AD 644250

OPTIMAL FIXED-POINT CONTINUOUS LINEAR SMOOTHING

J. S. MEDPTCH

TECHNICAL REPORT 66-108

DECEMBER 1966

Information-Processing And Control-SYSTEMS LABORATORY

NORTHWESTERN UNIVERSITY EVANSTON; HAINOIS 60201

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

TECHNICAL REPORT 66-108

OPTIMAL FIXED-POINT CONTINUOUS LINEAR SMOOTHING

J. S. Meditch

Electrical Engineering Department

This work was supported in part by the Joint Services Electronics Program (U. S. Army, U. S. Navy and U. S. Air Force) under Office of Naval Research Contract Number N00014-66-C0020-A03 (Identification Number NR 373-502/3-14-66 Electronics Branch).

December 1966

Information-Processing And Control SYSTEMS LABORATORY

Northwestern University

JAN 3

Evanston, Illinois

TABLE OF CONTENTS

Abstract	
1.0 Introduction	
2.0 Fixed-Point Discrete Linear Smoothing	
3.0 Fixed-Point Continuous Linear Smoothing	
4.0 Fixed-Point Smoothing Error Covariance Matrix	
5.0 Examples	
6.0 Conclusion	
References	
Document Control Data -R&D (DD Form 1473)	

i

Charlington and the second sec

,

OPTIMAL FIXED-POINT CONTINUOUS LINEAR SMOOTHING

J. S. Meditch

ABSTRACT

The filter and error covariance equations for optimal fixedpoint smoothing for continuous linear systems are developed. The development is carried out by considering the limiting case of the results for the same problem for discrete linear systems. The procedure is of use in estimation problems where a smoothed estimate of a continuous linear system's state is desired at some specified critical time during the system's operation. Four examples are presented to illustrate the results.

1.0 Introduction

The problem of prediction and filtering for continous linear systems has been treated in considerable detail by Kalman and Bucy⁽¹⁾. The problem of smoothing for continous linear systems for the case where the measurement interval $t_0 \le t \le \tau$ (t = variable time) is fixed and a smoothed estimate of the system's state x is obtained for all t $\in [t_0, \tau]$ has been solved by Bryson and Frazier⁽²⁾, and Rauch, Tung, and Striebel⁽³⁾. The smoothed estimate is the solution of the system of equations

$$\dot{\mathbf{x}}(t/\tau) = \mathbf{F}(t) \, \dot{\mathbf{x}}(t/\tau) + \mathbf{Q}(t) \mathbf{P}^{-1}(t) \left[\dot{\mathbf{x}}(t/\tau) - \dot{\mathbf{x}}(t) \right] \qquad t_{o} \leq t \leq \tau \qquad (1)$$

1

where $\hat{\mathbf{x}}(t/\tau)$ is the smoothed estimate, an n-vector; $\mathbf{F}(t)$ is a continuus nxn matrix which is defined by the plant dynamics; Q(t) is the nxn positive semidefinite covariance matrix of the zero mean, Gaussian white noise plant disturbance; $\mathbf{P}^{-1}(t)$ is the inverse of the nxn filtering error covariance matrix; $\hat{\mathbf{x}}(t)$ is the filtered estimate of x at time t; and the dot denotes the derivative with respect to t. Equation (1) is subject to the boundary condition $\hat{\mathbf{x}}(\tau/\tau) = \hat{\mathbf{x}}(\tau)$ which is obtained from the filtering solution. Hence, $\hat{\mathbf{x}}(t/\tau)$ is obtained by integrating Eq. (1) backward in time from τ .

If a smoothed estimate of x is desired at only one value of $t \in [t_0, \tau]$, say at some critical time during the plant's operation, the above smoothing procedure is inefficient from a computational point of view. It would be more desirable to have a smoothing algorithm that begins with an initial estimate of x(t) and updates this estimate by recursively processing the measurements in the interval $[t, \tau]$. Thus the smoothed estimate could be "built-up" as more measurement data become available, rather than by "back-tracking" from $\hat{x}(\tau)$ as required by Eq. (1). Additionally, if the terminal time τ is not fixed or specified <u>a priori</u>, as might be the case in an "on-line" smoothing problem, the smoothing formulation of Eq. (1) is not applicable. The case where t is fixed, and τ is either fixed or free, $t \leq \tau$, is termed the fixed-point smoothing problem, and is the subject of this paper.

This problem arises in such physical situations as: (1) assessing the performance of a midcourse space guidance system from telemetry and tracking data taken after the midcourse maneuvar is completed, and (2) determining the errors in a telemetry or communication channel at some known critical time from measurements and recordings taken after that time. In both of these cases, the terminal measurement time may not be known <u>a priori</u>, but might be governed by such factors as fading and interference during the experiment. In this paper, the fixed-point smoothing problem for continous linear systems will be treated by considering the limiting case of the fixed-point smoothing solution for discrete linear systems for which the solution is known^(4, 5). The limiting procedure to be used is due to Kalman⁽⁶⁾.

Four examples are included to illustrate the results.

2.0 Fixed-Point Discrete Linear Smoothing^(4, 5)

Since the relations for fixed-point continous linear smoothing will be developed by considering the limiting case of the fixed-point discrete linear smoothing solution, the results for the latter are summarized below.

Consider the discrete linear system

$$x(k + 1) = \Phi(k + 1, k) x(k) + w(k)$$
 (2)

$$z(k + 1) = H(k + 1) x(k + 1) + v(k + 1)$$
(3)

where x is an n-vector, the state; z is an m-vector, the measurement; Φ is a real nxn matrix, the state transition matrix; H is a real mxn matrix; and k = 0, 1, ..., is the discrete time index. In addition, w and v are independent, zero mean, Gaussian white sequences for which

 $E[w(j) w'(k)] = Q(k) \delta_{jk}$ $E[v(j) v'(k)] = R(k) \delta_{jk}$

where E denotes the expected value, the prime denotes the matrix transpose, and δ_{jk} is the Kronecker delta. Here, Q(k) is a real nxn positive semidefinite matrix and R(k) is a real mxm positive definite matrix. The initial state x(0) is assumed to be a zero mean, Gaussian random n-vector which is independent of w and v for all k, and for which

$$E[x(0) x'(0)] = P(0)$$

where P(0) is a real n x n positive semidefinite matrix.

Let $\hat{x}(k/n)$, k < N, denote a smoothed estimate of x at time k based on measurements up to and including the one at time N. Also, let the smoothing error be defined by the relation

$$\hat{\mathbf{x}}(\mathbf{k}/\mathbf{N}) = \mathbf{x}(\mathbf{k}) - \hat{\mathbf{x}}(\mathbf{k}/\mathbf{N})$$

and the mean square smoothing error by the expression

$$\hat{C} = E[\hat{x}'(k/N) \hat{x}(k/N)]$$

Then, it can be shown^(4, 5) that the smoothed estimate that minimizes \mathcal{E} (termed the optimal smoothed estimate in the sequel) is given by the recursive relation

$$\hat{\mathbf{x}}(k/N) = \hat{\mathbf{x}}(k/N-1) + K(N-1, k)[\hat{\mathbf{x}}(N) - \hat{\mathbf{x}}(N/N-1)]$$
(4)

for $N = k+1, k+2, \ldots$ where

BALAR

$$K(N-1, k) = \int_{i=k}^{N-1} J(i)$$
 (5)

$$J(i) = P(i) \Phi'(i + 1, i) M^{-1}(i + 1)$$
(6)

k = integer = constant, $[]^{-1}$ denotes the matrix inverse and $\hat{x}(N)$ and $\hat{x}(N/N-1)$ are, respectively, the optimal filtered and predicted estimates of x at time N. The latter two estimates are governed by the set of relations⁽⁷⁾

$$\hat{\mathbf{x}}(N/N-1) = \Phi(N, N-1) \hat{\mathbf{x}}(N-1)$$
 (7)

$$\hat{\mathbf{x}}(N) = \hat{\mathbf{x}}(N/N-1) + K^{O}(N)[z(N) - H(N) \hat{\mathbf{x}}(N/N-1)]$$
(8)

$$K^{O}(N) = M(N) H'(N) [H(N) M(N) H'(N) + R(N)]^{-1}$$
 (9)

$$M(N) = \Phi(N, N-1) P(N-1) \Phi'(N, N-1) + Q(N-1)$$
(10)

$$P(N) = [I-K^{O}(N)H(N)] M(N)$$
(11)

for N = 1, 2, ..., where $\hat{x}(0) = 0$, P(0) is assumed given, and I is the nxn identity

matrix.

The initial condition for Eq. (4) is

$$\hat{\mathbf{x}}(\mathbf{k}/\mathbf{N}-1) \begin{vmatrix} \mathbf{x}(\mathbf{k}/\mathbf{k}) \\ \mathbf{x}(\mathbf{k}/\mathbf{N}-1) \end{vmatrix} = \hat{\mathbf{x}}(\mathbf{k}/\mathbf{k}) = \hat{\mathbf{x}}(\mathbf{k})$$
(12)
$$\mathbf{N} = \mathbf{k} + 1$$

which is obtained from Eq. (8) when N = k.

The nxn matrices M(N) and P(N-1), which also occur in Eq. (6), are the covariance matrices of the prediction error

$$\hat{\mathbf{x}}(\mathbf{N}/\mathbf{N}-1) = \mathbf{x}(\mathbf{N}) - \hat{\mathbf{x}}(\mathbf{N}/\mathbf{N}-1)$$

and the filtering error

$$\tilde{x}(N-1) = x(N-1) - x(N-1)$$

respectively.

The nxm matrix $K^{O}(N)$ is called the optimal filter gain and is also given by the relation

$$K^{O}(N) = P(N) H'(N) R^{-1}(N)$$
 (13)

Similarly, the nxn matrix K(N-1, k) in Eq. (5) is termed the optimal smoothing filter gain.

The covariance matrix of the smoothing error for fixed-point discrete optimal linear smoothing is given by the first-order matrix difference equation (4, 5)

P(k/N) = P(k/N-1) + K(N-1,k) [P(N) - M(N)] K'(N-1,k)(14)

for $N = k+1, k+2, \ldots$, where the initial condition is

$$P(k/N-1) = P(k/k) = P(k)$$
(15)
N = k + 1

which is obtained from Eq. (11) when N = k.

Finally, it should be noted from Eq. (5) that the smoothing filter gain matrix can be expressed by the recursive relation

$$K(N-1, k) = K(N-2, k) J(N-1)$$
 (16)

5

N = k+1, k+2, ...

3.0 Fixed-Point Continous Linear Smoothing

Consider the system of Eqs. (2) and (3) when the time between measurements is made arbitrarily small. Let the two time instants k and k+1 be replaced by t and t + Δt , respectively, where $\Delta t > 0$. Also, let the plant disturbance w(k) be replaced by u(t) Δt . Then, Eqs. (2) and (3) become

$$\mathbf{x}(\mathbf{t} + \Delta \mathbf{t}) = \Phi(\mathbf{t} + \Delta \mathbf{t}, \mathbf{t}) \mathbf{x}(\mathbf{t}) + \mathbf{u}(\mathbf{t}) \Delta \mathbf{t}$$
(17)

and

$$z(t + \Delta t) = H(t + \Delta t) x(t + \Delta t) + v(t + \Delta t)$$
(18)

Assume that $\Phi(t + \Delta t, t)$ is the state transition matrix of the homogenous linear system

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{t}) \mathbf{x}$$

where F(t) is a real continuus n x n matrix. Then, $\Phi(t + \Delta t, t)$ can be expanded in a Taylor series to obtain

$$\Phi(t + \Delta t, t) = I + F(t) \Delta t + O(\Delta t^{2})$$
(19)

where $0(\Delta t^2)$ denotes terms of order $(\Delta t)^2$.

Substituting Eq. (19) into Eq. (17) and rearranging terms, there results

$$\mathbf{x}(t + \Delta t) - \mathbf{x}(t) = [\mathbf{F}(t) \mathbf{x}(t) + \mathbf{u}(t)] \Delta t + \mathbf{0}(\Delta t^2)$$

Dividing through by Δt and taking $\lim \Delta t \rightarrow 0$ gives

$$\dot{\mathbf{x}} = \mathbf{F}(t)\mathbf{x} + \mathbf{u}(t)$$

and taking $\lim \Delta t \rightarrow 0$ in Eq. (18) leads to the relation

$$z(t) = H(t) x(t) + v(t)$$

In taking this limit, care must be exercised in defining the Gaussian white noise processes u(t) and v(t) as limits of the Gaussian white sequences w(k) and v(k), respectively. In particular, it has been shown^(3, 6) that the covariance matrices Q(k) and R(k) must be replaced by Q(t) Δt and R(t)/ Δt , respectively, in all relations involving these covariance matrices in order that the description of the disturbances be physically meaningful in the limit. The details are given elsewhere^(3, 6) and will not be repeated here.

The above limiting procedure will now be applied to develop the equations for fixed-point continous linear smoothing. Consider the smoothing interval [k, N], and let the discrete time instants k, N-2, N-1, and N be denoted by T, t - Δt , t, and t + Δt , respectively, where $\Delta t > 0$. Then, Eq. (4) becomes

$$\mathbf{\hat{x}}(T/t + \Delta t) - \mathbf{\hat{x}}(T/t) = K(t, T) \left[\mathbf{\hat{x}}(t + \Delta t) - \mathbf{\hat{x}}(t + \Delta t/t) \right]$$

Dividing through by Δt and taking $\lim \Delta t \rightarrow 0$, it is seen that the fixed-point smoothed estimate must satisfy the system of ordinary linear differential equations

$$\hat{\mathbf{x}}(\mathbf{T}/\mathbf{t}) = \lim_{\Delta \mathbf{t} \to 0} \frac{\mathbf{K}(\mathbf{t}, \mathbf{T}) \left[\hat{\mathbf{x}}(\mathbf{t} + \Delta \mathbf{t}) - \hat{\mathbf{x}}(\mathbf{t} + \Delta \mathbf{t}/\mathbf{t}) \right]}{\Delta \mathbf{t}}$$
(20)

The limit on the right-hand side of Eq. (20) will now be evaluated. Consider first the expression for K(t, T) which, from Eqs. (16) and (6), is

$$K(t, T) = K(t - \Delta t, T) J(t)$$

= K(t - \Delta t, T) P(t) $\Phi'(t + \Delta t, t) M^{-1}(t + \Delta t)$ (21)

It then follows that

$$\lim_{\Delta t \to 0} K(t, T) = \lim_{\Delta t \to 0} K(t - \Delta t, T) P(t) \Phi'(t + \Delta t, t) M^{-1}(t + \Delta t)$$

$$= \lim_{\Delta t \to 0} K(t - \Delta t, T) P(t) M^{-1}(t + \Delta t)$$
(22)
$$\Delta t \to 0$$

Making the appropriate substitutions into Eq. (10), it is seen that

$$M(t + \Delta t) = \Phi(t + \Delta t, t) P(t) \Phi'(t + \Delta t, t) + Q(t) \Delta t$$

$$= [I + F(t) \Delta t + 0(\Delta t^{2})] P(t) [I + F(t) \Delta t + 0(\Delta t^{2})]'$$

$$+ Q(t) \Delta t$$

$$= P(t) + [F(t) P(t) + P(t) F'(t) + Q(t)] \Delta t + 0(\Delta t^{2})$$

$$= P(t) + 0(\Delta t)$$

. **7**

(23)

where $0(\Delta t)$ denotes terms of order Δt . It then follows that

P(t)
$$M^{-1}(t + \Delta t) = P(t) [P(t) + 0(\Delta t)]^{-1}$$

= $[I + 0(\Delta t)]^{-1}$

Substituting this result into Eq. (21) yields

From Eqs. (7) and (8), the second factor in the limit on the right-hand side of Eq. (20) is given by the relation

$$\hat{\mathbf{x}}(t + \Delta t) - \hat{\mathbf{x}}(t + \Delta t/t) = \mathbf{K}^{\mathbf{0}}(t + \Delta t) \left[\mathbf{z}(t + \Delta t) - \mathbf{H}(t + \Delta t) \Phi(t + \Delta t, t) \hat{\mathbf{x}}(t) \right]$$
(25)

From Eq. (13) and the fact that R(N) must be replaced by $R(t + \Delta t)/\Delta t$,

$$K^{O}(t + \Delta t) = P(t + \Delta t) H'(t + \Delta t) R^{-1}(t + \Delta t) \Delta t$$
 (26)

Substituting Eq. (26) into Eq. (25) and the result into Eq. (2) gives

$$\hat{\mathbf{x}}(\mathbf{T}/t) = \lim_{\Delta t \to 0} \frac{\mathbf{K}(t, \mathbf{T}) \mathbf{P}(t + \Delta t) \mathbf{H}'(t + \Delta t) \mathbf{R}^{-1}(t + \Delta t) [z(t + \Delta t) - \mathbf{H}(t + \Delta t) \Phi(t + \Delta t, t) \mathbf{x}(t)] \Delta t}{\Delta t}$$

from which it follows immediately that

$$\hat{\mathbf{x}}(\mathbf{T}/t) = \mathbf{K}(t, T) \mathbf{P}(t) \mathbf{H}'(t) \mathbf{R}^{-1}(t)[\mathbf{z}(t) - \mathbf{H}(t) \hat{\mathbf{x}}(t)]$$
 (27)

for $t \ge T$ where use has been made of the result in Eq. (24) in taking the limit. From Eq. (12), the initial condition on Eq. (27) is

$$\hat{\mathbf{x}}(\mathbf{T}/t) = \hat{\mathbf{x}}(\mathbf{T}/T) = \hat{\mathbf{x}}(\mathbf{T})$$

$$t = T$$

There remains now the task of obtaining an algorithm for determining K(t, T). First, it is seen that Eq. (21) can be written

$$K(t, T) J^{-1}(t) = K(t - \Delta t, T)$$
 (28)

where

1

$$J^{-1}(t) = M(t + \Delta t)[\Phi^{\dagger}(t + \Delta t, t)]^{-1} P^{-1}(t)$$

which follows from Eq. (6). It is noted that $J^{-1}(t)$ exists if and only if P(t) is nonsingular. If P(t) is singular, it follows that $\hat{x}(t) = x(t)$ and there is no need for smoothing. Hence, it is assumed in the sequel that P(t) is nonsingular.

Noting that $[\Phi'(t + \Delta t, t)]^{-1} = \Phi'(t, t + \Delta t)$, it follows from Eq. (23) that

$$M(t + \Delta t) \Phi'(t, t + \Delta t) = \Phi(t + \Delta t, t) P(t) + Q(t) \Phi'(t, t + \Delta t) \Delta t$$
(29)

The Taylor series expansion for $\Phi'(t, t + \Delta t)$ is

$$\Phi'(t, t + \Delta t) = I - F'(t) \Delta t + 0(\Delta t^{2})$$

Substituting this result and Eq. (19) into Eq. (29) and grouping terms gives

$$M(t + \Delta t) \Phi'(t, t + \Delta t) = [I + F(t) \Delta t + 0(\Delta t^{2})] P(t)$$
$$+ Q(t)[I - F'(t) \Delta t + 0(\Delta t^{2})] \Delta t$$
$$= P(t) + [F(t) P(t) + Q(t)] \Delta t + 0(\Delta t^{2})$$

Postmultiplying in this equation by $P^{-1}(t)$ then gives the result

$$J^{-1}(t) = I + [F(t) + Q(t) P^{-1}(t)] \Delta t + 0(\Delta t^{2})$$
(30)

Substituting Eq. (30) into Eq. (28) yields

$$K(t, T) \left\{ I + [F(t) + Q(t) P^{-1}(t)] \Delta t + 0(\Delta t^2) \right\} = K(t - \Delta t, T)$$

which can also be written as

$$K(t, T) - K(t - \Delta t, T) = -K(t, T) \left\{ [F(t) + Q(t) P^{-1}(t)] \Delta t + 0(\Delta t^{2}) \right\}$$

Dividing through by Δt and taking $\lim \Delta t \rightarrow 0$ gives the nxn matrix linear ordinary differential equation

$$K(t, T) = -K(t, T)[F(t) + Q(t) P^{-1}(t)]$$
 (31)

where it is emphasized that the dot denotes the derivative with respect to t.

The initial condition for Eq. (31) is obtained by considering the time instants T and T + ΔT , $\Delta T > 0$, and noting from Eqs. (5), (6), and (24) that

$$K(T, T) = \lim_{\Delta T \to 0} K(T, T)$$

$$= \lim_{\Delta T \to 0} J(T)$$

$$= \lim_{\Delta T \to 0} P(T) \Phi' (T + \Delta T, T) M^{-1} (T + \Delta T)$$

$$= \lim_{\Delta T \to 0} P(T) M^{-1} (T + \Delta T)$$

$$= \lim_{\Delta T \to 0} [I + 0(\Delta T)]^{-1} = I$$

Hence, the required initial condition for Eq. (31) is K(T, T) = I.

At this point, it is seen that Eqs. (27) and (31) along with their corresponding initial conditions specify the fixed-point smoothing filter for continous linear systems. However, in order to use this filter, it is necessary to have the filtered estimate $\hat{x}(t)$ for all $t \ge T$, and the filtering error covariance matrix P(t) also for all $t \ge T$. These two quantities are obtained directly from the optimal filter solution for continous linear systems⁽¹⁾:

$$\hat{\mathbf{x}} = \mathbf{F}(t) \, \hat{\mathbf{x}} + \mathbf{K}^{\mathbf{O}}(t) \, [\mathbf{z}(t) - \mathbf{H}(t) \, \hat{\mathbf{x}}] \qquad t \ge t_{\mathbf{O}} \qquad (32)$$

10

$$\hat{\mathbf{x}}(t_{0}) = 0$$

$$\mathbf{K}^{0}(t) = \mathbf{P}(t) \ \mathbf{H}^{t}(t) \ \mathbf{R}^{-1}(t)$$
(33)
$$\hat{\mathbf{P}} = \mathbf{F}(t) \ \mathbf{P} + \mathbf{P} \ \mathbf{F}^{t}(t) - \mathbf{P} \ \mathbf{H}^{t}(t) \ \mathbf{R}^{-1}(t) \ \mathbf{H}(t) \ \mathbf{P} + \mathbf{Q}(t)$$
(34)

P(t_o) given

From Eq. (33), it is seen that Eq. (27) can also be written

$$\dot{x}(T/t) = K(t, T) K^{o}(t) [z(t) - H(t) \dot{x}(t)]$$
 (35)

for $t \ge T$.

•

The block diagram for the smoothing filter is shown in Fig. 1.

Block diagram of fixed-point continous linear smoothing filter.

4.0 Fixed-Point Smoothing Error Covariance Matrix

A linear ordinary nxn matrix differential equation whose solution is the covariance matrix of fixed-point smoothing error will now be developed by applying the limiting processes of Section 3.0 to Eq. (14).

Replacing k by T, N-1 by t, and N by $t + \Delta t$ in Eq. (14) yields

$$P(T/t + \Delta t) - P(T/t) = K(t, T)[P(t + \Delta t) - M(t + \Delta t)] K'(t, T)$$

Dividing through by Δt and taking $\lim \Delta t \rightarrow 0$ gives

$$\mathbf{P}(T/t) = \lim_{\Delta t \to 0} \frac{K(t, T)[P(t + \Delta t) - M(t + \Delta t)] K'(t, T)}{\Delta t}$$
(36)

From Eqs. (11) and (26),

$$P(t + \Delta t) - M(t + \Delta t) = -K^{O}(t + \Delta t) H(t + \Delta t) M(t + \Delta t)$$
$$= -P(t + \Delta t) H'(t + \Delta t) R^{-1}(t + \Delta t) M(t + \Delta t) \Delta t$$

Substituting this result into Eq. (36), noting from Eq. (23) that

$$\lim_{\Delta t \to 0} M(t + \Delta t) = P(t)$$

and utilizing the result in Eq. (24), Eq. (36) simplifies to

$$P(T/t) = -K(t, T) P(t) H'(t) R^{-1}(t) H(t) P(t) K'(t, T)$$
(37)

for $t \ge T$. Equation (36) can also be written

$$\dot{P}(T/t) = -K(t, T) K^{O}(t/H(t) P(t) K(t, T)$$
 (38)

for $t \ge T$ where $K^{O}(t)$ is given by Eq. (33).

The initial condition for Eqs. (37) or (38) is

$$P(T/t) = P(T/T) = P(T)$$

t = T

which follows directly from Eq. (15).

The covariance matrix of the smoothing error is then the solution of either Eq. (37) or (38) with P(T) as the initial condition.

5.0 Examples

Example 1. Consider the scalar system

$$\dot{\mathbf{x}} = \mathbf{u}(t)$$
$$\mathbf{z}(t) = \mathbf{x}(t) + \mathbf{v}(t)$$

for $t \ge 0$ where u(t) and v(t) are independent, zero mean, Gaussian white noise processes having constant variances σ_u^2 and σ_v^2 , respectively, and x(0) is a zero mean, Gaussian random variable which is independent of u(t) and v(t) for all $t \ge 0$ and $E[x^2(0)] = \sigma_0^2$.

From Eq. (34), the variance of the <u>filtered</u> estimate of x is governed by the ordinary, first-order, scalar differential equation

$$\dot{\mathbf{P}} = -\frac{1}{\sigma_u^2} \mathbf{P}^2 + \sigma_u^2$$

for $t \ge 0$ where $P(0) = \sigma_0^2$. The solution to this differential equation is

$$P(t) = a \frac{1 + \mu e^{-\beta t}}{1 - \mu e^{-\beta t}} \qquad t \ge 0$$
(39)

where

$$\mathbf{a} = \sigma_{\mathbf{v}} \sigma_{\mathbf{u}}$$
$$\mu = \frac{\sigma_{\mathbf{o}}^2 - \mathbf{a}}{\sigma_{\mathbf{o}}^2 + \mathbf{a}}$$

 $\beta = \frac{2\sigma_u}{\sigma_v}$

and

The optimal filter gain is seen to be

$$K^{O}(t) = P(t) H^{I}(t) R^{-1}(t)$$
$$= \frac{\alpha}{\sigma_{V}^{2}} \frac{1 + \mu e^{-\beta t}}{1 - \mu e^{-\beta t}}$$
$$= \frac{\beta}{\cdot 2} \frac{1 + \mu e^{-\beta t}}{1 - \mu e^{-\beta t}}$$

Now consider the problem of smoothing in order to determine an estimate of the system's initial condition. It is noted that the initial estimate without smoothing has a variance of σ_0^2 .

Substituting the appropriate quantities into Eq. (31),

$$\dot{K}(t, 0) = -\frac{\beta}{2} \frac{1 - \mu e^{-\beta t}}{1 + \mu e^{-\beta t}} K(t, 0)$$

where K(0, 0) = 1. The solution is obtained by direct integration and found to be

$$K(t, 0) = \frac{(1 + \mu) e^{-\beta t}}{1 + \mu e^{-\beta t}}$$
(40)

Substituting Eqs. (39) and (40) along with H(t) = 1 and $R^{-1}(t) = 1/\sigma_v^2$ into Eq. (37), it is seen that

$$\dot{P}(0/t) = -\sigma_{u}^{2} \qquad \frac{(1+\mu)^{2} e^{-\beta t}}{(1-\mu e^{-\beta t})^{2}}$$
(41)

where $P(0/0) = \sigma_0^2$.

After some manipulation, the solution of Eq. (41) is found to be

$$P(0/t) = \frac{\alpha(1+\mu)}{2} \qquad \frac{1+e^{-\beta t}}{1-\mu e^{-\beta t}}$$

for $t \ge 0$ and is, of course, the variance of the smoothed estimate of x(0).

It is interesting to note the limiting behavior of the smoothing error variance. First, it is seen from its definition that $-1 \le \mu \le 1$. Hence, for $t \approx \frac{4}{\beta}$, i.e., for a smoothing time of approximately four "time constants", $e^{-\beta t} = e^{-4} \approx 0.02$, and

$$\mathbf{P}(0/t) \approx \frac{\mathbf{a}(1+\mu)}{2} = \frac{\sigma_o^2 \sigma_v \sigma_u}{\sigma_o^2 + \sigma_v \sigma_u}$$

Now suppose $\sigma_o^2 > > \sigma_v \sigma_u$. Then,

$$P(0/t) \approx \sigma_v \sigma_u < < \sigma_o^2$$

and it is clear that a large reduction of the uncertainty associated with the estimate of x(0) has been effected by smoothing.

Next, consider the case when $\sigma_0^2 \approx \sigma_v \sigma_u$ where it is seen that

$$P(0/t) \approx \frac{\sigma_0^2}{2}$$

 $P(0/t) \approx \sigma_0^2$

thereby giving a 50% reduction.

Finally, if $\sigma_0^2 < < \sigma_v \sigma_u$,

and there is no reduction. In this case, smoothing is of no value, and the initial estimate $\hat{x}(0) = 0$ must be accepted as the optimal one.

For this example,

K(t, 0) K⁰(t) =
$$\frac{\beta}{2} \frac{(1 + \mu) e^{-\beta t}}{1 - \mu e^{-\beta t}}$$

and Eq. (27) becomes

$$\hat{x}(0/t) = \frac{\beta}{2} \frac{(1+\mu) e^{-\beta t}}{1-\mu e^{-\beta t}} [z(t) - \hat{x}(t)]$$

for $t \ge 0$ where the initial condition is $\hat{x}(0/0) = \hat{x}(0) = 0$. <u>Example 2.</u> A problem commonly treated using Wiener filter theory^(8, 9) is the one for which the block diagram is shown below. Here, u(t) and v(t) are indepen-

dent, zero mean Gaussian white noise processes with constant variances σ_u^2 and σ_v^2 , respectively; and W(t) = e^{-at} is the system impulse response. The system equations are

$$\dot{x} = -ax + u(t)$$
$$z(t) = x(t) + y(t)$$

With $t_0 = -\infty$, the optimal filtered estimate of x can be shown⁽¹⁾ to have a variance of

$$P = \sigma_v^2 \left[\sqrt{a^2 + \frac{\sigma_u^2}{\sigma_v^2}} - a \right]$$

in the "steady-state".

For simplicity, it is assumed that a = 1, $\sigma_v^2 = 1$, and $\sigma_u^2 = 8$ from which it follows that $\overline{P} = 2$.

Now assume that it is desired to initiate smoothing at t = 0 to determine $\hat{x}(0/t), t \ge 0$. For this example, Eq. (31) becomes

$$K(t, 0) = -\left[-a + \frac{\sigma_u^2}{P}\right] K(t, 0)$$

= - 3 K(t, 0)

from which

$$K(t, 0) = e^{-3t} t \ge 0$$

recalling that K(0, 0) = 1.

The smoothing error variance equation, Eq. (37), is then

$$\dot{P}(0/t) = -\frac{1}{\sigma_v^2} K^2(t, 0) \overline{P}^2$$

= -4 e^{-6t}

subject to the initial condition $P(0/0) = \overline{P} = 2$. By direct integration,

$$P(0/t) = \frac{4}{3} (1 + \frac{1}{2} e^{-6t})$$

for $t \ge 0$. From this expression, it is seen that for one time unit of smoothing, the variance in the estimate of x(0) is reduced from 2 to approximately 4/3.

Example 3. A simplified error model for the drift error in a single-degree-offreedom gyroscope operating in a "zero-g" environment is given by the equations

$$\dot{\phi} = \epsilon + u(t)$$
$$\dot{\epsilon} = 0$$

where ϕ is the angular drift error in the pitch plane, ϵ is the "steady-drift" error rate, and u(t) is the "random-drift" error rate. It is assumed that u(t) is a zero mean, Gaussian white noise process with constant variance σ_u^2 ; and that $\epsilon(t_0)$ and $\phi(t_0)$ are independent, zero mean, Gaussian random variables with known variances. It is further assumed that the angular drift can be measured subject to Gaussian random errors. The measurement model is then

$$z(t) = \phi(t) + v(t)$$

where v(t) is a zero mean, Gaussian white noise process with variance σ_v^2 . From physical considerations, it is reasonable to assume that v(t) is independent of $\phi(t_0)$, $\epsilon(t_0)$, and u(t) for all t.

Letting

 $\mathbf{x} = \begin{bmatrix} \phi \\ \epsilon \end{bmatrix}$

17

and the second second second

t then follows that

$$\mathbf{F} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad \qquad \mathbf{H} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
$$\mathbf{Q} = \begin{bmatrix} \sigma_{\mathbf{u}}^2 & 0 \\ 0 & 0 \end{bmatrix} \qquad \qquad \qquad \mathbf{R} = \sigma_{\mathbf{v}}^2$$

 $\mathbf{P} = \begin{bmatrix} \mathbf{p}_{11} & \mathbf{p}_{12} \\ & & \\ \mathbf{p}_{12} & \mathbf{p}_{12} \end{bmatrix}$

be the covariance matrix of the <u>filtering</u> error where

$$p_{11}(t) = E \left\{ \left[\phi(t) - \phi(t) \right]^{2} \right\}$$

$$p_{12}(t) = E \left\{ \left[\phi(t) - \phi(t) \right] \left[\epsilon - \epsilon(t) \right] \right\}$$

$$p_{22}(t) = E \left\{ \left[\epsilon - \epsilon(t) \right]^{2} \right\}$$

and

Substituting into Eq. (34), it is found that the <u>filtering</u> error variances $(p_{11} \text{ and } p_{22})$ and covariance (p_{12}) are the solutions of

$$\dot{p}_{11} = 2 p_{12} - \frac{1}{\sigma_v^2} p_{11}^2 + \sigma_u^2$$
$$\dot{p}_{12} = p_{22} - \frac{1}{\sigma_v^2} p_{11} p_{12}$$
$$\dot{p}_{22} = -\frac{1}{\sigma^2} p_{12}^2$$

For sufficiently long filtering time, the equilibrium solution is⁽¹⁾

$$\overline{\mathbf{p}}_{11} = \sigma_{\mathbf{v}} \sigma_{\mathbf{u}} \quad \overline{\mathbf{p}}_{12} = 0 \quad \overline{\mathbf{p}}_{22} = 0$$

Hence, by filtering alone, the steady drift error rate can be determined exactly, at least in theory.

Now suppose it is desired to initiate smoothing, after "steady-state" filtering has been attained, in an attempt to get an "improved" estimate of the drift angle ϕ . Since the steady drift error rate is known "exactly", its effect can be substracted out, and the system equations written

$$\dot{\mathbf{x}} = \mathbf{u}(t)$$
$$\mathbf{z}(t) = \mathbf{x}(t) + \mathbf{v}(t)$$

where $x = \phi, t \ge T >> t_0$, and $P(T) = \overline{p}_{11} = \sigma_v \sigma_u$. Then, F = 0, H = 1, $Q = \sigma_u^2$, $P^{-1}(t) = 1/\overline{p}_{11} = 1/\sigma_v \sigma_u$, from which Eq. (31) becomes

$$K(t, T) = - \frac{\sigma_u}{\sigma_v} K(t, T)$$

where K(T, T) = 1. Hence,

$$K(t, T) = e^{-\beta (t-T)} \qquad t \ge T$$

where $\beta = \sigma_u / \sigma_v$. Equation (37) is

$$\dot{P}(T/t) = -\frac{1}{\sigma_v^2} \frac{\overline{p}_{11}^2}{p_{11}} K^2(t, T)$$
$$= -\sigma_u^2 e^{-2\beta(t-T)}$$

and with $P(T/T) = P(T) = \sigma_v \sigma_u$, its solution is obviously

$$P(T/t) = \frac{\sigma_v \sigma_u}{2} \left[1 + e^{-2\beta(t-T)}\right]$$

where $t \ge T$. For long smoothing times $t \ge T$, it is seen that $P(T/t) \rightarrow \sigma_v \sigma_u/2$ which establishes the performance limit on the accuracy to within which the drift

angle ϕ can be determined.

and the stranger of

It is remarked that these results are also valid if the gyroscope is torqued during smoothing, assuming that the torquing signal is known accurately. In this case, the torquing signal is input to the filter as a known forcing function.

<u>Example 4.</u> Consider the case where the state vector to be estimated is a set of n constants. Then, $\dot{x} = 0$ where it is assumed that $x(t_0)$ is a zero mean, Gaussian random n-vector having covariance matrix $P(t_0)$. Assume that the measurement model is

$$z(t) = H(t) x(t) + v(t)$$

where H(t) is a real continous mxn matrix, and v(t) is a zero mean, Gaussian white noise process with covariance matrix R(t), and $E[x(t_{0}) v'(t)] = 0$ for all t.

Since F(t) = Q(t) = 0 for all t, the covariance equation for the <u>filtering</u> error, Eq. (34), is

$$\dot{P} = -P H'(t) R^{-1}(t) H(t) P$$

for $t \ge t_0$ with $P(t_0)$ given.

Now since x = constant, let $T = t_0$ for purposes of smoothing. Again, since F(t) = Q(t) = 0 for all t, Eq. (31) becomes

$$\dot{K}(t, t_0) = 0$$

from which it follows that $K(t, t_0) = I$ for all $t \ge t_0$ since $K(t_0, t_0) = I$. As a result, Eq. (37) assumes the form

$$\mathbf{P}(t_{o}^{\prime}/t) = -\mathbf{P}(t) \mathbf{H}'(t) \mathbf{R}^{-1}(t) \mathbf{H}(t) \mathbf{P}(t)$$

for $t \ge t_o$ where $P(t_o/t_o) = P(t_o)$.

Obviously, the two covariance equations for filtering and smoothing are identical. It is trivial to show that the two filters are also identical in this case.

6.0 Conclusion

The filter and error covariance equations for optimal fixed-point continous linear smoothing have been developed by considering the limiting case of the results for the discrete smoothing problem. The procedure is of use in data filtering problems where a smoothed estimate of the state of a continous linear system is desired at some specific time during the system's operation, and can be used "on-line" for that purpose.

The four simple examples were presented to indicate the nature of the results to be expected in applications. It was shown in these examples that there exist cases where little or no improvement can be obtained by fixed-point smoothing which contradicts the intuitive notion that "improved estimates can always be obtained by smoothing." In other cases, it was shown that significant improvement can be obtained.

The stability of the smoothing filter, Eq (27), and of the gain, Eq. (31), has not been investigated and is left as a problem for future study.

REFERENCES

- Kalman, R. E., and A. S. Bucy, "New Results in Linear Filtering and Prediction Theory", Jour. Basic Eng., Trans. ASME, Ser. D, vol. 83, no. 2, March 1961, pp. 95-108.
- Bryson, A. E., and M. Frazier, "Smoothing for Linear and Nonlinear Dynamic Systems", TDR-63-119, Aero. Sys. Div., Wright-Patterson AFB, Ohio, Feb. 1963, pp. 353-364.
- Rauch, H. E., F. Tung, and C. T. Striebel, "Maximum Likelihood Estimates of Linear Dynamic Systems", AIAA Jour., vol. 3, no. 8, Aug. 1965, pp. 1445-1450.
- 4. Rauch, H. E., "Solutions to the Smoothing Problem", IEEE Trans. Auto. Cont., vol. AC-8, no. 4, Oct. 1963, pp. 371-372.
- 5. Meditch, J. S., "Orthogonal Projection and Discrete Optimal Linear Smoothing", SIAM Jour. on Cont., vol. 5, no. 1, Feb. 1967.
- Kalman, R. E., "New Methods and Results in Linear Prediction and Filtering Theory", Research Inst. for Adv. Studies, Martin Co., Rept. No. 61-1, Baltimore, Md., 1961.
- Kalman, R. E., "A New Approach to Linear Filtering and Prediction Problems", Jour. Basic Eng., Trans. ASME, Ser. D, vol. 82, no. 2, March 1960, pp. 35-45.
- 8. Newton, G. C., Jr., L. A. Gould, and J. F. Kaiser, "Analytical Design of Linear Feedback Controls", John Wiley and Sons, Inc., New York, 1957.
- 9. Lee, Y. W., "Statistical Theory of Communication", John Wiley and Sons, Inc., New York, 1960.
- 10. Pitman, G. R., ed., "Inertial Guidance", John Wiley and Sons, Inc., New York, 1962.

Unclassified		_	:			
Security Classification						
DUCUMENT CC (Security classification of title, body of abstract and index	INTROL DATA - R&	D tered when	the overall report is classified)			
1. ORIGINATING ACTIVITY (Corporate author)			RT SECURITY CLASSIFICATION			
Information-Processing And Control SYSTEMS LABORATOR Northwestern University, Evanston, Illinois, 60201			Unclassified			
			26 GROUP Not applicable			
3. REPORT TITLE OPTIMAL FIXED-POINT CONTINUOUS LINEAR S	MOOTHING	L				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Not applicable						
5. AUTHOR(S) (Lest name, first name, initial) Meditch, James S.						
6. REPORT DATE December 1966	78. TOTAL NO. OF P	78. TOTAL NO. OF PAGES 75. NO. OF 26				
84. CONTRACT &XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9. ORIGINATOR'S RE	PORT NUM	1. 18 E R(S)			
b. PROJECT NO. NR 373-502/3-14-66 Electronics Branch	66-108					
^{c.} Not applicable	9b. OTHER REPORT (this report)	NO(S) (Any	other numbers that may be assigned			
d Not applicable	Not applicab	le				
Qualified requesters may obtain copies Documentation Center.	of this report	from th	ne Defense			
Not applicable	12. SPONSOR NG MILITARY ACTIVITY Office of Naval Research, Washington, D. C					
13. ANSTRACT The filter and error covariance error continuous linear systems are deverrighter in the limiting case of the relinear systems. The procedure is of use stimate of a continuous linear system critical time during the system's operaillustrate the results.	quations for opt loped. The deve esults for the s se in estimation 's state is dest ation. Four exa	imal fi elopment same pro n proble ired at amples a	ixed-point smoothing t is carried out by oblem for discrete ems where a smoothed some specified are presented to			
	23558	lation the school and				

and the f

A STATE OF A STATE OF

and the state

1995

Unclassified Security Clausification

nennen senennen in der seiner seiner die einer einer 14-		LI	X A	LIN	IK D	LIN	LINKC		
KEY WORDS		ROLL	Мż	ROLE	WT	ROLE	WT .		
Linear smoothing Estimation theory Optimal smoothing Fixed-point smoothing Continuous smoothing theory Prediction, filtering, and smoothing Estimation and control									
	TRUCTIONS								
1. ORIGN SALASSI . CHIVIN'S Erver the mana and address	inposed b	y security	clascifi	cation, vi	sing otan	dard stare	mente		
for the constant, and seen alternation (paysed and of DE- forest activity or other or maintains (payse sin withwe) is said	य (1) भ	 (1) If Cry Uffort potter fort man chaste copies of this 							
(1) Let un antipation. (1) Let un antipation (2011) (20	r- (2) "	 c.post i we DOC?" (2) "Security is connected to i discontracted this security is connected to i discontracted to its security." 							
 (a) the second se	(i.) (i.) i. u	 (1) M.L. & Covernment operation of obtain on taxed this report directly from D.D.C. Other qualities DDC upper als 11 regards through 							
n an		<pre>////////////////////////////////////</pre>							
 B. In Figure 1.17 to 1.77 to 1.87 to 1.87 to 2.87 to 2.87	(3)	 (5) "All distable does of this report is control of. Quid- ified DDC users shall request through If the report has been funished to the Office of Technical Survices, Department of Commerce, for sale to the public, indi- cute this fact and enter the price, if hoores. 							
 DESCRIPTIVE COURT: "I repropriate, enter the type of report, e.g., interim, pergense, charmenty, encarl, or final- trive the factorize descention a specific reporting period in covered. 	If the Survices, or to this								
3. Statistical contractions of the statistical sta	 M. 1997 C. 1997 Lips C. 1997 		· · · · · · · · · · · · · · · · · · ·	uni e Vector	line de la composition de la composition de l	litud ol. toribu na	sister as of		
6. LEPOST DATE: Enter the dote of the report as day, month, your o, really your. If more than one dote opposed on the report, use dues of publication.	the depend ing for) th 13. AllST Bummary of	the dependential project office or laboratory spannoring (pay- ing for) the resparch and development. Include address. 13. AISTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the spacet over the sh							
78. TOTAL HUI EDH OF PAGES: The total page count is stable following with performing procedures, i.e., enter the much such page of the information.	it may als port. If a be atruct.	a sogear Gillionsi G	els: where spites is	e in the b required,	a continu	e technica Intica sha	al re- ot shall		
references cloud in the report. sol. CONTRACTOR CRAFT NULBER: If eppropriate, ent the opplicable restricted the connect or grant under which	It is in be unclass as as indicat formation	It is highly desirable that the abstract of classified reports be unclassified. Fach paragraph of the abstract shall end with as indication of the military security classification of the in- form doe in the paragraph, ropresented as (TS), (S), (C), or (U). There is no limitation on the length of the abstract. How- ever, the suggested length is from 150 to 225 words. 14. KEY WORDS: Key words are technically meaningful terms or shor, phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identi- fiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical con- text. The assignment of limits, roles, and weights is optional.							
the report was written. 85, 22, 2, 5.4. PROJECT NUMBER: Enter the appropriate military depertment identification, such as project number,	Thure ever, the s								
 subproject number, system numbers, task number, etc. 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report. 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s). 10. AV MEABLITY/LETTATION MOTICES: Enter any literations on furming the origination of the report. 	at fiers, such project co words but text. The								
145 FOR 97.74 (16.797)	进行给予数4图4目的设备4 King (1 数2/32 V	59123555575-5 82 1	n 24 - 1822 - 1876 - 1876 - 1876 - 1876 - 1876 - 1876 - 1876 - 1876 - 1876 - 1876 - 1876 - 1876 - 1876 - 1876 - 1	seas sai	sifi of		WAR LANDONNES		
19 9 1 JAN 84 21 1 5 83 NO. 21 28 81 81									
Security Classification									

23

A PARTY OF

下にいうないう

ŝ

- ARTER

No. of the other o

「「「「