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ABSTRACT 

This report deals with minimax approximations to functions defined on the real line. These 
approximations are of particular use to mathematicians having access to a digital computer 
facility. 

The cases considered are for functions defined as discrete points on the Cartesian plane and 
for continuous, bounded functions defined on a closed interval of the real line. A method for 
obtaining the approximations using linear programming techniques is presented for each case. 

An analysis of the error function and a brief outline of the computer program are included. 
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SECTION I 

INTRODUCTION 

The general problem considered in this paper is the approximation of a function f by an 
approximating function F. There are two main reasons for being interested in approximating 
a given function. In the first place, if we are using a digital computer, nonelementary functions 
may take considerable machine time to compute, and if we are to evaluate such a function a 
large number of times, itwill be advantageous to replace it with a more elementary one. In the 
second place, if the function f is given in tabular form, a good approximating function will re- 
place the need for table look-up and interpolation and will economize on storage. 

In approximating a given function we are faced with two major problems: (1) to determine 
the form of the approximating function and (2) to determine a criterion for the accuracy of the 
approximation. The primary consideration in determining the type of approximating function 
to use is that this function be compatible with the function to be approximated. Thus we would 
not approximate a function which has a singularity with a polynomial. There may be, however, 
certain practical considerations which influence the choice of the approximating function. In 
the following we limit ourselves to polynomials and functions which we can approximate with 
polynomials, since they are easily evaluated. 

Just as there are numerous choices for the approximating function, there are many ways of 
measuring the accuracy of the approximation. Among the more common methods are exact 
matching at the sample points; least-squares, which is well suited to data subject to a random 
error; and Chebycheff, which reduces the maximum error to a minimum. The actual choice of 
the criterion to use depends on the particular problem. The Chebycheff criterion is partic- 
ularly useful when the noise connected with the data is negligible, or when it is desired to 
keep the maximum error minimal. We will concern ourselves with the Chebycheff criterion. 

The problem we will consider is that of finding, among all polynomials Q of degree less than 
or equal to n, a polynomial P such that given a function f defined on a set S of real numbers 

max | f(x) - P(x) | = min (max  |f(x) - Q(x) | ). 
xeS Q    xcS 

The set S may be a discrete set of points or an interval on the real line. P is said to b^ the 
polynomial which best approximates f on S in the Chebycheff sense. 

We will show the existence and uniqueness of such a polynomial P, describe the character- 
istics  of the  error function,  and develop the  necessary computational methods to find P. 
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SECTION II 

CHEBYCHEFF APPROXIMATION TO A FUNCTION 
DEFINED ON A FINITE POINT SET 

Given a function f defined on a point set S of m points of the real line, wc want to find a poly- 
nomial P, of degree less than or equal to n, n+2<m, for which the error 

max | f(x) - P(x) | 
X€S 

is a minimum. We call P the polynomial of degree less than or equal to n of best approximation 
to f on S. 

The following theorem of C. de la Vallee Poussin (Reference 19) characterizes the poly- 
nomial P. 

Theorem: Let P be a polynomial of degree less than or equal to n, of best approximation to 
a function f defined on a point set S of m>n+2 points. 

Then P is uniquely characterized by the existence of at least n+2 points of S at which the 
difference |f(x) - P(x)| assumes its maximum value onS, with the algebraic sign of f(x) - P(x) 
alternating at these points. 

Proof: We suppose | f(x) - P(x) | assumes its maximum value at no more than n+1 points of 
the set S and arrive at a contradiction. 

Let S be this set of at most n+1 points. We can then find a polynomial Q of degree less than 
or equal to n such that Q(x) has the same algebraic sign as f(x) - P(x) for every point x in S . 

Let      E(P;S) = maxlf(x) - P(x) I 
xcS 

E^-.S-S1) = max|f(x) - P(x)| 
X€S-S' 

and || Q(S) ||    = max|Q(x)| . 
X€S 

Since    E^S^E^S-S')   we   can   find   an€>0   such  that €llQ(S)ll    < E(P;S) - E(P;S-S'). 

Let R(x) = P(x) + €Q(x). R(x) is then a polynomial of degree less than or equal to n. We now 
show that under the hypothesis that there are at most rri-1 points at whichjf(x) - P(x)[assumes 
its maximum value on S, the polynomial R(x)is a better approximation to f(x) than P(x), which 
is a contradiction since P(x) was taken as the best approximation to f(x) on S. 

On the subset S' of S we have 

|f(x) - R(x) I   = 1 f(x) - P(x) -€Q(x) I   =  I f(x) - P(x) I - € I Q(x) I. 

The   last   equality  holds   because  Q(x)  has  the   same algebraic sign as f(x) - P(x) on S . 

But j f(x) - P(x) | - e |Q(x) j < j f(x) - P(x) | . Hence for x^s' we have |f(x) - R(x) j < 
|f(x) - P(x)|. 
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On the subset S-S* of S we have 

|f(x)-R(x)|   =   |f(x) - P(x)-€Q(x)l< lf(x) - P(x) I +€llQ(S)ll  . 

Then 

max I f(x) - R(x) I < max I f(x) - P(x) I + €llQ(S) II   . 
xcS-S' xcS-S' 

But 

max I f(x) - P(x) I  + ellQ(S) II <   E(P;S-S,) + (E(P;S) - EiP-.S-S') ) 
xcS-S1 

<E(P;S) 

Hence max I f(x) - R(x)   I < E(P;S). 
xcS-S' 

Since S is the union of S* and (S-S1) the polynomial R(x) gives a better approximation to f(x) 
on S than P(x), which contradicts the hypothesis that P(x) is the polynomial of best approxi- 
mation. 

Having characterized  the polynomial P of best approximation, we now show it is unique. 

Theorem: Let P be a polynomial of degree less than or equal to n, of best approximation 
to a function f defined on a set S of m>n+2 points. Then P is unique. 

Proof: Assume the contrary, that there exists a polynomial Q of degree less than or equal 
to n, different from P, such that max I f(x) - P(x) I   = max I f(x) - Q(x) 1. 

xcS X€S 

Let E(S) = max I f(x) - F(x) I   = max I f(x) - Q(x) I. 
xcS xeS 

Then for xeS 

-E(S)< f(x) - P(x)< E(S) 

and       -E(S) < f(x) - Q(x) < E(S). 

Addition and division by two yields 

-E(S) < f(x) - .5(P(x) + Q(x) ) < E(S). 

Then  R(x) = .5(P(x) - Q(x) )   is  also  a polynomial of degree less than or equal to n of best 
approximation to f (x) on S. 

Consider a point x! of S for which ^x') - ^(x') = E(S), 
Then 2(f(x,) - R^') ) = (f^') - Pfc') ) + (f(x1) - (^x') ) = 2E(S). 
Since both i(x') - P^') and f(xl) - QJx') are less than or equal to E(S) we must have 

f^') - Pfx') = fCx') - Q(x,), i.e., P(x,) = QCx'). 
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It can likewise be shown that for any point x" of S for which f(x") - R(x") = -E(S) we will 
have P(x") = Q(x"). 

By the previous theorem there are at least n+2 points at which f(x) - R(x) = ±E(S), Hence 
P(x) and Q(x) coincide at a minimum of m+2 points of S. But then P(x) and Q(x) are identical 
since two polynomials of degree less than or equal to n, coinciding at n+2 points, coincide 
everywhere. 

We now return to the problem of finding the unique polynomial P, of degree less than or 
equal to n, of best approximation to a function f defined on a set S of m points, where m is 
greater than or equal to n+2. 

The problem is one of determining the coefficients cn c   anrf the deviation E(S) such 
that u n 

j=n 

E(S) = max I f (x ) - ^      c. x 
X€S j=0      , 

J 

is a minimum. 

Let a.. = x^, l<i<m and 0<j5n. The problemisthen to find cn, c, c   and E(S) such that 

E(S) + Z     a.,  c. >   f 
jxO     'J     1 ' 

i - m 

and 

E(S)-   X     a.,  c.   >  -f. 

E(S) > 0 

E(S)    is   a   minimum. 

We now have a system of 2m+l linear inequalities in the n+2 unknowns cn, c, c   and 
£(S), and a linear functional Z = E(S) to be minimized. 

We will see that there is an efficient way of adapting our approximation problem to a linear 
programming form. To show this we define certain terms and concepts of linear programming. 

Associated with every linear programming problem is another linear programming problem 
called the 'dual'. Below is given the relation between a typical 'primal' problem and its dual. 
It should be noted that either of the two problems may be called the primal, and the other would 
then be the dual. 

Primal   Problem:     Find  a  column vector X = (x x ) which maximize? ';he linear 
functional 

z = cx 

subject to the restrictions 
AX = B and X>0 
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where C = (c, c ) is a row vector, B = (b,, .... b) is a column vector, and A = (a^) 

is a p by q matrix. 

Dual Problem;   Find a row vector Y = (y, y ) which minimizes the linear functional 

W = YB 

subject to the restriction YA ^ C, where A, B, and C are defined as in the primal problem. 
Note that there is no restriction on the sign of Y. 

The following is the well-known duality theorem, which establishes the important relation 
between a primal problem and its dual. 

We define a feasible solution as one which satisfies the constraints of the given problem, and 
an optimal solution as a feasible solution which maximizes or minimizes the object function Z 
or W, as the case may be. 

Theorem: If either the dual or the primal problem has a finite optimal solution, the other 
problem has a finite optimal solution, and the extremes of the linear functionals are equal, 
i.e., max Z = min W. 

A proof of this theorem may be found in thi book. Linear Programming, by S. I. Gass 
(Reference 7). 

We solve the above linear programming problem using the Simplex Method due to G. B. 
Xnt.ig (Reference 5). A 'brsic' feasible solution is one with, at most, p positive variables, 
a?d one which expresses B in terms of p linearly independent vectors P., j = 1, . . . , p, where 
T    = (a,., . . . , a .) is the .th column of A. 

lj PJ J 
J 

The algorithm starts with a basic feasible solution. We can always find such a solution, 
'Lough it may be necessary to introduce certain artificial variables to do so. If this solution 

not optimal, we can either find a class of solutions in which there is no bound on the object 
unction or we can construct a new basic feasible solution in which the value of the object 
.unction is not less than that for the previous solution. The simplex algorithm consists of re- 
peating this cycle until we have constructed an optimal basic feasible solution or a class of 
feasible solutions for which the object function is unbounded. 

Let G be the p by p matrix formed by the p linearly independent vectors P. from A which 

correspond to the optimal feasible solution. We call G the optimal basis. Let X be the p dimen- 
sional optimal basic feasible solution. At the termination of the simplex algorithm there will 
be a p dimensional row vector C' such that 

X' = G^B and max Z = C'X' 

If we let Y1 be the optimal basic feasible solution of the dual, then 
,.^-1 •   _  r"n~i min W = Y'B = C'G   B = C'X' = max Z, i.e., Y' = C'G   . 

Most standard linear programming codes for digital computers will yield the solution to both 
the primal and the dual problems. 
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Consider   now   our   approximation  problem.   Since  a.    = x.   = 1  we  let the matrix A be 

I 
aii   »   a 

.   • • ' ,   I      , "I 

21  » ' '   ami > ~a i i     > , -a mi 

,0 
,0 

\(1in .   0zn t »   amn » -a in •   -amn.0 

We also let 

and 

r ■ (i,,..., ^YYI* 
— i' • • • ♦— m* ' 

Y = (E(S).c0 cn) 

U =11 
0 

0 

wh^re U is a 2m+l by 1 column vector. The problem is then to find a row vector Y which mini- 
mizes the linear functional W = YU subject to YA>F, which is precisely the dual form de- 
scribed above. We can consider the primal problem as one of finding a column vector X which 
maximizes Z = FX subject to AX = U and X>0. 

We can now solve this primal version of the problem using a standard linear programming 
code, which will yield a solution to the dual as well. 

There are three reasons for taking the "dual approach'' rather than solving for Y directly: 

1. Since Y is not restricted in sign, we would be forced to add variables to our problem 
before attempting a solution. The dual approach eliminates this need. 

2. The simplex method is most efficient in terms of time when the number of variables is 
greater than the number of equations. Since in our problem we have n+2 variables but 2m+l 
equations, where m>n+2, it is advantageous to consider the dual so that we have 2m-il variables 
and n+2 equations. 

3. The addition of points at which we want to approximate f(x) corresponds to the addition 
of variables in the problem as we consider it, and this can be done without restarting the 
algorithm at its initial phase. But addition of points would mean the addition of constraints if 
we solve our problem directly. Having obtained a solution vector which satisfies the original 
constraints, we would have to start the solution anew to take into consideration the new con- 
straints. 

Interpolation Error: Let f be a continuous function with at least n+2 derivatives, defined 
on a set S of m points. Having obtained a polynomial P, of degree less than or equal to n, 
m>n+2, which is a best approximation to f(x), we may want to use P as an interpolating poly- 
nomial to interpolate between the given points of S. 
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We will call the points of S at which | f (x) - P(x) | takes on its maximum value the critical 
points, and we assume that there are exactly n+2 of them. We further assume that the smallest 
and largest of the points in S are in the critical set. Let x' and x" be these two points. Given 
these conditions, we can obtain an interpolation error for P over [x1, x"]. 

Let e(i) = f(x.) - P(x.), i = 1, . . . , n+2, for x. in the critical set. We can construct a poly- 

nomial L(x) of degree n+1 which will assume the values e(i) at the points x. of the critical set. 
We use the Lagrangian interpolation formula to obtain 

L(x) = h(lf x) e(l) + . . . + h(n+2, x) e(n+2) 

where 

h(i,x) 

(x - Xj) . . . (x - x. _ p (x - x. + j) . . . (x - xn+2) 

(x. - Xj) . . . (x. - x. _ j)    (x. - x. - x. +1) . . . (x. - xn + 2) 

The error term of this formula is 

G(n+2|(v) Q(x) 
RU)  =   

(n+2) 

where Q(x) = (x - x.) . , . (x - x
n+2)- 

The  x.'s   are  the  critical  points, and G(x) = f(x) - P(x), and the poiu* v is some point in 

[x', x"]. A complete discussion of the Lagrangian interpolation formula and the error term 
can be found in (Reference 8). 

Since P is a polynomial of degree at most n, its (n+2)nd derivative is identically zero; hence, 

/n+2^            fn+2^                           f W QW 
Gln+^(v)  = f^^^v) and R(x) =  

(n+2)! 

The error f(x) - P(x) is then equal to L(x) + R(x), and this is the error incurred when using 
P(x) as an interpolating polynomial. 



SEG-TR-66-32 

SECTION m 

CHEBYCHEFF APPROXIMATION TO A FUNCTION 
DEFINED ON A CLOSED INTERVAL 

ON THE REAL LINE 

Let f be a given function defined and continuous on a closed interval [a, bj. We are concerned 
with finding a polynomial P, of degree less than or equal to n, such that the error 

max I f(x) - P(x) I 
a<x<b 

is a minimum. 

The following theorem of Chebycheff (Reference 1) characterizes the polynomial P. 

Theorem: Among all the polynomials of degree less than or equal to n defined on the real 
line, the polynomial P which deviates least from a given continuous function is uniquely char- 
acterized by the fact that in the interval [a, b ] over which we approximate the given function, 
the number of consecutive points at which the difference f(x) - P(x), with alternating signs, 
assumes the value 

max | f(x) - P(x) | 
a<x<b 

is not less than n+2. 

The next theorem is important for computational reasons. We define a local maximum as 
follows: we say f has a local maximum at a point x if there exists a S>0 such that f(y) < f(x) 
for all y such that 0<lx-yl<S. A local minimum can be defined similarly by reversing 
the inequality between f(x) and f(y). We now show that the function 

E(P; [a, b] ) =1 max f(x) - P(x) I, 
a<x<b 

where P(x) = c« + c^ x+ . . . = c x   is an arbitrary polynomial of degree ^ n, is convex, and 

hence a local maximum or minimum is the unique maximum or minimum for the whole interval 
[a, b]. 

Theorem: Let Ö be in 10, 1 j, and let P. and P,- be polynomials of degree less than or equal 
to n. Then 

E(ÖP1+ (1-9) P2; [a, b] )^ÖE(P1; [a, b] ) + (1-0) E(P2; [a, b] ) 
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Proof: 

E(ÖP +( l-Ö)P  • fa.bl) =  maxlf(x)-f    ( öc ,   + ( I-Ö) c, )xi 
z    L        J     a<x<b i=0 i i 

n n . 
* maxlö(f(x)-I    c,   x,)+( l-ö)(f (x)-I    CgX1)! 

a<x<b 1 = 0' 1=0' 

n . n . 
< max (Ölf(x)-I    c,   x   l + (i-ö)lf (x)-I    c2   x   I ) 

a<x<b i=0      i i=0       i 

<ömaxlf(x)-Z    c,    x' l+(l-ö)   max  If (x)-I   c^x' 
a<x<b ^=0     ' a<x<b '*'0     ' 

= ÖEIP,; [a,b])+(l-ö)E(P2,-[a,b]). 

Let us suppose now that the function E has local minima for polynomials P, and P2, of degree 

less than or equal to n, and let Ö be in [O, 1 J. We have just proved that 

E^Pj + {1-6) P2; la, b] ) < ^(Pj.-  [a, b] ) + (1 -9) E(P2; [a, b] ). 

Without loss of generality, suppose E{P.; ta» b J ) < E(P2; [a., bj ). Then by letting 9 approach 

0 we can find a P« as near to P2 as we like such that E(P3; [a, bj ) < E(P2; [a, b J ), con- 

tradicting the hypothesis that E has a local minimum to P0. By P,, being near to P0 we mean 
that 2 d 2 

n 2  l/2 
t Z    t C3 -c2)   )      < €,    i =0     • • , n , 

i=0 I       I 

for arbitrary €>0. 

On  the  other hand, if E(P1; [a, bj ) = E(P2; [a, bj ), then there can be no P3 such that 

c, < c^ < c2 or c, > c3 > c2 , i = 0, . . . , n, 
i     * i       i i       i       i 

and such that E(P3;  [a, bj ) >E(P1; [a, bj ) and E(P3; [ a, b J ) >E(P2; [a, bj ). We can 

this by observing that E^Pj + (1 -Ö) P2; [a, b] ) ^ElPj; [ a, b] ). 

see 

We  see then that the function E has no more than one minimal value; and hence, once we 
have a minimum for E, we know this is the unique minimal value of the function. 

9 
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We now develop an algorithm for determining approximately the unique polynomial P of 
degree less than or equal tc n which is a best approximation to a given function f, defined and 
continuous on an interval [ a, b] . Without loss of generality, we can make the linear sub- 
stitution x* = (2x - a - b) / (b - a)  which transforms  the  interval   [a, b ] into the interval 
[-Li]. 

The exact solution to the problem involves the solution of a system of nonlinear equations, 
and is quite difficult to arrive at in all but the simplest cases. We can, however, arrive at an 
approximate solution by successive approximations on discrete subsets of the interval  f- 1, ll. 

We generate a sequence Q(k; x) of polynomiah; of degree less than or equal to n, along with 
a sequence 

X(k) = (x(k, i): i = 1, 2, . . . , n+2) 

of sets of n+2 points of the interval [ - 1, 1 j. The polynomial Q(k; x) is the best approximation 
to f(x) onX(k), k = 0, 1, 2, . . . 

Let 

E(Q(k; x); X(k)) = max I Q(k; x) - f(x) | . 
X€X(k) 

Any set X(0) of n+2 points from [ - 1. lj for which E(Q(0; x); X(0)) is not equal to zero can 
be chosen to start the calculations, but in practice it has been found that faster convergence 
is attained if we choose the n+2 points at which the Chebycheff polynomial T(n+1) of degree n+1 
attains its extremal values. 

Having chosen X(0), we find Q(0; x) by the method described in Section II. The iterative 
method proceeds as follows: 

1. Given Q(k; x), choose 

X(k + 1) = (x(k + 1, i): x(k + 1, i) < x(k + 1, i + 1)), i = 0, . . . , n+1, so thatQ(k; x) - f(x) has 
opposite signs at adjacent points of X(k + 1) and Q(k;x)-f(x) assumes its extrema on X(k + 1). 
It should be noted that X(k + 1) andX(k) need not be disjoint. It will be seen that for most cases 
the two sets do indeed have elements in common. 

Let 

M(k) = max I Q(k; x) - f(x) I 
x €X{k + 1) 

and 

m(k) = min I Q(k; x) - f(x) I 
x€X(k + 1) 

We shall prove that m(k) will be at least equal to E(Q(k; x); X(k). 

2. Q(k + 1; x) and E(Q(k + 1; x); X(k + 1) are then determined so that Q(k + 1, x) is the poly- 
nomial of degree less than or equal to n of best approximation to f(x) on X(k + 1). 

We accomplish Steps 1 and 2 in the following manner. Since the error Q(k; x) - f(x) takes 
on  the values E(Q(k; x); X(k)) and -E(Q(k; x); X(k)) at no less than n+2 points of X(k), there 

10 
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[-Ml will be at least n + l points of [-1, Ijfor which Q(k; x) - f(x) is equal to zero, say 
xl' <x2     ' * ' <xn+r 

het X0 " -1 arli Xn+2 = 1 

wherexi<xlandxn+l<Xn+2' 

The   set  X(k + 1)   is then  chosen  so  that  x(k + 1, i)   is  the  point  on  [x.*,, xlj   at which 

I Q(k; x) - f(x) I is maximal. The set X(k + 1) so chosen satisfies the requirements in Step 1. 
We now compute Q(k + 1; x) and E(Q(k + 1; x); X(k + 1)). 

Let 

d(i) =   I Q(k; x(k + 1, 1) - f(x(k + 1, i) I , i = 1 n+2. 

Then 

(Q(k; x(k + 1, i)) - f(x(k + 1; i))) - (Q(k + 1; x(k + 1, i)) - f(x(k + 1, i))) = 

Q(k; x(k + 1, i)) - Q(k + 1; x(k + 1, i)) = ±(d(i) -E(Q(k + 1; x(k + 1, i)))). 

We see that E(Q(k + 1; x); X(k + 1)) must be greater than m(k), for if m(k)>E(Q(k + 1; x); X(k + 1)) 
the polynomial Q(k; x) - Q(k + 1; x) would have n+2 zeroes; but since Q(k; x) and Q(k + 1; x) 
are both of degree less than or equal to n, this would imply that Q(k; x) s Q(k + 1; x). 

We can iterate the procedure so that we obtain 

E(Q(k; x); X(k)) < m(k)< E(Q(k + 1; x); X(k + 1)), k = 0, 1. 2  

Let P(x) be the polynomial of best approximation to f(x) on [- 1, 1J, and let 

E(P; [- 1, Ij) = max | f(x) - P(x) | 

- 1<X<1 

For Q(k + 1; x) not identical to P(x), the following relation holds: 

E(Q(k+l); X(k + 1))<E(P; [- 1, l])<M(k) 

Since X(k + 1) is a subset of [ - 1, Ij, and Q(k + 1) is the polynomial of best approximation 
to f(x) on X(k + 1), we cannot have E(Q(k + 1); X(k + 1)) >E(P; f- 1, 1J ), for this would mean 
P(x) is a better approximation to f(x) on X(k + 1), which is a contradiction. 

It is also seen that we cannot have M(k) < E(P; [ - 1, 1 j ) since if we did then Q(k + 1) would 
be   a   better   approximation   to   f(x)   on    [- 1, 1 1 than P(x), which is again a contradiction. 

We now show that the process described above will indeed result in convergence of the 
sequence E(Q(k; x); X(k)), k = 0, 1, 2, ... to the number E(P; [- 1. l] )• 

We can find a X such that 0<X<1 and 

1. E(Q(k + 1; x); X(k + 1)) - m(k) >(1 - X) (M(k) - m(k)) 

Since M(k) >E(P; [- 1. l] )>m(k), we also have 

2, E(Q(k + 1; x); X(k + 1)) - m(k) > (1 - X ) (E(P; [- 1, l) ) - m(k)) 
and m(k + 1) > E(Q(k + 1; x); X(k + 1)) further implies 

11 
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3. m(k + 1) -m(k) > (1 - X) (E(P;  [- 1. 1 ]) - m(k)) 

Subtracting both sides of (3) from E(P;   [- 1, 1J ) - m(k), we obtain 

4. E(P; [- 1, l] )- m(k + l) <X(E(P; [- 1. l] )- m(k)) 

But 4. implies that the quantity E(P; [- 1, 1 J ) - m(k), k = 0, 1, 2 will tend to zero 
at least as fast as the terms of a diminishing geometric progression upon repeated applications 
of the algorithm. Since E(Q(k + 1; x); X(k !))> m(k), the quantity E(P; f- 1, 1J ) -E(Q(k + 1; x); 
X(k +1)) will likewise tend to zero at the same rate. 

Note also that by 1. we have 

f          1                                  E(Q(k + l;x); X(k + 1))- m(k) 
M(k) - E(P;   [- 1. ij )    M(k) - m(k) <  

(1-X) 

E(P;  [- 1, 1 ])- m(k) 

(1-X) 

i.e.. 

-E^Ullx^-1^'-1""* M(k) 
(1-X) 

therefore, lim M(k) = E(P;   f- 1, l] ). 
k—oo L J 

The search for the set X(k + 1) having obtained X(k) is done in the following manner: Start 
at a point x(k, i) of X(k) and using a step size h we find the direction of increasing 
I Q(k; x) - f(x) | and proceed in this direction. The search continues until there are two points 
straddling the required peak of the curve Q(k; x) - f(x). The point x(k + 1; i) is then chosen as 
the extreme of a quadratic interpolation whichuses the last three points. If the end points -1 and 1 
are included inX(k), we restrict the search at these points to one direction only, i.e., to the inside 
of [-1, l]. 

There is an important result of a paper by Murnaghan and Wrench 'Reference 18) which 
relates to this search for a set X(k + 1). They found that the partial derivative of a coefficient 
of P(x) with respect to an interior point of the critical set corresponding to P(x) is zero, and, 
therefore, this optimal critical set need not be determined with extreme accuracy. This result 
is valid only if f(x) is differentiable as well as continuous. 

12 
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SECTION IV 

UPPER BOUND FOR THE MINIMAX ERROR 

Let P(x) be the polynomial of degree less than or equal to n of best approximation to a con- 
tinuous function f(x) defined on [- 1, 11. 

Let 

E" - max I f(x) - P(x) I for x in [- 1, l] . 

We will call E* the minimax error for P(x) on    -1, 1  . 

Let f(x) have a Fourier-Chebycheff expansion 

oo 
T(x)  =  0.5a0 + £   akTk (x) 

k=l 

where T. (x) is the Chebycheff polynomial of degree k. 

Theorem   (2):    Let <a.   I be the subsequence of all non-zero coefficients of T(x). If for all 

k >n we have 

la.       /a.  I < X < 1 
^ +1   He 

then for k>n we have E < la.       I   -    , where n is the degree of P(x). 
^ + 1 1 ' x 

oo 
Proof;     If for  all  k>n we  have   I a.        /a. | < X < 1 then £       I a,   |<oo. Hence for k>n 

^ +1    ^ k=l 

00 00 

E'<I    a.T. {x)< I        la,!, 
i=l     J   J 1=1 J 
J   n+l '   n+l 

since max T.(x) = 1 on    - 1, 1  . 

But 

oo 
2, Z       la l< la.      1(1 +X + X>- • ) =la.       I -r-r 

i=,n+l n+l n   ' 

This completes the proof. 

13 
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SECTION V 

NUMERICAL RESULTS 

All calculations were performed on an IBM 7094 Digital Computer. Twenty-seven bit accu- 
racy was used throughout. The linear programming code is that of R. J. Glasen of the RAND 
Corporation.   The   subroutine   name  is   RSMSUB,   with  SHARE   Distribution Number 1281. 

For most functions it was found that the sample independent variable set need i.ot contain 
more than n+2 points (where n is the degree of the approximating polynomial), but in some 
cases it was found advantageous to use a larger sample as this shortened the search for the 
critical set considerably. For all the cases considered the end points of the interval over which 
the approximation was obtained were included in the critical set. 

We can in fact show that if f(x) has at least (n + 1) derivatives and if T '(x) does not change 
signs in (a, b|, then the end points a and b will always be included in the critical set. 

Let X =/x., x2, . . . , x „I be the critical set of sample points. Let D(x) = f(x) -P(x), where 

f(x) is the function we are to approximate, and P(x) is the polynomial of degree less than or 

equal  to  n which best approximates f(x) in the interval I a, bl. Let P(x) = c0+c1x+. . .+c x . 

We know that at the interior points of X the derivative of D(x) must be zero, i.e., 

D'fr.) = 0 i = 2, 3, . . . . n +1 

In order to be in the set X, the points x, and x      „ must either be end points of the interval, 

so that x, = a and x      0 = b, or must be such that D'fc,) = D'fx      0) = 0. We show that given 1 n+2 vl/n+2' & 

the above conditions the latter cannot be true. 

We know that D'fr) is equal to zero at least n times in   a, b . Repeated applications of Rolle's 

theorem show that D^ '(x) is equal to zero at least once in  a, b , Since P(x) is of degree at 

most n we have D^     '(x) = r     '(x). Hence, if T     '(x) does not change sign in  a, b , neither 

will D^     '(x). But then D^ '(x) is either monotonic increasing or decreasing, and hence must 

equal zero exactly once. Then D^     '(x) will be ?;ero at most twice in [a, bj, and continuing in 
this  way,   we  see   that  D'(x)  will equal zero at most n times, and, by what was said above, 
exactly n times. Then D'fc) cannot be equal to zero for x, and x      2; hence, we must have 
x. = a and x      0 = b. 1 n+2 

This result is useful since if f(x) satisfies the required conditions on | a, bj, then we can 
include a and b in our critical set from the start. 

Example 1;    We compute the polynomial P(x) of degree less than or equal to 3 which is the best 
approximation to a function f(x) given as a set of ordered pairs (x., f(x.)). We use as a sample 

set X, 11 equally spaced points ranging fromO to 1. The values f(x.) are taken to be the values 

of the function sin(x) on the sample set X. The Fortran Library subroutine was used to obtain 
the values f. = f(x.) = sin(x.). i       x r r 

14 
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2 3 
P(X)   =   CQ   +   CjX   +   CgX      +   CgX 

= -0.0001472 

= 1.00444 

c2      = -0.0193834 

c3      = -0.143585 

D = max    f(x.) - P(x.)   = 0.0001472 
l<i<ll      1 1 

X. 
1 

«Xj) 

0.0 0.0 

0.1 0.0998334 

0.2 0.198669 

0.3 0.295520 

0.4 0.389418 

0.5 0.479426 

0.6 0.564642 

0.7 0,644218 

0.8 0.717356 

0.9 0.783327 

1.0 0.841471 

Example 2 

Function 

Range 

Approximation P(x) 

Number of Iterations 

E(Q(2; x); X(2)) 

C0 

Cl 

PCx.) 

-0.0001472 

0.0999592 

0.198817 

0.295563 

0,389338 

0.479278 

0.564524 

0.644213 

0.717483 

0,784474 

0,841324 

E(x.) = f(x.) -PCx.) 

0.0001472 

-0.0001258 

-0.0001472 

-0.0000429 

0.0000808 

0,0001472 

0,0001187 

0,0000051 

-0.0001271 

-0.0001472 

0.0001472 

l/ySTrr /    exp(-0.5t2)dt 
-oo 

4, 4 

C0   +   C,X   +   CgX      +   CgX 

0.0645903 

0.5 

0.288445 

0.0 

-0.011225 
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e(x) 

Figure 1.    Error Function for Example 1 

e(x) 

Figure 2.    Error Function for Example 2 
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The algorithm was terminated when 

I E(Q(k + 1; x); X(k + 1)) -E(Q(k; x); X(k)) I < 0.0000009, k = 0, 1  

This took place at k = 1 for this example. The set X(0) was as follows: 

X(0) = {x. : Xj = -4, x. + j = x. + .4, i = 1, . . . , 20| 

The critical set for P(x) was (±4, ±2.895, ±0.92736). 

Example 3 

Function 

Range 

Approximation P(x) 

Number of Iterations 

E(Q(2; x); X(2)) 

0 

ln(x + 1) 

[0.X] 
2 

CQ + C, X + CgX     + CqX     + C.X     + CgX 

0.00000867 

0.00000867 

0.9993 

■0.490747 

0.286714 

-0.133226 

0.0311055 

The initial sample points were (0.0, 0.08, 0.28, 0.5, 0.7, 0.9, 1.0). The critical set for P(x) 
was (0.0, 0.060052, 0.234368, 0.484917, 0.73004, 0.926248, 1.0). The algorithm was terminated 
when the difference between two successive errors was less than 0.0000001. 
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Example 4 

Function 

Range 

Approximation P(x) 

Number of Iterations 

E(Q(2; x); X(2)) 

:x) =   o -1 < x < 0 
= 0.5 x = 0 
=      1 0<x <  1 

[-1. 1] 
2 3 4 5 

c0 + c,x + c2x    + C„X    + C.X    + C-X 

0.5 

0.5 

'1 4.25717 

0.0 

•12.641 

0.0 

9.38384 

The algorithm was started with 21 equally spaced points in [-1, l], with the end points in- 
cluded. The search for the critical set required a step size of 0.0001. The critical set was 
(±1.0, ±0.8216, ±0.3673, ±0.00000001). In this case the maximum error took place at eight points 
rather than the expected seven. The proximity of two of the critical points makes the search 
for the critical set very difficult and extreme care is required. 
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e(x) 

Figure 3.     Error Function for Example 3 

e(x) 

Figure 4.     Error Function for Example 4 
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APPENDIX 

COMPUTER PROGRAM 

The program was coded entirely in the FORTRAN IV Programming Language. It consists of 
four main subroutines and five minor ones. Their functions are defined below: 

RELAX - serves as an executive routine to the whole program and develops certain 
parameters necessary tor the rest of the program. 

APPROX - computes the polynomial of best approximation to the given function over a 
discrete point set. 

SEARCH - determines the critical points and the direction in which to search for a new 
sample set. The search continues until three points straddle the required peak 
of the error curve. These three points and the corresponding values of the in- 
dependent variable are used in PEAK. 

PEAK - computes new critical point using the Lagrangian formula for a second degree 
interpolating polynomial. The three ordered pairs computed in SEARCH are 
used as data, and the derivative of the resulting polynomial is solved for its 
zero value to obtain the required point. 

SIMPLX     - used by APPROX to solve the linear program. 

SETUP       - used by APPROX to arrange the necessary input matrix to SIMPLX. 

APPFN       - used by APPROX to compute x]., i = 1, . . . , m 

j = 0 n 

FF - computes values f(x.) of given function. 

ERRFN       - computes f(x.) -P(x.). where P is the approximating polynomial. 

Limitations on the program are (1) a maximum of 201 sample points and (2) a maximum de- 
gree of 9 on the approximating polynomials. These limitations are easily extended if desired. 

The calling sequence to the program is as follows: 

CALL RELAX (C, D, M, N, X, Y, ERRJ, MAXKT, DELTA, TOL, DTOL) 

Output Parameters; 

C = array of coefficients of desired polynomial 

D = value of maximum error 

ERRJ = error code 

= 0, no error 

= -1, approximation not found after allowable number of iterations 

= -2 error did not increase on succeeding iteration 

21 
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Input Parameters; 

M = number of points in sample set 

N  =n+l, where n is degree of polynomial 

X  = array of independent variable 

Y = array of dependent variables f(x.) 

MAXKT = maximum number of iterations allowed 

DELTA  = step size to be used in search for succeeding critical sets 

TOL       = minimum allowable value of delta 

DTOL     = routine terminates when absolute difference between succeeding errors is 
less than DTOL 

22 
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