «u,, — w,, 

(De = (0» + 8 

tu, = (IJ,I + 2 S 

In Table Al the terms containing frequency combinations which yield w,, are marked by a t 
and those which yield w,. by a O. If we let (f>u= 0, + 0,, — 2 <£,., then the output from Kq. (A3) 
at a),, is: 

MOk " = ^{[a a(l + e2)     3a{a2 + 3e2)     I5a(a2 + 2«'2)" 
2« 

+ 
4/r Ibu* 

COS  (G>„f + <M 

+ [-^^<- 15e2 35e2 

2+])~Mis (5a2 + e2) + W (3a2 + e2)] tOS (W"' + *" " ^^ 

,  r9fl2e2     45aV ,   105o2<?2        , ,       , , 

Again, if we let «fri = </>» + (ft,, — 2</»,., then the output from Eq. (A3) at ov is: 

e(a2 + I)   , 3P(P
2
 + 3a2)     IS^p2 + 2a2) 

(A9) 

4T 
U(t)\(or=—rFi 

TTW 
e — 

2u 
+ 

4u2 I6u;' 
COS   ((O.t + </>,) 

+ 

+ 

ae     3ap (a2 + f2 + I)      15ac (<>2 + a2)      105oe (a2 + e2) 1 
T  r :: : ~t   r^—;    cos (w, 

4u2 
4«•■, 32u4 

3««"3     ISae1    SSae3 

os (tu,/ + 0, - 0») |. 
4u2       Su1       32ü

4 

Once more note the change in sign of phases to keep w„ and w, positive. 

/ + <£,+ </»„) 

(A 10) 

3. UNEQUALLY SPACED CHANNELS (FIG. 6) 

I lei e CDs — On 

(o„ = wx — 8 

a»,. = a»,, + 28 

In Table Al the terms containing frec|uency combinations whüh yield w,, are marked b\ a A 
and llivvse which yield (o, by a Q. If we let 00 = 30, — 2(f),, —(ft,, then the output from (A3) at co,, is: 

47, 

/.;l(/)|ü>„ = 
77« 

+ 

+ 

1/2 

a (1 + e2)     3a (a2 + Se2)      15a (a2 + 2P
2
 ) 

a 1- - 
2u 4M2 

3ae     X'SaeW2 + e2)      \^ai'{dl + e2) 
4a2 Su3 32u4 

I6ü
3 

(OS   ((!>„/ + 0„ + 01, 

COS  (W,,/ + 0„) 

5a3e     35aV 
"4^+ 32M

4 cos (aj„/ + 0„ — 0,1) (All) 
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Again if we lei ^o = 30« — 2«/),, — </>,., then the output from VA\. (A3) at ov is: 

i , u 4r   IF      «-(^+1)   , 3e(e2 + 3aii)      15e(e2 + 2^)] . ^ 

Note the phase sign change to ket-p w„ and w,. positive. 
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