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OPTIMAL FIXED-POINT CONTINUOUS LINEAR SMOOTHING 

J. S. Meditch 

ABSTRACT 

The filter and error covariance equations for optimal fixed- 

point smoothing for continuous linear systems are developed. 

The development is carried out by considering the limiting 

case of the results for the same problem for discrete linear 

systems. The procedure is of use in estimation problems 

where a smoothed estimate of a continuous linear systemfs 

state is desired at some specified critical time during the 

system1s operation. Four examples are presented to illustrate 

the results.   ^ 

ii 



1. 0   Introduction 

The problem of prediction and filtering for continous linear systems has been 

treated in considerable detail by Kaiman and Bucy     .    The problem of smoothing for 

continous linear systems for the case where the measurement interval t   < t < T 

(t = variable time) is fixed and a smoothed estimate of the system's   state x is ob- 

tained for all t € ft f"1"]  has been solved by Bryson and Frazier*    ,  and Rauch, Tung, 
(3)        ? and Strieber    .    The smoothed estimate is the solution of the system of equations 

kth) =  F(t) £(t/T) + Q(t)P-1(t) [^(t/T)  - £(t)] to   < t < T (1) 

where x(t/*r) is the sn-ioothed estimate,  an n-vector;   F(t) is a continous nxn matrix 

which is defined by the plant dynamics;   Q(t) is the nxn positive semidefinite co- 

variance matrix of the zero mean,  Gaussian white noise plant disturbance;   P    (t) 

is the inverse of the nxn filtering error covariance matrix;   x(t) is the filtered 

estimate of x at time t;   and the dot denotes the derivative with respect to t.    Equa- 

tion (1) is subject to the boundary condition X(T/T) = X(T) vihich is obtained from the 

filtering solution.    Hence,  x(t/"r) is obtained by integrating Eq.  (1) backward in 

time from T. 

If a smoothed estimate of x is desired at only one value of t € [t , T] ,   say at 

some critical time during the plant's   operation,  the above smoothing procedure is 

inefficient from a computational point of view.    It would be more desirable to h«\ve 

a smoothing algorithm that begins with an initial estimate of x(t) and updates this 

estimate by recursively processing the measurements in the interval [t, T] .    Thus 

the smoothed estimate could be "built-up" as more measurement data become 

available,  rather than by "back-tracking" from X(T) as required by Eq.  (1). 

Additionally,  if the terminal time T is not fixed or specified a priori,  as might be 

the case in an "on-line" smoothing problem,  the smoothing formulation of Eq.  (1) 

is not applicable.    The case where t is fixed,  and T is either fixed or free,  t < T , 

is termed the fixed-point smoothing problem,  and is the subject of this paper. 

This problem arises in such physical situations as: (1) assessing the per- 

formance of a midcourse space guidance system from telemetry and tracking data 

taken after the midcourse maneuvar is completed,   and (2) determining the errors 

in a telemetry or communication channel at some known critical time from measure- 

ments and recordings taken after that time.    In both of these cases,  the terminal 

measurement time may not be known a priori, but might be governed by such factors 

as fading and interference during the experiment. 

lynfam, ,^    , f 



In this paper, the fixed*point smoothing problem for continous linear systems 

will be treated by considering the limiting case of the fixed-point smoothing solution 
(4 5) for discrete linear systems for which the solution is known1  '     .    The limiting pro- 

cedure to be used is due to Kaiman*  '. 

Four examples are included to illustrate the results. 

(4 5) 2. 0   Fixed-Point Discrete Linear Smoothing* 

Since the relations for fixed-point continous linear smoothing will be developed 

by considering the limiting case of the fixed-point discrete linear smoothing solution, 

the results for the latter are summarized below. 

Consider the discrete linear system 

x(k + 1) = $(k + 1,  k) x(k) + w(k) 

z(k + 1) = H(k + 1) x(k + 1) + v(k + 1) (3) 

where x is an n-vector,  the state;   z is an m-vector,  the measurement;  $ is a 

real nxn matrix,  the state transition matrix;   H is a real mxn matrix;   and 

k = 0, 1, . ..,   is the discrete time index.    In addition,  w and v are independent, 

zero mean, Gaussian white sequences for which 

E[w(j)w»(k)]   =Q(k) 6jk 

E[v(j) v« (k)]    = R(k) 6jk 

where E denotes the expected value,  the prime denotes the matrix transpose,   and 

6.,   is the Kronecker delta.    Here,  Q(k) is a real nxn positive semidefinite matrix 
JK 

and R(k) is a real mxm positive definite matrix.    The initial state x(0) is assumed 

to be a zero mean, Gaussian random n-vector which is independent of w and v for 

all k,   and for which 

E[x(0) x» (0)]   = P(0) 

where P(0) is a real nxn positive semidefinite matrix. 

Let x(k/n),   k < N,   denote a smoothed estimate of x at time k based on measure- 

ments up to and including the one at time N.    Also,  let the smoothing error be de- 

fined by the relation 

»M.J.-JP   m K^ß     ■^-^ 
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x(k/N) = x(k) - x{k/N) 

and the mean square smoothing error by the expression 

£   = E[x'(k/N) x(k/N)] 

Then, it can be shown* * that the smoothed estimate that minimizes fc* 

(termed the optimal smoothed estimate in the sequel) is given by the recursive 

relation 

x(k/N) = x(k/N-l) + K(N-l,k)[x(N) -x(N/N-l)] (4) 

for N = k+1, k+2, . .. where 

K(N-l,k) = 

N-l 

J(i) 

i=k 

J(i) = P(i) *'(i + l,i) M~*(i + 1) (6) 

k = integer = constant,  [   ]        denotes the matrix inverse and x(N) and x(N/N~l) 

are,  respectively,  the optimal filtered and predicted estimates of x at time N.    The 
(7) latter two estimates are governed by the set of relations*  ' 

x(N/N-l) = $(N,N-1) x(N-l) (?) 

xlN) = x(N/N-l) + K°(N)[z(N) - H(N) x(N/N-l)] 

K°(N) = M(N) H1 (N) [H(N) M(N) H' (N) + R(N)] -1 

(8) 

(9) 

M(N) = $(N,N-1)P(N-1) $f (N,N-1) + Q(N-l) (10) 

P(N) = [I-K°(N)H(N)]   M(N) (ID 

for N = 1,2,...,  where x(0) = 0i  P(0) is assumed given,  and I is the nxn identity 



matrix. 

The initial condition for Eq. (4) is 

x(k/N-l) = x(k/k) = x(k) (12) 

N = k+ 1 

which is obtained from Eq.  (8) when N = k. 

The nxn matrices M(N) and P(N-l),  which also occur in Eq. (6),  are the 

covariance matrices of the prediction error 

x(N/N-l) = x(N) - x(N/N-l) 

and the filtering error 

x(N-l) = x(N-l) - x(N-l) 

respectively. 

The nxm matrix K (N) is called the optimal filter gain and is also given by 

the relation 

K°(N) = P(N)HI(N)R"1(N) (13) 

Similarly,  the nxn matrix K(N-l,k) in Eq.  (5) is termed the optimal smoothing 

filter gain. 

The covariance matrix of the smoothing error for fixed-point discrete optimal 
(45) 

linear smoothing is given by the first-order matrix difference equation*   ' 

P(k/N) = P(k/N-1) + K(N-1, k) [P(N) - M(N)]   K! (N-l, k) (14) 

for N = k+1, k+2, . • •,  where the initial condition is 

P(k/N-1) = P(k/k) = P(k) (15) 

N = k + 1 

which is obtained from Eq.  (11) when N = k. 

Finally,   it should be noted from Eq.  (5) that the smoothing filter gain matrix 

can be expressed by the recursive relation 

g»n i ii * *\m ^     ^> 



5 

K(N-1, k) = K(N-2, k) J(N-l) (16) 

N = k+l,k+2, ...  . 

3. 0    Fixed-Point Continous Linear Smoothing 

Consider the system of Eqs.  (2) and (3) when the time between measure- 
■ 

ments is made arbitrarily small.    Let the two time instants k and k+1 be replaced 

by t and t + At,   respectively,  where At > 0.    Also,  let the plant disturbance w(k) 

be replaced by u(t) At.    Then,   Eqs.  (2) and (3) become 

x(t + At) = $(t + At,t) x(t) + u(t) At (17) 

and 

z(t + At) = H(t + At) x(t *• At) + v(t + At) (18) 

Assume that $(t + At, t) is the state transition matrix of the homogenous 

linear system 

x = F(t) x 

where F(t) is a real continous nxn matrix.    Then,   $(t + At, t) can be expanded in 

a Taylor series to obtain 

$(t + At, t) = I + F(t) At + 0(At2) (19) 

2 2 
where 0(At ) denotes terms of order (At)   . 

Substituting Eq.  (19) into Eq.  (17) and rearranging terms,  there results 

x( t + At) - x(t) = [F(t) x(t) + u(t)]   At + 0(At2) 

Dividing through by At and taking lim At -* 0 gives 

x = F(t) x + u(t) 

and taking lim At -* 0 in Eq.  (18) leads to the relation 

z(t) = H(t) x(t) + v(t) 

******.+** tl 



In taking this limit,  care must be exercised in defining the Gaussian white 

noise processes u(t) and v(t) as limits of the Gaussian white sequences w(k) and 

v(k),  respectively.    In particular, it has been shown*  '      that the covariance 

matrices Q(k) and R(k) must be replaced by Q(t) At and R(t)/At,  respectively,  in 

all relations involving these covariance matrices in order that the description of the 

disturbances be physically meaningful in the limit.    The details are given else- 

where*  '   ' and will not be repeated here. 

The above limiting procedure will now be applied to develop the equations for 

fixed-point continous linear smoothing.    Consider the smoothing interval [k, N] ,  and 

let the discrete time instants k, N-2, N-l,  and N be denoted by T, t - At, t,  and 

t + At,  respectively,  where At > 0.    Then,  Eq. (4) becomes 

x(T/t + At) - x(T/t) = K(t, T) [x(t + At) - x(t + At/t)] 

Dividing through by At and taking lim At -* 0,   it is seen that the fixed-point 

smoothed estimate must satisfy the system of ordinary linear differential equations 

SCT/O-U»       g* T> & + ^ • & + M,W (20) 
At - 0 M 

The limit on the right-hand side of Eq.  (20) will now be evaluated.    Consider 

first the expression for K(t, T) which,  from Eqs. (16) and (6),   is 

K(t, T) = K(t - At, T) J(t) 

= K(t - At, T) P(t) $'(t + At,t) Uml(t + At) (21) 

It then follows that 

lim       K(t, T) = lim        K(t - At, T) P(t) $» (t + At, t) M-1(t + At) 

At — 0 At — 0 

= lim       K(t - At, T) P(t) NT!(t + At) (22) 

At-*0 

Making the appropriate substitutions into Eq.  (10),   it is seen that 
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M(t + At) = »(t + At. t) P(t) «' (t + At, t) + Q(t) At (23) 

= [I + F(t) At + 0(At2)] P(t) [I + F(t) At + 0(At2)] ' 

+ Q(t) At 

= P(t) + [F(t) P(t) + P(t) F' (t) + Q(t)] At + 0(At2) 

= P(t) + O(At) 

where O(At) denotes terms of order At.    It then follows that 

P(t) M"1^ + At) = P(t) [P(t) + 0(At)] "* 

= [I+0(At)]-1 

Substituting this result into Eq. (21) yields 

lim       K(t, T) = lim       K(t - At, T) [I + 0(At)] "* 

At — 0 At — 0 

= K(t, T) (24) 

From Eqs. (7) and (8), the second factor in the limit on the right-hand side 

of Eq.  (20) is given by the relation 

x(t + At) - x(t + At/t) = K°(t + At) [z(t + At) - H(t + At) $(t + At, t) x(t)] (25) 

From Eq. (13) and the fact that R(N) must be replaced by R(t + At)/At, 

K°(t + At) = P(t + At) H' (t + At) R"V + At) At (26) 

Substituting Eq. (26) into Eq.  (25) and the result into Eq. (2) gives 

x(T/t) = lim       K(t, T)P(t+At)H' (t+At)R~1(t+At)fz(t+At)-H(t-nkt)$(t+At, t)x(t)] At 

AT-* 0 At 

from which it follows immediately that 
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S(T/t) = K(t. T) P(t) H' (t) R*Ht)[«(t) - H(t) x{t)] (27) 

for t > T where use has been made of the result in Eq. (24) in taking the limit. 

From Eq. (12), the initial condition on Eq. (27) is 

x<T/tJ = x(T/T) = x(T) 

|t = T 

There remains now the task of obtaining an algorithm for determining 

K(tf T).    First,  it is seen that Eq. (21) can be written 

K(t, T) J"1^) = K(t - At, T) (28) 

where 

j"*(t) = M(t + At)[S' (t + At, t)] -1 P'V) 

which follows from Eq.  (6).    It is noted that J    (t) exists if and only if P(t) is 

nonsingular.    If P(t) is singular,  it follows that x(t) = x(t) and there is no need for 

smoothing.    Hence,  it is assumed in the sequel that P(t) is nonsingular. 

Noting that [$! (t + At, t)] -1 = $'  (t, t + At),  it follows from Eq. (23) that 

M(t + At) $' (t,t + At) = $(t +  At,t) P(t) + Q(t) *' (t,t + At) At (29) 

The Taylor series expansion for $' (t, t +At) is 

$' (t, t + At) = I « F1 (t) At + 0(At2) 

Substituting this result and Eq. (19) into Eq.  (29) and grouping terms gives 

M(t + At) $' (t,  t + At) = [I + F(t) At + 0(At2)]   P(t) 

+ Q(t)[I - F' (t) At + 0(At2)]   At 

= P(t) + [F(t) P(t) + Q(t)] At + 0(At2) 

Postmultiplying in this equation by P* (t) then gives the result 
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J-1(t) = I + [F(t) + Q(t) P-1(t)] At + 0(AtZ) (30) 

Substituting £q. (30) into Eq. (28) yields 

K(t, T) 11 + [F(t) + Q(t) P-1(t)] At + 0(At2) J = K(t - At, T) 

which can also be written as 

K(t, T) - K(t - At. T) = - K(t, T) { [F(t) + Q(t) P-1(t)] At + 0(At2) } 

Dividing through by At and taking lim At -*■ 0 gives the nxn matrix linear 

ordinary differential equation 

K(t, T) = - K(t, T)[F(t) + Q(t) P'V)] (31) 

where it is emphasized that the dot denotes the derivative with respect to t. 

The initial condition for Eq. (31) is obtained by considering the time instants 

T and T 4- AT, AT > 0, and noting from Eqs. (5), (6)^and (24) that 

K(T, T) = lim        K(Tf T) 
AT—0 

= Urn        J(T) 
AT—0 

= Urn P(T) $' (T + AT, T) M^T + AT) 
AT-0 

lim 
AT—0 

= lim        P(T) M-1(T + AT) 

= lim        [1+ 0(AT)] ml = I 
AT —0 

Hence,  the required initial condition for Eq. (31) is K(T, T) = I. 

At this point,  it is seen that Eqs.  (27) and (31) along with their correspond- 

ing initial conditions specify the fixed-point smoothing filter for continous linear 

systems.    However,  in order to use this filter,  it is necessary to have the filtered 

estimate x(t) for all t > T,  and the filtering error covariance matrix P(t) also for 

all t ^ T.    These two quantities are obtained directly from the optimal filter solu- 

tion for continous linear systems     : 



f 1 
*      ^       -    -,.:-jt™.-rr~.   --  I 

x = F(t) x + K°(t) [z(t) - H(t) x] t>.t 

10 

(32) 

x(to) = 0 

K°(t) = P(t) H' (t) R"'(t) 

-1, P = F(t) P+PF'W-PH' (t) R  *(t) H(t) P * Q(t) 

P(tQ) given 

From Eq. (33), it is seen that Eq. (27) can also be written 

x(T/t) = K(t, T) K°(t) [z(t) - H(t) x(t)] 

(33) 

(34) 

(35) 

for t ^ T. 

The block diagram for the smoothing filter is shown in Fig.   1. 

"*^  Sample at t = T 
for initial condition 

x(T/t) 

Fig.   1 

Block diagram of fixed-point continous linear smoothing filter. 
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From Eqs. (11) and (26), 

P(t + At) - M(t + At) = - K°(t + At) H(t + At) M(t + At) 

Substituting this result into Eq. (36),  noting from Eq.  (23) that 

lim       M(t + At) = P(t) 
At — 0 

and utilizing the result in Eq.  (24),   Eq.  (36) simplifies to 

P(T/t) = - K(t, T) P(t) H1 (t) Rwl(t) H(t) P(t) K1 (t, T) (37) 

for t > T.    Equation (36) can also be written 

P(T/t) = - K(t, T) K°(t; H(t) P(t) K(t, T) (38) 

,o 
for t > T where K (t) is given by Eq. (33). 

The initial condition for Eqs.  (37) or (38) is 

P(T/t) = P(T/T) = P(T) 

t = T 

4.0   Fixed-Point Smoothing Error Covariance Matrix 

A linear ordinary nxn matrix differential equation whose solution is the co- 

variance matrix of fixed-point smoothing error will now be developed by applying 

the   limiting   processes of Section 3.0 to Eq. (14). 

Replacing k by T, N-l by t,  and N by t + At in Eq. (14) yields 

P(T/t + At) - P(T/t) = K(t, T)[P(t + At) - M(t + At)] K' (t, T) 

Dividing through by At and taking lim At -* 0 gives 

p(T/t) = Um K(t, T)fP(t t At) ■ M(t + At)1   K' (t, T) (36) 

At — 0 At ^ 

= - P(t+At) H1 (t+At) R'^t+At) M(t + At) At 

: 
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which follows directly from Eq. (15). 

The covariance matrix of the smoothing error is then the solution of either 

Eq. (37) or (38) with P(T) as the initial condition. 

5. 0   Examples 

Example 1.     Consider the scalar system 

x = u(t) 

z(t) = x(t) + v(t) 

for t 5- 0 where u(t) and v(t) are independent,  zero mean, Gaussian white noise 

processes having constant variances a   and o , respectively,  and x(0) is a zero 

mean» Gaussian random variable which is independent of u(t) and v(t) for all   t £. 0 

and E[x2(0)]   = a2. 

From Eq. (34), the variance of the filtered estimate of x is governed by 

the ordinary, first-order, scalar differential equation 

1    ~2 .    2 
u 

P = - -5- P   + a 
or 

v 

for t $, 0 where P(0) = a .    The solution to this differential equation is 

1 +        -ßt 
PW = a >ie-Bt t>° (39) 

1 - u e   H 

where 

a = a   a v   u 

* 1— a   + a o 

and 

2cr 
P =  — 

v 
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The optimal filter gain is seen to be 

K°(t) = P(t)H'(t)R"1(t) 

a 1 T JJ. e r 

2 a 
V 

-ß. 
2 l-M^ 

Now consider the problem of smoothing in order to determine an estimate 

of the system's   initial condition.    It is noted that the initial estimate without 

smoothing has a variance of a . 

Substituting the appropriate quantities into Eq.  (31), 

t. K(t. 0) = - 4       ' "|Xe.flt       K(t, 0) 
L        1 + |i e ' 

where K(0, 0) = 1.    The solution is obtained by direct integration and found to be 

K(t, 0) =  U-iJiLS-J2. (40) 
1 + [i. e  " 

Substituting Eqs.  (39) and (40) along with H(t) = 1 and R* (t) = I/o    into 

Eq.   (3?),   it is seen that 

u        (l-uePT 

where P(0/0) = a2. 

After some manipulation,  the solution of Eq. (41) is found to be 

P(o/t)= äU-±ü1 1 + ^ßt 
2 , -ßt 

1 - |JL e  r 

for t £. 0 and is,   of course,  the variance of the smoothed estimate of x(0). 

li is interesting to note the limiting behavior of the smoothing error variance. 
4 First,   it is seen from its definition that - l^u^ 1.    Hence,   for t # -zr- ,   i.e.,  for 
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a smoothing time of approximately four "time constants11,   e  H    = e      2£   0.02, 

and 

2 
/ i   J      \ O     O     O 

P(0/t)» «0 + E)    =      °   v   u 

a   + a   o o       v    u 

Now suppose a   > > a   a .    Then, rr o v   u 

P(0/t)« o   o   <<oZ X       ' V    u o 

and it is clear that a large reduction of the uncertainty associated with the esti- 

mate of x(0) has been effected by smoothing. 

Next,   consider the case when o    & o    o   where it is seen that 
o v    u 

2 o 
P(0/t) X -^- 

thereby giving a 50% reduction. 

Finally,  if a   < < o   o , 7 o v    u 

P(0/t) *  o1 

and there is no reduction.    In this case,   smoothing is of no value,   and the initial 

estimate x(0) = 0 must be accepted as the optimal one. 

For this example, 

K(t> o) K°(t) = 4 t1*»0;^' 
1 - jx e  p 

and Eq.  (27) becomes 

ftco/t) = 4 ■(1 + ^c,^t    [z(t)-£(t)] 
1 - [i e  p 

for t £. 0 where the initial condition is x(0/0) = x(0) = 0. 

(8  9) Example 2.    A problem commonly treated using Wiener filter theory    '       is the 
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one for which the block diagram is shown below.   Here. u(t) and v(t) are indepen- 

u(t) 
W(t) = e"at 

x(t) 

v(t) 

■©• ■*- z(t) 

a> 0 

dent,  zero mean Gaussian white noise processes with constant variances a   and 
2 -at u 

a , respectively;   and W(t) = e       is the system impulse response.    The system 

equations are 

x = - a x + u(t) 

z(t) = x(t) + v(t) 

With t   = - oo, the optimal filtered estimate of x can be shown*     to have a variance 

of 

P=a2 

v .'♦i - a 
a 

in the "steady-state". 
2 2 For simplicity,  it is assumed that a = I, a   = I,  and a   = 8 from which it 

follows thatP = 2. 

Now assume that it is desired to initiate smoothing at t = 0 to determine 

x(0/t), t>0.    For this example,  Eq. (31) becomes 

• a2 

K(t, 0) = - -a + -^- 
P 

= - 3 K(t, 0) 

K(t, 0) 

from which 

K(t, 0) = e -3t t^0 
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recalling that K(0, 0) = 1. 

The smoothing error variance equation« Eq. (37), is then 

P(0/t) = - -4-   K2(t, 0) P2 

a v 

= • 4 e 

subject to the initial condition P(0/0) = P = 2.   By direct integration, 

P(0/t)= -| (l+ie
-6t) 

for t > 0.    From this expression,  it is seen that for one time unit of smoothing, 

the variance in the estimate of x(0) is reduced from 2 to approximately 4/3« 

Example 3.    A simplified error model for the drift error in a single-degree-of- 

freedom gyroscope operating in a flzero-g" environment is given by the equations 

0 = c  + u(t) 

; = o 

where # is the angular drift error in the pitch plane,  c   is the " steady-drift" error 

rate,  and u(t) is the "random-drift" error rate.    It is assumed that u(t) is a zero 

mean, Gaussian white noise process with constant variance a ;   and that € (t ) and 

0(t ) are independent,   zero mean, Gaussian random variables with known vari- 

ances.    It is further assumed that the angular drift can be measured subject to 

Gaussian random errors.    The measurement model is then 

z(t) = *(t) + v(t) 

where v(t) is a zero mean,  Gaussian white noise process with variance a .    From 

physical considerations,  it is reasonable to assume that v(t) is independent of 0(t ), 
o 

c (t ),  and u(t) for all t. 

Letting 

V 
x = 
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It then follows that 

F = 

Q = 

0    1 

0    0 

«V     0 u 

0       0 

H = [l    0] 

R = o' 

i 
. 

Now let 

P = 

pll      p12 

LPl2      P12 

be the covariance matrix of the filtering error where 

PH(t) = E {[Ht) - «t)] 2 j 

P12(t) = E  }[«t)-«t)l [t  -«(t)]} 

P22(t) = E  {[«   -<(t)]Z] 
and 

Substituting into Eq.  (34),  it is found that the filtering error variances 

(p.. and p2?) and covariance (p, -) are the solutions of 

Pll = 2Pl2- -T Pll + (Tu 
(X 

V 

P12 = P22 " ~T P11P12 

'22 
1        2 
T   P12 

i 1 
For sufficiently long filtering time,  the equilibrium solution is* 
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Pll = ffv°u      Pl2 = 0       P22 = 0 

Hence» by filtering alone« the steady drift error rate can be determined exactly« 

at least in theory. 

Now suppose it is desired to initiate smoothing, after " steady-state" filtering 

has been attained, in an attempt to get an "improved" estimate of the drift angle 0. 

Since the steady drift error rate is known "exactly", its effect can be substracted 

out, and the system equations written 

x = u(t) 

z(t) = x(t) + v(t) 

where x = ♦, t £ T > > t , and P(T) = p     = a   a .    Then, F = 0, H = 1, Q = a2, 
I O 11 V    U u 

P" (t) = 1/Pji = 1/ffy, *■  from which Eq. (31) becomes 

a 
K(t, T) = - ^ K(t, T) 

v 

where K(T, T) = 1.    Hence, 

K(t,T) = e-ß(t-T) t»T 

where ß = or /a . r        u    v 
Equation (37) is 

P(T/t) = - -L   p 2      K2(t> T) 

a v 

= -<j2   e"2ß(t*T) 

u 

and with P(T/T) = P(T) = ov o^  its solution is obviously v   u' 

P(T/t)=I^Ü       [l + e-
2P(t-T)] 

• where t > T.    For long smoothing times t > > T,  it is seen that P(T/t) — a   a /2 

which establishes the performance limit on the accuracy to within which the drift 
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angle ^ can be determined. 

It is remarked that these results are also valid if the gyroscope is torqued 

during smoothing,  assuming that the torquing signal is known accurately.    In this 

case, the torquing signal is input to the filter as a known forcing function. 

Example 4.    Consider the case where the state vector to be estimated is a set of 

n constants.    Then, x = 0 where it is assumed that x(tQ) is a zero mean, Gaussian 

"    random n-vector having covariance matrix P(t ).    Assume that the measurement 

model is 

z(t) = H(t) x(t) + v(t) 

where H(t) is a real continous mxn matrix,  and v(t) is a zero mean,  Gaussian 

white noise process with covariance matrix R(t), and E[x(t ) vf (t)]   = 0 for all t. 

Since F(t) = D(t) = 0 for all t,  the covariance equation for the filtering error, 

Eq.  (34),  is 

P=.PH'(t) R-1(t)H(t) P 

for t ^ t    with P(t ) given. '  o o 
Now since x = constant, let T = t for purposes of smoothing. Again, since 

F(t) = Q(t) = 0 for all t,  Eq. (31) becomes 

K(t, tQ) = 0 

from which it follows that K(t, t ) = I for all t ^t   since K(t , t ) = I.    As a result, x     o' * o o    o 
Eq.  (37) assumes the form 

P(tQ/t) = - P(t) H' (t) R-1(t) H(t) P(t) 

for t > t   where P(tQ/to) = P(tQ). 

Obviously,  the two covariance equations for filtering and smoothing are 

identical.    It is trivial to show that the two filters are also identical in this case. 

6. 0   Conclusion 

The filter and error covariance equations for optimal fixed-point continous 

linear smoothing have been developed by considering the limiting case of the re- 

sults for the discrete smoothing problem.    The procedure is of use in data filtering 
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problems where a smoothed estimate of the state of a continous linear system 

is desired at some specific time during the system's   operation,  and can be used 

"on-line" for that purpose. 

The four simple examples were presented to indicate the nature of the re- 

sults to be expected in applications.    It was shown in these examples that there 

exist cases where little or no improvement can be obtained by fixed-point 

smoothing which contradicts the intuitive notion that "improved estimates can al- 

ways be obtained by smoothing.11   In other cases,  it was shown that significant 

improvement can be obtained. 

The stability of the smoothing filter,   Eq   (27),  and of the gain,   Eq.  (31),  has 

not been investigated and is left as a problem for future study. 
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