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Viscosity and Heat Transfer Effects Preface

PREFACE

“he preface appearing in Volume 1 of the Handbook of Supersonic Aero-
dynamics defines the Handbook's purpose and also traces the sequence of events
leading to its undertaking. In accordancewith the criteria established at that time,
the subject matter of the Handbook is selected on the basis of anticipated useful-
ness to all who are actively concerned with the design and performance of super-
sonic vehicles. Essential to this subject matter are the properties of fluids in
which a vehicle operates or is tested and the flight characteristics of the vehicle
itself. Each section of the Handbook therefore presents appropriate theory and
relevant data which are basic to supersonic aerodynamics and which conform to
the above criteria.

On the opposite page appears a complete list of the sections originally
intended to be included in the Handbook. Of these, fourteenhave already been pub-
lished, two are presented herein, and the remaining four have for various reasons
been withdrawn.

Section 13 on Viscosity Effects and Section 14 on Heat Transfer Effects
have been prepaiced by R. E. Wilson, Associate Technical Director, Aeroballistics,
U.S. Naval Ordnance Laboratory, White Oak, Maryland. Since the effects of vis-
cosity and heat transfer are so closely allied, it wasdecided that the subject mat-
ter would be more readily accessible to the reader if the two sections were com-
bined to allow the pagination and decimal system numbering to he consecutive
through the volume.

An Appendix to this volume gives some of the thermodynamic and trans-
port properties of air at high temperatures. This material not only supplements
that given inSection15 of the Handbook, but corrects the errors thatappeared there
'n gas properties at temperatures in excess of about 3000°K.

The Handbook is published and distributed by direction of the Bureau of
Naval Weapons, Department of the Navy. It is available for public purchase (see
Title Page) and is also distributed without charge to an approved list of facilities
and institutions actively engaged in national defense research and development.
Correspondence relating to the distribution of the Handbook should be directed to:

Chief, Bureau of Naval Weapons
Department of the Navy
Washington, D. C., 20360

Correspondence relating to the subject macerial should be directed to:

Editor, Handbook of Supersonic Aerodynamics
Applied Physics Laboratory

The Johns Hopkins University

8621 Georgia Avenue

Silver Spring, Maryland, 20910
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The Handbook of Supersonic Aerodynamics is made ready for printing
by the Handbook Staff; the justified typing and general layout work is done by Mrs.
Doris McCeney; Mrs. Carol Dick prepared all sketches and figures in addition to
many other tasks involved in processing a manuscript.

Ione D. V. Faro, Editor
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SYMBOLS

Only those symbols which are frequently used are defined here; all others are de-
fined where they are used.

A

a

o

Pr

cross-sectional area

:ocal velocity of sound; shock radius of curvature
radius of curvature of nose of a blunt body
mean skin friction coefficient

local skin friction coefficient, p. 11
pressure coefficient

specific heat at constant pressure

specific heat at constant volume

drag

2r (x/puis ), p. 9

shape parameter, 6*/8

enthalpy

3y-1
G-n P ¥

coefficient of thermal conductivity; height (or characteristic dimen-
sion) of a roughness element

eddy viscosity

reference length; p. 7; mixing length, p. 29; shear parameter, p. 80
Mach number

velocity exponent, p. 80

momentum parameter, p. 81

pressure gradient parameter, p. 80; velocity exponent, p. 41
Prandtl number

pressure
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heat conduction rate per unit area

R universal gas constant (for air, 1715 ft®*/s c¢® °F)

Re Reynolds number, put/u (the characteristic dimension, £, is often in-

dicated by the subscript, e.g., Ree, Re , Rexk)
r radius of the body measured normal to the axis of symmetry, recovery
factor, p. 20

St Stanton number, h/cpp, u

s non-dimensional thickness of the laminar sublayer

T temperature

T“ Sutherland's constant (~198.6°R for air)

t time; thickness of the leading edge

u component of velocity in x-direction or along a surface

u friction velocity, p. 30

\ component of velocity in y~direction or normal to a surface

w component of velocity in z-direction

X distance measured along the surface

y distance measured normal to the surface

Y/ compressibility (pV/RT)

a angle of attack, exponent of Pr, p. 196

B Tl/ T,, p. 18

y ratio of specific heats (c p/ cv)

6 boundary-layer thickness

6 P thickness of the laminar sublayer

o* boundary-layer displacement thickness, p. 11

n non-dimensional form of y, p. 30

) boundary-layer momentum thickness, p. 11

A sweep angle

n coefficient of viscosity

xxii




Viscosity and Heat Transfer Effects Symbols

He eddy viscosity
v kinematic velocity
3 angle between center line and the normal to a2 curve
p density
o normal stress; cone semi-angle; Mach numter function, p. 30
T shear stress
Te Reynolds stress, p. 14
¢ dissipaticn function, p. 5
© u/uT, p. 30
» stream function
wg shock-wave angle
Subscripts
1 conditions at the outer edge of the boundary layer
o sea-level values
® free-stream conditions

normalized with respect to conditions at the outer edge of the
boundary layer

c conditions along a sharp cone
e equilibrium conditions
fr fully rough surface

st

incompressible values

k roughness

L laminar flow

4 laminar sublayer

s shock-wave conditions; smooth surface
sp stagnation point of a blunt body

T turbulent flow
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t total or stagnation value
tr transition
w conditions at the wall
€ eddy conditions in turbulent flow
Superscripts
! differentiation with respect to u,; reference value, p. 21; fluctuating
value, p. 13
o sharp cone conditions.
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Introduction 1.1

SECTIONS 13 and 14: VISCOSITY AND HEAT TRANSFER EFFECTS

1. Introduction

Although the equations of motion for compressible flows under the ef-
fects of friction were derived long ago, mathematical difficulties stand in the way
of complete solution. In the last two decades, much intensive effort has been de-
voted to study of viscous effects in high-speed flows. Special cases and simplify-
ing assumptions have allowed theoretical analyses to be made which have been
favorably compared with experimental results. The technical literature contains
a great many papers reporting the results of such theoretical and experimental
investigations. Nearly two hundred papers are discussed in these sections and
are listed at their conclusion. Within these referenced reports, further biblicg-
raphies may be found. In addition to these somewhat limited studies, several ex-
cellent reference books have been written whichgive a more comprehensive treat-
ment of various aspects of the subject. Two of these books have already been us’ d
as Refs. 2 and 122, others are listed in the order of their publication as Refs. 199
through203. Since such literature is readily available, no attemptis made inthese
sections of the Handbook to reproduce detailed theoretical treatments. Rather,
the emphasis is placed on the presentation of theoretical and experimental results

which can be used by the missile designer for the calculation of skin friction and
heat transfer.

1.1 Scope of Contents

Although theoretical derivations have been kept to a minimum, various
forms of the boundary-layer equations and momentum-integral equations are re-
produced for ready reference. These equationsform the basis of the various theo-
retical results which are presented and are included so that the assumptions un-
derlying the specific cases considered in subsequent subsections may be readily
apparent. Boundary-layer growth and skin friction is first treated for the case of
smooth flat plates with laminar and turbulent flows of both real and perfect gases.
The flow over two-dimensional and axisymmetric bodies is treated next. The re-
sults obtained from theoretical considerations are substantiated wherever possible
by experimental data. Sample calculations are given in some instances.

Since the transition from laminar to turbulent flow has such marked ef-
fects on boundary-layer growth, skin friction, and heat transfer, an entire sub-
section is devoted to the current knowledge of transition. Since there is at pres-
ent no theory whichcan predict the onsetand termination of the transition process,
the material presented is, of necessity, limited to empirical and experimental
data. Due to the large number of parameters which influence transition, correla-
tion of experimental results is difficult. However, an attempt has been made to
classify the limited data whichare available and thus make them asfruitfulas pos-
sible. In many cases no conclusions canbe drawnfrom the data, but they are pre-
sented not only to show the lack of conclusive evidence but also in order that they
may be available for comparison with the results of future investigations. Methods
are given for determining the mean skin friction on surfaces with mixed flows. It

is shown that one cf the factors which has a large effect on transition is surface
roughness.




X

1.1 Introduction

In addition to affecting the transition from laminar to turbulent flow,
roughness can also have a marked effect on the characteristics of fully turbulent
boundary layer. The effect of roughness on the growth of turbulent boundary layer
is treated as fully as possible. Graphs are presented by which both the local and
the total skin friction coefficient on sand roughened insulated flat plates may be
determined for a wide range of Mach numbers and Reynolds numbers.

The somewhat detailed presentation of results onboundary-layer growth
and skinfriction allow the subject of heat transfer to be more briefly treated. The
cases for which the effects of heat transfer are presented parallel those for which
skin friction effects were treated, i.e., the flat plate, two-dimensional, and axi-
symmetric bodies with laminar and turbulent flows of real and perfect gases. In
addition, several subjects particularly significantwith respect tc heat transfer are
discussed. Among these are the effect of body angle of attack and the effect of
sweep on heat transfer, heat transfer rates in separated flows, and near protub-
erances.

The most recently available information on scme of the thermodynamic
and the transport properties of air at high temperatures has been compiled by the
Handbook Staff and is presented in Appendix A (p. 253). The sources from which
further data may be obtained are listed in Tables A-2 and A-3.
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Boundary-Layer Equations 2.1

2. Boundary-Layer Equations

In this subsection the general equations of continuity, momentum,
and energy are given for a compressible viscous fluid. These general equa-
tions may be re-expressed in many forms which either exhibit the flow prop-
erties under certain given conditions or are more amenable to certain required
operations. The forms of the equations given in this subsection are those which
will be used in the subsequent analyses of the boundary layer. By means of
simplifying assumptions, the general equations may be reduced for the case of
two-dimensional steady laminar flow over a flat or a simple curved surface.
By means of suitable transformations of the variables they may be applied to
flow along an axisymmetric surface or to flow in the (x,u) plane, or they may
be reduced to a form which is independent of the compressibility. If each ve-
locity component is assumed to be made up of a slowly varying average value
and an instantaneous fluctuation from the mean, it is shown that the general
equations may also be used to represent turbulent flow.

2.1 Continuity, Momentum, and Energy Equations in Viscous Flow

The equations of continuity, momentum, and energy which are pre-
sented here are based on the following assumptions or limitations:
1. The flow is unsteady, i.e., varies with time,
The gas is compressible;

3. It is Newtonian gas, i.e., the shear stress, 7, and the viscosity,
u, are related to the velocity field by Newton's friction law:

T =ug—; (2-1)

4. Body forces, i.e., forces such as gravity acting throughout the mass
of the gas, are negligible;

5. The gas is everywhere in chemical equilibrium and the state vari-
ables are not affected by diffusion.

The continuity equation which expresses the conservation of mass
is given by

Do _ -
Ft—+pdivW~0 (2-2)

where

W = the velocity vector whose axial components are u, v, and w

D_ 2 2 3 2
Dt ' V'V TV
and
divw 2L 2

x 3y ez
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The three equations of motion which express the conservation of

momentum have been fully derived by Schlichting in Chapter III of Ref. 1. They
are:

Du_ 3 2 2
Pot = ax 9% * 3y (Txy) * 3z o)
Dv_ 2 2 2 )
° Bt = 3y (oy) * 3% (rxy) * 3 (ryz) (2-3)
Dw_ 2
PPt =~z (oz) T (Tz )+ 3y (Tyz)
where
ax, oy, oz = stresses normal to the yz, zx, and xy planes, respectively
Tox = shearing stress in the xy plane, parallel to the x axis, etc.

The normal stresses are given by

_ du 2 .
ox--p+2u3§-§—ud1vw
0 =-p+ 2u——-gy div W (2-4)
y 3
c = p+2“§.!_3pdivw
z 3z 3

and the shear stresses are
(2-5)

Subs!itution of the above expressions for the normal stresses and the shear
strei.ses in Eq. 2-3 results in the following set of equations:

Du__dp, 2[ (o 24w, 2[, (0, )] 2f, (2w, 2
PDt ~ x ' x L“(z ax 3d1vW +E)y “(aerBx)]+ dzZ “(ax+az)]

Dv__2p, 2[ (a2 2o wls 2[ar2v, 2w, 2 [, (2u, &
Pbt ~ ay+?y_:‘(zay gdivw +az:‘(az+ay)]+ax:‘ v’ x]

2, 2 (p2v 2 [ (v, 2\], 2[, (v, 2
"Dt Y “(2az 3d“'w]+ax“ ax T z) [P Sy |H\ez T oy

v—rr——y — o r——— g~ MR T T ey e e s Y =



Boundary-Layer Equations 2.1

These equations, known as the Navier-Stokes equations, form the basis of the
science of fluid mechanics. With Eq. 2-2 and the thermodynamic equation of
state, they define all isothermal processes. Where the process is not iso-
thermal, the energy equation must be added to the system.

Howarth in Ref. 2 (pp. 52-55) derives the energy equation, and pre-
sents it in several forms. In terms of the enthalpy (h), the heat-conduction
rate per unit area (q), and the dissipation function (®), it may be written

PDE "DE* a5 @) * 33 (@) + 55 (@,)+ ¢ (2-7)

where

- oT | k2T . - 2T
qx_kax ! qy-kay ’ q, = k5

with
k = coefficient of thermal conductivity
and

_ 2u dv w
=pro)zz+Pro)gtpro)g
u, W ow L dw L W w
PTyxdy T Txy T Tax %zt Txe Bx+szbz+Tyzay
d3u dv w

=pdivW+0 —+0 —+0 +1('ra + 7T
Xy

3 3
X3X yy z3d% u T

yz  zX

Where the viscosity of a fluid is small its influence is virtually confined to a
thin layer adjacent to a body immersed in the fluid. Beyond this boundary layer
the flow may be considered nonviscous and, in the absence of shock waves,
isentropic. The thickness, 6, of the boundary layer is in practice fairly easy
to determine since the particle velocity rapidly approaches that of the free
stream. However, in theory the approach is asymptotic and the limiting value
of 6 has to be arbitrarily defined. It is often taken in experimental work as
the distance from the wall at which the particle veiocity is 0.995 of its free-
stream value.

vt !
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In the two-dimensional case, shown in the previous sketch, y is the distance
from the wall. When

y=0; u=0 andr =u%;—(no slip at the wall)
and when

y=6; 7=0 andu=u; (oru=20.995u,)
When these limiting conditions, together with those of surface shape, are ap-
plied to the general equations, specific equations for calculating the properties
of the boundary layer may be derived. Several forms of these equations will be

given in the following subsections and later they will be used in making boundary-
layer calculations for specific types of flow and various surface properties.

2.2 Two-Dimensional, Steady, Laminar Flow

The simplest form of the compressible boundary-layer equations is
that for two-dimensional, steady, laminar flow along either a plane or a curved
wall where it is assumed that:

1. x is measured along and y normal to the surface.
2. The boundary-layer thickness, 6, is small in comparison with both

x and the radius of curvature of the wall.

In this case the continuity equation, Eq. 2-2, reduces to

3(pu) . 3¥pv) _
g: + g; =0 (2-8)

The relative magnitudes of the terms of Eq. 2-3 are then assessed. For a
full discussion of this see Young (Ref. 2, pp. 379-381). When all but the terms
of largest magnitude are rejected, the equations of motion reduce to:

u 2w _ dp 3
p(uax+vay)- ax+ay\
and (2-9)
3p.
oy 0
where
au
T=T _ =T =§§—
yx xy H3y

The energy equation, Eq. 2-7, becomes

3h, . am _ 2p,2q,  2u
"(“ax”’ay ‘“ax+ay+ray (2-10)
where i —kﬂ
1=% = %3y
6

b ~wE T ——
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2.3 Axisymmetric, Steady, Laminar Flow

The boundary-layer equations for axisymmetric, steady, laminar flow
over a body of revolution are of wide practical interest. The assumptions upon
which they depend are the same as those of the preceding subsection with one
additional limitation, i.e., 6 is also small compared with r, the radius of the
body measured normal to the axis of symmetry (see sketch below).

-
-
P
-
- -
-
e

In axisymmetric flow the equations of motion and energy are iden-
tical to Eqs. 2-9 and 2-10, but the continuity equation (Eq. 2-8) becomes

a—i (rou) + a—ay (rov) =0 (2-11a)

Since r is a function only of x this may be reduced to

2 K3 eudr _ -
% (pu) + 3 (pv) + = 3% " 0 (2-11b)

The presence of the last term in Eq. 2-ilb makes the solution of this set of
equations one step more difficult than that of the set of Eqs. 2-8 to 2-10. By
means of a transformation of variables suggested by Mangler (Ref. 3), the axi-
symmetric set of equations may be reduced to a form identical with the two-
dimensional set, thus permitting the use of the same solution.

The Mangler variables are

o L?
where £ is a reference length. It follows that,

p(x) = p(x); h(x,¥) = hix,y); TXx,¥) = T(x,y); oX,7¥) = olx,y);
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- =~ ~ ~ 8.~ =aF
WY =ulxy); KXY =Kxy); T=d=;q=K=
dy 3y
Equations 2-9, 2-10, and 2-11b transform to
2E+2G@Ev=o0 (2-12)
ax Ay
e v). 2,2
>4 3y 3x 3y
(2-13)
L) J)
dy
ZEB—E+VEE =E§g+%+?9—g (2-14)
X dy 3x 3y ay

which are of the same form as the two-dimensional equations (Eqs. 2-8 to 2-10)
and therefore have a similar solution.

2.4 Two-Dimensional, Steady, Laminar Flow in the (x, u) Plane

For the case of two-dimensional, steady, laminar flow, Crocco in
Ref. 4 reduced the equations of continuity, motion, and energy to two equa-
tions by taking x and u as the independent variables. With the transformation

X =X }
u = u(x, y)

h= h(pr T)

and making use of the relations

and
dh

e
P \3T p=const.

which hold both for a perfect gas and for a real gas in chemical equilibrium,
Eqs. 2-8 to 2-10 reduce to

2 (ee), 2 _3p . 2fu\.
"‘ax<-r)+ s Bu(lfi)'o (#-19)
du
2 (L, 2h)_ 2r2h wou 2h _uf3h  \3p
Bu(PrTau)'au'a—u+T' T 5§+T(Sﬁ+u)-3_f-o (2-16)
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where

Pr = = Frandtl number

lct
®l o

The method of transformation is presented in detail in Ref. 4.

For the case of the flat plate (3p/3x = 0) on which the enthalpy at
the wall, hw, is constant, the enthalpy profiles in the boundary layer and also
the velocity profiles are similar for all values of x. Under these conditions

h = h(u); o = p(h) = p(u); p = u(h) = u(u);
and

Pr = Pr(h) = Pr(u)

Eqs. 2-15 and 2-16 then reduce to two ordinary differential equations (see
Ref. 4). In non-dimensional form they are given by:

s Bx t 2\1‘ Py by =0 (2-17)
and
aft . 1...,.%9
aa:r;;gtht'Gth**'Hgt:o (2-18)
where
€e = 27F
Ov My U
and

u, =u/uy; hy =h/hy; p, = 0/p1; Ky = H/ihy

The subscript , denotes conditions at the outer edge of the boundary layer, and
the primes denote difierentiation with respect to u,. The boundary conditions
for Eqs. 2-17 and 2-18 are as follows:

whenu, = 0; then g} =9 and h, = hw/hl =0
and whenu, =1; theng, =0 and h, =1

For the case of constant Prandtl number, Eq. 2-18 becomes

3
(hg + Pr %:-) g+ (1 -Pr)g, hy =0 (2-19)

Given the thermodynamic and transport data for a gas (see Appen-
dix A), Eq. 2-17 with either Eq. 2-18 or Eq. 2-19 can be integrated numeri-
cally. The numerical solutions will yield velocity profiles, enthalpy profiles,
rates of heat transfer to the surface, and the shear stress on the surface.
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When Pr =1 and g, # 0, Eq. 2-19 becomes

hy + ‘t:i =0 (2-20)

Equation 2-20 is independent of Eq. 2-17 and can be integrated at once to give
the static enthalpy as a function of the velocity, i.e.,

h, = h“‘w - (h“'w -1)u, + 2h (uy - u3) (2-21)

where subscript w denotes conditions at the wall.

The total enthalpy is defined as

.
ht. =h+ 3
and thus w
hy + 55
ht. =hy/ hy = "
1
1 + f‘ﬁ;
In terms of the total enthalpy, Eq. 2-21 reduces to
h, =h +u.fl -h 2-22
te =Py, ( t.w) (2-22)

For a calorifically perfect gas, the enthalpy ratios in Eqs. 2-18 to
2-22 can be replaced by temperature ratios and in this case

2
TL = 2’_5__1 M? (2-23)

2.5 The Momentum Integral Equation

The boundary-layer equations so far derived have expressed the
conditions that exist from point to point throughout the viscous region. Their
solutions are cumbersome and time-consuming except under very special cir-
cumstances. On the other hand, the momentum equation or von Karman's in-
tegral condition as it is sometimes called, expresses an average effect of the
particle flows and satisfies the conditions of the differential equations at the two
boundaries of the viscous stratum, i.e., at the wall and at the transition to
the external flow. While the integral method furnishes fairly accurate infor-
mation on such properties as skin friction, heat transfer, and boundary-layer
thickness, it is not able to give velocity or temperature profiles or to explain
what happens within the friction layer itseli. Since the momentum integral
equation is developed without the necessity of assuming a relationship for the
shear stress, the results may be applied to both laminar and turbulent flow.

10
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Boundary-Layer Equations 2.5.1

At this point it is helpful to define two further quantities: the boundary-layer
momentum thickness given by:

6

_{_pu U -

9—5 o (1 ul)dy (2-24)
0

and the boundary-layer displacement thickness given by:

a

As = |1 - PY -
fo-2pe (2-25)
O

The ratio 6*/6 is called the shape parameter and is usually written as H.

2.5.1 Axisymmetric Compressible Steady Flow

The momentum integral equation for flow over axisymmetric bodies
may be obtained easily from first principles or may be obtained by multiplying

Eq. 2-11b by (u; - u) and subtracting Eq. 2-9 from the product. Integration
across the boundary layer results in

&

C
9_9 ] ‘(1_ a__l_d“1 (o} Q_d_s-___b gB_ f_T -
arnmae B e iR E iy e
o

U, dx o, Uy rqix [« TR 31 dx —2_ Dy U

where Ci is the local skin friction coefficient defined by:

T
w

Cf ) #(o, u?)
Aty=0: u=0andr =T
aty=6: u=u, and7 =1,
Equation 2-26 is valid for both laminar and turbulent flow since it was unneces-
sary to assume a relation for the shear stress, 7.

When 3u/2y = 0 at the outer edge of the boundary layer, then 7, = 0
and Eq. 2-9 becomes

oru, o = - B (2-27)

and Eq. 2-26 may be written as

, C
de __6 *\dp 2 de| 8dr o f B}
dx e, Uy [(2+ e)dx W dx]+r X 2 (2-28)

11
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For an isentropic external flow of a calorifically perfect gas this becomes

as 2-29
dx+M, +y-lMa dx ( )

49 6 [H+2-M:7dM, #dr_ Ot
1 r
2 1

The boundary-layer flow over a slender, slightly blunted cone will be discussed
in Subsec. 4 with the assumptions that the gas is calorifically perfect and adia-
batic outside the boundary layer and also that dp/dx = 0. With these assump-
tions Eq. 2-26 becomes

do . 6 |,__6/6-H dM, 9dr_cf T,

ax ' M, ix ‘rax 2 @ (2-30)

1+21 = 1Mz
Given the flow cornditions outside the boundary layer and relations for Cf, H,

and 6/6, the above equations can be integrated along the surface to determine
the boundary-layer growth.

2.5.2 Two-Dimensional Flow

The momentum integral equations for two-dimensional flow can be
obtained immediately by putting 5:— g—; = 0 in Eqs. 2-26, 2-28, 2-29, and 2-30.
2.5.3 Transformations of the Integral Momentum Equation

Two transformations of the momentum integral equation are fre-
quently used. The first is the Mangler transformation (see Subsec. 2.3) by
which the axisymmetric equation may be reduced to the form of a two-dimen-
sional equation and thus more easily solved. The second is a transformation
evolved by Stewartson (Ref. 6) by which the compressible two-dimensional mo-
mentum integral equation is transformed into one which is identical with its
incompressible counterpart. Stewartson's method was modified by Cohen and
Reshotko (Ref. 7) who used the following transformations:

where a = velocity of sound.

12
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The assumed viscosity law is given by

H o '_I‘Lr_ (2-31)
e, ty
The value of A in any particular case is determined from the Sutherland for-
mula intermsof T and T, , i.e.,
w t1
alz
':E = __T_“.’ T,tx_r_T} = i". (2-32)
“t1 Ttl "w + Tk Tt1

Here Tk = Sutherland's constant = 198.6°R for air. The transformed momen-

tum integral equation which is identical in form to the incompressible flow
equation becomes

Bl V@2 =t (2-33)
dx u, dx
where _ y+1
5 -
W Y L\ R
9=j:—(1 °?’)dy=9 T
u u Tt.
0o 1 1 M
_ b 5\ .-
« ([t 9\,
f- 8
o ty U,
A-=-%8+%
- 2y-1
2u T,\""!
- tl a"' 1 t‘.l
Ce = = M -G
¢o, uf !
t,
2.6 Two-Dimensional Turbulent Flow

Turbulent motion may be represented by assuming that each velocity
component and each thermodynamic variable has a time-averaged value plus a
fluctuation, i.e.,

u=u+u', Vv=v+V', p=p+p', u=p+y', etc (2-34)

13
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where At

u dt (2-35)

and At is a time interval which is large compared with the period of fluctuation.
It is further assumed that

1. The mean flow is steady, i.e., 3u/3t =0
2. The averages of the fluctnations are zero, i.e., u' = 0, etc.,
3. The boundary layer is thin, and
4. x is measured along the surface and y normal to it.
The values from Eqs. 2-34 are substituted in the following form of the equa-

tion for the momentum in the x-direction:

3 2 o)+ 2 __2p, 231
ST(ou)+ax‘°“)+ay(°“V)’ 3% T 3y

The resulting equation reduces (see Ref. 1 or 5 for details) to the form

— 3 — du_ _dPp 3 35 i
ou 3x+°v y = T ov)' u (2-36)

which may be seen to correspond to Eq. 2-9 if the viscous stress may be re-

garded as
(; - (ov)' u')

The additional term, - ipv)' u', is known as the apparent stress or the virtual
stress of turbulent flow or more simply as the Reynoids stress. Then

S COUUEE %;3 (2-37)

where

B is known as the eddy viscosity which unlike g is not a property of the fluid.

The Reynolds stresses far outweigh the viscous term, which is usually neg-
lected, i.e., _
-~ 3u
u g}; =2 0

The momentum in the y-direction reduces as before to

0’0"

~«<
i
o
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Boundary-ilayer Equations 2.6.1

The cumbersome transformation of the energy equation is given in detail in
Ref. 8. By means of the transformation the time-mean equation becomes

‘;‘;P_h+5;29=522+_3(§32)+;é2+_3 [. Tov) I - (pv)" u.%]

(2-38)

and as before this is of the same form as the laminar equation if the heat flux

is taken to be
aT - [] [}
( 3y ev)th )

and the shear stress as r - {(pv)' u'. The latter has already been discussed;
the former leads to the definition of the apparent heat flux, i.e.,

o =-Toh =k &

€ dy

where g, is much larger than k(3T/3y), which term may then be neglected. The
coefficient ke is known as the eddy conductivity.

The two-dimensional turbulent boundary-layer equations thus become

d = . D —y )
gi(ou)+§§(oV)—0 (2-39)
G,z _dp, 3 2 -
Pl PVy © x+ay(“eay) (2-40)
and
b, 2B _=3p, 3 3%, (& )
ou=+p _—i'uax"'ay(ke?i“‘“e(a;) (2-41)

These equations are of the same form as the laminar equations. The solu-
tions for tne equations of the turbulent boundary layer on a flat plate will be
discussed in Subsecs. 3.3 and 3.4 for the cases of a perfect gas and a real
gas.

2.6.1 Two-Dimensional Turbulent Flow in the (x, u) Plane

The Crocco transformation (see Subsec. 2.4) may also be applied
to the turbulent boundary-layer equations. With the transformation

"
"
»

u=u(x,y)

15
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a4 —— T e G ————— g Y (G Koo P

Equations 2-39 and 2-40 reduce to

B a u
3 ,—‘pu)+3_—-(re)-§§~l_(;i)= 0 (2-42)
X\Te TN 3u\e
and
T s\ T af B A -
—a: _e_gg -—Teél:l+re-1_—e'ﬁa—£+r—€ él—_l+u —:—£=0 (2-43)
3u reau du 3 € € \du
where
uec
Pre=—2k

Equations 2-42 and 2-43 have the same form as Eqs. 2-15 and 2-16. For isen-
tropic flow over a flat plate, 3p/3x is zero and 3h/3x nearly zero and hence
Eq. 2-43 becomes

= 1-Pr = dT
r l(?l—él_‘)n | 3h €. (2-44)
ol € du du

For Pre =1, this reduces to

-
¥hi1-0 (2-45)
du?

Integration of Eq. 2-45 gives the same variation of enthalpy with velocity as
in the laminar boundary layer (see Eqs. 2-21 and 2-22).
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Solutions to the Flat Plate Boundary-Layer Equations 3.

3. Solutions to the Flat Plate Boundary-Layer Equations

Although solutions to the general boundary-layer equations present
many difficulties, there are approximations and simplifications which reduce
them to forms that may be solved. One frequent simplification is that of zero
pressure and temperature gradients on the surface. For two-dimensional flow
this is the flat plate. This subsection will discuss laminar and turbulent flows
of both perfect and real gases over a flat plate.

The perfect gas is assumed to be both thermally and calorifically
perfect. In addition, the Prandtl number is taken to be constant. The perfect
gas assumptions hold only for a moderate range of temperatures. To be con-
sistent, expressions for the transport properties need to be accurate only in
the same temperature range. With the above assumptions, viscosity is the only
transport property required for the solution of perfect gas flow equations. Many
authors have assumed that viscosity varies linearly with temperature. Others
have taken it to be proportional to some fractional power of the temperature.
Since these representations are accurate only for narrow temperature ranges,
still others have used Sutherland's viscosity law. For air, this law gives ac-
curate values of viscosity over a somewhat wider range of temperatures than
that for which the perfect gas assumptions remain valid. Sutherland's law is
used for the perfect gas flat plate calculations discussed in this subsection.

For the real gas solutions, the gas is assumed to be in thermody-
namic equilibrium. The values of any two state variables, therefore, define the
thermodynamic state of the gas. However, no simple analytic equation of state
exists. The thermodynamic data must be taken from tables, from a Mollier
chart, or calculated from expressions which have been fitted to experimental
data. Furthermore, there are no simple analytic expressions for the trans-
port properties. These data must also be taken from tables or graphical pres-
entations based on experimental data. In the solutions of the real gas boundary-
layer equations, both viscosity and conductivity data are required. The values
of two state variables are required to specify values of the transport properties.
Tabulated values of the thermodynamic and transport properties of air at tem-
peratures up to 9C00°R are given in Section 15 of the Handbook (Ref. 39). Sub-
sequent investigations have shown that the energy of dissociation used in these
tables is too low; consequently, the data are doubtful at temperatures above
about 3000°R. The gas properties are discussed further in Appendix A (p.253)
of this Section. They are evaluated not only at much higher temperatures than
before but also in the light of recent experimental evidence.

3.1 Laminar Boundary Layer on a Flat Plate -- Perfect Gas

Crocco expressed the boundary-layer momentum and energy equa-
tions in the form given by Eqe. 2-17 and 2-19. They are

Bs Byt 2u, O 4, =0

]
(h',;+Pr%t)g,,+(l-Pr)g;h,',=0

17
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The Prandtl number must be assumed to be constant in order to write the energy
equation in the foregoing form. For a perfect gas, h, is of course identical
to T,. These equations were the basis of the theoretical and experimental in-
vestigations of the laminar flow of a perfect gas which are to be discussed in
this subsection.

If viscosity is assumed to be directly proportional to temperature,
then p, 4, = 1. In this case, the momentum equation reduces to Blasius' equa-
tion and can be solved independently of the energy equation. However, it must
be integrated numerically. Results are given by Blasius in Ref. 8. If Pr =1,
the energy equation is independent of the momentum equation ¢nd can be inte-
grated at cnce to give the static enthalpy as in Eq. 2-21. For values of Pr
other than 1, the energy equation i3 not independent of the momentum equation
and must be integrated numerically. From his numerical calculations, Crocco
(Ref. 4) obtained the useful result that the solution of the energy equation is
essentially independent of the form of the viscosity-temperature relationship.
The solution of Blasius' momentum equation can therefore always be used when
integrating the energy equation. However, unlike that of the energy equation,
the solution of the momentum equation is dependent on the form of the tem-
perature-viscosity relationship. For cases other than p, 4, =1, the convenient
method of solution is first to integrate the energy equation as above. The value
of o, u,, Which is required for the integration of the momentum equation, can
be found when the temperature is known.

Crocco (Ref. 4) gives solutions to the equations for Pr from 0.5 to
2, and shows the effects of the variations in the dependence of viscosity on
temperature. Table 3-1 (p. 53) lists the parameters of the figures which pre-
sent the results of Crocco's calculations. Note that the ratio 8 = Tk/T1 from

the Sutherland law is used as a parameter, and the gas velocity is given in
terms of u}/h,; the results are thus not limited to air, but apply to all gases
for which the various parameters are realistic.

In 1952 Van Driest used the Crocco method for extensive calcula-
tions of the perfect-gas laminar boundary layer. His results, given graphically
in Ref. 9, are the most complete that are available at the present time. The
parameters of the figures given in Ref. 9 are listed in Table 3-2 (p. 54). Sev-
eral of these figures have been reproduced herein and will be discussed later
in this subsection. Van Driest used the Sutherland viscosity law by means of
which the ratio, u4,, may be written

é 1
SRl e R e I

Van Driest uses 8 = 0.505 in his calculations. For air, which has Tk = 198.7°R,

this value of 8 corresponds to an ambient temperature of 392.4°R, which is the
standard temperature of the isothermal layer between the altitudes of 35 and
105 K ft. For the free flight of slender configurations, where the tempera-
ture at the outer edge of the boundary layer is near the temperature of the at-
mosphere, this value of 8 will give reasonable results for all altitudes. The
variation of 8 with altitude is from-about 0.3 to 0.5 as shown on the first sketch
on the following page. The second sketch shows that in a wind tunnel, 8 may

18
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Solutions to the Flat Plate Boundary-Layer Equations 3.1

have a much wider variation.

0.6
Free Flight

0.5 =
8 /

0.4 :==______‘_. \j[\
0.3 X
1 5 10 50 100 500
Altitude, K ft

3
Wind Tunnel
2 //
T, = 500°R
8 -
) A~ I50°R _~
_— | —"1000°R
/
I et s
0 — 2500°R™0, 000°R -
0 1 2 3 q 5

M,

Crocco determined the effect of 8 on the skin friction coefficient. The curves
in the following sketch have been made from cross plots of his computations at
Pr = 0.725. Since they give the skin friction for an insulated plate, they rep-
resent an upper limit to the effect of 8. The curves show that the free-flight
variation of 8 has a small effect on skin friction.

1.3
§ 1.2 /£=3 °
s 1T— 120
o T —T1 15—
-1.0
l@ /_._.-/-—-—-—-'"'"""_ ——0.75-]
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0025—
O ———— ) —
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The assumptions of a perfect gas and the Sutherland viscosity law become less
accurate as the Mach number and temperature are increased. Within the limits
of the above basic assumptions, the errors in the skin friction coefficient will
be moderate. The differences will be seen by comparing the perfect gas re-
sults, to be discussed in this subsection, with the real gas results to be givza
in the following subsection.

In examining the effect of wall temperature on the boundary-layer
characteristics, one case of interest is the insulated plate. At the surface,
q, = 0 and hence (a'r/ay)w = 0. For this case the wall temperature is known

as the equilibrium temperature, T o’ the adiabatic wall temperature, or the

recovery temperature. The ratio of the dynamic temperature rise to that which
would occur in frictionless adiabatic flow is called the recovery factor, r, i.e.,

r=(T, - AT, - T) (3-2)
or since in adiabatic flow
T/T, =1+ 7—5—1 M2
then
T/Ty =1+r- Y1531 M =T, (3-3)

Crocco shows in Ref. 4 that for Pr = 0.5 to 2.0, the recovery factor is closely
approximated by

J

r =Pr (3-4)

In addition to the insulated wall case, calculations were made by Van Driest
for T‘w =0.25, 1, 2, 4, and 6. The sketch below shows the relationship be-

tween these values and those for the insulated wall. It may be seen that the
range of T*w includes both heated and cooled walls up to M, =5, beyond which

only cooling is treated.

60 —
Region rConside red
40 ““by Van priest
T Zeré Heat Transfer ~
.wzo (Insulated Wall)
Heated Wall Cooled Wall
s . o TIN50 19,19 FOMD IR IVIV FY IR IR IR ANV
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M,
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Solutions to the Flat Plate Boundary-Layer Equations 3.1.1

Some of the very useful contributions made in Ref. 9 are the graphs
of the velocity and temperature distributions. After solving the momenium and
energy equations, boundary-layer velocity profiles in non-dimensional form are
readily obtained from the shear function, g,, by the following integration:

U,
L vRe =2 By duy
X B¢
o

Figure 3-1 reproduces the velocity profiles of Ref. 9 for M; =0, 4, 8, 12, 16,
and 20, both for the insulated flat plate (Tw = Te) and for Tw = T,. The change

in shape of the velocity profiles and the large reduction in boundary-layer thick-
ness associated with the high cooling rate is immediately evident.

Having computed (y/x) ¥VRe in terms of u,, the solution of the energy
equation yields temperature profiles. Figure 3-2 shows the temperature pro-
files, T, vs (y/x) }&, in the laminar boundary layer for the same set of con-
ditions as the preceding figure. This figure clearly demonstrates that, while
boundary-layer temperatures at high Mach numbers are much greater than free-
stream temperatures regardless of cooling rate, they are still greatly reduced
when the wall is cooled. Thus, the cooler the wall, the higher the Mach num-
ber at which real gas effects may be neglected. This is further discussed in
Subsec. 3.1.2.

The local skin friction coefficient may be determined directly from
the solation, g,, of Eqs. 2-17 and 2-19. 1t is given by

Cf Vﬁe‘ = (g*)W (3‘5)

The mean skin friction coefficient, CF’ is the average of Cf over the flat plate
and in a laminar boundary layer is given by

CF = 2Cf (3-6)

The solid lines in Fig. 3-3 give the lccal skin friction coefficient as a function
of Mach number for T,,W =0.25, 1, 2, 4, and 6 and for an insulated surface.

3.1.1 The Reference Temperature Method for Calculating Skin Friction

In 1949 Rubesin and Johnson (Ref. 10) devised an approximate method
for taking account of the effects of Mach number and heat transfer on laminar
boundary-layer skin friction. They demonstrated that the incompressible, zero
heat transfer result for skin friction could be used with good accuracy for com-
pressible flow with heat transfer if the density and viscosity used in computing Cf

and Re were those associated with a reference temperature, T', computed from

T =7 =1+0.032 M} +0.58 (T, - 1) (3-7)
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The method results in the following relation for the local skin friction coefficient

T J vt \B
C, VRE - ¥ (°1 u ‘) -c; VRe' - (‘j;-;‘—) - 0.664 (opupt  (3-8)

since T, was chosen to make C} YRe' equal to the incompressible value, i.e.,

to 0.664. As p, and u), may both be expressed in terms of T,, the skin fric-
tion is completely determined when T, is known.

Monaghan in Ref. 11 demonstrated that the constants in Eq. 3-7 are
very close to values which appear in the equation (Pr = 1) for an average tem-
perature computed in the following way:

1
T,=T/T, = s T, du, (3-9)
o

For a perfect gas Eq. 2-21, whicn holds for Pr = 1, may be written as
T, = Ty, - (T, - Duy + 250 M2 (u, - ud) (3-10)

from which one may easily obtain

T, y -1y, Ttw ] 3-11
Te =1+ My + —5— (3-11)

When y = 1.4, Eq. 3-11 becomes
T, =1+0.0333 M? + 0.5 (T, , - 1) (3-12)

It may be seen that this equation closely approximates Eq. 3-7 determined by
Rubesin and Johnson.

Wilson in Ref. 12 used the results of Van Driest's work to deter-
mine the dependence of T, on the Prandt! number. It was found that T, could
be closely approximated by

:

% %
= Pr¢* Pr -1 Pr
T, =1+ [’i‘ - -—3-—] prt [”——2-— M?] + [1 - 53 ]('r,‘w - 1) (3-13)

A comparison of _'f‘ with T, computed from Eq. 3-8, by using Van Driest's
skin friction results for Pr = 0.75, led Wilson to adjust the coefficients of
Eq. 3-13 to give

Ty, =1+AM]+ B('Z[".‘w -1) (3-14)
where a2 i
Pr* P -1
A-1.08 [BE RS prdr 1 3-15)
22
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Solutions to the Flat Plate Boundary-Layer Equations 3.1.1

and

vy
B = 0.90[ - P; ] (3-16)

Values of A and B are shown in the sketch below. Equations 3-8 and 3-14 were
used with Pr = 0.75, ¥y = 1.4, and 8 = 0.505 to compute the skin friction co-
efficients which are shown by dotted lines in Fig. 3-3. The agreement with
Van Driest's results is generally better than 1.5%.

0.6
0‘5\\1
//
¢ 0.4
0.3 <
/
0.2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Pr

t9
(=

In order to estimate the effect on Cf of both T, and 8, Eqs. 3-1
and 3-8 were used to calculate Cf VRe for values of T, from 0 to 50 and for

B =0 05 1.0, 1.5, and 2.0. The resultant curves are shown in Fig. 3-4.
In order to use Fig. 3-4, it is necessary to relate 3 and T, to the physical
properties of the flow. The values of 8 encountered in atmospheric flight and
in wind tunnels are given in the sketches on page 19. The value of T, as a
function of M; and T"w is shown in the following sketch.

50

Insulated Plate
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3.1.2 Comparison of Reference Temperature and Maximum Boundary-Layer
Temperature

In order to examine more c.osely the validity of using perfect gas
propert' ~~ in calculations of high Mach number fiows, it is necessary to de-
termine tile maximum temperature in the boundary layer under the given con-
ditions. In Fig. 3-5 the reference temperature, T,, is shown as a function of
Mach number for zero heat transfer and for the case of a wall cooled to give
T“w = 1. Also shown (by dashed lines) is the maximum boundary-layer tem-

perature calculated by Van Driest (see Fig. 3-2). it may be seen that in the
zero heat transfer case there is a large diifference between the reference and
the maximum temperatures, whereas the diffi rence becomes less marked when
the walls are cooled. The difference increases with Mach number. It is sug-
gested that the reference temperature be used as a guide for determining the
region of validity of perfect gas assumptions, i.e., the region where the ref-
erence temperature is low enough to assure that real gas effects are negligible.

3.1.3 Boundary-Layer Thicknes~s and Shape Para.neter

The boundary-layer displacement thickness, 6*, is defined in Sub-
sec. 2.5 as

6% =

(1 - p,u,)dy (3-17)

Ot

The momentum thickness was given by

6
6 = s Py (1 - u,) dy (3-18)
o

For a flat plate, i.e., dM, dx = 0, it can be shown by integrating Eq. 2-28
with respect to x tha!

it @-19)

(1 - p,u,) dlvRe) (3-40)

4 o
1]
o|%
]
[ V]
Olmrmm, 3¢

Values of H have been obtained by evaluating the integral in Eq. 3-20 using the
boundary-layer velocity and tempe-ature profiles and the skin-friction results
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of Ref. 9. It has been found in Ref. 13 tl.at the shape parameter can be ap-
proximated by

6‘
H=%=6.10T, - 3.51 (3-21)

where T, is given by Eq. 3-14. The results of Ref. 9 can also be used to
obtain values of 6/6. These values can be approximated (see Ref. 13) by

Do

=6.10 T} + 2.90 (3-22)

where & is taken as the value of y when u, =0.995. Figures 3-6 and 3-7 show
that Eqs. 3-21 and 3-22 are excellent fits to the values czlculated from Ref. 9
for 0 = M, < 20 and 0.25 < T*w s 6.0. Figure 3-8 shows that the agreement

is not quite so good for the insulated flat plate case. Fortunately, the disagree-
ment occurs at Mach numbers greater than 8 where the wall temperatures are
much too high for practical interest. The above comparison was made with

Pr =0.75. For Pr=1, Eqs. 3-21 and 3-22 are in reasonable agreement with
the results of Ref. 7.

With Egqs. 3-6 and 3-19, the displacement thickness may be written

%;- YRe = H C, VRe (3-23)
and

] 6
$ Vre - 8 c, VRe (3-24)

Then Eqs. 3-8, 3-14, and 3-21 to 3-24 may be used to calculate (8*/x)¥Re and
(6/x)YRe. Values obtained in this fashion are plotted in Fig. 3-9 as a function
of Mach number for the insulated plate and for T‘w =1. Figure 3-9 illustrates

the strong dependence of the thicknesses, 6§ and 6%, on the free-stream Mach
number. Values of the boundary-layer thickness, (8/x)yRe, taken from Ref. 9
are shown in Fig. 3-9. At high Mach numbers it is evident that the displacr.-
ment thickness approaches the total thickness of the boundary layer even at low
surface temperatures.

3.2 Laminar Boundary Layer on a Flat Plate -- Real Gas

In the previous subsection, solutions of the boundary-layer equations
were obtained for ideal gases, i.e., those for which cp and Pr remain vir-

tually constant and for which the viscosity may be found by Sutherland's for-
mula. The current subsection presents and discusses solutions which take into
account realistic variations of the thermodynamic and transport properties of

the gas, assumed to be in chemical equilibrium at each point in the boundary
layer.
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Solutions to Eqs. 2-17 and 2-18 have been obtained by Romig and
Dore (Ref. 14) and by Wileon (Ref. 12). In each case, the integration was
carried out by high-speed computers. Wilson's work will be summarized here
not only because it employs more recently evaluated air properties than those
of Romig and Dore, but also because the form of the results allows easy com-
parison with those of the perfect gas case.

There are two important prerequisites to the integration of the equa-
tions. The first is the choice of values for the air properties, a decision which
is by no means simple. From the best available information, which is presented
in Appendix A, it may be seen that there is still a great deal of uncertainty
and a wide discrepancy among the values calculated from different sets of basic
assumptions. Once a set of values has been chosen, the second prerequisite
is that the properties be expressed as functions of the enthalpy, with the pres-
sure constant, in order that Eqs. 2-17 and 2-18 will contain only the two var-
iables, g, and h,.

For his calculations, Wilson chose the following: values of 4 and
k at high temperatures computed by Green and Klein (optional values are given
in Appendix A); values of the compressibility factor, Z, from Ref. 15; and
values of cp/R and c v/R from Ref. 16. The value of R is based on the molec-

ular weight of cold, undissociated air. At lower enthalpies the values ~f u, Kk,
and cp were taken from Ref. 17. The density-enthalpy relationship was ob-

tained from Refs. 15, 17, and 18.

Wilson found that expressing u, Pr, and o in terms of h, while keep-
ing the pressure constant, was a major part of his work. A summary of his
method is given since it may be extended to a higher temperature regime or
used for new data that may become available.

1. By means of curves such as those given in Figs. A-2 to A-8, plots of
u vs Z for °/°o =1.0, 0.1, and 0.01 were made (po = density of the atmo-

sphere at sea level). These plots are given in Fig. 3-10.

2. The coefficient of conductivity, k, could not be interpolated accu-
rately by this method. A set of curves, much easier to work with, was ob-

tained by plotting Rk/cv vs Z for the same three values of o/o Results are
also given in Fig. 3-10.

3. Since the relative concentration of the various constituents of air
is essentially constant at constant Z, it was postulated that a formula of the
Sutherland form could be used for g4 and R.k/c at each value of Z. The equa-
tions used were

ala
B = TT+ b (3-25)
and
Rk T3/3
c_ c'I‘ +d (3-26)
v
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Solutions to the Flat Plate Boundary-Layer Equations 3.

where a, b, ¢, and d are functions of Z only and were evaluated by taking a
least squares fit to the data at various values of Z. The resulting values are
shown in Fig. 3-11 for values of Z from 1.0 to 1.8. Within this range of Z,
Eqs. 3-25 and 3-26 fit the original data to within 1%.

4. Since the interpolation of the Prandtl number proved impractical,
it was determined by calculation. Values of u and R.k/cv were found by means
of Eqs. 3-25 and 3-26; values of cv/R and cp/R were taken from Ref. 16.

5. Figure 3-12 gives the final plots of u, Kk, cp, Pr, and p as func-
tions of the enthalpy for a constant pressure of 0.1 atmosphere.

An iterative procedure is required for the solution of Eqs. 2-17 and
2-18 since the boundary conditions are split. The conditions are:

ge =0 and hy=h,  at u,:O’

(3-27)

€e =0 and h, =1 at u,=l)
A method which is convenient for machine computation is described in Ref. 12.
The integration is started at the outer edge of the boundary layer (u, =1) and
proceeds towards the wall. The method is such that iteration is required to
satisfy only the condition g, = 0 at the wall. The wall enthalpy h‘w is not

specified in advance but is obtained as a result of the computation. Where con-
ditions related to a specific wall enthalpy are required, they may be determined
easily by interpolationfrom a series of solutions giving a range of wall enthalpies.

3.2.1 Skin Friction Coefficient

In carrying cut the solutions to Eqs. 2-17 and 2-18, the variation
of g, aad h, with u, is obtained across the boundary layer. As in the perfect
gas case, CfVRé is obtained immediately from the value of g, (Eq. 3-5). The

values calculated by Wilson (Ref. 12) for Cfvﬁ as a function of h,  are shown

in Figs. 3-13 to 3-16 by means of circles for p, = 0.1 atmosphere and the fol-
lowing values of the other parameters:

Figure 3-13 3-14 | 3-15 3-16
h, BTU/slug 3,000 15,600 | 75,000 | 400, 000
uj /2h; 0. 10, 30, 80 | 0, 10, 30| 0, i0 0

At low enthalpies the conditions represent those of 4« slender body traveling at
speeds up to 25, 000 ft/sec and the highest enthalpy is that which would be found
on the nose of a blunt body at speeds up to 25, 000 ft/sec.

The T' method discussed in Subsec. 3.1.1 may be extended logically

to the real gas case by using a reference enthalpy, h', in place of the refer-
ence temperature. Equation 3-14 thus becomes
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4

i
] 4
hL:%_=1+0.90[ - (e

1

nt 37 .2
](h*w -1)+1.08 (Pr')b [—-—(P;) - —-—‘(P;) ]‘291;—1

(3-28)

The Prandtl number, Pr', in Eq. 3-28, and the reference enthalpy, h', are in-
terdependent (see Fig. 3-12) and hence an iterative process is required in the
computation of hy. However, the coefficients in Eq. 3-28 are not very sensi-
tive to the variation of Pr' and the iterative process converges rapidly. Once
h, has been determined, the corresponding values of p' and u' are read from
Fig. 3-12 and the value of C; YRe computed from Eq. 3-8. The curves ob-

tained by this method are shown as solid lines in Figs. 3-13 to 3-16. It may
be seen that the agreement is, in general, very good between machine-computed
values of the skin friction and those determined by means of the reference en-

thalpy. The agreement is not quite as good at high values of h, for very low
air velocities over a cooled wall.

The real gas results of Figs. 3-13 to 3-16 may be compared easily
with the perfect gas results of Fig. 3-3 since values of h*w and u?/2h, cor-

respond to values of T*w and -(1%12 M?, respectively, in the perfect gas case.

Curves showing the comparison are given in Ref. 12. The real gas values of
C; YRe are greater than the corresponding perfect gas values, the difference in

the present range of parameters being always less than 15%. It should, how-
ever, be noted that although the non-dimensionalized form of the skin friction
does not appear to be changed greatly by real gas effects, the actual shear
stress, Ty may be appreciably changed when real gas values for the density

and viscosity are used.

3.2.2 Shape Parametcr and Boundary-Layer Displacement

No velocity profiles were computed by Wilson (Ref. 12), and hence
no values of the shape parameter, H, were obtained for the real gas case. How-

ever, it is suggested that the shape parameter may be estimated by rewriting
Eq. 3-21 in the form

H=-F=-'—,—-3.51 (3-29)

The density ratio o, corresponds to the real gas enthalpy ratio. h}, which was
ootained from Eq. 3-28. Having computed H from Eq. 3-29, the value of the
displacement thickness can be estimated from Eq. 3-23 by using the value of
Cf YRe computed by the reference enthalpy method of the previous subhsection.

In order to calculate 6/6, it is suggested that Eq. 3-22 be rewritten as

§= 10, 2.90 (3-30)
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Solutions to the Flat Plate Boundary-Layer Equations 3.3

3.3 Turbulent Boundary Layer on a Flat Plate -- Perfect Gas

In Subsec. 2.6 it has been shown that the viscous stress in two-
dimensional turbulent flow may be written as

- - ' = _B_G_ -
Te = (pv)'u = M 3y (Eq. 2-37)
Prandtl in Ref. 19 (pp. 126-130) shows that this may be expressed as

_ ag2 (uY .
T, = ot (dy) (3-31)

where £ is known as a mixing length which is proportional to the distance from
the wall, i.e.,

L =12, =ny (3-32)

In the similarity theory of von Karman, given in Ref. 19 as well as in Ref. 20,
the value of £ is given as

2
L=ty =-x @/9_;3 (3-33)

Assuming that T = constant = Tw in Eq. 3-31, these two mixing lengths result

in the same boundary-layer velocity distribution for incompressible flow. x is
a universal constant whose value has been experimentally determined (taken
herein to be 0.392). It is believed to be the same in both compressiole and
incompressible flow. When the density variation across the boundary layer is
taken into account, the results of integrating Eq. 3-31 will depend on the choice
between the use of Eqs. 3-32 and 3-33.

Although many analyses have been made for the turbulent boundary
layer in the compressible flow of an ideal gas, only a few will be mentioned
here. Frankl and Voishel (Ref. 21) were the first (1943) to solve Eq. 3-31
and they chose to represent the mixing length by means of Eq. 3-33. The nu-
merical results which are given in Ref. 21 for the incompressible case and for
high subsonic Mach numbers include the effects of heat transfer. However, if
the method is extended to higher Mach numbers, the accuracy decreases due
to the mathematical approximations employed. In 1950 Wilson also used the
von Karman mixing length with Eq. 3-31 to derive skin friction relations for
compressible flow with zero heat transfer and cobtained good agreement with ex-
perimentally determined values over a moderate range of Mach numbers (1.5
to 2.2). Van Driest in 1951 (Ref. 45) chose to use the Prandtl mixing length
in his solution of Eq. 3-31 but in 1954 he obtained a solution using the von
Karman expression and extended Wilson's results to include the effects of heat
transfer. Studies of von Karman's similarity theory made by Lin and Shen
(Ref. 22) and by Li and Nagamatsu (Ref. 23) indicate that the use of the von

Karman mixing length expression is preferable to that of Prandtl for compres-
sible flow analyses.
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Wilson's method of solution will be outlined briefly. Assuming that
T = constant = T Eqs. 3-31 and 3-33 combine to give

3 du\® /d3u )
(Tw/ﬂ) =-x [(a;)/d—yg} (3 34)

In order to determine a value of p to be used in the solution of Eq. 3-34, it
is assumed that Pre = 1. Equation 3-10 then holds true for turbulent flow and

1/0, is substituted for T,. It may be seen from Eq. 3-31 that (-rw/o)é has
the dimensions of a velocity. When p = Py, this is sometimes referred to as
the friction velocity and represented by u, i.e.,

3 .
(r,/Py)° = v, (3-35)
If
P, Uy
w/u =¢ and — LA (3-36)
T By

where ¢ and n are non-dimensional forms of u and y, then Eq. 3-31 may be

written as ;
T T al
a N PR P U (- i > B A2 .
3¢ [log (de/dm)] = -x |1 ( T )«»1 "(T >(w) (3-37)
w w
where
Y - 1 M3
2 1
o= — (3-38)
1+ 2 3 M3

Equation 3-37 may be integrated twice to give the relationship between ¢ and
n in terms of two constants of integration. In order to evaluate the constants
of integration it is necessary to examine the structure of the turbulent bound-
ary layer. A rational assumption, and one that is borne out by experimental
data, is that adjacent to the wall is a thin layer of laminar flow in which the
viscous stress (4 du/dy) is large and the Reynolds stress [ot®(du/dy)?®] is neg-
ligible. Above this is a turbulent layer in which the viscous stress is negligible
and the Reynolds stress is large. Between these two layers is a transition
layer (often neglected in mathematical analyses) in which the two stresses are
of the same order of magnitude.

Assuming that * = constant =7_ and u = constant = b in the lam-
inar region, Eqs. 2-1 and 3-35 give

_, Gdu_ 3
Tw “hwdy " PwYr
and after integration
[ S 4
.ul =W T (3-39)
T B
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Solutions to the Flat Plate Boundary-Layer Equations 3.3

From this it follows that at the edge of the laminar sublayer (see sketches below)

'n = (p =S (3-40)

Assuming that Eq. 3-32 holds true near the laminar sublayer and that in this
region p = constant = Py’ it can be shown that

(g‘g)m = 1/xs (3-41)

These two equations will be used as the boundary conditions in the solution of
Eq. 3-37. A model of the turbulent boundary layer (in terms of the physical

coordinates y and u as well as in the non-dimensional 7 and ¢) is shown by the
sketches below.

o
1 -Turbulent

Equations 3-39 to 3-41 are strictly true only for incompressible
laminar flow with no heat transfer, but they are not greatly in error for com-
pressible turbulent flow in which the sublayer is very thin. The non-dimensional
thickness of the sublayer, s, is usually considered invariant. However, Harkness
has shown (Ref. 25) that its value varies with the heat-transfer rate and has

obtained the following relationship from the experimental data which is shown
on Fig. 3-1T:

Te - Ty
s=11.5+6.6 — (3-42)
e

where Te is defined by Eq. 3-3. When there is no heat transfer, Eq. 3-42

reduces to the better known value of s (i.e., 11.5) quoted by von Karman and
derived from incompressible flow data. Harkness derived skin friction rela-
tions based on Eq. 3-34 and used the above result. His equations differ slightly

from those which will be given here due to the fact that somewhat different
mathematical approximations were made.

A single integration of Eq. 3-37 was used to obtain 3p/37 which
yielded du/dy and hence an integral expression for the momentum thickness, 6.
For a flat plate the momentum integral equation, Eq. 2-26, reduces to

_de
C/2 =g
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which may be written as

dRee

Equation 3-43 may be integrated and the constant of integration evaluated at the
leading edge of the plate where Re = 0 and Cf = oo. After several mathematical
approximations the final result is

(sin'1 £ - sin-? ef) 1 _6.43+4.15 log.o (lls-SEchRe) (3-44)
T W
e
O-TTCf
where T -T
£ = e (3-45)
V T -T T -T
4o (1 - e'r wil, eT w
e e
w Cf Te - Tw
20 S -T—l-—z- -°——-——T
£ = = (3-46)
T -T T -T \?
K:l - LA D w
Te Te

It should be noted that the temperature distribution in the boundary layer was
based on the assumption of Pr = 1. However, in the subsequent development
it was assumed that the Prandtl number could be varied and hence that T e (de-

fined by Eq. 3-3) has now replaced Tt' Experimental evidence indicates that
in turbulent flow the recovery factor may be expressed as

%

r= (Pr)w

(3-47)

For incompressible flow with no heat transfer, Eg. 3-44 reduces to von Karman's
equation, i.e.,

(cf )‘é =1.7+4.15 log; o (cf Re) (3-48)
i i

The mean, or total, skin friction coefficient, CF' is given by

D :
“F Yo W x (3-49)
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and may be obtained from the local coefficient by means of

Re
1
CF * Re S Cf dRe (3-50)
o
In incompressible fiow, according to Schoenherr (Ref. 26), the equation for the
mean skin friction coefficient can be written in a form identical to that for the

local skin friction coefficient with the constants adjusted. This holds true in
compressible flow in which case CF for turbulent flow on a flat plate is given by

(sin'l ¢ - sin-! rF)-—O:&‘-Z— - -1.968 + 1ogw(“'5ﬂl— Cq Re) (3-51)

Te S Hy
(0] T, CF
where
20 sb :Tw -Cz—F - T_e'g}_v_ (3-52)
R
Te Te

For incompressible flow with no heat transfer, Eq. 3-51 reduces to the result
given by Schoenherr in Ref. 26, i.e.,

2
0.242 (C =10810 C Re (3'53)
(6, 108 (e, ™)

Equation 3-53 is comparable to von Karman's equation, Eq. 3-48, for Cf .
i

Many authors presert skin friction results in terms of the ratios
CF/CF and Cf/Cf. The mean skin friction coefficient, CF’ has been com-
i i
puted from Eq. 3-51 at Re = 107, for a range of Mach numbers of 0 to 10,
for (T_-T )/T_from 0 to 0.95, using Eq. 3-1 for u,/u_. A value of C_, was
e "w' e w Fi
computed from Eq. 3-53 for Re = 10’. The ratio Cy/Cy 80 obtained is shown
i
as a function of Mach number in Fig. 3-18. Since the value of 8 in the viscosity
law was taken as 0.505, the conditions outside the boundary layer are those in
the standard isothermal altitude range from 35,322 to 104,987 feet. When the
value of Re is varied, CF/CF increases slowly with decreasing Re.
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If Eqs. 3-44 and 3-48 are used to compute Cf/Cf it may be shown
i
that for a wide range of M and Re, Cf/Cf zCF/CF . It follows that Fig. 3-18
i i
may be used for either mean or local skin friction coefficient ratios at Re = 10”.

It is sometimes necessary to compute the Reynolds number of the
flow with the momentum thickness, 6, as the characteristic dimension rather
than the more usual length, x, from the leading edge of the plate to the point
in question. For a flat plate the mean skin friction coefficient is given by

Re

=98 _o,_8 -
Cp=2 ‘zRex (3-54)

F

D

Therefore CF as a function of Re9 comes directly from Eqs. 3-51 and 3-52,
i.e.,

(sin“ ¢ - sin-? gF) _0.242 =~1.968 + log, ¢ 8w Re (3-55)
T s “w 8
e
O‘TT CF

For a given Ree, a value of Cf can be calculated by the following tedius pro-
cess. Calculate CF from Eq. 3-55, then calculate the corresponding Re from
Eq. 3-54, and finally calculate the corresponding value of Cf from Eq. 3-44.

A simpler method can be derived as follows: the local skin friction coefficient
for a flat plate can be written

Cf =-——dRe =CF+ Rﬂm (3-56)

After differentiating Eq. 3-51 to obtain dCF/dRe and making use of Egs. 3-55
and 3-56, Cf is given by

C, = Ce (- 1.968 + Q)/(- 1.099 + Q) (3-57)
where
3
T -T
2 1 - -& w
@ =1o -z-g-&LRe)+024zs , Te
= 1080\ ;- Reg+ 0. 7 T.-T.\ /T -T.\7
: e - ) e
FI. Te Te
(3-58)
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Solutions to the Flat Plate Boundary-Layer Equaticns 3.3.1

For a given value of Ree, Eq. 3-55 is used to calculate Cy and Eq. 3-57 will
give a corresponding value of Cf.

It should be noted that care must be taken to specify which Reynolds
number is held constant, Re or Ree, when giving skin friction ratios. This
will be demonstrated by estimating, (Cf/Cfi) Re, from (CF/CFi) Re °F (Cf/cfi)Re.
The subscripts Re9 and Re indicate the Reynolds number which is held con-
stant. Equation 3-53 can be written

C C
‘:/'_253"(0‘“) - logio (Cp Re) - logi, (CF) (3-59)
Cr VFi/pe Fi'Re

Now since {C./C varies slowly with Re, assume that (C_/C is con-
F Fi Re F Fi Re

stant and differentiate Eq. 3-59 with respect to Re. Making use of Eqs. 3-54

and 3-56 leads to

(0.242)? (cF

C, = C (3'60)

f~ CFi Fi
0.869 + logyo |2Re | = omet
1 0 CF CF -

Equations 3-54 and 3-56 are also valid for the incompressible case. Differ-
entiating Eq. 3-53 to obtain dCF /dRe, they give
i

/C )
_ i m —
loglo 2Re9

(0.242)°

f, = 70.869 + 10g; 0 2Re) Tog:o 2Re'e

C (3-61)

From Eqs. 3-60 and 3-61

C (o) (0.869 + log, 0 2Re,) log1o 2Re
o /e ) - e ey 8-62)
fi e Fi

F F
0.869 + log,o 2Ree "C“_ 10810 2Ree —6—'

i /Re Fi JRe

The ratio (Cf/cfi)Ree/(CF/CFi)Re is plotted on Fig. 3-19 as a function of

(CF/CFi) for several values of log,o Ree'

Re

3.3.1 A Reference Temperature Method for Turbulent Flows

Sommer and Short (Ref. 27) proposed that Eq. 3-53 be used to com-
pute mean skin friction coefficients for compressible flow with heat transfer
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by means of values of CF and Re based on a reference temperature. For tur-

bulent tlows they proposed a relation for reference temperature with the same

form as that given by Rubesin and Johnson (Eq. 3-7) for laminar flows but with

slightly different coefficients. When values of CF/CF derived from the equa-
i

tions of Sommer and Short are compared with those on Fig. 3-19, there is good

agreement at ze. o heat transfer (Tw = Te) and at some of the higher values of

(1‘e - TW)/I‘e but the agreement is not good at moderate values of this parameter.

For the T' method, Eq. 3-53 is written as

9232 . 1og:~ (Cy Re') (3-63)
CF
where
| B M _ Iz_
Creo Cr T CF
Re' = 2 K2 Re = L B2 Re
o U T u
With these relationships, Eq. 3-63 becomes
0.242 (L ¢ _%zlog (Brc. Re (3-64)
. T1 F 1c “v F

where CF and Re are based on the density and viscosity at the outer edge of

the boundary layer. To fit a reference temperature method to Wilson's results,
1t is necessary to find a relation for T'/T, such that values of skin friction
computed from Eq. 3-64 will agree with those computed from Eq. 3-51. Ex-
pressions for T'/T, have been found at Re = 10’ and 8 = 0.505 such that the
agreement is good in two cases: 1) over a range of Mach numbers at zero heat
transfer, (I‘e - Tw)/Te = 0, and 2) over a range of temperature ratios at zero

Mach number. The expressions for T'/T, found for the two cases are:
For zero heat transfer:

Ty . 2 .
(TI) =1+ 0.100 M (3-65)

and €

For zero Mach number:;

Te - Tw Te - Tw >
=1-0.134 —r |- 0.372 7 (3-66)
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where the subscripts e and o denote zero heat transfer and zeiro Mach number,
respectively. Sornmer and Short give the following relation for T'/T. for all
combinations of Mach number and temperature ratio:

1=1+0035M2+04R3‘3— (3-87)
T, . V1Y .ng -

For Prw =0.7Tand y =1.4, Eq. 3-3 becomes

~

€ -1+0.178 Mg (3-68)

s

T

Using Eq. 3-68, the Sommer and Short relation gives the following results for
zero heat transfer and zero Mach number;

(-T—' = 1+0.115 M2 (3-69)
T, ),

and

(11) S 1-o0.45(le w (3-70)
), : T

e

Equation 3-69 is in reasonable agreement with Eq. 3-65. However, Eq. 3-70
is quite different from Eq. 3-£6 and gives different numerical results at low
and mcdcgate vales of (™ - ™ M o at (T - T )/T_ - 0.92, they give the
same resulis. ¢ v € € " €

It has not been found possible to obtain an expression for T'/T, such
that Eq. 3-64 would agree with Eq. 3-51 for all combinations of Mach number
and temperature ratio and at all Reynolds numbers. It is therefore recom-
mended that Eqs. 3-44, 3-51, 3-55, and 3-57 be used in calculating local and
mean skin friction coefficients.

3.3.2 Theoretical and Experimental Skin Friction Coefficients

Experimental measurements of skin friction have been made in many
ways. Boundary-layer profiles have been surveyed to obtain velocity and tem-
perature distributions from which the momentum boundary-layer thickness and
the mean skin friction coefficient may be computed. For the case of a flat
plate it has been shown (Eq. 3-19) that

20
CF‘Y

Total drag measurements have been made in ballistic ranges and in wind tun-
nels. The friction drag is then computed as the difference between measured

31



3.3.2 NAVWEPS Report 1458 (Vol. 5, Secs. 13 and 14)

total drag and a computed pressure drag, i.e.,

D_.=D -D (3-71)

Cr = Yo (3-72)

where A is the total surface area. The local shear stress, Tw’ has been ob-

tained experimentally by means of a skin-friction balance which measured the
drag on a small isolated surface element. Details of the design, construction,
and operation of skin friction balances may be found in Refs. 28 and 29. The
experimental local skin friction coefficient is then obtained by definition from

T
w

Cf = §ZD; uf;

At high Mach numbers it is possible to measure the velocity in the laminar
sublayer and thus determine the velocity gradient at the wall (du/dv) The
local shear stress is then determined from Eq. 2-1, i.e.,

el
w w dyw

The local skin friction is then computed from Tw' Measurements of the tem-

perature at the walls have been made to determine the temperature gradient
in the wall at the surface, thus giving the heat-transfer rate and the heat trans-
fer coefficient, h. The non-dimensional form of h is known as the local Stanton
number, defined as

h

CDx‘K
p

St =

(3-73)

The local skin friction coefficient may then be deduced from the heat transfer
using the modified Reynolds analogy

2
- 3 -
C; = 2(Pr), St (3-74)

It is not easy to substantiate or compare the various theories by
means of experimental data. Skin friction and heat transfer measurements are
difficult to make with a high degree of accuracy and hence there is a consider-
able scatter between different sets of data. Experimentally determined skin
friction coefficients have been selected from a few sources in an attempt to
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cover ranges of Mach number and temperature ratio as wide as possible. In

some cases good agreement is found between theory 2.d experinient, in some

cases the theoretical values are higher, and in others they are lower than those

obtained by measurement. Although comparisons are often made in terms of

CF/CF, they are presented here in terms of the absolute values of Cf or CF
i

in order that the actual test parameters may be included in the computed values
of the coefficients.

von Karman's equation (Eq. 3-48) for the local skin friction in in-
compressible flow was derived by f{itting a straight line to six experimental
values obtained by Kempf (see Ref. 30). Recently Koziov (Ref. 31) obtained
fifteen measurements by means of a floating skin friction sensing device in flow
at Mach numbers from 0.32 to 0.58 and Tw/Te from 0.94 to 0.98. His em-
pirical formula is

C. -0 085 Re-0-29 +0.01 logio Re

i (3-75)

Within the range of the Reynolds numbers of the test points, i.e., from 10°
to 10°, Eqs. 3-48 and 3-75 agree to within 1%. The experimental data and
the fitted curves are shown in Fig. 3-20 in terms of Cf-*/a vs log (C; Re).

The next experimental results to be discussed are three sets of
superson‘c data obtained at zero heat transfer. Wilson obtained mean skin
friction coefficients from boundary-layer surveys over a Mach number range
from 1.72 to 2.47 (Ref. 24). Jackson et al (Ref. 46) used both skin friction
balances and boundary-layer momentum surveys to obtain skin friction coeffi-
cients at Mach numbers of 1.61 and 2.20. The Reynolds numbers in this in-
vestigation were considerably higher than those of Wilson's tests. As shown
on Fig. 3-21, both sets of data are in good agreement with the theoretical re-
sults given by Eq. 3-51. The trend with Reynolds number variation follows
that of the theory more closely than does that with Mach number variation.
Coles (Ref. 32) made local measurements of shear stress by means of a skin
friction balance and also surveyed the boundary layer to obtain the momentum
thickness. The resultant data in terms of Cf and Ree are plotted on Fig. 3-22

for Mach numbers from 1.98 to 4.53. For comparison Cf is calculated from
Eq. 3-44 in terms of Re and expressed in terms of Reo by means of Eqs. 3-51

and 3-54. The agreement between the theory and Coles' data is very good.
Korkegi (Ref. 33), using the same techniques as Coles, made measurements at
M = 5.79. These data are also compared with the theory on Fig. 3-22 where
it may be seen that the experimental values are somewhat higher than those of
theory. Matting, Chapman, Nyholm and Thomas (Ref. 34) also measured the
local shear stress by means of a skin friction balance. Their data, in terms
of C; and log Re, are shown in Fig. 3-23 together with the theoretical curve

from Eq. 3-44. Matting, et al, mace the measurements in air at Mach num-
bers of 2.95 and 4.20 and in helium at Mach numbers of 5.21 and 7.70. The
latter data are comparable to those tiken in air at M = 6.7 and 9.9, respec-
tively. In contrast to Coles' results which agree with theory and those of Kor-
kegi which are higher than theory, the results of Matting are in every case lower
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than the theoretical values. In addition to the measure nents with a skin fric-
tion balance, Matting made boundary-layer surveys which gave a surface shear
stress gradient higher than that measured with the balance. The discrepancy
increased with increasing Mach number. Although the authors of Ref. 34 caution
against using the velocity profile data, the values of the skin friction coefficient
obtained from them would be above the curves shown on Fig. 3-23.

The skin friction measurements made under conditions of the highest
heat transfer rates are those reported by Sommer and Short (Ref. 27). Their
models were fired in a ballistics range and the skin friction drag was obtained
by subtracting the calculated pressure drag from the measured total drag. They
obtained the data over a Mach number range of 2.81 to 7.00 and a range of
temperature ratios, (T, - Tw)/Te’ from 0.572 to 0.820. Their results shown

in Fig. 3-24 indicate reasonable agreement with the theoretical values computed
from Eq. 3-51. Also shown on Fig. 3-24 are measured values obtained by
Kozlov (Ref. 31) at M = 2.9 with high Re and low heat transfer. The agree-
ment with the theory of Eq. 3-51 is very good.

The next data discussed also include the effects of heat transfer.
Winkler and Cha (Ref. 35) determined the local skin friction coefficient from
measurements of the velocity gradient at the surface and also using the Reynolds
analogy, deduced the skin friction from measurements of the heat transfer. The
measurements were made at a Mach number of 5.2 with (l‘e - Tw)/’l‘e varying

from 0.075 to 0.352. The data, in terms of experimentally determined values
of Ree, are plotted in Fig. 3-25 in which it may be seen that the two sets of

data are in agreement with each other as well as in reasonable agreement with
the theoretical curve obtained from Egs. 3-44 and 3-51.

3.3.3 Shape Parameter and Boundary-Layer Displacement Thickness

The boundary-layer displacement thickness and the momentum thick-
ness which were defined by Eqs. 3-17 and 3-18 may be expressed in non-di-
mensional form by

96: = s (1 = Py u‘) d(y/b) (3'76)
0

and

1

:S Dy u‘ (1 - u,) d()’/b) (3'77)
o

| @

Assuming that the Prandtl number is unity, Eq. 3-10 may be used to give the
following expression for p,:

*

T (T, -T.)
1 y -1 w t w
.‘;_. = (1 + 3 Mg) —_— — u, - o'u: (3-78)
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Although it is possible to derive a theoretical velo:ity distribution by integrating
&q. 3-37, it has been found that the simple expression,

1/n

u, ='(y/6) (3-79)

not only gives a better approximation to experimentally determined velocity dis-
tributions over a wide range of Mach numbers and heat transfer ratios but also
gives rise to more usable forms of the boundary-layer thickness equations.
Using Eq. 3-79 to change the variable of integration to u,, Eqs. 3-76, 3-77,
and 3-78 give

n
* - Uy
Y R — T du,  (3-80)
(1+751M';)(7rﬂ+ tT wu,,-oui)
s t t
and
6 ui‘(l-u,)du.
5" T T, -1 (3-81)
-1
0(1+72 M?)(—T—V:+-—————t,r wu,,,-cui)
t

The above integrals may be cvaluated for any combination of M, and rw/Tt'

It has been found from experiment that the index, n, increases slowly with in-
creasing Reynolds number. However, there are insufficient data to show the
effect of Re on n over a wide range of Mach numbers and temperature ratios.
Tucker in Ref. 36 derives the following empirical relationship for n at the outer
edge of the boundary layer:

n=2.6(Re, ) fie (3-82)

where the subscript 1, w indicates that the Reynolds number may be evaluated
at the wall or in the free stream. It is evident that for M > 1 the constant
should be adjusted to account for the difference in Re, and Rew at any point.

Wilson in Ref. 37 discusses at some length the relationship between
n and Re and derives the following semi-empirical formula:

a -
Re = (n + 2)° 49 e0.2774(n+2)C 0.943 (3-82a)

from boundary-layer measurements in the Mach number range from 1.5 to 2.5.
Winter. et al (Ref. 38), made measurements at M = 2.2 but at higher Reynolds
numbers. The next sketch compares the experimental results of both Wilson
and Winter with the above empirical equations. It may be seen that neither
of the latter compare well with the data over this range of Re. A nominal
value of n =7 is satisfactory for most purposes.
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Wilson evaluated the integrals in Eqs. 3-80 and 3-81 and from his
results derived the following empiricai formulas for /6 and H:

(n+1)(n+2) y -1

6/8 = T -7t 3 Mi(1.3¢+1.38 T /T) (3-83)
n[l.'.g_g___‘l]
n Te
and
H—°'/°—“—?‘-3-I‘-"’-+Z-‘-1M3(1+120T JT.) (3-84)
"8 /6 " n Te 1 : w Te -

The temperature ratio, Tw/ T,, has been used in place of Tw/Tt for conven-

ience in the calculations. For n = 7, a range of values of M} from 0 to 95
and of T w/ Te from 0 to 1, the results of the numerical integration of Eqs. 3-80

and 3-81 agree with values obtained from Eq. 3-83 within 3% and from Eq. 3-84
within 1.5%.

Values of the displacement thickness, 6*/6, obtained from Egs. 3-83
and 3-84 are shown in Fig. 3-26, and values of the shape parameter, H, de-
rived from Eq. 3-84 are plotted in Fig. 3-27.

Persh (Ref. 43), using Crocco's form of the temperature distribu-
tion rather than Eq. 3-10, has computed and tabulated values of 6*/6, 6/6, and
H for M, from 0 to 20, (Tw - Te)/n from +10 to -10, and for n =5, 7, 9,

and 11. These tables are presented in Section 17 of the Handbook (Ref. 14).
In the limited region of overlap the agreement is good between the calculations
of Wilson and Persh.
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It should be noted that the laminar sublayer is neglected in both
calculations, i.e., it is assumed that the whole boundary layer is turbulent.

3.3.4 Laminar Sublayer Thickness

The thickness, 6;, of the laminar sublayer is of interest for several
reasons. In the first place, the theoretical calculations in this subsection are
dependent upon the assumption that the laminar layer is thin compared with the
total boundary-layer thickness. It is therefore necessary to examinre the varia-
tion of 64/6 with Mach number, Reynolds number and heat transfer in order
to determine the range wherein the preceding theory is valid. It is also of
interes’ to compare the thickness of the laminar layer with the mean height of
the surface roughness since it will be shown in Subsec. 5. that the surface
roughness has very little effect on the turbulent skin friction as long as the
mean height does not exceed the thickness of the laminar sublayer. The abso-
lute thickness of the laminar sublayer is of practical importance, since in some
flow regimes it may be sufficiently thick to permit irvestigation by means of
probes. It is of interest to define the Mach number, Reynolds number, and
heat transfer ranges in which such investigations may be possible.

In order to estimate the thickness, 6y, of the laminar sublayer,
Eqs. 3-35, 3-358, 3-40, and 3-42 may be combined to yield

6 = (3-85)

Then Eq. 3-85 may be written as

6

A ou, VT 115+66£e-:—T-“—’ 2.} (3-86)
x  Hey *w ) ’ T Fa

Since

this may be expressed as

o

L

Te - TW
By, VT, [11.5 + 6.6(—-—,1.--—)]

;’ e —————
0.247 1.142
S HR) b,
(log Re)® **? log Re F Fi

(3-87)
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From numerical calculations it has been found that the following equation ap-
proximates Eq. 3-87 with good accuracy:

6, 0.92 | Te - Tw CF -

_ =0 . 4 -
;——8.27 Re “*W VT*W ll.5+6.6( Te CF (3-88)
i

Values of 6,/x calculated from Eq. 3-88 for M = 5.2, Re from 10° to 6 x 10’, and

heat transfer ratios of 0.075, 0.166, and 0.352 are compared in Fig. 3-28
with the experimental data of Ref. 35. In the calculations, the value of CF/CF

is taken from Fig. 3-18 (i.e., at Re = 10”), since it is considered to be rela-
tively constant for small variations of Re. The agreement between the experi-
mental data and theoretical values is reasonably good. The length, X, in the
experimental data is measured from an 'effective' leading edge at which the
flow becomes fully turbulent. The location of the effective leading edge was
determined by extrapolating to zero the measured values of the momentum thick-
ness in the turbulent portion of the flow.

Figure 3-29 shows the calculated value of & l/x at Re = 10’ for Mach

numbers from 0 to 10 and (Te - Tw)/Te from 0 to 0.95. From this figure it

may be noted that the thickness of the laminar sublayer increases with Mach
number but decreases with increasing heat transfer. At low Mach numbers
and high values of (’I‘e - Tw)/Te it becomes extremely small. This condition

corresponds in free flight to the flow over blunt bodies at high flight velocities.
It is evident from Fig. 3-29 that in considering the effect of roughness on skin
friction (see Subsec. 5.6.1) both heat transfer and Mach number have a marked
influence on the allowable surface roughness.

If values of § z/9 are required, the use of

allows Eq. 3-87 to be written as

-T
5 by Vo [115+66( “’]

3
Re [ 0-247 P2 W 1.14 °r\
(log Re)?-®? 18 ReACp.

It has been found from numerical calculations that Eq. 3-89 may be approxi-
mated by
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i
6

= 391 RB-O'76° “‘w

T - T\ /Ce\
VT, [11.5+ 6.6( ° —“’-)] = (3-90)
e

F.
i

Values of 6,/6 may be obtained directly from Eq. 3-90 by multiplying by 8/6
obtained from Eg. 3-83. Values of 61/9 and 6‘/6 computed from Egs. 3-83

and 3-90 are shown in Figs. 3-30 and 3-31 for Re = 10, M, from 0 to 10,
and ('I‘e - Tw)/I‘e from O to 0.95.

3.4 Turbulent Boundary Layer on _ Flat Plate -- Real Gas

In Subsec. 3.1.1 it was shown that for laminar boundary layer a
reference temperature method could be used for calculating skin friction on a
flat plate in the flow of a perfect gas. It was shown in Subsec. 3.1.3 that this
temperature could be used in approximate expressions for the boundary-layer
displacement thickness and its total thickness. Real gas effects are taken into
account by replacing the reference temperature with a reference enthalpy (see
Subsec. 3.2). The method for calculating skin friction for the flow of such a
gas over a flat plate is discussed in Subsec. 3.2.1. In Subsec. 3.2.2 it is
suggested that expressions for the boundary-layer thicknesses be based on a
density which corresponds to the reference enthalpy.

It was concluded in Subsec. 3.3.1 that the reference temperature
method was not readily applicable for a turbulent boundary layer caused by the
flow of a perfect gas over a flat plate. Therefore, the technique of replacing
the reference temperature by the reference enthalpy is impractical for the real
gas case. The following rigorous procedure could be used to account for real
gas effects. Equation 3-34 is a second order differential equation for the ve-
locity profile in a turbulent boundary layer. The density used in Eq. 3-34 must
be expressed in terms of the velocity in order to integrate the equation. This
is accomplished in the perfect gas case by applying the equation of state and
then relating temperature to velocity by means of Eq. 3-10. For the real gas
case, the temperature can be replaced by enthalpy in Eq. 3-10. However, the
density must then be related to enthalpy by means of a Mollier chart rather
than by the equation of state. This is theoretically straightforward; its execu-
tion is more complex. Equation 3-34 could then be integrated numerically; the
remainder of the calculations could be performed as outlined in Subsec. 3.3.
This procedure would be laborious since it would have to be repeated every
time there was a change in any of the following parameters: the wall enthalpy,
the static pressure, and the velocity or ambient enthalpy outside the boundary
layer.

It is shown in Ref. 12 that the values of the laminar skin fric-
tion coefficients for a perfect gas can easily be made to agree within 15%
with those for a real gas. This agreement can be accomplished without re-
sorting to a reference enthalpy. It is necessary only to present perfect gas
results in terms of the wall enthalgy ratio instead of the wall temperature ratio
and then to replace [(y - 1)/2] M7 by ui/2h,. Itis suggested that this proce-
dure be used to estimate turbulent boundary-layer skin friction with real gas
effects. In this procedure Eq. 3-42 and Eqs. 3-44 through 3-47, which were
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used for calculating the local skin friction coefficient in terms of the Reynolds
number (based on x). will now be replaced by:

ho - by,
s=11.5+6.6( T (3-91)
e
and \ -3
(sin-! & - sin-?! ¢) oic) =-6.43 +4.15 log; - 1.5p C. Re
f h1 f S }.lw f
(3-92)
where
he -h
20 - he
£ = } (3-93)
h -h h -h ¥
he he
h C : he - h
20s S;'—Z— - he
Ft = - E (3"94)
h -h h -h\?
of1--6 _wl,[e w
he he
_uiff, o )
o = hl/(l - o (3-95)
h ={1+ rlli~ h (3-96)
e - h1 ! )
and
P = (Pr )?'f (3-97)
w
Equations 3-51 and 3-52 for calculating the mean skin friction coefficient become
h "&
(sin™ ¢ - sin* £) 0.242 (o h—? Cv) =-1.968 + logzo(p?”rz ﬁ-’— Cg Re)
ST w
where (3-98)
2 ]
205(-}1‘1 %) - Pe ~ w
h h
£ = ! e (3-99)
F h -h -h V]
4o (1 _ e w)+ e w
he he
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If a method for calculating the local skin friction coefficient in terms
of the momentum thickness Reynolds number, Ree, is required, Eqs. 3-55 and
3-57 may be replaced by the following:

-4
h \ 1
Y . e _ 23 u _
(sin?* £ - sin-! gF) 0.242(0 h, CF/ = -1.968 + log,o(s a Ree) (3-100)

w 'l
and
Cf = CF (- 1.968 + 0)/(- 1.099 + §) (3-101)
where
h -h ¢
20 - _e___y_
23 u l'le
0=M&°C——-Re)+&2ﬂs
S “w 6

h_-h\ /B -h \]
() e =) ()
e e
(3-102)

As before, CF in Eqs. 3-100 and 3-101 is used merely as a parameter which
is eliminated during the process of numerical calculation.

It is possible to estimate the total thickness and the displacement
thickness of the boundary layer by replacing (Te - Tw)/Te and (¥ - 1)/2] M}
7 (he - hw)/he and ui/2h,, respectively, in Eqs. 3-83 and 3-84. In order to

determine the accuracy of these estimates, Eaqs. 3-76 and 3-77 should be in-
tegrated numerically, taking due account of real gas effects.

3.5 Flat Plate with Transition

The laminar boundary layer on a flat plate has been discussad in
Subsecs. 3.1 and 3.2, and the turbulent boundary layer in Subsecs. 3.3 and
3.4. In practice, the entire boundary layer over the plate is laminar only if
the Reynolds number is less than some critical value. A turbulent boundary
layer, when it exists, develops at some distance downstream of the leading edge
with an ill-defined region of transition separating it from the laminar flow. The
skin friction on such a plate will be found by a consideration ot both the lam-
inar and the turbulent conditions. The Reynolds number at which transition
occurs will be treated in detail in Subsec. 5, where it is shown that transition
takes place over a finite distance or region, whose length or extent is also dis-
cussed. In computing boundary-layer characteristics, it is often satisfactory
to assume that transition takes place at some station along the plate and is thus
associated with a single transition Reynolds number. This assumption will be
used here to compute the skin friction on a flat plate with transitional flow.

Relationships derived from the momentum integral equation will be
valid for both laminar and turbulent boundary layers. For the flat plate, the
momentum integral equation (Eq. 2-26), reduces to

de/dx = Cf/2 (3-103)
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Since conditions at the outer edge of the boundary layer are constant over the
plate, this equation can be written as

dRee Cf
e "2 (3-104)
At the leading edge of the plate both Re and Ree are zero and hence Eq. 3-104

can be written as

Re
S C. dRe (3-105)
0

x Re
1 1
CF—ESCfdx~§e7 s C, dRe (3-106)
(o] 0

Equations 3-105 and 3-106 can be combined to yield

Re
—2-9%.28 .
Cp=2y5 =25 (3-107)

which is independent of the character of the boundary layer.

In the laminar portion of the flow, the local skin friction coefficient
may be defined as

C, VYRe = Ky (3-108)

where KL depends on whether the gas is perfect or real as well as on such

properties as the Mach number and the surface temperature. Various methods
for calculating Cf VRe are given in Subsecs. 3.1 and 3.2 and values of KL may

be read from figures such as Fig. 3-3. Equations 3-106 and 3-108 may be
combined to give the mean skin friction coefficient in laminar flow as

Cp VRe = 2K}, (3-109)

Integration of Eq. 3-105 after substituting C
lowing relationship between Ree and Re:

[

tfx*om Eq. 3-108 leads to the fol-

Re9 = KL VRe (3-110)
The local and mean laminar skin friction coefficients in terms of Reo are then
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_ w2 -
Cf R;e9 = KL (3-111)
and
CF Ree = 2K3L (3-112)

When transition is assumed to occur at a point, the shear stress
makes a discontinuous change from a laminar value to a turbulent value. The
local skin friction coefficient is also discontinuous. Req derived from the in-

tegral form of the momentum equation is a continuous function of Re with an
abrupt change in slope at the point of transition. The momentum thickness, 6,
is a continuous function of x. The sketch below shows the relationship between
Re‘9 and Re in flow where transition occurs.

8 P Turbulen

_—

Laminar /7

Q
L
R —ot— = (Re - Re) Re

Re

Given a value of Retr’ a value of Reetr can be calculated from Eq. 3-110, i.e.,

Reetr = KL VRetr (3-113)

Downstream of the transition point, P, the boundary layer will grow according
to the laws of turbulent flow. This growth is identical to that which would exist
on a plate having a fully developed turbulent boundary layer originating at point
Q (see sketch abhove). The Reynolds number of this effective leading edge, Q,
is Re . The value of Re for this hypothetical fully turbulent flow is (Re - Reo)

whereas R:e9 (P) has the same value for both cases. Since Retr is assumed
to be known, Reo can be calculated. The required relation between l‘\'.e9 and
Re can be obtained by putting Cp = 2Ree/ Re in the perfect gas relation given
by Eq. 3-51. For the real gas case, Eq. 3-98 should be used.

When Re 2 Retr and the Reynolds number in Eqs. 3-44 and 3-51 is
replaced by (Re-Reo), the skin friction coefficients for a plate with its leading
edge located at Re = Re0 (i.e., at Q on the previous sketch) will be obtained.

These coefficients will be denoted by Cf and CF . Although the values of Cf

o o o
may be applied directly to the plate with transitional flow, the mean skin fric-
tion coefficient must be corrected, i.e.,

Cp = - 9%9¢ (3-114)
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The procedure indicated previously may be used for the real gas
case when Eqs. 3-92 and 3-98 replace Eqs. 3-44 and 3-51. If it is possible
to express the turbulent skin friction as a simple function of the Reynolds num-
ber, a relationship between Cf and CF.can be obtained for mixed flow in terms

of the skin friction coefficients for fully laminar and fully turbulent flows. In
Ref. 30, Prandtl and von Karman obtained the following expression for fully
turbulent incompressible flow:

of Re!/® = constant (3-115)

This equation is valid for a moderate range of Reynolds numbers. The expon-
ent 1/5 indicates that for the turbulent case the skin friction coefficient varies
slowly with Reynolds number. Curves of Cf vs Re, caiculated by such equa-

tions as 3-44 and 3-92, are almost linear in log-log scales, and hence a specific
value of the exponent used in the Prandtl approximation may be chosen for the
Reynolds number range of interest. For compressikle flow, it has also been
shown that the turbulent skin friction coefficient changes slowly with Reynolds
number. It is therefore reasonable to assume that Eq. 3-115 may te modified
to apply to compressible flow. Here the constant has been replaced by KT,

which is a function of such variables as the Mach number and surface tempera-
ture as well as the state of the gas (real or perfect), i.e., for a fully turbu-
lent compressible flow over a flat plate, let

C, Re!/® = - (3-116)
From Eqs. 3-106 and 3-116
Cp Ret/® =§KT (3-117)
Using Eqs. 3-105 and 3-116, one obtains
1/4
Re,/* =(§ K'r) Re!/s (3-118)

This equation allows both Cf and CF to be expressed in terms of Ree and KT,
i.e.,

14 _8(5 o/ -
C; Re,'/* =¢ (8 KT\) (3-119)
and
C. Re.}/* =2 (-5-1( )5/' (3-120)
F Rey g T

It should be noted that Eq. 3-119 for the local skin fricticn coefficient is valid
for any region where the flow is turbulent. However, the mean skin friction
coefficient given by Eq. 3-120 is valid only where the flow over the entire plate
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is turbulent, i.e., the hypothetical plate shown in the last sketch. Substituting
Eq. 3-119 in 3-104 and integrating the result gives

Re 5/¢ = (3 k.Y Re 3-121
9 *\8 %7 + constant (3- )

This equation is valid in any turbulent region. At the transition point (Re = Re
and Ree = Re ), Eqgs. 3-112 and 3-121 combine to give

s/4 _ /4 § 5/4
Re,®/* = (KL ]/Retr)” + (8 KT) (Re - Re, ) (3-122)

Substituting Re_, from Eq. 3-122 in Eq. 3-119 and making use of Eqs. 3-108
and 3-116, one Dbtains

Cs
T
cf = o 7 (3-123)
Re £ \5/81
1 -t 8 L
Re \5C, ) J
T
A combination of Eqs. 3-107, 3-109, 3-117, and 3-122 yields
s/e 4/6
Retr CFL Retr =l
T FT

The subscripts L and T indicate values of the coefficients associated with a
particular Re for a plate with fully laminar or fully turbulent flow. Equations
3-123 and 3-124 are valid for Re 2 Reu_. The values of the laminar coefficients

can be obtained by the methods given in Subsecs. 3.1 and 3.2. Although sim-
plified relationships between the skin friction coefficients and the Reynolds num-
ber in turbulent flow were used in the above derivation, the turbulent skin fric-
tion coefficients given in Subsecs. 3.3 and 3.4 can now be used in Eqs. 3-123
and 3-124. These equations are approximations which can be used for a quick
determination of the effect of varying Retr' It is of interest to note that, at

the transition point, there is a single discontinuity in Cf; its value jumps, im-

mediately becomes larger than that for fully turbulent flow and then rapidly
approaches the turbulent curve from above. This is illustrated below.

Fully Turbulent
Fully Laminar

-~ - [ .
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On the other hand the mean skin friction coefficient makes an abrupt
change at the transition point and then gradually approaches the turbulent curve
from below as shown in the next sketch.

“,

ey

Sead Fully Turbulent
~—

/Fully Laminar

. Re
R‘etr
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Solutions to the Flat Plate Boundary-Layer Equations Table 3-1
Table 3-1
Graphical Information Presented by Crocco in Ref. 4
Dependent Independent Primary Secondary
Variable Variable Parameter Parameter
3h
Cf VRe 8 u®/h, h‘w
C, VRe h u®/h 8 ( 2h) o
f w b ’\ du, -
h, u, Pr=1 ui/h, = 0and 10
Pr = 0.725
(ou = const)} h‘w ~0.3, 2.1and 5.3
Fr = 0.725¢
dh 2
(a—u) h,, =0to6 ul/h, =0t010 | Fr=1
*lw Pr = 0.725 (pu = const)
Pr = 0.725¢
B> y/6) h. U, 8 =0 U§/h1 =0and 10

Ranges of Variables

ui/h, =0, 0.4, 1.6, 3.6, 6.4, 10

M

B
h‘w

=1tod
=0, 1/3, 1.3
=0.25, 0.5, 1, 1.5, 2 -

*Sutherland's law used for viscosity
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Table 3-2

Graphical Information Presented by Van Driest in Ref. 9

[ Dependent |Independent Primary Secondary
Variable Variable Parameter Parameter
Cr VRe
Ch Jﬁe Ml T‘W
(8/x) YRe
€e u, M. T‘w
Uy, To, My | ZRe M, Ty,
u,, T, Y VRe T, M,
M‘ Y/6 T*W M1
u,, T,, M, i\lne M, Pr=1.0,
Insulated Piaie
Bey :z: VRe M,
Range of Variables
Pr=0.750r1.0
y=1.4
T, = -67.6°F
3 =0.505
y =6atu, =0.995
M, =0to 20
T, =0.25,1,2 4,6
w
54
—— . — —— r——— g e T —




Solutions to the Flat Plate Boundary-Layer Equations Fig. 3-1

80 | !
/
/
/
/
/
/
70 :
------ Zerc Heat Transfer (T = T) /
w e /
Ttw = 1. 0 ,’I
V4
L,/ f
60 /T 4 I’
J /
// //
- /
Ml// 20 l //
50 7 —*
,/ .16
Z\ﬁ?-e Source: Ref. 9 / )/
" . . / 4

Fig. 3-1. Flat plate laminar boundary layer; (y/x) \lRe VS U,; Tw = Te and T, ;
M, =0, 4, 8, 12, 16, and 20; Pr = 0.75; perfect gas, ¥ = 1.4; 8 = 0.505.
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Fig. 3-2 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

T T

N | |  mmeme-- Zero Heat Transfer ('I‘w = Te)
80 3\ . _
- T =1.0
\\ *w
\
\\
70 N
b Y
\\
~
o Source: Ref. 9
\ e
60 N BN
\\ M, =20
A Y
‘\ AN
N AN
50 < BN
\\ N
1 r—— \\5 \#
X Re \16 \\
\ N AN
40 “\\ N N

N \
\
\ \\ \\
N \
~ X \\ \\
30 A

N \
\ 20 N\ \ \
\ \ ] \
\\]6 \ \ \\
\\\ \\ \\ \
8 \ \
\\ \ \ \
10l X l\ 3
‘? 12 |\ \ \ \
\42 P \ \ }
4 \
0 \ \ ! _
0 10 20 30 40 50 60 70

T,

Fig. 3-2. Flat plate laminar boundary layer; (y/x) \[Re vs T,; Tw = 'I‘e and T,
M, =4, 8, 12, 16, and 20; Pr = 0.75; perfect gas, v = 1.4; 8 = 0.505.
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Solutions to the Flat Plate Boundary-Layer Equations Fig. 3-3

1 | | 1 I T
Reference Temperature Method
(Eqs. 3-8 and 3-14) .

Van Driest (Ref. 9) n

f

‘\

Zero Heat
Transfer

NN
\\

RN

~
N
-~

0.3

0 2 4 6 8 10 12 14 16 18 20
M.
Fig. 3-3.__Flat plate laminar boundary layer; comparison of theoretical values of
Cf Re vs M, ; Van Driest and reference temperature methods; M, = 0 to 20;

T‘w =0.25, 1, 2, 4, and 6 and Tw = Te; Pr = 0.75; perfect gas, ¥ = 1.4;
B8 = 0.505.
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Fig. 3-4 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

0.
cf\[ﬁ from Eq. 3-8
0.7 8 = (198.7°R)/T,
| \
0.6 \ N
WD
\\ B=2.0
) K\ \ N
Cf\[R_e' 1.5\\ \
\ \‘\ \'\\1
0.4 \\\\1'0“ B —
AN T0.5
. \\/\ \\
o
\1\"'23-
0.2

0 3 10 15 20 25 30 35 40 45 50
T,

Fig. 3-4. Flat plate laminar boundary layer, Cf \/Re vs Ty;8=0, 0.5, 1.0,
1.5, and 2.0; perfect gas, ¥y =1.4.
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Solutions to the Flat Plate Boundary-Layer Equations Fig. 3-6

TT T T T T 7171 /]

60 |~ T, Reference Temperature (Eq. 3-14) !
/
------- T Van Driest (see Fig. 3-2) r
‘max ,/
/

50 7~

/

y

4
il /
40 K /
7

30 -

20 4/4 /

10 | Transfer T, = 1.0 =
s gl B T w
0 =T e el ==
0 2 4 6 8 10 12 14 16 18 20
M,

Fig. 3-5. Flat plate laminar boundary layer; comparison of maximum
temperature (Van Driest) and reference temperature as a function
of M;; M, =0 to 20; Tw = Te and T, ; perfect gas. ¥ = 1.4; Pr = 0.75;

8 = 0.503.
100 Al v L]
T,
go | Q 6
Q 4 [Calculated Data, ¢
O 2 |VanDriest (Ref. 9)
A1l
60 - O 0.25 —
H /
40 Ty, =6
4
20 2.
1
0.25 _ Eq. 3-21
0 , l ]
2 4 6 8 10 12 14 16 18 20
M,

Fig. 3-6. Flat plate laminar boundary layer; shape parameter, H, vs M, ;
M, =0 to 20; T*w =0.25, 1, 2, 4, and 6; perfect gas, ¥ = 1.4;

Pr =0.75; T, =392.4°R.
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Fig. 3-7 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

100 T - T T .
T‘w
80 —% 2 Calculated Data, Van Driest, Ve
5/9 at u, = 0.995 (Ref. 9) [
g 2 /
& 1 i
601~ 0o0.25 =
L T, =6
6 2 g
40 4~
2 A
=il
20 0.25
i — Eq. 3-22
0 | 1 N
0 2 4 6 8 10 12 14 16 18 20
M,
Fig. 3-7. Flat plate laminar boundary-layer thickness, 6/6 vs M, ;
M, =0 to 20; T"w =0.25, 1, 2, 4, and 6; perfect gas, y = 1.4;
Pr =0.75; T, = 392.4°R.
300
R R
— 6/6 (Eq. 3-22) /4
l
250 -=- H(Eq. 3-21) A
O &/ atu, =0.995 | Calcuiated Data /4
i /4
200 L A H-=6%/8 Van Driest (Ref. 9) A
= 7
i /i
o 150 A
) 7
S 72
g A
100 /// L}
7
rd
50
,/
0Be==x—"" , ,
0 2 4 6 8 10 12 14 16 18 20
M,

Fig. 3-8. Flat plate laminar boundary-layer thickness and shape
parameter vs M, ; M, = 0 to 20; zero heat transfer; per-
fect gas, ¥y =1.4; Pr =0.75; T, = 392.4°R.
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Solutions to the Flat Plate Boundary-Layer Equations Fig. 3-9

(6.'x}\[§, (6‘«x®

90 ' f ' | | 7
R j
/
[ ——— (6*/x)\[Re, Eq. 3-23 7
SOL——- ------- (G/x)\[Re, Eq. 3-24 /
(b/xthe, y =6atu, =0.995 /
o Calculated by Van Driest (Ref. 9) /

10 i
/
A
__’-—..,
/
/
60 7
/
/
Zexo He;t
Transfer
50 f
/
/l
/
/ C
40 7 ¥

\
\
\J}\

30 /

20

/
44
/7

7/ /
Y
10 <
-

- -
5" — v //
__é/
0
0 2 4 6 8 10 12 14 16 18 20

M,

Fig. 3-9. Flat plate laminar boundary layer: (6/x)\fr_tfe and (6"/xNRe vs M, ;
M: = 0 to 20; Tw = 'I‘e and T, ; perfect gas, ¥ =1.4; Pr = 0.75; 8 = 0. 505.
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Fig. 3-10 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

4.5 ] I

Py = Sea Level Density

S
o T
s , /////

=

£ 1.0~
po

3.0

/o./'
N
S
/
/

B X 10° slug/ft sec

//
s
7

2.0

Source: Ref. Green and Klein, NBS
/ | and Ref. 17
1.4 /’m
2 .1.077

1.2 Po
e A B
OQ 0-1 \\
3 M/-o.01~ —
= \
e o]
=)
- 0.8 .
x _/
R Source: Ref. Green and Klein, NBS
g_ﬁ and Ref. 17

0.6

P, = Sea Level Density
0.4 1 [
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Z = pV/RT
Fig. 3-10. Variation of u and R.k/cv with Z for air; Z = 1.0 to 1.8;
/b, =0.01, 0.1, and 1.0.
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Solutions to the Flat Plate Boundary-Layer Equations Fig. 3-11

6
/
5 /
E‘ b’
é /’aM
L3 4 /
o
g —
a
o 3 —
)]
et //
N
&
E /-
w 2
5 /
- ib/'
5 ] 1 /

For Use in Eq. 3-25

0
2.0
T L‘____

F %/ \v/_
- [
"U. / /
[+
° 1.0 "4
g —
: f
2 >
Q /Vd
g / For Use in Eq. 3-26
13}

0 /

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Z = pV/RT

Fig. 3-11. Variation of a, b, ¢, and d with Z for use in Eqs. 3-25
and 3-26; Z =1.0to 1.8.




Fig. 3-12 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)
-3.0 T T T
p: slugs/ft sec
3 sb— | k: BTU/ft sec°R Peiin
I . p: slugs/ft® /
log k
-4.0 f
;n log p 7\
" 4.5 574
A4 \
s 1
~ -5.0 e
: // —~
o
L -5.5
|
-6.0 /
1
log u
-6.5 A
2.2
I N
2 ol—%p’ BTU/slug’R /
’ h: BTU/slug log crp
£
1.8 A
1o /
e,
: /N |/
g 1.4
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1.0 %
__.—-}"/
0.8 .
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0.6 ~"N L1
3.0 3.5 4.0 4.5 5.0 5.5 6.0
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Fig. 3-12. Variation of u, k, cp, p, and Pr with enthalpy for air at

p=0.1atm.
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Solutions to the Flat Plate Boundary-Layer Equations Fig. 3-14
0.8 — v T T
h' Method (Eqs. 3-8 and 3-28)
©  Wilson's Machine Computations
\ (Ref. 12)
0.6 pe
Lg ui/2h, =
(')L 10
o4 o\\odo_v
80 —0
o
0.2
0 20 40 60 80 100 120 140
h,w
Fig. 3-13. Real gas flat plate laminar boundary layer; comparison of
exact and approximate values of C.yVRe vs h,_; h,_ =0 to 140;
u?/2h, =0, 10, 30, and 80; h, = 3000 BTU/slug; p, = 0.1 atm.
0.8 T T =T T
h' Method (Eqs. 3-8 and 3-28)
\\ o Wilson's Machine Computations
[é s (Ref. 12)
. 0.6 ;,,F&/zh1 =0 P .
O 10
T G m— o
0.4 ¥
0 5 10 15 20 25 30 35
h‘w

Fig. 3-14. Real gas flat plate laminar boundary layer; comparison of
exact and approximate values of CfVFé vsh, ;h, =0to 35;

u?/2h, =0, 10, and 30; h; = 15,000 BTU/slug; p, = 0.1 atm.
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Fig. 3-15

NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

1.0

0.8 J T T
h' Method (Eqs. 3-8 and 3-28)
© Wilson's Machine Computations
g u?/2h, = (Ref. 12)
0.6 —C
= 10 -2
0.4
0 1 2 3 4 5 6
h,
w
Fig. 3-15. Real gas flat plate laminar boundary layer; comparison of
exact and approximate values of CIV"Re vs h‘w; h*w = 0 to 6;
u?/2h, =0 and 10; h; = 75,000 BTU/slug; p, = 0.1 atm.
0.8
o
‘é *—s—w\k i o U?/zht = o
- y.d
O
Same Legend as Fig. 3-15
0.6 | |
0 0.2 0.4 0.6 0.8
h,
w
Fig. 3-16. Real gas flat plate laminar boundary layer; comparison of
exact and approximate values of CfVRe vs h,,w; h\,W =0tol;
u?/2h, = 0; h, =400, 000 BTU/slug; p, = 0.1 atm.
16 M,' B
14 __O 2.43 Ref. 40
0 5.50
O 5.80 7\
12} O 6.80 ) Ref. 41
0 7.70 0
8 O 8.20
10
o
8 Eq. 3-42 —
/ Source: Ref. 25
8 470 [ [
-1.0 -0.5 0 0.5
(T - Tw)/Te
Fig. 3-17. Effect of heat transfer on laminar sublayer parameter, s.
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Solutions to the Flat Plate Boundary-Layer Equations Fig. 3-18

I

N
AN
\\\
NN
\\ \\i N
0.4 \\ N \\
R T
R
" Calculated From Eqs. 3-51 and 3-53 §7
00 1 P 3 4 5 6 7 8 9 10

M,

Fig. 3-18. Flat plate turbulent boundary layer; CF/CF' vs M;; M, =0 to 10;
i
(Te - Tw)/Te =0, 0.2, 0.4, 0.6, 0.8, 0.9, and 0.95; perfect gas,

y =1.4; Pr = 0.70; Re =107; 8 = 0.505.
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Fig. 3-19 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

1.2 1
1.1 e
log Reo
& 1 o 454
o 4.0-———\\
&) 3.0+
\ L
ém 0 8F~2'5~- ~
9" 0.7 7
< 777
L / Calculated from Eq. 3-62
0.6 7
0.5
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

(CF/CFi)Re
Fig. 3-19. Flat plate turbulent boundary layer; ( f/ )Re /( F/CF)Re
6 i
vs (CF/CFi)Re ;(cF/cFi)Re =0to1.6; log Re, = 2.5, 3.0, 3.5,

4.0, and 4.5; perfect gas, ¥y =1.4; Pr = 0.70.

30 T 1 l
— von Karman Equation /
- (Ref. 30) /
O Kozlov (Ref. 31) /é
25— O Kempf (Ref. 42)

1/}/(:—f

20 e

15 /

2 3 4 5 6 7
log (Cf Re)

Fig. 3-20. Flat plate turbulent boundary layer; comparison of experimental
and theoretical incompressible skin friction; 1/yC }/— vs log (C Re); per-
fect gas, ¥y =1.4; Pr = 0.70; Re = 10® tolOEs
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Solutions to the Flat Plate Boundary-Layer Equations Fig. 3-22

6 M
LM 01.72
1.12%75 o0 %g:‘l’g} Ref. 24
5 3 82.47
< | 2.19 1.61 1"“}
b 2.47 Q2. 30 | Ret- 46
Q
) s '
2 .
<2.20 '
— Eq. 3-51
1.5 1 ] |
6.2 6.4 6.6 68 7.0 7.2 7.4 1.6 1.8 8.0 8.2

log Re

Fig. 3-21. Flat plate turbulent boundary layer; CF vs log Re; theory and
experiment; zero heat transfer; perfect gas, y =1.4; Pr = 0.70.

4 T T
— Eqs. 3-44, 3-51 M, I
M and 3-54 2 ;.98
3 ! +38 % Coles (Ref. 32) -
—— 03.70
I.QS\SL 0 4.53
N oo '\_\ 05.79 Korkegi (Ref. 33)
&) ~3.70ND\ A
d ‘ki4'53 -ﬁ-\
1 5.79
3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
log Ree

Fig. 3-22. Flat plate turbulent boundary layer; C, vs log Re; theory and
experiment; zero heat transfer; perfect gas, y = 1.4; Fr = 0.70.
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Fig. 3-23 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

| {
Data taken from Rei. 34

4]
=
Ulo-d
5 \ D & Ml B
7.70 02.95) ..
‘ T ai20fAT -
- 05.21 .
£q. 3-44 0 o omm}ﬂehum
3 | L
6.8 7.0 7.2 7.4 7.6 7.8 8.0
log Re

Fig. 3-23. Flat plate turbulent boundary layer; Cf vs log Re; theory and
experiment; zero heat transfer; perfect gas, y = 1.4; Pr = 0.70.
10

¥ 1 ]
8 M, (T, - T )T,
— Eq. 3-51 02.81 0.5721
6 03.67 0.691
N3.78  0.704
. D382 0.708 \Ref. 27
2 CJ5.63 0.806
= 4 06.90 0.821
"h ~—— 0B {7.00  0.8204
s 02.88 0.25
© <Q 032. 88 0.15}3‘*" 81
- o}
—
Source: Ref. 27
1 1 | |
6.4 6.6 6.8 7.0 7.2 7.4
log Re

Fig. 3-24. Flat plate turbulent boundary layer; CF vs log Re; theory and

experiment; various heat-transfer ratios and Mach numbers; p2riect
gas, y =1.4; Pr =0.70.
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Solutions to the Flat Flate Boundary-Layer Equations

Fig.

3-26

8*/6

Cf x 10°

Fig. 3-25.

0.8

0.6

0.2

2.0

1.8

1.6

1.4

1.2

1N

o 0.166
o 0.352

Open Symbols: Wall Heat Transfer
Closed Symbols: Velocity Profile Slope

o 0.075%1‘9-1‘

8

3-51, and 3-54

w

T
e

M,

Calculated from Eqs. 3-44,

(Ref. 35)

-
£

5.2

6o W

Q
’_

i

0 3

.1 3.2

3.3
log Re

perfect gas, y =1.4; Pr = 0.70.

e

Flat plate turbulent boundary layer; C, v
experiment; (Te - Tw)/Te = 0.075, 0.166,

3.4

add

(T

- Tw)/T

e

~OO00O0Oo
OGQQNJ

A

A

\

=

NN

(n=17)

Eqs. 3-83 and 3-84

——

——

[y

N
(-]

5
M,

6 1 8

9 10

Fig. 3-26. Flat plate turbulent boundary layer; 6*/6 vs M,; M, = 0 to 10;
(Te - Tw)/Te =0, 0.2, 0.4, 0.6, 0.8, and 1.0; perfect gas, y = 1.4;

Pr =0.70.
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Fig. 3-27 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

) /

.0 Calculated from Eq. 3-84 (n = 7) /
35 I~ /
30 ?re Wi /
2/
| A
e
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) / g/ AN
10 X///

/
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72
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==

0

' 10
0 2 4 M, 6 8

Fig. 3-27. Flat plate turbulent boundary layer; shape parameter H vs M, ;
M, =0 to 10; (Te - Tw)/Te =0, 02, 0.4, 0.6, 0.8, and 1.0; perfect

gas, y =1.4; Pr = 0.70.
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Solutions to the Flat Plate Boundary-Layer Equations Fig. 3-28

6
O -
(Te Tw)/Te
5 0 0.075 —
A 0.166
0 0.352
\ (Te'Tw)/Te
4 \
B \ 0.075
n a
7 3 \\
~ a
3" 0.166
N
0.352 A\Q
2 \
1 M
\
Eq. 3-88 I
Experimental Data from Ref. 35
0 ] | l
0 1 2 3 4 5 6

Re x 10-°

Fig. 3-28. Flat plate turbulent boundary layer; thickness of the
laminar sublayer, 6,/x vs Re; theory and experiment; M, =5.2;
(T T)‘T = 0,075, 0166 and0352 perfect gas, vy = 1.4;

Pr 070
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Fig. 3-29 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)
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0.8
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/ 0.95
10~°
v
/ Calculzted from Eq. 3-88
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M,
Fig. 3-29. Flat plate turbulent boundary layer; thickness of the laminar
sublayer, &,/x vs M ; M, = 0 to 10; (T, - TW)/Te =0, 0.2, 0.4, 0.6,
0.8, 0.9, and 0.95; Re =10"; B8 = 0.505; perfect gas, y = 1.4; Fr = 0.70.
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Solutions to the Flat Plate Boundary-Layer Equations Fig. 3-30
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Fig. 3-30. Perfect gas turbulent boundary layer; laminar sublayer thickness,
61/9 vs M; M, =0 to 10; (Te - Tw) T, =0, 0.2, 0.4, 0.6, 0.8, 0.9,

and 0.95; Re = 107 ; 8 = 0.505; perfect gas, vy = 1.4; Pr = 0.170.
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Fig. 3-31 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)
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Fig. 3-31. Flat plate turbulent boundary layer; thickness of the laminar
sublayer, 6‘/6 vs M;; M, =0to 10; (Te - Tw)/Te =0, 0.2, 0.4, 0.6,

0.8, 0.9, and 0.95; Re = 10"; B = 0.505; perfect gas, y = 1.4; Pr = 0.70.
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Boundary-Layer Growth on Bodies 4.1

4. Boundary-Layer Growth on Two-Dimensional & Axisymmetric Bodies

The boundary-layer growth on such two-dimensional bodies as wings
and on axisymmetric missiles or fuselages is of great practical importance to
the aerodynamicist. Methods of obtaining solutions to the partial differential
equations for the laminar boundary layer in the presence of either adverse or
favorable pressure gradients are discussed in this subsection. The associated
heat-transfer effects are included in the discussions. A step-by-step technique
is given (Subsec. 4.3) for computing the growth of turbulent boundary layer on
two-dimensional and axisymmetric bodies. The special cases of cones, spheres,
and cone-spheres are discussed in Subsecs. 4.4 to 4.6.

4.1 Laminar Boundary Layer: Finite-Difference Methods

Large, high-speed, digital computers make it feasible to calculate
the laminar boundary-layer growth using finite-difference forms of the appro-
priate partial differential equations. In recent years, the boundary layers on
two-dimensional and axisymmetric bodies have been investigated by several au-
thors. These investigations are significant since finite-difference methods ac-
count exactly (or at least to the accuracy of the numerical methods) for the
effects of pressure and temperature distributions along the surface. Thus, the
boundary-layer characteristice determined at any station reflect the complete
upstream history.

A complete description of finite-difference methods would be too long
for this volume; however, the status of several current investigations will be
discussed briefly and the reader directed to the references from which details
of the methods may be obtained. Smith and Clutter in Ref. 47 give an excel-
lent summary of the principal methods of solving the laminar boundary-layer
equations. They discuss the relative advantages of each method, the working
form of the equation upon which it is based, as well as the accuracy with which
the values of the shear stress may be determined. All investigators assume
constant entropy in the flow field outside the boundary layer. From this sum-
mary the four techniques which employ the method of finite differences have
been extracted and are shown in Table 4-1 (p. 111). For their own solutions to
the partial differential equations, Smith and Clutter (Refs. 47a, 47b, 47c, and
48) chose the Hartree-Womersley method (Refs. 51a, 51b, and 52) which can,
in a reasonably short time, produce results of high accuracy. The solutions
can be started simply and correctly and do not involve any problems of numeri-
cal stability.

For axisymmetric flow of thin boundary layers in thermal equilib-
rium, the method of Smith, et al, is based on the boundary-layer equations
(Eqs. 2-9, 2-10, and 2-11b). The continuity and momentum equations (Eqs. 2-9
and 2-11b) can be written as

12 2 _

'l:'é;(rou)*“g(tw)—o (4-1)

u, du)_ _3p, 2 (, i
"(“ax*"ay = ax"ay(“ay) (4-2)
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Taking dp/2?y = 0 and 3h/3y = cy 3T/3y, and denoting the total enthalpy by h,,
where ht = h + u?*/2, Eqs. 2-9 and 2-10 may be combined to yield the follow-
ing energy equation:

? ? 1 au
(h)+pvayh>=g§[ﬁ5§(h) ( ﬁ.)u—y] (4-3)

The boundary-layer equations may be transformed by using

ty
_ u,
"= [omu,’*] S"dy
o

X=X

It is also helpful to define a stream function, ¥, and a dimensionless stream
function, f, such that

o)

- .2 = ]
=3y PrVE-aWr),  and  ¢=[p u,uw x]"{

An enthalpy ratio, g, may be defined as
h

-

g:

=&

t,

By means of these transformations, the momentum and energy equations can
be written as

é; 'a%‘." (Cfu) +Q <_D‘_;_ - f!?) + (Q; 1 + R) ff' - (f' Bf' + 2__;.) =0 (4_4)

and

1 3 |C
E—S—[—I,—g‘.’F:‘C(l'Pr)f'f"]='[Q;1+R]fg'+x[f'—g gax] (4 5)
1

The primes in Eqs. 4-4 and 4-5 denote differentiation with respect to n. The
other parameters are defined as follows:

Po Mo

c="2_. c. =
P b ® Pl
_xduy o _xdr
Q-4 ax ' B rd«
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Boundary-Layer Growth on Bodies 4.2

The contiruity equation is satisfied by the definition of ¥. The definition of the
dimensionless stream function, f, is such that

For impermeable walls on which the surface enthalpy distribution is specified,
the boundary conditions to Eqs. 4-4 and 4-5 are

when 1 = o: f(o) =0, f'(0) =0, and gf{o)= By

and at n - =: f'(n) -1, f'(n)-o, and g(n)-1

When the x-derivatives in both the momentum and energy equations
are replaced by finite differences, Eqs. 4-4 and 4-5 take the form of ordinary
differential equations. This pair of equations is then solved simultaneously by
numerical methods for each station of interest along the surface. Since the
boundary conditions are split, an iterative procedure is necessary. The nu-
merical method used by Smith et al has several advantages. Being an implicit
formulation, there is no stability problem in the x direction. The integration
of the ordinary differential equations across the boundary layer can be accom-
plished by well-proven numerical methods. A disadvantage of this technique is
that the interval of integration across the boundary layer is unbounded. Baxter
and Flugge-Lotz (Ref. 54) as well as Kramer and Lieberstein (Ref. 55) circum-
vented this disadvantage by using the Crocco transformation discussed in Sub-
sec. 2.4 (see columns 2 and 3 in Table 4-1). In this case, the boundary-layer
equations are transformed to the x,u variables and since u lies between o and
u;, it is always finite. The use of the Crocco equations presents a numerical
difficulty in that the velocity profile can exhibit an overshoot, i.e., u, be-
comes > 1. This can occur when the boundary layer is first heated by the
surface and then accelerated. The shear stress can then become a double-
valued function of u. For most high-speed problems of interest, the heat is
transferred from the boundary layer to the surface, rather than from the sur-
face to the boundary layer, in which case the velocity overshoot should not occur.

Blottner and Flugge-Lotz (Ref. 56), Parr (Ref. 57) and several other

investigators solved the equations by replacing all partial derivatives by finite
differences.

4.2 Laminar Boundary Layer: Approximate Method

Using a correlation technique, Cohen and Reshotko (Ref. 7) derived
an approximate method for calculating the growth of a compressible boundary
layer with arbitrary pressure and temperature distribution along the surface.
The method, which employs the momentum integral equation, has been widely
used and gives good agreement with experiment. Lewis and Whitfield (Ref. 58)
recently have applied the method most successfully to the analysis of hyper-
sonic viscous effects.
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The transformation of the two-dimensional momentum integral equa-
tion, derived by Cohen and Reshotko, is given in Subsec. 2.5.3. The result-
ing equation, Eq. 2-33, is based on the following assumptions:

1. The gas is thermally and calorifically perfect.
The flow outside the boundary layer has constant eatropy.

The Prandtl number is unity.

[ 7 B V]

The viscosity is a linear function of the temperature.

Cohen and Reshotko define a shear parameter, £, and a correlation
number or pressure gradient parameter, n. The following equations define
n and £:

_. . 2y-3 v-3
= - 2 _
I & a4, _ %" (Tt,)” Vaw, _ %%,° (Tt,)% D gm, 4-8)
“tx d-x'= Mtl T; dx Mtl T1 dx
- — = ‘y_-z. 7-3
o, woC, p, ,0 /T \y»-1C, op, a, 6 /T, \2(-1) C
L = t; f - t] _k f = t1 t; t) M1 __I (4_7)
“tl T Mti T! N‘tl T1 2

These equations, together with the preceding assumptions and definitions, allow
Eq. 2-33 to be written as:

-ﬁlﬂ;( _n _):z [n(l={+2)+l] (4-8)
dx \da, /dx

If the variations of n and £ over a surface can be determined by solving the
momentum integral equation, the variations of 6 and Cf over the surface can
then be obtained from Eqs. 4-6 and 4-17.

4.2.1 Correlation Technique

For the case of incompressible flow with zero heat transfer, Eq. 2-33
can be integrated by the well-known Pohlhausen technique. It is assumed that
the boundary-layer profiles can be correlated in terms of a single parameter
involving only the local pressure gradient, i.e., the correlation is independent
of the history of the boundary-layer development. When the effects of heat
transfer are being considered, a second parameter related to the local wall
temperature must be included.

The correlation technique used by Cohen and Reshotko is based on
a Falkner-Skan type flow defined by

a, = const (x)™ (4-9)

[ .
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Boundary-Layer Growth on Bodies 4.2.1

For the case of constant wall temperature, the boundary-layer velocity and tem-
perature profiles are similar at all points along a surface over which the ve-
locity distribution is described by Eq. 4-9. The boundary layers thus form a
two-parameter family allowing n, £, and H to be written:

T -T

n=~n m’_.‘_v.T—tl_
t,
T -Tt
£ =12 m, w 3
Tt
1
o . T, - T,
H =H |m, T 1
t:

From the above three relations it is clear that

Tw-'l‘t - - T -Tt
L=1 n,———,IT——L and H=H n,——"l,—r———L
t: t:

Assuming that this correlation will hold at any point along a surface with arbi-
trary pressure and temperature distributions regardless of the history of the
boundary layer, Eq. 4-8 can be written as

= d n \ Tw'Tt
—ul——( -):N n, Y4 (4-10)

dx \du, /dx Tt,

where N, a momentum parameter, is defined by

T -Tt _
N n,l,l—,———?-— =2[n(ﬁ+2)+l]
ty

When integrating Eq. 4-10 it is unnecessary to use transformed co-
ordinates. In physical coordinates it can be written as

K

T K
M [2h) 4
! (T‘) dx

-1
T
al(ot) M) N[, b (4-11)
T, dx t
1

where

K= (4-12)
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It is more convenient to use the Mach number in Eq. 4-11 than to use the
velocity.

To integrate Eq. 4-11 along a surface, it is necessary to specify
M, and (Tw - T, )/Tt as functions of x. In addition, it is necessary to have
1 1

initial values of n and N and to specify N as a function of n and (’I‘W - T, )_/Tt .
1 1

To accomplish this, Cohen and Reshotko make use of the solutionsto the Falkner-
Skan flow (see Ref. 59).

Figure 4-1 (taken from Ref. 7) presents .the momentum parameter,

N, as a function of the pressure gradient parameter, n, for four values of m

(see Eq. 4-9) and five values of (Tw - ’I‘t )/Tt . The four values of m are
1 1

3, 1/3, 1, and =, corresponding to a flat plate, the stagnation point of an axi-
symmetric blunt body, the stagnation edge of a blunt two-dimensional leading
edge, and the limiting case of an infinite velocity. It may be seen from Fig. 4-1
that for all values of (TW - Ttl )/Ttl’ N = 0.44 when n = 0. This fact gives

an initial value of N that may be used for bodies with sharp tips or sharp lead-
ing edges.

Initial values of n corresponding to the stagnation point of blunt two-
dimensional or axisymmetric bodies can be obtained from Fig. 4-2 (also taken
from Ref. 7). The initial value of n (determined from Eq. 4-6) for a sharp
leading edge or tip is zero since § = 0 at x = 0. The relationship between N
and m at the stagnation point of blunt bodies is as follows:

= n (4'13)

For two-dimensicnal flow at a stagnation edge (m = 1), the initial value of N
from Eq. 4-13 is zero. For flow at the stagnation point of an axisymmetric
body (m =1/3), Eq. 4-13 gives Nsp = - 2nsp.

As the integration proceeds over the surface, the variation of N with
n and (TW - T, )/'I‘t is obtained from Fig. 4-1. Figure 4-2 shows n » 2
1 1

function of (TW - Ttl )/Ttl with m as a parameter. Noting that the cc .ant

temperature lines are almost linear on Fig. 4-1, Cohen and Reshotko suggested
that the relationship between N and n for isothermal walls is of the form:

N=A+ Bn (4-14)
Since all lines pass through n = 0 and N = 0.44, this equation becomes

N = 0.44 + Bn (4-15)

The value of B as a function of (T - Tt )/Tt is given in Ref. 7 and repro-
duced here as Fig. 4-3. w o
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Boundary-Layer Growth on Bodies 4.2.2.1

The four curves of B were derived from Fig. 4-1 by considering the

slopes of the following line segments of N = 0.44 + Bn for each value of the
heat transfer, (Tw - 'I‘t )/Tt :
1 1

1. For flow with a favorable pressure gradient over a two-dimensional

body, use the segments between P(0, 0.44) and the intersections
with the line m = 1.

2. For afavorable pressure gradient over an axisymmetric blunt body,
use the segments between P and the intersections with the line m = %,

3. For flow with small pressure gradients, use the slope of the lines
in the vicinity of P.

4. For flow with an adverse pressure gradient, use the slopes of the
line segments with small positive values of n.

4.2.2 Integration of the Momentum Equation for Two-Dimensional Bodies

4.2.2.1 Variable Wall Temperature

Equation 4-11 can be written in integral form as follows:

K -K -1 x -K
T T T
_ t; dM ( tl) dM1 - 1 ( tl) . - k
“‘(T‘, & "N\, . \ax /), M, \T, . N dx (4-16)

o

The initial conditions, denoted by subscript i, are:
1. For a sharp leading edge:

x=0, N :Ni=0'44’ n=ni=0

2. For a blunt leading edge:

where n, is read from Fig. 4-2 for m =1 and the appropriate value
of ('I‘w - Ttl )/Ttl .

Starting with these initial conditions, the integration is carried ..t making use

at each step of the values of N determined as a function of n and (Tw - 'I‘t )/Tt
from Fig. 4-1. ! 1

83




4.2.2.1 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

Cohen and Reshotko (Ref. 7) point out that it is sometimes useful

to have analytical relations to check the initial values of dn/dx. It can be
shown that

1. For a sharp leading edge:

1

2. For a blunt leading edge:

n, (d*M, /dx®)

(&), - ‘
dx), ~ T+ (dN/dn), (M, /ax),

where (dN/dn)i is evaluated for the instantaneous constant wall temperature,
i.e., T =T .
w W,

4.2.2.2 Constant Wall Temperature

When the wall temperature is constant, N is approximated by Eq. 4-15
and the integral form of Eq. 4-11 becomes

T K X '/T 'K
.. ) 1 dM; (.,B-1["t _
n=-0.44 (T1> MB ax SM, T, dx (4-17)
1

The appropriate initial values of n are given by Eq. 4-17 as x - 0, and the
initial values of N can be obtained from Eq. 4-15. These initial values are:

1. For a sharp leading edge:

x =0, N=Ni=0.44, n=ni=0

2. For a blunt leading edge:

x=0, N=N, =0, n=n.=-91ﬁ
i i B

where B may be read from Fig. 4-3 as a function of ('I‘w - Tt )/Tt .
1 1

Since B (given by Fig. 4-3) is constant for any particular applica-
tion, evaluation of n along the surface is given by the straightforward integra-
tion of Eq. 4-17. Analytical expressions for (dn/dx)i are:
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1. For a sharp leading edge:

()% (&)

2. For a blunt leading edge:

i

(dn) - . 084 (d°M, /dx"),

clxi B(1 + B) (dM, 7dx5l

4.2.3 Integration of the Momentum Equation for Axisymmetric Bodies

Application of the Mangler transformation yields the following equa-
tion for axisymmetric flows:

_ﬁlg(nr”)zN n,Tlfii_ (4-18)
™ &k \di/ax T,

This equation corresponds to Eq. 4-10 used in the two-dimensional case. In
physical coordinates, Eq. 4-18 becomes

K -K -1

T T T -T
M, (_t) 4 (_tL) (gm_) _ lwy ]
- T/ o nr? T % =N (n, Tt, . (4-19)

4.2.3.1 Variable Wall Temperature

For variable wall temperature, Eq. 4-19 will have two integral forms:
one for ducted bodies and one for solid-nosed bodies.

For the ducted body case, the integral form is

o K o K 1 x LT K
_ _tL) 1 dM; (_tL) (iM.) ) .N__(_ti) )
n (T, = ax NN T/, \dx 7, M, \T,/ & (4-20)
0

The initial conditions for the open body correspond to those of the two-dimen-
sional case. They are

1. For a sharp lip:
x=0, r-= ri,

2. For a blunt lip:
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where n, may be read from Fig. 4-2 for m =1 and the appropriate
value of ('lf‘w - Ttl )/Tt1 .

As the integration proceeds downstream from the lip, values of N for use in
Eq. 4-20 are taken from Fig. 4-1. Initial values of dn/dx are given by

1. For a sharp lip:

dn\ _ _0.44 (dM,

2. For a blunt lip:

(&) - revy [twan -2 &),
dx/, 1+ (dN/dnTi (dM, /dﬂi r, \dx/

where (dN/dn)i is evaluated for constant Tw = Tw .
i

For the closed body case with variable wall temperature, the in-
tegral form of Eq. 4-19 is

T K X T -K
t 1 dM Nr"‘( t,)
=z - | =L 1 X -
n <T1> ¥ ax S M, \T,/ % (4-21)
0

The appropriate initial values of n are given by Eq. 4-21 as x -~ 0. The initial
values of n and N are

1. For a sharp nose:

x=0, r =0, N=N.=0.44, n=n =0
i i i
2. For a blunt nose:

x=0, r.=0, N=N,=-2n, n-=n,
i i i i

(read from Fig. 4-2 for m = 1/3 and required (T, - T, )/Tt )
1 1

As the integration proceeds downstream from the nose, values of N for use in
Eq. 4-21 are taken from Fig. 4-1. Initial values of (dn/dx)i are given by

1. For a sharp nose:

(&) -- 4 )

1
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Boundary-Layer Growth on Bodies 4.2.3.2

2. For a blunt nose:

dn n, [(daM,/dx’)i (dar/dxa)i]
(Ei)i 34 (dN/dn), 2 (dM, /dx), B (dr/dx),

where (dN/dn)i is evaluated for constant Tw = Tw

4.2.3.2 Constant Wall Temperature

For constant wall temperature, N is approximated by Eq. 4-15 and
the integral form of Eq. 4-19 becomes

T K X T -K
-1 -
n=-A <~—,i,5-) (raMlB) %& J‘ r"M:B 1 (—Tt%) dx (4-22)
b
0

Equation 4-22 is valid for both open and closed bodies with values of B given
by Fig. 4-3.

For an open body the initial conditions are
1. For a sharp lip:

x =0, r=ry, N=Ni=0.44, n=n =0

2. For a blunt lip:

Analytic expressions for (dn/dx)i are

1. For a sharp lip:

() -~ i, (29,

2. For a blunt lip:

(@ _ 0.44 |-(daM‘/d}'(a)i
dx /.

l(.d_r)]
=" B{+B) L(dM,/dx)i " T, \dx/

For the closed body the initial conditions are

1. For a sharp nose:

x=0, r=0, N=Ni=0.44, n=ni=0
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2. For a blunt nose:

x=0, r=0, N=Ni=-2ni’ n=n, = 0.44

Analytic expressions for (dn/dx)i are

1. For a sharp nose:

(gg) __0.147 (dM;)

dx/; ™;) i' dx 7,

2. For a blunt nose:
() . 0.s4 [2 (@M, /dx"), (d"’r/dx*’)i]
dx / TTB+B)(B+2 [ (aMm; /dx)i (drfdi)i

4.2.4 Local Shear Stress

After integrating the momentum equation to obtain values of n, the
momentum thickness, 8, can be computed from Eq. 4-6; the shear parameter,
L, can be read directly from Fig. 4-4 (taken from Ref. 7). Using these values
of 8 and £, the local skin friction coefficient, Cf, can be computed from Eq. 4-7.

The friction drag can, of course, be obtained by integrating the wall shear stress,
T 20, ui Cf, over the surface.

4.2.5 Boundary-Layer Shape Parameter and Thickness

The transformed shape parameter is given on Fig. 4-5 (from Ref. 7)
as a function of (Tw - '1‘t )/Tt and n. Cohen and Reshotko give the following
1 1

expression for the shape parameter in the physical plane:

]

H=3"fg+2 M i+ 1) (4-23)
9 2 1

The transformed total boundary-layer thickness is also shown on

Fig. 4-5. Reference 7 also gives the following expression for & in the physi-
cal plane:

6

e=s+XolMi @ 1) (4-24)

i
Do

The above calculations are based on the assumption that wheny = 6, u = 0.995 u,.
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4.3 Turbulent Boundary Layer

The momentum integral equation (Eq. 2-29) holds true for both lam-
inar and turbulent boundary-layer flow over axisymmetric borlies. This equa-
tion assumes that the gas is thermally and calorifically peifect and that the
flow outside the boundary layer has constant entropy.

There are no experimentally verified compressible turbulent bound-
ary-layer theories that give the effect of surface pressure and temperature gra-
dients on the shape parameter, H, and on the skin friction coefficient, Cf. In

order to integrate Eq. 2-29, assume that H and Cf are given by flat-plate re-

sults and evaluated at the local flow conditions at each point along the surface.
An expression which gives Cf as a function of RJee is necessary and may be

obtained by combining Eqs. 3-55 and 3-57. The shape parameter can be com-
puted from Eq. 3-84.

For specified pressure and temperature distributions over a surface,
numerical integration of Eq. 2-29 will give the variation of Cf, H, and 6 along
the surface. This method should give reasonable results for small pressure
gradients, especially for favorable gradients.

The equation for flow over two-dimensional surfaces is given by
putting (6/r)(dr/dx) = 0 in Eq. 2-29.

4.4 Boundary Layer on Cones

When the bow wave is attached to a sharp cone at supersonic speeds,
local conditions at the outer edge of a thin boundary layer can be assumed to
be constant and equal to those for inviscid flow over the same cone. When the
surface temperature is constant, certain of the skin friction values for a flat
plate can be applied to the cone. Three cases will be considered: fully lam-
inar flow, fully turbulent flow, and flow with transition. As in Subsec. 3.5,
the momentum integral equation will be used to derive relationships which will
be valid for all three types of flow. The following sketch defines the coordin-
ate system.
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Since for a cone,

r =x sino,

the momentum integral equation (Eq. 2-26) reduces to

C
do . 8 _ i _

dx

As conditions at the outer edge of the boundary layer are constant over the
cone, this equation can be written

dRe, Re, C,
dRe " Re "2 (4-26)
or
d C;
m (RB Ree) = —2‘- Re (4-27)

Since both Re and Ree are zero at the tip of the cone, this equation can be in-
tegrated to give

Re = L_ j C. Re dRe (4-28)

-]
[

or
X Re
-
CF'?J.Cfde’W! CfRedRe (4-29)
o o
With this definition of CF’ the friction drag of a cone is given by

D =% p Ul Cp A cos 0 (4-30)

where A =7rx. From Eqs. 4-28 and 4-29
C =4._2=4g (4-31)
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Boundary-Layer Growth on Bodies 4.4.1

Equation 4-31 is valid for both laminar and turbulent flows. This equation for

a cone is comparable to Eq. 3-107 for a flat plate, differing only by a factor
of 2.

4.4.1 Laminar Boundary Layer on Cones

The Mangler transformation described in Subsec. 2.3 may be con-
veniently applied to the case of a cone with constant surface temperature. For
laminar flow along a cone, the non-dimensional forms of the velocity profiles,
temperature profiles, etc., are identical to those on a flat plate. Although tha
Mangler transformation could have been used to determine the skin friction on
a cone, the momentum integral equation was chosen for this derivation since
it can also be applied to turbulent flow.

Since both Cf and Reo depend on local boundary-layer profiles which
are identical for a cone and a flat plate, it follows tnat the relations between

Cf and Reo in the two cases are identical. Therefore,

C.Re, = K8

¢ Reg =K} (Eq. 3-111)

is also valid for conical flow where KL has the flat plate value calculated by

the methods of Subsecs. 3.1 and 3.2 or read from graphs such as Fig. 3-3
(see Subsec. 3.5).

Equations 3-111 and 4-27 combined and integrated yield
Ree = KL YRe/3 (4-32)

The constant of integration is zero since Ree = Re = 0 at the tip of the cone.

Combining Eqs. 3-111 and 4-32 gives the local skin friction coefficient for a
cone as

C, VRe = VK, (4-33)

Comparing this equation with Eq. 3-108, it may be seen that for the same value
of Re,

=V3cC

cone plate

Cs

Equations 4-31 and 4-32 lead to the following expression for the
mean skin friction coefficient:

C. VRe =

. K, =§ V3 (2K, ) (4-34)

1
V3
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This equation may be compared with Eq. 3-109 for the same value of Re to
show

3

C = CF

Fc one plate

Thus laminar skin friction coefficients calculated for a flat plate can be used
directly to obtain corresponding values on a cone. It is of interest to note
from Eqs. 3-110 and 4-32 that the boundary-layer momentum thickness on a
cone will be the same as that on a plate whose length is one-third that of the
cone.

4.4.2 Turbulent Boundary Layer on Cones

In order to express the characteristics of turbulent flow in a form
which is adaptable to a boundary layer with transition, it has been assumed that
Cf and Ree on the cone bear the same relationship as on a fully turbulent flat

plate (see Subsec. 3.5), i.e.,

e _ 5 5/4
C Re* =2(2K,) (Ea. 3-119)

o) 0o

When C, from this equation is substituted in Eq. 4-27, integration
of the latter gives

5 6 /4

(Re, Re)*'* =5 (3K,) " Re*’* + constant (4-35)

Since Re = Reg = 0 at the tip of the cone, the constant of integration is zero
and Eq. 4-35 may be written as

ey () () w3

If the exponent of the Reynolds number in the basic equation (Eq. 3-116) is
taken as 1/n rather than 1/5, then as n - o the factor 4/9 in Eq. 4-36 be-
comes 1/2, giving the same result as Van Driest obtained in Ref. 60. It may
be seen from Eqs. 4-36 and 3-118 that the boundary-layer thickness on a cone
is equal to that on a flat plate whose length is 4/9 of the cone's length.

An expression for the local skin friction coefficient obtained from
Eqs. 4-36 and 3-119 is

c,($re)’" -x (4-37)

Comparing; this equation with Eq. 3-116, it may be seen that for fully turbu-
lent flow,
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when Re = (9/4) Re

cone then Cf =C

plate cone plate

Thus the flat plate skin friction coefficients given in Subsecs. 3.3 and 3.4 can
be applied to cones by replacing Re by 4/9 Re.

The mean skin friction coefficient for a cone, obtained from Eqs. 4-31
and 4-36, is

Lca(ym” -5

This equation, together with Eq. 3-117, shows that 4/9 of the flat plate Re and
9/8 of the flat plate CF should be used to obtain the cone CF‘ The flat plate

relations for CF in Subsecs. 3.3 and 3.4 can thus be applied to cones.

4.4.3 Boundary-Layer Transition on Cones

The laminar relations given in Subsec. 4.4.1 are valid up to the
transition point, i.e., up to

Re = Re, ., Reg=Reg, .

The relation between Re and Re,  is given by substituting these values in
Eq. 4-32, i.e., Str tr

)
Re
Rey -KL( 3") (4-39)

For Re > Retr’ the constant of integration in Eq. 4-35 may be evaluated for
the region between Retr and any other Re by eliminating Reetr from Eqs. 4-35
and 4-39. The result is

K &/ 18/e 5/4
c/4 _ L 4 5 3/4
(Re, Re) / _(—) (Re, ) +3 (- KT> (Re*/* - Re

V3 8

Equations 3-119, 4-33, 4-37, and 4-40 may be combined to give the local skin
friction coefficient for Re > Reu_ on a cone, i.e.,

a/a
e ) (4-40)

fT ,
Cf - Re Cf '7‘ la/e A (4-41)
. (_;tz 6 'L
Re 5 Cf
T
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Similarly the mean skin friction coefficient is obtained from Eqs. 4-31, 4-34,

4-38, and 4-40. For Re 2 Retr’ it is
Re \*/+ CF s/ Re \'8/® s/®

CF'CF 1 (Re +<C Re (4-42)

T F

T
The subscripts L and T in these equations have the came meaning as before
(see Subsec. 3.5), i.e., C, , C. , C.,, and C are the cone values for

) FL ip Fr

laminar and turbulent, local and mean skin friction coefficients. Methods of

determining these from the flat plate values have been given in Subsecs. 4.4.1
and 4.4.2.

It should he noted that these derivations, as in the flat plate case
of Subsec. 3.5, are based on the assumption that the transition takes place at
a discrete point along each streamline. The variations of Cf and CF along the

ccne will follow the same pattern as those of the flat plate which were illus-
trated on p. 51, i.e., at the transition point, P, Cf is discontinuous while CF
makes only an abrupt change.

45 Laminar Boundary Layer on Spheres

Tne perfect gas laminar boundary-layer growth on any blunt body
can be computed using the apprcximate method describcd in Subsec. 4.2. The
method will now be applied to boundary-layer growth on the windward side of
a sphere with constant surface temperature. This case is of particular inter-
est, since bodies of many practical shapes are blunted by adding spherical tips.

The pressurc gradient parameter, n, for a closed axisymmetric body
is given by Eq. 4-22 with A = 0.44. For a spherical body,

r=bsing and x =b¢

as shown in the sketch below.
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Using these expressions, Eq. 4-22 becomes

TK -K

§ T
n=-0.44 (—,ftll) MB sin® )™ %% s mB-1 (T_tf) sin® £dE (4-43)
(o}

In order to compute n from this equation, it is necessary to ex-
press M; and Ttl /T, as functions of §. The modified Newtonian theory gives

a realistic pressure distribution over a sphere, i.e., the pressure coefficient
may be written as

C =¢C cos® ¢ (4-44)
p pma_x
where
p-p, (p/p,) -1
CpTEo, T TH M
and
(, /p,) - 1
C =t
Pmax By Mg,

The pressure, P, at the stagnation point is given by the Rayleigh pitot equa-
1

tion. Assuming that the flow at the outer edge of the boundary layer is'isen-
tropic, the local Mach number is given by

y-l1 %
2|/p, \”
2 ty
M, = -1 4-45
' (7‘ ) | 41 ( )
which, in terms of C , 18
Pmax
Pt S
Y w2 Y

. 3 1+ ) M Cpmax

M, =( 2 1) -1 (4-46)
4 1 +%Mi C cos’ ¢
Pmax

Thus, from this equation, the local Mach number, M,, may be found in terms
of £ for specified values of M_. Using the isentropic temperature ratio

T

b _q,2-1
T, Sl 5 M

and Eqs. 4-43 and 4-46, n may be computed as a function of §, M_, and B.
The value of the exponent B may be taken from Fig. 4-3 for an axisymmetric
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body with a favorable pressure gradient. The exponent K is given by Eq. 4-12,
i.e.,

3y-1
K=at-1

The momentum thickness, 6, may then be expressed in terms of the local pa-
rameters by combining Eqs. 4-6 and 4-43, i.e.,

y+1

———

-1 £ -K
Py 3¢ b T, \” -1 RWAY
"‘ti“‘—t (%) =0.44 (Ttl) M2 sin® ¢) [M? 1 (71,%-) sin® £dE  (4-47)
(o)

1

where A is defined by Eq. 2-32. Evaluating Eq. 4-6 at the stagnation point
where x = £ = 0 and hence n = - 0.44/(B + 2) (see Subsec. 4.2.3.2, closed
body) one obtains

ptwt (b) = 0.44 [(B + 2) (dg )€=0]- (4-48)

1
Equation 4-47 may be readily integrated if the flow regime is re-
stricted to high Mach numbers and the zone of interest limited to the neighbor-
hood of the stagnatxon point. The first restriction limits M_ to such values
that make (y/2) M p »> 1. The second restriction specifies that £ be
max
small enough that (y/2) M: Cp cos® £ >> 1. With these restrictions, Eq. 4-46

may then be reduced to max

H

. -2(r-1) 3
w - (72 g

&cos £) Y (4-49)

and

(—d?-) - @/n? (4-50)

The value of B given by Fig. 4-3 depends on the wall temperature. As the
Mach number increases, a high cooling rate at the nose will be necessary from
a practical standpoint, i.e., B =3 may be considered as a representative value

for a high Mach number flow. At the nose (§ = 0), Eqs. 4-48 and 4-50 com-
bine to give

8T - 0.088 (/2% (4-51)

ty &y

pab(
Autl
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Using the Reynolds number defined by

pt atxq ptl at b
__t - 1 -
Re9t = —-———Mt and Rebt ywm (4-52)
1 t,
one has
3
t\ w b )
(Rebt) t
i.e., at the nose
Re 1
8t _ (0.088)% (v/2)* < 0.2713
(Rey)

For small values of §¢, when B =3, Eq. 4-47 becomes

p, a, b T, \” é T, \ ¥
__t;“il (%)3 = 0.44 (T—*) (M3 sin® £)™ j M (-,1#) sin® £dE  (4-34)
1
(o]

The ratio, ReOt/(Rebt)l’ ?, has been computed as a function of £ from Eq. 4-54
and is shown on the sketch below.

1.2
1.0
0.6 P2
g e
0.4 ﬂ’/
0.2
0

10 20 30 40 50 60 70 80
€, deg

Knowing the variation of Ke, t/ (Rebt)1 /3 over a portion of the sphere,
values of n can be computed using the definition of n (Eq. 4-6), since Tt /Ty
1

and M, may easily be expressed in terms of §. Other parameters such as the
local skin friction coefficient, the shape parameter, and the total boundary-

layer thickness can then be computed by the methods described in Subsecs. 4.2.4
and 4.2.5.

The method described above will be used to compute the boundary-
layer growth over the tips of the sphere-cones in Subsec. 4.6. For the nu-
merical results given there, Eq. 4-46 was used to determine the Mach number
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distribution over the tip. The boundary-layer parameters given in the next sub-
section have been expressed in terms of the wall slope rather than (. The
conversion from the form given in Eq. 4-53 is easily made.

4.6 Laminar Boundary Layer on Sphere-Cones

The momentum integral equation for an axisymmetric body is given
by Eq. 2-27. Wilson, in Ref. 13, has simplified this equation for a thermally
and calorifically perfect gas flowing over slightly blunted cones by assuming:

1. A constant pressure on the conical surface which is equal to that on
a sharp cone in inviscid flow.

2. Adiabatic flow outside the boundary layer.
3. 71,/piu} << cf/z.

The experimental results of Lewis (Ref. 61) show that, for hypersonic flow over
slender cones, the first assumption is reasonably accurate for points more than
five nose radii from the tip. The second assumption implies that the heat con-
duction and shear stress terms in the energy equation may be neglected in the
flow outside the boundary layer. The third assumption is shown by Ferri in
Ref. 62 to be valid for the relatively high Reynolds numbers at which the bound-
ary layer is thin. In that case the velocity gradient at the wall is high com-
pared to the velocity gradient in the variable entropy regime outside the bound-
ary layer, j.e., r, << Tw

With the above assumptions, Eq. 2-27, the momentum integral equa-
tion, is expressed by Eq. 2-30. In this equation it may be noted that in spite
of the assumption of constant pressure along the surface, a term with Mach
number gradient appears. This term takes into account the variation of the
entropy normal to the streamline in the flow above the boundary layer. It will
be finite until the variable entropy layer has been completely swallowed or ab-
sorbed (point A) by the growing boundary layer, as shown in the sketch below.

Shock Wave

wg Varyin
Rapidly

h Varying
Rapidly

In order to integrate Eq. 2-30, expressions must be found for the

boundary-layer parameters (Cf, 6/6, and H), for the Mach number (M;), and

for the Mach number gradient (dM, /dx). The method developed by Wilson in
Ref. 13 will be followed.
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4.6.1 Boundary-Layer Parameters

The expressions for Cf, 6/9, and H will be taken from flat plate

results (Subsecs. 3.1 and 3.2) and evaluated at the local flow conditions which
must be determined at each point along the body. The momentum integral equa-
tion for the flat plate, obtained by putting (8/r)(dr/dx) = 0 in Eq. 2-29, may be
combined with the Rubesin-Johnson skin friction relation given by Eq. 3-8 to give

T 3 2
W _(0.664) I;_i_(0.664) g_',_ -
Ct“3o, @ " Re, ™ m  Re, T, (4-55)
9, d:
where
Re =p1u19
9 T

A Prandtl number of 0.75 will be used for the sample calculations, in which
case Eq. 3-14 becomes

T, =1+0.076 (y - 1) M§ + 0.481 (T"'w -1) (4-56)

The ratio u, in Eq. 4-55 can be obtained from Sutherland's viscosity law given
by Eq. 3-1 and re-written as:

uL = (T2 (1 , 198.7 R) /(r,. , 198.7 R) 457

where T, is in degrees Rankine. With the assumptions of a perfect gas and
adiabatic flow outside the boundary layer, T, can be computed from the energy
equation

T

ts _ y-1
Tl M

The difference between 8/0 and H, which is required in the solution
of Eq. 2-30, is obhtained from Eqs. 3-21 and 3-22, i.e.,

g - H = constant = 6.41 (4-58)

Mangler's transformation (see Subsec. 2.3), demonstrates that the
velocity and temperature distributions through the boundary layer are the same
for a flat plate as for a sharp cone. It follows that Eqs. 4-55, 4-56, and 4-58,
which apply to the flat plate, will also apply to the sharp cone with constant
pressure gradient and wall temperature. It is now assumed that for a blunt-
nosed cone the above equations will apply if the flow conditions are evaluated
from point to point along the surface.
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4.6.2 Continuity Considerations

Expressions for M; and dM,/dx to be used in the integration of
Eq. 2-30, are derived from two relations between M, and the local shock-wave
angle, W The first relation is obtained from a consideration of the contin-

uity of mass flow. Referring to the sketch below, it may be seen that the mass

Shock Wave

Streamline

g

flow through the thin boundary layer in the annulus (of depth y and distance r
from the axis) is equal to the flow through the associated stream tube of radius
r, i.e.,

8
6
Zﬂrs pudy =p_u_ 1rr;;i (4-59)
o
In the evaluation of W where experimental data are inadequate or non-existent,

elaborate flow calculations must be carried out. For the present calculations,
it has been assumed that the shape of the detached shock is the hyperbola sug-
gested by Moeckel (Ref. 63) and defined by

rs=:ttanw(x’ -x“’,)"a

where the coordinate system is shown in the following sketch.

The shock-wave angle, W approaches the sharp cone shock angle, w, as rg” =

Heybey in Ref. 64 gives an expression for the shock radius of curvature, a,
at rg = 0. The values of a and w define the shape of the hyperbola. The re-

lation between rs and ws can be shown to be:

¥
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3
% =tan’ w_ - tan® w (4-60)
2 s
At high Mach numbers, the equations of Heybey indicate a constant ratio be-

tween a and the radius of curvature, b, of the blunt-body nose. It is expressed
by

a~1.5b (4-61)

This result holds for free-stream Mach numbers higher than about 4. It agrees
with experimental data and appears to be nearly independent of ¥ and real gas
effects.

The sketch below compares the experimentally determined shock-
wave shape for a sleider blunt-tipped cone (0 = 6°) with that derived from
Eq. 4-60. The hyperbola is seen to be an excellent fit to the data for a large

I [

-—— Hyperbola ﬁ
[ o Experiment
. € 10 4(0’
) o

0 40 80
Distance along Axis, x/b

portion of the shock wave. With the assumptions of a perfect gas and adiabatic
flow outside the boundary layer, Eqs. 4-59 and 4-60 may be used to obtain the
following relationship between M, and W

p, M, 2+(y-1)Mf'.é .3 ’ s
P M, \25 - DM (mrws-m)”” (5-1) we

where, as before, p, and M; are measured along the cone surface, just out-
side the boundary layer.

Zakkay and Krause (Ref. 65) give a method similar to the above for
relating the mass flow in the boundary layer to the flow through a stream tube
ahead of the shock. Their method assumes local similarity and makes use of
a mass-flow function given by Lees (Ref. 66). This mass-flow function includes
a parameter representing the boundary-layer growth along the surface. In the
present method the growth along the surface is obtained from the momentum
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integral equation (Eq. 2-30). The shock wave shapes assumed in the present
work and in Ref. 65 are somewhat different.

4.6.3 Expansion of the Flow Behind the Bow Shock

Although the layers immediately above the boundary layer may have
variable entropy, isentropic flow is assumed along each streamline from the
bow shock to the outer edge of the boundary layer (see sketch on p. 98). This
assumption, together with the oblique shock equations for a perfect gas, yields
the second required relationship between M; and w 5’ i.e.,

y-1

D [1 Y‘lMa _ y+1 1/y
(P..) TNy T ZyM s w_ -1 -1)

’(y+ 1) M2 sin’ wg [2+(y-l)M§,

T‘F»f(y - 1) M2 si? ws]

4.6.4 Calculation of the Mach Number Gradient

(4-63)

Equations 4-62 and 4-63 can be used to calculate dM; /dx. Although
these equations do not require p, = constant, this assumption will now be used.
Taking into account Eq. 4-58 and differentiating Eqs. 4-62 and 4-63 with re-
spect to x, the result, after eliminating dws/dx, is

29 [2+(-1)M?] - 6.41| dM, _d9  gdr
M, 2+ 0 - 1) M7] T, & “ax'rax 4-84)
where
F. - 2+ (y-1)M? -6.41
Poye Bantw sec?w_ [2yMesinw -ly-ﬂl [2+G-TM%sinw |
8 8 Rad 8 L 8 2
T (tan’ws-tan’w) TM:fsinT(«.:s-ﬂr - [1+0O-1)M7)]
(4-65)
4.6.5 Integration of the Momentum Equation

Making use of Eq. 4-58 aad taking dM, /dx from Eq. 4-64, Eq. 2-30
can be written in the following form:

C
dée edr _f 1
.._4._.__.2_ = - (4-66)

When F, = 0, Eq. 4-66 applies tc an axisymmetric body with zero pressure
gradient and constant flow conditions outside the boundary layer. For the conical
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portion of the blunted cone, dr/dx = r/x. With this relationship ana Fq. 4-55,
Eq. 4-66 can be written as

x R’“’e
2\ —q—) dRe (Re Re, ) = Fs (4-67)
X xc xC c
C
where ) 3
PcUcX A - !\>
Re = and Re, =
c c c K
= a couy Tu (1 -
F, = (0.664) WU o T oy, \1+ F,) (4-68)
] M a [T ° / °
¥y, M1, (_E 198.73)/“198.73) 4-69
W (T) R R )T (4-69
and
T

c _2+(yv-1)M? .
T, I G- M (#4-70)
c
The values of x and 6 in the Reynolds numbers Re_ and Rneo are local values

(
along the surface of the blunted cone; all parameters with the subscript ¢ are
associated with the flow conditions on a sharp cone.

Starting the integration at the tangent point of the spherical segment
and conical section, Eq. 4-67 can be written

(RexcReec)
1 3 3\ _ 2
3 (Rexc ) Renc) - (Rex‘[Ree ) " (Rexc R‘eec) d(Rexc Reec) “-71)
¢ c¢/n

where the subscript r denotes values at the tangent point. Equation 4-71 can
be put into a form convenient to integrate by dividing.both sides by Re;, , where

c
Rebc = pcucb/uc, and noting that Re /Reb =X n/b = cot 0. Equation 4-T1

thus becomes ¢ ¢
Re 3
1 Xe _ 2 .
3—Re—b— Reb ) - (:Ota o = s AdA (4 72)
c c
n

where Re Re
x 6
A= C C

Rey,
c
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The nomenclature is illustrated by the following sketch.

o— by ——o{

For known flight conditions, cone angle, and surface temperature, the param-
eters F; and A in Eq. 4-72 are functions of M, and weo only.

Making use of Eqs. 4-58 and 4-61, Eq. 4-62 may be written as

1.125 P- Mo (2 +lr-1) Mi)é

A-8Inop My \2+(-T) M
6.41 (tan? ws-tan3 w)

(4-13)

The integral in Eq. 4-72 can now be evaluated as follows. Equa-

tion 4-63 is used to compute M, as a function of wg The value of w g ranges

from 7/2 on the axis to w. Pairs of values of wg and M, derived from Eq. 4-63

are then used to compute F; and A from Eqs. 4-65, 4-68, and 4-73. Values
of Mc can be found in cone tables such as Refs. 67, 68, and 69.

It can be seen from the above equations that the integrand of Eq. 4-72
is independent of Reb , i.e., independent of the nose radius, b. However,
c

Rebc does appear in the lower limit, An, to the integral in Eq. 4-72. The

value of this lower limit can be obtained by integrating the boundary-layer mo-
mentum equation over the spherical segment at the nose. For cases of most
general interest, the entropy outside the nose boundary layer can be assumed
to be constant since the streamlines near the cap all emanate from the normal
portion of the shock as shown in the sketch below.

Bow Shock
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Given the flight conditions, cone angle, and surface temperature, Cohen and
Reshotko (see Ref. 7 and Subsec. 4.5) show that

A = constant (l'\‘.eb ).i" (4-74)
c

Equations 4-72 nd 4-74, with a given value of Reb , can be used to obtain
c

Ree as a function of Rexc. Having obtained a solution for one value of R.eb ,
¢ c
results for additional values are easily obtained since the parameters under the
integral in Eq. 4-72 will be unchanged. The evaluation of the integral, how-
ever, will start at a different lower limit associated with each value of l-‘teb .
c

Having determined the values of Re , the momentum thickness based
on local flow conditions is found from 8¢’

M
Reg =gt o- Re (4-175)
1

m
Au ¢ .
where —— b, i is given by Eq. 4-69.

For a sharp cone (superscript o), where T, = T, and F, =0, Eq. 4-68
becomes

'-ll n'-l

= (0.664) ﬁ- = constant (4-76)

where I"/Tc and u'/uc are given by Eqs. 4-56 and 4-57 with T, = T, and
M, = M . The boundary-layer growth over a sharp cone can be obtained by

c
putting Re and (Rex Ree) equal to zero in Eq. 4-71 which then reduces to
c c ¢c/n

FORe !
o Xc
Re, =\—5— (4-77)
9 3
c
4.6.6 Skin Friction and Friction Drag

After integrating Eq. 4-72 and determining values of Ree1 from

Eq. 4-75, values of the local skin friction coefficient may be computed from
Eq. 4-55. In order to compare the results with those of a sharp cone, it is
convenient to define the local skin friction coefficient of a blunt cone as follows:

T
w )\ ux -
C 3 b =z p (‘f1 (4-178)
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where Cf‘is given by Eq. 4-55 and

2
g W

ua
c C

2

- Y

M2
c

D

The local skin friction coefficient on a sharp cone is obtained by re-writing
Eq. 4-55 as

T
23
c® =(O.664)

~cul (4-79)
fc Reg T “c
c
where Reo
90

is given by Eq. 4-77. A comparison of Cf and C? will show the
c c
effect of tip blunting on the local shear stress, since both coefficients are ref-
erenced to the same flow conditions.
If the skin friction on the nose is neglected,
the conical frustum is given by

the friction drag on

L
D= Ichosor rdx
w
X
n

(4-80)
By definition, the skin friction drag coefficient is
[oRp— (4-81)
DF 2 p_ u TRe

where R is the radius at the end of a finite cone.
4-81 combine to give

Equations 4-78, 4-80, and

L,
N

cSsco
cDF=p°u§sin 20 J C, —1’; d(%) (4-82)
® o c
gcow
4.6.7

Local Flow Conditions Far from the Tip

Far from the tip both Ree and Re91 approach Re
c

cal example of the next subsection shows that Re
Reec-

(0]

. The numeri-
6c

8 approaches Re®

1

Therefore, taking the value of Re? from Eq. 4-77, far from the tip
c

faster than
9¢
8
¥ Re. \?
Xe
Reg, ~\ 73—
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With this resuit and Eq. 4-75, the value of Ree for the blunt cone is given by

c
0 3
p u u F: RexC
Reec ’ P, U1 H» 3
This may be re-written as
Re_ Re %
Py u, W X ]
4/3 Y c C O
Rex /Reb %<p . Re VS/F2> (4-83)
c c c c bC

When the flight condmons, cone angle, and surface temperature are
known, the value of Re_ /(Reb ®) far from the tip may be determined as a func-

tion of M, only by mesns of Eqs. 4-63, 4-69, 4-73, 4-76, and 4-83. This
parameter makes it possible to estimate the effect of nose bluntness on the value
of M; far from the tip without integrating the momentum equation. If the point
at which the boundary layer swallows the variable entropy layer can be defined
by some value of M; < M_, then Eq. 4-83 indicates thatRe at this point will

by directly proportional to Re"la e
Pe

4.6.8 Numerical Example

The example presented here may also be found in Ref. 13. These
calculations apply to free-stream flow at M_ = 14.9 over a blunted cone (o = 8°).
The temperature of the surface is assumed to be the static temperature of the
free stream (530°R). Three values of the Reynolds number at the nose are
considered:

Reb =5x10° 5x10*, and 5 x10°
C

When M_ = 14.9 the local Mach number, Mc, on a sharp cone is

10.0. For inviscid flow the Mach number at the tangent point on the blunted
cone can be shown, by a modified Newtonian theory, to be 3. 02.

The behavior of (2A/F3), the integrand in Eq. 4-72, is shown on
Fig. 4-6. It may be noted that Eq. 4-65 gives F; =0 for wg =1/2 and w = w.

It is of interest to note that, for the case considered, F; reached a maximum
value of 0.6 at wg ~ 30°. It can be seen from Eq. 4-66 that F,, and thus the

Mach number gradient dM, /dx will have a significant effecton the boundary-layer
growth. Near the tangent point, Fs given by Eq. 4-68 can be approximated by
taking M = 3.02 and F; =0. Far from the nose, Fa can be approximated by
taking My = 10.0 and F, = 0. Each of these limiting values of F; gives a
linear variation of the integrand with the variable of integration (dashed lines
in Fig. 4-6). It can be seen from this figure that there can be three flow re-
gimes. Near the nose, the Mach number and the entropy outside the boundary
layer are almost constant and correspond to the flow through the normal por-
tion of the shock. Next there is the swallowing regime in which the Mach number

107




4.6.8 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

and entropy are changing fairly rapidly. Finally, far from the nose, when the
variable entropy layer has been completely swallowed, the Mach number and
entropy are again almost constant and correspond to the flow through the coni-
cal portion of the shock.

It is necessary to define the lower limits in order to evaluate the
integral in Eq. 4-72. A modified Newtonian pressure distribution was assumed
and boundary-layer growth over the nose calculated by the method of Ref. 7.
The result, in the same form as Eq. 4-74, is

) -#
A =56 Re

. (4-84)

C

The lower limits for each of the three nose Reynolds numbers are indicated on
Fig. 4-6. It has already been stated that the integrand represented by the solid
curve in Fig. 4-6 is independent of Reb, but the integration will begin at points

A, B, or C depending on which of the three nose radii is being used. A small
enough portion of the variable entropy layer is swallowed by the nose boundary
layer so that conditions corresponding to flow through a normal shock may be
assumed without much loss of accuracy. The effects of errors in these limits
(shown by the distances of points A, B, or C from the dashed curve for M = 3.02)
quickly become negligible as the boundary layer grows along the conical section.

Curves of Reec and Ree Vs Rex obtained from Eqs. 4-71 and 4-72
! c

are plotted on Fig. 4-7. These curves are compared with the sharp cone re-

sults obtained from Eq. 4-77. Since the blunt cone Re9 values are based on

sharp cone local flow properties, the comparison showsc the effect of blunting
on 8. These curves show that blunting can increase the value of 8 by an order
of magnitude. However, when the Reynolds number is based on local flow con-
ditions outside the boundary layer (Reex), the trend is reversed. i.e., the blunt-

ness reduces the momentum thickness Reynolds number.

Curves of M, vs Rex , generated in solving Eq. 4-72, are plotted

c

on Fig. 4-8. As the bluntness is increased, its effect on the local Mach num-
ber is felt farther from the tip. For a cone of finite length, the bluntness
ratio (nose radius to base radius) must be very small before M; =~ Mc near

the base. For example, Fig. 4-8 shows that for the smallest value of Rebc,
i.e., 5 x 10°, M, does not approximate M, (10.0) until Re = 10'. The blunt-

ness ratio given by Rey /(Roexc sino), for this case is only 0.0036.
c

For given flight conditions, cone angle, and surface temperature,
Eq. 4-83 can be used to obtain a curve of M, vs Rex /Re:)"3 for the regime far
c c
from the tip. The curve obtained from the present example is plotted on the
sketch opposite. For any value of Reb , the curve can be used to determine
c

the value of Rex at which a particular value of M, will be reached.
c
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M, 9.6 //
9.4
9.2
10 20 30 40 50 60
/ 413
Rex /Reb
c c
Values of Cf and C? were computed from Eqs. 4-78 and 4-79 re-
C c

spectively and their ratio is plotted on Fig. 4-9 as a function of Rex . It can

c
be seen that bluntness significantly reduces the local shear stress. For a slender
cone at hypersonic speeds, a large fraction of the total drag is due to friction.
A slight bluntness will therefecre significantly decrease the total drag. The
method given here for computing skin friction was used by Lyons, et al (Ref. 70),
in calculating the total drag of slightly blunted cones. Their results were in
excellent agreement with measurements obtained in a ballistics range.

4.6.9 Real Gas Effects

Real gas data for equilibrium air can be used directly in the blunt
cone computations. Rubin in Ref. 71 reworks the calculations of Ref. 65 in-
troducing real gas effects. In order to include such data in the method given
here, the solution to the inviscid flow over a sharp cone in equilibrium air is
required. From this solution one may obtain the pressure on the blunt cone,
the asymptotic value of the bow shock-wave angle, and the flow conditions at
the outer edge of the boundary layer far from the tip. Equation 2-27 holds for
the real gas case. However, without the assumption of a perfect gas, Ea. 2-30
must be re-written as

C
49 | 29 u, dp, 1(9- )iu_x, 8dr_f
dx‘“GI[“I"Edu,'z s B & *rax"2 (4-85)

The density, p,, and the velocity, u;, are related by the assumptions of con-
stant pressure and adiabatic flow outside the boundary layer. The reference
temperature method for calculating Cf from Eq. 4-55 must be replaced by the

reference enthalpy method (see Subsec. 3.2.1). Equation 4-55 must be re-
written as

\3 t ]
c. -(0.664)° p' ' (4-86)
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where p' and u' correspond to the reference enthalpy given by Eq. 3-28. = .e
values of ¢/6 and H may be computed from Eqs. 3-29 and 3-30. The diffes-
ence, [(8/6) - H], given by Eq. 4-58, will be unchanged. Equaion 4-62 must
be replaced by

pw ucn aa 6
Py u (t::m2 wg - tan® w) = 2r6 (5 ) H) (4-87)

Differentiating this equation with respect to x yields

3
9_Q+§_C1§+_0;(1+g;_dpx+2tanwssec wsu dws)dm:o (4-38)
dx rdx uw o duy  tar® w_ - tan® w Y du, / dx

Equations 4-85 and 4-88 can be combined to obtain an integral equation of the
same form as Eq. 4-72. A second equation relating u, and w, can be obtained

in the same manner as Eq. 4-63, but the inclusion of real gas data precludes
the expression of the relationship in an implicit analytical form.
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Boundary-Layer Growth on Bodies Fig. 4-1
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Fig. 4-1. Correlaticn of the momentum parameter, N, with the
pressure gradient parameter, n.
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Fig. 4-2. Effect of wall temperature on pressure gradient parameter, n.
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Fig. 4-3. Effect of wall temperature on value of B; B = dN/dn
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Fig. 4-4
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Boundary-Layer Growth on Bodies

Fig. 4-17
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Fig. 4-6. Behavior of integrand in Eq. 4-72; M_ = 14.9, M =10.0;
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Fig. 4-7. Effect of bluntness on momentum thickness Reynolds
number; M_ = 14.9, M =10.0; o = 8% = ’l‘ = 530°R.
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Boundary-Layer Transition 5.

5. Boundary-Layer Transition

Transition from laminar to turbulent flow is of great practical im-
portance because of large changes whick occur in the friction drag, heat trans-
fer rate, and flow separation. The stability of the laminar boundary layer in
the presence of small disturbances has been investigated theoretically by a num-
ber of authors. In spite of the multiplicity of these investigations, it is still
impossible to make an accurate prediction of the point at which laminar flow
breaks down and a turbulent flow begins, nor is it possible to predict the point
at which the turbulence is said to be fully developed.

An understanding of the transition process depends heavily on experi-
mental data which, unfortunately, do not form a well-ordered body of information.
The ambiguity arises from two principal causes. First, transition depends on a
great many parameters including Mach number, surface temperature, pressure
gradient, angle of attack, nose bluntness, sweep angle, surface roughness, stream
turbulence, and unit Reynolds number. Some of these parameters are inter-
dependent. The second reason for this disparity is associated with the fact
that different investigators have limited their measurements to different por-
tions of the transition region.

Transition does not occur abruptly at a well-defined point on any
surface but takes place over an extended region. If the flow along a smooth
surface is investigated as a function of time, the extent of the laminar region
is found to be nearly constant along the surface. However, at some point in
the transition region, the flow may change character with time, e.g., the steady
laminar motion may become motion in which disturbances with a particular fre-
quency predominate, or it may change to motion in which random bursts of tur-
bulence appear. Farther downstream. the bursts of turbulence will occur more
frequently until, at some point, a fully developed turbulent flow exists. The
existence of a finite region of transition is demonstrated by the experimental
measurements of the temperature recovery factor made by Brinich and Sands
(Ref. 72), and is shown in the sketch below. At the onset of transition the re-
covery factor begins to increase from the lower value associated with laminar

0.88 E @)

P

0.84 O_Q-O-c

3 5 7 9 11 13 15
X, in.

Temperature Recovery Factor

flow. Transition is probably complete when the temperature reaches its peak
or perhaps at a point just downstream of the peak temperature. It can be seen
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that the transition region is extensive when compared to the laminar region
which starts at x = 0. It has been shown by Potter and Whitfield (see sketch
below) that the Reynolds number based on the length of the transition region,
Ax, is greatly affected by both the transition Reynolds number and the Mach
number. The Reynolds number of transition should be clearly defined in each
instance since it could depend on the properties at the starting point, some
mean point, or the end of the transition region.

] !
. —Lamm‘az R::?Osn t... Turbulent M_~8
/; M_=5

Source: Refl. 73
1

0 1 2 3 4 5 6 7 8

Rex x 10"¢ at End of Transition
b3

Many techniques are vsed to detect the presence of transition. They
include the measurement of surface parameters such as the temperature along
insulated models or the rate of heat transfer to or from a surface, and the
pitot pressure at a small fixed distance from a surface. The local friction
drag may be found by means of a floating skin friction balance or the total drag
may be determined by means of a balance support arm. Optical techniques
such as schlieren and shadowgraph may be used or the sublimation of a surface
film may be observed. Hot wire anemometry may also be used. (Details of
these techniques may be found in Section 20 of the Handbook, Ref. 74.) When-
ever transition data are presented, it will be noted whether the start or the
end of transition was measured. Two techniques which are must frequently
used are the measurement of the recovery factor (on insulated models) and the
use of schlieren or shadowgraph pictures. It appears, from experimental work
reported by Potter and Whitfield in Ref. 73, that both the peak recovery factor
and also the detectable change in the boundary-layer growth(shown on a schlieren
or shadowgraph) occur just upstream of the fully developed turbulent flow. These

techniiques as well as sublimation methods are assumed to indicate the end of
the transition region.

The effects on transition of the various parameters will be discussed
in the following subsections. In many cases it is impossible to separate the
effects of several parameters. However, it is hoped that the experimental in-
formation presented here will give sufficient basis for estimating the transition
Reynolds number in many cases of practical interest.
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Boundary-Layer Transition 5.1.1

It may be noted that the unit Reynolds number will not be considered
as a primary parameter mainly because there is no unambiguous correlation of
data from the various facilities. In some cases the unit Reynolds number has
little effect, while in other cases the transition Reynolds number increases with
unit Reynolds number, and in still other cases the trend is in the opposite di-
rection. However, it is possible to state that in most cases the transition Rey-
nolds number increases with increasing unit Reynolds number. Some typical
data given by Van Driest and Boison in Ref. 75 are shown in the sketch below.
In flow at Mach numbers of 1.90, 2.70, and 3.65 along a 10 degree cone, the
transition Reynolde number increases slightly with the unit Reynolds number
as the stagnation pressure is stepped up. The model was insulated and the
tunnel turbulence was 0.4%.

8 M, v
01.90
° 6 a2.70} Ref. 75
t -
5 03.65 o = ﬁhaoo-Q'g——
>
%
-D"'—-_‘
___A 0
” a
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Reynolds Number of Transition, Re,/in. x 107°
5.1 Effects of Mach Number and Surface Cooling

The effects of Mach number and surface cooling are discussed in
Subsec. 5.1.1. Subsection 5.1.2 considers surfaces with zero heat transfer
since there is a large body of data in this category.

5.1.1 Cooled Surfaces

In an attempt to isolate the effects of Mach number and surface cool-
ing, data have been collected for flow over smooth sharp models, including cones .
near zero angle of attack, plates and hollow cylinders, and in one case a body
with a variable surface pressure.

Figure 5-1 presents transition data for cones obtained from wind
tunnels (Refs. 75 and 76), ballistics ranges (Refs. 77, 78, and 79), and free-
flight tests (Ref. 80). The Reynolds numbers are all based on conditions at
the outer edge of the boundary layer (subscript 1) and the characteristic dis-
tance is measured along the surface. At the higher wall temperature ratios,
the wind-tunnel data (open symbols) show that for constant Tw/Tel’ the tran-

sition Reynolds number decreases with increasing Mach number, at least for
Mack numbers up to 3.7. It will be shown later that this trend is substantiated
by additional data for Tw/T e, - 1.0, but that the trend is reversed at higher
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Mach numbers. The data given by Van Driest and Boison (Ref. 75) should serve
as a standard for wind-tunnel results since they were obtained in a tunnel with
highly uniform flow and a known low level of turbulence. The difference be-
tween the M, = 3.0 data from Jack, et al (Ref. 76) and the M, = 2.7 data from
Ref. 75 may be due to the fact that the Reynolds number of one set is based
on the start of transition and the other on the end. At the higher temperature
ratios, a decrease in the wall temperature results in 2 marked increase in the
transition Reynolds number. For the experiments at M; = 3.0, the tempera-
ture was decreased until the flow over the cone was completely laminar. This
situation existed until the temperature ratio was decreased to about 0.25, at
which time transition was once more observed near the end of the cone. With
a further decrease in the temperature, the transition moved forward along the
cone. There has been no satisfactory explanation for this phenomenon. How-
ever, there is some speculation that it might be caused by the increased rough-
ness due to cooling but this seems unlikely.

The ballistics range data (solid symbols) were obtained at angles of
attack of less than one degree. The purpose of the experiments of Lyons and
Sheeiz (Kef. 77) was to investigate this transition reversal. In the neighbor-
hood of 7' 'l‘ex = 0.25 the range and wind-tunnel data at M, = 3.0 are in re-

markable agreement. For the range data at M, = 4.5, given by Sheetz in Ref. 78,

the transition reversal takes place at a lower I‘w/ ’I‘e and transition moves
1

forward until a temperature ratio of aboui .13 is reached. At this point a
second reversal takes place and transition moves aft once more. This occur-
rence of a second reversal should definitely exclude roughness as the cause cf
the first. It will be shown later that flat plate data also exhibit a second re-
versal. Witt (Ref. 79) gives one test point from a ballistics range at M, = 3.0,
where the flow was completely laminar at a Reynolds number of 21.6 x 10°
and Tw/Te1 = 0.42. The data of Refs. 76 and 77 indicate that high transition

Reynolds numbers can occur at such a temperature ratio.

The individual points for M; = 1.6 to 3.4 from the free-flight data

(half-closed symbols) given by Rumsey and Lee (Ref. 80) are in the same Rey-
nolds number range as the wind-tunnel tests. However, their free-flight data
at M, = 3.7 appear high with respect to those of the wind tunnel. It should
be noted that the free-flight data points are obtained in the order of increasing
wall temperature. The symbols with arrows pointing down indicate that the
flow was turbulent at the measuring station. Later in time, the flow near the
tip became laminar with transition moving aft as the wall became warmer. Ref-
erence 80 shows that still later the flow again became fully turbulent. This
may be due to some unknown variation in the angle of attack with time, in which
case the four M, = 3.7 transition points could be on the windward side and thus
be higher than they would be at zero angle of attack (see Subsec. 5.2).

It may be concluded that the data on Fig. 5-1 are reasonably con-
sistent. As cooling begins, transition Reynolds numbers increase until quite
high values are obtained. The maximum transition Reynolds number which can
be reached has not been established as yet. However, as cooling continues,
the transition reverses ard quite low values can be obtained.
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Boundary-Layer Transition 5.1.2

Figure 5-2 presents data for flat plates and hollow cylinders. The
Mach number effect in this case is not as well defined as for the cones. Wind-
tunnel data of Brinich (Ref. 81) at M, =5, and of Deem and Murphy (Ref. 82)
at M; = 10.2, show essentially no effect of wall temperaturc. This is not in
agreement with the cone data, nor is it in agreement with the flat-plate gun-
tunnel data taken by Richards and Stollery (Ref. 83) at M; = 8.2. The gas in
the gun tunnel is pressurized in a shock tube, released by a gun-operated pis-
ton and expanded through a nozzle which produces uniform flow. The data of
Ref. 83 can therefore be compared with wind-tunnel data. It is interesting to
note that these data exhibit the double reversal found for the cone data. Three
points obtained on gun-launched hollow cylinders have been taken from Ref. 84
by James. The two points at M, =3.9 and the point at M; = 7.0 may lie on
one of the very steep lines which occur during reversals.

Results from Refs. 85 and 86 for a body with variable surface pres-
sure are shown on Fig. 5-3. In this case the data are based on conditions in
the free stream rather than just outside the boundary layer. The points indi-
cate the maximum Reynolds number at which the boundary layer was completely
laminar over the entire model. It will be noted that here the transition is very
sensitive to surface cocling. These data at M_ = 1.61 are consistent with the
cone data from Ref. 75 plotted on Fig. 5-1. The cone data at the lowest Mach
number (M; =1.9) have a slope only slightly less than that of the data on Fig. 5-3.

5.1.2 Insulated Surfaces

Figures 5-4, 5-%, and 5-6 show how the transition Reynolds number
on smooth sharp models with zero beat transfer is affected by Mach number.
The data are all from wind-tunnel tests.

Figure 5-4 presents data for cones at zero angle of attack. It will
be noted that the data from Refs. 72, 75, 87, and 88 are in quite good agree-
ment. It was pointed out previously that the data from Ref. 75 were taken in
a wind tunnel with smooth, uniform flow and a turbulence level known to be low.
The Retr from Refs. 89 and 90 appears to be low in comparison with that of

Ref. 75. This may be due in part to flow irregularities and high turbulence
levels. Furthermore, the unit Reynolds number used in Ref. 90 was based on
the properties of the flow at a point near the start of transition. The over-all
conclusion that may be drawn from this figure is that the transition Reynolds
number decreases with increasing Mach number, at least up to Mach numbers
of about four.

Figure 5-5 presents data f~v flat plates and hollow cylinders. In
this category, data are available at both high and low Mach numbers. Although
the data do not really present a consistent quantitative picture, there appear to
be two distinctive trends. At Mach numbers below about four, the transition
Reynolds number decreases with Mach nuaiber; at the higher Mach numbers, the
trend is reversed.

Limited data for bodies with variable surface pressure are given on
Fig. 5-6. Each point irndicates the maximum unit Reynolds number at which
the flow was laminar over the entire model. The points for the three bodies,
A, B, and C, at M_ = 1.6 are in the expected order. The cone-cylinder body,
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A, has an adverse pressure gradient aft of the shoulder and has the lowest
transition Reynolds number. The ogive-cylinder, B, has a slight adverse pres-
sure gradient aft of the ogive and is next. The third, C, is an NACA RM-10
body and has a favorable pressure gradient for the first 80% of its length. It
has by far the highest transition Reynolds number. Each of these three bodies
had some adverse pressure gradient. It is possible to determine the increase
in pressure coefficient which occurred on each before transition took place.
This increase, termed the critical pressure rise coefficient, is compared in
Subsec. 5.2 with subsonic data and with data obtained on supersonic bodies at
angles of attack. At M, = 3.1, the data points for the other two bodies, D
and E, are in the expected order. Both models D and E have approximately
constant favorable pressure gradients over the greater part of the bodies. Model
D has a change in pressure coefficient, AC = (m -p.)/% o U, of about 0.12

from tip to base, which is about the same as for the RM-10 body, C, tested
at M, =1.6. Model E has about twice the change in pressure coefficient, i.e.,
AC p- 0.24. The transition points for C and D exnibit the expected trend with

Mach number.

5.2 Effect of Body Angle of Attack

From a study of the bodies shown on Fig. 5-6, it was found that
transition at supersonic speeds is sensitive to the pressure gradient. This
general observation is consistent with subsonic experience. Since adverse pres-
sure gradients promote early transition, the onset of transition should move
forward on the sheltered side of slender bodies as the angle of attack increases.
Data from Witt (Ref. 79) and Jedlicka, et al (Ref. 97) plotted on Fig. 5-7, dem-
onstrate this effect. Although the transition on both the cone and the slender
ogive-cylinder is extremely sensitive to angle of attack, that on the cone is the
more sensitive. This may be expected since the cone pressure at zero angle
of attack is constant, and at small angles of attack each streamline within
any meridian plane from the tip to the base will be subject to an adverse pres-
sure gradient. On the other hand at zero angle of attack, the ogive-cylinder
has a favorable pressure gradient on the nose, which will remain favorable for
small angles of attack and thus assist in stabilizing the boundary layer. Al-
though adverse pressure gradients aft of the nose promote transition, the nose
gradients should counteract this effect to some extent and reduce the sensitivity
to angles of attack.

The authors of Ref. 97 have calculated the patterns of the stream-
lines and the pressure distributions along them near the surface of the ogive
cylinder at angles of attack of 1, 2, and 3 degrees. At several stations along
the body the streamline was found which had the maximum pressure difference
from the minimum upstream pressure on the same streamline. When transition
occurred at a particular station, the pressure coefficient associated with the
maximum pressure rise, Ap/# pwu:, was termed the critical pressure rise co-
efficient. A correlation of this coefficient with the transition Reynolds number
assumes that transition is caused by local laminar separation. The resuilts
obtained from analyzing the angle of attack data at M_ = 3.5 are compared with
subsonic data on Fig. 5-8. In addition, the pressure rise from the minimum
pressure point to the base has been computed for each of the three bodies tested
at M_ = 1.6 and these values are also shown on Fig. 5-8. Additional supersonic
data, with and without heat transfer, are needed to substantiate the scanty super-
sonic data in Fig. 5-8 since the M_ = 1.6 data and that at M_ = 3.5 show
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considerable difference in the sensitivity of the transition Reynolds number to
the pressure rise.

5.3 Effect of Bluntness

A number of investigators have found that the transition Reynolds
number is quite sensitive to the relative bluntness of the body tip or of the
leading edge. Despite the fact that this effect is known to be significant, few
data are available for blunted models with heat transfer. Limited data pre-
sented by Brinich (Ref. 81) for hollow cylinders at M_ = 5 are shown on Fig. 5-9.
The data arc ha~~1 7 free-stream conditions since local conditions at the outer
edge of the boundary layer along the surface vary with the bluntness (see Sub-
sec. 4.6). The data for the sharp cylinder are also shown on Fig. 5-2 and
were discussed in Subsec. 5.1.1, where it was pointed out that these data do
not exhibit the more general effect of wall cooling. It is interesting to note
that the blunted cylinder data on Fig. 5-9 follow the general trend and show
increasing transition Reynolds number with decreasing wall temperature. It
can be seen that even a slight blunting causes a large increase in the transition
Reynolds number based on free-stream conditions. Several effects are involved.
First, there is a decrease in the local unit Reynolds number as a result of the
flow having passed through the bow shock. If the transition Reynolds number
based on local conditions were constant, blunting the tip would cause an aft
movement of transition. Secondly, nose blunting lowers the local Mach num-
ber which, depending on the Mach number range, might increase or decrease
the transition Revnolds number. Finally, the bluntness produces pressure gra-

dients which might have an appreciable effect on transition aft of the tip or the
leading edge.

Figure 5-10 presents the effect of leading-edge bluntness and Mach
number on the transition Reynolds number for smooth flat plates and hollow cyl-
inders with zero heat transfer. The data, taken from Refs. 72, 73, 82, and
92, are in good agreement. As the bluntness increases, the transition Reynolds
number increases steadily at first and then appears to remain constant as might
be expected. For small bluntness, the local conditions change continuously as
the entropy layer, due to the curved bow shcck, is swallowed by the boundary
layer (see sketch on p. 98). As the bluntness increases, less and less of the
entropy layer is swallowed before transition takes place. When the bluntness
exceeds some critical value, transition will always occur close enough to the
leading edge that the local conditions are those of the flow through the normal
part of the bow shock. The onset of transition might then be expected to re-
main fixed. However, at still larger bluntnesses, the adverse pressure gra-
dient which occurs just aft of the tip may cause a forward movement of tran-
sition. This may explain the behavior (see Fig. 5-10) of the data at M_ = 2.0
as the bluntness increases beyond the critical value.

Brinich and Sands (Ref. 72) covered a wide range of unit Reynolds
numbers in their investigations of flat as well as semicircular leading edges. A
few of their results are given on Fig. 5-11 in which it may be noted that some
of the transition Reynolds numbers for the flat leading edge at M, = 3.1 exhibit
the same characteristics as those of the semicircular leading edge at M_ = 2.0
which are shown on Fig. 5-10. Increasing the leading edge thickness displaces

the transition point downstream, but beyond a critical thickness the trend is
reversed.
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Figure 5-12 shows limited data of the effect which changing the tip
radius of conical bodies has on the transition Reynolds number. These data
are not as consistent as those of the flat plate and hollow cylinder shown on
Fig. 5-10. However, it is interesting to note that the data obtained by Czarnecki
and Jackson (Ref. 98), for large bluntness, show decreasing transition Reynolds
numbers with increasing bluntness. Brinich and Sands in Ref. 72 give results
for flat as well as rounded tips over a wide range of unit Reynolds numbers.
These results are given on Fig. 5-13. The authors investigated many other
tip configurations such as blunt cones, rounded flats, spikes, cylindrical ex-
tensions, as well as step changes in the body diameter.

5.4 Transition Reyrolds Number Based on Momentum Thickness

In calculating boundary-layer growth over bodies with variable sur-
face pressure and temperature, it is necessary to specify values of the Reynolds
number, Ree‘, using the momentum thickness and the local flow properties at

transition. For the sharp cone, flat plate, and hollow cylinder data given so
far, it is a simple matter to compute values ot Re from the values of Re

at transition. It is also possible to calculate the lammar boundary-layer growth
over blunted bodies and bodies with pressure gradients to determine values of
Ree1 at the transition point. The authors of Ref. 98, using this method to get

F\‘Jee1 at transition, have analyzed zero heat transfer experimental results for

sharp and blunted cones at four Mach numbers and three cone angles. The cone

blunting was accomplished by means of spherical, hyperbnlic, and parabolic tips.

Their results are presented on Fig. 5-14 where the values of Re9 are plotted
1

as a function of the local unit Reynolds number. Transition in all cases oc-
curred downstream of the nose section so that the local Mach number can be
estimated from the ratic of the stagnation pressure and the static pressure on
a sharp cone. The stagnation pressure is taken to be that behind the normal-
shock portion of the bow wave. The tip radius in each case is assumed to be
large enough to ensure that transition occurs before the swallowing of the vari-
able entropy layer begins. It will be noted from Fig. 5-14 that neither the
unit Reynolds number nor the nose radius has, in general, a marked effect
upon the transition Reynolds number. This is to be expected since the blunt-
ness Reynolds number which is a product of the nose radius and the unit Reynolds
number is shown in Fig. 5-10 to have little effect on Retl . The nose radius and

unit Reynolds number have the most significant effects when the Mach number is
low and the nose radius is large. The effect of very large radii is evidenced up to
a Mach number as high as 2.2 (see the third part of Fig. 5-14). In most of the
cases investigated in Ref. 98, the value of Ree at the end of transition lies be-
tween 900 and 1100. !

Witt and Persh (Ref. 99) conducted tests on blunted cones and power

bodies described by r/R = (x 0/t)n (see following sketch) on a ballistics range.

Their results are presented in Fig. 5-15. Transition on the cones always oc-
curred after the blunted tip, i.e., on the conical section where the pressure
gradient may be taken to be zero. However, transition on the power bodies
always occurred where the pressure gradient was still favorable. Witt and
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b2t = 2.6"—n]

Persh, therefore, plotted Re9 at the end of transition as a function of the local
! 8 du,

velocity (or pressure) gradient parameter, Re91 4 dx’ to detect any effect
of pressure gradient. Over the range of test Mach numbers (M; =1.5 to 2.2),

the value of Re9 varied from 315 to 750. There seems to be little correla-
1

tion with pressure gradient. These tests also showed very little correlation

between Reet and any of the other parameters, M_, M,, and Tw/'l‘e (see Ref. 87).
1

The maximum transition Ree1 on the cones, 750, is less than the maximum
cone value reported by Czarnecki and Jackson in Ref. 98 and shown on Fig. 5-14.

Buglia (Ref. 100) analyzes free-flight data on a cone (20 =29°) with
a rounded tip at free-stream Mach numbers of 2.3 to 3.1. These data were
obtained at high heating rates and are therefore comparable to those for the
ballistics-range tests. Values of Reel, measured along the cone at the begin-

ning of transition, were found to be about 2000, whereas when transition oc-
cured on the rounded tip, Ree‘ varied from about 1300 to 800.

5.5 Effect of Sweep

Dunning and Ulmann in Ref. 101 present photographs of transition on
swept wings in supersonic flow. The luminescent lacquer technique was used
to reveal the fact that transition always occurred along a front parallel to the
leading edge, making it unnecessary to measure transition at more than one
spanwise station in order to determine the effect of sweep angle. In Ref. 102,
Chapman analyzed data from tests at M_ = 3 and 4; his resuits are shown on
Fig. 5-16. The Mach 8 data of Deem and Murphy (Ref. 82) have been added
to this figure. It can be seen that as the sweep angle increases, the distance
from the leading edge to transition (measured in the streamwise direction) is
greatly reduced. Blunting the leading edge augments this effect.

5.6 Effect of Roughness

Transiticn data on smooth modeis were presented in Subsecs. 5.1
to 5.5. When it was known, the surface roughness was given for each model
since roughness can greatly reduce the transition Reynolds number. Even on
a highly polished surface, a certain random roughness remains. The data given
were usually in terms of a root-mean-square roughness and were obtained with
a profilometer. In this subsection the discussion is limited to those tests in
which the roughness size was controlled. The size will be given in terms of
the actual height, k, of either a three-dimensional or two-dimensional rough-
ness element. Since three-dimensional elements have the greater effect on
transition, they will be treated in mcre detai’.
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5.6.1 Minimum Transition Reynolds Number: Three-Dimensional Roughness

Consider the effect of three-dimensional roughness elements located
at a particular station along a surface. Let the station be upstream of the
natural transition point. Elements which are less than a critical size will not
affect the location of transition. However, increasing the element size beyond
the critical value will cause transition to move forward. This effect will con-
tinue until a second critical size is reached, beyond which the forward move-
ment will cease, and transition will be stabilized downstream of this element
for a wide range of roughness size. This will define the minimum transition
Reynolds number for roughness lccated at that particular station. It has been
noted that after the first critical size is reached, a relatively small in.rease
will bring the transition Reynolds number to its minimum value. For a par-
ticular station, there are then these two critical roughness sizes: (1) the maxi-
mum size which will not affect transition, and (2) the size which will bring the
traisition Reynolds number to its minimum value.

The roughness associated with the minimum transition Reynolds num-
ber will be discussed first. Van Driest and Blumer in Ref. 103 present and
analyze an excellent set of data obtained for spherical roughness elements on
a cone. For each experiment the roughness elements, with diameter k, were
located at one station along the cone. They were spaced at intervals of 4k on
a single line around the periphery. The wind-tunnel tests were conducted with
an insulated model. A typical set of data is reproduced in Fig. 5-17 and will
be used to illustrate the test procedure. With elements located at one station,
X the unit Reynolds number was varied by changing the supply pressure. This
varied the roughness Reynolds number, Rek1 = 3‘—:?5
tion in the transition Reynolds number, Rexl = pyu; X/, shown by the data

points on Fig. 5-17. The Reynolds number based on the distance from the tip
of the cone to the roughness element, Rex =M u;xl/u;, varied linearly with
Kk,

Rek1 as shown on Fig. 5-17. What appears to be a variation with Rek for
1

the smooth wall is actually a variation with unit Reynolds number. The smooth
wall curve in this figure shows an increase in the transition Reynolds number
with increasing unit Reynolds number as shown in the sketch on p. 121. The
first data point with roughness is the only point which actually falls on the smooth
wall curve. This point corresponds to the maximum value of Rekl which does

not affect transition and will be discussed later. Just after the data points de-
part from the smooth wall curve, they drop rapidly to a minimum Rex . The
1

value of (Rex1 - Rex ) then remains essentially constant as Rek
) !

Tests for the same x‘Jk, but different Xy and k, give the same results. Ex-
cept for small values of xk/k, experimental data at constant Mach number show

that (Re}'(1 - Rex ) is independent of xl/k after the minimum transition Rey-

, and caused the varia-

increases.

ki

nolds number is reached. The minimum transition Reynolds number wil) move

to a smaller or larger Rek as xk/k is decreased or increased. The data thus
1

show that, for constant Mach number, the minimum transition Reynoids number
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for roughness located at x, can be written

k

Re. =Re_ + constant (5-1)
X, xk1

The constant may be expressed as a function of the Mach number; thus Eq. 5-1
becomes

Rexl = Rexki + f(M,) (5-2)

Van Driest and Blumer then derived an expression for Rex in
k,

Eg. 5-2 in terms of Rek at the minimum transition Reynolds number. It is
1

assumed that the roughness Reynolds number required to bring the transition
Reynolds number to its minimum value is a constant, i.e.,

pu, k
m
where uy is the velocity in the boundary layer at the top of the roughness ele-

= constant (5-3)

ment. The density, p, and the viscosity, u, are associated with some points,
not yet specified. Assume that the roughness element is contained within that
portion of the boundary layer characterized by a linear velocity profile. Then

T k %p‘ u? ka

du w
u. =k (—--) = (5'4)
k dy w HPw Hw
Now, from Eq. 3-8 and Mangler's results for a cone
1 1,,?
3 p'u'\#
=1.15 (——) 5-5
Cf (Rexkl) Pi1 K, ( )
From Egs. 5-3, 5-4, and 5-5 one obtains
p 3 T, :5 _%
£ B (ﬁ—“—) Re, \* (Re = constant (5-6)
pP: U #w P11 Ky ki Xk1

When it was assumed that Pr = 1 and pu = constant, the experimental varia-
tion with Mach number could be matched to that derived from Eq. 5-6 by eval-

uating p at the outer edge of the boundary layer and u at the wall. Equation 5-6
then becomes

Re

= constant (1 + X ; 1 Mai) Re;(" (5-7)
K

By fitting the data on a cone at M; = 2.71 to Eq. 5-7, the constant was de-
termined to be 32.8. This constant was found to hold for the data at M, = 1.90

k
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and M, =3.67. The excellent agreement between Eq. 5-7 and the data is shown
on Fig. 5-18.

From Mangler's resuits, the equation for a flat plate is given by
multiplying the constant in the cone equation by 3*. Thus for the flat plate

= -1, 1le _
Re, =43.2 (1 + 252 M,) Rexkl (5-8)
The constant in Eq. 5-3 may now be evaluated by putting p = o1 and u = By
taking pu = constant and Pr = 1. Using Egqs. 5-4, 5-5, and 5-7 one obtains
P uk k

w

For some unknown reason, this differs slightly from the value of 588 given in
Ref. 103, i.e., the roughness Reynolds number for a minimum Retr is ~ 600.

= 619 (5-9)

In order to facilitate the comparison of flat plate and conical data,
Van Driest and Blumer derived an expression for the Reynolds number of the
displacement thickness, Re&, in terms ° the Reynolds number of the local

length, Rex . For a flat plate with zero heat transfer,
1

Reg, =1.73 (1 - Mi‘) Re}* (5-10)

This equation and the data of Ref. 103 agree within 5% for 6 s M, 5. A
combination of Eas. 5-8 and 5-10 yields

Regy =1025 (1+1 1 M?) (x/6%)7 (5-11)

1

Equation 5-11 applies to any flow with zero pressure gradient as is demonstrated
by Fig. 5-19.

By means of Eq. 5-7 or 5-8, the transition Reynolds number, Ret v

for cones or for flat plates can now be calculated from Eq. 5-2 if f(M,) is
given. The data presented on Fig. 5-20 show that f(M,) is constant and equal
to 0.5 x 10° when M, = 2.71. In the region where x/k s 200, the roughness

element emerges from the linear portion of the boundary layer and thus f(M,)
is no longer constant since one of the basic assumptions (Eq. 5-4) of the theory
has been violated. Ignoring the region where (xl/k) is small, this technique

can be applied to each set of data to obtain a unique value of f(M,) for each
value of M,. Figure 5-21 shows a curve of f(M,) vs M, for several sets of
comparable data covering Mach numbers from 0 to 6.

It should be emphasized that all of the above data apply to the case
of zero heat transfer and zero pressure gradient. An investigation of the effects
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of various wall temperatures and pressure gradients is needed to extend these
results.

5.6.2 Maximum Three-Dimensional Roughness not Initiating Transition

In the preceding discussion, a constant value of a roughness Reynolds
number defined as p, ukk/uw, was used to correlate the data for a minimum
Reu_. A simijlar Reynolds number has not yet been found to correlate the on-
set of transition with the three-dimensional roughness size. The limited data
available will be presented in terms of a critical roughness Reynolds number,
defined as

=pkukk

"
where subscript k denotes the flow properties at the top of a roughness element
of height k. The term critical is applied to RJektr to denote the value at which

transition is first affected by the roughness. Before presenting the data, ex-
pressions for calculating values of Rek from given values of Rektr will be de-
1

rived for surfaces with a zero pressure gradient. Equation 5-12 may be written
as

Re (5-12)

ktr

u
T k -
Re , =7 u,R‘e (5-13)

ktr Kk Bk ki

Assuming, as before, that the roughness element is submerged in that portion
of the boundary layer in which the velocity profile is linear

or =kl Re, (5-14)
1l W 1
where C = 'rw/ép:u?. Equations 5-13 and 5-14 yield
C C N
Ctpe Timm (S i
2 Reyyr —Tk“k“ (2 Rekl) (5-15)

The ratio I‘k/ T, may be approximated by using the temperature distribution
when Pr =1, i.e., Eq. 3-10 may be expressed as

T, T T u Uy u
_l_tz_z_(_y_l) k_y-1ye [(_f‘) f] (5-16)

Incorporating Sutherland's viscosity law, Eqs. 5-14, 5-15, and 5-16 have been
used to compute (Cf/2) Rekl as a function of (cf/z) Rektr and the results are

plotted in Fig. 5-22. For given values of Rektr and Cf, these curves or the
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above equations can be used to compute 1'\‘Jek1 and finally to determine the rough-

ness size. Although the expressions were derived for flows with zero pressure
gradient, they shouid give a good approximation when there is a small pressure
gradient if the appropriate values of Cf are used, i.e., those associated with
the local flow properties.

It was noted in Subsec. 5.6.1 that the first data point on Fig. 5-17
gives the minimum value of Re associated with transition. Several such values

of Rek were read from the graphs of Ref. 103 and used to calculate the critical

roughness Reynolds numbers. The results, which are shown on Fig. 5-23, are
plotted in terms of Rei{'ti_ so as to be compatible with the results of Braslow

and Knox (Ref. 106). The latter data, also shown on Fig. 5-23, were obtained
by use of a hot wire anemometer mounted near the model surface slightly down-
stream of the roughness element. As the unit Reynolds number of the test was
increased, the bursts of turbulence indicated when the critical value of Rekt r

had been reached. It may be noted that any effect of moderate cooling is masked
by the scatter of the data. The supersonic Rektr are, in general, well below
the constant subsonic value.

Lyons and Levensteins {Ref. 107) give an extensive set of graphs for
calculating roughness sizes. The boundary-layer profiles that they used include
a pressure gradient parameter. From an examination of available data they

conclude that a representative value of Rektr is 700. The data of Refs. 103

and 106 indicate that this value of Rektr may be too high.

5.6.3 Two-Dimensional Roughness

The investigations of Van Driest and Boison (Ref. 75) included tran-
sition caused by a single trip wire on a sharp cone. These results are shown
on Fig. 5-24 for three Mach numbers and several wall temperature ratios. The

transition Reynolds number, Rex , has been normalized by the use of (Rex )o’
1 1

the transition Reynolds number in the absence of the trip wire. Values of
(R.exl )o are those from Ref. 75, plotted on Fig. 5-1. It can be seen from

Fig. 5-24 that, in terms of k/6f, the trip-wire effect decreases with increas-
ing Mach number and decreases more rapidly with wall cooling. However, it
should be remembered that the ratio of 8* to the total boundary-layer thickness,
6, increases rapidly with Mach number. The curves would look quite different
if k/§ were plotted on the abscissa.

5.7 Effect of Stream Turbulence in a Wind Tunnel

Very few data are available concerning the effect on transition of
supersonic wind-tunnel turbulence. Van Driest and Boison investigated widely
varying turbulence levels in the supply stream. Their results are shown on
Fig. 5-25 for three Mach numbers and several wall temperature ratios. The
values of (Rex1 )o are the transition Reynolds numbers for the lowest turbulence
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level (see data from Ref. 75 plotted on Fig. 5-1). The transition Reynolds
number is inversely proportional to both the supply stream turbulence and the
wall temperature ratio. Both these effects decrease markedly as the Mach num-
ber is increased. It would be of great interest to determine the effect of vary-
ing the level of the supply air turbulence on the turbulence level in the pres-
ence of a model, as well as the turbulence associated with the sound field re-
flected from the boundary layer on the tunnel wall.

5.8 Lateral Spreading of Turbulence

Two types of lateral spreading will be considered: that due to con-
tamination from any surface to which a model is attached, and that in the wake
of a discrete roughness element. The effect of the former is of particular in-
terest at a wing-fuselage or tail-fuselage juncture. The limited amount of super-
sonic data available indicates that the angle at which turbulence will spread de-
creases with increasing Mach number, as shown on the sketch below.

10 I l |
ﬂg\ Open Symbols: Sidewall Contamination
\ Closed Symbols: Roughness Element

80
Q
o \
; \
2
&
< \
&
= Uncooled Wall
I — P
3 *Cooled Wall O Ref. 33\0
@ O Ref. 106

< Wall Cooled O Ref. 109

and Uncooled D Ref. 108
4 1 1
0 1 2 3 4 5 6
M,

At low speeds, this lateral contamination starts at the leading edge and spreads
at an angle of about 9 degrees. At high speeds, however, it will start some
distance from the leading edge and spread at a smaller angle. The last data
point on Fig. 5-21 gives the transition Reynolds number on a plate supported
from the tunnel wall in flow at M, = 5.8 and represents the distance from the
leading edge at which the turbulent side-wall coniamination begins to spread on
to the plate (see Ref. 33). Since this point appears to correlate with the rest
of the data on the above sketch, it is suggested that Fig. 5-21 be used to de-
termine the lag at other Mach numbers from 0 to 5.8. In other words, the
Reynolds number at which spreading starts is givenby (Ftexl - l'\'.ex ) in Fig. 5-21.
Ky

In Ref. 106 the data on lateral spreading were obtained by measuring
the angle of the turbulent wedge behind a single roughness element mounted on
a flat plate. Two sets of data were obtained at Mach numbers of 1.61 and 2.01.
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In one case the plate was cooled and in the other it was at the adiabatic re-
covery temperature. The cooling had very little effect on the spreading angle
of the turbulence. Wedges of spreading turbulence on a flat plate (Ref. 108)
were caused by small nicks on the leading edge. The semi-angle of the spread-
ing due to these imperfections should be comparable to those from the single
roughness element: of Ref. 108. Accordingly, these data are also shown on the
above sketch. These few data, obtained under different circumstances, sug-
gest that side-wall contamination is less affected by Mach number than is the
spread in the wake of a single roughness element.
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Fig. 5-1

at Transition
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Fig. 3-1. Effect of Tw/Te and M, on the transition Rex ; smooth,
1 1
sharp cones; o = 5°; a ~ 0°.
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Syrxbol|{ Facility Ref.| Re (!t Tt' °F |Roughness
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smooth, sharp flat plates and hollow cylinders; a = 0°.
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Boundary-Layer Transition Fig. 5-3

30
a
a
’ 25 —
nij
20
Wind-Tunnel Data O
$ M_=1.61 O
a T, = 109°F 0o
; Supply Air Turbulence = 0.5 to 0.8%
g O Ref. 85
8 O Ref. 86
I
o ]
o
pu)
P
| 3
S
(-]
- -—
vy
b4
<8 o 7 4.17 ft
& . ,
10 T T
NACA RM-10 Body
Parabolic Arc Profile
9 Basic Fineness Ratio = 13 Y
Pointed Stern Cut Off at 81.25% O
of Original Length
8 Roughness = 6 uin. (-
7
0.6 0.7 0.3 0.9 1.0
Tw/ rt

Fig. 5-3. Effect of cooling on transition Re e NACA RM-10 body,
a =0° an 1.61. =
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Fig. 5-4 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

Symbol | Ref. | Re, /ftx107° | 20 | Roughness | Transition
O 75 | 6.6-8.0 |10°| 10 uin. End*
] 89 | 0.6-2 5° -- End
T4 90 2-8.7 |10° -- Start
o) 87 | 3.4-9.3 |10°] 6 uin. End
(o) 72 { 1.1 -8.1 |10°] 8 uin. End
Q 88 |1.5-7.7 |10° 5 uin. End
QO 3.0-8.4 |27°
0 2.0-8.1 [45°
Q 4.1-8.4 |60°
*Supply air turbulence = 0.47%
9
8
7 Q I Indicates Spread Due to — |
& é A Re; /ft at Constant M,
6 f—<
0 \
) ‘I'—J
|
o T
o
S 4
g g ° \\
= A ”@g
= ]
s 3 T
= | 8 Ao | %
» ) !_\. A
»”
3 T AU J
2 78 = &
AN
JAY
A
FAN
A
) a
1 1.5 2 2.5 3 3.5 4 4.5
M,

Fig. 5-4. Effect of M1 on transition Rxex1 ; smooth, sharp
cones; a = 0°; Te = Tw; wind-tunnel tests.
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I

Boundary-Layer Transition

Fig. 5-5

" i
9
Ref.| Re/itx10"° Roughness [
81 [Aal 24 7.3 -.
Ol 82 2.2 10 uin. / #
71 Uo 3.6 10 pin. /
aj o1 0.9-3.5 -
0l 92 15 5-25 pin.
o| 73 3.4 10 uin. ;{
6t |O]33 3 --
Ol 93 3 .
|
5 /
: A //
=4
17/]
| =
& / / [
< /
?
e
- i

Re
L\ |

P

[ 4]
3 AN
"
[
2

—

Closed Symbols: Start of Transition

M pen Symbols: End of Transition
1 ,

Half-Closed Symbols: Mean Transition

0 2

Fig. 5-5.

and hollow cylinders, Te =

Effect of M; on transition Roax1

6 8 10

1

I‘w; wind~tunnel tests.

12

; smooth, sharp flat plates
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Fig. 5-6 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

(A1l Models are Approximately tc Scale)

Model A: Cone-Cylinder

Model B. Ogive-Cylinder

Model C: NACA RM-10 Body

=
<
-

1 - 3

Model D: dp/dx = -0.05 Model E: dp/dx = -0.10

Constant Pressure Gradient Bodie s

Model [Re, x107°*| M_ | Length,| Re,/ft |Roughness |Ref.
°= £, ft (sin. )
A 2.6 1.61| 4.17 6x10"° 23 5 95
B 4.8 1.61] 4.17 to 6-12 95
C 11.5 1.61] 4.17 |8.9x10% 6-12 95
D 3.99 3.12 1.58 |0.83x10° 6 96
E | 59.2 13.12] 1.33 | to10° 6 96

*
For transition starting at base of model.

Fig. 5-6. Effect of pressure gradient on transition Re, ; a =0°%

Te = Tw; wind-tunnel tests (see Subsec. 5.1.2).
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Boundary—Layer Transition Fig. 5-1

25 /T/\"
20

7
Mod
5 Caliber el A
) Tangent egive

A Indicates Transition
at Limit of Observation

« 107 at End of Transition

O

2 1
Angle of Attack., @, deg

Fig. 5-7. Effect of a on transition R:ex , slender, smooth,

O"‘"
-

sharp podies) banisticsfrange tests.
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Fig. 5-8 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

T T T L I 1 I
O Subsonic Airfoils and Flat Plates
ol a M_ =1.6, Insulated Wall, Re at
Ny Start of T'ransition. Wind-Tunnel
Tests (Ref. 95) (see Fig. 5-6) |
O QO oM =3.5, T/T=029 Re at End
~ 0.12 of Transmon Free -Flight Data, 7]
b3 o Ogive-Cylinder (Ref. 97)
b
5 o
A"y 0.08 O 7
o
\n“. (@]
) O
~ o @3 ©
0.04 Q
A
O
O
0 D{ O

0 2 4 6 8 10 12
Re x 107" at Transition

@®©

Fig. 5-8. Critical pressure rise coefficient as a function of transition
Rex ; various models; M_ =0, 1.6, and 3.5.

@

9 T T
8 Model A
[=]
l*]
g 1 3'--=.
g 6 Model B
[
3 5 ~—nuy
t 0 (1] \
0. 020 15°
3 A
K]
9

St Model A Model B Model C
V. (blunted) (Flat) (Sharp)
C N i
B |
Model C
9 L SOUfce: l;te;f. 81
0.3 0.4 0.5 0.6 0.7 0.8
Tw/ Tt

Fig. 5-9. Effect of bluntness on transition Rex ; cooled, smooth hollow cylinders;
M_ = 5.0; roughness = 8 uin. ; Rew/f? = 5.4 x 10°; wind-tunnel data.
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Boundary - Layer Transition Fig. 5-10

o TITTIT 1T
, A
Ref.] Roughness| Re_/1t J/
10H—|A | 82 4
g ;g} 10 uin. | 6.35%10° /%
> /
a2
% 92 | 5-25uin. |15x10°
LD
8
a M_=3.0
o) y
=
é 7
3 / Ret = Reynolds Number Based
e on the Thickness, t, of
9 / the Leading Edge
m 6 L i
Od L
S >
» . 5 '3-1
%
‘°" Prgr=t
4 7 0 4/ E
/ 3.54 // ]
3 A4
/I
[[ 3.0 25
AP
Value at % P\
2 'Ret =0 o, 2.0
O30 N
1

100 2 4 6 10° 2 4 6 100 2 4 6 10° 2

Fig. 5-10. Effect of semicircular bluntness and M_ on transition Re_ ;
smooth, flat plates and hollow cylinders; Te = T\v’ wind-tunnel tests.
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Fig. 5-11 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

30

Open Symbols: Flat Leading Edge
Closed Symbols: Semicircular Leading Edge

=~~~ Curve Faired Through Data for
t = 0.0079 to 0.051 in.

-

, in.

\
/

/

/

/
/
l/}
/

Distance to End of Transition, x
-y
/
8N4
yd
7/

]

7

6 Leading Edge —
Thickness, t, in. \

5 O 0.0002 N

%1 0. 0007 \Q
0.001;

4 A 0.0022 b\‘x’;\“
O 0.0031 \?’ \&\
N 0.0049 \\
O 0.096 O

3 O 0.251 \

Source: Ref. 72 t\QKLL
2 A
0.8 1 2 3 4 6 8

Unit Reynolds Number, Re_/in. x 107°

Fig. 5-11. Effect of bluntness on distance to end of transition as a
function of Re_/in.; smooth, hollow cylinder, I‘e = Tw’ M_=3.1,
roughness = 10 uin.; wind-tunnel tests.
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Boundary-Layer Transition

Fig. 5-12

T TTTIT]
— Re,_ = Reynolds Number Based
on Tip Radius, t/2 <
g |—Arrows Indicate Values as
Re, =0 N
t, M_=2.2
AN
?2.0 \
8 Cl\ L\\
\ N
1.8 N \
7 _\\
<
S 5 | N\
E R
5 y
5.0
5 \ )
B \
()]
5 N
© 1.6
5 3 5 \ e
4
“ 3.1 Q. N \
»
& q \ i
, [ \ "
<O \\‘L
g A\
N\,
3
~ Ref. | Roughness| 20| M, \
Ol 81 8 upin. 5°5.0
O] 72 8 uin. 110°3.1
2 Q 2.2
Ol 98 5 puin. |27°|2.0
@] 1.8
I 1.
1 LI
0.2 0.4 0.6 1.0 2 4 6 10
Ret x 10°®
Fig. 5-12. Effect of tip radius, Re, , and M, on transition Re_
smooth cones; a = 0°, Te = T:v', wind-tunnel tests. ®
1
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Fig. 5-13

NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

30 ""T;; T Y T T
& t
20 - ““%—W —
O I
15
o\ 0
O TAY o 0
10 A [
8 N \
o A o)
.E": 6 t, in. ——C N—ttS \T\
= 0.001 A N
" M <
: o {0. 006 0
S 4 O 0.083 O A
= O 0.125 ~ 0 =
‘5 N 0.188 o
3 O 0.250 O
= A 0.375 o a
K O 0.530 0
2 _
8 [ 11
@ Fig. 5-13a: Flat-Tip Bluntness
9 1.5 Lo 11 1 L
g .
2 v 1 L J Ll
A 30 X
15 | l
Source: Ref. 72 Q
10
8
Fig. 5-13b: Hemispherical-Tip Bluntness

Fig. 5-13. Effect of bluntness on distance to end of transition;
smooth cones; 20 = 10°; a = 0% Te

ness = 8 uin. ; wind-tunnel tests. '
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Boundary-Layer Transition Fig. 5-14
11~ r—
M. 1.61 M_1.82
-}
U DD
10
O P
0 0
9 O o¥at PoP 1o
] ‘ ) 6
o
8 o A A
A
o Ol A A AN
g 3T
G . 0 p 1
E AN Geometry Tip Radius)
2 A} 0 o t/2, in.
w Sharp -
= A
@ 6LAéA O g OHemispherical 0.247
) QHemispherical 0.710
" | AHemispherical 1.234
® Source: Ref. 98 l 20 = 27°
8 s O Y S | | 1
11 -1 -7
M =2.01
—]
y T o0 0 3
AN O v o
N8| o P &é@c od
I—m, '1.61'1.82° 2.01 2.20
| M. (Blunt) 1.32 1.44 1.53 1.61 a
5 M1 ' . 41 1 59 1. 75 1.92 M, =2.20
1 3 5 1 9 2 4 6 8
Re, /ft x 107°

Fig. 5-14. Effect of tip blunting on Re91 at transition; smooth cone;

a = 0° 'I‘e = 'l‘w; wind-tunnel tests.
1
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Fig. 5-14 (cont'd) NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

13.5°

Hyperbolic
Nose

2.401"

L

2.669" —sf

4.190"-———-—-q‘
le———— 3. 000" ———s]
12 UL LR
Geometry Source: Ref. 98
— ?__
O Sharp OD%
11 O Hyperbolic | -
{Q Parabolic 0
4 20 = 27°"
0
10
OIDO
g O- 55
g 9
g ol
:
d
=~ g O
« M_=1.61 ¢ O M, =1.82
(?o M, =1.32 M, =1.44
O 3 I | L 1
™
& 1T T
| M, =2.01 | M, =2.20
M1 =1.53 MI =1.61
11 5 | b0~
AD9Q
Q DEJD
10 0O-
Jopo| I 0 od d©°
O
9 _
2 4 6 § 2 4 8 8
Re, /it x 107°

Fig. 5-14 (cont'd)
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Boundary-Layer Transition Fig. 5-14 (cont'd)
«»
.
10 1 T T
Source: Ref. 98
op ob._©
. b SRS o)
o |©
O
© N
o ~PO
8 & = >
&) ﬁ e o
/ - Q
O D |
7 o M =2.01 — M_ =2.20 —
g M, = 1.28 (Blunt) M, =1.34 (Elunt)
2 M; =1.50 (Sharp)— M, =1.64 (Sharp}—
7] 20 = 45° 20 =45°
S 6 1 1 | S Bl 1 1l i
' 1 3 5 7 9
® 10 Tip Radius
@ ;U O Geometry t/2, in.
= o O Sharp --
x ar Qo O Hemispherical| 0.500
s 9 Hr Q Hemispherical| 1.250
o l O O Hemispherical | 1.345
A Hemispherical| 2.00C
QO Parabolic --
8
/L 30°
L Parabolic (
m OO Nose |
1 i
ob 2 i
A :3.464"
6 M_ =2.20 — ! l
Ia M, =1.10 (Blunt) |
M, =1.38 (Sharp)—
- 15"
5 210' ?0. 1 | " \
1 3 5 7 9 fe—3.00 ":I
Re, /ft x 107°

Fig. 5-14 (cont'd)
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Fig. 5-15

NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

150

Power Bodies, r/R = (xo/l)n

An=1/3
On=1/2

Blunt Cones, Tip Radius = 0.125-0.75 in.

Q 20 = 20°
O 20 = 40°
Roughness =2 to 10 uin., M,, =1.5t0 2.2

tr
Re,/ft = 5.0 to 51.3 x 10°®

l—;xo i
/F_ R=1"

. \
o
e b— 24 = 2.6"—sf
>~
7 #
5 AN
E
3 a A
: 2
= JAY ZP
) 5
=
"
»
£ 9 o

4

d
Source: Ref. 99
y l
3
0 0.01 0.02 0.03 0.04 0.05
9 duy
R891 u; dx

Fig. 5-15. Momentum thickness Reynolds number, Re9 , at transition,
1

smooth, blunt bodies, @ ~ 0°; T /Tt =0.3t00.56; M_ =2 to3.5;
ballistics-range tests. w
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Boundary-Layer Transition Fig. 5-16

Leading Edge | Thickness, [M_| Re./ft | Roughness|x, ., in. |Ref.
in.

O [Semicircular [ 0.001 3 15x10° | 5-25 pin. 1.61 | 102*
® " 0.001 4 15x10° | 5-25 uin. 2.09 92
7 | " G. 002 8 13-3.7x10° 10 zin. {20.5-21.6| 82
®| Fla 0-0921 1 4| 19.3x10°| 5-25 pin. | 270|101
A |Semicircular | 0.005 3 15x10° | 5-25 pin. 2.42 [ 10.*
A L 0. 005 4 15x10%| 3-25 win. 3.52 92
Q " 0.040 3 15x10% | 5-25 pin. 3.19 |102*
¢ " 0.040 4 15x10° | 5-25 win. 3.99 92

*Analysis of data from Ref. 92.

1.0

SRR

0 at Transition

xA/xA
ol
[v-N

0.2

I

Open Symbols: M =3
— Closed Symbols: M =4
Half-Closed Symbols: M =8

" S N I I |

0 20 40 60 80
Sweep Angle, A, deg

Fig. 5-16. Effect of sweep angle, leading edge thickness, and
Mach number on transition location; flat plate, Te = Tw‘
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Fig. 5-17 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

>-0 ] T T
Sharp Cone
20 =10°
Surface Roughness = 10 win. |

4.5F Supply Stream Turbulence = 0.4% /

M, =2.71 _—

Smooth
4.0 wall

fo /

3.5
2
oa Z
4 3.0 /
=
S
2 25
s 1 Roughness
® Location
S 0'
2.
» Re ‘Re
- Xa X
‘%X k;
1.5 Rex
ki

/ 0 x,/k =625
1.0 W
k = 0.00770"
Re
?‘1 xk =4,813"
Minimum

Source: Ref. 103

e

0.5 /

0 1 2 3 4 5 6
. -3
R.ek1 10

Fig. 5-17. Effect of spherical roughness, Rek , on transition Rex ;
1

1
sharp cone; T =T (see Subsec. 5.6.1).
e w
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R

Boundary-Layer Transition

Fig. 5-19
3 T T
Sharp Cone, 20 = 10°
Roughness = 10 uin.
Supply Stream Turbulence = 0.4% o
l
© 2
° ] /R
»
y M, O
5
g | A1.90
I—o2.m } Ref. 103 104
03.37 Eq. 5-7
0 —#"
0.2 0.4 0.6 0.8 1.0 1.2 1.4

-1 - -
R.ek1 (1«0-72 M3)™* x 1072

Fig. 5-18. Roughness location, X,» asa function of the rough-

ness heignt, k, normalized with respect to M, ; sharp cone;
spherical roughness element; I‘e = Tw.
1

Hrm | |
L Body Ref.
O O11.90 104
Ol2.11 } Cone 103
@ 4 dl3.67 104 | —
= Ol 0 | Flat Plate | 105
*
.
éﬁ
2
E [ 5'11
0lo ™ 7
— o
-
0
0.4 0.6 0.8 1.0 1.2 1.4 1.6

(/6% (1 + 221 M2y

Fig. 5-19. Displacement thickness, Rec,, as a function of the rough-

ness size, (k/6*), normalized with respect to M, ; cone and flat
plate; spherical roughness element; Te = l‘w.
1
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Fig. 5-20 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

k/6*
g e.v 1.5 1.0 0.9 0.8 0.75
el L 11 1 1 1 | 1 1 1 1 ]
@ 4 T T
E Sharp Cone: 20 = 10°
[» Roughness = 10 uin. (M, )
- Supply Stream Turbulence = 0.4% Py
3FMm, =2.71
d P
()
=
P
S Rex
» k1
)
e
g
'—'E’ Sourcle: Ref. 103
£ 0 2 4 6 3 10
xl/k x 1072

Fig. 5-20. Effect of roughness size, xl/ zor k/6%, on minimum

transition Reynolds number, Rex or R.ex ; sharp cone,
! k
1

spherical roughness elements; Te = Tw’
1

2 T T T ]
Q Flat Plate* (Ref. 33)
O Cone (Ref. 103)
? O Cone (Ref. 104)
S O Cone (Ref. 105)
% 1 b~  *Wind-Tunnel Wall
= Contamination f(M.) = Re, - Re_
Z | *
- Source: Ref. 103 Rex = Minimum Transition
| | ' Reynolds Number
OL.— 1 1 ]
0 1 2 3 4 5 6
M,
Fig. 5-21. Effect of M; on (Rexl - Rex ); cones and flat plate;

Kk,

spherical roughness elements; T = Tw.
e,
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Boundary-Layer Transition Fig. 5-23

k,
=

O

0.

0

ktr

ulﬂ 0.

3 LS 1 i T 1 | L] [ -
Calculated from Eq. 5-15 I,,"
= T, = 382.4°R ” —F=
———— T = T ’I ’¢P
e w - y’ ',f‘#‘
. "’ ‘D‘
T TW - TxL d”% 17 ‘r”
T 17 T o ~
M, =6 [ 6 L= /%
-~ o A
PLd 4 - PR 7
4 ’4P ‘/ ’dP 2 0
ke - 4‘V >
v" P L
2 “,/‘ Lz ///
" T 2 Rey, = Pank —
2T VTV 1= ]
o MM ¥V
1 P 4 ?Z Pkukk_
# Re =
ktr b —
0. 06 L L L
6 107* 2 4 6 107 2 4 6 107 2 4
C
Critical Roughness Reynolds Number, _2_f Rektr
Fig. 5-22. Relationship between roughness Reynolds numbers, Re
k,
and Re, .
ktr
Ref.] M, | Configuration
O|103]| 2.71| Cone, 20 =10° | Insulated
01106 | 1.56] Cone, 20 =10° | Insulated
@ " |1.56| Cone, 20=10°} T /T, =1.29
AO| v | 1.94]| Cone, 20 =10° | Infulated
Al " |1.94]| Cone, 20=10°| T_/T» =1.47
Ol » | 1.61] Flat Plate InBulated
O| " | 2.01} Flat Plate Insulated
30 LADERLE ¥ L] L | L]
Subsonic (Ref. 94a)|
25 - ards e ey o G G an S g e an g an ey L2 X X X X J ;--l -— ahw - - an aas o o e
> o
20O JAY A a
p A
s o Bla| o S
@ C ' (@) (o) 'b
10 O
1.5 2 3 4 3 6 8 10 15 20

Re, x 10°°% at Transition
1

Fig. 5-23. Critical roughness Reynolds number, Rektr; cones and
flat plates; three-dimensional roughness elements; heat transfer.
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Fig. 5-24
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Boundary-Layer Transition Fig. 5-25

1.0 1 T | |
\ Source: Ref. 75 l

T,/ T
o8 \l\ %\ Insulated
\\ 1.6!; ~ =
N

~1.5
0.6 M, =1.90 -
Re, /ft = 6.4 x 10° T
I 1 1 ~
1.0 T
\ Tw‘/I‘x
'E —— |
\ \“ Insulated
©0.8 — )
— . )
- 1.7
: N "
< O 1.5 N
3 O 1.6
& 060 1.7
O 1.8 N1 s
__g 1'3 .3
2.3 M, =2.70
O Insulated Re,/ft = 8.0 x 10°
0.4 — —
1.0 \
- Insulated 1.
TW/Tl 2.3 _/
0.8 JPL 12" Tunnel -1
Sharp Cone: 20 =10°
B Roughness = 10 uin.
M, =3.65 Subscript o Indicates B
Re, /ft = 6.0 x 10° Lowest Turbulence Level
0.6 L1 1 D W S
0 2 4 ] 8 10
(u'/u')o x 10°

Fig. 3-25. Effect of supply stream turbulence and heat transfer on
Rex, at end of transition; sharp cones; M, =1.90, 2.70, and 3. 65.
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Effect of Roughness on the Flat Plate Turbulent Boundary Layer 6.1

6. Effect of Roughness on the Flat Plate Turbulent Boundary Layer

During recent years several studies have been conducted on the effect
of roughness on the characteristics of supersonic turbulent boundary layers.
Roughness created by sand grains is treated in Refs. 110 to 113, and two-di-
mensional V-groove roughness is treated in Refs. 113 to 115. Clutter, Ref. 112,
gives an excellent review of the theoretical and experimental results available
for computing the effects of sand roughness onturbulent skin friction. He carried
out a number of skin friction calculations and presented his results in the form
of useful charts. His work provides the basis for this subsection.

6.1 Incompressible Flow over a Rough Insulated Plate

The skin friction coefficient on a roughened plane surface with incom-
pressible turbulent flow was determined theoretically by Prandtl and Schlichting
(Ref. 116). Details of the method may also be found in Ref. 1 (Ch. 21) and
Ref. 19 (pp. 135-155). The turbulent velocity profile was represented by

Y -Alogy/k+B (6-1)
u‘l‘

where

u_ = the friction velocity (defined by Eq. 3-35)
and

k = the roughness height (or characteristic dimension)

The values of A and B were determined by comparison with the experimental
data obtained by Nikuradse for flow through rough pipes. The data for fully
rough flow are shown in the sketch below. ¥From this sketch it may be seen
that the slope of the curve, i.e., the value of A, is about 5.75. It has been
found that if A is taken as 5.85 the calculated values of CF fit the experimental

results over a wide range of Reynolds numbers. The discrepancy in values of
the slope is attributed to the difference in the velocity profiles inside a pipe and
over a flat plate.

26 l '
Eq. 6-1
22 —
R = Pipe Radius
] l
2-18 R/k —
u, O 12
14 A 10 —
o115 _
104 Q1 _
Q12 —
6 [
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
log y/k



6.1 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

The value of B as a function of log u,rk/v (where u Tk/v is often called

the roughness Reynolds number) has been plotted for the Nikuradse data and is
shown in the next sketch. These data were used by Prandtl and Schlichting in
making their flat plate calculations (Ref. 116). Before making calculations for
the supersonic boundary layer, Clutter (Ref. 112) recalculated the incompres-
sible case. He fitted straight lines to Nikuradse's data as showr on the sketch
and considered the transitional region as being composed of three sections rather
than a single region. It is interesting to note that the value of ury/u is about

11.5 at the edge of the laminar sublayer for a smooth plate (sc2 Subsec. 3.3).
Nikuradse's data show that the boundary-layer profile begins to depart from the
smooth case when urk/u > 4, i.e., when the diameter of the roughness grains

is about 35% of the sublayer thickness.

10 (Region 1|« I +[+1I v < v =
8 o ]
0}0 o Qa
9 8)
"%
B8
(o]
o
1
o
)
mooth+te Transitional - Completely Rough «fe—e-
1 11 | I | 1
0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0
logurk/u

The parameters of the equations derived by Clutter to represent the
data in the different regimes are given in the following table:

Region Limits of u_k/v Value of B o
Smooth -1 0<u k/v<4 5.56 + 5.85 log u_k/v ‘
Transition - II 4 < u,rk/u <17.95 8.076 + 1.672 log uTk/u

- I 7.95<u1_k/v<14.46 9.58
-1V | 14.46 < u_rk/v <175.9 11.32 - 1.50 log uTk/u

Fully Rough - V | 75.9 <u k/v 8.5

The values of B from the above table are substituted in Eq. 6-1 together with
A = 5.85. After some manipulation the equation for each of the five regions
may be written in the form

Y .alnb(yu ¥)=alnbn (6-2)
u,r T
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where
n- yur/v (see Eq. 3-36)

a = 2.5 in all cases

b has the values shown in the following table:

Region b urk/v
Smooth -1 8.92 0< uTk/u <4
Transition - 1I 24.02 (u.rk/u)"o'7142 4 < uTk/v <7.95
-m | 43.41 (urk/v)'l 7.95 <u k/v < 14.46

v | 86.11 (ufk/u)-l'2564 14.46 <u_k/v <75.9

Fully Rough - V 23.38 (urk/u).l uTk/v >75.9

In order to make u = 0 wheny = 0, Eq. 6-2 is written as

-uu- =aln(l+bn) (6-3)
-

Since the values of bn are very large over most of the boundary layer, i.e.,
greater than 200, Eq. 6-3 is a close approximation to Eq. 6-2.

Using the velocity profiles given by Eq. 6-3 with values of a and b
from the above table, the local and mean skin friction coefficients can be cal-
culated as functions of the Reynolds number. The method given in Ref. 116
makes use of the boundary-layer momentum integral equation. The application
of this method using the boundary-layer profiles for the regions I - V, described
above, is given in Ref. 112. The calculations are carried out by considering
a flat plate covered with uniform roughness grains. The momentum integral
equation is integrated along the surface starting from the leading edge. Care
must be taken that the appropriate boundary-layer velocity profile is used at
each point along the plate. At the leading edge the value of urk/v is large and

the boundary layer is fully rough; the equations of Region V then apply. As the
boundary layer grows along the plate, the value of urk’v becomes smaller until

the transitional regime is reached. Regions IV, III, and II will then apply suc-
cessively until Region I, with its aerodynamically smooth flow, is reached. In
Region 1 the roughness elements are well within the laminar sublayer and no
longer affect the boundary-layer profile. This is evidenced by the fact that the
value of b in Eq. 6-2 for the smooth case is independent of k.

Clutter's mean skin friction coefficients, calculated for the incompres-

sible case, are shown in Fig. 6-1. The dotted curve cn Fig. 6-1 indicates the
boundary between fully rough and transitional flow.
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6.2 Compressible Flow over a Rough Insulated Plate

For compressible flow on an insulated plate, Goddard (Ref. 111) found
experimentally that, just as in the incompressible case, the value of the skin
friction is first affected by the roughness when u,,,l:/uW is between 4 and 10.

This agrees with the experimental results of Lobb, Winkler, and Persh (Ref. 117)
which show that compressibility does affect the value of u,,,y/uW at the edge of

the laminar sublayer on an insulated surface. Goddard found that the effect of
compressibility on the mean skin friction coefficient was greater for fully rough
flow than for smooth flow. This is shown on the following sketch taken from
Ref. 111. The subscript "i'" indicates incompressible flow over both a rough
and a smooth surface.

1. 0 =] T 1
Smooth
0.8 — Coles (Ref. 118)
M 0.6—  k ~=
O —
. O 0.038 P—
o 0.4—A 0.024
0O 0.0095
0.2+ Fully 7T #
[ { Rough
ol Source: Ref. 111 | 7
0 1 2 M, 3 4 5

In analyzing his results, Goddard followed the suggestion made by
Liepmann (Ref. 119) that the drag must be directly proportional to #pu}. This
is implied by the fact that for incompressible flow and constant {/k, the mean
skin friction coefficient is constant in the fully rough regime (see Fig. 6-1).
To extend this reasoning to the compressible case, the density should be eval-
uated at the wall. Thus,

_ 3 2 -
CFi = CD nk # Dxuk/i piuy (6-4)

Cp =Cpnk % pwu;‘/% pyu} (6-5)
where '

CD = thedrag coefficient of a single sand grain and is virtually independent of
both Re and M since the grain may be considered as a bluff body
n = number of sand grains per unit area
uy = velocity aty = k

and hence from kqs. 6-4 and 6-5
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6.2

CF/CFi = Dw/Pi (6-6)

=p e/ p: for an insulated plate
The ratio pe/p1 is given by

[+

e__T_1_( Cy =16\
Dane_ 1+r Ml)

2 (6'7)
Goddard replotted his data as a function of pe/p; as shown in the following sketch.

It can be seen that Eq. 6-6 is an excellent fit to the data for an insulated surface.

1.0

0.8 /
Eq. 6-6
6 0.6

g A
o
o 0.4
0.2
: f. 111
0 4/ Soirce lRe |
0 0.2 0.4 0.6 0.8 1.0
De/px

Clutter used Eq. 6-6 and the results given on Fig. 6-1 to compute
mean skin friction coefficients for fully rough flow on insulated plates.

culate skin friction coefficients for transitional and smooth flow, he used the
following interpolation formula:

To cal-
_C_E_ _ Cp ) log u,,,k/uw - log (111_k/uw)s Cp Cp
CFi E; A log E,rﬂu ).

wir - 108 (u kv ) | \C

(6-8)

C
Fi 8 F r
He assumed that the regions of smooth, transitional, and fully rough flow were
defined by the same values of uTk/v as in the incompressible case. Taking the

values of ufk/v appropriate to the transitional region, Eq. 6-8 becomes

= (6-9)
Fi CF

Cp _ Cr ) log urk/vw - log 4 Cr ) Cp
CF CF log 75.9 - log 4 C
i i/s s r
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where

8 = smooth values
fr = fully rough vah s

The application of Eq. 6-9 to compute values of CF using CF from Fig. 6-1

i
is complicated by the necessity of evaluating u_k/v_. Clutter in Ref. 112 de-
T W

scribes a method for obtaining these values. The values of (CF/CF) incor-
: i’s

porate Van Driest's calculaiions (Ref. 120) which are in reasonable agreement

with Wilson's smooth plate -esults given in Subsecs. 3.3 and 3.4 and Ref. 24.

Clutter's mean skin friction coefficients for an insulated flat plate are given on

Figs. 6-2 through 6-8 for Mach numbers from 0.5 to 5.0 ana Reynolds num-
bers of 10° to 10°.

6.3 Compressihle Flow over a Rough Plaie with Heat Transfer

Clutter assumed that Eq. 6-6, using pw instead of pe, is valid for

fully rough flow with hLeat transfer. He calculated the mean skin friction co-

eflicient using the method given in Subsec. 6.2. For flow calculations in the

transitional regime, the ratio (CF/CF ) which appears in Eq. 6-9 was obtained
i/s

from ef. 120 which gives the cocificients in the presence of heat transfer. It

is further assumed that the values of u Tk/vw whirh define the smooth, transi-

tional, and fully rough regions are unaffected by both heat transfer and com-
pressibility. Cluiter admits that this assumption is open to question since the
experimental results of Ref. 117 indicate that heat transfer does have some ef-
fect on the laminar subtayer thickness for a smooth plate. The first assump-
tion, i.e., that Eq. 6-6 remains valid even in the presence of heat transfer,
certainly ie also open t~ question. When there is no heat transfer the density
is nearly constant near the surface and is thus virtually equal to the wall value.
This is no longer true for the heat transfer case in which the temperature and
den<ity gradienis at the surface are large. However, Clutter's method, in spite
of its uncertainties, may be used to ind :ate the effects of roughness with heat

transfer. Additional »xperimental work is needed to validate this extension into
the heat transfer regime.

Equation 6-6 can alsc be assumed to hold if CF/CF is replaced by
i

Cf/ct in the fully rough region. Clutter apparently used this assumption to-
i

gether with a.a interpolation formula similar to Eq. 6-9 to calculate the local
skin {riction coefficients in the transitional region.
Curves (or mean skin friction coefficients for TW = Ty are given on

Figs. 6-9 to 6-15, and the local skin friction coefficients are plotted on Figs. 6-16

to 6-22. The figures cover the Mach number range from 0.5 to 5.0 and Rey-
nolds numbers from 10® to 10°.
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6.4 Transition from Laminar to Turbulent Flow on a Roughened Plate

In the preceding subsections it has been assumed that turbulent flow
originates at the leading edge. In practical cases a region of laminar flow may
exist ahead of the turbulent region even on roughened plates. Some idea of the
extent of this region can be obtained for most cases of practical interest from
the data of Subsec. 5.6. When the location of transition is known, the laminar
skin friction coefficient may be obtained and combined with the fully turbulent
values derived by the methods of this subsection. Clutter has made calcula-
tions for various assumed transition locations; his method will be outlined here.

In order to obtain the mean skin friction coefficient over the entire
plate, it is assumed that the turbulent boundary layer behaves as if it started
at the point Q as shown in the sketch below.

E
Turbulent

i
I
|
[
1
I

“——xtr——“
e AX
p——p X

e L -4
Since CF = 20/x whether the flow is laminar or turbulent, at the point of tran-

sition, T,

20 =¢C x, =C Ax (6-10)
tr FL tr F,r
and
X, U
Cp ‘: = Cp A’:“- (6-11)
L T

If the values of Re ‘ and X, r/ L (where 2 is the total length of the plate) are known,

then Rex and hence CF can be determined. For a g.ven roughness size, ’/k,
tr L

u;: k/v can be calculated, and thus from Fig. 6-1 the required Reynolds num-

bers Axu, /v can be found to satisfy Eq. 6-11. The mean skin friction coef-

ficient for the turbulent section (TE) can be read from Fig. 6-1 for the known

value of ku, /v, where

. L-x
Re, = [%J, -—I—‘I] Re, (6-12)
T
Finally the value of C F over the whole plate is given by
L-x
_lAx tr
Cr - [‘T + -7—] Cr (6-13)

T
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Values of CF obtained from Eq. 6-13 are given in Ref. 112 for xtr/t = 0.1,

0.2, 0.3, 0.4, and 0.5 and Mach numbers from 0 to 5 and Reynolds numbers
from 10° to 10°.

6.5 Roughness Types

The graphs and calculations that have been presented in this subsec-
tion have assumed a sand-type roughness composed of spherical grains with di-
ameter k. In actual practice the surface roughness could be of many types and
of varying degrees of uniformity. If the roughness of any surface is uniformly
distributed and can be expressed in terms of an equivalent grain roughness, then
the extensive experimental results may be used to predict the skin friction for
that surface. Some experimentally determined values of the equivalent sand

roughness for a few types of rough surfaces are given in the following table
taken from Ref. 112,

Equivalent Sand

Type of Surface Roughness k (ia.)
Aerodynamically smooth 0
Polished metal or wood 0.02 - 0.08 x 1073
Natural sheet metal 0.16 x 10”3
Smooth matte paint, carefully applied 0.25x 1073
Standard camouflage paint, average application 0.40 x 10'3
Camouflage paint, mass-production spray 1.20 x 10'3
Dip-galvanized metal surface 6 x 1073
Natural surface of cast iron 10x 1073

Young, in Ref. 115, gives several suggestions for the experimental determina-
tion of the equivalent sand grain roughness of a surface, all of which require
a confidence in the existing relations among the properties associated with sand
roughness. Fenter (Ref. 113) describes a systematic test of V-grooves in which,

unfortunately, the height and width of the groove were maintained constant. The
following sketches summarize the results.

1.0 T T T T T T T T T T T T 17
k = Equivalent Graiu Diameter -
I h = Peak-to- Valley Height of V-Groove
0.8 ? P = Peak-to-Peak Spacing of V-Groove
: A = Sweepback Angle —
0.6 ' P/h = 2 (Maximum Density) _
. ‘| \. ‘~
l_‘ 1 ~q
h ' B
0.4 |—1% B S T
t
\
0.2 X
o = Experimental Data
0 -
TR 6510 i5 2035 30 35 40
P/h A in deg.
166
= ————y— Ere——e—— S ———— yg—— e




Fig. 6-1

Effect of Roughness on the Flat Plate Turbulent Boundary Layer
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Fig. 6-2
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Fig. 6-3

Effect of Roughness on the Flat Plate Turbulent Boundary Layer
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Fig. 6-5

Effect of Roughness on the Flat Plate Turbulent Boundary Layer
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Fig. 6-6
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Fig. 6-7

Effect of Roughness on the Flat Plate Turbulent Boundary Layer
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Fig- 6-8
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Fig. 6-9

Effect of Roughness on the Flat Plate Turbulent Boundary Layer
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Effect of Roughncss on the Flat Plate Turbulent Boundary Layer
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Fig. 6-12
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Fig. 6-13

Effect of Roughness on the Flat Plate Turbulent Boundary Layer
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Fig. 6-14
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Fig. 6-15

Effect of Roughness on the Flat Plate Turbulent Boundary Layer
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Fig. 6-16
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Fig. 6-17

Effect of Roughness on the Flat Plate Turbulent Boundary Layer

I’y
0°T=N ‘L= L
‘ayerd pousay3nol-pues e I0J SHUAIIIJJI0O UONILIJ UR(S 800 “LI-9 "B1d

7
N
Poee 0 ¢ v ¢ z Pese 9o s v ¢ 2 Oee :t 9o ¢ » ¢ 3 ..,-...,»oo r € ] .93
T T T I I T T T
1811 "J8Y -32MNOS T - 14 Hi v *
[ 1]
- 13- -1 MO J TEeuoT}ISuel], pue .
g HT TR u3noy Amd ussmiag Arepunog --- ]
T I T T & 1 ITSCUNTITINEE
"t _ j 17 x;‘jg 4 Tt e
S84 f.gf 11 fﬁ 1 1] ﬂ T TUTIT I T o aury morg Jeurwer A[d3Ind s EE
by g + o o - - + - 4 444 - o
B na - L f N o
no.xﬁ& ..w,.llu"u 1 . Smgd 17 ﬁ# 11 ﬁ ﬁ.ﬁ 11 T.“‘ “ﬁ 1 4 ALM g INT N
| 1 » . - -3 ¥ F H i pa
uitifians e s R At 8 .
€1 + + + -4 A F + 44—t —
Bmsitee is aad tingy pletss W R E
cox 92 nisand 8 RiiesdRumSie: T L it @mxrnﬁw ass
N ¢ i « it s R e et
k. LN 8 HETT N e I T R
T el t Tt +
oI x TN I TS 8 » : N TN * 115 JH [ :
* ¢ - : J.t lj/.. N ' s + %* ]
_ N w g ) ~ S48 ] ! A T 17 1] i%f; -3
: ZN { o TN e » =1 N ERE . 3 4 :H ]
[ ‘ i ERE . e P O] [ 1. n X
.II.I . 8 N = . N ! ~{ THE 8 » /P.Hu“u ™ ‘J‘/M/l M 1 Alo'r. ! pﬁ ﬁ;u oﬂao.w o
+ 3 N M g N Ty B 1
orxq2 2 P ) L
€ ! ™~ N B! ~H nal + oe
. W N H N]]h ! m ! L1
. i s
< v 0 1 w N ; Lec
g H ; JHIW,» N Mt WIZ -
201x g2 1 T 1 ; st i PO
1 o ST B R .
! 1 1 DS B IS BT 4 =
. I 4. b 2 KRR I H P IR R 14+44 441 4. 4.4 +
v—\w . W H ! 4 ¢ I M Nww* FFE ettt _4 -t o i) $4-di441- [
s \ ¢ .W ] A W 1 i L M B I R M\‘ 1 1 1 F 4% poooe 0&.14 4-4 4 i%v Ml l_vij
+ M ﬁ f - ﬁ ﬁa gf ¢ Hl - H LHW‘ os
] i L ‘Sﬁ || 98pg Surpeary je uomisuery |4 T
Y B T At 1 vt

183

e



! : o
T arans b - - . . . . . ‘
< L cey L M
- S'IT=W -'L= I
.m ‘areid pausy3noJ-pues e J0J SHUIIDIJFO0D UOTIDLIJ UTHS [ED0T "81-9 ‘Jd
e
7
& ay
Q Pes Lo s v ¢ z Weo:9 s » € z Mev: 9 s v ¢ z @0 05 v ¢ z P
A T T
< 1211 "33 :92anos I »
MOTJ [euOnISuURl], pue o
5 ySnoy AIng usamiag Arepunog --- N o
> it Hitt 1+ ,
N aurg mopg Jeutwre] A[ding
© T 7 T
@ i 4+ + 41 444
i 4 ﬁwﬁxﬁﬁ S
+ z - H+H4-
] .gl [] 3] 4 —4 4 444 4+ ATIf
W = -+ —¢ - T.A YJ J —
S $ + 11 4+ ot
1 1 — = v + - D \L 4444+ + -1
& oIx 42 } . 11 «WHJE 34208 SR NI IAEES RN Eb
wa 1 T 3 + 4 ¢ %HLJ ¥ H - “TM s2
Ry ) Y 1 geS ey =
m et =3 ~3 et bE e ae e T
T T+ % + Tf T TH —
'0—! A 2 . — - 4 b4 44434 +4
<« t | .LFA 11 ﬁ.f + Lir -
Z w: T] [ S L ~ “ ] bl 1 — or ]
[ 1 -~ . S Wk B #[ s b e 4-4 ]
- » ¥ o tit 1t 1 01 XD
A - 3 { ~ o
o x<2 P
£ ﬂﬂ il ] N o
= 20, -
N 20,
+ < 50\& : *5..0 oe
i 48 os
orxqe 3 . T 1 -
3 Y ! ! ,
_ s
© X/ T W
! IS8R o .
© 158 B A 9
: 93py Surpesr] ye uonjisuer] ] ¢
X HH e T o 1 o ]
fxy Ll 156NN BN NNINIGEERRIIIAI BN 71 oor -

by



Fig. 6-19

Effect of Roughness on the Flat Plate Turbulent Boundary Layer
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Fig. 6-20
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Fig. 6-21

Effect of Roughness on the Flat Plate Turbulent Boundary Layer
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Heat Transfer 7.1

7. Heat Transfer

Methods are given in considerable detail in Subsecs. 3, 4, 5, and 6 for
calculating boundary-layer growth and skinfriction for both laminar and turbulent
flows. It is therefore relatively simple to extend these results to provide methods
for calculating the rate of heat transfer to the wall.

7.1.1 Laminar Boundary Layer on a Flat Plate--Perfect Gas, Heat Transfer

Equations by means of which skin friction coefficients may be calculated
for a perfect gas laminar boundary layer on a flat plate are given in Subsec. 3.1.
Heat transfer rates can be computed from these equations by the introduction of
Reynolds' analogy. This analogy between heat transfer and skin friction is devel-
oped as follows. The local heat transfer rate, q, is given by

q-= (k-g% (1-1)

In the laminar boundary layer, the temperature and the velocity profiles each have
similar shapes atevery pointon a plate which has a uniform surface temperature,
i.e., both T and u may be considered as functions of y only. In which case

(), - (), (),

Since Tw = (u g—;) , Eqs. 7-1 and 7-2 can be combined to give
w

i, ky (dT -
=Ty (“)w (du (7-3)
w
The heat transfer rate is expressed non-dimensionally by the Stanton number de-
fined by
St = -4 (7-4)
pLu, Cp(Te - '_1:5

By means of Eq. 7-3 the local Stanton number may be written in terms of T,, T
and the local skin friction coefficient, i.e.,

Cf T;w (1-5)
St = . -5
2pr (T, - Ta,,)
where
Cf = Tw/*pt u::
Pr = k
r=c, u/
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7.1.1 NAVWEPS Report 1488 (Vol. 5, Secs. 13 and 14)

T, = T/Ty, u, =u/u;, etc.
and
T, = dT,/du,

Appropriate values of the variables in Eq. 7-5 are determined as fol-
lows: For the perfect gas case with constant Prandtl number, Prw =Pr. Integra-

tion of the momentum and energy equations, Eqs. 2-17 and 2-19, gives the shear
function, g,, and enthalpy, h,, as functions of u,. For the perfect gas case where
cp is constant, the temperature T, may then be obtained directly. Methods of de-

termining the gkin friction coefficient for laminar flow over a flat plate are out-
lined in Subsec. 3.1 and numerical values are given in Fig. 3-1 as a function of
Mach number, Reynolds number and the temperature ratio T‘w' The recovery

temperature, 're, is defined as the value of Tw when q = 0. From Eq. 7-1, this
requires (BT/ay)w = 0. Equation 7-2 shows that (a'I‘/By)w =0 when (d'I'/dr.x)w =0
or, in non-dimeasional form, when (T;‘)w = 0. The ratio T"e can be expressed
in terms of the recovery factor, r, i.e., by

e, =140 -D (7-6)
T, *e 2 1

Crocco (Ref. 4) solved Eq. 2-19 numerically holding Pr constant. For values of
Pr from 0.5 to 2.0, his results showed that the relaticnship between the recovery
factor and the Prandtl number can be closely approximated by

r= Prt (7-7)

The results of Crocco's calculations also give a good approximation to Eq. 7-5,
i.e.,

f

St = —3 (7-8)
2Pr

Figure 7-1 gives Crocco's values of 2St/ Cf and r as a function of Pr and demon-
strates how good the approximations are in the range of 0. 5< Pr< 2.0.

The simple empirical formulas (Eqs. 7-7 and 7-8), together with values
of Cf given by the relationships of Subsec. 3.1, may be used with the definition of

the Stanton number (Eq. 7-4) to obtainthe heat transfer rate, q, when the wall tem-
perature and the flow characteristics just outside the laminar boundary layer are

known.
If the local skin friction coefficient, Cf, in Eq. 7-8 is replaced by the
mean value, CF’ a mean Stanton number is obtained. Using this mean Stanton num-

ber in Eq. 7-4 will give a mean value of q which, when multiplied by the length of
the plate, x, will give the total heat transfer rate.
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Heat Transfer 7.1.2

7.1.2 Laminar Boundary Layer on a Flat Plate--Real Gas, Heat Transfer

Where real gas properties must be included in the calculations, it is
more convenient to use the enthalpy as the variable rather than the temperature.
Since the pressure is constant across the boundary layer, it can be shown that

3T _ 1 3h

= = — (7-9)

) c 9

y P y
Equation 7-9 remains valid even for the case of variable ¢ and can be used with
Eq. 7-1 to give p
)
q= CL s%’ (7-10)
p )w

The enthalpy gradient can be written

oh dh ou
CRCYC

Using enthalpy as a variable instead of temperature, Eqs. 7-3, 7-4, 7-5, and 7-6
now become

,
a=5% (g_g)w (1-12)
w
} q_ -
St = pru; (b, - h ) (1-13)
C (hy)
St = b w (7-14)
2pPr (h,, - h, )
and
h
Ff— =h,,=1+r (u?/2h,) (7-15)

By integrating the momentum and energy equations (Eqs. 2-17 and 2-18)
for the real gas case, Wilson has obtained skin friction and heat transfer resuits
as a function of u?/2h, for a wide range of wall enthalpies and of gas properties
just outside the boundary layer. He found that these skin friction coefficients are
in good agreement with those computed using a reference enthalpy method (see Sub-
sec. 3.2). Wilson in Ref. 12 shows that the recovery factor canbe approximated by

r = (Pt (1-16)
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when the prime in this case denotes the Prandtl number corresponding to the ref-
erence enthalpy given by Eq. 3-28. As an alternative value of Prandtl number,
one might consider Prw. However, the following sketch from Ref. 12 shows that

at least for the cases calculated, Pr' is a somewhat better value.

1-2 " %
- h;, BTU/slug r/Pr
< (o] 3, 000 %
[ ’
& 1.0 o 15000 /(Pr)
= 0 3, 000
0.8 A 15,000 r/(pr)?

o 10 20 30 40 50 60 70 80
u3/2h,

In attempting to find a simple approximation for Eq. 7-14, Wilson found that the
Crocco relationship gave reasonable results, but in this case the agreement is
better when the Prandtl number is evaluated at the wall rather than at the refer-
ence conditions (Pr'). Thus

St = Cf/2(Prw)§ (1-17)

The following sketches show that, except for a few cases, the simple
relationship, Eq. 7-17, agrees with the exact calculations to within five percent.

1.2

P 'y = 3000 BTU/slug u3/2h,
HB l-l pl/po=0-1 O 0 —_—D—J
oW .-t
- O 10
7 1.0 (CY) {1 2 30
"0 10 20 30 40 50 60 70 €0 90 100 110 120 130
h,/m
1.0 ’ -
g 0| Q O ui/2h, =0
- 0" h, = 400, 000 BTU/slug o
2 0.9 px/p0 =0.1
— 0 0.1 0.2 0.3 0.4 0.5 0.6
h, /M
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Heat Transfer 7.1.3

It should be pointed out that the Prandtl number fluctuates with enthalpy (see
Fig. 3-12) and therefore it fluctuates across the boundary layer. Perhaps better
agreement between Eq. 7-17 and the exact calculations could be obtained if the
Prandtl number were averaged in some way acrossthe boundary layer. However,
since sucha procedure would be extremely laborious itis suggested that Eqs. 7-16
and 7-17 be used.

Given the wall enthalpy and the flow conditions just outside the laminar
boundary layer, the heat transier is calculated as follows:

1. The reference enthalpy and the reference Prandtl number are calcu-
lated from Eq. 3-28 by iteration.

2. Using Eq. 7-16 the recovery factor is then computed from the reference
Prandtl number.

3. The Stanton numbper is computed from Eq. 7-17 using the skin friction
results of Subsec. 3.2 and the Prandtl number based on flow properties
at the wall.

4. The heat transfer rate is then calculated from Eqs. 7-13 and 7-15.

7.1.3 Turbulent Boundary Layer on a Flat Plate--Perfect Gas, Heat Transfer

The definitions given by Eqs. 7-4 and 7-6 for the local Stanton number
and the recovery factor are valid for both laminar and turbulent flow. Since the
turbulent boundary layer has a laminar sublayer, the heat transier rate to the wall
is given by Eq. 7-1 and the shear stress is given by Tw > (uau/ay)w. It follows

that the relationship between St and Cf given by Eq. 7-5 is also valid for both lam-
inar and turbulent flow. In both cases, PrW must be computed using molecular

transport properties. Therefore, calculation of the heat transfer rate for the tur-
bulent case will differ from that of the laminar case only in the expression for the
recovery factor and the appropriate approximation for Eq. 7-5. For low-speed
turbulent flow, Squire (Ref. 121) deduced the relationship

1

r=Pr (7-18)

where Pr is based on molecular transport properties of the gas as before and, in
this case, is taken as constant. Van Driest (Re. 122) has derived an elaborate
expression for r containing the molecular Prandtl number and also a turbulent
Prandtl number based on the eddy viscosity anrd the eddy conductivity (see Sub-
sec. 2.6). Actually, Van Driest uses experimentally determined values of the re-
covery factor to determine the turbulent Prandtl number since no reliable data
exist for the latter. He then assumes that this turbulent Prandtl number is con-
stant and uses it to calculate recovery factors at Mach numbers and Reynolds
numbers where no experimental data exist. Since Squire's result for low speeds
agrees within one or two percent with experimental results for air over a wide
range of Mach numbers, it is recommended that the recovery factor in turbulent
flow be computed from

r=P§

T (7-18a)
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where Prw is the molecular Prandtl number corresponc:.ag to the wall tempera-

ture. The wall value is recommended since the molecular transport properties
can be the only significant properties in the laminar sublayer. Equation 7-18a is
compared with the experimental results of Brevoort and Arabian (Ref. 123) on
Fig. 7-2. The agreement is reasorably good over the Mach number range from
0.87 to 5.05. In general, the values of r derived from Eq. 7-18a are a little
higher than those derived from the test data. It is of interest to note that the test
data appear to show a slight downward trend as well as a greater spread with in-
creasing Reynolds number.

When transition from laminar to turbulent flow occurs, the recovery

factor rises from Pré to approximately Prﬁ. In experimental data taken in the

transition region, a slight overshoot occurs. This is demonstrated by Fig. 7-3
which gives the recovery factorderived from the experiments of Brinich (Ref. 124)
at a Mach number of 3.12. The recovery factors given here for the turbulent re-
gion confirm the downward trend with Reynolds number shown by Fig. 7-2. The
data on Figs. 7-2 and 7-3 are considered to be typical examples of recovery fac-
tors, selected from the many papers dealing with the subject.

In additionto the relationship for recovery factor, VanDriest (Ref. 122)
derives an expression for a Reynolds analogy factor. This expression contains
both the molecular Prandtl number and the turbulent Prandtl number which was
determined from the experimental recovery factors as described above. Since
Eq. 7-5 is valid for both laminar and turbulent flow when Prw has the molecular

value corresponding to the wall temperature, it may be compared with Eq. 7-8.
Hence, for the laminar case with constant Prandtl number

(T) ATy - Ty) = Pr® (7-19)

An evaluation of (T;)w/ (T - T‘w) for the turbulent case is necessary to deter-

mine the turbulent Reynolds analogy factor. If it is assumed that Eq. 7-19 also
holds for the turbulen: case when the wall molecular Prandtl number is used, then
Eq. 7-5 for the turbulent case is

]

St = C/2Pr_, (71-20)

Figures 7-4 and 7-5 compare St/Cf (computed from Eq. 7-20) with

Seiff's experimental values (taken from Ref. 125). The agreement of the empiri-
cal value with the experimental is good enough to allow Eq. 7-20 to be used rather
than the more elaborate expression derived by Van Driest in Ref. 122. The ratio,
St/ Cf, is plotted as a function of Mach number in Fig. 7-4 and as a function of

Reynolds number in Fig. 7-5. If Prw is assumed to be constant, then by Eq. 7-20
the ratio St/Cf must also be constant. On both Figs. 7-4 and 7-5 there is one set

of data points (Fisher and Norris - Station M) which are appreciably lower than
the rest. From the position of these points on Fig. 7-5 it might be concluded that
St/Cf decreases as the Reynolds number increases. However, this trend is not
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Heat Transfer 7.2.1

substantiated elsewhere. Since these data are associated with a favorable pres-
sure gradient, the drop in St/Cf might be attributed to this fact. However, it is

shown in Subsec. 7.2 that a moderate pressure gradient does not affect this ratio.

In summary, the turbulent heat transfer rates may be calculated as
follows:

1. Skinfriction coefficients are obtained from the cquations given in Sub-
sec. 3.3.

2. The recovery factor and the Stanton number are then calculated from
Eqgs. 7-18a and 7-20.

3. The value of g may then be calculated from Eqs. V-4 and 7-6.

7.1.4 Turbulent Boundary Layer on a Flat Plate--Real Gas, Heat Transfer

A method for calculating turbulent skin friction for the real gas case
is given in Subsec. 3.4. To calculate turbulent heat transfer it is recommended
that the skin friction coefficients thus obtained be used with Eqs. 7-13, 7-15,
7-18a, and 7-20. This makes use of the enthalpy rather than the temperature.
The recovery factor and Reynolds analogy factor given by Eqs. 7-18a and 7-20 are
recommended for both the perfect and real gas cases, since the molecular Prandtl
number is the significant one in the laminar sublayer in either case. Thus, the
wall value which appears in Eqs. 7-18a and 7-20 would be appropriate.

7.2 Heat Transier on Two-Dimensional and Axisymmetric Bodies

7.2.1 Laminar Boundary Layer

Subsection 4.2 presents the method of Cohen and Reshotko (Ref. 7) for
calculating boundary-layer growth and skin friction over two-dimensional and axi-
symmetric bodies with arbitrary pressure and temperature distributions over the
surface. The method is based on the following assumptions:

1. The gas is perfect.

2. The flow outside the boundary layer is isentropic.

3. The viscosity is linearly proportional to temperature.
4. The Prandtl number has a value of unity.

When the constant in the linear viscosity relation is adjusted to give the
correct viscosity at the wall temperature, skin friction coefficients are obtained
which agree with experimental values at moderate Mach numbers. Using the same
assumptions, Cohen and Reshotko also derived a method of calculating heat trans-
fer rates which compared favorably with experimental data in the moderate Mach
number range. They derived a Reynolds analogy factor which is a function of both
wall temperature and surface pressure gradient. Their analogy factor can be re-
duced to (Cf/St)Pr=l' From the work of Tifford and Chu (Ref. 126), it has been
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found that when the Prandtl number is not unity, a good approximation is

(cf)P cfpr“"1
1 S SR (7-21)
St r=1 St

where both a and the ratio (Cf/St)Pr=l are functions of the pressure gradient.

Values of a recommended by Ref. 126 are listed below. The value for stagnation
point flows is taken from Squire (Ref. 127).

Pressure Gradient a
Large, favorable 0.5
Stagnation point flows 0.4
Small 0.3
Large, adverse 0.25

The values of (Cf/St)Pr=l’ from Cohen and Reshotko, have been substituted in

Eq. 7-21 and the resulting analogy factor of Tifford and Chu is plotted on Fig. 7-6

as a function of the pressure gradient parameter, n, with (’I‘w - T, )/Tt as a
secondary parameter. R

The heat transfer rate is calculated as follows:

1. The skin friction coefficient is determined by the method given in Sub-
sec. 4.2,

2. The Stanton number is determined from Fig. 7-6. If the Pr is not con-
stant, the wall value should be used.

3. The heat transfer is then calculated using Eqs. 7-4, 7-6, and 7-7.

It should be noted that the calculations of Cohen and Reshotko for Pr=1
give no information on the appropriate value of the recovery factor, r. They rec-

ommend that Eq. 7-7 be used until definitive experimental data are available on
the efiect of pressure gradient.

A special technique is required for calculating the heat transfer rate at
the stagnation point, i.e., where the velocity is zero. For the case of Pr =1,
Cohen and Reshotko determined values of a stagnation point parameter which can

. - -1 = .
be expressed as q(hh hw) (pwu WB) . In order to evaluate this parameter at

values of Pr other than unity, following the findings of Ref. 126, an equation simi-
lar in form to Eq. 7-21 may be written as

1-
g q Pr *

Y] ) ]
(b - 0o) Gk 8 . (b - b)) (e p B8)

(7-22)
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Heat Transfer 7.2.1

where

du;
8 = ( ax o (7-23)

Equation 7-22 may be used to calculate stagnation point heat transfer rates when
Pr#1. The values calculated by Cohen and Reshotko for the left-hand side of this
equation are plotted in Fig. 7-7 as afunction of the wall temperature for both two-
dimensional and axisymmetric stagnation point flows. Values of the right-hand
side of Eq. 7-22 when Pr = 0.7 are also plotted on Fig. 7-7. It can be seen that
Eq. 7-22 is a good approximation to the more exact calculations. When the flow
conditions and wall temperature are known, the stagnation point heat transfer rate
can be calculated with the use of Fig. 7-7. It is also necessary to evaluate the
parameter, 3.

For axisymmetric bodies a good approximation to 8 can be obtained by
assuming Newtonian flow, i.e., a pressure distribution given by

C =¢C cos*¢
p Prmax

where ¢ is the angle between the flow direction and the normal to the point in
question. For a spherical tip this will yield

- p’z Py p“’t 7-24
BD =2 e pm‘l‘—’; (7-24)

D = the tip diameter and the subscript » refers to conditions ahead of the bow
shock.

where

Equation 7-24 holds true for both perfectgases and real gases if the correct values
of stagnation pressure, pt; , and stagnation density, pt1 , are used. If the equa-

tion is divided by u_, 8D/u_ is a function of Mach number for a perfect gas. A
comparison of the calculations with the experimental results from Ref. 128 is
shown on the following sketch. The agreement is excellent.
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The foregoing relationships between the parameters for bodies of sev-
eral shapes and for stagnation point flows give results in good agreement with test
measurements for moderate Mach numbers. High Mach number data for stagna-
tion point flows show that these simplified theories are nct adequate to account
for the effects of real gas flows. Heat transfer rates obtained at stagnation points
by means of shock-tube tests made by Rose and Stark (Ref. 129) and by Rose and
Stankevics (Ref. 130) are shown on Figs. 7-8 and 7-9, respectively. The flight
velocities shown correspond to the total enthalpy inthe shock tube. It can be seen
on Fig. 7-8 that the stagnation point theory of Fay and Riddell (Ref. 131) is in ex-
cellent agreement with the data. The theory given here approaches the experi-
mental data as the shock Mach number is decreased. It is interesting to 1. ‘e that
the perfect gas calculations give values which are too high. These calculations
were made using Fig. 7-7 and Eq. 7-24. The real gas values of P, and t:t1 were

used in Eq. 7-24. The data on Fig. 7-9 are compared with the theory of Fay and
Kemp (Ref. 132). At the very high velocities, even the real gas calculations are
above the experimental values. The perfect gas calculations can be expected to
give even higher results. For free-flight data, the agreement between theory and
experiment will improve with distance from the stagnation point and will be still
better where there is no stagnation flow.

The experimental heat transfer rates ata stagnation point show that the
perfect gas calcuiations of Cohen and Reshotko do not give satisfactory values at
high stagnation enthalpies. This will also be true though to a lesser extent at other
body stations at which the enthalpy is high. There are several theoretical inves-
tigations which can be applied satisfactorily not only to flow over the stagnation
area but also to entire bodies at hypersonic speeds. For high stagnation enthal-
pies and highly cooled walls, Lees (Ref. 133) neglected the pressure gradient term
in the momentum equation, took pu constant through the boundary layer, and as-
sunied local similarity for the boundary-layer profiles. Probstein (Ref. 134) pro-
posed that the pressure gradient term in the momentum equation be retained but
that ph be taken as constant through the boundary layer. Eckert and Tewfik in
Ref. 135 evaluated the product, pu, in Lees' theory at a reference enthalpy which,
for the flat plate (Subsec. 3.2), takes account of the variaticn in pu through the
boundary layer. Kemp, Rose, and Detra (Ref. 136) assumed local similarity for
velocity and temperature profiles and solved the boundary-layer equations for a
fluid with variable thermodynamic and transport properties. Solomon (Ref. 137)
extended the method of Cohen and Reshotko, taking into account the effect of high
stagnation enthalpies by evaluating the gas properties at Eckert's reference en-
thalpy. The expression givenby Eckert in Ref. 138 for reference enihalpy results
in values which approximate those given by Eq. 3-28. Solomon's calculated heat
transfer parameters are in good agreement with the stagnation point calculations
of Fay and Riddell (Ref. 131) and also agree with the calculations and datafor heat
transfer over a hemisphere-cylinder and a flat-faced cylinder given by Kemp,
Rose, and Detra in Ref. 136. Since the results of Solomon's empirical method
are in good agreement with those of more complicated theories and also with ex-
perimental data, it is recommended that the method outlined in Ref. 137 be used
for calculations invnlving high stagnation enthalpies.

An approximate analysis by Eggers, Hansen, and Cunningham (Re{. 139)
appears to give excellent agreement with experimental data at velocities up to
27, 000 ft/sec. It should be noted that the analysis is limited to stagnation point
heat transfer.
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7.2.2 Turbulent Boundary Layer

InSubsec. 4.3 itis suggested that for small surface pressure gradients,
reasonably accurate values for the turbulent boundary-layer growth and skin fric-
tion coefficients can be obtained by integrating Eq. 2-29 after substituting the flat
plateboundary-layer characteristics associated with the pointunder consideration.
The same method could also be used to take into account small arbitrary tempera-
ture gradients. Once the local skin friction coefficient has been computed as de-
scribed in Subsec. 4.3, the heat transfer can then be computed using flat plate
flow characteristics. The recovery factor and Stanton number are calculated from
Eqs. 7-18a and 7-19, respectively, and q is then calculated using Eqs. 7-4 and
7-6.

The use of the flat plate Reynolds analogy, Eq. 7-19, is justified by at
least one set of experimental data. Pasiuk, et al (Ref. 140), describe experiments
in which heat transfer rates, as well as velocity and temperature profiles, are
measured in the boundary layer on a flatplate on which there is a favorable pres-
sure gradient. The plate extends from the throat to the test section in a two-di-
mensional wind -tuanel nozzle contoured to generate onthe plate a turbulent bound-
ary layer witha constant Polhausen parameter. Figure 7-10shows the Mach num-
ber distribution at the outer edge of the boundary layer on the plate. Figure 7-11
shows the distribution of temperature ratio, Tw/ 'l‘t1 along the plate for two heat

transfer rates which were achieved by cooling the plate surface. The data were
used to determine the Reynolds analogy factor in a turbulent boundary layer on a
surface with both temperature and pressure gradients. No skin friction coeffic-
ients were measured. However, values of Z; were determined from the boundary-
layer surveys by integrating the momentum integral equation where

ch
21:-[ ‘i—dx

X,

Values of Z. were determined from measurements of the local heat transfer rate
where

X
2
o =I Pr® St dx
X,

The resultant values of these two integrals are given as afunction of distance along
the plate in Fig. 7-12 for both the high and low heat transfer cases. In reducing
the heat transfer data to obtain the Stanton number, a recovery factor, r, approx-

imately equal to Pri was used. The value of x, is arbitrary, taken as 1.28 {t in
this case. It may be noted from Fig. 7-12 that the two integrals have essentially
the same values. Thus the flat , .ate Reynolds analogy givenby Eq. 7-19 is appar-
ently satisfactory for Mach number and temperature gradients of this test, i.e.,
those shown on Figs. 7-10 and 7-11. Three other definitions of Reynolds analogy
factors (propcsed by various authors) are also compared with the experimental
data in Ref. 140. With one exception, i.e., that of Rubesin (Ref. 141), the values
were not as good as the flat plate values. Cohen (Ref. 142) discusses briefly the
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various theories which have been proposed for predicting the heat transfer rate in
a turbulent boundary layer on a surface with a pressure gradient. Cohen derives
a method for computing the turbulent heat transfer to two -dimensional and axisym-
metric bodies inhigh-speed flow. His method utilizes a Stewartson-type transfor-
mation and the integration of the boundary-layer equations. He gives an exact so-
lution for certain arbitrary initial conditions and an approximate solution requir-
ing fully developed turbulent flow from the stagnation point or leading edge. The
techniques of Ref. 142 are recommended for bodies with large pressure gradients.

7.2.3 Cones, Spheres, and Sphere-Cones

Subsection 4.4 gives equations for finding the skin friction coefficients
for cones at zero angle of attackand constantwall temperature. Both laminar and
turbulent boundary layers are considered. The cone values are obtained from the
results of flat plate theories. Therefore, once the skin friction coefficients are
determined, the heat transfer rates can be computed using the methods given in
Subsecs. 7.1.1 and 7.1.2 (laminar boundary layer) and Subsecs. 7.1.3 and 7.1.4
(turbulent boundary layer).

In Subsec. 4.5, the approximate method of Cohen and Reshotko (Ref. 7)
is applied to the calculation of laminar boundary-layer growth on spheres. Al-
though skin friction coefficients are not actually derived, they can be obtained by
the technique outlined in Subsec. 4.2.4. Heat transfer rates can then be calcu-
lated using the method described in Subsec. 7.2.1.

When the tip radius of a sphere-cone is small compared to the length of
the conical section and the angle of attack is zero, the laminar skin friction coef-
ficient can be computed using the method of Wilson (Ref. 13) whichis given in Sub-
sec. 4.6. This method has been extended to include the calculation of the turbu-
lent shear stress (Ref. 143). For both the laminar and turbulent boundary-layer
calculations, it is assumed that the pressure onthe conical section is constant and
that the surface may be considered as aflat plate. Howaver, local flow conditions
at each point along the surface must be used since, even with a slight bluntness,
the boundary layer on the conical section is in the process of swallowing the var-
iable entropy layer consequent upon the bow shock curvature. The heat transfer
rates can be calculated from the skin friction results using the flat plate formulas
given in Subsecs. 7.1, 7.2.1, and 7.2.2.

When the bluntness of the sphere-cones is large, there are two depar-
tures from the simple flow pattern just described. The first is that the blunting
of the tip will affect the pressures over a large part, perhaps all, of the conical
portion. Secondly, the conditions at the outer edge of the bounda:y layer are as-
sociated with the flow which has passed through the normal portion of the bow
shock, i.e., the variable entropy layer will extend further down the body. In this
case the flow at the outer edge of the boundary layer is isentropic. Theheat trans-

fer characteristics for these large bluntnesses can be computed by the methods
described in Subsecs. 7.2.1 and 7.2.2.

1.2.4 Bodies at Angle of Attack

When a body is at an angle of attack, an approximate method for calcu-
lating the boundary-layer growth and skin friction coefficients can be devised by
integrating the momentum integral equation along streamlines. If it is assumed
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that the flow direction in the boundary layer corresponds to the flow direction at
the boundary-layer edge, the streamline pattern can then be obtained by consid-
ering only the inviscid flow. A method of calculation such as that described in
Ref. 144 may thenbe employed. The momentum integral equation for the axisym-
metric case given by Eq. 2-28 can be altered slightly and applied to the body at
angle of attack. It is necessary to repiace the term % % by a term A%{ %‘ where

An is the distance between two adjacent streamlines as shown in the sketch below.

An
e
//"—— \_

The distance x is measured along a streamline. If the flow at the outer edge of
the boundary layer is isentropic, then Eq. 2-29 is used after replacing the term
%%x! as described above. For the isentropic case, after replacing r by An, the
methods for calculating skinfriction given in Subsecs. 4.2 and 4.3 can be applied.
The heat transfer rate can then be computed by the methods of Subzecs. 7.2.1 and
7.2.2.

Several investi- . 'ns of heat transfer on bodies at angle of attack are
reported in the literature. Julius (Ref. 145) gives the experimentally determined
Stanton numiber on a 20 deg cone in both laminar and turbulent flow. The values
of the Stanton number, based on local conditions at the outer edge of the boundary
layer, are plotted as a function of Reynolds number on Fig. 7-13 for the models
on which transition occurred. The cone tip was then roughened to give fully tur-
bulent flow; results for these models are shown on Fig. 7-14. The data shown on
Figs. 7-13 and 7-14 are for angles of attack of 0, 10, and 20 deg and measured
on the most windward surface generator, i.e., ¢ = 0 deg. It can be seen from
these figures that the theories of Braun (Ref. 146) and Brunk (Ref. 147) for the
turbulent and laminar heat transfer, respectively, are in excellentagreement with
experimental results. The theory of Van Driest (Ref. 120) is shown for both lam-
inar and turbulent flow with @ = 0 deg. Using local values of the flow character-
istics in both St and Re tends to bring the curves together at all angles of attack.
It can be seen from thefigures that there is some increase inStanton number with
angle of attack for both laminar and turbulent flow. This increase is associated
with the thinning of the boundary layer atincreasing angle of attack. Reference 145
also presents data on generators at 30, 60, 90, and 180 deg from the most wind-
ward generator. When the boundary layer is completely laminar or completely
turbulent, the maximum heat transfer rate is found on the most windward genera-
tor. When transition occurs, the generator along which the maximum heat trans-
fer occurs, moves around the cone and usually lies between the 30 and 60 deg
generators.

The measurements just discussed were made by Julius at Mach 4.95.
Burbank and Hodge (Ref. 148) present experimental data for a10 deg cone at Mach
numbers of 2.49, 2.98, 3.51, 3.96, and 4.65. Heat transfer rates were mea-
sured with the cone at 0, 7.5, and 15 deg angle of attack. Data were obtained with
fully laminar flow arnd with transition.
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Heat transfer data on sphere-cone configurations have been given by
several investigators. For eachexperimental study which will be discussed here,
the bluntness was relatively large. The entropy at the outer edge of the boundary
layer is then constant and equal to the value on the stagnation streamline. Lam-
inar heat transfer data from wind-tunnel tests are given by Pasiuk in Ref. 149.
The ratio of the radii of the corical frustum of the sphere-cone was 0.19 and the
cone angle was 26.6 deg. Heat transferdata for the most windward generator are
shown on Figs. 7-15 and 7-16. The tests were run at Mach numbers of 3.2 and
4.8 and at three angles of attack: 0, 6, and 8 deg. The data are given in terras
of the ratio of local film coefficient, h, to the stagnation point film coefficient,
hsp' The film coefficient is defined by

B=q/('re - 'rw) .

Datafor the generator whichis 45 deg from the most windward generator are shown
on Figs. 7-17 and 7-18. Pasiuk shows that the theory of Beckwith (Ref. 150) is in
reasonable agreement with the experimental results. In addition to the results
shown here, Ref. 149 gives data at several stations around the body on generators
up to 150 deg from the most windward generator. The ratio T / Tt varied from
0.7 to 0.8 during these tests. v oh

Data on a 20 deg sphere-cone with fully laminar flow and also with tran-
sition are givenby Van Camp in Ref. 151. These wind-tunnel results were obtained
at Mach numbers of 2.47, 3.58, and 4. 53 with the mode!l at angles of attack of O,
5, 10, 14, and 16deg. Measurements of turbulent heat transfer on a60deg sphere-
cone are given by Aeillo in Ref. 152. Aeillo used the shrouded model technique of
Ferri and Libby (Ref. 153) in which the shroud is designed to give a Newtonian
pressure distribution over the model at zero angle of attack. The tests were then
run with the model at a geometric angle of attack to provide a three-dimensional
flow. Although this technique does not precisely simulate that of a model at angle
of attack in an unconfined flow, high local Reynolds numbers canbe obtained. The
turbulent heat transfer data with three-dimensional flow can be compared with
theory. Aeillo found that the flatplate reference enthalpy method, based on local
flow conditions at the outer edge of the boundary layer, gave good agreement with
measured values. The Reynolds number used in the calculations was based on the
distance along an inviscid streamline measured from the stagnation point. Since
the skin friction coefficient and the Stanton number for turbulent flow ase rela-
tively insensitive to Reynolds number, some uncertainty in choosing the proper
Reynolds number will not greatly affect the calculations. These results tend to
confirm the suggestion made in Subsec. 7.2.2 that flat plate characteristics be
used for the turbulent boundiary layer in the presence of small pressure gradieats.

In addition to the cone and sphere-cone results, heat transfer data on
other bodies atangles of attackcan be found in the literature. Feller, for example
(Ref. 154), gives data for a modified Karman nose shape at a Mach number of
3.69 for angles of attack from 0 to 25 deg. These tests were conducted in a wind
tunnel with a smooth model which showed natural transition. The model was also
roughened to obtain fully turbulent flow. In Ref. 155, Sands and Jack give wind-
tunnel results for cylindrical bodies with cone tips and with parabolic noses. The
models were tested at a Mach number of 3.12 and angles of attack up to 18 deg.
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7.3 Heat Transfer on Yawed Cylinders

Wing leading edges are oftenblunted in order to reduce the heat trans-
fer rate at high flight velocities. Although the drag increase consequent upon the
blunting may at times be unacceptably high, it may be reduced by sweeping the
leading edge. The sweep can, in some cases, further reduce the leading-edge
heat transfer rate. A number of theoretical and experimental studies on yawed
cylinders have been carried out to investigate the effect on heat transfer of the
various parameters. The results of afew of these studies will be presented here.

Cunningham and Kraus (Ref. 156) compared several methods of calcu-
lating the heat transfer rate on the laminar stagnation line of a yawed cylinder.
The comparison is shown on Fig. 7-19 in terms of the angle of yaw or sweep, A.
It can be seen that the theories of Eggers, et al (Ref. 157), Reshotko and Beckwith
(Ref. 158), and Goodwin, et al (Ref. 159), give heat transfer rates that are in rea-
sonable agreement with one another. The ratio of the heat transfer rate at A to
that at A = 0 is approximated by the curve of

— KIE -
q)t/q)‘=o = cos® 2 (7-25)

At X = 60 deg, this yields a value of q, that is only 40% of the zero sweep value.

Eggers, Hansen, and Cunningham (Ref. 139) have derived an approximate theory
for calculating laminar heat transfer in the stagnation region. This theory takes
into account real gas effects. It was shown in Subsec. 7.2.1 that the theory when
applied toblunt bodies is in excellent agreement with measured heat transfer rates
in the stagnation region. Calculations given in Ref. 139 for yawed cylinders moving
at satellite velocities are shown on Fig. 7-20. These calculations demonstrate
that, even with real gas effects, the trend of heat transfer rate with angle of yaw
is approximated by Eq. 7-25.

Figure 7-21 shows experimental results at M, =11 which were obtained
by Cunningham and Kraus (Ref. 156) for yawed circular cylinders. The data are
given in terms of an average heat transfer rate, Q, defined by

_zce dT
Q=-3" Gt

where, for the cylinder

r = radius
c = specific heat per unit mass
p = density

and
T = temperature

It may be seen from Fig. 7-21 that the effect of sweep angle is in good agreement
with Eq. 7-25. Itshould be noted that the Reynolds numbers of thesedata are quite
small and that the flow over the cylinders was therefore undoubtedly laminar. Ex-
perimental results at M_ = 9.8, given in Ref. 157, show a similar trend at sweep
angles up to 45 deg. At A =70 deg the data in Ref. 157 fall above the curve of
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Eq. 7-25. The authors of Ref. 156 suggest that this discrepancy may be due to
interference from the model support.

Beckwith and Gallagher (Ref. 160) present experimental data taken at
much higher Reynolds numbers (1 x 10° to 4 x 10°). These measurements, made
at M_=4.15 are show . on Fig. 7-22. It may readily be seen that the effect of yaw
on the heat transfer rate is in sharp contrastwith thatof the low Reynolds number
data shown on Fig. 7-21. As the cylinder was yawed from 0 to 40 deg, the stag-
nation line heat transfer rates increased by 100 to 180%. However, a further in-
crease in yaw angle from 40 to 60 deg resulted in a 40% reduction in heat transfer
rate. Atzero yaw angle, the heat transfer rate agrees with the laminar flow theory
of Beckwith (Ref. 161). This is also true at 10 deg yaw for the lower test Reynolds
numbers. However, as the Reynolds number is increased, the heat transfer at
10 deg yaw becomes considerably greater than that predicted by laminar flow
theory, indicating transition to turbulent flow. At yaw angles greater than 10 deg,
the heat transfer is always much higher than laminar predictions. It may be seen
that the 40 and 60 deg yaw angle results of Fig. 7-22 are in good agreement with
the turbulent flow theory of Ref. 160. Although this theory predicts zero heat
transfer at A = 0 and must therefore be in error at very small angles of yaw, it
still gives a reasonable qualitative prediction of the behavior of the heat transfer
at low angles of yaw. The heat transfer is predicted to rise to a maximum value
at A ~ 30 deg and then decrease with further increase in A. This is in contrast to
the behavior of the laminar heat transfer rave which has its maximum at A =0 deg.
As the authors of Ref. 160 point out, the test Reynolds numbers of the data shown
cn Fig. 7-22 are larger than typical values of full-scale leading edge Reynolds
numbers for most hypersonic vehicles. In view of this they suggest that the data
may be more profitably applied to bodies at reasonable angles of attack than to
wings of large sweep.

7.4 Heat Transfer in the Transition Region

Although no comment was made at the time, Fig. 7-13, discussed in
Subsec. 7.2.4, shows clearly the behavior of the local Stanton number in the re-
gion of transition from laminar to turbulent flow. The Stanton number is well-
behaved in the transition region and increases in the same way that the local skin
friction coefficient increases in that region. Figure 7-13 also shows that the values
of St overshoot slightly the curves for the fully turbulent flow. This overshoot cor-
responds to the overshootof the local skin friction coefficient whichwas discussed
in Subsec. 3.5. In calculating the heat transfer rate, a conservative estimate can
always be obtained by assuming that transition uccurs abruptly ata point and, fur-
thermore, that the point corresponds to the onset of transition rather than its ter-
mination.

7.5 Turbulent Heat Transfer on Rough Surfaces

The effect of roughness on turbulent boundary-layer skin friction is
discussed in Subsec. 6. The method used by Clutter (Ref. 112) for computing both
the local and mean skin friction coefficients is described. For fully rough flow,
Clutter makes use of the experimental results of Goddard (Ref. 111)who found that
for zero h~at transfer, the ratio of compressible to incompressible skin friction