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ABSTRACT

Target detection in the clutter from extended fields of scatterers,

such as the ground or the sea, is a common problem in radar. Having

optimized the system configuration, the designer can further improve

radar performance by adapting the transmitted waveform to the particular

target environment. This problem is investigated here for detection of a

single t; -get in the presence of an extended clutter space. The paper con-

siders the possibility of confining the matched-filter response in delay and

Doppler, or ambiguity function, to a narrow strip with arbitrary orien-

tation in the delay-Doppler domain. It is shown that strict confinement of

the response is achievable only with waveforms that are unlimited in both

time and frequency domain. In practice, efficient use of the frequency band

requires that the spectrum be truncated, so that strict confinement of the

response is not achievable. One finds that bandwidth can be traded against

visibility in clutter. More generally, for a fixed bandwidth, the trade-off

is between close-target separability and detectability in the clutter, which

are the two tasks "hat together constitute the resolution problem. The

paper illustrates the effects of spectrum truncation for the import, nt case

of maximum confinement of the ambiguity function.
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I. INTRODUCTION

Radar clutter generally appears in two forms. In the situation implied

by the more conventional meaning of the term, clutter is the return from

scatterers that are of no interest to the --adar user.. In the second case,

the term clutter is used to describe the matual interference between targets

that may all be equally important This type of clutter is due to the fact

that in a high-resolution svstern the response to any one target extends over

many resolution cells. it 's the familiar problem of sidelobes in a pulse

compression radar. 'ki- types of clutter are equally detrimental in their

effect on radar perfcrma, .--e.

Signal detecti',,., in clutter has been studied widely in the past. Early

work deals with radar having a resolution capability only in range and con-

siders filter design for clutter suppression [1,2]. With the advent of radar

using sophisticated 6ignals, waveform design as a means for clutter sup-

presion became of interest [3-5]. This approach is more powerful, and

the problem is one of adapting the waveform to the target enviroia-rent.

Filter optimizatio'i is useful only when the radar uses, for some reason,

a waveform that is actually unsuited for the task [6]. These general dis-

cussions on waveform design and detection performance in clutter are

supplemented in this paper by a specific approach to the suppression of

interference from extended clutter spaces. We consider waveforms whose

matched-filter responses in delay and Doppler are essentially confined to
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narrow strips in the delay-Doppler plane. With proper orientation of the

strip, a waveform of this type will enhance target detectability in clutter.

The scope of the study is that of the conventional theory of resolution

in range and range rate, based on Woodward's ambiguity function [7].

Hence, it is miplicit that range acceleration (and higher-order range

d 'rivatives) has; negligible effects over the duration of the signal, and

that distortions of the modulation function due to range rate can be neg-

lected. Practically, this amounts to limiting the study to range rates

2
R < 0. Ic/BT and range accelerations R < 0. 1 X/T , where c is velocity

of light, B is signal bandwidth, T is duration, and X is wavelength.

-2-
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Ii. WAVEFORM OPTIMIZATION

Consider the problen. of recognizing a particula.: target return in

the interference from a large number of scatterers distributed in range

and range rate, or in range delay and Doppler. Let us assume that those

scatLerers actually illuminated by the same radar pulse (and hence con-

tributing to the clutter) are contained within some area in the delay-Doppler

plane, as indicated in Fig. 1. We shall call this area the clutter space and,

in specializing the study, assume that the area has a size large compared

with unity. This is what we mean by an "extended" clutter space. The

target of interest may be within the clutter space or outside its boundaries.

The question is how the waveform should be designed to minimi'.e the inter-

fere'ice from the clutter space.

The requirements on the waveform !or elimination of the interference

from the clutter space are well understood L4. 5 . The associated ambiguity

function must have a shape such that whien its c,:':.rral peak is positioned

anywhere within the clutter space, its magnitude a, ')e target posit-on A

is zero. This goal is principally unattainable when the clutter space is

extended, if the target is within the clutter space. The best that can be

done is to minimize the interference by proper design of the wavt oi-n.

In theory, complete suppression of the clutter is possible when the target

is outside the clutter space, but then practical considerations limit the

achievable performance.

-3-
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A

B

;CLUTTERx
SSPACE

Fig. 1. Clutter space and ambiguity functions with clutter
suppression properties.
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In searching for a suitable waveform, one might consider the possi-

bility of using a signal with a thumbtack-type ambiguity function, that is,

a sharp central spike on a uniformly low pedestal. However, since nearly

all of the fixed volume of the ambiguity function is in the pedestal, it is

often impossible to decrease the pedestal level to where an acceptable

interference level results from the superposition of the pedestals connected

with all scatterers within the clutter space. This difficulty suggests the

opposite approach of concentrating the ambiguity function within a very

narrow strip oriented such that it cuts through as little of the clutter space

as possible. This is the technique to be described in more detail in the

following.

The utility of concentrating the ambiguity function within a narrow

strip is perhaps more apparent when the target is outside the clutter space

(although it may, physically, be inside the clutter region). For example,

targets at position B and C in Fig. 1 could be detected free from inter-

ference if the ambiguity function were confined as indicated in the figure.

Of course, a target at position B is really outside the range interval of

the clutter, and the use of a short pulse is obvious. For the dual case,

a target at C, target and clutter do not share the same Doppler interval,

so that clutter suppression is feasible with a band-limited signal. On the

other hand, if the target is at D, filtering it-, either time or frequency

separately is not adequate. Combined filtering in delay and Doppler is

necessary, in which case the strip cannot be parallel to one of the axes.

The problem thus is to design ambiguity functions that are confined to a

strip having arbitrary orientation ;r the delay-Doppler piane.

-5-
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III. SIGNALS WITH STRICTLY CONFINED
AMBIGUITY FUNCTIONS

The objective is to find waveforms whose ambiguity functions are

confined to a strip whose orientation can be chosen at will. With P(t)

the complex modulation function and M(f) its Fourier transform, the

ambiguity function may be defined as

•" X(7, V) =f k (t) ý1(t - T) ej2TVt dt ,1)

XCr,v) = f M*(f) M(f - v) eJ2 rr~ df , (2)

with T the differential delay and v the differential Doppler shift. We note

that the desired ambiguity function can be obtained from that of a time-

limited signal by shearing parallel to the delay axis (Fig. 2a)., Formally,

we are replacing in X(T,V) the variable Tby T + pv, so that the former

Doppler axis (T = 0) becomes the axis 7 + pv = 0. Substitution into Eq. (2)

shows that the corresponding change in the signal is from M(f) to

M(f)e j~pf This is one of Siebert's theorems concerning the ambiguity

function [8J. The desired signal thus is generated by the introduction into

a time-limited pulse of quadratic phase modulation in the frequency domain,

In other words, the pulse is simply passed through a dispersive network.

Alternatively, we can shear the ambiguity function of the band-limited

pulse parallel to the Doppler axis, which means replacing in X(T,v), the

-7-
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variable v by v + kT. The corresponding change in the sigual is from

P(t) to uI(t)ej kt, which means introduction of the quadratic phase in the

time domain, that is, active frequency modulation.

The reader familiar with pulse compression technology will be

tempted to conclude that the abovc signal is the common Chirp signal, or

linear FM pulse. Actually, there is an important difference between our

signal and the Chirp waveform. With the operations indicated in Fig. 2,

the quadratic phase is introduced in the domain in which the signal is

unlimited. This contrasts with the Chirp signal, which is generated ty

modulating in the domain in which the signal is limited. The result is a

shearing of the ambiguity function as shown in Fig. 3, where the two cases

represent the active and passive generation methods. Only the main

response peak is slanted, while the strip does not change its orientation

and is much broader than the main peak.

From the fact that the modulation must be performed in the very

domain in which the signal is unlimited, we immediately can conclude

that the desired objective of confining an ambiguity function to a slanted

strip is not attainable in practice. We can, however, approximate the

waveform, and this will be considered later. For the time being, we

ignore this problem and consider the different types of ideally confined

ambiguity functions.

The method illustrated in Fig. 2 evidently yields a strip width of the

same order as the width of the main response peak. Thus, for fixed width

of this peak (and fixed close-target separability), the ambiguity function is

-9-
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confined to the narrowest possible strip. The waveform is a pulse

compression signal with quadratic phase modulation. The question

arises as to whether the strip can be slanted off the axis without the

use of pulse compression. The corresponding, somewhat more compli-

cated generation process is indicated in Fig. 4, starting from a time-

limited pulse. In a first step, we introduce linear FM in the manner used

with the active gent. ration process of the Chirp waveform. This signal

then is passed through a filter with proper quadratic phase which removes

the linear FM. In the ambiguity diagram, this involves shearing parallel

to the delay axis and produces the desired cignal of unity time-bandwidth

product and confined ambiguity function. The dual procedure for the

band-limited pulse is obvious.

The above discussion establishes the fact that it is possible to

rotate the strip independently of the main response peak. A comparison

of Figs. 2 and 4 shows the following difference between a linear FM signal

and a signal of unity time-bandwidth product, In the first case, the strip

is about as wide as the main response peak in its narrow dimension. For

the "simple" waveform of unity time-bandwidth product, on the other hand,

the boundary )ines for the strip are being rotated such that they remain

essentially tangential to the main peak. The width of the strip thus changes

with orientation. Only for the two special cases of time-limited or band-

limited signals is the width of the strip given by the axes of the main

response ellipse.
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Rotation of the strip evidently is equally feasible if the starting signal

is a pulse compression waveform. If, in Fig. 2, the main response widLh

is narrowed, the figure serves as an illustration of the method of confioming

the ambiguity function to a strip wider than the main response peak. The

associated waveform has a strong linear FM component superposed on the

original modulation. In the same manner, Fig. 4 can be interpreted as a

method of generating such an ambiguity function with a waveform without

linear FM component.
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IV. EFFECT OF SIGNAL TRUNCATION

We now investigate the effect on the ambiguity function of truncating

the signal in the domain in which the modulation is applied. Consider the

initial pulse to be time-limited with modulation function pi(t) and spectrum

M(f). Truncation of the spectrum to a band of width B gives a new spectrum

MB(f) = rect(f/B) M(f), where rect(x) is unity for jxj i5 0. 5 and zero other-

wise. From Eq. (2), the new ambiguity function is

XB(T,v) = rect(fk)M-:(f) rect(Lf- V) M(f - v) ejZ•fT df

S[f_ rect() rect ejZrrfTe df]* 0 M*(f)M(f - v) e d

= Xrect(T, V) *-X(TV) , (3)

where the star denotes convolution in T; •rect (T, V) is the ambiguity function

of a rectangular spectrum of width B; and X(T,v) is the ambiguity function of

the original, time-limited signal.. The original ambiguity function X(T,V) is

limited in the T domain, but Xrect(T,V) is not. Hence, the convolution

operation of Eq. (3) spreads the ambiguity function over the entire T domain.

The smaller the bandwidth B, the wider Xrect(T,v), and hence XB(T,V).

A similar result obviously applies to the dual case of a band-limited signal

that is truncated in the time domain when modulated.

-13-



The question of interest is to what degree the ambiguity function can

be confined if the signal is truncated in the critical domain, or, equivalently,

how much the ambiguity function is spread out in the domain in which it was

confined if the signal is truncated. For clutter suppression, a suitable

measure of the performance degradation is the total volume outside the
S2

original strip. This volume is found by integrating over IXB(T,V)1 to the

right side of the right boundary line and doubling the result. Since the strip

is slanted and the ambiguity function is that of a linear FM signal, the

calculation may seem rather complicated. However, because of the fact

that y.B (r, V) is obtained by shearing of the ambiguity function of an uu-

modulated pulse, it is evident that one can find the volume by performing

the calculation on the unmodulated , 'anal. If the original signal is time-

limited, as assumed here, the shearing occurs parallel to the delay axis,

so that the volume outside a strip of width 0 in delay is

v=fC d'f IX(T,v),2 dv (4)
T0 /2 _o

This relation applies for any ambiguity function associated with a constant-

carrier signal; in particular, it a es for the ambiguity function after

band-limiting, XB(T,V). If the dual approach were used, choosing a band-

limited signal as the original waveform and then truncating in the time

domain, one could calculate the volume more conveniently on the basis of

the strip width v0 in Doppler.

-14-



Actually, the volume outside a particular strip ITr I Z0/2 is not o!

special interest. Suppose, for example, that the effect of truncation were a

simple widening of the strip. The resulting ambiguity function would be just

as useful for clutter suppression, since the widening of the strip could be

offset by a shortening of the orighnal signal duration. What is really of

interest, then, is the degree of volume concentration, as measured by the

volume outside an arbitrary strip as a function of the strip width. Thus we

must consider T0 in Eq. (4) as a variable and calculate V(T 0 ).

If the definition of the ambiguity function is used in Eq. (4), the inner

integral can be expressed in terms of the squared modulu.ý of the signal as

fv Ix(,, dl =f_ ) 2 I=O(t" M T)12 dt (5)

Band-limiting of the signal means that p(t) in Eq. (5) is replaced by its

band-limited version

(6)

=f •u(sin TTB(t - d

The remaining integration in T in Eq. (4) will usually have to be done

numerically. If a band-limited signal is chosen as a start and truncation

is performed in the Lme domain, the dual relation for integration over T

is given by

-15-



L D Y(T v 12dT =fCDIM(f)I M(f - v)jd
with the spectrum of the time-truncated waveform

M T(f) JfCcD rect(4}-l (t) e j2Trft dt

00fM(n) sin rrT(f - 1)drj
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V. THE RECTANGULAR PULSE

The only specification made for the "ideal" signal was that it be time-

limited, so that its ambiguity function is confined in T; otherwise, the shape

of the pulse is arbitrary. The shape of the pulse is significant insofar as

it determines the envelope of the transmitted signal. For example, if a

rectangular pulse is chosen, its spectrum has (sin x)/x form, which is then

truncated. With the introduction of linear FM, the time function assumes

approximately the truncated (sin x)/x form. The question of optimum pulse

shape will not be investigated here; rather, we shall calculate the volume

distribution for the waveform generated by phase modulating and truncating

the rectangular pulse. The rectangular pulse is of interest because it

represents the most severe form of time-limiting a signal.

The rectangular pulse has a modulation function p(t) = rect(t/T) and a

spectrum M(f) = (sin TTTf)/lTf. From Eq. (6), the band-limited version is

T/2 sin rrB(t - )P (t) =f 'df I•

(7)

S! 1Si1rBT( + 1)] + SFi [TBT(T -

where Si(x) is the sine integral defined by Si(x)= OX[(sin t)/t] dt. The volume
0

distribution of the ambiguity function may now be computed from Eqs. (4),

(5), arid (7). Only two numerical integrations are requ;red, since the sine

integral can be computed accurately and rapidly by a polynomial expansion [9].

-17-
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Fig. 5. Volume distribution for the signal with truncated
(sin x)/x envelope.
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Because the total volume under the ambiguity function is fixed, V(T0) can

also be found from the volume within the strip, which is an easier calculation.

The parameters chosen for presentation of the results are the duration

T of the original pulse and the width B of the truncated spectrum. Both the

volume distribution and the shape of the spectrum are determined uniquely

by the product BT. Since the truncated spectrum is given as MB(f) =

rect(f/B) [(sin rrTf)/rTf], a product BT = 2 means that the spectrum includes

just the main lobe of the (sin x)/x function; for BT = 4 it includes the first

sidelobe on both sides; for BT = 6, the first two sidelobes, and so forth.

The rectangular spectrum of the Chirp signal results in the limit as BT - 0.

Since changing B also changes range resolution, a comparison of

volume distributions for various degrees of spectrum truncation is mean-

ingful only on the basis of fixed close-target resolution. For this reason,

the volume distribution is presented in Fig. 5 as a function of the normalized

strip width T 0 /T 3 dB' with the half-power width of the matched-filter response

in T chosen as the normalization constant. Curves are shown for several

values of BT. Even integral values of BT represent spectra where the

cutoff is at a zero crossing of the (sin x)/x function, while for odd integral

values of BT, the cutoff is halfway between zero crossings. Truncation at

the zeros is seen to give appreciably better performance.

A more detailed investigation shows that the zeros represent local

optima for the truncation of the spectrum. This is not surprising. Taylor

[10J found that the far-out sidelobes of a linear antenna are determined

principally by the behavior of the illumination function at the edges of the

-19-



antenna. The far-out sidelobes are lower for an illumination function that

goes to zero linearly at the edge than for one with a discontinuity at the

edge. In general, the sidelobes are lower yet for an even more gradual

approach to zero at the antenna edge. From Eq. (5), we must expect the

same behavior for the volume of the ambiguity function. Thus, the volume

should be more highly concentrated for truncated at zeros of the spectrum,

and the farther out the zero the better.

Figure 5 shows that the volume outside a given strip decreases sub-

stantially as the bandwidth is increased to include more sidelobes of the

spectrum. The penalty is the increase in signal bandwidth. In contrast

to the Chirp signal, for which the band is uniformly filled with energy, we

are now widening the band without putting substantially more energy into it.

In other words, the bandwidth is increased without significant improvement

of range resolution performance, The added band is used for suppression

of the clutter rather than for improved close-target separability. We

indicate this trade-off between target separability and clutter suppression

in Fig. 5 by giving the values for the relative bandwidth increase compared

to the Chirp signal i.ecessary to achieve a given clutter reduction. Basis

for comparison is a fixed half-power width of the ambiguity function on the

r axis.

-20-



VI. THE GAUSSIAN PULSE

In truncating the spectrum of the ideal waveform, we are removing

the time-limitation of the signal and, hence, the strict confinement of the

ambiguity function. The fact that we have started from the ideally time-

limited signal thus has no real significance. This raises the question as

to what performance is achievable if the original signal, before spectrum

truncation, is unlimited in time. We shall investigate the gaussian pulse,

because it is both representative for unlimited signals and readily tractable.,

Again, the phase function of the pulse will be quadratic if the strip to which

the ambiguity function is essentially confined is to be slanted. The differ-

ence between the rectangular and the gaussian pulse thus is merely in their

envelopes, and these signals should be fairly representative of that which

is achievable with other envelope shapes.

In calculating the volume distribution, we can ignore again the phase

modulation, as in the case of the rectangular pulse. The spectrum of the

gaussian pulse can be taken as

M(f) = e (f/a) /2 , (8)

where the rms width 2c is inversely proportional to the rms width of the

signal. The band-limited signal is now given by

~B/2 (l)2/

B(t) = 2 e(f) /2 cos 2r7ft df (9)
0
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and the corresponding ambiguity function [Eq. (2)] by

X(Tv) Ze-( 2 ) 1 4 1 (oB-v)/1-

)(,vh= 2 e -lV/C7) o elf/W) cos 2frfT df (10)

Both Eqs. (9) and (10) can be expressed in terms of the error function of

complex arguments, and a very accurate and rapid computer solution is

possible [11, 12]. The volume distribution is found either by means of

Eqs.: (4), (5), and (9), or by direct volume integration of Eq. (10). Both

methods involve two numerical integrations.

The results are shown in Fig. 6 for various values of B/a. The width

of the strip TO has been normalized again to the half-power width of the

ambiguity function on the T axis. Also shown is the relative bandwidth

increase over that for a rectangular spectrum necessary to reduce the

volume outside the strip for fixed close-target separability in T. For

better comparison, some of the values of B/ar were chosen so that the

resulting values of LB/B correspond to the values of AB/B in Fig. 5.

In contrast to the results for the rectangular pulse, the improvement in

volume concentration now is a monotonically increasing function of the

bandwidth. This is to be expected since the gaussian spectrum is a

smooth function, whereas the (sin x)/x spectrum of tile rectangular pulse

is not.
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VII. RELATION OF VOLUME DISTRIBUTION TO SIGNAL
ENERGY DISTRIBUTION

Upon examination of Eqs. (4) and (5), one would expect that if P(t) had

most of itr energy concentrated within some interval, the ambiguity function

would also have most of the volume concentrated within a strip limited in T.

Of course, these equations apply for the constant-carrier signal associated

with the ambiguity function before shearing, that is, before the introduction

of the quadratic phase in the frequency domain and the resulting change in

the waveform. Nevertheless, the spectrum envelope of that waveform is

the same as for the constant-carrier pulse, and because of the quadratic

ji phase, the envelope in the time domain has approximately the same shape,

at least when the time-bandwidth product is large. This means that the

relation between volume of the ambiguity function and signal energy for the

1 constant-carrier pulse could be used to determine pulse shapes that are

well suited for concentrating the volume of the ambiguity function.1 An approximate relationship between the ambiguity volume distri-

bution and the signal energy distribution can be derived easily for the

constant-carrier signal. In Eq. (5), assume that T is larger than the width

of the main lobe of W1t)I. If only a small fraction of the signal energy is

contained in the tails of p(t), the principal contribution to the integral of

Eq. (5) occurs over the main lobes of Iki(t)i and Jl(t - T)l . Both

contributions are equal (for symmetrical signals) and can be approximated

if one of the two functions of the integrand in Eq. (5) is taken as a rectangle,

A -25-
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2•tl 1 (11)
Pt T-r rectV , (1 10

where the factor I/T' was included for normalization of the signal energy.

Equation (5) then becomes

)x(Tv)I dV ;-Ts rectt IP(t)Iz dt (12)

If this approximation is used in Eq. (4), the volume is

4 2D-
V(T 0 ) 74 dTf rect-- k kO(t)I2 dtT0T/2 -f c

(13)4 O T+T'/2

S44 d T f I p(t)1' dt
T 0/2 T-T'/2

The integral in t can be approximated further as T'IPi(T)I1, which is merely

an averaging operation since integration over T follows. The volume thus

is given as

V(T•0 4f I,,(t)l dt (14)
T0/2

As seen from this result, the volume outside the strip of width T is

approximately double the signal energy outside the interval TO. The

validity of this relation between volume distribution and signal energy

distribution is confirmed by Fig. 7, which presents curves for the rec-

tangular pulse.
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VIII. CONCLUSTONS

As shown by the curves of Figs. 5 and 6, a modest increase in the

signal band leads to a substantial decrease of the volume outside a givenI° strip. By more or less filling a given signal band, we can thus trade

close-target separability against target detectability in the background

clutter. In those situations where the clutter is the larger problem, the

trade-off can be very favorable. For modest increases in the signal band-

width, the performance of the truncated (sin x)/x envelope is better thar

that of the gaussian envelope, while the reverse is true for large band-

" "width increases. Aside from these differences in the performance of

signals with different envelopes, the important point is that linear FM

permits concentration of the volume of the ambiguity function to a high

degree. This fact always has been evident as far as the main ridge of the

6• ambiguity function is concerned. As was shown above, the concentration

of the volume within the central ridge also permits us to r-educe the side-

lobes surrounding the ridge.

The practically oriented reader may wonder how much of the theo-

retical potential for volume suppression can be realized in practice. One

might argue that with the switching of the transmitter the sidelobes can be

truly eliminated if a short pulse is used, while low sidelobes for a pulse

compression waveform are the result of cancellation effects that depend

on hard-to-maintain tolerances and stabilities. However, even the short

pulse has sidelobes if the filter cuts off the outskirts of the spectrum. In
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fact, the difference between the performance of such a pulse and that of the

pulse compression waveform is given by the accuracy with which the phase

modulation can be generated and removed. Although it is true that any

deviacions from ideal equipment performance will result in sidelobes, we

are dealing here with the average sidelobe level, which can be very much

lower than the peak sidelobe level.

Finally. it is interesting to consider the relation of the method dis-

cussed above to the well-known problem of reducing the range sidelobes in

a Chirp system. The customary procedure of mismatching the receiver for

sidelobe suppression is effective only for Doppler shifts not exceeding a few

percent of the signal bandwidth. For sidelobe reduction over a larger

Doppler band, we must perform the "weighting" of the signal at both the

transmitting and the receiving side. This would suggest a gaussian signal

envelope. However, in principle, such a signal never can have an ambiguity

function that is strictly confined to a strip, since this is achievable only

when the waveform is strictly limited in one domain. Since it then must

have sidelobes in the other domain, and for linear FM the envelopes in time

and frequency domain have about the same shape, we find that a waveform

whose ambiguity function is strictly confined must always have sidelobes.

This is perhaps the reason for the good performance of the (sin x)/x signal,

in spite of the fact that the energy in the outskirts decreases rather slowly

for such a signal.
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