AEDC-TR-66-166

NENDERIK DETRU

AEDC TECHNICAL LIBRAR

LO

2

ARCHIVE COPY DO NOT LOAN

TEMPERATURE RESPONSE OF AN INFINITE FLAT PLATE WITH UNSYMMETRICAL BOUNDARY CONDITIONS

PROPERTY OF U. S. AIR FORCE AEDC LIBRARY AF 40(600)1200

RECEIPTIV OF U.S. ...

AETO LILIANY AF 20(600): 200

L. J. Ybarrondo and F. H. Smith, Jr. ARO, Inc.

January 1967

Distribution of this document is unlimited.

ENGINEERING SUPPORT FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION, TENNESSEE

e Certain

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government 'thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

į

TEMPERATURE RESPONSE OF AN INFINITE FLAT PLATE WITH UNSYMMETRICAL BOUNDARY CONDITIONS

L. J. Ybarrondo and F. H. Smith, Jr. ARO, Inc.

Distribution of this document is unlimited.

AF - AEDC Arnold AFS Tenn

FOREWORD

The work reported herein was done at the request of Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), Arnold Air Force Station, Tennessee, under Program Element 65402234.

The work was accomplished by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of the AEDC, under Contract AF 40(600)-1200. The report was prepared under ARO Project No. KA0513, and the manuscript was submitted for publication on August 1, 1966.

The authors wish to express their appreciation to Malcolm Woodward and Charles O. Rigby of the Central Computer Operations, ARO, Inc., for their assistance in the programming and solution of the equations developed in this report.

This technical report has been reviewed and is approved.

Colin Holmes Flt/Lt, RCAF Research Division Directorate of Plans and Technology Edward R. Feicht Colonel, USAF Director of Plans and Technology

ABSTRACT

Exact solutions for the transient temperature distribution and the stored energy in an infinite plate of finite thickness are presented for the case of different convective environments at each face of the plate. The solution is general and contains numerous limiting cases, including that of steady state. Eigenvalues are given for many combinations of the system Biot numbers for the initial response period. An example is presented to illustrate the application of the solution to the practical problem of a rocket engine diffuser.

iii

~

CONTENTS

																		Page
	ABST	RACT .		•	•	•	•	•	•	•		•	•	٠	٠		•	iii
	NOME	NCLATURE		٠	•	•	•		•	•	•	•	•	4	٠	٠	•	v
I.	INTR	ODUCTION		•	٠	•		•	٠	٠	•	٠			•	•	•	1
II.	ANAL	YSIS																•
	2.1 2.2	Physica. Mathema				1	•	•	•	•	•	•	•		•	•	•	1 2
III.	RESU	LTS																
	3.1 3.2	General Illustra	ativ	e E	Xan	ple	•	•	•	•	•	•	•	•	•	•	•	6 6
IV.	CONC	IUSION5	•	٠	•	٠	•	٠	٠	٠	•	•		•	•	•	٠	8
	REFE	RENCES	•	•	٠	•	•	•	•	•	•	٠	٠	•	•	•	٠	8

ILLUSTRATIONS

Figure

1.	Plate with Unsymmetrical Boundary Conditions	•	٠	-	9
2.	Temperature Response for Plate at $x = 0$		•	•	10
3.	Temperature Response for Plate at $x = l$	•	•	•	11
4.	Heat Storage in the Plate	•		•	12

TABLE

First Ten Positive Roots of the Transcendental	
Equation $(\epsilon_n^2 - N_{B_1} N_{B_2}) \tan (\epsilon_n) = (N_{B_1} + N_{B_2})\epsilon_n$	
	-
for Various Biot Number Combinations	.3

NOMENCLATURE

H	Parameter, h/k, 1/ft
h	Surface heat-transfer coefficient, Btu/hr-ft ²⁰ F
К	Thermal diffusivity of plate, ft ² /hr
k	Thermal conductivity of plate, $Btu/hr-ft={}^{O}F$
L	Thickness of plate, ft

$\mathbb{N}_{\mathbf{B}}$	Biot number, hl/k
ର	Energy stored in plate in time t, Btu/ft ²
t	Time, hr
V	Initial plate temperature, ^O F
Y	Variable plate temperature, ^O F
Ŵ	Function of temperature
x	Distance from left face of plate, ft
Z	Transient function of temperature
α	Ratio of Biot numbers, $N_{B_1}/N_{B_2} = h_1/h_2$
β	Parameter, 1/ft (constant of separation)
δ	Temperature ratio, $(V-v_2)/(v_2-v_1)$
e ,	Parameter, <i>βl</i>
θ	Temperature ratio, $(V-v_1)/(v_2-v_1)$
Ŷ	Temperature ratio, $(V-v_1)/(v_2-v_1)$

.

•

4

٠

SUBSCRIPTS

0	Refers	to a maximum condition
1	Refers	to face at $\mathbf{x} = 0$
2	Refers	to face at $x = l$

SECTION I

The transient response of an infinite flat plate of finite thickness has been analyzed for many cases (Refs. 1 through 5). However, the most general solution for convective environments (different surface heat-transfer coefficients and thermal environments on each side of the plate) is not available, although the possibility of the solution is mentioned in Ref. 1. The transient response of a plate subjected to unsymmetrical boundary conditions is very important in many analyses. For example, the transient time is the prime period of interest in evaluating the behavior and application of structures subjected to unsymmetrical boundary conditions, such as exhaust gas diffusers for simulating the high altitude environment of rocket engines, rocket engine nozzles, ejectors, tunnel walls of high temperature short run time test facilities, nozzles of intermittently operated rockets, and components of aircraft and missiles in high speed flight. In many of the above cases, the engineer is ultimately interested in predicting coolant flow rates necessary to keep the wall within structural and material temperature limits. It is reasonable to expect that the coolant rate necessary for a short time test or exposure may be of a reasonable magnitude, whereas the coolant rate necessary for steady-state operation may be completely unreasonable in some of the above applications.

This analysis presents an exact solution for the temperature response in a solid bounded by two parallel planes with unsymmetrical boundary conditions. Implicit in the solution is the capability of predicting a coolant flow rate necessary to keep an exposed wall within structural and temperature limits.

SECTION II

ANALYSIS

2.1 PHYSICAL SYSTEM

The physical system considered in this analysis is shown in Fig. 1. An infinite plate of finite thickness l is initially at a uniform temperature f(x) throughout. At time $t \ge 0$, the face at x = 0 is exposed to a high temperature convective environment at temperature v. Similarly, for time $t \ge 0$, the face at x = l is exposed to a lower temperature convective environment at temperature v. Assume that the surface heattransfer coefficients h and h are uniform and constant at x = 0 and x = l, respectively. The thermal conductivity and thermal diffusivity are given by k and K, respectively, and are assumed to be independent of temperature and position.

2.2 MATHEMATICAL MODEL

A basic energy balance on the plate shows that the partial differential equation describing the temperature distribution in the plate is given by $\frac{\partial^2 v}{\partial x}$

$$\frac{\partial \mathbf{v}}{\partial t} = K \frac{\partial^2 \mathbf{v}}{\partial x^2} \tag{1}$$

This equation is subject to the following boundary conditions:

$$k \frac{\partial v}{\partial x} - h_1(v - v_1) = 0 \quad \text{at } x = 0$$
$$k \frac{\partial v}{\partial x} + h_2(v - v_2) = 0 \quad \text{at } x = \ell$$

and the initial condition:

$$v = f(x)$$
 at $t \leq 0$

The above system of equations can be solved by many different techniques. However, the principle of superposition is especially convenient for this problem. Assuming that the solution can be expressed as

$$v(x,t) = u(x) + w(x,t)$$
 (2)

where u(x) is the steady-state contribution to temperature and w(x,t) is the transient contribution, then u(x) must satisfy the differential equation

$$\frac{d^2 u}{dx^2} = 0 \quad 0 \le x \le \ell$$
 (3)

subject to the following boundary conditions:

$$k \frac{du}{dx} - h_1(u - v_1) = 0 \quad \text{at } x = 0$$
$$k \frac{du}{dx} + h_2(u - v_2) = 0 \quad \text{at } x = \ell$$

The function w(x,t) must then satisfy the partial differential equation

$$\frac{\partial \mathbf{w}}{\partial t} = K \frac{\partial^2 \mathbf{w}}{\partial \mathbf{x}^2} \quad 0 \le \mathbf{x} \le \mathbf{z}$$
 (4)

subject to the following boundary and initial conditions

$$k \frac{\partial w}{\partial x} - h_{1} w = 0 \quad \text{at } x = 0$$

$$k \frac{\partial w}{\partial x} + h_{2} w = 0 \quad \text{at } x = \ell$$

$$w = f(x) - u \quad \text{at } t \le 0$$

It may be readily shown that the solution to the system of Eq. (3) is

$$u = \frac{H_{12} (v_{2} - v_{1})x + H_{12} (1 + H_{2}) + H_{22}}{H_{1} + H_{2} (1 + H_{1})}$$
(5)

where $H_1 \equiv \frac{h}{k}$ and $H_2 \equiv \frac{h}{k}$

It may be shown that by using the product-type solution, the solution to the system of Eq. (4) is

$$w = \sum_{n=1}^{\infty} Z_{n}(x) e^{-K \beta_{n}^{2} t} \int_{0}^{\ell} Z_{n}(x') \left[f(x') - u(x') \right] dx'$$
 (6)

where

$$Z_{n}(x) = -\frac{\left[2(\beta_{n}^{2} + H_{2}^{2})\right]^{\frac{1}{2}} \left[\beta_{n} \cos(\beta_{n}x) + H_{1} \sin(\beta_{n}x)\right]}{\left\{(\beta_{n}^{2} + H_{1}^{2})\left[\ell(\beta_{n}^{2} + H_{2}^{2}) + H_{2}\right] + H_{1}(\beta_{n}^{2} + H_{2}^{2})\right\}^{\frac{1}{2}}}$$
(7)

where $\boldsymbol{\beta}_n$ are the positive roots of

$$(\beta_n^2 - H_{12}) \sin (\beta_n \ell) = \beta_n (H_1 + H_2) \cos (\beta_n \ell)$$
(8)

Therefore, the solution to Eq. (1), using the assumption of Eq. (2), is the sum of Eqs. (5) and (6), or

$$v(x,t) = \frac{H H (v - v) x + H v (1 + H \ell) + H v}{H + H (1 + H \ell)}$$

$$+ \sum_{n=1}^{\infty} Z_{n}(x) e^{-K \beta_{n}^{2} t} \int_{0}^{\ell} Z_{n}(x') \left[f(x') - u(x') \right] dx'$$
(2)

It is beyond the scope of this work to prove that Eq. (2) represents the unique solution to the system of Eq. (1) and that Eq. (2) is a uniformly convergent solution; uniqueness and uniform convergence may be shown readily.

For simplicity, let the general solution (Eq. [2]) be modified by assuming that

$$f(x) = f(x') = V = initial plate temperature$$
 (9)

Substitute Eq. (9) into Eq. (2) and integrate to obtain

$$v - v_{1} = \frac{(v_{2} - v_{1})\left[H_{2} + H_{1}H_{2}\right]}{H_{1} + H_{2}(1 + H_{1}\ell)}$$

$$+ 2\sum_{n=1}^{\infty} \frac{(\beta_{n}^{2} + H_{2}^{2})\left[\beta_{n}\cos(\beta_{n}x) + H_{1}\sin(\beta_{n}x)\right]}{(\beta_{n}^{2} + H_{1}^{2})\left[\ell(\beta_{n}^{2} + H_{2}^{2}) + H_{2}\right] + H_{1}(\beta_{n}^{2} + H_{2}^{2})} \left[\left\{\frac{H_{1}(v - v_{1}) + (H_{2} + H_{1}H_{2}\ell)(v - v_{2})}{H_{1} + H_{2}(1 + H_{1}\ell)}\right\} - \frac{H_{1}^{2}H_{2}(v_{2} - v_{1})}{\beta_{n}^{2}\left[H_{1} + H_{2}(1 + H_{1}\ell)\right]}\right] \sin(\beta_{n}\ell) + \frac{H_{1}}{\beta_{n}}\left(\frac{H_{1}H_{2}\ell(v_{2} - v) + (H_{1} + H_{2})(v_{1} - v)}{H_{1} + H_{2}(1 + H_{1}\ell)}\right) \cos(\beta_{n}\ell)$$

$$+ \frac{H_{1}}{\beta_{n}}(v - v_{1})\left|e^{-\beta_{n}t}\right|$$

$$(10)$$

Equation (10) will be more convenient to work with in a dimensionless form. Using the dimensionless temperature ratios θ , δ , ψ , N_{B_1} based on h_1 , N_{B_2} based on h_2 , and the dimensionless parameter α and ϵ_n , Eq. (10) may be written

$$\begin{aligned} \theta &= \frac{1}{1 + \alpha + N_{B_{1}}} \left\{ 1 + N_{B_{1}}(x/\ell) \right\} \\ &+ 2 \sum_{n=1}^{\infty} \left(\frac{N_{B_{1}}}{\epsilon_{n}} \right) \left\{ \frac{\left\{ 1 + \left(\frac{N_{B_{2}}}{\epsilon_{n}} \right)^{2} \right\} \left\{ \cos\left(\frac{\epsilon_{n}x}{\ell} \right) + \frac{N_{B_{1}}}{\epsilon_{n}} \sin\left(\frac{\epsilon_{n}x}{\ell} \right) \right\} \right\} \\ &\left\{ 1 + \left(\frac{N_{B_{1}}}{\epsilon_{n}} \right)^{2} \right\} \left\{ \epsilon_{n} \left[1 + \left(\frac{N_{B_{2}}}{\epsilon_{n}} \right)^{2} \right] + \frac{N_{B_{2}}}{\epsilon_{n}} \right\} + \frac{N_{B_{1}}}{\epsilon_{n}} \left[1 + \left(\frac{N_{B_{2}}}{\epsilon_{n}} \right)^{2} \right] \right\} \\ &\left[\left\{ \frac{\epsilon_{n}}{N_{B_{1}}} \left[\alpha \psi + (1 + N_{B_{1}}) \delta \right] - \frac{N_{B_{1}}}{\epsilon_{n}} \right\} \sin\left(\epsilon_{n} \right) - \left\{ N_{B_{1}} \delta + (1 + \alpha) \psi \right\} \cos\left(\epsilon_{n} \right) + \psi \left(1 + \alpha + N_{B_{1}} \right) \right] \\ &e^{-\epsilon_{n}^{2}} \frac{Kt}{\ell^{2}} \end{aligned}$$

$$(11)$$

The equation for the eigenvalues, Eq. (8) in dimensionless form becomes

$$\tan\left(\epsilon_{n}\right) = \frac{\epsilon_{n}(N_{B_{1}} + N_{B_{2}})}{\epsilon_{n}^{2} - N_{B_{1}}N_{B_{2}}}$$
(12)

Equations (11) and (12) are sufficient to determine the dimensionless temperature distribution in an infinite plate of finite thickness exposed to unsymmetrical boundary conditions.

In addition to checking Eq. (11) for uniqueness and uniform convergence, one may also show that it reduces properly to various "special cases". The Heisler or Groeber-type solution (face at x = 0insulated or $N_{B_1} = 0$, and N_{B_2} finite) available in most textbooks on heat transfer is readily obtained by letting $N_{B_1} = 0$ in Eq. (11). Other cases, such as both faces insulated ($N_{B_1} = N_{B_2} = 0$), zero thermal resistance at x = 0 ($N_{B_1} = \infty$), and N_{B_2} finite (or vice versa), and zero thermal resistance at both faces ($N_{B_1} = N_{B_2} = \infty$), are all readily obtained by proper reduction of Eq. (11). For the steady-state case, Eq. (11) reduces to

$$\theta(x) = \frac{1 + N_{B_1}(x/\ell)}{1 + \alpha + N_{B_1}}$$
 (13)

The total energy stored in the plate per unit area Q, in time t, is given by

$$Q = k(v_2 - v_1) \int_{0}^{0} \left\{ \frac{\partial \theta}{\partial t} \middle|_{x = \ell} - \frac{\partial \theta}{\partial x} \middle|_{x = 0} \right\} dt \qquad (14)$$

The maximum energy stored in the plate per unit area is defined as

$$Q_{0} \equiv \rho c l \left(v_{2} - v_{1} \right)$$

$$(15)$$

Substituting Eq. (11) into Eq. (14), dividing by Eq. (15), and performing the indicated operations gives the ratio of the total heat flow into or out of the plate in time t, to the maximum energy of the plate, as

$$\frac{Q}{Q_{0}} = \frac{2N_{B_{1}}}{1+\alpha+N_{B_{1}}} \sum_{n=1}^{\infty} \left(\frac{1}{\epsilon_{n}^{2}}\right) \frac{\left\{1+\left(\frac{N_{B_{2}}}{\epsilon_{n}}\right)^{2}\right\}\left\{\frac{N_{B_{1}}}{\epsilon_{n}}\left[\cos\left(\epsilon_{n}\right)-1\right]-\sin\left(\epsilon_{n}\right)\right\}}{\left\{1+\left(\frac{N_{B_{1}}}{\epsilon_{n}}\right)^{2}\right\}\left\{\epsilon_{n}\left[1+\left(\frac{N_{B_{2}}}{\epsilon_{n}}\right)^{2}\right]+\frac{N_{B_{2}}}{\epsilon_{n}}\right\}+\frac{N_{B_{1}}}{\epsilon_{n}}\left[1+\left(\frac{N_{B_{2}}}{\epsilon_{n}}\right)^{2}\right]}\right\}}\left[\left\{\frac{\epsilon_{n}}{N_{B_{1}}}\left[\alpha\psi+\left(1+N_{B_{1}}\right)\delta\right]-\frac{N_{B_{1}}}{\epsilon_{n}}\right\}\sin\left(\epsilon_{n}\right)-\left\{N_{B_{1}}\delta+\left(1+\alpha\right)\psi\right]\cos\left(\epsilon_{n}\right)+\psi\left(1+\alpha+N_{B_{1}}\right)\right]}{\left(1-e^{-\frac{\epsilon_{n}^{2}}{R}}\frac{Kt}{\ell^{2}}\right)}\right]\right\}$$

$$(16)$$

Equations (11), (12), and (16) are sufficient to determine the temperature-time history and the total heat flow into or out of the plate as functions of time, the system Biot numbers, the environment temperature at the faces of the plate, and the initial temperature of the plate.

SECTION III RESULTS

3.1 GENERAL

The eigenvalues ϵ_n were calculated from Eq. (12) by computer for a wide range of characteristic Biot numbers N_{B_1} and N_{B_2} . The first ten positive roots were calculated for each combination of N_{B_1} and N_{B_2} , each root being accurate to four places. Table I lists values of ϵ_n for all possible combinations of the following:

$$\begin{split} \mathbb{N}_{\text{B}_{2}} &= 0, \ 0.1, \ 0.2, \ 0.3, \ 0.4, \ 0.5, \ 1.0, \ 2.0, \ 4.0, \ 6.0, \ 8.0, \\ & 10.0, \ 20.0, \ 100.0, \ \infty. \end{split}$$

$$\begin{split} \mathbb{N}_{\text{B}_{2}} &= 0, \ 0.1, \ 0.2, \ 0.3, \ 0.4, \ 0.5, \ 1.0, \ 2.0, \ 4.0, \ 6.0, \ 8.0, \\ & 10.0, \ 20.0, \ 100.0, \ \infty. \end{split}$$

The series in Eq. (11) and (16) converge rapidly with ten or fewer roots of Eq. (12) for all values of $Kt/\ell^2 \ge 0.01$.

Unfortunately, in Eq. (11) it is not possible to obtain only the system temperature terms on the left side of the equation and only the Biot and Fourier numbers on the right side of the equation. This eliminates the possibility of a general dimensionless plot of Eq. (11). However, if it is assumed that the initial temperature of the plate V . equals the environment temperature v_2 , then the dimensionless temperature parameters δ and ψ become 0 and 1, respectively. The right side of Eq. (11) then becomes a function of N_{B_1} , N_{B_2} , and Kt/ℓ^2 only. This is a reasonable assumption for some of the typical applications that were mentioned. With this assumption, the quantitative effect of varying conditions of surface heat transfer, plate thickness, run time, and material properties on the temperature response of the plate can be determined. It should be emphasized that the application of these equations is not restricted to any one material, environmental temperature difference, heat-transfer coefficient, or run time because of the dimensionless character of the solution.

3.2 ILLUSTRATIVE EXAMPLE

The solution can best be appreciated by considering a typical problem. Consider the case of an exhaust gas diffuser for simulating the high altitudes necessary to evaluate the performance of rocket engines.

It is desired to know the temperature response of the diffuser wall because the response must be limited to maintain the structural integrity of the diffuser. The wall is initially at temperature V, cooled by a constant temperature v = V water reservoir at x = l, and at t > 0 is subjected to a high temperature gas flow at temperature vat x = 0. For this example let N_{B_1} be 0.3 and N_{B_2} 0.6, the wall be of 3/8-in. thick mild steel, the cooling water temperature be 70°F, and the hot gas temperature be 4,000°F. Determine the length of time for the wall at face x = 0 to reach 800°F, which will be assumed to be the limiting structural temperature.

$$\theta = v - v / v - v = 1260 - 4460 / 530 - 4460 = -3200 / -3930 = 0.814$$

Referring to Fig. 2, which has example temperature response curves plotted for the face at x = 0, gives a Fourier number $Kt/l^2 = 0.4$ for $N_{B_1} = 0.3$ and $N_{B_2} = 0.6$. The thermal diffusivity K for mild steel is $\simeq 0.49$. Substituting gives

$$\frac{0.49 \text{ t}}{\left(\frac{3/8}{12}\right)^2} = 0.4$$

 $t = \frac{0.4 (9.766 \times 10^{-4})}{0.49} = 7.972 \times 10^{-4} = 0.000797 \text{ Hr}$

or t = 2.87 sec

This is one example of the use of the curves. For a given run time, the plate temperature could have been determined just as readily. For other given conditions the plate thickness, coolant water temperature, or coolant side Biot number can be found. Figure 3 gives example surface temperature response curves for the face at x = l. From Figs. 2 and 3, it can be seen that the magnitude of $N_{B_{C}}$ may be critical in reducing the surface temperature response of the wall. For example, consider the curve $N_{B_1} = N_{B_2} = 0.2$ in Fig. 2. For a given material wall thickness and run time, this curve represents the temperature response of a wall with equal heat-transfer coefficients at $x/\ell = 0$ and $x/\ell = 1$. If all conditions remain the same except that the heat-transfer coefficient at $x/\ell = 1.0$ is quadrupled, the new response curve has the Biot numbers $N_{B_1} = 0.2$ and $N_{B_2} = 0.8$. Depending on the magnitude of the Fourier number; the reduction in the temperature response of the wall may or may not be significant. For instance, if $Kt/l^2 = 1.0$ the difference in the response of the curves with Biot numbers $N_{B_1} = N_{B_2} = 0.2$ and $N_{B_1} = 0.2$, $N_{B_2} = 0.8$ is about four percent; however, at steady state the difference is about 35 percent. Figure 3 shows that the wall

temperature at x = l responds at a slower rate than the wall temperature at x = 0, as one would expect. Also, the temperature response decreases with increasing N_{B_2} for a fixed N_{B_1} .

Figure 4 gives example heat storage curves for various combinations of N_{B_1} and N_{B_2} as a function of the Fourier number Kt/l^2 .

SECTION IV CONCLUSIONS

Through the use of Eqs. (11), (12), and (16), general temperaturetime plots and energy-stored plots can be developed to cover all cases of interest for a given situation. For design purposes the temperature distribution in a wall is of importance in determining thermal stresses, structural integrity, and peak surface temperatures. For the example considered, it is shown that the ratio of N_{B2} to N_{B1} can be of significant

importance in reducing the temperature response of a wall. For a specific problem, the equations may be used to determine the most economical combination of wall material, wall thickness, and coolant flow rate and temperature; or even if it is feasible to limit a given wall to an acceptable temperature response.

REFERENCES

- 1. Carslaw, H. S. and Jagger, J. C. <u>Conduction of Heat in Solids</u>. Oxford University Press, 1959.
- 2. Schneider, P. J. Conduction Heat Transfer. Addison-Wesley Publishing Company, 1957.
- 3. Ingersoll, L. R., Fobel, O. J., and Ingersoll, A. C. Heat Conduction. University of Wisconsin Press, 1954.
- 4. Jacob, M. Heat Transfer, Vol. 1. John Wiley and Sons, 1959.
- 5. Schneider, P. J. <u>Temperature Response Charts</u>. John Wiley and Sons, 1963.

Fig. 1 Plate with Unsymmetrical Boundary Conditions

Fig. 2 Temperature Response for Plate at x = 0

10

AEDC-TR-66-166

AEDC-TR-66-166

Fig. 4 Heat Storage in the Plate

TABLE I FIRST TEN POSITIVE ROOTS OF THE TRANSCENDENTAL EQUATION ($\epsilon_n^2 \sim N_{B1}N_{B2}$) TAN (ϵ_n) = ($N_{B1} + N_{B2}$) ϵ_n

. .

FOR VARIOUS BIOT NUMBER COMBINATIONS

^N Вл	N _B ₂	εı	€₂	€ <u></u> 3	€₄	€ ₅	€ ₆	€ ₇	€ ₈	€ <mark>9</mark>	€ ₁₀
• 0	• 1	.3111	3.1731	6.2991	9.4354	12.5743	15.7143	18,8549	21,9957	25.1367	28.2779
<u>, 0</u>	• 2	.4328	3.2039	6.3148	9.4459	12,5823	15.7207	18.8602	22:0002	25.1407	28.2814
.0	.3	.5218	3.2341	6.3305						25.1447	
• Ū	. 4	.5932	3.2636	6.3461						25.1486	
• 0	•5	.6533	3.2923	6.3616						25.1526	
• 0	1.0	.6603	3.4256	6.4373	9.5293	12.6453	15,7713	18.9024	22.0365	25.1724	28.3096
.0	2.0	1.0769	3.6436	6.5783						25.2119	
• C	4.0	1.2646	3.9352	6.8140	9.8119	12.8678	15,9536	19.0565	22.1697	25.2396	28.4142
• C	6.0	1.3496	4.1116	6.9924	9.9667	12.9988	16.0654	19.1531	22.2545	25.3650	28.4820
• 0	8 • C	1.3978	4.2264	7.1263	10.0949	13.1141	16,1675	19.2435	22.3351	25.4374	28.5476
• 0	10.0	1.4289	4.3058							25.5064	
• 0	20.0	1.4961	4.4915	7.4954	10.5117	13.5420	16.5864	19.6439	22.7131	25.7923	28.3500
• 0	100.0	1.5552	4.6658	7.7764	10.8871	13.9981	17.1093	20.2208	23.3327	26.4450	29:5577
•_0	<u> </u>	1.5708	4.7124	7.8540						26.7035	
• 1	• 1	.4435	3.2040	6.3149						25.1407	
. 1	• 2	.5389	3.2343	6-3306	9.4565	12.5902	15.7270	18.8655	22.0048	25.1447	28.2849
• 1	• 3	.6150	3.2639	6.3462						25.1486	
• 1	- 4	.5788	3.2928	6.3617						25.1526	
• ľ	• 5	.7337	3.3211	6.3771						25,1566	
•1	1.0	.9293	3.4525	6.45.24						25.1764	
• 1	2.0	1.1402	3.6680	6.5929						25.2159	
•1	4.0	1.3260	3.9576	5.8278						25.2935	
• · l	ပ္ <u>.</u> O	1,4107	4.1333	7.,0057						25.3589	23.4854
• 1	8.0	1.4589	4.2478	7-1394	•	13.1215					28.5510
• 1	10.0	1.4899	4.3271	7.2411						25.5103	
<u>.l</u>	20.C	1.5572	4.5126		and subscription of the second subscription of the second s					25.7961	
	100.0	1.6164	4.6969							26+4488	
• 1	INFY	1.6320	4.7335							26.7073	
• 2	.• Z	.6221	3.2640	6-3462						25.1486	
• 2	•3	.6912	3.2931		MARK AND AND AND A	•				25.1526	
• 2	• 4	.7503	3.3216	6.3772						25.1566	
.2		.8019	3.3494							25.1606	
• 2	1.C	•9899	3.4789	6.4675	9.5500	12.6610	15.7839	18.9130	22.0455	25.1804	28.3167

AEDC-TR-66-166

					TABL	E (Continu	ied)				a
N _{B1}	N _{B2}	ϵ_1	ε ₂	€₃	€₄	ε ₅	€ ₆	€.7	ε _{ε.}	€g	€ _{l0}
• 2	2,.0	1.1970	3.6921	6.6074	9.6499	12.7378	15,8461	18.9652	22.0905	25.2198	28.3518.
• 2	4.0	1.3819	3.9797	6.8415							28.4212
• 2	6.0	1.4666	4.1548	7.0190			16.0776				
• 2	8.0	1.5149	4.2690				16.1795				
2	10.0	1.5461	4.3482				16.2713				
• 2	20.C	1.6136	4.5336				16.5981				
	100,0	1.6730	4.7078								29.5644:
• 2	INFY	1.6887	4.7544	7.8794							29.8518
• 3		. 7558	3.3217	6.3772			15.7461				
• 3	. 4	.8118	3.3498	6.3926			15.7524				
• 3	.5	.8612	3.3772	6.4078			15.7587				
• 3	1 . C	1.0438	3.5049	6.4825							28.3202
• 3	2.0	1.2485	3.7159	6.6218			15.8524				
• 3	4.0	1.4331	4.0016	6.8551	9.8413	12.8905	15.9721	19.0720	22.1831	25.3014	28.4247 -
• 3	6.0	1.5181	4.1761	7.0322			16.0837				
• 3	8 . C	1.5666	4.2900	7.1654	10.1232	13.1362	16.1855	19.2588	22.3483	25.4491	28.5530
• 3	10.0	1.5979	4.3690	7.2668			16.2773				
• 3	20.0	1.6659	4.5543	7.5335			16.6039				
• 3	100.0	1.7257	4.7285				17.1267				
• 3	INFY	1.7414	4.7751	7.8920			17.2961				
• 4	.4	.8657	3.3774	6.4079			15.7587				
• 4	• 5	•9135	3.4044	6.4231			15.7650				
• 4	1.0	1.0923	3.5304	6.4974			15.7965				
• 4	2.0	1.2955	3.7393	6.6361			15.8586				
• 4	4 ▲ 0	1.4803	4.0232	6.8687			15.9783				
• 4	6.0	1.5657	4.1970				16.0898				
• 4	3.0	1.6145	4.3107				16.1916				
• 4	10.0	1.6460	4.3896				16.2833				
• 4	20.C	1.7145	4.5747				16.6098				
• 4	100.0	1.7747	4.7490				17,1324				
. 4	INFY.	1.7906	4.7956	7.9045			17.3019				
. 5	.5	.9602	3.4310	6.4382			15.7713				
• 5	1.0	1.1362	3.5555	6.5122			15.8028				
• 5	2.0	1.3385	3.7623	6.6504			15.8649				
.5	4.0	1.5239	4.0445	6.8822			15.9844				
• 5	6.0	1.6098	4.2177				16.0958				
• 5	8.0	1.6590	4.3311	7.1912	10.1419	13.1509	16.1976	19.2690	22.3571	25.4569	28.5649

TABLE | (Continued)

N ^{B1}	N _{B2}	ϵ_1	e2	€₃	€₄	€₅	€ ₆	. e ₇	€ ₈	€ g	ϵ_{10}
• 5		1.6908	4.4099	7.2924	10.2467	13.2506	16.2892	19.3523	22.4328	25.5257	28.6279
- 5	20.0	1.7599	4.5949	7.5587	10.5572	13.5776	16.6156	19.6687	22.7346	25.8113	28.8970
.5	100.0	1.8206	4.7692	7.8394	10,9324	14.0334	17.1382	20.2453	23.3539	26.4637	29.5745
.5	INFY	1.8366	4.8158	7.9171	11.0408	14.1724	17.3076	20.4448	23.5831	26.7222	29.8619
1.0	1.0	1.3065	3.6732	6.5846	9.6317	12.7232	15.8341	18.9550	22.0817	25.2120	28.3449
1.0	2.0	1.5094	3.8712	6.7202	9.7299	12.7993	15.8960	19.0070	22.1265	25.2514	28.3799
1.0	4.0	1.7004	4.1458	6.9485	9.9090	12,9432	16.0151	19,1082	22.2143	25.3288	28.4492
1.0	6.0	1.7902	4.3164	7.1227	10.0616	13.0730	16.1261	19.2044	22.2988	25.4040	28.5168
1.0	8.0	1.8419	4.4288	7.2544	10.1883	13.1873	16,2275	19,2944	22.3791	25,4762	28.5822
1.0	10.0	1.8753	4.5073	7.3550	10.2926	13.2867	16.3189	19.3775	22.4546	25.5450	28.6451
1.0	20.0	1.9480	4.6919	7.6204	10.6022	13.6129	16.6447	19.6934	22.7561	25.8303	28.9140
1.0	100.0	2.0119	4.8664	7.9010	10.9771	14.0684	17.1669	20.2697	23.3751	26.4524	29.5912
$1 \cdot 0$	INFY	2,0288	4.9132	7.9787	11.0855	14.2074	17.3364	20.4692	23.6043	26.7409	29.8786
2.0	2.0	1.7207	4.0575	6.8512	9.8264	12.8746	15.9573	19,0587	22.1711	25.2906	28.4149
2.0	.4.0	1.9262	4.3218	7.0734	10.0025	13.0170	16.0756	19.1594	22-2586	25.3678	28.4840
2 • C	5.0	2.0246	4+4892	7.2443	10.1530	13.1455	16.1859	19.2551	22.3425	25.4428	28.5514
2.0	9.0	2.0316	4.6006		10.2784						
2.0	10.0	2.1186	4.6787	7.4730	10.3818	13.3576	16.3776	19.4275	22.4981	25.5834	28.6795
2.C	20.0	2.1993	4.8639	7.7378	10.6897	13.6823	16.7022	19.7424	22.7987	25.8661	26.9479
2.0	100.0	2.2703	5.0398	8.0184	11.0642	14.1373	17.2238	20.3180	23.4171	26.5196	29.6245
2.0	INFY	2.2389	5.0870	8.0962	11.1727	14.2764	17.3932	20.5175	23.6463	26.7781	29.9119
4.0	4.0	2.1537	4.5779	7.2872	10.1740	13.1567	16.1923	19.2591	22.3454	25.4446	28.5527
4.0	6.0	2.2653	4.7439	7.4535	10.3211	13.2831	16.3013	19.3540	22.4290	25.5191	28.6198
4.0	5.0	2.3306	4.8559	7.5810	10.4442	13.3949	16.4010	19.4428	22.5085	25.5908	28.6549
4.0	10.0	2.3731	4.9351	7.6793	10.5461	13.4924	16.4910	19.5250	22.5833	25.6590	28.7474
4.0	20.0	2.4664	5,1244	7.9425	10.8516	13,8145	16.8133	19.8380	22.8825	25.9425	29:0148
4.0'	100.0	2.5488	5.3054	8.2246	11.2261	14.2688	17.3339	20.4125	23.4997	26.5929	29.6904
4.0	INFY	2.5704	5.3540	8.3029	11.3348	14.4080	17.5034	20.6120	23.7289	26,8514	29.9778
6.0	6.0	2.3849	4.9113		10.4659						
6.0	8.0	2.4554	5.0251		10.5874						
6.0	10.0	2.5015	5.1060		10.6884						
6.0	20.0	2.6029	5.3005		10.9926						
	100.0	2.6928	5.4875		11.3680						
6.0	INFY	2.7165	5.5378		11.4773						
<u>8.C</u>	8.0	2.5292	5.1409		10.7081						
8 • C	10.0	2.5776	5.2234		10.8085						
8.0	20.0	Z.6844	5-4227	8.2344	11.1124	14.0428	17.0134	20.0148	23.0402	26.0845	29.1437

15

-

TABLE1 (Concluded)

					IABLE	I (Concinded	74				*
			-			3		*			- [
N _{B1}	N _{B2}	€l	€₂	. e _s	€₄	€ ₅	€ ₆	E7	€ ₈	€ ₉	€10 ¹
8.C	100.0	2.7794	5.6151	8.5227	11.4894	14.4974	17.5333	20.5879	23.6558	26.7331	29.8175
8.0	INFY	2.8044	5.6669	8.6031	11.5993	14.6374	17.7032	20.7877	23.8851	26.9917	30.1049
10.0	10.0	2.6277	5.3073	8.0671	10,9087	13,8192	16.7827	19.7855	22.8173	25.8704	28.9397
10.0	20.0	2.7383	5.5107	8.3351	11.2129	14.1375	17.1005	20.0944	23.1128	26.1509	29.2047
10.0	100.0	2.8368	5.7075	8.6269	11.5920	14.5930	17.6205	20.6672	23.7278	26.7988	29.8778
10.0	INFY	2.8628	5.7606	8.7083	11.7027	14.7335	17.7908	20.8672	23.9574	27.0576	30.1652
20.0	20.C	2.8577	5.7255	8.6116	11.5211	14.4562	17.4166	20.4005	23.4054	26.4284	29.4669
20.0	100.0	2.9648.	5.9354	8.9165	11.9107	14.9190	17.9409	20.9752	24.0205	27.0753	压0.1363
20.0	INFY	2.9930	5.9921		12.0250						
100.0	100.0	3.0300	6.1601		12.3212						
100.0	INFY	3.1105	5.2211		12.4425						
INFY	INFY	3.1416	6.2832	9.4248	12.5664	15.7080	18.8496	21.9911	25.1327	28.2743	31.4159

AEDC-TR-66-166

1

.

i

:

Security Classification			
	ONTROL DATA - R&		
(Security classification of litle, body of abstract and index 1. ORIGINATING ACTIVITY (Corporate author)	ting annotation must be er		the overall report is classified)
Arnold Engineering Development C	lenter		
ARO, Inc., Operating Contractor		UNC	CLASSIFIED
Arnold Air Force Station, Tennes	See	2.6 GROUP	ł
3. REPORT TITLE		<u>+</u>	
TEMPERATURE RESPONSE OF AN INFIN BOUNDARY CONDITIONS	IITE FLAT PLA	re witi	H UNSYMMETRICAL
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) N/A	a na correcta		
5. AUTHOR(5) (Last name, list name, initial)			
Ybarrondo, L. J. and Smith, F. H	I., Jr., ARO,	Inc.	
6. REPORT DATE January 1967	74. TOTAL NO. OF P	AGES	76. NO. OF REFS 5
84. CONTRACT OR GRANT NO. AF40 (600) - 1200	9. ORIGINATOR'S R		
6. PROJECT NO. 3058	AEDC-TR-	-66-160	ð
• Program Element 62405184	95. OTHER REPORT this report) N/A	NO(S) (Any	other numbers that may be easigned
d.			
Distribution of this document is	unlimited.		
11. SUPPLEMENTARY NOTES	12. SPONSORING MIL Arnold Engi		vity g Development
Available in DDC	Center, Air	Force	Systems Command Station, Tennessee
13. ABSTRACT			
Exact solutions for the tra the stored energy in an infinite presented for the case of differ face of the plate. The solution limiting cases, including that o given for many combinations of t initial response period. An exa application of the solution to t engine diffuser.	e plate of fin ent convection is general so of steady state he system Bio mple is preso	nite the ve envious and con te. Ei ot numb ented f	nickness are ironments at each ntains numerous igenvalues are pers for the to illustrate the
			·
DD 1 JAN 64 1473			

Security Classification

14.	KEY WORDS	LIN	IKA	LIN	KB	LIN	KC
		ROLE	WT	ROLE	wт	ROLE	WT.
al and a second s	temperature						
(1	flat plate - Heat transfe	2.					
Com	energy						
	diffuser	ne – a Versta verskjanske palakter					
	15-7						
					;		
						87	
	INSTRUCTIONS		1	<u> </u>			

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal outhor is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using at**andard state**ments such as:

- "Qualified requesters may obtain copies of thia report from DDC."
- (2) "Foreign announcement and dissemination of thia report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.