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ABSTRAC'r 

The problem of an ablating solid of limited extent under an applied 

non-uniform heat input is solved numerically, and the solution is com

pared in certain limiting cases with results from the exact analytical 

equations. Further, the usefulness of this model in predicting the 

depth of hole made in materials by a laser beam is explored. 
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1. INTRODUCTION 

* The problem of an ablating solid of limited extent under an 

applied non-uniform heat input is solved numerically, and the solution 

is compared in certain limiting cases with results from the exact 

analytical equations. Further, the usefulness of this model in predict

ing the depth of hole made in materials by a laser beam is explored. 

Problems similar to the one considered have been formulated by 
1-8** 

numerous investigators, and some particular solutions exist. A 

numerical solution for this problem has been given by Landau1 for the 

special case of a constant heat input to a semi-infinite solid. More 
4 

recently Ready reporting the effects of the absorption of laser 

radiation on metals introduced results from the ablation model for the 

case of a semi-infinite solid under a non-uniform heat input; but, he 

gave no details of the solution. In view of the very restrictive 

(specialized) treatment which this problem has received in the litera

ture and because of its possible application to certain laser effects, 

we find sufficient justification in its reconsideration. 

2. STATEMENT OF THE PROBLEM 

A slab of thickness B initiallv at temnerature m ~1 ~' ~~ k~n+~~ t1 or .LO!:S\.h.J .LO J..I.CO.IJCU. 

on one end with energy Hf(t) over an area with dimensions large enough 

in relation to the final depth of heat penetration that heat flow 

becomes mathematically one-dimensional. The other end of the slab is 

insulated. 

* 

** 

Ablation ~s generally associated with vaporization and suo~~ma&~on~ 
but the meaning has been extended to include liquefaction in ~hich 
the liquid is ~moved as it is formed. 

Supepse!'ipt numbeps dEnote TJefepenaes ~hieh may be found on page 2?. 
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Given a pulse of sufficient power density and a long enough time, 
* the surface of the slab will reach the phase-change temperature. The 

material which has been transformed is removed immediate~ and the sur

face recedes into the solid. We are interested primarily in deterw~ning 

the thickness of material transformed with time. 

* 

We make the following definitions: 

c = specific heat of material at constant pressure, (cal/g°C) 

p = density of material, (g/cm3) 

K = thermal conductivity of material, (cal/cm °C sec) 

K = thermal diffusivity of material, equal to K/cp, {cm
2
/sec) 

L = latent heat of transformation of material, (cal/g) 

T g(x) 
0 

T 
L 

= initial temperature distribution of material, (°C); for 
g(x) = 1 the temperature is initially uniform throughout 
the material. 

transfonn.ation tem11erature of material, 

y(t) thickness of material transformed, (em) 

Hf(t) = heat input as a function of time where H is a given constant, 
. . I) 

(cal/cm'-sec); f(t) = 1 for a nniform heat input 

B = initial thickness of material, (em) 

The following equations describe the process: 

ITI .rm y(t) :;; X < D + > n (') 1 '\ 
.Lt - n . .L D' '-' v \C:...o.J..j 

XX 

T(x,o) T g(x) < TL 0 .:;; X ~ B 
' 

(2.2) 
0 

T (B,t) = 0 (2.3) 
X ' 

H-r(t:) -KT v(t:) = 0 j 
(~_4) 

~-'- / X " ' -, \.-- . I 

Whether the phase-change temperature is that for melting or vaporiza
tion will depend on the incident pOUJer density. At lOUJ densities only 
liquid will appear; whereas, at high densities the liquid fo~ed prioP 
to vaporization can be ignored because the latent heat of melting is 
much smaller than that of vaporization. 

8 



Hf(t) - KT L dy(t) 
X+ p dt 

dy(t) ~ 0 for T(y(t),t) = TL , 
dt 

dy(t) 
dt = 0 for T(y(t),t) < TL . 

(2.5) 

(2.6) 

(2.7) 

Equation (2.1) may be recognized as the general parabolic relation 

of heat flow. The initial temperature distribution of the slab is given 

by (2.2), while (2.3) expresses the condition of no heat losses from the 

backface. Equation (2.5) is a statement relating the heat input to the 

rate of heat flow into the solid plus the rate of heat absorbed in the 

transformation. T is evaluated at the position of the boundary y(t). 
X 

Before the phase-change temperature is reached there is no boundary 

motion, (2.7), so that (2.5) reduces to (2.4). Equation (2.6) states 

that when the purface reaches the temperature TL there may or may not 

occur boundary motion; this will depend on whether the energy required 

for the phase-change is or is not absorbed at the surface. 

The equations can be manipulated more readily if the following 

transformations are made: 

v(x,t) = T(x,t) 
TL 

'T = Kt , 

L 
N= ~ ' c·J.·L 

H 
p=-. 

KTL 

Equations (2.1) through (2.7) then become 

v = v 
'T XX 

y('T) ~X< B, 

v(x,o) = v g(x) < 1 
0 

9 
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v (B,-r) = 0 (2.10) 
X 

pf'(-r) = - v y( 'f) = 0 ' (2.11) 
X 

pf'(-r) 
rhrf -r) 

= - v + N ::::::W:li't. 
X dT ' (2.12) 

dy~ 'f} ~ 0 f'or v{y{-r),-r) = l ' (2.13) 
d-r 

dy~ 1"l = 0 f'or v(y(,.), T) < l · (2.14) 
d'T 

3. FINITE DIFFERENCES 

We denote v. . to be the value of v at the point i Llx at time j 11-r 
l.,J 

and v. . 
1 

the corresponding value at time ( j+l) 6-r. We further define 
J.., J+- k 

according to practice h = Llx, k = 6-r and r = 2 . If the Crank-
h 

Nicholson diff'erencing scheme6 is selected, the time derivative can be 

approximated by 

v = 
T 

- v . . 
lzJ + 

and the second order space derivative by 

'\ 
V • 1 • I J.+ ..... ,J-

( '\ 
2\. v . . 1 + v . . ) 

\, J.,J+ J.,J / 

+ ( V. 1 . 1 + V • 1 • ')~ + 0 Lr kh2 'j Z 
\_ l- ,J+ l-.L,J ~ 

(3.1) 

(3.2) 

where 0 I 
L 

l is the truncation error. Substituting (3.1) and (3.2) in 
_J 

1r 
(2.8), introducing r = ·~2 and rearranging we obtain 

h 

!:.2 v · l · + (l-r )vi · + !:.2 vi+l · 
l.- ,J ,J ,J 
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Equation (3.3) does not hold at the mathematical surface i = 0 since 

no account has been taken of the energy input to the material. ~nis is 

dealt with by expanding v .. in a Taylor series about the point (O,j+l) 
l,J 

in both the space and the time directions. Thus 

(3.4) 

v = v - [ovl !J.rr + [ (llrr) 2 l __ !. • 

O,j O,j+l OT~O,j+l (3-5) 

If [o2v/ox~\o,j+l is replaced by [ov/oT]O,j+l in accordance with (2.8), 

then from (3.4), (3.5), and (2.11) the resulting equation becomes 

(1+2r)vO,j+l - 2rvl,j+l = v0 ,j + 2rhpfj+l • (3.6) 

Equation (3.6) applies up to the time that the phase-change temperature 

is reached, i.e., so long as y ( rr) = 0. 

Beyond this point account must be taken of the fact that the 

boundary no longer remains stationary. To avoid ambiguity in the use of 

the space coordinate i, a new coordinate w is defined such that the 

boundary will always lie at w or between w and w + 1. At the original 

surface w = 0. The index w, an integer, depends upon time, hence we 

denote this dependence by w .. Initially, that is, at j = o, w
0 

= 0; 
J 

however, at later times 0 ~ w. ~ w. 1 
and for each j the boundary lies 

J J+ 
During boundary motion the temperature of the between w. and w 1 J j+ 

surface according to (2.13) is a known constant so that the first 

unknown temperature lies at the grid point w + l and is designated 

v . We expand about this point in both the time and space 
W+l, j+l 

directions, 

rovl 1-. \ A __ 

vw+s, j+l = vw+l, j+l - Lox_'w+l, j+l ~J.-SJ ux. 

2 
+ (1/2) [

0 ~J . (l-s)2~2 
+ 0 [ (~)3 J , 

ox w+l,j+l 

(3.7) 
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(3.8) 

v = v + [avJ 6x 
w+2, j+l w+l, j+l axJw+l, j+l 

(3-9) 
2 

+ (1/2) [a v l . 6Y..2 + o I (6x)3 l. -ax 2--Cw+l, J+l , 

and where 0 ::; s ::;; l. But at the surface we have v w+ s, j+ 1 = l. Fu.rther, 

if (3.7) and (3.9) are added after (3.9) has been multiplied through by 

(1-s) and (2.8) and (3.8) are substituted in that order in the resulting 

equation, we obtain 

(3 .. 10) 

( 1-s. 1) (2-sj+l~ 1 . + 2r • 
J+ ... ~ W+ 'J 

For clarity the subscript j+l has been attached to s to show the 

exact time at which this quantity is evaluated. 

Next the position of the boundary y( 'T) must be determined. From 

the preceding discussion it is clear that y may be expressed i~ terms 

of an integer w and a fraction s by 

y. =(w. + s~ h 
J J J 

(3.lla) 

and 

().lib) 

Subtracting (3.lla) from (3.llb) we obtain 

(3.12) 
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Since y. w. and s. are zero at the start of the transformation, there 
J, J J 

is no difficulty in keeping track of the boundaL-~ for subsequent tirres 

provided~ can be calculated. This may be done from (2.12) which has 

the finite difference form 

~ = rv- + pf J /N 
k L X j+l (3.13) 

where v is the approximation of the space derivative v at the surface 
X X 

and ~Rlf be evaluated by a three point Gregory-Newton forward difference 

approximation as 

(3.14) 

/ ' -, 
- (3 - 2s j+l) VW+ 3, j+-l.J /2h • 

Equation (3.13) can be arranged more conveniently in terms of r giving 

~-E.hr'"'"' l 
h - N L v X + pf j+ lJ (3.15) 

One is confronted in (3.15) with the evaluation of sj+l from temperatures 

which are not known and which themselves cannot be calculated without 

knowing sj+l' To circumvent this problem an iterative procedure must be 

used. 

Finally, we note that at the back surface (3.3) must be modified 

to take into account the boundary condition (2.10). Formally, this is 
* done by extending the mesh one unit past the back face, where the 

latter is indexed by i = M = B/6x. The existence of a zero temperature 

gradient requires that vM-l = v~~l which reduces (3.3) at the back face 

to 

-rvM-1 . 1 + (1 + r)vM . 1 = (1 - r)v.M . + rvM-1 .. 
,j+ ,J+ ,J ,J 

(3.16) 

*' Creating a false boundary. 
13 



4. CALCULATING PROCEDURE 

4.1 General 

The difference equations of Section 3 from which the temperatures 

are computed have the tridiagonal appearance (for each mesh row) 

. 
d 

2 

~-lvM-2 + ~-lvM-1 + CM-lvM = ~-1 

(4.1) 

with zeros everywhere except on the main diagonal and on the two 
() 

diagonals parallel to it on either side. 7 In (4.1) all known 

quantities have been lumped in d thereby eliminating the necessity of 

the further use of jo Through a Gaussian elimination process this 

system can be solved explicity for the unknown v's. The method is 

credited to L. H. Thomas,
10 

but received wide attention in published 

form in an article by Bruce, Peaceman, Rachford, and Rice. 11 Express~d 
in a less cumbersome way11 the system (4.1) becomes 

A.v. 1 + B.v. + C.v. 1 l l-- l l l l+-

14 

d. 
l 

(a) 

l s i s M - 1, (4.2)(b) 

(c) 



where the unknown temperatures corresponding to the (j+l)st step are 

given by 

with 

di-Aiqi-1 
ql. =B Ab . - .. 1 

l l l-

C. 1 

b = -i j__ 
i Bi - Ai~i-1 

I 

I 

O~i~M-1, 

(4.3) 

1 ~ i ~ M - 1 . 

For convenience the calcuLations are carried out in two parts -
I 

Part I covering up to the tim~ the phase-change temperature is reached 

and Part II beyond this pointl In Part I (4.2) represents the system 

(3.6), (3.3) and (3.16); in E'rt II (4.2) represents the system (3.10), 

(3.3) and (3.16) with (3.15) <~nd (3.12) being used in locating the 

boundary. Also in Part II, (4.2a) is more appropriately indexed as 
i 

B v +C v =d W+1 V+-1 W+l W+2 W+l ' 

with i being greater than :Jr equal to w+2 in the remaining equations. 

4.2 Detailed Procedure 

Part I - Before Trarjsforma.tion 

Using Equations (3.1~), (3.6) and (3.16) computation continues until 
{ 

for some j = j
1

, v0 J·'+l ~ 1 and v0 ·' < l. 
, . f 'J 
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To establish an accurate time for the beginning of the phase-change 

and as a baseline for Part II, the {j 1+l)st = Jth row is re-determined 

using a smaller time step k' given by 

( l - uo ·' "'\ 
r'=· ,J -)r 

\n • - n , 
""O, j · + 1 -o, j · 

The time of the start of transformation is simply 

'f = j 1 k + k I • 
m 

Part II - Boundary Begins to Move 

As first step in Part II the boundary must be located. Since the 

temperatures at time J + l are yet to be determined, (3.15) cannot be 

used directly. We, therefore, approximate 6y by 

0 
6y J+l 

h (4.4) 

The first term inside the brackets may be recognized as the three-

point Lagrange interpolation expanded in the neighborhood of the moving 

boundary with w = s = 0. Mul~iplying the brackets by l/2 ensures the 

6y is not over estimated. In the absence of any bo1mdary displacement 

at time J the initial estimate of the position of the boundary is 

0 
y J+l 

0 
= cy J+l 

where the superscript desi~ates the number of the 

to be zero initially. 

16 
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Fu th O l'S d d ' t 't h 1 d f ti nal t r er y J+l ecompose 1n o 1 s w o e an rae o componen s, 

(4.6) 

At this point (3.10), (3.3) and (3.16) are solved for all vi,J+l. 

It should be emphasized that temperatures v. J are not replaced by those 
l, 

at v. J 
1 

until the iteration for the (J+l) step has been completed. 
l, + 

Using s0
J 

1 
and the appropriate v. J 1

•s a new estimate of the 
+ l, + , 

boundary position is obtained from (3.15). This then becomes ~~J+l 

from which y
1
J+l is derived. As an improved estimate of the boundary 

position the n and (n+l) iterative values of yJ+l are combined and a new 

sJ+l and w J+l are found, 

0 1 
y J+l + y J+l = h ( ~ 4- 1 ) 

2 - u \... J+ l . s J+ lJ 

Then the system (4.2) is again solved and the process is repeated a 

fixed number of times or until some test is satisfied. We have chosen 

the test that the absolute value of the ratio of the difference between 

two successive values of y to their average be less than some constant ¢ 

and write 

where 0 < ¢ << 1. 

n n-l 
y - y--

~ ¢ ' (4.8) 

For an approximation to y in the succeeding time step J + 2, a 

linear change of the boundary with time is assumed, 

0 
y J+2 = YJ+l + ~J+l ' (4.9) 
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where yJ+l and ~YJ+l represent values of the quantities obtained in the 

final iteration of the (J+l)st stepo The above procedure commencing 

with (4.6) is then repeated. Computation continues until T ~ T , 
max 

where T is the duration of the input pulse. 
max 

5· ERROR ANALYSIS 

With assurance of stability for independent h's and k 1 s, error 

analysis is one of the prime considerations of a nlunerical method. 

This subject is currently under extensive study, and most discussions 

found in the literature are of a qualitative nature. 9 Two main sources 

of error generally encountered are present here and are (a) the trunca

tion error arising from the approximation of the analytical equations 

by finite differences, and (b) the round-off error due to use of only a 

finite number of decimal places in the arithmetic operations and due to 

the fact that the iterative solution is only continued until there is 

no change out to a certain decimal place. These errors are oppositely 

influenced by the interval size h. Decreasing h decreases the trunca

tion error but in general increases the round-off error. 

An example will best serve to check the accuracy of the present 

solution. For a semi-inf'inite slab and a constanc heat input the time 

required for the surface to reach the phase-change temperature can be 

compared 

Table I using physical data for aluminum undergoing a phase-change at 

the melting temperature. It is readily seen that with decreasing h 

at constant r the approximate tiwe that the surface reaches the n~ltinG 

temperature more nearly approaches that of the exact solution. The 

error in the approximate solution is reduced by the square of the factor 

by which h is decreased. Thus if h is diminished by a factor of 8, e.g., 

in going from h = .01 to h = .00125, the error will decline by a factor 

of 64. 
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TABLE I 

Time of the start of melting for a semi-infinite solid as determined 

* by (a) the exact analytical solution and (b) the approximate solution 

of this paper for varying h and constant r = 0.4. Based on physical 

** data of Al. 

Exact Solution 
time, sec 

Approximate Solution 
time, sec 

.2082 X 10-3 .2475 X 10-3 

.2180 X 10-3 

.2107 X 10-) 

.2088 X 10-3 

* See Re ferenae 12. 

** K = .4803 c = .2143 p = 2.?0, L = 94.5, T 
4 0 

H = 2.0? x 10., B = 1.0., f(-r) = 1.0. 

19 

h 

.01 

.005 

.0025 

.00125 

1o Error 

19 

4.7 

1.2 

.) 

203 TL = 660 3 



In Figure l the results of Table I are extended into Part II involv-

ing the moving boundaL-y. Here, however, it is no longer possible to cal~ 

culate an exact solution and the approximate results must be compared to 

the steady state solution (l) given by 

' 
(5.1) 

where in addition to the quantities already defined t is the duration 

of the pulse and tL is the time required to reach the transformation 

temperature. 

Equation (5.1) gives an upper limit to the penetration of the 

boundary, which in the time t .24 x 10-2 sec is 0.0725 em. Even for 

the least favorable choice in h the solution is reasonable. Except in 

the very short time after transformation has begun, the boundary motion 

is essentially linear with time. 

It is not clear from the preceding discussion how one, short of 

trial and error, goes about making an appropriate selection of h. Time 

and accuracy must be simultaneously considered and some optimum found 

between the two. Rather than select h first it is more meaningful to 

choose k first and then find the desired h by h = (k/r) 1/ 2 .* This is 

necessary because any choice in h no matter how small might not be 

applicable due to the short duration of an input pulse. For a nano

second long input pulse as encountered in the q-swltched laser mode an 
- -h ' 

h of say .00125 would yield a k of 0.625 x 10 ~ for r = 0.4 which 

exceeds the entire length of the pulse. In choosing a k one may be 

guided by a rule of thumb in which the total time of the pulse is 

divided into about one thousand kis i.e., max j = 1000. Then a back 

calculation can be made to find an approximate h which can also be 

divided into B to give some whole number M. 

·'* In irrrpZiCJit methods stability is ensured for all r > 0. 

20 
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I I }STEADY STATE 
7 .0~-----+----+---~-+--~--+--....-.-r-----t---+-71 .01 

:::1 I 

3. 0~-----+----+--~----+----+-~--+--....-.-r-------+-------l 

2.51 I 

0 .02 .04 .06 .08 .10 .12 .14 .16 .18 .20 .22 .24 

t X 102 (SEC) 

.00125 

FIG. I.-THE DEPENDENCE OF THE POSITION OF THE BOUNDARY y 
ON TIME t FOR CONSTANT r= .4 AND h OF .01, .005, 
.0025, .00125. 
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When the input energies are ve~ large as in the case of the laser 

the time taken for the material to reach the transformation temperature 

is much shorter (sometimes by a factor of a thousand of more) than the 

duration of the entire pulse. It is, therefore, necessary to use 

different grid sizes for Parts I and II. If a single grid size is 

chosen say on the basis of the high resolution required in Part I the 

computational times required for Part II would become prohibitive. If 

on the other hand, the choice of grid sizes is made on the basis of the 

total pulse, the approximation of the time of the phase-change will 

contain a ridiculously large error. A rough idea for the onset time of 

the transformation may be obtained from an analytical solution of the 

heat equation. On this basis a reasonable selection of k and hence h 

may be made f'or Part I. The h selected in this manner may be so fine, 

however, that for the particular thickness of solid B, M will become an 

exceedingly large number. Insofar as the heat flow is concerned, only 

a small fraction of the total M points in the solid may register any 

change in temperature in the short times considered, the solid behaving 

as semi-infinite beyond a certain depth. Tnus by either reducing B or 

equivalently reducing M by some arbitrary factor the times for calcula

tion in Part I do not become prohibitive. When Part II is entered a 

much larger h may be used. To avoid the possibility of error the final 

temperature vM may be printed as part of the output at the ends of 

Parts I and II. If vM is the same as the initial temperature of the 

solid then the slab has remained semi-infinite throughout the len~~h of 

the calculations. 

6. AN EXAMPLE FOR lASER-INDUCED DAMAGE 

In suggesting that the present problem may apply to laser-induced 

damage in materials we are cognizant of the pitfalls involved. The 

interaction of the laser with the target is a complex phenomenon. 

Several elements contribute to this complexi.ty. It is not certain 

whether the plasma created in front of the target remains transparent 

to the beam throughout the duration of the pulse. It may be a safe 

22 



assumption to make at low incident power densities but not at high 

incident power densities such as those delivered by the laser in the 

q-switched mode. In addition to the plasma the target emits globules 

of transformed material which may further act to absorb the incoming 

beam. Another impo1~ant consideration is the reflectance of the beam 

by the target which may be a strong function of the depth of hole, i.e., 

in the initial stages of heating and penetration highly reflecting 

materials such as aluminum rray absorb only a small portion of the 

incoming radiation, while at a later stage or as the hole deepens, the 

entire incoming beam may be absorbed by being trapped in the hole. The 

model, furthermore, makes no allowance for the possibility of superheating 

or for the co-presence of vapor and liquid. Any attempt, however, to 

construct a mathematical model of laser damage which takes all the pre

ceding factors into account would prove an enormously difficult task 

because a clear understanding of their relative si~uificance is currently 

lacking. 

In Table II and Figure 2, data are shown comparing the depth of hole 

predicted to that actually observed in Al of semi-infinite thickness. 

Case 1 in Table II is for a constant input energy, whereas Case 2 if for 

the variable pulse shown at the top of Figure 2. The lower portion of 

Figure 2 is a plot of the position of the boundary with time for this 

variable pulse with the maximum y being the entry in Table II. 

In cases 1 and 2 the transformation is assumed to occur at the 

temperature of vaporization, the possibility of melting being totally 

ignored. Ignoring melting when vaporization is involved is not a 

serious error since the heat of vaporization and melting are so vastly 

different, the former being more than twenty-seven fold greater than 

the latter in Al. 

The discrepancy, assuming full absorption of the energy of the 

beam by the target, is quite large. A second calculation has been 

done for each case at about half of this energy on the basis that much 

of the incident pulse is reflected. Specimens of Al treated with #300 

; ... ' .. 



TABLE II 

DEPTH OF HOLE PRODUCED IN Al BY LASER PULSE 

Case Description of Pulse 

Power Density Duration Calculated 
joules/cm2-sec sec em 

l 8.33 X 10 6 .6 X 10-3 1.43 X 10-l 

4.16 X 10 6 .6 X 10-3 .695 X 10-l 

109 (peak)+ 41-!- X 10-9 
I. 

2 l X 6.05 X 10-4-

.5 X 109 44 X 10-9 8 -4 2. 7 X 10 

* See Re fe Penae 4. 

+ See Figure 2 for pulse shape. 
24 

Observed* 
em 
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Hf (t) X 109 
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FIG.2:-BOUNDARY MOTION y AS A FUNCTION OF THE TIMEt FOR 

INPUT PULSE Hf(t) (SHOWN ON TOP GRAPH). MATERIAL 

IS AI AT VAPOR TEMPERATURE. 
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grit emery paper have been found in this laboratory to reflect up to 60 
per cent of the incident light at room temperature. w"nile large 

reflectance is a reasonable assumption during the heating-up, it is not 

known whether it will remain at or near the initial level for the entire 

length of the pulse. Better agreement with the experiment results when 

making the assumption of a constant reflectance throughout the pulse 

duration. 

7. CONCLUSIONS 

An implicit numerical scheme has been used successfully to solve 

the heat conduction problem for an ablating solid. The method intro

duces simplicity and accuracy in the calculations and allows for 

economic use of computer time. Further, the solution is valid for a 

variable input energy and sample thickness, features which make it 

especially suitable in applications related to the laser damage of 

materials. 

In the example given for laser-induced damage to Aluminum we have 

purposely avoided manipulating our input energies etc., so as to obtain 

a better agreement with experimental observations. Published data of 

laser damage to targets is scarce and incomplete. Information concern

ing surface preparation, the spread in the measured input energies and 

depths, and the shape of the holes produced has never been set dowil for 

the same samples. In certain cases one cannot be certain whether a 

semi-infinite slab was used as reported or if the conditions for one-

dimensional heat flow were t~~y satisfied. From the limited experi-

mental observations considered, it is difficult to determine how widely 

the proposed model can be applied to predicting laser damage to targets. 
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