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ABSTRACT

The problem of an ablating solid of limited extent under an applied
non-uniform heat input is solved numerically, and the solution is com-

pared in certain limiting cases with results from the exact analytical
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depth of hole made in materials by a laser beam is explored.
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1. INTRODUCTION

*
The problem of an ablating solid of limited extent under an

applied non-uniform heat input is solved numerically, and the solution

is compared in certain limiti
analytical equations. Further, the usefulness of this model in predict-

ing the depth of hole made in materials by a laser beam is explored.

Problems similar to the one considered have been formulated by
1 =8%* 3 . .
numerous investigators, and some particular solutions exist. A
- " . 1
ok 0 r this problem has been given by Landau  for the

numerical solution fo i
special case of a constant heat input to a semi-infinite solid. More

recently Ready reporting the effects of the absorption of laser

(18}

.
ian mndeal far
100 HOGCL 10X the

Oon On I

5
case of a semi-infinite solid under a non-uniform heat input; but, he

gave no details of the solution. 1In view of the very restrictive
(specialized) treatment which this problem has received in the litera-

ture and because of its possible application to certain laser effects,

we find sufficient justification in its reconsideration.

A

A sla

1

T R T T
0 Ol UILCKIIESDS

becomes mathematically one=dimensional. The cther end ¢of the slab is

insulated.

* 1.1
Al L . _ ~ ~ e B I . 1 7 P N < . ;s @ - . .
Ablation © enerally associated with vaporization and sublimation,
but the meaning has been extended to include liquefaction in which
the liquid is removed as it is formed.

* %
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Given a pulse of sufficient power density and a long enough time,
*

the surface of the slab will reach the phase-change temperature. The

material which has been transformed is removed immediately and the sur-

face recedes into the solid. We are interested primarily in determining

the thickness of material transformed with time.

We make the following definitions:

X R O 0

(

T_&(x)

[}

specific heat of material at constant pressure, (cal/g°C)

thermal conductiv1ty of material, (cal/em °C sec)

. [T
thermel diffusivity of material, equal to K/cp, (cm™/sec)
latent heat of transformation of material, (cal/g)

initial temperature dlstrlbutlon of materlal, ( C); for
)
7/

heat input as a function of time where H is a given constant,
; o .
(cal/em™sec); f£(t) = 1 for a uniform heat input

initial thickness of material, (cm)

The following equations describe the process:

T,o=(T y(t) £x<B, t>0, (2.1)
T(x,0) = Tog(x) <T, O0sx<B, (2.2)
T, (B,t) = 0, (2.3)

BE(t) = - XL, y(t) =0, (2.4)

Whether the phase-change temperature is that for melting or vaporiza-
tion will depend on the incident power dbnStty At low densities onZy
liquid will appear; whereas, at high densities the liquid formed prﬁor
to vaporization can be ignored because the latent heat of melting is
much smaller than that of vaporization.

8



HE(t) = - KT, + oL =25 (2.5)
) 50 for M(y(t),t) = T (2.6)
d‘l_’, or y s - L J ¢
2%%£l= = 0 for T(y(t),t) < T - (2.7)

Equation (2.1) may be recognized as the genmeral parabolic relation
of heat flow. The initial temperature distribution of the slab is given

by (2.2), while (2.3) expresses the condition of no heat losses from the

a ™ P

backface. Egus

g
rate of heat flow into the solid plus the rate of heat absorbed in the
f

d
transformation. T. 1is evaluated at the position of the boundary y(t).
+

is reached there is no boundary
motion, (2.7), so that (2.5) reduces to (2.4). Equation (2.6) states
that when the surface reaches the temperature TL there may or may not
motion; this will depend on whether the energy required

for the phase-change is or is not absorbed at the surface.

The equations can be manipulated more readily if the following

transformations are made:

v(x,t) = T(x,t)

3
1}

Equations (2.1) through (2.7) then become
Vo= Ve y(t) <x<B, T>0 , (2.8)
v(x,0) = v.elx) <1l 0<x<B> (2.9)

9



VX(B,T) =0 , (2.10)

pf(t) = - v, y(t) =0, (2.11)
PN r'hr("r\

pr(T) = - v + N 2=~ (2.12)

R-\r{rr\ PR N , N

AL > 0 for v(y(r),T) =1, (2.13)

QESLI =0 for v(y(r),T) <1- (2.14)

3. FINITE DIFFERENCES

| Py e —m L Acr  ~ . 2 A

We denote o 1o be the value of v at the poimt 1 &x at time j &

2
and v, the corresponding value at time (j+l) Atr. We further define

s 1
i, 1
according to practice h = Ax, k = &1 and r = Eg . If the Crank-
h

£
Nicholson differencing scheme~ is selected, the time derivative can be

spproximated by

U5 NS Y N -l 5 1)
v_ = + : .
T £ X, (3.1)
and the second order space derivative by
b -7 ~ 7 ~
= = Vo~ 2
Vix T 2h2vfﬁvi+l,3+l METS U VAN IS By iy
(3.2)
e "1 (o 2"'\
N
N lmdy JTA L=l [ .

where O [ ] is the truncation error. Substituting (3.1) and (3.2) in

i . e
(2.8), introducing r = 35 and rearranging we obtain
h
- Ly +
2 "1-l,5+1
(3.3)

Ly
2 Vi-1,j



Equation (3.3) does not hold at the mathematical surface 1 = O since
no account has been taken of the energy input to the material. This is
dealt with by expanding v, ; in a Taylor series about the point (O, j+1)

J

in both the space and the time directions. Thus

'-\V—i A}c (1/2) ra2-v"1 (A)c. 2
Vi1 T Vo, t |5%0, 501 &0 L—2lo, 01 (&%)
{z NI\
\J7)
+ 0 {(Ax)5 1 .
- ra_‘L_\ Amr 1 rll\;—\g —] . .
VO’J_ = vO,j+l LBTJO,j{L a7’ T L\L_n / [ (3.5)

2 2, . R R
If [B v/3x JO,j+l is replaced by [av/ar]O’j+l in accordance with (2.8),

then from (3.4), (3.5), and (2.11) the resulting equation becomes

(1+2r)v - 2rv

0, 1 1,17

0,3 + 2rhpfyy - (3.6)

(3.6) applies up to the time that the phase-change temperature

is reached, i.e., so long asy(r) = O.
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boundary no longer remains stationary. To avoid ambiguity in the use of
the space coordinate i, a new coordinate w is defined such that the
boundary will always lie at w or between W and w+ 1. At the original

s 554 N ms

surface w = O. The index w, an integer, depends upon time, hence we

denote this dependence by w.. Initially, that is, at j= 0, Vo = 0;
0

however, at later times <SW, SW, 4 and for each j the boundary lies
J J' -
between w, and W During boundary motion the temperature of the

3 "j+li
surface according to (2.13) is a known constant so that the first
unknown temperature lies at the grid point w + 1 and is designated

v, _ .. We expand about this point in both the time and space
w+l, 1 * =

directions,

rav
V. = V

Q ) \ Ao
3+l = Vsl gl T Lexwel, el VOO

~
W
.
—~
~’

2
+ (1/2) f§—¥ﬂ
L. 2]

@)l o) |,
3w+, j+1 - -

11
oL



9 2 |
Voiq s = Vo9 a9 ~ ruT.—l...1 -‘._1,1AT + 0 |V(AT) Lo (z Q)
1‘_L,,J W‘f‘.l_,d‘f"_L ',O‘-JW""L,J‘-L . \)-U}
v = v + QX
w2, JF1 w+l, J+1 oxJw+l, j+1
(3.9)

S ] TNt a4+ +1.
C U > Db = L. Duv L LI

ce Ywes, 1
.9) are added after (3.9) has been multiplied through by

d (3
2.8) and (3.8) are substituted in that order in the resulting

7 ~, g ~
Q?'Sj+1)(\2r * l-sj+l\ V1, 41 T 2r<\l‘sj+13 Vwr2, 31 T

( J+£\<? s w'+l,,j+ er -

For clarity the subscript j+1 has been attached to s to show the

—~

N
°
=
(©]

~—

exact time at which this quantity is evaluated.

Next the position of the boundary y(T) must be determined. From
4+l rrmanalddnes AL aniaad An 34+ I8 Alaow +hat 1y matsr ha Avewvacand S 4 oo
viic HLCLCU.J.LI5 \.L.LD\.U.DDJ.UJJ LU LD \.J—C @l vilav y J VYT TAPILITOOTU 1I. ULCI]

of an integer w and a fraction s by

[
B
Qu

yyl=<y$d-rs#£>h . (3.11p)

Subtracting (3.1la) from (3.11b) we obtain

/
|
—
\N
.
N
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Since Y wj and s, are zero at the start of the transformation, there
2

is no difficulty in keeping track of the boundary for subsequent times

provided Ay can be calculated. This may be done from (2.12) which has

the finite difference form

& 05 spe |/, \
k Lix Ol (3.13)
Wwhere v the approximation of the space derivative v_ at the surface

approximation as

= ["(5‘283+1, Vierl, +1

+ h-(E cs ) . C2 1S
\ 1/ Va2, 341 (3.11)

-0 - J+l) Vw3, J+l‘ /2n -

Equation (3.13) can be arranged more conveniently in terms of r giving

&y e, ] (3.15)

One is confronted in (3.15) with
~ A\ 77 -
which are not known and which themselves cannot be calculated without

knowing s To circumvent this problem an iterative procedure must be

F1°
used.

Finally, we note that at the back surface (3.3) must be modified

to take into account the boundary condition (2.10). Formally, this is
*

done by extending the mesh one unlt past the back face, where

latter is indexed by i = M= B/Ax. The existence of a zero temperature

gradient requires that v

1=

1= Y which reduces (3.3) at the back face
Vi L

+A
wO

Y A T
+ L+

M1, 31

-

Creating a false boundary.



L. CALCULATING PROCEDURE

L.1 General

The difference equations of Section 3 from which the temperatures

are computed have the tridiagonal appearance (for each mesh row)

I
ot

Byvo * Cov1 = 4o

+ C v, =4 (4.1)

™
@
+
jos]
<
1
o
-

with zeros everywhere except on the main diagonal and on the two

Q
diagonals parallel to it on either side.” In (4.1) all known
quantities have been lumped in d thereby eliminating the necessity of

Mot igh 8 O : 75 ms s .
LOToUgn & ydusSsian e.iminatiodn process

ct

hea

. D et i AP 2
1€ Lurvier ustc 0L Jo il

system can be solved explicity for the unknown v's. The method is

10 . . . . .
credited to L. H. Thomas, but received wide attention in published
form in an article by Bruce, Peaceman, Rachford, and Riceill Expressed
, - . 11 . . AR
in a less cumbersome way the system {(4.1) oecones

Bv.+ C.wv, =d. , (a)

e
<
+

_,Uj

s
+
a
<
I
Q

1<isM-1, (4.2)(v)

Ayyer * Bn = G v (c)

l._l
-



st
where the unknown temperatures corresponding to the (J1)°" step are

given vy

Y = Uy
v, = q, - bV, . 0O<isM-1,
with
a
0
9% = B
0 (L z)
\-I'IJI
— di-Aiqi'l i<i<M
%G =5 A D,
i“ii-1
b o0
0~ Ba i
() :
v /
b, =— /1 <i<M-1.
i B, - A'yi-l

For convenience the calculations are carried out in two parts -
Part 1 covering up to the timﬂfthe phase-change temperature is reached
and Part II beyond this point. In Part I (4.2) represents the system
(3.6), (3.3) and (3%.16); in fﬁrt II (4.2) represents the system (3.10),
(3.3) and (3.16) with (3.15) 4nd (3.12) being used in locating the
boundary. Also in Part II, Qﬁ.?a) is more appropriately indexed as

Bw+lvv+l * CiVie = Gy

with 1 being greater than &r equal to w+2 in the remaining equations.

!

L.2 Detailed Procedure

Part I - Before Transformation
Using Equations (5v3)z (3.6) and (3.16) computation continues until
It

0 < L.

for some j= ', v. .+ 4 21 and v
dJd J O, '/ﬂ_ O?J

34



To establish an accurate time for the beginning of the phase-change
and as a baseline for Part II, the (j'+1)st = Jth row is re-determined

using a smaller time step k' given by

s =uy ~N
4 et XY
= | 2
k '\uo ’ - u 7 ) k 4
sd +1 C,J
or equivalently
1l -u. .s
'] / O)i w
r = \ r .
11

o 371 T Yo, 5

The time of the start of transformation is simply

Part II - Boundary Begins to Move

As first step in Part II the boundary must be located. Since the

temperatures at time J + 1 are yet to be determined, (3.15) cannot be
used directly. We, therefore, approximate Ay by
0
Oy
J+l;—:—£l_/-l.5+2‘v' - 5y \.+(“-pf —] . PN
T oN L\ 1,J 2,/ T ANE L /] (k.4)
The first term inside the brackets may be recognized as the three-
point Lagrange interpolation expanded in the neighborhood of the moving

boundary with w = s = 0. Mul*tiplying the brackets by 1/2 ensures the
Ay is not over estimated. In the absence of any boundary displacement

at time J the initial estimate of the position of the boundary is

0 0
Y31 TN q1 (k.5)
where the superscript designates the number of the iteration n, taken

to be zero initially.

16



0]

Further y Jl

is decomposed into its whole and fractional components,

point (3

.10)
V)

J

It should be emphasized that temperatures Vig are not replaced by

2
until the iteration for the (J+1) step has been completed.

0

Using s~ and the appropriate Vs is a new estimate of the

J+1 s J+1 a
boundary position is obtained from (3.15). This then becomes AV*J+1

As an improved estimate of the boundary

position the n and (n+l) iterative values of Y. 8re combined and & new

S 11 and Wy 8Te found,

0 1
y +y

J+1 Jl 1 1
2 = h\¥ F1 78 J+J> : (4.7)

Then the system (4.2) is again solved and the process is repeated a
fixed number of times or until some test is satisfied. We have chosen
the test that the absolute value of the ratio of the difference between
two successive values of y to their average be less than some constant ¢
and write

n -1
I -y, S ®

"+ ) /2

’ (4.8)

where 0 < ¢ << 1.

W ¥ -

For an approximation to y in the succeeding time step J+ 2, a

linear change of the boundary with time is assumed,

Y g2 = V1 T Vp1 s \Fe3)

7



where Y1 and AyJ+1 represent values of the quantities obtained in the
final iteration of the (J¥l)st step. The above procedure commencing
with (4.6) is then repeated. Computation continues until T 271 __ ,

where T is the duration of the input pulse.

5. ERROR ANALYSIS

LY n « a 11

With assurance of stability for independent h's and k's, error
analysis is one of the prime considerations of a numerical method.

This subject is currently under extensive study, and most discussions

Larn a4 Mrer~ %1 a v
ive nacurc. LWO malin sguxyces

and (h\ the ro

, and und -
finite number of decimal places in the arithmetic operations and due to
the fact that the iterative solution is only continued until there is

no change out to a certain decimal place. These errors are oppositely
influenced by the interval size h. Decreasing h decreases the trunca-

tion error but in general increases the round-off error.

An example will best serve to check t

solution. For a semi-infinite slab and a constant heat input the time

1. . 12
> > 101i. 1nese

t.LuL
Table I using physical data for aluminum undergoing a phase-change at
the melting temperature. It is readily seen that with decreasing h

a ocong
at COnsS

roximate time that the surface reaches the melting
temperature more nearly approaches that of the exact solution. The

error in the approximate solution is reduced by the square of the factor
by which h is decreased. Thus if h is diminished by a factor of 8
in going from h = .0l to h = .00

of 6kL.

18



Time of the start of melting for a semi-infinite solid as determined

o +1

. . .
by (a) the exac ical soluticn and (b) the approximate solution

-

of this paper for varying h and constant r = O.4. Based on physical
data of AL

Exact Solution Approximate Solution
time, sec time, sec h % Error
.2082 x 1077 2475 x 1077 .01 19
-z

.2180 x 1077 .005 4.7
.2107 x 1077 .0025 1.2
ONR] ~ -m"3 nN1o5 Z,
e LU A A\ IV\J.L-I—/ . J

*

See Reference 12.

* %

K= .480, ¢ = .214, p = 2.70, L = 94.6, T = 20, T, = 660,
N



In Figure 1 the results of Table I are extended into Part II involv-
ing the moving boundary. Here, however, it is no longer possi

culate an exact solution and the approximate results must be compared to

the steady state solution (1) given by

gt -t )

N
= .1
’ DEL e <ﬁl - T J ’ -

where in addition to the quantities already defined t is the duration

A dlem s mm A+ : +1. 4+ 3 3 A 4+ W v
of the pulse and tp is the time reguired to reach the transformation
temperature.

Equation (5.1) gives an upper limit to the penetration of the
boundary, which in the time t = 2 x lO-2 sec is 0.0725 cm. Even for
the least favorable choice in h the solution is reasonable. Except in
the very short time after transformation has begun, the boundary motion

is essentially linear with time.

It is not clear from the preceding discussion how one, short of
trial and error, goes about msking an appropriate selection of h. Time

between the two. Rather than select n first it is more meaningful to
*
choose k first and then find the desired h by h = (k/r)l/2 This is

necessary because any choice in h no matter how small might not be
applicable due to the short duration of an input pulse. For & nano-
second long input pulse as encountered in the g-switched laser mode an
h of say .00125 would yield a k of 0.625 x lO-6 for r = 0.4 which
exceeds the entire length of the pulse. In choosing a k one may be
guided by a rule of thumb in which the total time of the pulse is
divided into about one thousand kfs i.e., max j = 1000. Then a back
calculation can be made tc find an approximate h which can also be

divided into B to give some whole number M.
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0025, .00125.
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When the input energies are very large as in the case of the laser
the time taken for the material to reach the transformation temperature
is much shorter (sometimes by a factor of a thousand of more) than the
duration of the entire pulse. t is, therefore, necessary to use
different grid sizes for Parts I and II. If a single grid size is
chosen say on the basis of the high resolution required in Part I the

t

ired for Part TT would bhecome n i
reda I0r rart 1. Would Decome P 11

ve. If
on the other hand, the choice of grid sizes is made on the basis of the
total pulse, the approximation of the time of the phase-change will
contain a ridiculously large error. A rough idea for the onset time of
the transformation may be obtained from an analytical sclution of the
heat equation. On this basis a reasonable selection of k and hence h
may be made for Part I. The h selected in this manner may be so fine,
however, that for the particular thickness of solid B, M will become an
exceedingly large number. Insofar as the heat flow is concerned, only
a small fraction of the total M points in the solid may register any
change in temperature in the short times considered, the solid behaving
as semi-infinite beyond a certain depth. Thus by either reducing B or
equivalently reducing M by some arbitrary factor the times for calcula-
tion in Part I do not become prohibitive. When Part II is entered a

much larger y of error

temperature may be printed as part of the output at the ends of

ot ot

Parts I and II. If Vi is the same as the initial tenperature of the
h h

anlid +hen the glah ac remained semi=infinite throuchou The Tength nf
OU L ‘il Ll VLl kA PRl ] 4 LA LLiNo L [SAPIvE & Al LAlL VNS Vidd “611\./“‘-’ Vido P S g ‘.JEUJL A\
the calculations.

6. AN EXAMPLE FOR LASER-INDUCED DAMAGE

In suggesting that the present problem may apply to laser-induced

g
terials we are cognizant of the pitfalls involved. The
interaction of the laser with the target is a complex phenomenon.
Several elements contribute to this complexity. It is not certain

whether the plasma created in front of the target remains transparent

£ 4+l i) oo Td mesr bha 0 oanfa
i Tiae puise. 4T Y D& & sale

D

ion O



ct
jag
[
&

assumption to make at low incident power densities but not a

e 1

incident power densities such as those delivered by t

Ta Ve on
e J.1Lasc

g-switched mode. In addition to the plasma the target emits globules
of transformed material which may further act to absorb the incoming

JRTEL P :

beam. Another important considerati

on is
by the target which may be a strong function of the depth of hole, i.e.,
in the initial stages of heating and penetration highly reflecting
13

4 mnas T o ol
nateriaLs sucn &

=
[
4]

as aluminum ma; h
incoming radiation, while at a later stage or as the hole deepens, the
entire incoming beam may be absorbed by being trapped in the hole. The
model, furthermore, makes no allowance for the possibility of superheating
or for the co-presence of vapor and liquid. Any attempt, however, to
construct a mathematical model of laser damage which takes all the pre-
ceding factors into account would prove an enormously difficult task
because a clear understanding of t
lacking.

In Table II and Figure 2, data are shown comparing the depth of hole

predicted to that actually observed in Al of semi-infinite thickness.

Case 1 in Table II is for a constant input energy, whereas Case 2 if for

he varis hown

T2 milee o a
1€ PpuLsSe snowii a

ct

+hea +
v

A AP T
LT VU Vi I

. .
cure 2 Mha TAwar nArt nf
1guUre c. 1€ 10weEl POI clon O1

+
1%

Figure 2 is a plot of the position of the boundary with time for this
variable pulse with the maximum y being the entry in Table II.

In cases 1 and 2 the transformation is assumed to occur at the
temperature of vaporization, the possibility of melting being totally

ot a

1.

8

3

ignored. Ignoring melting when vaporization is involved

ignored. Ignoring melting w
serious error since the heat of vaporization and meliting are so vastly
different, the former being more than twenty-seven fold greater than
the latter in Al.

The discrepancy, assuming full absorption of the energy of the

beam by the target, is quite large. A second calculation has been

ergy o
of the incident pulse is reflected. Specimens of Al treated with #300

11 Yot e ALod o1
%741 0&BS1S TAN&tT mucn

(0]

done for each case at about half of this er:
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TABLE IT
DEPTH OF HOLE PRODUCED IN Al BY LASER PULSE

Case Description of Pulse
Power Density Duration
joules/cm“-sec sec
1 8.33% x 10° 6 x 107
416 x 10° .6 x 107
2 1 x 107 (peak)+ W x 1077
Q . -
.5 x 107 Liy x 10 7
*
Cppn Pofovionnar 4
vVee I.GJGJE’G(/E Te
See Figure 2 for pulse shape.
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FIG.2-BOUNDARY MOTION y AS A FUNCTION OF THE TIME t FOR

INPUT PULSE Hf(t) (SHOWN ON TOP GRAPH). MATERIAL
IS Al AT VAPOR TEMPERATURE.
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grit emery paper have been found in this laboratory to reflect up to 60
per cent of the incident light at room temperature. While large

reflectance is a reasonable assumption during the heating-up, it is not
known whether it will remain at or near the initial level for the entire

Y T n

i RPN PR o ) L amsaY = A 2 1.
lengen Ol uille pulse. b

e reement with the experiment results when
making the assumption of a constant reflectance throughout the pulse

duration.

T. CONCLUSIONS

hao hean iiaa A ciimnncaPisl Ve dm mTas
nas O€€n Usea SsSullesSsiuily TO 504V

[e¥]

the heat conduction problem for an ablating solid. The method intro-

duces simplicity and accuracy in the calculations and allows for

urther, the solution is valid for

§ VLT SVavava

variable input energy and sample thickness, features which make it

{0

especially suitable in applications related to the laser damage of

materials.

In the example given for laser-induced damage to Aluminum we have
purposely avoided manipulating our input energies etc., so as to obtain
a better agreement with experimental observations. Published data of
laser damage to targets is scarce and incomplete. Information concern=-

ing surface preparation, the spread in the measured input energies and

the same samples. In certain cases one cannot be certain whether a

semi-infinite slab was used as reported or if the cond

[N
ct
-
o
B
@3]
y
o]
H
3
[¢)
1

ed. From the 14 -
ea om tne l1inmt Xpe

mental observations considered, it is difficult to determine how widely

the proposed model can be applied to predicting laser damage to targets.

I wish tco thank Mr. Ralph Shear for his invaluable suggestions
throughout the early stages of this project and Mrs. Alice Brown for

ter program.

JAMES G. FALLER
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