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OPTIMAL CAPITAL POLICY WITH IRREVERSIBLE INVESTMENT

by
Kenneth J. Arrow

0. Introduction

It 1s Sir John Hicks's Value pnd Capital which taught us clearly the it

formulation of capital theory as an optimization problem for the firm.

He set a general framework within which all subsequent work has taken
place. 1

If one may generalize a bit crudely, the principal subsequent innova-

tion has been the more explicit recognition of the recursive nature of %,
the production process. As a rough empirical generalization, the links
between inputs and outputs at different points of time are built up ouf f
of links between successive time points. In discrete-time (period) i
analysis, this means that outputs at time t+1 are determined directly :
by inputs at time t, independent of earlier inputs; the latter may f
still have an indirect influence by affecting the availability of the

inputs at time t. In continuous-time analysis, which will Ye employed

here, the basic production relation is between the stocks of capital
goods and the flows of current inputs and outputs; the earlier past is
controlling only in that the stock of capital goods is a cumulation of
past flows.

This recursive aspect of the production process simplifies analysis
and computation, as wes first recognized in the context of inventory .

theory in the magisterial work of Masse (1946) (unfortunately ignored in

the English-language literature) and independently by Arrow, Harris, and

Marschak (1951). Subsequently, the mathematician Bellman (1957)
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recognized the basic principle of recursive optimization common to
inventory theory, sequential analysis of statistical data, and a host
of other control processes in the technological and economic realms and
developed the set of computational methods énd principles known as
dynamic programming. Finally, the Russian mathematician Pontryagin and
his associates (1962) developed an elegant theory of control of recur-
sive processes related both to Bellman's work and to the classical
calculus of variations. The Pontryagin principle, which will be used
in this paper, has the great advantage of ylelding economically in-
teresting results very naturally.

This paper follows several others investigating under various hypoth-
eses the optimal policy of a firm with regard to the holding of fixed cap-
1tal (Arrow, Beckmann, and Karlin, 1958; Arrow, 1962; Nerlove and Arrow,
1962; Arrow, 1964). Assume, for simplicity, that there is only one type
of capital good, all octher inputs and outputs being flows. Then for any
fixed stock of capital goods there is at any moment & most prof'itable cur-
rer:t poli.cy with regard to flow variables; we assume the flow optimization
to have taken place and therefore have defined a function relating operat-
ing profits (excess of sales over costs of flow inputs) to the stock of
capital goods. This function may, however, shift over time because of
shifts in technological relations and demand and supply conditions (in the
case of a monopoly there muay be shifts in the demand curve; for a monopsony,
shifts in the supply curves of the factors; for a competitive firm, demand
or supply shifts are simply changes in output or input prices). The cash flow

at any moment 1s the difference between operating profits and gross investment.
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We assume throughout a perfect capital market so that the aim of the firm
is to maximize the integral of discounted cash flows, where the_ dis-
counting is done at the market rates of interest (which may be changing
over time).

The problem assumes different forms according to the assumption made
about the cost schedule of capital goods to the firm. To assume that
there is a truly perfect capital goods market to the firm means that, at
any moment of time, there is a fixed price of capital goods at which the

firm can buy or sell in any magnitude. In that case, the optimal policy

has a special "myopic" property (see section 1), which is obvious enough

once observed, but which has only recently been given much weight in the

-
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literature.

From a realistic point of view, there will be many situations in which

the sale of capital goods cannot be accomplished at the same price as

D, M MmN Ve s o

their purchase. There are installation costs, which are added to the "

purchase price but cannot be recovered on sale; indeed, there may on the

L |

é contrary be additional costs of detaching and moving machinery. Again,

Py

sufficiently specialized machinery and plant may have little value to

~ others. 8o resale prices may be substantially below z:eplacent costs.
For simplicity we will make the extreme assumption that resale of capital
goods is impossible, so that gross investment is constrained to be non-
negative. It is clear that this may affect investment policy strongly.

[ Obviously, at a point where a firm would like to sell capital goods at

» | the going price if it could, it will be barred from this disinvestment.
More subtly, at a time which investment is still profitable as far as

current calculations are concerned, the firm may refrain from investment

if it anticipates that in the relatively near future it would have




dlsinvested Lf it could. Tt is this problem which will be studied in

the present paper..
¢ In section 1 ve ‘briefly remind the reader of the myopic optimization
rule for the case where investment i1s costlessly reversible. In section 2
we state the model more fully, and note that the case of exponential
depreciation can be reduced to that of zero depreciation, which will be
considered henceforth. Section 3 characterizes the solution in the case
of diminishing returns, and section 4 indicates how the optimum might be
effectively computed. In section 5 the case of constant returns to

capital is analyzed. Finally, section 6 is devoted to some remarks on

possible empirical implications.

1. The Case of Reversible Investment
A rigorous analysis of this case has been carried out in the earlier
publications cited and will follow as & special case of the general

reversible case. But the result is obvious once stated: at each instant,

hold that stock of capital for which the marginal profitability of

capital equals the cost of capital, by which is meant the sum of the

short-term interest rate, depreciation, and the rate of decline in

capital goods prices.
Once stated, the rule will seem banal, for it is one of the standard

equations of capital theory. Yet its implications are often ignored. It
means that the decision as to the stock of capital to be held at eny

instant of time i1s myopic, being independent of future developments in

1
Arrow, Beckmann, and Karlin (1958) studied in detail a very special case

of the present results in which all prices are fixed and there is a fixed-
capital-output ratio so that revenue is proportional to the smaller of the
two quantities, capacity and demand, the latter varying over time. Nerlove
and Arrow (1962) dealt with advertising, considered in effect as a capital
good. Advertising is clearly irreversible, but it was then not possible to
treat the optimal policy in a fully adequate fashion,

4
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technology, demand or anything else; forecasts for only the most immediate
future are needed and then only as to capital goods pr:l.c:es.2 The argu-
ment for this rule is simple: When investment is reversible, then the
firm can buy a unit of capital goods, use 1t and derive its marginal
product for an arbitrarily short time span, and then sell the undep're-
ciated portion, possibly at a different price.

This rule defines a demand function for capital very different from
Keynes's marginal efficiency of capital {1936, Chepter 11), unless the
latter :I.s' so interpreted as to make it meaningless. In effect, Keynes's
rule is that an investment is Justified if and only if the sum of dis-
counted returns at least equals the cost. But the return to a particular
investment is not a datum but depends on the total volume of capital in
the system. With reversible investment, a natural interpretation is that
the given investment is taken to be the marginal investment in every
future period, in which case the return in any future period is simply
the marginal productivity of capité.l » net of depreciation and pricg )
changes, at that time. If the firm follows in the future the myopic rule
of equating marginal productivity of capital to the rate of vinterest,
then it is true that the Keynes rule amounts to accepting the same rule
today. But the interest of the marginal efficiency concept evaporates,
since all the content lies in the myopic rule.

The marginal efficiency rule can easily be misunderstood to mean
that in evaluating future returns the new investment today is to be
regarded as marginal not to a future optimal stock but to the présent
stock. This 1s wrong, however. Suppose, for example, the marginal

productivity schedule is anticipated to be sh:l.ft:l.ng upward over time.

- Strictly speaking, if depreciation is not exponential , the depreciation

term does depend to some extent on the mture course of interest rates; for

the details, see Arrow (1964).
5
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Then the sum“of discounted profits may exceed the cost because of high
regurn, . in the distant future, even though the marginal product may be
ieuthun interest in the near future. It is indeed true that it is
better to undertake the investment than not to, but these are not the
only alternatives. A still better one would be to postpone the invest-
ment until it is profitable in the immediate future. It is this pos-

sibility of postponement which justifies the myopic rule.3

2. Explicit Formulation of the Model

The model will be formulated very generally in some respects at least.
We assume one type of capital good, the stock of which is denoted by K.
At each moment of time the operating profit function, P(K,t), denotes
the profits obtainable from a given stock of capital, K, by optimal

employment of other factors. Thus, the variations of P over time may

reflect changes in technology, supply conditions for other factors, or

'd.emand condi tions. The firm faces a perfect market for liquid capital,

———

but the interest rates may be changing in time in & known way. ILet o(t)
be the rate at which receipts at time t are discounted back to time O,

the beginning of the optimization period. Then the (short-term) interest
rate at time t 1is

o(t) = -aft)/o(t),

vhere the dot denotes differentiation with respect to time.

We will take the price of capital goods as numeraire. This implies

3 For other recognitions of the myopic rule for capital policy, see
Marglin (1963, pp. 20-27), Kurahashi (1963), and Champernowne (1964,

P. 185). Pisher's "rate of return over cost" (1930, pp. 155-58) appears
to be similar to Keynes's '"marginal efficiency of capital" but in fact
Fisher considered returns and costs to be measured relative to the best
&lternative. If the alternative of postponement is considered, then the
myopic rule is derivable, though Fisher does not do so explicitly.




that the interest and discount rates are expressed in terms of capital

goods, rather than money, so that the interest rate used here is the

money rate of interest less the rate of appreciation of capital goods
prices.

let I(t) be the rate of gross investment. Then the cash flow at
time t, in terms of capital goods, is P(Kt,t) - I(t),h and there-

fore the sum of discounted returns is

(1) 7 ofe)[P(K,,t) - I(t)]at.

The aim of the firm is to maximize (1) by suitable choice of investment
policy, I(t). The evolution of the capital stock, K(t), is determined
by its initial value, K(0), and by the investment policy. If we assume

depreciation at a fixed exponential rate, 8, then

(2) IE:I-&K.

Finally, the assumption of irreversible investment means that gross

investment must be non-negative.

(3)  1I(t) 3 0.

We also postulate positive but strictly diminishing returns to- capital

at any moment of time.

(%) B, >0, < 0.

X Pex

In the remainder of this section it will be argued that this problem
can be transformed into another of the same form, but with 8 = 0. Then

for the remainder of the paper we can assume the absence of depreciation

with no loss of generality.

*  Punctions of time, for example, K(t), will also be symbolized by using
t as a subscript, e.g., K,, when typographically convenient, and the time
variable may even be suppressed when its presence is clear from the coﬁtcxt.

B aler e R, ™ :
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x(t) = K(£)e2%, y(t) = 1(t)e®F, p(t) = aft)e™®t,

-0t

P(x,t) = eStP(xe 2 5)s

Then it is easy to calculate that

ot
e =Y,

x=(K + 6K)e5t= I(+)
and

e(t)[P(x,t) - y(t)] = a(t)[P(K,t) - I(t)],

so that the original problem is transformed into the maximization of

2 8(£)[B(x,t) - ylat,

subject to the accumulation condition, ; = y, the initial condition,

x(0) = K(0), and the non-negativity condition, y > 0, following from (3).
The new problem is indeed of the original form, with x and y replacing
K and I, respectively, and & = O. Further,

- = Bt
PX = PK, PXX = PKK’

so that conditions (3) still remain valid

3. The Characterization of the Solution

We now assume that ® = 0; then we wish to maximize

(1) IS APk, t) - 1(t)]at,
subject to

(2) k=1,

K(0) given, and

(3) I>o.



The return to an investment at any moment of time has two parts:
the current cash flow and an addition to the sum of discounted future
benefits. The latter is equal to the value of a gift of a unit of cap-
ital at time t. Let p(t) be this shadow price of capital at time t,

discounted back to time O. Then the (discounted) value of investment

at a given time t 1is
(%) H=o(t)[P(X,t) - I] + p(t)I.

H 1is known in control theory as the Hamiltonian (after the 19th Century
mathematician who introduced the concept). Then I 1is chosen so as to

maximize H, subject to the condition (3).

However, we have to have & principle for determination of the shadow
price of capital, p. Pontryagin and associates have shown that p(t)

must evolve in time, according to the differential equation

(5) p= - M/X.

Let us rewrite (4) by setting

(6) a(t) = p(t) - oft);
then

(7) H=oft) P(K,t) + q(t)I.

The maximization of H with respect to I has a rather trivial
form. If q(t) <0, then the optimum I, subject to (3), must be O.
If q(t) = O, then the optimum I can be any non-negative quantity.
This does not mean that I 1is indeterminate; as will be seen shortly,

it iy determined by other considerations but not by the requirement that

the Hamliltonian be maximized. If q(t) were positive, then there would

9
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be no optimum for I; the larger the better. This is, however, incompat-
ible with the existence of an optimal policy, for q(t) would be positive
over an interval, and infinite investment over an interval is obviously
non-optimal. The point is that if & policy of capital accumulation led
to such a situation, it would have been better to have invested more

earlier, so that the policy followed was non-optimal. We conclude:

(8) a(t) <0; 1if q(t) <O, then I(t) = O.

The economic interpretation of (8) is straightforward. The comparison
of q with O 1is, according tc (6), a comparison of p with @; since
the market price of capital goods is always 1, by the choice of numeraire,
of{t) 1is the market price of capital goods discounted back to time O,
while p(t) is the shadow price (the value of future benefits) similarly
discounted. If q 1s negative, the shadow price is less than the market
price, and it does not pay to invest. If q = O, one is just indifferent
at the margin between investing and not investing. If q could be
positive, it would pay to invest infinitely, btut it would also have paid
to invest infinitely at an earlier time.

From (7), (5) becomes

(9) b =-aft) B,
wvhich can also be written
a(t) P, + é = 0,

i.e., discounted current returns plus changes in discounted shadow value
should be zero, a restatement of the familiar equilibrium relation for
the holding of assets, but with shadow prices substituted for market

prices.

10
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Since the short-run optimum condition (8) has been written in terms
of q rather than p, it is convenient to reformulate the differential

equation (9). From the definition (6), and (9),

a=p-a- o t)[-P - ()]

or from the definition of p(t),

(100 = o6)p(t) - B(K,,t)] -

The integral of (10) is straightforward:

L
(1) alt)) - alty) = ,ftl o t)[(t) - Bk, t)lat.
o

Formally, the solution has been completely described. We seek three
functions of time, K(t), a(t), and I(t), Jointly satisfying the condi-
tions (2), (3), (8), and (10), with K(O) given. The initial value
a(0) has not been explicitly defined; it has to be such that all these
conditions can jointly be satisfied. Primarily, it has to be sufficiently
emall so that the condition q(t) <1 holds.

However, a good deal more can be said about the structure of the
solution. First, it is necessary to discuss the possibility of discontin-
uous jumps in the stock of capital. A jump in the stock of capital would
require an infinite rate of investment, but from the point of view of the
firm there is nothing difficult to comprehend; it is simply the acquisi-
tion of a block of capital goods at some instant of time. We will show
that 1t 1s never optimal to have a jump in the stock of capital except
possibly at the very initial point of time.

Since K(t) is monotone increasing, both the left- and right-hand
limits exist at every point. Let K(t) have a discontinuity at t =t

o)
vhere t; >0, and let K(ty-0) and K(to+ 0) be the left-hand and

11
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right<hand limits, respectively. Since K(t) is increasing,

have
K(to- 0) < K(t0+ 0).
Define

(12) r(K,t) = p(t) - P (K,t).

Since Pk 1s strictly decreasing in K,
(13) r(K,t) is strictly increasing in K for fixed t.

Then we can choose ¢

1 sO that

and c2

r[K(to- O),tO] <ep<e,< r[K(tO+ o),to] .

Again, since K(t) is increasing, we must have

K(t) < K(to- 0) for t< ty, K(t) > K(ty+ 0) for t >t

and therefore

r(Kt,t) < r[K(to- 0),t] for t< ty >

r(Kt,t)

HAV

r[K(tO+ 0),t] for t > ty -

Finally, since r(K,t) 1s continuous in t for fixed K,

r[K(tO- 0),t] < ¢) for t sufficiently close to t

r[K(tO+ 0),t] > ¢s for t sufficiently close to to

°

Combine these statements and recall (10).

a(t)/o(t) < ¢; for tp-e<t< tys
Q(t)/o(t) > ¢y for t,<t< ty+ €,

for some ¢ > 0.

But since investment is taking place at time tys q(to) = 0; since

12
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q(t) < 0 everywhere, by (8), it is impossible that q(t) < O for all

t, ty- € <t < t,, for then we would have a(t) > q(to) = O throughout %
J &

that interval. Since q(t) > O for some t, ty - € <t <ty wemust i
= 5

have ¢, > 0; by a similar argument, s < 0, which contradicts the -%

assertion ¢, < Coe
(14) An optimal investment policy has no jumps other than possibly at
t = 0.
With this result we can now investigate more closely the structure of

the optimal solution. From (8) it is clear that the optimal path consists

of time intervals satisfying alternately the conditions q(t) = O (shadow
price and market price of capital goods are equal) and q(t) < O (shadow
price of capital goods less than market price), with zero investment in
the latter case. Call the intervals in which q(t) = O free intervals
(since the non-negativity condition is not binding on those intervals),
and those in which gq(t) < 0 blocked intervals.

In a free interval, q(t) = O throughout the interval. Hence,

qQ=0, orby (lO),

(15) Pk(Kt,t) = p(t) in a free interval.

This is precisely the myopic rule discussed in section 1. In general,

let us define the myopic policy by the equation

(16) B (K¥,t) = o) ;
under the assumption of diminishing returns, this equation has a unique

solution. Then (13) is written
(17) K(t) = K*¥(t) on a free interval.

But K(t) is increasing. Therefore, K*(t) must be increasing

13




throughout ary free interval., If K#(t) is a well-behaved function, it
has alternately rising and fa! ing segments. Refer to any interval which

is a rising segment of the graph of K*(t) as a riser.
(18) A free interval lies entirely within a single riser.

Now consider any tlocked interval starting at time to > 0. It was

preceded by & free interval and therefore to must lie in a riser.

Since neither K(t) nor gq(t) have jumps, we must have K(to) = K*(to)
and q(to) = 0. Since I =0 on a blocked interval, K(t) 1is a con-
stant, so that K(t) = K*(to) for all t in the interval.

A blocked interval ending at t, < +® must be followed by a free

1

interval. By exactly parallel arguments, tl must lie on a riser,

K(t) = K*(tl) for all t in the blocked interval, and q(tl) = 0.
If we recall that by definition q(t) < O on a blocked interval,

then with the aid of (11) and (12) we can draw the following conclusions:

(19) On a blocked interval (to,tl) with t. >0, t, < +=,

0 1

(8) K*(ty) = K¥(t));

t

() [ 1 oft) rlkx(t,),tlae = O;
t
0

() [* oft) r[k¥(t,),t]at <0 for ty <t <ty
t

(o}

<t <t,.

t
(d) ftla(t) r[K*(tO),t]dt >0 for t, 1

Relation (d) is not independent of the others but follows from (b) and
(c).

Relations (b-d) have simple interpretations. Suppose it were possible
to rent capital goods for some fixed period of time at a price p(t)

1L
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possibly varying in time. Then Pk - p=-r 1is the instantaneous profit.

Purchasing a capital good and selling it at the end of the period is
exactly equivalent to renting it at a rate equal to the market rate of
interest; purchasing a capital good and holding it to a point of time
vhere the firm would wish to purchase capital goods anyway is also equiv-
alent to renting. Then (c) assures us that it would be profitable to
rent a capital good at to for any term short of the full blocked in-
terval; since in fact the firm has to buy instead of rent, and neither

can it sell at time t nor does it wish to hold it then, the firm in

fact does not purchase. Equation (b) says that at the margin the fim is

indifferent between renting and not renting for the entire period.. Rela-
tion (d) assures that the firm would not wish to rent beginning at any
point in the blocked interval and ending at time tl (for if it did, it

would buy).
There may be a blocked interval beginning at time O and ending at

a finite time t.; the stock of capital must be constant at K*(tl) and
q(tl) = O. However, there might be an initial Jump in capital at time O
before settling down to the blocked interval; if there is, then q(0)

must be zero, since investment is taking place. Then, by the same

arguments,
(20) On a blocked interval (O,tl), with t, < +=,

(8) K(0) < K¥(t));
t
(®) [ oft) rlix(sy),las 2 0

(c) strict inequality cannot hold in both (a) and (b);

t
() ftla(t) r[k*(t ),t}dt >0, 0<t <t,.

15
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To discuss blocked intervals starting at some to > 0 and continuing
for all subsequent values of t, 1t is necesséry to note the asymptotic
behavior of q(t). Since p(t) was defined as the shadow price of cap-
ital, it is necessarily non-negative since P, > 0. Hence, from the

K
definition (6) and from (8),

-a(t) < a(t) < o.

However, we may certainly suppose that ot) approaches zero as t
approaches infinity; this would certainly be true if the interest rate

were bounded away from zero or even approached zero slowly. Then,

(21) a(+ ®) = Um q(t) = O.
t - 4

Consider now a blocked interval beginning at t, > O and continuing

0
to positive infinity. Then K(t) must be the constant K*(to) and

q(to) = 0, so that, much like (19),

(22) On a blocked interval (to,+w), with t, >0,

0
(8) ' oft) rlxx(t,),tlat = o,

%

(v) It o t) r[K*(to),t]dt <0, ty<t.
t
0
Finally, it 1s possible to have a blocked interval beginning at

to = 0 and continuing to plus infinity. It may be that the initial stock
of capital, K(0), is simply held intact withcut further investment, or it
may be that there is a jump immediately to some value K. which is then
never subsequently added to. In the latter case, of course, q(0) must
be zero since some investment has taken place. In any case, by (21),

q(+») = 0.




(23) On a blocked interval (0, +=), K(t) is a constant K, with

‘.ﬂ“

(a) k(0) <K;

b . ]
[

(v) [Poft) r(k,t)at > 0;
5 z
(c) the strict inequality cannot hold in both (a) and (b);

(4) [*° o(t) r(x,t)at >0, 0 < t.
t

S S ISRt Band UG LAING LSO TLAS e S

Theorem. The optimal capital policy for a firm with irreversible

o altson {04

investment 1s an alternating sequence of free and blocked intervals,

o
S

constructed 50 as to satisfy the relevant conditions among (17-20) and

S

(22-23). g
4. Algorithmic Remarks ;?

It may not be obvious that the stated conditions really provide a fg
sensible way of computing the optimal policy. In particular, conditions %§

P

i such as (19c) and parallel conditions for the other cases refer to the

values of a function at every point in the interval, and therefore the

e 2 SRR

amount of trial and error needed in successive approximations to the true

policy appearsto be prohibitive. But in fact we are seeking only the

maxima or minima of certain functions, and for these it suffices to

A ANt i 5

search only among local maxima or minima; thus, (19c) asserts that the
maximum value of the indicated function of time be negative and for this
it suffices to calculate the integral at local maxima. The local maxima
are clearly those zeros of the integrand at which its value changes from
positive to negative. If the functions P(K,t) and p(t) are well-

| behaved, there will be only finitely many zeros in any finite period.

17
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Recall, from (12) and (13) of section 3, that

(1) r(K’t) = p(t) - PK(K:t)

is a strictly increasing function of K for fixed t. By definition of

the myopic policy,
(2) r(k#,t) = 0,

and therefore

(3) r(K,t) >0 1if and only if K > K*#(t).

Label the successive risers 1,2,... ; for well-behaved functions
there are at most denumerably many risers. On any given riser, K¥*(t)
is a strictly increasing function of t and therefore has an inverse,
ti(K), the time on riser 1 at which K*(t) takes on the value K.
The function ti(K) is defined on the range of values which K*(t)

assumes on riser i; let K, Dbe the lower bound of this range, and Ki

=i
the upper bound.

If there is a blocked interval starting on riser i and ending on
riser J > 1, with K(t) = K on that interval, then from (19a) of
section 3 the blocked interval starts at ti(K) and ends at t J(K).

This can, of course, only be possible if
(4) max (K, Ky) <K < min (K, KJ) ;

for if K were outside these bounds, either ti(K) or tJ(K) would be

undefined. In view of (19b), define, for all K satisfying (L),

(5) (k) f“f’(x) (t) r(K,t)dt
= Q r P b
T )

18
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Then a second condition that must be satisfied is that
(6) q(K) = 0.

We now show that qu(K) is strictly increasing in K within its range
of definition and therefore there is at most one solution to (6). First

observe that, from (2) and the definition of ti(K),

(7 r[K,ti(K)] = 0 for all K for which ti(K) is defined.

Then differentiate (5) with respert to K.

af 4(K) = o t,(K) IrlK,t,(K)] +](K) - olt, (x)] 7K, ¢, (K) 18} (K)
+ j't'j(K) a(t) r(K,t)dt.
t, (k)

From (7) the first two terms vanish;since r(K,t) is strictly increas-

ing in K, Iy > O everywhere so that the last integral is positive.
(8) qu(K) is strictly increasing in K.

It is also useful to define

(9) (K,6) = [* oft) r(k,t)dt;
e =l w

(19c) of section 3 requires that q_i(K,t) <0 for ti(l() <t< tJ(K).

As above, we calculate
Oq; /K = -aft, (k)] r(K,t,(K)] t(K)

+ j‘:i(x)a(t) r (K,t)dt > 0.

(10) qi(K,t) is strictly increasing in K for fixed t.
Also,

Oq, /% = oft) r(K,t),

19

TR e T

e e e Mnﬁn‘rrm!’f“?'!.w4
\

1
t

A A

P i SRR e




wamstarp g L U~ ke A b i e

so that a local maximum of q(K,t) as a function of time occurs at those
values t, at vhich r(K,t) changes sign from positive to negative as
t increases. But from (3) it follows that K*(t) <K to the left of
ty) K*(t) > K to the right, so that K*(t) is increasing at t, and
K*(to) = K. Thus, t,is on a riser, say k, and t,= tk(K). Hence,
at a local maximum, q_i(K,t) = qik(}() for some k.

In the present notation the condition (19c) of section 3 is simply
that qi(K,t) <0, ti(K) <t < tJ(K), for a blocked interval starting
on riser 1 and ending on riser J. It is necessary and sufficient for
this that q_i(K,t) < 0 at every local meximum in the same interval, and
therefore that
(11) qik(x) < 0 for all risers k, 1 <k < j, for which qik(K)

is defined.

We can also use (10) as additional help in screening out conceivable
blocked intervals by showing that condition (11) is not satisfied. Sup-
pose it has been shown that qik(K) > 0. By definition this is equivalent

to

g [K, t,(K)] > 0.

From (10), qi[K',tk(K)] >0 for all K' > K. Consider any riser

J >k for which K' 1lies in the range of KX*(t). Since the entire
riser J lies beyond the entire riser Kk, tJ(K') > tk(K), and it has
been shown that

qi(K',t) >0 for some t, ti(K') <N tj(K’),

namely, for t = tk(K). There can be no blocked interval from riser i

to riser j with K(t) at the constant level K' for any K' > K.

20
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Define now an eligible interval as one that satisfies all the

necessary conditions for a blocked interval; specifically,

(12) A pair of risers i, j, with 1 < Jj, form an eligible interval
at level K if qu(K) = 0 and qik(K) < 0 for all risers k,

1 <k < J, for which qik(x) is defined.

Note that from (8) there can be at most one K for which qu(K)
= 0, and therefore at most one eligible interval between two given risers.
The preceding remarks can be assembled to provide an algorithm for
finding all possible eligible intervals:
Algorithm. Start with any given riser and consider in turn all
successive risers. Suppose that we have started with riser i and
py.

reached riser j. Assume defined a number Kij’ to be defined

recursively. Let KiJ = min(KiJ,Kj), 513 = max(gi,gj). If Kij <

gij, then there is no eligible interval from i1 to J; proceed
to the next riser, with Ki,J+l= KiJ‘ If Kij 2’513’ compute

qij(Kij)’ If negative, again there is no eligible interval from i

~ ~

1,341 ° KiJ' If

qij(KiJ) > 0, compute qij(ﬁij)' If positive, again there is no

to J, and proceed to the next riser, with K

o

1,447 K1y
Finally, if q;,(K;,) £ 0, ve can find K, so that 9 3(K4) =0,

eligible interval from i1 to Jj, but now we define

with gij < KiJ < Kij’ Then there is an eligible interval from i

to J at level Kij' To continue the induction, now define
K, ,,;=K, .. To start th dure, define R =
sl g s e procedure, define erele Ki'

Note that K represents a K-value such that all higher K-values have

1]
been already excluded from consideration by the argument that qik(ﬁlj) >0

2l




for some riser k, 1 < k < j. The computations of q, J(Ei .j) and
q_“(gij) are designed to establish the possibility that qu(KiJ) =0
for some K. If qi,j(fi.j) < 0, then qu(K) <.O for all K in the
interesting range ﬁi,j to KiJ by the monotonicity of qu(K). On the
other hand, if q‘l,j(liij) > 0, then qu(K) > 0 in the relevant range;
further, we now know that any value of K > Ei 3 is ruled out as the
level of an eligible interval for risers beyond Jj.

The algorithm can easily be extended to find eligible intervals
from a riser i out to infinity. We need only introduce an additional
riser at infinity, with t (K) = += for all X, K =0 and K = +,

-]

and define

o~ ~
K = lim K,, ,
i 410 5 i)

9 oK) = 77 aft) r(k,t)at.

t, (k)

We must finally consider possible blocked intervals beginning at
the origin. First it will be shown that there cannot be a jump at the
origin to a capital stock greater than K*(0O). For suppose that
K(0+0) > K*(0). Since K(t) is monotonic increasing, K(t) > K(0+0)
for all t > 0. On the other hand, by continuity K*(t) < K(0+0) for
t sufficiently close to 0, so that K(t) >K*(t) for t >0 and
sufficiently small, and by (3) r(K,t) >0, which implies that q(t)
1s increasing. But this is only possible if q(0) < O, and therefore

there was no investment at time O.

(13) If x(0) > K*(0), there is no jump at the origin; if K(0) <

K*(0), the jump is to a value not exceeding K*(0).

22
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We can now define an eligible interval from time O to riser § -

analogously to (12). First define
6, (K)
(14)  ay,(K) = Io oft) r(K,t)dt.

Then define

(15) The origin, O, and riser j form an eligible interval at level

K if the following conditions are satisfied: (a) K > K(0);
(b) qu(K) > 0; (c) strict inequality cannot hold in both (a)
and (b); qok(x) < qoj(K) for a1l k, 1<k < j for which

qok(K) is defined.

The algorithm for determining all eligible intervals beginning at
the origin has two branches, according as we are considering K = K(0)
or X >K(0). 1In the first case, let J, Dbe the first riser, if any,
for which qu[K(O)] : 0. Having defined Jl""’Jr’ let Jr+l be the

first riser, if any, for which
1,4 (K(0)] >qur[K(0)], 3> Jd.

Then each of the intervals from 0 to some Jr is eligible at level

K(0). 1In these definitions it is not excluded that one of the Jr's is

the riser at infinity. Also, if the sequence of Jr’s is infinite, it

follows that the interval from O to infinity at level K(0) 1is eligible.
For values of K > K(0), the previous algorithm is fully applicable,

provided we introduce a riser O, with tO(K) = 0 for all K, = K(0),

Xo
and Kb = K*¥(0). Note that from (13) there can be eligible intervals

from the origin at level K > K(0) only if Ky < Kb.

23
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The optimal path, finally, is obtained by choosing eligible
intervals in a mutually consistent manner. Blocked intervals are sep-
arated by free intervals, each 23 which must lie on a single riser.

If there is a jump at the origin, we understand this to mean that there
is a free interval on riser O. With this understanding, an optimal
policy is described by a finite or infinite sequence of risers, 11,12,...
which satisfy the following conditions: (a) for each r, there is an

(b) the levels K. . are
14
rr+l

's 1s finite, and the

eligible interval from ir to L

increasing with r; (c) if the sequence of ir
last of them is a finite number, then it must be a riser which continues
out to infinity (for in this case the optimal policy terminates with a
free interval extending to infinity). It is understood that if the
sequence of ir's is finite, the last one may be + o, in which case
it is understood that there is a terminal blocked interval.

To actually find the optimal policy after having listed the eligible
intervals 1s a process of trial and error. One starts with an eligible
interval from i to 1i,, say, then sees if there is an eligible interval

14 2
at a higher level beginning at 1

X and continues out to infinity unless

the continuation becomes impossible. If it does, we go back to some

-’

riser at which a choice of eligible intervals was pcssible and try a
different one. There is probably no point in specifying the general
algorithm more precisely; in any given concrete situation, one is apt

to have considerable qualitative information abcut the underlyling func-

tion P(K,t) which can be used to guide the search more precisely. J,

2k
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5. The Case of Constant Returns

If we assume constant returns to capital at any given moment of time,

much of the previous discussion simplifies considerably. There is, of

course, the possibility of an investment policy which will yleld an

infinite value for the sum of discounted profits. As usual in treatments

of constant returns, we exclude this case. Naturally, as in the usual
finite-dimensional case, the policy of investing nothing will then be as
good as any other. The only remaining question is that of listing all
investment policies which will be no worse than not investing at all.

The assumption of constant returns means that P(K,t) 1is linear

in K and that P, is a function of t alone, not of K. Then r(K,t)

K
also is independent of K and can be written r(t). When r(t) >0,

then K¥(t) = O0; when r(t) <O, K*(t) =+ ®; when r(t) =0, then
K*(t) 1is indeterminate since all values of K are equally optimal.
The time-axis is divided into infervals with r(t) >0 and r(t) <O,
respectively, separated by points with r(t) = O. Those zeros of r(t)
for which r(t) >0 to the right and r(t) < O to the left are the
analogues of the risers in the diminishing returns case; the samzc term
will be used here. Since the analogue of a free interval becomes an
interval on a vertical line, jumps at the risers are not excluded. But
no investment can take place except at a riser (including as before &
riser at 0).

The solution for this case can be worked out much as before except
that the formulas are much simpler since the magnitudes qu are now
independent of K. The final result can be put simply:

(1) The optimal policies are all those which call for Jumps in

capital stock at all risers i (including possibly O) for which

25
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It might be useful to note that the condition that infinite profits

be impossible is that q, > O for all risers i.

6. Econometric Implications

In econometric application the function P(K,t) 1is not itself an
observable but rather an expectation, held with subjective certainty,
of future profit prospects. It is in the tradition of Professor Hicks's
capital model, where actual present and planned future behavior are
functions of present and anticipated prices. At any moment, under the
model as given, the firm draws up an investment program for the present
and future, but the only part of the program that is executed is the
immediate investment decision. Hence, we observe at each moment the
initial investment of a long-term investment program, with the profit
function and the future course of interest rates which are believed in
as of that moment. To determine the empirical impliications of this model,
it would be necessary to add a second relation, showing how the antic-
ipated profit function and interest rates shift with time, possibly

2

in response to new observations on market magnitudes.

2 This necessarily brief statement has ignored the possibility of lags
between investment declsions and investment reilizations, so important
in detailed empirical analysis; see Jorgenson (1965). Under conditions
of subjective certainty, the calculation of the optimal policy is af-
fected relatively little, since virtually any desired policy for invest-
ment realizations can be achieved by a suitably chosen policy for invest-
ment decisions, after some initial period. But the investment actually
made at any given time will depend upon anticipations of profit functions
and interest rates held at some earlier time or times. If these antic-
ipations shift over time, due to new observations on prices and the like
or for any other reason, the dependence of actual investment on observed
variables will be rather complex.
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This is not the place to go into the possible ways in which antic-
ipations of profit functions and interest rates can be formed, and so we
cannot develop here a complete testable version of the theoretical
developments of this paper. But there is one striking and definite
qualitative implication: that at any given moment either the firm is
holding its desired stock of capital (as defined by the profit function
of the present moment, and the current rate of interest in terms of
capital goods) or there is zero gross investment.6

Whether or not this implication is empirically valid can be
ascertained only after suitable reinterpretation of the model to apply
to the available date. It need only be noted here that, loosely speaking,
the firm may be expected to hold the desired stock of capital until a
point of time shortly before an anticipated business cycle peak. At thls
point, gross investment stops abruptly. The hypothesls therefore resembles
that of the flexible accelerater which works on the upswing but not on the
downswing (Hicks, 1950, 44-47), but differs (a) by having a less rigid
relation between the desired stock of capital and the level of output,
and (b) by admitting the possibility that the collapse of investment may
occur because of anticipation of the end of the boom rather than its

actual occurrence.

Since any observed moment of time is the initial point of an optimal
investment policy computed on the basis of the then currently held ;
anticipations of profit functions and interest rates, there might appear #
to be & third possibility, that of a jump in capital to a level below i
that currently desired. But since the anticipations are presumably

themselves shifting continuously, we do not expect desired jumps to
appear.
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