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OPTIMAL CAPITAL POLICY WIÜH IRREVERSIBLE INVESTMENT 

by 

Kenneth J. Arrow 
■ 

0.    Introduction 

It is Sir John Hicks's Value rnd Capital which taught us clearly the 

formulation of capital theory as an optimization problem for the firm. 

He set a general framework within which all subsequent work has taken 

place. 

If one may generalize a bit crudely, the principal subsequent innova- 

tion has been the more explicit recognition of the recursive nature of 

the production process.    As a rough empirical generalization, the links 

between inputs and outputs at different points of time are built up out 

of links between successive time points.    In discrete-time (period) 

analysis, this means that outputs at time   t+1    are determined directly 

by inputs at time   t,    independent of earlier Inputs;  the latter may 

still have an indirect influence by affecting the availability of the 

Inputs at time    t.    In continuous-time analysis, which will be employed 

here, the basic production relation is between the stocks of capital 

goods and the flows of current Inputs and outputs; the earlier past is 

controlling only in that the stock of capital goods is a cumulation of 

past flows. 

This recursive aspect of the production process simplifies analysis 

and computation, as was first recognized in the context of inventory 

theory in the magisterial work of Masse (19U6) (unfortunately Ignored in 

the English-language literature) and independently by Arrow, Harris, and 

Marschak (1951) •    Subsequently,  the mathematician Bellman (1957) 
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recognised the basic principle of recursive optimization common to 

inventory theory, sequential analysis of statistical data, and a host 

of other control processes in the technological and economic realms and 

developed the set of computational methods and principles known as 

dynamic programming.    Finally, the Russian mathematician Pontryagln and 

his associates (1962) developed an elegant theory of control of recur- 

sive processes related both to Bellman's work and to the classical 

calculus of variations.    The Pontryagln principle, which will be used 

in this paper, has the great advantage of yielding economically in- 

teresting results very naturally. 

This paper follows several others investigating under various hypoth- 

eses the optimal policy of a firm with regard to the holding of fixed cap- 

ital (Arrow,. Beckmann, and Karlin, 1958; Arrow, 1962; Nerlove and Arrow, 

1962; Arrow, I96U).    Assume, for simplicity, that there is only one type 

of capital good, all other Inputs and outputs being flows.    Then for any 

fixed stock of capital goods there is at any moment a most profitable cur- 
0 

rent policy with regard to flow variables; we assume the flow optimization 

to have taken place and therefore have defined a function relating operat- 

ing profits (excess of sales over costs of flow inputs) to the stock of 

capital goods.    This function may, however, shift over time because of 

shifts in technological relations and demand and supply conditions (in the 

case of a monopoly there may he shifts in the demand curve; for a monopsony, 

shifts in the supply curves of the factors; for a competitive firm, demand 

or supply shifts are simply changes in output or input prices). The cash flow 

at any moment Is the difference between operating profits and gross Investment. 



We assume throughout a perfect capital market so that the aim of the firm 

Is to maximize the Integral of discounted cash flows, where the dis- 

counting is done at the market rates of interest (which may be changing 

over time). 

The problem assumes different forms according to the assumption made 

about the cost schedule of capital goods to the firm. To assume that 

there is a truly perfect capital goods market to the firm means that, at 

any moment of time, there is a fixed price of capital goods at which the 

firm can buy or sell in any magnitude. In that case, the optimal policy 

has a special "myopic" property (see section l), which is obvious enough 

once observed, but which has only recently been given much weight in the 

literature. 

From a realistic point of viev, there will be many situations in which 

the sale of capital goods cannot be accomplished at the same price as 

their purchase.    There are installation costs, which are added to the 

purchase price but cannot be recovered on sale; indeed, there may on the 

contrary be additional costs of detaching and moving machinery.    Again, 

sufficiently specialized machinery and plant may have little value to 

others.    So resale prices may be substantially below replacement costs. 

For simplicity we will make the extreme assumption that resale of capital 

goods is impossible, so that gross investment is constrained to be non- 

negative.    It is clear that this may affect investment policy strongly. 

Obviously, at a point where a firm would like to sell capital goods at 

the going price if it could, it will be barred from this disinvestment. 

More subtly, at a time which investment is still profitable as far as 

current calculations are concerned, the firm may refrain from investment 

if it anticipates that in the relatively near future it would have 
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dlslnvested If tt could.   It is thl» problem which will he studied in 

1 ' the present paper. 

In section 1 we briefly remind the reader of the myopic optimization 
■ 

rule for the case where investment is costlessly reversible.   In section 2 

we state the model more fully, and note that the case of exponential 
* 

depreciation can be reduced to that of zero depreciation, which will be 

considered henceforth.    Section 3 characterizes the solution in the case 

of diminishing returns, and section k indicates how the optimum might be 

effectively computed.   In section 5 the case of constant returns to 

capital is analyzed.   Finally, section 6 is devoted to some remarks on 

possible empirical Implications. 

1.   The Case of Reversible Investment 

A rigorous analysis of this case has been carried out in the earlier 

publications cited and will follow as a special case of the general 

reversible case.   But the result is obvious once stated:    at each instant, 

hold that stock of capital for which the marginal profitability of 

capital equals the cost of capital, by which is meant the sum of the 

short-term interest rate, depreciation, and the rate of decline in 

capital goods prices. 

Once stated, the rule will seem banal, for it is one of the standard 

equations of capital theory.    Yet its implications are often Ignored.    It 

means that the decision as to the stock of capital to be held at any 

instant of time is myopic, being Independent of future developments in 

Arrow, Beckmann, and Karlin (1958) studied in detail a very special case 
of the present results In which all prices are fixed   and there Is a fixed- 
capital-output ratio so that revenue is proportional to the smaller of the 
two quantities, capacity and demand, the latter varying over tine.    Nerlove 
and Arrow (1962) dealt with advertising, considered in effect as a capital 
good.    Advertising is clearly Irreversible, but it was then not possible to 
treat the optimal policy in a fully adequate fashion. 
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technology, demand or anything else;  forecasts for only the most immediate 
2 

future are needed and then only as to capital goods prices.  The argu- 

ment for this rule Is simple: When Investment Is reversible, then the 

firm can buy a unit of capital goods, use it and derive its marginal 

product for an arbitrarily short time span, and then sell the undepre- 
» 

elated portion, possibly at a different price. 

This rule defines a demand function for capital very different from 

Keynes's marginal efficiency of capital (1936, Chapter 11), unless the 

latter is so interpreted as to make it meaningless.    In effect, Keynes's 

rule Is that an investment is Justified if and only If the sum of dis- 

counted returns at least equals the cost.    But the return to a particular 

investment is not a datum but depends on the total volume of capital in 

the system.    With reversible Investment, a natural Interpretation is that 

the given investment is taken to be the marginal investment in every 

future period, in which case the return in any future period is simply 

the marginal productivity of capital, net of depreciation and price 

changes, at that time.    If the firm follows in the future the myopic rule 

of equating marginal productivity of capital to the rate of interest, 

then It is true that the Keynes rule amounts to accepting the same rule 

today.   But the interest of the marginal efficiency concept evaporates, 

since all the content lies in the myopic rule. 

The marginal efficiency rule can easily be misunderstood to mean 

that In evaluating future returns the new investment today is to be 

regarded as marginal not to a future optimal stock but to the present 

stock.    This is wrong, however.    Suppose, for example, the marginal 

productivity schedule is anticipated to be shifting upward over time. 

2 
Strictly speaking, if depreciation is not exponential, the depreciation 

term does depend to some extent on the future course of interest rates; for 
the details, see Arrow (1964). 
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Th«n th« turn of diioounted profits nay exceed the cost because of high 

returns In the distant future, even though the marginal product may he 
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lass than Interest In the near future.   It Is Indeed true that It Is 

better to undertake the Investment than not to, but these are not the 

only alternatives.   A still better one would be to postpone the Invest- 

ment until it is profitable In the Immediate future.    It Is this pos- 

slblllty of postponement vhlch Justifies the myopic rule. 

2.    Explicit Formulation of the Model 

übe model will be formulated very generally in some respects at least. 

We assume one type of capital good, the stock of which Is denoted by   K. 

At each moment of time the operating profit function, P(K,t), denotes 

the profits obtainable from a given stock of capital, K, by optimal 

employment of other factors.    Thus, the variations of   P   over time may 

reflect changes In technology, supply conditions for other factors, or 

demand conditions.   The firm faces a perfect market for liquid capital, 

but the interest rates may be changing In time In a known way.    Let   a(t) 

be the rate at which receipts at time   t   are discounted back to time   0, 

the beginning of the optimization period.    Then the (short-term) Interest 

rate at time    t   is 

p(t) - -a(t)/a(t), 

where the dot denotes differentiation with respect to time. 

We will take the price of capital goods as numeraire. This Implies 

3 
"' For other recognitions of the myopic rule for capital policy, see 
Marglin (1963, PP. 20-27), Kurahashi (1963), and Champernowne (1964, 
p. I85).    Fisher's "rate of return over cost" (1930, pp. 155-58) appears 
to be similar to Keynes's 'Voarginal efficiency of capital" but in fact 
Fisher considered returns and costs to be measured relative to the best 
alternative.    If the alternative of postponement is considered, then the 
myopic rule is derivable, though Fisher does not do so explicitly. 
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that the Interest and discount rates are expressed In terms of capital 

goods, rather than money, so that the Interest rate used here Is the 

money rate of Interest less the rate of appreciation of capital goods 

prices. 

Let l(t) be the rate of gross Investment. Then the cash flow at 

time t, In terms of capital goods. Is P(Kt,t) - l(t),  and there- 

fore the sum of discounted returns Is ! . 

(1)    f^ 0<t)[P(Kt,t) - I(t)]dt. 

The aim of the firm Is to maximize (l) by suitable choice of Investment 

policy, l(t). The evolution of the capital stock, K(t), Is determined 

by Its Initial value, K(0), and by the Investment policy. If we assume 

depredation at a fixed exponential rate, 5, then 

(2) 

. , 

K = I - 6 K. 

» 
Finally, the assumption of Irreversible Investment means that gross 

Investment must be non-negative. 

(3) I(t) > 0. 

■ 

We also postulate positive but strictly diminishing returns to capital 
■ 

at any moment of time. 

CO 
1. 

PV > 0, P™ < o. 

In the remainder of this section It will be argued that this problem 

can be transformed Into another of the same form, but with 5 ■ 0. Then 

for the remainder of the paper we can assume the absence of depreciation 

with no loss of generality. 

Functions of time, for example, K(t), will also be symbolised by using 
t as a subscript, e.g., K., when typographically convenient, and the time 
variable may even be suppressed when Its presence Is clear from the context. 

t ■■■-^ 



Let 

x(t) = K(t)e0t , y(t) = I ( t )e0t , ~( t ) = a ( t )e -ot , 

- ot ( -ot ) P(x , t) = e P xe ,t . 

Then it is easy to a lcul ate t a t 

x = (~ + oK)e0t = I ( t )e0t = y, 

and 

(t)[P( x,t ) - y( t ) ) = {t ) [P(K,t ) - I ( t ) ) , 

so t ha t the origi nal problem is transformed into t he maximizati on of 

.f~ ~( t )[ P( X' t ) - y) d t 1 

sub ject t o t he accumulati on onditio , x = y, the ini t ia ~ondition , 

x( O) = K( O) , and t he non- negativi y condit·on, y ~ 0 , f ollowing from ( 3 ) . 

Tne new pr obl em i s i ndeed oft e or· ginal form, with x a nd y r epla ing 

K and I, r espe ti vely, an o = 0 . Further , 

so t ha t ondit~ ons ( 3) sti ll r emai n va l · . 

3· The Cha racteri zati on of the Soluti on 

We now assume t ha t o = 0; t .en we wish t o maximize 

( l ) .J: a ( t )[ P( K, t ) - I ( t ) ] t , 

subject t o 

(2 ) K = I , 

K( O) given, and 

(3) I > O. 

8 
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The return to an investment at any moment of time has two parts: 

the current cash flov and an addition to the sum of discounted future 

"benefits.    The latter is equal to the value of a gift of a unit of cap- 

ital at time    t.    Let   p(t)   be this shadow price of capital at time    t, 

discounted back to time    0.    Then the (discounted) value of investment 

at a given time    t    is 

CO H = a(t)[p(K,t) - I] + p(t)l. 

H    is known in control theory as the Hamiltonian (after the 19th Century 

mathematician who introduced the concept).    Then   I    is chosen so as to 

maximize    H,    subject to the condition (3). 

However, we have to have a principle for determination of the shadow 

price of capital, p.    Pontryagin and associates have shown that   p(t) 

must evolve in time, according to the differential equation 

(5) P = - ^H/^C. 

Let us rewrite (k) by setting 

(6) 

then 

(7) 

q(t) = p(t) - a(t); 

H = a(t) P(K,t) + q(t)l1 

■; 

The maximization of H with respect to I has a rather trivial 

form. If q(t) < 0, then the optimum I, subject to (3), must "be 0. 

If q(t) = 0, then the optimum I can be any non-negative quantity. 

This does not mean that I is indeterminate; as will be seen shortly, 

it is determined by other considerations hut not by the requirement that 

the Hamiltonian be maximized. If q(t) were positive, then there would 

9 
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be no optimum for I; the larger the "better. This is, however, incompat- 

Ihle vlth the existence of an optimal policy, for q.(t) would be positive 

over an Interval, and infinite investment over an interval is obviously 

non-optimal. The point is that if a policy of capital accumulation led 

to such a situation, it would have been better to have invested more 

earlier, so that the policy followed was non-optimal. We conclude: 

(8) q(t) < 0; if q(t) < 0, then l(t) = 0. 

The economic interpretation of (8) is straightforward. The comparison 

of q with 0 is, according to (6), a comparison of p with a; since 

the market price of capital goods is always 1, by the choice of numeraire, 

0((t) is the market price of capital goods discounted back to time 0, 

while p(t) is the shadow price (the value of future benefits) similarly 

discounted. If q is negative, the shadow price is less than the market 

price, and it does not pay to invest. If q = 0, one is Just indifferent 

at the margin between investing and not investing. If q. could be 

positive, it would pay to invest infinitely, but it would also have paid 

to invest infinitely at an earlier time. 

From (7), (5) becomes 

(9) P = -a(t) PK , 

which can also be written 

a(t) PK + P = o, 

i.e., discounted current returns plus changes in discounted shadow value 

should be zero, a restatement of the familiar equilibrium relation for 

the holding of assets, but with shadow prices substituted for market 

prices. 

10 
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Since the short-run optimum condition (8) has been written in terms 

of   q   rather than   p,    it is convenient to reformulate the differential 

equation (9).    Prom the definition (6), and (9), 

• • • • 
q = p - a = a(t)[-PK - (a/a)] , 

or from the definition of   p(t), 

(10) q = a(t)[p(t) - PK(Kt,t)] . 

The integral of (10) is straightforward: 

t, 
(11) q(t1) - q(t0) = J 

X  a(t)[p(t) - PK(Kt,t)]dt. 

Formally, the solution has "been completely described.    We seek three 

functions of time,    K(t), q(t), and   l(t), Jointly satisfying the condi- 

tions (2), (3), (8), and (10), with   K(0)    given.    The initial value 

q(0)    has not been explicitly defined; it has to be such that all these 

conditions can Jointly be satisfied.    Primarily, it has to be sufficiently 

small so that the condition   q(t) < 1   holds. 

However, a good deal more can be said about the structure of the 

solution.    First, it is necessary to discuss the possibility of discontin- 

uous Jumps in the stock of capital.    A Jump in the stock of capital would 

require an infinite rate of investment, but from the point of view of the 

firm there is nothing difficult to comprehend; it is simply the acquisi- 

tion of a block of capital goods at some instant of time.    We will show 

that it is never optimal to have a Jump in the stock of capital except 

possibly at the very initial point of time. 

Since   K(t)    is monotone increasing, both the left- and right-hand 

limits exist at every point.    Let   K(t)    have a discontinuity at    t = t0, 

where    t0 > 0,    and let   K(t0-0)    and   K(t0+ 0)   be the left-hand and 

11 
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right-hand limits, respectively.    Since   K(t)    is increasing, we must 

have 

K(t0- 0) <K(t0+ 0). 

Define 

(12) r(K,t) = p(t) - PK(K,t). 

Since    P   is strictly decreasing in   K, 

(13) r(K,t)    is strictly increasing in   K    for    fixed   t. 

Then we can choose    c.    and   c-    so that 

r[K(t0- 0),t0] < c1 < c2 < r[K(t0+ 0),t0]  . 

Again,  since   K(t)    is increasing, we must have 

K(t) < K(t0- 0)    for   t < t0, K(t) > K(t0+ 0)    for    t > t0 , 

and therefore 

r(Kt,t) < r[K(t0- 0),t]    for    t < t0 , 

r(Kt,t) > r[K(t0+ 0),t]    for    t > t0  . 

Finally,  since    r(K,t)    is continuous in    t    for fixed   K, 

r[K(t0- 0),t] < c^^    for    t    sufficiently close to    t0, 

r[K(t0+ 0),t] > c2    for    t    sufficiently close to    t0. 
0 

Combine these statements and recall (10). 

q(t)/a(t) < c1    for    t0 - € < t < t0, 

q(t)/a(t) > c2 for t0 < t < t0 + e , 

for some e > 0. 

But since investment is taking place at time t0, CL(t0) = 0; since 

12 
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q(t) < 0   everywhere, ty (8), it is impossible that   q(t) < 0   for all 
8 

t, tg- 6 < t < t0,    for then we would have   CL(t) > q(t0) ■ 0    throughout 

that Interval.    Since   q(t) > 0   for some   t, t0 - e < t < t0,    we must 

have    c1 > 0; by a similar argument,    c2 < 0,    which contradicts the 

assertion   c, < c«. 

(15) P^CK.,t) = p(t)    in a free interval. 

This is precisely the myopic rule discussed In section 1.    In general, 

let us define the myopic policy by the equation 

(16) PK(K*,t) = p(t) ; 

under the assumption of diminishing returns, this equation has a unique 

solution.    Then (13) is written 

(17) K(t) = K*(t)    on a free interval. 

But   K(t)    is increasing.    Therefore,    K*(t)    must be increasing 

13 

s 

{lk)   An optimal investment policy has no Jumps other than possibly at 

t = 0. 

With this result we can now investigate more closely the structure of 

the optimal solution. From (8) it is clear that the optimal path consists 

of time intervals satisfying alternately the conditions q(t) «0 (shadow 

price and market price of capital goods are equal) and q(t) < 0 (shadow 

price of capital goods less than market price), with zero investment in 

the latter case. Call the intervals in which q(t) « 0 free intervals 

(since the non-negativity condition is not binding on those intervals), 

and those in which q(t) < 0 blocked intervals. 

In a free interval, q(t) = 0 throughout the interval. Hence, 

q = 0, or,by (10), H 
i 

1 
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throughout ar.y free interval. If K*(t) Is a well-behaved function, it 

has alternately rising and fa.1 Ing segments. Refer to any interval which 

is a rising segment of the graph of K*(t) as a riser. 

(18) A free interval lies entirely within a single riser. 

Now consider any blocked interval starting at time t0 > 0. It was 

preceded by a free interval and therefore trt must lie in a riser. 

Since neither K(t) nor q(t) have Jumps, we must have K(t0) = K-*(t0) 

and <l(t0) » 0. Since 1=0 on a blocked interval, K(t) is a con- 

stant, so that K(t) = K*(t0) for all t in the interval. 

A blocked interval ending at t1 < +• must be followed by a free 

interval. By exactly parallel arguments, t1 must lie on a riser, 

K(t) . K^Ct,) for all t in the blocked interval, and q^) = 0. 

If we recall that by definition q(t) < 0 on a blocked interval, 

then with the aid of (11) and (12) we can draw the following conclusions: 

(19) On a blocked interval (t0,t ) with t- > 0, t, < +», 

(a) K*(t0) = K*^); 

t. 
(b) J 1 a(t) r[K*(t0),t]dt = 0; 

^ 

(c) J* a(t) r[K*(t0),t]dt < 0 for t0 < t < t^ 
t o 

(d) J a(t) r[K*(t0),t]dt > 0 for t0 < t < t^ 
t 

Relation (d) is not independent of the others but follows from (b) and 

(c). 

Relations (b-d) have simple interpretations.    Suppose it were possible 

to rent capital goods for some fixed period of time at a price    p(t) 

Ik 
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possibly varying in time. Then P,. - p = -r is the instantaneous profit. 

Purchasing a capital good and selling it at the end of the period is 

exactly equivalent to renting it at a rate equal to the market rate of 

interest; purchasing a capital good and holding it to a point of time 

where the firm would wish to purchase capital goods anyway is also equiv- 

alent to renting. Then (c) assures us that it would be profitable to 

rent a capital good at t0 for any term short of the full blocked in- 

terval; since in fact the firm has to buy instead of rent, and neither 

can it sell at time t nor does it wish to hold it then, the firm in 

fact does not purchase. Equation (b) says that at the margin the firm is 

indifferent between renting and not renting for the entire period. Rela- 

I tion (d) assures that the firm would not wish to rent beginning at any 

point in the blocked interval and ending at time    t,  (for if it did, it 

would buy). 
: 

There may be a blocked interval beginning at time 0 and ending at 

a finite time t.; the stock of capital must be constant at K^t,) and 

q(t,) ss 0. Hovever, there might be an initial Jump in capital at time 0 

before settling down to the blocked interval; if there is, then q(0) 
i 
i 

must be zero, since investment is taking place.    Then, by the same 
■' 

arguments, 
1 

(20) On a blocked interval    (0,0, with   t, < +•, 

(a)   K(0) < K*^); 

t 

0 

(c) strict inequality cannot hold in both (a) and (b); 

t, 

t 

15 

(b) J^t) rtK^t-^tldt >0; 

(d) J -"-aft) r[K*(t:L),t]dt > 0, 0 < t < t1. 
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To discuss blocked Intervals starting at spme    t0 > 0   and continuing 

for all subsequent values of   t,    It Is necessary to note the asymptotic 

behavior of   q(t).   Since   p(t)   was defined as the shadow price of cap- 

ital, It Is necessarily non-negative since   PK > 0.    Hence, from the 

definition (6) and from (8), 

-a(t) < q(t) < 0. 
s s 

However, we may certainly suppose that   »(t)   approaches zero as   t 

approaches Infinity; this would certainly be true if the interest rate 

were bounded away from zero or even approached zero slowly.    Then, 

(21) q(+ OD) m    lim     q(t) = 0. 
t -» +• 

Consider now a blocked interval beginning at t0 > 0 and continuing 

to positive infinity. Then K(t) must be the constant K*(t0) and 

(l(t0) ■ 0, so that, much like (19), 

(22) On a blocked interval (t0,+«), with t0 > 0, 

(a) J*" a(t) r[K*(t0),t]dt = 0, 
t0 

(b) J* a(t) r[K*(t0),tJdt < 0, t0 < t. 

Finally, it is possible to have a blocked interval beginning at 

t0 = 0 and continuing to plus infinity. It may be that the initial stock 

of capital, K(0), is simply held intact without further investment, or it 

may be that there is a Jump immediately to some value K, which is then 

never subsequently added to. In the latter case, of course, q(0) must 

be zero since some investment has taken place. In any case, by (21), 

q(+«) a 0. 
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(23) On a blocked Interval   (0, +»), K(t)    Is a constant   K,    vlth 

(a)   K(0) < K; 

(b) y^ait) r(K,t)dt >0; 
0 

(c) the strict Inequality cannot hold in both (a) and (b); 

(d) J^" a(t) r(K,t)dt > 0, 0 < t. 
t 

Theorem. The optimal capital policy for a firm with irreversible 

investment is an alternating sequence of free and blocked intervals, 

constructed so as to satisfy the relevant conditions among (17-20) and 

(22-23). 

k.    Algorithmic Remarks 

It may not be obvious that the stated conditions really provide a 

sensible way of computing the optimal policy. In particular, conditions 

such as (19c) and parallel conditions for the other cases refer to the 

values of a function at every point in the interval, and therefore the 

amount of trial and error needed in successive approximations to the true 

policy appears to be prohibitive. But in fact we are seeking only the 

maxima or minima of certain functions, and for these it suffices to 

search only among local maxima or minima; thus, (19c) asserts that the 

maximum value of the indicated function of time be negative and for this 

it suffices to calculate the Integral at local maxima. The local maxima 

are clearly those zeros of the integrand at which its value changes from 

positive to negative. If the functions P(K,t) and p(t) are well- 

behaved, there will be only finitely many zeros in any finite period. 
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Recall, from (12) and (13) of section 3, that 

(1) r(K,t) - p(t) - PK(K,t) 

Is a strictly Increasing function of K for fixed t. By definition of 

the myopic policy, 

(2) r(K*,t) = 0, 

and therefore 

(3) r(K,t) > 0 if and only if K > K*(t). 

Label the successive risers 1,2,... ; for well-behaved functions 

there are at most denumerably many risers. On any given riser, K*(t) 

is a strictly increasing function of t and therefore has an inverse, 

t.(K), the time on riser i at which K*(t) takes on the value K. 

The function t.(K) is defined on the range of values which K*(t) 

assumes on riser ij let K. be the lower bound of this range, and K. 

the upper bound. 

If there is a blocked interval starting on riser i and ending on 

riser J > i, with K(t) = K on that interval, then from (19a) of 

section 3 the blocked interval starts at MK) and ends at t.(K). 

This can, of course, only be possible if 

{k) max (l^, K ) < K < mln (i^, K.) , 

for if   K   were outside these bounds, either   tAK)    or    t.(K)    would be 
d 

undefined.    In view of (19b),  define, for all   K    satisfying (4), 

(5) (L,(K) . J J       a(t) r(K,t)dt. 

18 
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Then a second condition that must be satisfied is that 

(6) q^OO - 0. 

We now show that «L^K) is strictly increasing in K within its range 

of definition and therefore there is at most one solution to (6). First 

observe that, from (2) and the definition of   tAK), 

(7) rtKjt^K)] = 0   for all   K    for which   t^K)   is defined. 

M                   Then differentiate (5) with respect to   K. 

*; «lijOO = a[tj(K)]r[K,tJ(K)] tJ(K) - «[^(K)] rfK^OOlt^K) 
« * 

MK) 
+ f J       a(t) r (K,t)dt. 

VK) K 

Prom (7) the first two terms vanish; since r(K,t) is strictly increas- 

ing in K, rv > Q   everywhere so that the last integral is positive. 

(8) ^11^ is strictly increasing in K. 

It is also useful to define 

(9) <L(K,t) = J*   a(t) r(K,t)dt; 

(19c) of section 3 requires that   (^(iCt) < 0   for   t^K) < t < t^K). 

As above, we calculate 
j 

mi \/& « -oft^K)] rCK^t^K)] t^(K) 

! + J*       a(t) r1.(K,t)dt > 0. 
VK)        K 

(10) ^(K^)    is strictly increasing in   K   for fixed   t. 
*» 

Also, 

l!   ; \/*t = 0<t) r(K,t), 
i 

■ 
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so that a local maximum of   q(K,t)    as a function of time occurs at those 

values    t0    at which   r(K,t)    changes sign from positive to negative as 

t    Increases.    But from (3) it follovs that   K*(t) < K    to the left of 

t0, K»(t) > K    to the right,   so that   K*(t)    is increasing at    t0    and 

K»(t0) ■ K.     Thus,    t0 is on a riser,  say    k,    and    t-. =  t, (K).    Hence, 

at a local maximum,    ^(K^) = <liic(K)    for some    k• 

In the present notation the condition (19c) of section 3 is simply 

that    (L^t) < 0,    t.CK) < t < t (K),    for a blocked interval starting 

on riser    i    and ending on riser    J.    It is necessary and sufficient for 

this that    <I.(K,t) < 0    at every local maximum in the same Interval,  and 

therefore that 

(11) ^(K) < 0    for a11 risers    k, i < k < j,   for which   q^K) 

is defined. 

We can also use (10) as additional help in screening out conceivable 

blocked intervals by showing that condition (ll) is not satisfied.    Sup- 

pose it has been shown that    Q^K) > 0.    By definition this is equivalent 

to 

q^K,  tk(K)] > 0. 

From (10),    qi[K,,tk(K)J > 0    for all   K' > K.    Consider any riser 

j > k    for which   K'    lies in the range of    K*(t).     Since the entire 

riser    J    lies beyond the entire riser   k,    t^K') > t, (K),    and it has 
J      k 

been shown that 

qi(K
,,t)>0 for some t,  t^K ') < t < t .(K '), 

namely,   for    t = \M•    There  can be no blocked interval  from riser    i 

to riser    j    with   K(t) at the  constant level    K'  for any    K' > K. 

20 

.'-•.'  •l^,        -'   'L * .-'       " ""^"^^WP—Pny^-^J^^ m*BaF*ss****** 



i-.cWÄB'W-'flllW      , v■:^i*äijav^»«A««üK««Mwa.v. . 

I 
I 

; 

1 

Define now an eligible interval as one that satisfies all the 

necessary conditions for a blocked interval;   specifically, 

(12) A pair of risers i, j, with    i < J,    form an eligible interval 

at level    K    if    ^.(K) = 0   and   ^(K) < 0    for all risers k, 

i < k < j,    for which    (lik(K)    is defined. 

Note that from (8)  there can be at most one   K    for which    <L ^(K) 

= 0, and therefore at most one eligible interval between two given risers. 

The preceding remarks can be assembled to provide an algorithm for 

finding all possible eligible intervals: 

Algorithm.    Start with any given riser and consider in turn all 

successive risers.    Suppose that we have started with riser i and 

reached riser j.    Assume defined a number   K. .,    to be defined 

recursively.     Let    K. . = min(K.,,K.), K. . = max(Ki,K,).     If    K^, < 

K. .,    then there is no eligible interval from    i    to    j;    proceed 

to the next riser, with   K.   .  ,= K. ,.    If   K. . > K. ., compute 

q. .(K..).    If negative, again there is no eligible interval from i 

to j, and proceed to the next riser, with   K.   .  ,  = K. ..     If 
i,j+l        lj 

{li,(Ki,) > 0,    compute    ^(KjJ-     If positive, again there is no 

eligible interval from   i    to    j,    but now we define   K-   ,  ,= K... 

Finally, if    ^iC^J < 0, we can find    Kj. so that    \A\>) = 0> 

with   K^. < K.. < K.J..    Then there is an eligible interval from i 

to    j    at level    K. ..    To continue the induction, now define 

~ e^ — K-! \^-  K< • •  To start the procedure, define K. . ,= Kj . 
i ^ d +-!- 1J 1,1+11 

Note that   K. , represents a K-value  such that all higher K-values have 

been already excluded from consideration by the argument that    <Lk(K.J > 0 
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for some riser k,    i < k < J.    The computations of    %\{\\)   an<i 

^.(K..)    are designed to establish the possibility that   ^(KjJ = 0 

for some   ^j.    If   ^jCKij) < 0>   then   \SK) < 0    for a11   K   ln the 

interesting range   K.,    to   K. . by the monotonlcity of   ^^^.(K).    On the 

other hand, if   «LJCK*.) > 0,  then   «L ,(K) > 0    in the relevant range; 

further, we now know that any value of   K > K. ,    is ruled out as the 

level of an eligible interval for risers beyond   j. 

The algorithm can easily be extended to find eligible intervals 

from a riser   i    out to infinity.    We need only introduce an additional 

riser at infinity, with    t (K) = +»   for all   K, K    = 0   and   K    = +«, 

and define 

Ki<8       =   lim     K      , 
j -» +»      u 

«SUjK) = f""       a(t) r(K,t)dt. 

We must finally consider possible blocked intervals beginning at 

the origin.    First it will be shown that there cannot be a Jump at tne 

origin to a capital stock greater than   K*(0).    For suppose that 

K(0+0) > K*(0).    Since   K(t)    is monotonic increasing,    K(t) > K(0+0) 

for all    t > 0.    On the other hand, by continuity   K*(t) < K(0+0)    for 

t    sufficiently close to    0,    so that   K(t) > K*(t)    for    t > 0    and 

sufficiently small, and by (3)    r(K,t) > 0,    which implies that    q(t) 

is increasing.    But this is only possible if   q(0) < 0,    and therefore 

there was no investment at time 0. 

(13) If   K(0) >K*(0),     there is no Jump at the origin;  if   K(0) < 

K*(0), the Jump is to a value not exceeding    K*(0). 
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We can now define an eligible interval from time 0 to riser J 

analogously to (12).    First define 

(HO qn1(K) = }   J        a(t) r(K,t)dt. 

Then define 

(15) The origin,  0, and riser j  form an eligible interval at level 

K    if the  following conditions are satisfied:     (a) K > K(0); 

(b) q.   .(K) > 0;    (c)    strict inequality cannot hold in both (a) 

and (b);     q , (K) < q ,(K)    for all    k,    1 < k < j    for which 
OK Oj = 

q . (K)    is defined. 

The algorithm for determining all eligible intervals beginning at 

the origin has two branches, according as we are considering   K = K(0) 

or   K > K(0).    In the first case, let    J,     be the first riser,  if any, 

for which    q ,[^0)] > 0.    Having defined   J,,...,^,    let    Jj.^ ^e the 

first riser, if any,  for which 

<loJ[K(0)] >qoJ  [K(0)],  j > Jr. 

Then each of the intervals from   0    to some    j    is eligible at level 
r 

K(0).    In these definitions it is not excluded that one of the    j  's   is 

the riser at infinity.    Also, if the sequence of   J   's is infinite, it 

follows that the interval from    0    to infinity at level    K(0)    is eligible. 

For values of    K >K(0), the previous algorithm is fully applicable, 

provided we introduce a riser 0,    with    t0(K) = 0    for all   K,    10= K(0), 

and   K0 = K*(0).    Note that from (13) there can bt eligible intervals 

from the origin at level   K > K(0)    only if   K. < iL. 
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The optimal path, finally, is obtained "by choosing eligible 

intervals in a mutually consistent manner. Blocked intervals are sep- 

arated by free intervals, each of which must lie on a single riser. 

If there is a Jump at the origin, we understand this to mean that there 

is a free interval on riser 0. With this understanding, an optimal 

policy is described by a finite or infinite sequence of risers, i ,i2,... 

which satisfy the following conditions: (a) for each r, there is an 

eligible interval from i  to i ,;  (b) the levels K. .   are 
r r+1 r r+1 

increasing with    r;    (c)    if ■ehe sequence of    i   's    is finite, and the 

last of them is a finite number, then it must be a riser which continues 

out to infinity (for in this case the optimal policy terminates with a 

free interval extending to infinity).    It is understood that if the 

sequence of   i   's is finite,  the last one may be    + OB,    in which case 

it is understood that there is a terminal blocked interval. 

To actually find the optimal policy after having listed the eligible 

intervals is a process of trial and error.     One starts with an eligible 

interval from    i,     to    i   ,   say, then sees if there is an eligible interval 

at a higher level beginning at   i-,    and continues out to infinity unless 

the continuation becomes impossible.    If it does, we go back to some 

riser at which a choice of eligible intervals was possible and try a 

different one.    There is probably no point in specifying the general 

algorithm more precisely;  in any given concrete situation, one is apt 

to have considerable qualitative information about the underlying func- 

tion    P(K,t)    which can be used to guide the  search more precisely. 
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5.    The Case of Constant Returns 

If we assume constant returns to capital at any given moment of time, 

much of the previous discussion simplifies considerably.    There is, of 

course,  the possibility of an Investment policy which will yield an 

infinite value for the sum of discounted profits-    As usual in treatments 

of constant returns, we exclude this case.    Naturally, as in the usual 

finite-dimensional case,  the policy of investing nothing will then be as 

good as any other.    The only remaining question is that of listing all 

investment policies which will be no worse than not investing at all. 

The assumption of constant returns means that    P(K,t)    is linear 

in   K    and that   ?v   is a function of    t   alone, not of   K.    Then   r(K,t) 

also is independent of   K    and can be written   r(t).    When    r(t) > 0, 

then   K*(t) = 0;    when    r(t) < 0,    K*(t) = + «;    when   r(t) = 0,    then 

K*(t)    is indeterminate since all values of   K    are equally optimal. 

The time-axis is divided into intervals with    r(t) > 0   and   r(t) < 0, 

respectively,  separated by points with   r(t) = 0.    Those zeros of    r(t) 

for which    r(t) > 0   to the right and   r(t) < 0    to the left are the 

analogues of the risers in the diminishing returns case;  the same term 

will be used here.    Since the analogue of a free interval becomes an 

interval on a vertical line, jumps at the risers are not excluded.    But 

no investment can take place except at a riser (including as before a 

riser at 0). 

The solution for this case can be worked out much as before except 

that the formulas are much simpler since the magnitudes    q. .    are now 

independent of   K.    The final result can be put simply: 

(l) The optimal policies are all those which call for jumps in 

capital stock at all risers i (including possibly 0) for which 
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It might be useful to note that the aonditlon that Infinite profits 

he Impossible Is that   CL    > 0   for all risers 1. 

6.    Econometric Implications 

In econometric application the function   P(K,t)    is not itself an 

observable but rather an expectation, held with subjective certainty, 

of future profit prospects.    It is in the tradition of Professor Hicks's 

capital model, where actual present and planned future behavior are 

functions of present and anticipated prices.    At any moment, under the 

model as given, the firm draws up an investment program for the present 

and future, but the only part of the program that is executed is the 

Immediate Investment decision.    Eence, we observe at each moment the 

initial Investment of a long-terra investment program, with the profit 

function and the future course of Interest rates which are believed in 

as of that moment.     To determine the empirical implications of this model, 

it would be necessary to add a second relation, showing how the antic- 

ipated profit function and interest rates shift with time, possibly 

in response to new observations on market magnitudes. 

5 This necessarily brief statement has ignored the possibility of lags 
between Investment decisions and investment realizations,  so important 
in detailed empirical analysis.;   see Jorgenson (1965).     Under conditions 
of subjective certainty, the calculation of the optimal policy is af- 
fected relatively little,  since virtually any desired policy for invest- 
ment realizations can be achieved by a suitably chosen policy for invest- 
ment decisions, after some initial period.    But the Investment actually 
made at any given time will depend upon anticipations of profit functions 
and interest rates held at some earlier time or times.    If these antic- 
ipations shift over time, due to new observations on prices and the like 
or for any other reason, the dependence of actual investment on observed 
variables will be rather complex. 
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This is not the place to go into the possible ways in which antic- 

ipations of profit functions and interest rates can be formed, and so we 

cannot develop here a complete testable version of the theoretical 

developments of this paper.    But there is one striking and definite 

qualitative implication:    that at anv given moment either the firm is 

holding its desired stock of capital (as defined by the profit function 

of the present moment, and the current rate of interest in terms of 

capital goods) or there is zero gross investment. 

Whether or not this implication is empirically valid can be 

ascertained only after suitable reinterpretation of the model to apply 

to the available data.    It need only be noted here that, loosely speaking, 

the firm may be expected to hold the desired stock of capital until a 

point of time shortly before an anticipated business cycle peak.    At this 

point, gross investment stops abruptly.    The hypothesis therefore resembles 

that of the flexible accelerator which works on the upswing but not on the 

downswing (Hicks, 1950, kk-kf), but differs (a) by having a less rigid 

relation between the desired stock of capital and the level of output, 

and (b) by admitting the possibility that the collapse of investment may 

occur because of anticipation of the end of the boom rather than its 

actual occurrence. 

Since any observed moment of time is the initial point of an optimal 
investment policy computed on the basis of the then currently held 
anticipations of profit functions and interest rates, there might appear 
to be a third possibility, that of a Jump in capital to a level below 
that currently desired.    But since the anticipations are presumably 
themselves shifting continuously, we do not expect desired Jumps to 
appear. 
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