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OPTIMAL FIXED-PCINT CONTINUOUS LINEAR SMOOTHLING

J. S. Meditch

ABSTRACT

The filter and error covariance equations for optimal fixed-
point smoothing for continuous lineaf systems are developed.
The development is carried out by considering the limiting
case of the results for the same problem for discrete linear
systems. The procedure is of use in estimation problems
where a smoothed estimate of a continuous linear system's
state is desired at some specified critical time during the
system's operation. Four examples are presented to illustrate

the results.
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1.0 Introduction

The problem of prediction and filtering for countinous linear systems has been

(1)

continous linear systems for the case where the measurement interval to <t<~

treated in considerable detail by Kalman and Bucy The problem of smoothing for

(t = variable time) is fixed and a smoothed estimate of the system's state x is ob=

(2)

tained for all t ¢ [to, ] has been solved by Bryson and Frazier
and Striebel(3). The smoothed estimate is the solution of the system of equations

» and Rauch, 1lung,

(/7) = Fle) &e/7) + QP (1) (Me/m) - &) b oce<T (D)
where ?c(t/‘r) is the smoothed estimate, an nevector; F(t) is a continous nxn matrix
which is defined by the plant dynamics; Q(t) is the nxn positive semidefinite co=
variance matrix of the zero mean, Gaussian white noise plant disturbance; P-l(t)
is the inverse of the nxn filtering error covariance matrix; X(t) is the filtered
estimate of x at time t; and the dot denotes the derivative with respect to t. Equa=
tion (1) is subject to the boundafy condition ?(('r/'r) = ?c('r) which is obtained from the
filtering solution. Hence, Q(t/‘r) is obtained by integrating Eq. (1) backward in
time from 7.

If a smoothed estimate of x is desired at only one value of t ¢ [to,'r] , say at
some critical time during the plant's operation, the above smoothing procedure is
inefficient from a computational point of view. It would be more desirable to have
a smoothing algorithm that begins with an initial estimate of x{t) and updates this
estimate by recursively processing the measurements in the interval [t,7] . Thus
the smoothed estimate could be ""built=up' as more measurement data become
available, rather than by "back=tracking" from &(t) as required by Eq. (1).
Additionally, if the terminal time 7 is not fixed or specified a priori, as might be
the case in an '"oneline'" smoothing problem, the smoothing formulation of Eq. (1)
is not applicable. The case where t is fixed, and T is either fixed or free, t<T,
is termed the fixed=point smoothing problem, and is the subject of this paper.

This problem arises in such physical situations as: (1) assessing the per=
formance of a midcourse space guidance system from telemeiry and tracking data
taken after the midcourse maneuvar is completed, and (2) determining the errors
in a telemetry or communication channel at some known critical time from measure=~
ments and recordings taken after that time. In both of these cases, the terminal
measurement time may not be known a priori, but might be governed by such factors

as fading and interference during the experiment.

o
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In this paper, the fixed=point smoothing problem for continous linear systems
will be treated by considering the limiting case of the fixed=point smoothing solution
for discrete linear systems for which the solution is known 4 5). The limiting pro=
cedure to be used is due to Kalman(b).

Four examples are included to illustrate the results.
2.0 Fixed~Point Discrete Linear Srnoothing(4’ 2

Since the relations for fixed=point continous linear smoothing will be developed
by considering the limiting case of the fixed;point discrete linear smoothing soluticn,
the results for the latter are summarized below.

Consider the discrete linear system
x(k + 1) = &(k + 1, k) x(k) + w(k) (2)
zZlk+ 1) = H(k + 1) x(k + 1) + v(k + 1) (3)
where x is an n=vector, the state; z is an m=vector, the measurement; ® is a
real nxn matrix, tne state transition matrix; H is a real mxn matrix; and

k=0,1,..., is the discrete time index. In addition, w and v are independent,

zero mean, Gaussian white sequences for which

n

Efw(j) w' (K)] = Qlk) &,

n

E[vii) v (K)] = R(K) 6,

where E denotes the expected value, the prime denotes the matrix transpose, and

ij is the Kronecker delta. Here, Q(k) is a real nxn positive semidefinite matrix
and R(k) is a real mxm positive definite matrix. The initial state x(0) is asstumed

to be a zero mean, Gaussian random n=vector which is independent of w and v for
all k, and for which

E[x(0) x' (0)] = P(0)

where P(0) is a real nx n positive semidefinite matrix.
Let Q(k/n), k < N, denote a smoothed estimate of x at time k based on measure=

ments up to and including the one at time N. Also, let the smoothing error be de=

fined by the relation

e AN LAAIAEL,



K(k/N) = x{k) = %(k/N)
and the mean square smoothing error by the expression

& = E[¥ (k/N) X(k/N)]

(4, 5)

Then, it can be shown that the smoothed estimate that minimizes 8

(termed the optimal smoothed estimate in the sequel) is given by the recursive

reiation
%(k/N) = X(k/N=1) + K(N=1, )[X(N) = X{N/N=1)] (4)

for N = k+1,k+2,... where

N1
K(N=1,k) = ‘l__r J(i) (5)
izk )
J(i) = P(i) &' (i + 1, 1) M"l(i + 1) " (6)

k = integer = constant, [ ] =l denotes the matrix inverse and #(N) and ¥(N/N-1)

are, respectively, the optimal filtered and predicted estimates of x at time N. The

latter two estimates are governed by the set of relations' ')
R(N/N=1) = ®(N, N-1) {(N-1) (7)
AN) = &(N/N-1) + KO(N)[2(N) = H(N) X(N/N=1)] (8)
K°(N) = M(N) H' (N) [H(N) M(N) H' (N) + R(N}] ™ (9)
M(N) = &(N, N=1) P(N=1) &' (N, N=1) + Q(N=1) (10)
P(N) = [I-K°(N) H(N)] M(N) (11)
for N=1,2,..., where X{(0) = o.. P(0) is assumed given, and I is the nxn identity




matrix.

The initial condition for Eq. (4) is

Mk/N-1) = %(k/K) = X(k) (12)
N=k+1

which is obtained from Eq. (8) wken N = k.
The nxn matrices M(N) and P(N=-1), which also occur in Eq. (6), are the

covariance matrices of the prediction error
%(N/N=1) = x(N) = X(N/N=1)
and the filtering error
%N=-1) = x(N-1) = X(N=1)

respectively.
The nx.m matrix KO(N) is called the optimal filter gain and is also given by

the relation
K°(N) = P(N) H' (N) R™} () (13)

Similarly, the nxn matrix K(Nel, k) in Eq. (5) is termed the optimal smoothing
filter gain.
The covariance matrix of the smoothing error for fixed=point discrete optimal

linear smoothing is given by the first=order matrix difference equation(4’ 5)

P(k/N) = P(k/N=1) + K(N=1,k) [P(N) = M(N)] K'(N=l, k) (14)
for N = k+1,k+2, ..., where the initial condition is

P(k/N=1) = P(k/k) = P(k) (15)
N=k+1

which is obtained from Eq. (11) when N = k.
Finally, it should be noted from Eq. (5) that the smoothing filter gain matrix

can be expressed by the recursive relation
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K(N=1, k) = K(N=2, k) J(N=1) (16)

N = kt+l,k+2,... .

3.0 Fixed=Point Continous Linear Smoothing
Consider the system of Eqs. (2) and (3) when the time between measure=~
ments is made arbitrarily small. Let the two time instants k and k+1 be replaced
by t and t + At, respectively, where At > 0. Also, let the plant disturbance w(k)
be replaced by u(t) At. Then, Eqgs. (2) and (3) become
x(t + At) = o(t + At, t) x(t) + u(t) At ' (17)
and

z(t + At) = H(t + At) x(t * at) + v(t + At) (18)

Assume that &(t + At, t) is the state transition matrix of the homogenous

linear system
X = F(t) x

where F(t) is a real continous nxn matrix. Then, ®(t + At, t) can be expanded in

a Taylor series to obtain
B(t + At t) = 1+ F(t) At + 0(atd) (19)

where O(Atz)‘denotes terms of order (At)z.
Substituting Eq. (19) into Eq. (17) and rearranging terms, there results

x(t + At) = x(t) = [F(t) x(t) + u(t)] At + 0(At?)
Dividing through by At ;:md taking lim At — 0 gives
x = F(t) x + uft)
and taking lim At = 0 in Eq. (18) leads to the relation

z(t) = H(t) x(t) + v(t)

- R TR i s e ) IR
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In taking this limit, care must be exercised in defining the Gaussian white
_noise processes u(t) and v(t) as limits of the Gaussian white sequences w(k) and
v(k), respectively. In particular, it has been shown 3 6)

matrices Q(k) and R(k) must be replaced by Q(t) At and R(t)/At, respectively, in

that the covariance

all reiations involving these covariance matrices in order that the description of the
disturbances be physically meaningful in the limit. The details are given else=~

where( 3, 6)

and will not be repeated here.

The above limiting procedure will now be applied to develop the equations for
fixed=point continous linear smoothing. Consider the smoothing interval [k, N] , and
let the discrete time instants k, N=2, N=1, and N be denoted by T, t = At, t, and

t + At, respectively, where At > 0. Then, Eq. (4) becomes
A A A
T/t + At) = %(T/t) = K(t, T) [t + At) = x(t + At/t)]

Dividing through by At and taking lim At — 0, it is seen that the fixed=point

smoothed estimate must satisfy the system of ordinary linear differential equations

X(T/t) = lim
At = 0

K(t, T) [R(t + at) = ¥t + At/0)]
At

(20)

The limit on the right=hand side of Eq. (20) will now be evaluated. Consider
first the expression for K(t, T) which, from Eqs. (16) and (6), is

K(t, T) = K(t = At, T) J(t)

K(t = At, T) P(t) &' (t + At, t) M'l(t + At) (21)

It then follows that

lim  K(t, T) = lim  K(t = At, T) P(t) &' (t + At, t) M"l(t + At)
At —0 At — 0
= lim  K(t = At, T) P(t) M"l(t + At) (22)
At —= 0

Making the appropriate substitutions into Eq. (10), it is seen that



M(t + At) = ®(t + At, t) P(t) &' (t + At, t) + Q(t) At (23)

= [I+ F(t) At + 0(at®)] P(e) [I+ F(t) at + 0(atd)] *
+ Q(t) At

= P(t) + [F(t) P(t) + P(t) F' (t) + Q(t)] At + 0{At?)
= P(t) + 0(At)

where 0(At) denotes terms of order At. It then follows that

P(t) M~} (t + At) = P(t) [P(t) + 0(At)] -l

[I+ 0(At)] -1

Substituting this result into Eq. (21) yields

lim  K(tT)=lm K(t - At, T) [I+ 0(at)] =}
At — 0 At — 0

= K(t, T) ' (24)

From Egs. (7) and (8), the second factor in the limit on the right«hand side
of Eq. (20) is given by the relation

?c(r. + At) - ?c(t + At/t) = K°(t + At) [z(t + At) = H(t + At) ®(t + At, t) Q(t)] | (25)
From Eq. (13) and the fact that R(N) rgust be replaced by R(t + At)/At,
KO(t + At) = P(t + At) H' (t + At) R™}(t + At) At (26)
Substituting Eq. (26) into Eq. (25) and the result into Eq. (2) gives

AT/e - tim Kl TIP(HAOH' (sta R (s+ae) a(t+A0) H(ERYO (tAL ()] At
At

At —0

from which it follows immediately that



KT/ = K(t, T) P(t) H' (1) R™H(O)[2(t) - H(t) &t)] (27)

-for t > T where use has been made of the result in Eq. (24) in taking the limit.
From Eq. (12), the initial :ondition on Eq. (27) is

T/t = X(T/T) = XT)
t=T

There remains now the task of obtaining an algorithm for determining
K(t, T). First, it is seen that Eq. (21) can be written

K(t, T) 3-1(t) = K(t = At, T) (28)

where
-l -l -l

J (t) = M(t + At)[®' (t + At, t)] P (t)
which follows from Eq. (6). It is noted that J-l(t) exists if and only if P(t) is
nonsingular. If P(t) is singular, it follows that ?c(t) = x(t) and there is no need for
smoothing. Hence, it is assumed in the sequel that P(t) is nonsingular.

Noting that [&'(t + At,t)] -1, o' (t,t + At), it follows from Eq. (23) that
M(t + At) &' (t,t + At) = B(t + At,t) P(t) + Q(t) &' (t,t + At) At (29)
The Taylor series expansion for &' (t,t +At) is
@' (t,t+ At) =1 « F'(t) At + O(At;)

Substituting this result and Eq. (19) into Eq. (29) and grouping terms gives

M(t + At) &' (t, t + At) = [I + F(t) At + 0o(at®)] P(t)
+ Q(t)[I = F' (1) At + 0(at?)] At

= P(t) + [F(t) P(t) + Q(t)] At + O(Atz)

Postmultiplying in this 'equation by P.l(t) then gives the result



3°Ye) = 1+ [F(e) + t) P~L(1)] at + o(atd) (30)
Substituting Eq. (30) into Eq. (28) yields
-] 2, { _
K(t, T) {I + [F(t) + Q(t) P "(t)] At + o(At )} = K(t = At, T)
which can alsp be written as
' | -] 2
K(t, T) = Kt = At, T) = = K(t, T) { [F{t) + Q(t) P~'1)] At + ofat?) }

Dividing through by At and taking lim At = 0 gives the nxn matrix linear

ordinary differential equation
K(t, T) = = K(t, TI[F(t) + Q(t) P~1()] (31)
where it is emphasized that the dot denotes the derivative with respect to t.

The initial condition for ©q. (31) is obtained by considering the time instants
Tand T + AT,AT > 0, and noting from Eqs. (5), (6),and (24) that

K(T, T) = lim K(T, T) .

AT —0

lim J(T)
AT -0

lim  P(T) &'(T + AT, T) M~Y(T + aT)
AT — 0 '

= lim P(T) M'l('r + AT)
AT —0

=lim [I1+0aT)] ~l=1
AT =0

Hence, the required initial condition for Eq. (31) is K(T, T) = L.

At this point, it is seen that Eqs. (27) and (31) along with their correspond=
ing initial conditions specify the fixed=point smoothing filter for continous linear
systems. Ho.wever. in order to use this filder, it is necessary to have the filtered
estimate Q(t) for all t > T, and the filtering error covariance matrix P(t) also for
all t > T. These two quantities are obtained directly from the optimal filter solu=

(1),

tion for continous linear systems' ’:



1
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10
4.2 = F(t) x + K(t) [2(t) = H(t) X] t2t (3.2)
Xt ) =0
K°(t) = P(t) H' (t) R™}(¢) (33)
P=F(t) P+ PF () - PH (t) R™(t) H(t) P + Qt) (34)
P(t ) given
From Eq. (33), it is seen that Eq. (27) can also be written
;‘.c(T/t) = K(t, T) K°(t) [2(t) - H(t) ?c(t)] (35)

for t > T.

The block diagram for the smoothing filter is shown in Fig. 1.

?:(T/t)
e

t=T
—X-—— Bz, T) pP—

, !
x(t )=0
{ °) l x Sample at t = T

for initial condition

(t)
z———@—— K(t) 5 = S x(t)

F(t) [

- H(t) |-

Fig. 1

Block diagram of fixed=point continous linear smoothing filter.
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4.0 Fixed=Point Smoothing Error Covariance Matrix

A linear ordinary nxn matrix differential equation whose solution is the co=-
'variance matrix of fixed=point smoothing error will now be developed by applying
the limiting processes of Section 3.0 to Eq. (14).

Replacing k by T, N=1 by t, and N by t + At in Eq. {14) yields

P(T/t + At) = P(T/t) = K(t, T)[P(t + At) = M(t + At)] K' (t, T)
Dividing through by At and taking lim At —= 0 gives

K(t, T)P(t + At) = M(t + At)] K'(t, T)
At (36)

P(T/t) = lim
At —0

From Eqs. (11) and (26),

- K°(t + At) H(t + At) M(t + At)

P(t + At) = M(t + At)

- P(t+At) H' (t+At) R'l(t+At) M(t + At) At
Substituting this result into Eq. (36), noting from Eq. (23) that

lim M(t + At) = P(t)
At —0

and utilizing the result in Eq. (24), Eq. (36) simplifies to
P(T/t) = = K(t, T) P(t) H' (t) R™\(t) H(t) P(t) K' (¢, T) (37)
for t > T. Equation (36) can also be written
1'3(T/t) = = K(t, T) K°(:; H(t) P(t) K(t, T) | (38)

for t 3 T where Ko(t) is given by Eq. (33).
The initial condition for Eqs. (37) or (38) is

1/l . = P(T/T) = P(T)
t=T

RN IR
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which follows directly from Eq. (15).
The covariance matrix of the smoothing error is then the solution of either
Eq. (37) or (38) with P(T) as the initial condition.

5.0 Examples

Example 1. Consider the scalar system

x = u(t)

z(t) = x(t) + v(t)

for t > 0 where u(t) and v(t) are independent, zero mean, Gaussian white noise
. . 2 2 . .
processes having constant variances o and o, respectively, and x(0) is a zero
mean, Gaussian random variable which is independent of u(t) and v(t) for all t> 0
and E[xz(O)] = oz.
From Eq. (34), the variance of the filtered estimate.of x is governed by

the ordinary, firsteorder, scalar differential equation
ﬁ S =

for t 3 0 where P(0) = og. The solution to this differential equation is

1+p e Pt
P(t) = j e_pt t>0 (39)
lepe .
where
Q=0
v u
2
B = Oo'ﬁ
0’2+q
o
and
Zou
B = =3
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The optimal filter gain is seen to be

K°(t) = P(t) H' (t) R™(t)
_ 8 1+ p.e-pt
o‘zr 1 -p.e-Bt
Bt
- B lipe "
2 ; Pt

Now consider the problem of smoothing in order to determine an estimate
of the system's initial condition. It is noted that the initial estimate without
smoothing has a variance of 05.

Substituting the appropriate quantities into Eq. (31),

. -Bt
K(t, 0) = - -‘23 -i—i—ﬁ—e-;_%t- K(t, 0)
pe

where K(0,0) = 1. The solution is obtained by direct integration and found to be

SpCit]
2

K(t, 0) = Ltple_ (40)
l+pe P
Substituting Eqs. (39) and (40) along with H(t) = 1 and R-l(t) = 1/03 into
Eq. {37), it is seen that
. 2 "ﬁt
BlO/t) = m oy At o) (41)
(1 =pe ™)

where P(0/0} = 02.

After some manipulation, the solution of Eq. (41) is found to be

Y
P(0/t) = .‘L(.I_Zi.ﬂ .LLS;.:ET
l=pe

for t 2 0 and is, of course, the variance of the smoothed estimate of x(0).
1l is interesting to note the limiting behavior of the smoothing error variance.

First, it is seen from its definition that = 1 & p < 1. Hence, for t’k’a-g— , il.e., for
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and

2
Now suppose o, >>0 0. Then,
P(0/t)~ 00 << a°
vV u o}

and it is clear that a large reduction of the uncertainty associated with the esti=
mate of x(0) has been effected by smoothing.

. 2 o
Next, consider the case when 00 ~ O'V ou where it is seen that

2
GO
P(0/t) =~ =

thereby giving a 50% reduction,
Finally, if 02 <<o 0O,
o v o u

o 2
P(O/t) '~ O'O

and there is no reduction. In this case, smoothing is of no value, and the initial
. A .
estimate x(0) = 0 must be accepted as the optimal one.

For this example,

K(t, 0) K°(t) = _[;_ (1 +p) Bt
1 ape Pt

and Eq. (27) becomes

[=2t) = X(0)]

for t > 0 where the initial condition is %(0/0) = %{0) = 0.
(8,9) .

Example 2. A problem commonly treated using Wiener filter theory is the

n
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one for which the block diagram is shown below. Here, u(t) and v(t) are indepen=

® V(t)

at) ¢ | Ao

—pd W(t) = ™2

z(t)

a>0

dent, zero mean Gaussian white noise processes with constant variances a‘z1 and
G‘Zr, respectively; and W(t) = e-at is the system impulse response. The system

equations are

x = =ax + u(t)

z(t) = x(t) + v(t)

With tc> = = 00, the optimal filtered estimate of x can be shown(l) to have a variance
of
B- o2 -

in the '"steady=state'.

For sifplicity, it is assumed that a = 1, 0‘2, = 1, and oi = 8 from which it
follows that P = 2.

Now assume that it is desired to initiate smoothing at t = 0 to determine
?:(O/t), t > 0. For this example, Eq. (31) becomes

K(t,0) = = | =a+ =2 .K(t,O)

- 3 K(t, 0)

from which

=3t 0

|

o

-
A4

K(t, 0) =
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recalling that K(0,0) = 1.

The smoothing error variance equation, Eq. (37), is then

P(0/t) = = —— KX(t,0) B°

subject to the initial condition P(0/0) = P = 2. By direct integration,

P(0/t) = % (1+ -;_— e'6")

for t > 0. From this expression, it is seen that for one time unit of smoothing,

the variance in the estimate of x(0) is reduced from 2 to approximately 4/3.

Example 3. A simplified error model for the drift error in a single=degree=of=

freedom gyroscope operating in a ''zero=g' environment is given by the equations

6

.
€

e + u(t)

0

where ¢ is the angular drift error in the pitch plané, ¢ is the '"'steady=drift' error
. rate, and u(t) is the "randome=drift" error rate. It is assumed that u(t) is a zero
mean, Gaussian white noise process with constant variance Gi; and that e (to) and
(b(to) are independent, zero mean, Gaussian random variables with known varie=
ances. It is further assumed that the angular drift can be measured subject to

Gaussian random errors. The measurement model is then
z(t) = ¢(t) + v(t)

where v(t) is a zero mean, Gaussian white noise process with variance 0‘2,. From
physical considerations, it is reasonable to assume that v(t) is independent of ¢(to),
¢ (to). and u(t) for all t.

Letting
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it then follows that
[0 1 i
F = H=[1 0]
0 0
- P
Q= R o,
0 0
Now let
P11 Py
P-=
P12 Pjp

;be the covariance matrix of the filtering error where
P = E f6t0) - o0] %}
Pt = E {16(8) = 6(0)] [e = (0]}

and

Pylt) = E {[e - e(t)] z}

Substituting into Eq. (34), it is found that the filtering error variances

(pll and pzz) and covariance (plz) are the solutions of

+02

2
11 u

2 = Z - -l—
P11 = ¢Pp, o2 P
v

® _ 1
Pj2 =Pz " 2 P11P12
v

By = =5 Py
227" 77 P12
A4

5T R SR TR

For sufficiently long filtering time, the equilibrium solution is

(1)

vl

17

1&%@% 07 X 1
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P17%% P20 P,=0

Hence, by filtering alone, the steady drift error rate can be determined exa._ctly.
at least in theory.

Now suppose it is desired to initiate smoothing, after ''steady-state'' filtering
has been attained, in an attempt to get an "improved" estimate of the drift angle ¢.
Since the steady drift error rate is known "exactly', its effect can be substracted

out, and the system equations written

x = u(t)

z(t) = x(t) + v(t)

=R _ _ _ 2
where x=¢,t> T >> to' and P(T)-p“-ov o, Then, F=0, H= 1, Q-ou,

P~lt) = 1/5,, = 1/o, o, from which Eq. (31) becomes

. (0}
K(t, T) = = == K(t, T)
v
where K(T, T) = 1. Hence,
K(t, T) = B (t-T) t>T
where B = ou/ov.
Equation (37) is
. 1 =2 2
P(T/t)= = = By, K(tT)
o]
v
e o o? =2B(t=T)

u
and with P(T/T) = P(T) = 9, Oy its solution is obviously

g O

P(T/t) = ‘; = [1 + e'zﬁ(t'T)J

where t > T. For long smoothing timest >> T, it is seen that P(T/t) —~ ., ou/Z

which establishes the performance limit on the accuracy to within which the drift
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angle ¢ can be determined.
‘ It is remarked that these results are also valid if the gyroscope is torqued
during smoothing, assuming that the torquing signal is known accurately. In this

case, the torquing signal is input to the filter as a known forcing function.

Examgle 4. Consider the case where the state vector to be estimated is a set of
n constants. Then, x = 0 where it is assumed that x(to) is a zero mean, Gaussian
random n=vector having covariance matrix P(to). Assume that the measurement

model is
z(t) = H(t) x(t) + v(t)

where H(t) is a real continous mxn matrix, and v(t) is a zero mean, Gaussian
white noise process with covariance matrix R(t), and E[x(to) v'(t}] =0 for allt.

Since F(t) = Q(t) = 0 for all t, the covariance equation for the filtering error,
Eq. (34), is

P = «PH () R™(t) H(t) P

for t 2t with P(to) given. _
Now since x = constant, let T =t for purposes of smoothing. Again, since
F(t) = Q(t) = 0 for all t, Eq. (31) becomes

K(t, to) =0

from which it follows that K(t, to) =Ifor allt >t since K(to, to) = I. As a result,

Eq. (37) assumes the form
B(t_/t) = = P(t) H' (1) R™ () H(t) P()

for t >t where P(to/to) = P(to).
Obviously, the two covariance equations for filtering and smoothing are

identical. It is trivial to show that the two filters are also identical in this case.

6.0 Conclusion
The filter and error covariance equations for optimal fixed=point continous
linear smoothing have been developed by considering the limiting case of the re=~

sults for the discrete smoothing problem. The procedure is of use in data filtering

SR

LIRGERNT
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problems where a smoothed estimate of the state of a continous linear system
is desired at some specific time d.uring the system's operation, and can be used
“oneline" for that purpose.

The four simple examples were presented to indicate the nature of the re=-
sults to be expected in applications. It was shown in these examples that there
exist cases where little or no improvement can be obtained by fixed=point
smoothing which contradicts the intuitive notion that ""improved estimates can al=

ways be obtained by smoothing."

In other cases, it was shown that significant
improvement can be obtained.
The stability of the smoothing filter, Eq (27), and of the gain, Eq. (31), has

not been investigated and is left as a problem for future study.
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